

CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 416 W. Congress St., Suite 100 Tucson, Arizona 85701 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the A. F. Budge Mining Ltd. Mining Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

P.O. Box 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

June 3, 1988

A.F. Budge Mining LTD. 7340 East Shoeman Lane Suite 111-B-(E) Scottsdale, Arizona 85251

Attn: Carole A. O'Brien

Subject: Results of Cyanide Leach Testing United Verde Extension Sample UVX-902-W. Our Project No. P-1534.

Dear Ms. O'Brien:

Pursuant to discussions with Mr. Frank Millsaps, cyanide leach testing was performed on a sample of United Verde Extension ore. These tests were performed to determine the variation in gold and silver extraction with increasing grind fineness. Previous testing on this highly siliceous, oxide iron-bearing sample, as referenced in an attached letter from Mr. Don White, indicated significant gold encapsulation through at least 200 mesh.

Specific testwork performed included:

- Bottle roll cyanidation tests at feed sizes ranging from minus 3/4 inch to 99 percent minus 200 mesh.
- Assay screen analyses of selected leach residues.

I. - Sample Description and Head Analyses

Four boxes of sample weighing 24 kilograms each were received at our laboratory April 13, 1988 and assigned Our Lot No. P-1534. Each box contained minus 6 inch material identified as UVX 902-W. The contents of each box were thoroughly mixed into one sample and stage crushed through 3/4 inch. One-half of the sample was stored at minus 3/4 inch, while the other half of the sample was stage crushed through 20 mesh and a head sample split out for gold and silver assay. Head assay results are presented on the following page and compared with back-calculated head assays from testwork. June 3, 1988 A.F. Budge Mining LTD. Page -2-

Head Assay Results: UVX - 902-W

	Assay,	oz/Ton
	Gold	Silver
Assay Head	0.089	7.45
Back-Calc. Head*	0.111	8.25

* Avg. 4 tests

The sample appeared siliceous with significant iron oxides, and was a chocolate brown color.

II. - Test Results

Gold and silver extraction from this sample increase as the grind fineness increases. However, even at an extremely fine grind of 99 percent minus 200 mesh (89 percent minus 325 mesh) a relatively high leach residue assaying 0.036 oz/ton Au and 3.50 oz/ton Ag was obtained from a 0.109 oz/ton Au, 8.11 oz/ton Ag calculated head. Leach extraction results at increasing grind fineness are summarized below:

P-1534: A.F. Budge Cyanidation Test Results Summary

		4	Assay,	oz/Ton		NaCN
Test	Grind	Resi	due	Calc	Head	Consumed
No.	%-200	Au	Ag	Au	Ag	1b/Ton Ore
2	-3/4"	0.105	8.03	0.117	8.32	2.10
1	47.4	0.051	5.37	0.104	8.16	2.55
3	83.4	0.046	4.91	0.114	8.41	10.53
4*	99.4	0.036	3.50	0.109	8.11	6.64

* 5 lb NaCN/ton solution used in this test, all others used 10 lb/ton

An assay screen analysis of the leach residue from Test No. 3 indicated significant unleached gold in all size fractions through 400 mesh. Results are summarized below:

P-1534: A.F. Budge Residue Assay Screen Analysis: Test No. 3

Size Fraction	Weight	Assay, or	z/Ton
Mesh	Percent	Au	Ag
+200	17.1	0.080	6.40
200/325	32.3	0.065	6.06
325/400	3.5	0.074	5.51
-400	47.1	0.039	3.76
Total	100.0	0.056	5.02

June 3, 1988 A.F. Budge Mining LTD. Page -3-

These results are presented in a detailed summary table and individual test data sheets attached to the end of this report.

A high cyanide consumption of 10.5 lb NaCN per ton of ore was calculated for Test No. 3. Solution analyses indicated approximately 750 ppm iron and 233 ppm copper. Based on these analyses approximately 75 percent of the cyanide consumption is due to complexation with iron, while almost 10 percent of the cyanide consumption is due to complexation with copper.

III. - Test Procedures

Test procedures summarized in this section are presented in detailed test sheets attached to the end of this report.

A. - Cyanidation Tests

A generalized test procedure consisted of ball mill grinding 1000 grams of minus 20 mesh ore for a measured amount of time at 50 percent solids. The ground pulp was adjusted to pH 11-11.5 with hydrated lime, cyanide added to provide an initial solution concentration of 10 lb NaCN/ton, and the slurry bottle rolled for 72 hours. The leach residue from test No. 3 was releached for 72 hours with a 10 lb/ton NaCN solution because the cyanide in original leach solution was almost completely depleted.

At Mr. Millsaps request the leach solution in Test No. 4 was maintained at 5 lb NaCN per ton solution for 72 hours by periodic titration and reconstitution.

Three kilograms of minus 3/4 inch ore was used for the coarse ore leach in Test No. 2.

B. - Leach Residue Assay Screen

Leach residues from selected tests were assay screened by wet screening the leach residue at the required screen sizes, drying each fraction, weighing, and submitting each fraction for gold and silver analysis by standard fire assay.

If you have any questions or comments concerning this testwork, please call.

Sincerely, DAWSON METALLURGICAL LABORATORIES, INC.

tilis Thoy

Philip Thompson, Vice President

cc: Mr. Frank Millsaps

PT-cac

Test No.	Grind, <u>%-200</u>	Product	Assay, Au	oz/T Ag	Dist Au	., % _Ag	NaCN Consumed, 1b/Ton Ore
2	-3/4"	Solution <u>Residue</u> Total (calc) Total (assay)	0.012 0.105 0.117 0.089	0.34 <u>8.03</u> 8.32 7.45	89.5	4.2 <u>95.8</u> 100.0	2.10
1	47.4	Solution <u>Residue</u> Total (calc) Total (assay)	0.051 0.051 0.104 0.089	2.67 <u>5.37</u> 8.16 7.45	48.7	34.4 <u>65.6</u> 100.0	2.55
3	83.4	Solution Releach Sol'n <u>Residue</u> Total (calc) Total (assay)	0.038 0.012 0.046 0.114 0.089	2.03 1.17 <u>4.91</u> 8.41 7.45	25.4	16.0	10.53
4	99.4	Solution <u>Residue</u> Total (calc) Total (assay)	0.067 0.036 0.109 0.089	4.22 <u>3.50</u> 8.11 7.45		56.9 <u>43.1</u> 100.0	6.64

P-1534: A.F. Budge Mining, LTD. Cyanide Leach Results: Sample UVX -902 W

Leach Residue Assay Screen Analyses

			Assay,	oz/Ton	Distribu	tion, %
Test No.	Mesh Size	WGT - %	Au	Ag	Au	Ag
2	+1/4"	56.4	0.112	9.15	60.3	64.2
	1/4"/10	24.4	0.101	7.94	23.6	24.1
	10/35	7.2	0.122	6.98	8.4	6.3
	35/100	3.5	0.104	4.58	3.5	2.0
	-100	8.5	0.052	3.17	4.2	3.4
	Total	100.0	0.105	8.03	100.00	100.0
3	+200	17.1	0.080	6.40	24.6	21.8
	200/325	32.3	0.065	6.06	37.7	39.0
	325/400	3.5	0.074	5.51	4.7	3.9
	-400	47.1	0.039	3.76	33.0	35.3
	Total (calc)	100.0	0.056	5.02	100.0	100.0

Test	No.	2:	72	hour	Leach,	50%	Solids,	10	lb/ton	NaCN	Solution		
Test	No.	1:	72	hour	Leach,	50%	Solids,	10	lb/ton	NaCN	Solution		
Test	No.	3:	72	hour	Leach,	50%	Solids,	10	lb/ton	NaCN	Solution	, Releach	
			72	hours	з.								
Test	No.	4:	72	hour	Leach.	50%	Solids.	5	lb/ton	NaCN	Solution	(maintained)	

P. O. BOX 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT N	OP-1534	
DATE	4/18/88	
BY	LA	1. 1. 1. 1. 1.
A	Comp #1	1.1.4.5.1

TEST NO.1NAMEUnited Verde Extension72 hour Leach on 20' Ball MillGrind with 10 lb/ton NaCN Solution

Product	Weight			Assay		Units		Distribution	1.11
	<i>A</i> .	1.00	Au	Ag	Au	Ag	Au	Ag	
Leach Solution	1051.0		0.051	2.67	0.5360	28.062	51.32	34.39	V1C
Leach Residue	997.0		0.051	5.37	0.5085	53.539		65.61	
Head Calculated	1000.0		0.104	8.16	1.0445	81.601	100.00	100.00	-

Approximate Work Index: 150 Mesh: 29

200 Mesh: 28 Average : 28

a											GRIND	ING
OPERATION	BM		Start	Off							PROD	UCT
TIME	20'	÷.,	8:30	8:30		in the					Leach	
REAGENTS - LBS PER TON			Leach	72 hrs				1. A.	1.1.1.1		Residue	
Ore gram	1000									MESH	%	%
Water gram	1000							2		+ 10		
Lime gram		2.0								+ 14		
NaCN gram			5.0	and the second						+ 20		
NaCN Titration, 1b/T Sol	n	14		7.09				Sec. 1		+ 28		
CaO Titration, 1b/T Sol'r	1			0.2				Sec. 3		+ 35		
NaCN Consumed, 1b/T Ore				2.55						+ 48	0.0	12.1.2
Lime Consumed, 1b/T Ore			and the second second	3.8						+ 65	3.6	100
						5				+ 100	11.9	
							and the state	Carlot		+ 150	19.4	
MACHINE					B				-	+ 200	17.7	
R.P.M.					1.1.2.2.2					+ 325	18.2	
pH -	7.9	11.6	-	11.5	1362.00					-325	29.2	19 - 19 - 19 19 - 19 - 19 - 19 - 19 - 19
% SOLIDS								and the second second			100.0	e that
TEMPERATURE					 5	14000000		31.31.103	1	100 N 12 N		

P. O. BOX 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO. P-1534 DATE ____ 4/18/88 BY ____ LA Comp #1

TEST NO.2NAMEUnited Verde Extension72 hour Leach on -3/4"Ore with 10 lb/ton NaCN Solution followed by Assay Screen

Product	Weight	% Wt.		Assay	Units	Distribution V1G
			Au	Ag	Au Ag	Au Ag
+1/4" Leach Res.	1679.0	56.36	0.112	9.15	0.0631 5.157	60.31 64.22
-1/4"+10m Leach Res	727.1	24.41	0.101	7.94	0.0246 1.938	
-10+35m Leach Res.	215.8	7.24	0.122	6.98	0.0088 0.506	23.55 24.13
-35+100m Leach Res.	104.0	3.49	0.104	4.58	0.0036 0.160	8.44 6.30
-100m Leach Res.	253.4	8.51	0.052	3.17	0.0044 0.270	3.47 1.99
Head Calculated		100.00	0.105	8.03	0.1047 8.029	<u>4.23</u> <u>3.36</u> 100.00 100.00
Leach Solution	3068.7		0.012	0.34	0.3682 10.434	10.53 4.18 V1C
Leach Residue	2979.3		0.105	8.03	3.1283 239.238	89.47 95.82
Head Calculated	3000.0		0.117	8.32	3.4965 249.671	100.00 100.00

												GRINE	JING
OPERATION			Start	Off				-				PROD	UCT
TIME			8:10	8:10						s!			
REAGENTS - LBS PER TON			Leach	72 hours	5								
Ore gram	3000										MESH	%	%
Water gram	3000							Contraction of the			+ 10		
Lime gram		4.0									+ 14	2.52	
NaCN gram		14. A. A. A.	15.0								+ 20		
NaCN Titration, 1b/T Sol'	n			7.72							+ 28		
CaO Titration, 1b/T Sol'n		de an in 1		0.3				1		1.1.1.1	+ 35		
NaCN Consumed, 1b/T Ore		11.11		2.10							+ 48		
Lime Consumed, 1b/T Ore		- 11 - 11		2.4					1. A.		+ 65		190 100
	and the										+ 100	1.1	1
		1					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1	1.1.1.1	+ 150	1.4.4.1.1	
MACHINE		1947 I.	and the second			- 1		Section 1			+ 200	1.1	1. 194
R.P.M.					1.25.25						+ 325		
рН	8.3	11.8		11.8	1. S. S. S. S. S. S.					1.00	-325	1. 1.	
% SOLIDS	i sali	1.1.1	and the second of							1.2742.23		Sec. 1	
TEMPERATURE												S. Sond	1. 1. 1. 1.
DELLADING													

P. O. BOX 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

 PROJECT NO.
 P-1534

 DATE
 4/26/88

 BY
 LA

TEST NO.3NAMEUnited Verde Extension72 hour Leach on 40' Ball Mill Grind with 10 lb/ton NaCN Solution

Product	Weight		Assay		Units	유민이 관계		Distribution	
		Au	Ag	Au	Ag		Au	Ag	
Leach Solution	1025.5	0.038	2.03	0.3897	20.818		34.20	24.76	V 1
Leach Residue	999.5	0.075	6.33	0.7496	63.268		65.80	75.24	
Head Calculated	1000.0	0.114	8.41	1.1393	84.086		100.00	100.00	
Releach Solution	564.0	0.012	1.17	0.0677	6.599		22.81	21.25	V 1
Releach Residue	498.0	0.046	4.91	0.2291	24.452		77.19	78.75	
Head Calculated	500.0	0.059	6.21	0.2968	31.051		100.00	100.00	

		-					Tes	t 3A Rel	each 5/	4/88			GRIND	DING
OPERATION	BM		Start			Off		Releach	24hr	48hr	Off		PROD	UCT
TIME	40'		2:20			2:20		11:10			11:10		Leach	
REAGENTS - LBS PER TON			Leach	- 1 - I - I - I		72 hrs	4 1.4				72hrs		Residue	
Ore	1000							500.0				MESH	%	9
Water	1000		1997 A. 1997 A. 1997					500.0				+ 10		A
_Lime		2.5		7			1	1.0				+ 14		1.1
NaCN			5.0					2.5			1	+ 20		
NaCN Titration, 1b/T Sol'	n					0.37			8.70	8.56	8.06	+ 28		
CaO Titration, 1b/T Sol'n						0.8					0.4	+ 35		
NaCN Consumed, 1b/T Ore				Sec. Sec. 8	and the second	9.62					0.91	+ 48	0.0	
Lime Consumed, 1b/T Ore						4.2					3.5	+ 65	0.0	
				NaCN	Consume	d, Total.	1b/Ton	Ore: 1	D.53			+ 100	0.3	
	44		1.	Lime	Consume	d, Total	1b/Ton	Ore:	7.7	2.2.2.2.3		+ 150	3.8	
MACHINE									18 12 2 Mail			+ 200	12.5	
R.P.M.											1	+ 325	28.0	
pH	7.9	11.9				11.9	8.9	11.8	11.6	S. Carlo	11.6	-325	55.4	1.6. 1
% SOLIDS						and a set of the			12.47 3.43	2.1.1.1.1.1			100.0	
TEMPERATURE				and the second					1.1.1	1.4984			1 Carlo and	

REMARKS:

_

P. O. BOX 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-1534	
DATE	5/12/88	
BY	LA	

TEST NO		3A	1	NAME	See See	United	Verde	Extension	
Assay Scr	een on	Test	3A	Leach	Residue				1

Product	Weight	% Wt.		Assay		Units	Distribution
			Au	Ag	Au	Ag	Au Ag
+200mesh Leach Res.	70.1	17.12	0.080	6.40	0.0137	1.096	24.61 21.84
200/325m Leach Res.	132.2	32.28	0.065	6.06	0.0210	1.956	37.71 39.00
325/400m Leach Res.	14.5	3.54	0.074	5.51	0.0026	0.195	4.71 3.89
-400mesh Leach Res.	192.7	47.06	0.039	3.76	0.0184	1.769	32.98 35.27
Head Calculated	409.5	100.00	0.056	5.02	0.0557	5.016	100.00 100.00
Head Assay			0.046	4.91			

											1	GRINE	JING
OPERATION								1.00				PROD	UCT
TIME		6											
REAGENTS - LBS PER TON	5 E												
Ore	411.4										MESH	%	%
				1	Sec. Sec.	1.1					+ 10		
											+ 14	1.1.1	
										1	+ 20		
	1			1 1 2 2				1			+ 28		
							1			1.	+ 35		
	1										+ 48	1.1.1	
											+ 65		
				1.2							+ 100	Sec. 14	
				1.15	Level and			1. · · · · · · · · · · · · · · · · · · ·			+ 150		
MACHINE		1. 2. 12		. Charles				1.			+ 200	a negative	1.282.28
R.P.M. pH				124.242							+ 325		
									14.08.000	24. 23 C. Sty	-325		
% SOLIDS	1 A											A CARLER	2. 2. 2. 1
TEMPERATURE			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1-52.61									1.1.2.2.2.
DEMADKO.	and the second						Sec. 1997						

P. O. BOX 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-1534	
DATE	5/23/88	
BY	LA	

TEST NO.4NAMEUnited Verde Extension72 hour Leach on 90' Ball Mill Grind with 5 lb/ton NaCN Solution

Product	Weight		Assay		Units		Distributi	on
		Au	Ag	Au	Ag	Au	Ag	```
Leach Solution	1092.7	0.067	4.22	0.7321	46.112	67.04	56.85	
Leach Residue	1000.0	0.036	3.50	0.3600	35.000	32.96	43.15	
Head Calculated	1000.0	0.109	8.11	1.0921	81.112	100.00	100.00	

										· · · ·	GRIND	ING
OPERATION	BM		Start	5/24	5/24	5/25	Off			1	PROD	UCT
TIME	90'		11:38	24hr	10:30	48hr	11:35].	Leach	•:
REAGENTS - LBS PER TON	12.1		Leach	14.5			72hrs		1.1		Residue	
Ore gram	1000									MESH	%	9
Water gram	1000						-	1		+ 10		1994 - S. 1993 1994 - S. 1995 - S. 1 1995 - S. 1995 - S. 19
Lime gram		0.5		0.2	0.3				1.1.1.1	+ 14		
NaCN gram			2.5	2.5		0.56				+ 20		
NaCN Titration, 1b/Ton So	1'n		1	0.34		3.88	4.10		1.1.1	+ 28		
CaO Titration, 1b/Ton Sol	'n				1	0.3	0.4			+ 35	Section 1987	1
NaCN Consumed, 1b/Ton Ore			1	1. 1. 1. 1.			6.64			+ 48	0.0	1.5
Lime Consumed, 1b/Ton Ore			1		1.1.1.1.1.1.1.1		1.6	Star Star		+ 65	0.0	1.16
										+ 100	0.0	
						1. 1. 1. 1.				+ 150	0.0	4
MACHINE										+ 200	0.6	1.1.1.1.1.1.1
R.P.M.						1.81.12	1. Alate			+ 325	10.0	
рН	7.8	10.9	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	10.0	10.4	11.0	10.9			-325	89.4	
% SOLIDS						State 1				1	100.0	
TEMPERATURE	Section 2.	Section 20		No. Sec.					Sur Kange			1999

Don White 521 E. Willis St. Prescott, AZ 86301 602-778-3140

April 12, 1988

Mr. Harmel A. Dawson DAWSON METALLURGICAL LABORATORIES, INC. P.O. Box 7685 5217 Major St. Murray, Utah 84107

Dear Mr. Dawson;

Shipped separately via U.P.S. to your 5217 Major St. address are 4 boxes totalling over 200 pounds of rock. Please blend the four separate lots (over 50 pounds each) to produce one uniform sample. That sample we refer to as U.V.X.-902-W.

Following a head assay, please perform a cyanide leach amenability test and then an assay screen analysis. With those results reported, we will decide whether to proceed with a column leach, for which the large sample may be used.

By way of warning and a sort of check, we expect the sample to run in the range of .15 to .25 oz/t Au, 5. to 8. oz/t Ag, 20. wt % Fe, 4,000-5,000 ppm combined base metals and at least 75% SiO2. It is the ferruginous and highly siliceous nature of this material that differentiates it from many other samples you likely deal with. Those characteristics worry us as to cyanide leach amenability. We have early indications from a bottle roll on a very tight, even more siliceous sample, that at least 200 mesh grinding will be necessary. We would like to confirm that for this particular lithology and perhaps take it even finer it the assay screen analysis so mandates.

If any questions arise, do not hesitate to phone me, Carole A. O'Brien, or Frank W. Millsaps. Please send the bill and a copy of the results to Carole A. O'Brien (A.F. Budge (Mining) Ltd., 7340 East Shoeman Lane, Suite 111-B-(E), Scottsdale, Arizona 85251).

Sincerely,

Don White Geologist, C.P.G.

DW:sk

cc: Carole A. O'Brien Frank W. Millsaps U.V.X. Cyanide Leachability Testing Summary - Don White, April, 1988

ande

1) Silica grit; low Fe

Sampled in S-2 dog-hole (901-W X-cut, N. Gold Stope) Tested by I.K. & reported April 9, 1987) 1 kg composit: Head <u>.23</u> 1.0 Ball mill grind to 80% - 200 mesh NaCN bottle roll for 72 hours

95% Au recovery in first 24 hrs. 20% Ag recovery in 72 hrs.

2) Tight silica breccia, not gritty, not very Cu or Fe rich

Sampled in Gold Stope H.W. exposed in 901-W X-cut Tested by Dawson, and reported June 29, 1987

200 pound composit: Head <u>.11</u> 3.2

Head screen assay

Evenly distributed Au & Ag by size though higher grade in negligible volume fines (4% - 100 mesh) Bottle roll CN leach for 72 hrs., $-1\frac{1}{2}$ " ore

46% Au recovery 5% Ag recovery

Only significant recovery was $\sim 80\%$ of Au from the fine (-100 mesh) fraction

Tentative conclusion is that at least -100 mesh grind is necessary to achieve gold extractions exceeding 50%

Should have taken test onward with grind and test.

3) Tight silica breccia, & mixture

<u>Tight</u> - Florencia area drill sample composit D.D.H. 1104-1 240'-250' Head <u>.11</u> 0.5

Mixture - Morgan area drill sample composit D.D.H. 806-1 541'-578' Head <u>.16</u> 1.0

About 15 pounds (7 kg) each Standard amenability tests by Dawson, reported April 9, 1986

Both samples provided $\sim 86\%$ Au recoveries and $\sim 40\%$ Ag recoveries when ball mill ground to $\sim 70\%$ -200 mesh. But only 30-40% Au recoveries on $-\frac{1}{4}$ inch rock.

4) Very Ferruginous, very tight siliceous, high Au & Ag.

Composit from M-11 high grade, 198'-210' Head assay <u>.40</u> Reported by I.K. June 17, 1987 and followup Aug. 7, 1987

1 kg composit of coarse rejects (~ 10 mesh)

13% Au recovery, \sim 20% Ag recovery with CN bottle roll

- If then ball mill ground to 99% 60 mesh, 50% Au and 40% Ag recoveries with
 few + 10 mesh particles exhibiting much higher Au & Ag values, still
 unrecovered.
- 5) Ferruginous, saccharoidal (but not gritty) modest Au and Ag

902-W X-cut rib sample of 200 pounds shipped to Dawson April 12, 1988 for amenability and assay screen analyses.

P.O. Box 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

April 9, 1986

DMEA LTD. 7340 East Shoeman Lane Suite 111B East Scottsdale, Arizona 85251 DMEA LTD. APR 1 1 1986 RECEIVED

4

Attn: Mr. Ben F. Dickerson, III

Subject: Results of Cyanide Leach Amenability Tests on Two Gold-Bearing Composite Samples. Our Project No. P-1226.

Gentlemen:

In accordance with arrangements made with Mr. Don White, formalized in his letter of March 3, 1986 (attached), cyanide leach amenability tests were performed on two gold-bearing composite samples received at our laboratory March 6, 1986. The following tests were performed on each sample:

- Bottle roll cyanide leach for 48 hours after ball mill grinding sample to approximately 70 percent minus 200 mesh.
- 2 Bottle roll cyanide leach minus 1/4 inch sample for 48 hours followed by assay-screen of leach residue.
- I. Sample Description and Head Analyses

Thirteen individual samples were received at our laboratory March 6, 1986 and were composited in accordance with instructions from Mr. Don White in his letter of March 3, 1986 (copy attached). Approximately 2 kilograms of each as-received composite sample (minus 1/4 inch) was carefully split out and crushed through 20 mesh prior to splitting out a head sample. Head assay results are presented as follows:

	Sample		Head Assay,	oz/Ton
DML No.	DMEA	No.	Gold	Silver
P-1226#1	1104-1:	240-250	0.111	0.52
P-1226#2	806-1:	541-578	0.162	0.97

April 9, 1986 DMEA LTD. Page -2-

II. Test Results

Test results indicate that these samples require grinding to at least 28 mesh in order to obtain a leach residue which assays less than approximately 0.030 oz/ton gold. Results are summarized below and presented in individual test sheets attached to the end of this report.

1	P-1226:	Ben Dic	kerson		
Leach Te	st Resu	lts: Bal	1 Mill G	round Samp	les
				Reagents	Consumed
Assay, o	z/Ton	Distrib	oution %	1b/Tor	n Ore
Au	Ag	Au	Ag	NaCN	Lime
Sample	P-1226	#1 (110	04-1: 240	-250)	
0.104	0.27	85.6	48.5		
0.019	0.31	14.4	51.5		
0.132	0.60	100.0	100.0	3.8	1.5
nus 200 M	esh				
Sample	P-1226	#2 (806	5-1: 541-	578)	
0.118	0.32	86.8	34.5	1	
0.020	0.68	13.2	65.5		
0.152	1.04	100.0	100.0	2.5	1.7
	Leach Tes <u>Assay, or</u> <u>Au</u> <u>Sample</u> 0.104 0.019 0.132 nus 200 M <u>Sample</u> 0.118 0.020	Leach Test Resu <u>Assay, oz/Ton</u> <u>Au</u> <u>Ag</u> <u>Sample P-1226</u> 0.104 0.27 0.019 0.31 0.132 0.60 nus 200 Mesh <u>Sample P-1226</u> 0.118 0.32 0.020 0.68	Leach Test Results: Bal Assay, oz/Ton Distrib Au Ag Au Sample P-1226 #1 (110 0.104 0.27 85.6 0.019 0.31 14.4 0.132 0.60 100.0 nus 200 Mesh Sample P-1226 #2 (806 0.118 0.32 86.8 0.020 0.68 13.2	Assay, oz/Ton Distribution % Au Ag Au Ag Sample P-1226 #1 (1104-1: 240 0.104 0.27 85.6 48.5 0.019 0.31 14.4 51.5 0.132 0.60 100.0 100.0 nus 200 Mesh Sample P-1226 #2 (806-1: 541- 0.118 0.32 86.8 34.5 0.020 0.68 13.2 65.5	Leach Test Results: Ball Mill Ground Samp Assay, oz/Ton Distribution % 1b/Tor Au Ag Mac Ag NaCN Sample P-1226 #1 (1104-1: 240-250) 0.104 0.27 85.6 48.5 0.019 0.31 14.4 51.5 0.132 0.60 100.0 100.0 3.8 Sample P-1226 #2 (806-1: 541-578) 0.118 0.32 86.8 34.5 0.020 0.68 13.2 65.5

Grind: 77.7% Minus 200 Mesh

		Weight		Assay,	oz/Ton	Distrib	ution,%
Product		Percent	<u>-</u> -	Au	Ag	Au	Ag
	Sample	P-1226	#1	(1104-1:	240-250)		
Leach Solution				0.030	0.04	29.8	10.4
Leach Residue				0.068	0.33	70.3	89.6
Total (calc)				0.097	0.37	100.0	100.0
+8 Mesh Leach Resi	due	64.9		0.078	0.41		
8/28 Mesh Leach Re	sidue	20.2		0.067	0.13		
28/48 Mesh Leach R	esidue	5.2		0.020	0.16		
48/100 Mesh Leach	Residue	2.7		0.046	0.36		
-100 Mesh Leach Re	sidue	7.0		0.017	0.23		
NaCN Consumed: 3.	4 1b/To	n Ore					
Lime Consumed: 2.	5 1b/To	n Ore					
	0 1	D 1000	110	(00(1.	E/1 E70)		
	Sample	P-1226	1FZ	and the second sec	541-578)	10 5	
Leach Solution				0.048	0.78	43.5	57.6
Leach Residue				0.061	0.56	56.5	42.4

Cyanide Leach Test Results: Minus 1/4 Inch Samples

Sample 1	P = 1226	#2	(806-1:	541-578)		
Leach Solution			0.048	0.78	43.5	57.6
Leach Residue			0.061	0.56	56.5	42.4
Total (calc)			0.108	1.32	100.0	100.0
+8 Mesh Leach Residue	69.4		0.071	0.60		
8/28 Mesh Leach Residue	12.9		0.065	0.63		
28/48 Mesh Leach Residue	3.5		0.024	0.44		
48/100 Mesh Leach Residue	2.0		0.042	0.79		
-100 Mesh Leach Residue	12.2		0.014	0.28		
NaCN Consumed: 2.2 1b/Ton	Ore					
Lime Consumed: 2.5 1b/Ton	Ore					

April 9, 1986 DMEA LTD. Page -3-

No attempts were made to optimize cyanide addition in these preliminary tests.

III. Test Procedures

Cyanide leach amenability tests on ball mill ground samples were performed as follows: 1000 grams of minus 20 mesh sample was ball mill ground at 50 percent solids to approximately 70 percent minus 200 mesh. The ground slurry was subsequently leached for 48 hours at 50 percent solids with an initial solution concentration of 10 pounds NaCN per ton of solution.

Cyanide leach amenability tests on as-received (minus 1/4 inch) samples were performed as follows: 3000 grams of minus 1/4 inch sample was bottle roll leached at 50 percent solids for 48 hours with an initial solution concentration of 10 pounds NaCN per ton of solution. After leaching, the filtered and washed leach residue was screened on 8, 28, 48 and 100 mesh and the individual screen fractions submitted for assay.

If we can be of further service, please call.

Sincerely, DAWSON METALLURGICAL LABORATORIES, INC.

Philip Thompson, Vice President

cc: Mr. Frank Millsaps

PT-cac

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

PROJECT NO.	P-1226-#1	
DATE	3/10/86	
BY	MT	
	#1 Sample	

TEST NO.1NAMEBen Dickerson48 hour NaCN Leach with 10 lbs/ton NaCN Solution

	Uciabt		Assay		Units		Distrib	oution	
Product	Weight	Au	Ag	Au	Ag	Au	Ag		
Leach Solution	1025.6	0.104	0.27	1.0666	2.769	85.56	48.53		V1C
Leach Residue	947.4	0.019	0.31	0.1800	2.937		51.47	-	
Head Calculated	947.4	0.132	0.60	1.2466	5.706	100.00	100.00		

			NDING							
OPERATION	BM		Leach						PRO	орист
TIME	20'		11:30	11:30					Leach	′
REAGENTS - LBS PER TON]		Start	Off					Residue	e /
)							MESH	%	,'
Ore	1000							+ 10		′
Water	1000							+ 14		′
Lime, gram	/	1.0				 		+ 20		′
NaCN, gram		30 ¹⁰	5.0			 		+ 28		′
NaCN Titration, 1b/Ton Sol	n			6.0		 		+ 35		′
CaO Titration, 1b/Ton Sol'n				0.5		 (+ 48	0.0	
NaCN Consumed, 1b/Ton Ore				3.8		 ·		+ 65	0.7	
Lime Consumed, 1b/Ton Ore)			1.5		 ·		+ 100	J.7	
)					1		+ 150	1 20.1	
MACHINE								+ 200		
R.P.M.)							+ 325		
рН	8.3		11.6	11.5				-325	5 49.8	
% SOLIDS					N				100.0	
TEMPERATURE	· · · · · ·									

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

PROJECT NO.	P-1226-#2	
DATE	3/10/86	
BY	MT	
	#2 Samples	

TEST NO. __1 ___ NAME ____Ben_Dickerson 48 hour NaCN Leach with 10 lbs/ton NaCN Leach solution

Product	Weight		Assay		Units		Distribution	
		Au	Ag	Au	Ag	Au	Ag	
Leach Solution	1085.1	0.118	0.32	1.2804	3.472	86.84	34.49	V1C
Leach Residue	969.9	0.020	0.68	0.1940	6.595		65.51	
Head Calculated	969.9	0.152	1.04	1.4744	10.068	100.00	100.00	and the second

						0100100							-	-
						3/12/86]	·'	GRIN	NDING
OPERATION	BM	1		Leach	<u>(</u> '	1′	1					,,	PRO	DUCT
TIME	20'			11:35	· · · · · · · · · · · · · · · · · · ·	11:35	[T				ć – 7	Leach	
REAGENTS - LBS PER TON	·'			Start		Off							Residue	e
	· '	1	_		·'	Į′						MESH	%	
Ore	1000				<u>(</u> '	1′	1					+ 10	,	
Water	1000				·'	1						+ 14	· · · · · ·	
Lime, gram	·'	1.0			· · · · · · · · · · · · · · · · · · ·	·′						+ 20	,	
NaCN, gram	·'			5.0	('	í′						+ 28	,	\bigcap
NaCN Titration, 1b/Ton Sol	_n′		-		()	6.9		T				+ 35	,	
CaO Titration, 1b/Ton Sol'n		1				0.3						+ 48	0.0	
NaCN Consumed, 1b/Ton Ore	·'	1			·'	2.5	1					+ 65		
Lime Consumed, 1b/Ton Ore	·'				[·]	1.7						+ 100		
	·'	1			()	<u>(*</u>	1					+ 150		
MACHINE	<u> </u>	1			()	1′						+ 200		
R.P.M.	//				()	· · · · · · · · · · · · · · · · · · ·	[+ 325		
рН	,,		11.5		· · · · ·	11.6		1				-325	20.7	
% SOLIDS	,,		1		· · · · · · · · · · · · · · · · · · ·	1,	[1		1		·	100.0	
TEMPERATURE	,,	[1	·,	(,		1	+	+		/		
REMARKS:									<u> </u>)	4	

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

PROJECT NO.	P-1226-#1
DATE	3/22/86
BY	MT
	Sample #1

TEST NO. _ 2 NAME _____ Ben Dickerson 48 hour NaCN Leach on As Received Sample with 10 lbs/ton NaCN Solution (-1/4")

Product	Weight	% Wt.		Assay		Unit	S		Distribu	tion	V1G
	v i i		Au	Ag	Au	Ag		Au	Ag		
+8mesh Leach Res.	1380.7	64.92	0.078	0.41	0.0506	0.266		74.88	81.50		
-8+28m Leach Res.	428.7	20.16	0.067	0.13	0.0135	0.026		19.97	8.02		
-28+48m Leach Res.	111.5	5.24	0.020	0.16	0.0010	0.008		1.55	2.57		
-48+100m Leach Res.	57.9	2.72	0.046	0.36	0.0013	0.010		1.85	3.00		
-100mesh Leach Res.	148.1	6.96	0.017	0.23	0.0012	0.016		1.75	4.90		
	0.0	0.00	0.000	0.00	0.0000	0.000		0.00	0.00		
Head Calculated	2126.9	100.00	0.068	0.33	0.0676	0.327	**	100.00	100.00		-
Leach Solution	2974.0		0.030	0.04	0.8922	1.190		29.75	10.42		V1C
Leach Residue	3098.0		0.068	0.33	2.1066	10.223		70.25	89.58		
Head Calculated	3098.0	-	0.097	0.37	 2.9988	11.413	unanaya kundun kundun kundun dan dan dan basakan d	100.00			-

			Alter private and seattle and		 					1	
-					 					GRIN	DING
OPERATION	'		Leach							PRO	DUCT
TIME	'		8:00	48hrs						Leach	
REAGENTS - LBS PER TON			Start	Off	 				-	Residue	a
	·'								MESH	%	
Ore As Received	3000				 				+8	64.9	
Water	3000								+ 14		
Lime, gram		4.0							+ 20	,	
NaCN, gram	·'		15.0				2		+ 28	20.2	
NaCN Titration, 1b/T Sol'n	L'			6.5					+ 35	,	
CaO Titration, 1b/T Sol'n				0.1					+ 48	5.2	
NaCN Consumed, 1b/T Ore	'	N		3.4					+ 65		
Lime Consumed, 1b/T Ore	/			2.5					+ 100	2.7	
	Ļ'								+ 150		
MACHINE	'						-		+ 200	· · · · · ·	
R.P.M.			A						+ 325		
рН	8.5		11.4	11.3					-325	,	
% SOLIDS									-100	7.0	
TEMPERATURE										,,	
DEMADICO		/			 	4	-	1		+	+

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

PROJECT NO.	P-1226-2
DATE	3/22/86
BY	MT
	Sample #2

-100

12.2

TEST NO. 2 NAME Ben Dickerson III 48 hour NaCN Leach with 10 lbs/ton NaCN Solution on As-Received Sample (-1/4")

		the second s							Contraction of the second second							
	Product	Weight	% Wt.		As	ssay			Unit	S			Distrib	ution		V1G
					Au	Ag		Au	Ag	****		Au	Ag			
		1441.5				,60		0.0493	0.416			80.69	73.93			
	-8+28m Leach Res.	268.8				.63		0.0084	0.082			13.77	14.48			
	-28+48m Leach Res.	72.0	3.47			,44		0.0008	0.015			1.36	2.71			
	-48+100m Leach Res.	41.6	2.00	0.04	12 0.	79		0.0008	0.016			1.38	2.81			
	-100mesh Leach Res.	253.7	12.21			28		0.0017	0.034			2.80	6.07			
		0.0	0.00		A design of the local data and the local data and	00		0.0000	0.000			0.00	0.00			
	Head Calculated	2077.6	100.00	0.06	51 0.	56		0.0611	0.563		10	00.00	100.00	**********************		
											<u>^</u>					
		2997.0		0.01		78		1.4386				43.46	57.64		1	V1C
		3068.0		0.06		56		1.8715				56.54	42.36			
	Head Calculated	3068.0		0.10	08 1.	32		3.3100	40.557		1(00.00	100.00			
					And the second of the second										GRIN	DING
	OPERATION				Leach											рист
	TIME				8:05		48 hrs							1	Leach	
	REAGENTS - LBS PER TON				Start		Off			1				1 1	Residue	
										· · .				MESH	%	
	Ore As Received	3	000											+8	69.4	
2	Water	3	000											+ 14		
	Lime, gram			4.0										+ 20		
	NaCN, gram				15.0									+ 28	12.9	
	NaCN Titration, 1b/T Se	01'n					7.8							+ 35		
	CaO Titration, 1b/T So	1'n					0.1							+ 48	3.5	
	NaCN Consumed, 1b/T Or	e					2.2							+ 65		
	Lime Consumed, 1b/T Or	e					2.5							+ 100	2.0	
							-							+ 150		
	MACHINE													+ 200		
	R.P.M.													+ 325		
	pH % SOLIDS	8	.3		11.5		11.4							-325		

REMARKS:

% SOLIDS

TEMPERATURE

Don White 521 E. Willis St. Prescott, AZ 86301 602/778-3140

March 3, 1986

Mr. Harmel A. Dawson DAWSON METALLURGICAL LABORATORIES, INC. 5217 Major St. Murray, Utah 84107

Dear Mr. Dawson,

Following our phone conversation this morning, I have put together the two accompanying samples. Please blend the components listed for each to make up the two samples, obtain a head assay, and then perform both a "standard amenability test" and "assay screen analysis" for each.

The two samples are:

COMPONENTS 1) 1104-1 240-250 240-245 8 1226-1 $(\sim 6.6 \text{ kilograms total})$ 245-250 (Total two intervals) P-1226-2 2) 806-1 541-578 541-543 $(\sim 7.4 \text{ kilograms total})$ 543-544 544-546 546-548 548-550 550-552 (552-565 - not included) 565-568 570-572 572-574 574-576 576-578

Both samples are expected to run a little over 0.1 oz/t Au and between 0.5 and 1.0 oz/t Ag. Both samples are coarse rejects from earlier standard assay preparations.

If any questions arise, do not hesitate to phone me or Carole A. O'Brien of Ben Dickerson's office. Please send the bill and a copy of the results to Ben Dickerson's office.

Sincerely,

on White

(Total twelve intervals)

Don White Geologist, C.P.G.

DW:sk

Enclosures

cc: Ben F. Dickerson, III Frank W. Millsaps

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Reported 3-17-86 Date Received_ Client____Dawson Metallurgical Labs Oz/Ton Oz/Ton Remarks Ag Au Sample Identification * Ounces per ton of 2000 lbs. P-1226 Ben Dickerson P-1226 T-1 .56 .114 Sample #1 Head Sample .48 .107 .31 .019 Leach Residue .30 .019 .25 .108 Cyn Soln .28 .100 P-1226 T-2 Head Sample Sample #2 .160 1.02 .92 .163 .72 .019 Leach Residue .021 .64 (To Follow) Cyn Solns Korada

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received			Date Reported86
Client <u>Dawson Metallurgica</u> Sample Identification	l Labs Oz/Ton Au	Oz / Ton Ag	Remarks
			* Ounces per ton of 2000 lbs.
P-126 #2 T-1 Ben Dickerson Leach Soln	.118 .118	•31 •33	
		- 	
Branch			
			•

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received _____

Date Reported 3-31-86

Client Dawson Metallurgical	Labs		
Sample Identification	Oz/Ton Au	Oz / Ton Ag	Remarks
			* Ounces per ton of 2000 lbs.
P-1226 Ren Dickerson			
P-1226#1 T-2 #1 Leach Res.	.062	.31	
P-1226#1 T-2 #1 Cyn Soln	.067 .030 .031	•34 •04 •04	
P-1226#2 T-2 #2 Leach Residu	.081	.77	
P-1226#2 T-2 #2 Cyn Soln	.086 .047 .048	.78 .05 .06	
Beanchi			
		,	
		× .	

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received _____

ľ

÷.

Date Reported ______4-8-86

Client <u>Dawson Metallurgi</u> ca	L Labs Oz/Ton Au	Oz / Ton Ag	Remarks
			* Ounces per ton of 2000 lbs.
P-1226 Ben Dickerson 111			
P-1226-1 T-2 Sample #1			
+8 Mesh	.077 .078	.41 .40	
-8 + 28	.069	.15	
-28 + 48	.065 - .018	.11 .18	
-48 + 100	.021 .043	.13 .35	
- 100	.049	•37 •26	
	.016	.19	
P-1226-2 T-2 Sample #2			
+8 mesh	.068	.60	
- 8 + 28	.073 .064	.60 .66	
- 28 + 48	.066 .023	•59 •47	
- 48 + 100	.024 .038	.40 .80	
- 100	.045 .014	.78 .26	
	.013	•30	
111			
Knight			
Riandu	а		
V			

P.O. Box 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

June 29, 1987

Millsaps Mineral Service, Inc. 3865 Wasatch Blvd. Room 2021 Salt Lake City, Utah 84109

Attn: Mr. Frank W. Millsaps

Subject: Results of Screening and Cyanide Leach Testing a Sample of United Verde Extension ore. Our Project No. P-1377.

Gentlemen:

In accordance with discussions with Mr. Frank Millsaps, several laboratory tests were performed on a sample of United Verde Extension ore to determine both gold occurence and gold extraction by cyanide leaching. Testwork performed included:

- Assay Screen of Minus 1 1/2 Inch Head Ore Sample
- Bottle Roll Agitation Leach of Minus 1 1/2 Inch Ore Sample for 72 Hours Followed by Assay Screen of Leach Residue.

I. Sample Description and Head Analysis

Four boxes of minus 4 inch ore sample were recieved at our laboratory May 28, 1987 and assigned Our Lot No. P-1377. The contents of each box were combined to produce a 200 pound sample which was crushed through 1 1/2 inch. Twenty-five kilograms of this sample was split out for a head assay screen and 5 kilograms was split out for a 72 hour bottle roll cyanide leach test. Back-calculated head assays from these tests are presented below:

P-1377: Millsaps Mineral Service Back-Calculated Head Assays: -1 1/2 Inch Sample

	Head Assay	, oz/Ton
Test No.	Au	Ag
1 (Assay Screen)	0.102	3.18
2 (72 hr. Bottle Roll)	0.110	3.24

June 29, 1987 Millsaps Mineral Service, Inc. Page -2-

II. Test Results

Results summarized in this section are presented in detailed test data sheets attached to the end of this report.

A. Head Assay Screen

A significant increase in gold assay occurs in the minus 100 mesh fraction of this sample: The minus 100 mesh fines assayed 0.183 oz/ton gold, while the overall calculated head assayed 0.102 oz/ton gold. However, only 7 percent of the gold in the sample was contained in this fraction. Results are presented below:

	P-1377 Millsaps Mineral		
	Head Assay Screen Results: -1	1/2 Inch Sam	ple
	Weight	Assay	, oz/Ton
Size	Percent	Au	Ag
+3/4"	32.7	0.099	3.00
-3/4 + 1/4"	35.3	0.105	3.30
-1/4" +6 Mesh	10.6	0.091	3.21
-6 +20 Mesh	12.5	0.089	3.22
-20 +48 Mesh	3.5	0.087	3.22
-48 +100 Mesh	1.6	0.082	3.13
-100 Mesh	3.8	0.183	3.40
Total	100.0	0.102	3.18

No upgrading of silver was noted in any size fraction.

B. Bottle Roll Cyanide Leach

Almost 50 percent of the gold and less than 5 percent of the silver was leached from minus 1 1/2 inch ore in a 72 hour bottle roll test. Results are summarized below:

P-1377: Millsaps Mineral Service Cyanide Leach Results: -1 1/2 Inch Sample

	Assay,	oz/Ton	Distribu	tion, %
Product	Au	Ag	Au	Ag
Leach Solution	0.050	0.11	46.3	3.4
Leach Residue	0.059	3.14	53.7	96.6
Total (calc)	0.110	3.24	100.0	100.0
NaCN Consumed:	2.48 lb/ton Ore			
Lime Consumed:	1.80 lb/ton Ore			

June 29, 1987 Millsaps Mineral Service, Inc. Page -3-

An assay screen analysis of the leach residue indicated that a significant decrease in gold assay was observed in the minus 100 mesh fraction of the leach residue only. This fraction assayed 0.025 oz/ton gold. Residues are summarized as follows:

	aniae Beach Residue Assa	y bereen Resurts	
	Weight	Assay, o	oz/Ton
Size	Percent	Au	Ag
+3/4"	24.9	0.052	2.64
-3/4 +1/4"	47.8	0.070	2.96
-1/4" +6 Mesh	11.2	0.061	3.14
-6 +20 Mesh	7.1	0.058	2.97
-20 +48 Mesh	1.7	0.050	2.91
-48 +100 Mesh	0.7	0.041	2.42
-100 Mesh	6.6	0.025	2.08
Total	100.0	0.060	2.84

P-1377: Millsaps Mineral Service Cyanide Leach Residue Assay Screen Results

Based on the results obtained on this particular sample, a fine grind of at least 100 mesh is required to obtain gold extractions exceeding approximately 50 percent.

III. Test Procedures

A. Head Assay Screen

Twenty-five kilograms of minus 1 1/2 inch ore was wet screened at 6 mesh. The 6 mesh undersize was further wet screened on 20, 48 and 100 mesh, while the 6 mesh oversize was dried and dry screened on 3/4 and 1/4 inch. Each size fraction was dried, weighed, crushed through 20 mesh, samples split out, pulverized, and submitted for gold and silver assay.

B. Bottle Roll Cyanide Leach

Five kilograms of minus 1 1/2 inch ore was mixed with 5 liters of water, and the pH adjusted to 11.5 with hydrated lime. The pulp slurry was leached for 72 hours in a rolling bottle with a leach solution containing 10 pounds NaCN per ton of solution (initial concentration). After leaching the slurry was weighed, filtered, and the filter cake washed three times with fresh water. One half of the dried leach residue was crushed and a sample split out for assay. The other half of the sample was assay screened as described in A) above. June 29, 1987 Millsaps Mineral Service, Inc. Page -4-

All gold and silver assays were performed in duplicate by standard fire assay.

If you have any questions or comments regarding this testwork, please call.

Sincerely, DAWSON METALLURGICAL LABORATORIES, INC.

m

Philip Thompson, Vice President

PT-cac

R

DAWSON METALLURGICAL LABORATORIES, INC.

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

 PROJECT NO.
 P-1377

 DATE
 6/1/87

 BY______MT

Assay Screen

TEST NO.	1	NAME	DMEA - (United Verde Extension)	
	Assay	Screen on -1	1/2 inch Head Sample	

Product	Weight	% Wt.		Assay	Unit	ts	Distribution
+3/4" Head -3/4"+1/4" Head -1/4"+6mesh Head -6+20mesh Head -20+48mesh Head -48+100mesh Head -100mesh Head Head Calculated	8092.0 8739.0 2628.0 3080.0 855.0 391.0 945.0 24730.0	32.72 35.34 10.63 12.45 3.46 1.58 <u>3.82</u> 100.00	Au 0.099 0.105 0.091 0.089 0.087 0.082 0.183 0.102	Ag 3.00 3.30 3.21 3.22 3.22 3.13 3.40 3.18	Au Ag 0.0324 0.982 0.0371 1.166 0.0097 0.341 0.0111 0.401 0.0030 0.111 0.0013 0.049 0.0070 0.130 0.1016 3.181	Au	Distribution V Ag 30.86 36.66 10.72 12.61 3.50 1.56 4.08
					5	100.00	100.00

OPERATION		 	 		GRINI
TIME	 	 	 		PRO
REAGENTS - LBS PER TON		 	 	 4 -	
				 MESH	%
	 	 		 + 10	
	 	 		 + 14	
	 	 		+ 20	
	 	 		+ 28	
	 	 		+ 35	
	 	 		+ 48	
	 	 		+ 65	
	 	 	 	+ 100	
ACHINE	 	 		+ 150	
R.P.M.	 	 	 	+ 200	
Н	 ++	 	 1	+ 325	
6 SOLIDS	 	 		-325	
EMPERATURE	 	 			

P. O. Box 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-1377	
DATE	6/8/87	
BY	LA	1.5.9

TEST NO.2NAMEDMEA72 hour Leach on -1 1/2" Ore with 10 1b/ton NaCN Solution

PRODUCT Weig	Weight	WEICHT			ASSAY	UNITS		DI	STRIBUTION	4	
				Au	Ag	Au	Ag	Au	Ag		<u> </u>
Leach Residue 49	987.0			0.059	3.14		156.5918		96.6		
	075.0			0.050	0.11	2.5375		46.3			
	0.00			0.110	3.24		162.1743		100.0		-
Total (assay)				0.102	3.18			100.0	100.0		<u> </u>
				++		 					
				++		 					<u> </u>
				1		 	L			GRIN	NHC
PERATION				Start	Off					PROD	
IME				3:40	72hr				F	1	
LAGENTS - LBS PER TON	-								-		
Ore gm		5000				 			MESH	×	
Water gm		5000							+10		
Lime gm			5.0			 			+14		
NaCN gm				25.0					+20		
NaCN Titration, 1b/T		1			7.41	 			+ 28		
CaO Titration, 1b/T					0.2				+35		
NaCN Consumed, 1b/T	Ore				2.48				+48		
Lime Consumed, 1b/T	0re				1.80				+65		
				and a star				and shares	+100		
									+150		
ACHINE									+ 200		
P.M.									+ 325		
Н		7.9	11.5		11.0				-325		
SOLIDS											
EMPERATURE											

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

PROJECT NO.	P-1377	
DATE	6/19/87	
BY	LA	•

TEST NO.2NAMEDMEAAssay Screen on Leach Residuefrom Test #2

Product	Weight	% Wt.		Assay		Units		Distribution	v
			Au	Ag	Au	Ag	 Au	Ag	
+3/4"Leach Res.	857.7	24.92	0.052	2.64	0.0130	0.658	21.55	0	
-3/4+1/4" Leach Res	1645.0	47.79	0.070	2.96	0.0335	1.415	55.64	49.84	
-1/4"+6m Leach Res.	386.1	11.22	0.061	3.14	0.0068	0.352	11.38	12.41	
-6+20mesh Leach Res	243.6	7.08	0.058	2.97	0.0041	0.210	6.83	7.41	
-20+48m Leach Res.	57.5	1.67	0.050	2.91	0.0008	0.049	1.39	1.71	
-48+100m Leach Res.	22.3	0.65	0.041	2.42	0.0003	0.016	0.44	0.55	
-100mesh Leach Res.	229.9	6.68	0.025	2.08	0.0017	0.139	2.78	4.90	
Residue Calculated	3442.1	100.00	0.060	2.84	0.0601	2.838	 100.00		
Residue Assay			0.059	3.14	•		1	100.00	

OPERATION		T			 	 		GRINDI
OPERATION								PRODU
TIME								
REAGENTS - LBS PER TON							- +	
				-			MESH	%
							+ 10	
							+ 14	
							+ 20	
							+ 28	
				1			+ 35	
							+ 48	
					 1.1.1.1.1.1.1.1		+ 65	
							+ 100	
				St. A. A.S.			+ 150	
MACHINE							+ 200	
R.P.M.						and the state of the state of the	+ 325	
рН							-325	
% SOLIDS	0			31				
TEMPERATURE			111 200 10 12	92.3	1.1.1	 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received_

Date Reported ______6/5/87

Client Dawson Metallurgical

Sample Identification	Oz/Ton Au	Oz/Ton Ag	Remarks		
P-1377 Dmea Test #1 +3/4" -3/4"+1" -1/4"+6mesh -20+48mesh -6+20mesh -48+100mesh -100mesh	.099 .098 .108 .102 .090 .092 .087 .086 .089 .088 .080 .083 .181 .184	2.99 3.00 3.29 3.30 3.20 3.21 3.21 3.23 3.21 3.22 3.12 3.13 3.40 3.40 3.40	• Ounces per ton of 2000 lbs.		

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received_

Client Dawson Metallurgical

Date Reported ______6/17/87

Sample Identification	Oz/Ton Au	Oz/Ton Ag	Remarks
P-1377 Dmea Leach Sol'n.			* Ounces per ton of 2000 lbs.
Test #2	•049 •051	.11 .11	
Ricencola			
Pa			

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received

Date Reported _____6/17/87

Client Dawson Metallurgical

Sample Identification	Oz/Ton Au	Oz/Ton Ag	Remarks
P-1377 Dmea Leach Res. Test #2	.058 .060	3.13 3.15	* Ounces per ton of 2000 lbs.

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received

Date Reported 6/24/87

Client Daws	on Metallurgical					
	Sample Identification		Oz/Ton Ag	Remarks		
P-1377 Dmea Leach Res.				* Ounces per ton of 2000 lbs.		
Test #2	+3/4" -3/4+ $\frac{1}{4}$ " - $\frac{1}{4}$ +6 mesh -6+20mesh -20+48mesh -20+48mesh -100 mesh	.053 .052 .069 .071 .061 .058 .058 .050 .050 .031mg .025 .025	2.53 2.75 2.90 3.01 3.04 3.24 3.04 2.90 2.97 2.85 1.85mg 2.15 2.01			

Cande

17-Jun-87

Page 1

LAB JOB #:	AFB01571			ATTN: Caro	le A. O	Brien	
Client name:	A. F. Budge (M	ining) Lto	1.	No. Sample	s:	1	
Billing address:	7340 E. Shoema			Date Received: 05-19-87 Submitted by: Don White			
Phone number:	Suite #111-B-E Scottsdale, AZ 945-4630 / 778	85251		INVOICE AT	TACHED		
		ANALYTIC	CAL RE	PORT			
Client ID AFB01571	Lab ID	Bottle Ro Au z/ton	Au	st* Ag oz/ton	%		
UVX BATCH #49							
HOLE #M-11 / Compo	site						
198-210' Heads	1571– 1	0.402		7.04			
198-210' Tails		0.332		5.53			
Recovery		0.051			12.69		
Soln. 24 hrs.			0.8				
Soln. 48 hrs.			0.8				
Soln. 72 hrs.			0.8				
* Sample weight = pH = + Lime = + NaCN =	11.5 5 grams 4 grams						
Sample	from assays	i no ad	of Attim	ocare re al crushing	je et s (or gr	~ 10 mesh)	
Recover	my will undoud	berly on	ne y	p with J	1- in Aing	tse ~ 200 mee.	
Read	bing slime	problem	would	likely	preemy	t here leading, 're CIP treats	
	even h	the ag	ylomar	ation, a	nd regui	re CIPtresta	
		Ŧ					

IRON KING ASSAY INC.

Page 1

07-Aug-87

LAB JOB #:	AFB01826		
Client name:	A. F. Budge (Min	ing) Ltd.	No. Samples: 1 Date Received: 08-06-87
Billing address:	7340 E. Shoeman I Suite #111-B-E	lane	Submitted by: Don White
Phone number:	Scottsdale, AZ 945-4630 / 778-3		NO CHARGE
		ANALYTICAL RE	PORT
Client ID AFB01826	Lab ID A	ottle Roll Te 1 Ag 20n oz/ton	st
M-11 Composite	1571- 1 (Tai:	s from previ	- ous CN Test)
Head Assay	0	332 5.53	(previous tails assay)
Tails Assay	0	165 3.28	
Recovery %	50	40.69	

The sample was subjected to grinding in a laboratory ball mill at approximately 50% solids using a 60% ball charge (mill volume).

After grinding for 20 minutes, there was approximately 10% of the material >10 mesh. It was decided further grinding was necessary. After 40 minutes of total grinding time, the ore began to slime so the grinding was discontinued at this point. >10 mesh particles were still present at this time.

After the NaCN test cycle was completed, the tail pulps were screened through a 60 mesh screen and <60 mesh fraction and the >60 mesh fraction were assayed seperately. The results of these assays is as follows:

Au oz/ton	Ag oz/ton
0.165	3.28
0.387	6.54
	oz/ton 0.165

P.O. Box 56 • Humboldt, Arizona 86329 • Phone (602) 632-7410

U.V.X. VERDE TARGET AREA DRILLING/ASSAY SUMMARY

					High g interc				Low gr interc		
Drill Fence	D.D.H.	inclination	Ratio of true thicknes to drill intercept		True thickness (feet)	ckness Grade	(oz/t) Ag	Drill intercept (feet)	True Grade thickness (feet) Au		(oz/t) Ag
	806-1	-4°	.87	514-527 568-578	11 9	.24	2.2	504-594	78	.09	1.4
Fence 5	M_1	+42°	.87	122-138 157-176	14 16	.24 .23	1.5 1.6	122-176	47	.17	1.1
Morgan DDS	M-2	+60°	1.00	124-136	12	.16	1.5	118-150	32	.10	1.4
	M-3	+20°	.70	151-185	24	.88	32.5	146-233+	61+	.41	14.6
Fence 3	M-4	+50°	.50	107-130 190-203	12	.14	3.4 2.1	107-235	64	.09	1.8
Morgan DDS	∫ M-5	+10°	.70	None		.29		None			
	M-6	+30°	.70	158-178	14	.40	5.2	148-195+	33+	.26	6.7
Fence 5	M-7	+25°	.87	None				None			
Fence 4	M-8	+40°	.87	90-94 107-118	4 10	.22	3.7 0.6	90-144	47	.10	1.0
S15°W	M-9	+20°	.77	104-121	13	. 39	1.8	104-157	41	.19	1.6
S17°E	M-10	+23°	Deflected(?)	None				None			
S7°E	M-11	+25°	.70	168-177 190-210+	6 14+	.32 .33	9.7 7.4	168-210+	29+	.26	7.3

Compiled by Don White May, 1987

MEMO

TO:	Carole A. O'Brien, Anthony Budge	JUN 1 7 1987
FROM:	Don White	RECEIVED
DATE:	June 16, 1987	
SUBJECT:	Most likely area to contain more gold at	U.V.X.

DIVICA LID.

We now have all the more understanding of what controls the U.V.X. gold mineralization and with that, an ever better idea as to where to look. Thus the exploration priorities evolve continually.

To review, we see the key controls on mineralization as:

- a) Chert stratigraphy
- b) Specific setting stratigraphically above silica (Cu-Au) ore
- c) Proximity to diorite pluton
- d) Preference for juxtaposition to structural complexities in the margin of the diorite

Beyond that, certain types of mineralization preferentially occur in limonitic versus hematitic facies and porous (silica grit) versus imporous chert types. But high grade can be any combination of porosity or iron facies and hence these are not classified as "controls."

We have now drilled various portions of the northern Verde target area from the 809 and Morgan diamond drill stations. The entire strike length of the Verde area tested to date (400 feet from 809-1 thru M-11) is mineralized, substantial portions with likely economic grades. What remains unexplored is about 800 feet of strike length further south. Scattered along that entire length are old reports of high grade (0.3 to 1.2 oz/t Au) in chert. All of it should be explored but I want to highlight the southern extremity for its particularly great potential.

That area is about 300 feet in length, extends from a little above the 1100 level to the 800 level, and has a middle portion on the 950 level with three reported assays (.2, .3, .3 oz/t Au) averaging 0.25 oz/t Au over 20 to 30 feet in thickness. It lies in the middle of the chert stratigraphy, above silica ore stopes, and laterally from the main massive sulfide body. It's just off the end of the diorite wedge and at the junction of the three major chert lobes earlier dubbed the Verde, Gold Stope, and Florencia areas. As far as I am concerned this has all the geographic "pluses" and should be our priority target after drilling the south end of the M-3 zone from the station now being drifted to beyond the Morgan D.D.S. Carole A. O'Brien, Anthony Budge June 16, 1987 Page 2 U.V.X.

The area I'm interested in lies south of the Florencia Fault and is best reached by continuing SW from the already rehabilitated 901-S drift on the 950 level. If the "990" crosscut to the SW can be utilized as far as its tight cave S of the Gold Stope, then a turnout due S along the 7650E grid line would constitute 300 feet of new drifting to cross the Florencia Fault and put us in an ideal position to drill. Holes from such a station, collared in chert, would only be 100-180 feet in length.

This target will be discussed with Carole at the upcoming "strategy" session and I shall highlight it on the soon-to-be revised plans.

DW:sk

Comments:	Number of tons required to breakeven, to recover \$1.58 mm to date,
	and additional \$0.90 mm in exploration
	and development;

Inspiration Smelter pays 85% of gold minus \$4/ounce; 85% of silver minus \$0.35/ounce; \$7.50/ton for silica.

GRADE	NUMBER OF TONS	
gold oz/t		
silver oz/t	\$7.00/oz silver	at \$450/oz gold \$7.50/oz silver
0.15	too low grade	1423122
1.50		
0.20	149239	89798
2.00		
0.25	62401	46362
2.50		
0.30	39448	31247
3.00		
0.35	28840	23565
3.50		

Comments: Number of tons required to breakeven, to recover \$1.58 mm to date, additional \$0.90 mm in exploration and development, and \$1.0 mm capital for CIP Plant

Recovery in plant: 90% for gold, 75% for silver

GRADE gold oz/t silver oz/t	d oz/t at \$400/oz gold	
0.15 1.50	too low grade	too low grade
0.20 2.00	200762	104099
0.25 2.50	67727	48670
0.30 3.00	40734	31759
0.35 3.50	29126	23570

A.F. Budge (Mining) Limited

United Verde Extension Mine

Summary Report July, 1987

Introduction

On April 1, 1985, an lease agreement was executed between A.F. Budge (Mining) Limited and Verde Exploration, Ltd. to explore for minerals at the U.V.X. Mine in Jerome. Brooks Minerals, Inc. of Lakewood, Colorado was retained as mining contractor in June, 1986 to prepare certain areas of the mine for underground drilling. During the period August, 1985 to January, 1986, the Longyear Company drilled a total of 3,517 feet in seven drill holes: three from the 1100 level; three, including one abandoned before reaching its target, from the 950 level; and one hole from the 800 level. The latter hole, 806-1, succeeded in reaching the Verde area and intersected a broad zone of mineralization from 504 ft. to 578 ft. which averaged 0.102 oz/ton gold and 1.28 oz/ton silver. Within this zone was a 13 ft. interval, from 514 ft. to 527 ft. which averaged 0.236 oz/ton gold and 2.24 oz/ton silver.

Brooks Minerals was dismissed as contractor and A.F. Budge (Mining) Limited began a second phase of exploration in June, 1986. At this time, the hoisting facilities at the Edith Shaft were purchased from Phelps Dodge. Brooks Minerals' equipment on site was also purchased.

Based on the results of the 806-1 intercept, a program was initiated to provide access for drilling the Verde area from a point near the Morgan Winze on the 950 level. From the 901 Drill Station used in the 1985, rehabilitation of the 901-W drift advanced approximately 400 ft. through and beyond the Gold Stope. When drift rehabiliation costs became prohibitive, a new cross-cut was driven approximately south 55 degrees west for a distance of 270 feet. The Morgan Drill Station was excavated and during the period January, 1987 to May, 1987, the Longyear Company drilled a total of 2,398 feet in eleven holes. During this time, drift rehabiliation advanced on the 800 level from the old 806 Drill Station, approximately 450 feet west along the 806 drift. The 809 Drill Station was excavated and drilling commenced in To date, Longyear has drilled 946 feet in 3 holes. 1987. May, 809-4 was Hole stopped temporarily at 247 feet while modifications were made to the headframe and a new skip/cage hung.

Summary & Conclusions

Results from drilling from the Morgan Drill Station indicate a zone of chert over 100 ft. thick in contact with the hanging wall of the Verde Fault. The cherts range in variety from tan, red-brown and purple massive and banded cherts with light grey clasts, through matrix and clast supported chert breccias, to very fine grained, yellow and tan silica grit, to very ferruginous chert. Gold and silver mineralization occurs in all varieties, notably in the silica grit with values up to 1.54 oz/ton gold and 65.1 oz/ton silver. Values in the ferruginous chert with almost 30 weight percent iron can range to 0.46 oz/ton gold and 3.4 oz/ton silver.

Cherts encountered in the drilling from the 809 Drill Station appeared silghtly more homogenous and were variously brecciated and silica-healed cherts. Silver values were notably lower (averaging less than 1.5 oz/ton) and gold values ranged from nil to a a high of 0.54 oz/ton.

The M-3 Zone

The M-3 zone is defined by drilling from the Morgan Drill Station in holes M-1 through M-11, 806-1 and 809-3 which passed through the zone at an oblique angle. Various summaries and reserve estimates have been attempted for this zone. Based on the numbers contained in the May 15, 1987 memo by Don White and Bob Hodder, but using a grade of 0.40 oz/ton gold and 8.0 oz/t silver for the M-3 intercept, the zone of high gold, low iron material contains approximately 14,000 tons of 0.26 oz/t gold and 3.75 oz/ton silver. 3.6

Economic assumptions are: \$450/ounce gold and \$7/ounce silver; mining costs of \$60/ton; transportation to Inspirations's smelter at \$12/ton; processing at a C-I-P plant in Cottonwood of \$9/ton; smelter pay of 85 percent of gold minus \$4/ounce, 85 percent of the silver minus \$0.35/ounce and \$7.50 per ton for silica; recovery in C-I-P of 90 percent for gold and 75 percent for silver.

UVX Drilling Summary

Hole No.	Total Length	From	То	Width	True Width	Gold oz/t	Silver oz/t
M-1	262	122	176	54	47	0.168	1.24
		Includes:					
-		122	138	16	14	0.235	1.52
	ing S60°V +42°	₩ 157	176	19	17	0.226	1.50
M-2	226	118	146	28	28	0.106	1.4
		Includes:					
Deer		124	136	12	12	0.162	1.53
	ing S60°V +60°	V					
M-3	233	146	230	84	59	0.425	15.10
		Includes: 146	185	39	27	0.777	28.77
Bear	ing S2°E	185	204	19	13	0.147	3.63
	+20°	204	230	26	18	0.101	2.91
M-4	295	107 Includes:	206	99	50	0.101	2.07
_		107	130	23	12	0.142	3.42
	ing S2°E +50°	190	206	16	8	0.244	1.88
M-5		no mineralize	ed inter	cepts			
	ing S2°E +10°						
M-6	195	148 Includes:	195	47	33	0.257	6.67
Bear	ing S2°E	155	167.5	12.5	9	0.376	7.5
	+30°	167.5	195	27.5	19	0.235	4.27
	129 r ing S60°V +25°	no mineralize V	ed inter	cepts			

Morgan Drill Station: Mine grid 11565N, 7080E

F 13

@ +25°

UVX Drilling Summary

n

M-8	187	Include	90	144	54	47	0.097	0.9
	ng S30' +40°		90 107	98 118	8 11	7 10	0.144 0.174	2.3
м-9	183	Include	100 s:	157	57	44	0.180	1.5
	ng S15 +20°		104	131	27	21	0.303	1.8
	278 ng S17° ⊦23°	no miner °E	alized	intercer	ots (no	chert)		
M-11	210	Include	165	210	45	32	0.249	7.0
	ng S7°1 ⊦25°		168 190	190 210	22 20	15 14	0.202	7.1 7.3
09 Drill	statio	n: mine	grid ll	790N, 69	905E			
809-1 Bearir	statio 336 ng S25° -23°	Include	183	790N, 69 237 214	905E 54 14	38 10	0.138 0.218	
809-1 Bearir @ +	336	Include W	183 s: 200 156	237	54			1.4 0.7 1.4
809-1 Bearir @ + 809-2 Bearir	336 ng S25° -23°	Include W Include	183 s: 200 156	237 214	54 14	10	0.218	0.7
809-1 Bearir @ + 809-2 Bearir @ +	336 ng S259 -23° 240 ng S5°V -23°	Include W Include	183 s: 200 156 s: 173	237 214 209 200	54 14 53 27	10 37 19	0.218 0.202 0.331	0.7
809-1 Bearir @ + 809-2 Bearir @ +	336 ng S259 -23° -240 ng S5°V	Include W Include	183 s: 200 156 s:	237 214 209	54 14 53	10 37	0.218	0.7
809-1 Bearir @ + 809-2 Bearir @ +	336 ng S259 -23° 240 ng S5°V -23°	Include W Include	183 s: 200 156 s: 173 50 287	237 214 209 200	54 14 53 27	10 37 19	0.218 0.202 0.331	0.7
@ + 809-2 Bearin @ + 809-3	336 ng S259 -23° 240 ng S5°V -23° 370	Include W Include Include	183 s: 200 156 s: 173 50 287	237 214 209 200 68	54 14 53 27 18	10 37 19 10	0.218 0.202 0.331 0.171	0.7

Target: The 901-Florencia Zone

Potential: 40,000 tons of 0.20 oz/ton gold and 2.00 oz/ton silver flux quality material

Probability/Risk: Requires additional \$250,000 in exploration and development. Probability factor: 50%

Reward:

	g ore to ation smelter	Processing ore at C-I-P plant		
"Gross" per ton	\$94.63	\$91.50		
Mining	(\$60.00)	(\$60.00)		
Transporation	(\$12.00)	\$0.00		
Processing	\$0.00	(\$9.00)		
"Net" per ton	\$22.63	\$22.50		
"Net" on 901 zone	\$905,000	\$900,000		