

CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 416 W. Congress St., Suite 100 Tucson, Arizona 85701 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the A. F. Budge Mining Ltd. Mining Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

P.O. Box 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

February 2, 1989

A. F. Budge Mining Ltd. 4301 North 75th Street Suite 101 Scottsdale, Arizona 85251

Attention: Mr. Dale Allen Ms. Carole O'Brien

Subject: Results of Continued Laboratory Testing on a High Grade Gold-Silver UVX Sample. Our Project No. P-1583C.

Gentlemen:

In accordance with discussions between Mr. Frank Millsaps and ourselves, laboratory test work was continued on a high grade gold-silver sample from the UVX Property identified as P-1583C Composite No. 1. A series of gravity concentration tests followed by bulk sulfide flotation of the gravity tailings and subsequent cyanidation of the flotation tailings was performed to determine gold and silver extraction. Specific test work performed included:

- Gravity concentration (hand-pan) of a ball mill ground sample followed by flotation of the gravity tailings.
- Gravity concentration (tabling) of a -35 mesh sample followed by flotation of the reground gravity tailings.
- Cyanidation of flotation tailings.
- Amalgamation of gravity and flotation concentrates.

Results of direct cyanidation tests on ball mill ground Composite No. 1, originally reported December 29, 1988, are also included in this report.

I. Sample Description And Head Analysis

A UVX sample, received at our laboratory December 15, 1988, and assigned our Lot No. P-1583C Composite No. 1 was used in this test work. This sample was described in our December 29, 1988, report to Mr. Allen and Ms. O'Brien.

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -2-

Head assay results and back-calculated head assays from test work are presented below:

P-1583C: A. F. Budge Mining, Ltd. Head Assay Results: Composite No. 1

	Head Assay	, oz/Ton
	Au	Ag
Assayed Head	0.617	13.36
Avg. Back-Calc. Head*	0.656	13.82

*Avg of 3 tests

The sample was a salmon pink color indicating the presence of iron oxides.

II. Test Results

Results presented in this section are also included in individual test data sheets attached to the end of this report.

A. Summary

Results indicate that slightly higher gold and silver extractions were obtained from this sample by a combination of gravity concentration, flotation, tailings regrind and cyanidation than by direct cyanidation. These results are summarized below:

Test		Gold Assay,	oz/Ton	Gold Extracted,
No.	Description	Residue	Head	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3	Direct Cyanidation	0.285	0.672	57.6
7,8	Gravity, Flotation, Tails Cyanidation	0.298*	0.632	52.7
9, 9A	Gravity, Flotation, Reground Tails Cyanidation	0.208*	0.665	72.2

P-1583C: A. F. Budge Mining Ltd. Test Results Summary

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -3-

	물을 통하는 것을 하는 것을 수 있다. 물건을 수 있다. 물건을 하는 것을 수 있다. 물건을 하는 것을 수 있다. 물건을 하는 것을 수 있다. 물건을 수 있다. 물건을 하는 것을 수 있다. 물건을 하는 것을 수 있다. 물건을 수 있다. 물건을 하는 것을 수 있다. 물건을 하는 것을 수 있다. 물건을 수 있다. 물건을 수 있다. 물건을 하는 것을 수 있다. 물건을 수 있다. 물건을 하는 것을 수 있다. 물건을 하는 것을 수 있다. 물건을 수 있다. 물건을 하는 것을 수 있다. 물건을 하는 것을 수 있다. 물건을 수 있다. 물건을 하는 것을 수 있다. 물건을 하는 것이 같이 같이 같다. 물건을 하는 것이 같아요. 물건을 하는 것이 같아요. 물건을 하는 것이 같아요. 물건을 하는 것이 같아요. 물건을 것이 같아요. 물건을 하는 것이 같아요. 물건을 것이 같아요. 물건을 하는 것이 같아요. 물건을 하는 것이 같아요. 물건을 하는 것이 같아요. 물건을 것이 것이 같아요. 물건을 것이 것이 같아요. 물건을 것이 것이 것이 같아요. 물건을 것이 것이 같아요. 물건을 것이 것이 같아요. 물건을 것이 것이 것이 같아요. 물건을 것이 것	Silver Assa	Silver Extracted,		
		Residue	Head	<u> </u>	
 3	Direct Cyanidation	6.84	13.51	49.4	
7,8	Gravity, Flotation, Tails Cyanidation	7.38*	13.47	46.3	
9, 9A	Gravity, Flotation, Reground Tails Cyanidation	5.54*	14.48	67.0	

*Flotation Tailings Leach Residue

The increased gold and silver extraction obtained in the gravityflotation concentration, reground tailings cyanidation flowscheme may not be economically justified due to the increased treatment cost. In addition, concentrate treatment will incur additional loss of precious metal.

B. Direct Ore Cyanidation

Cyanidation of whole ore samples ball mill ground to 92 percent minus 200 mesh extracted approximately 58 percent of the gold and 50 percent of the silver in 72 hours. Results are presented below:

	Whole O:	re Cyanidat	ion	
	- 1	Test 3 -		
	Assay,	oz/Ton	Distrib	ution, %
Product	Au	Ag	Au	Ag
Solution	0.379	6.54	57.56	49.37
Residue	0.285	6.84	42.44	50.63
Total (Calc)	0.672	13.51	100.00	100.00
NaCN Consumed:	4.14 lb/t	on ore		
Lime Consumed:	4.1 lb/t	on ore		

These results were included in our December 29, 1988, report to Mr. Allen and Ms. O'Brien.

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -4-

C. Gravity - Flotation Concentration

Approximately 40 - 45 percent of the gold and silver in the sample was recovered by gravity concentration followed by flotation. Less than ten (10) percent of the gold was recovered into gravity concentrates. These results are summarized below:

		.583C: A.				
est		Weight	Assay,	oz/Ton	Distrib	ution, %
No.	Product	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Au	Ag	Au	Ag
7	Gravity Conc.	0.73	3.692	223.91	4.3	12.2
	Sulfide Ro. Conc.	0.87	23.008	410.56	31.6	26.5
	Oxide Ro. Conc.	0.64	2.446	22.42	2.5	1.1
	Oxide Ro. Tails	97.76	0.399	8.31	61.6	60.2
	Total	100.00	0.632	13.47	100.0	100.0
9	Gravity Conc.	2.93	1.909	165.27	8.4	33.4
	Sulfide Ro. Conc.	1.10	19.241	169.56	31.9	12.9
	Oxide Ro. Conc.	0.51	1.562	11.45	1.2	0.4
- 12	Oxide Ro. Tails	95.47	0.408	8.08	58.5	53.3
	Total	100.00	0.665	14.48	100.0	100.0
1. 2. 1						

Tests 7 and 9 were similar except that a gravity concentrate was produced in Test No. 7 by hand panning a ball mill ground sample, while the gravity concentrate in Test No. 9 was produced by tabling a sample crushed to 35 mesh. The table tailings were then reground prior to flotation.

Free gold, ranging in size from 35 to 400 mesh, was observed in the gravity concentrates, with only minor amounts of pyrite detected. Sulfide flotation concentrates contained much finer gold (200 mesh top size) with minor amounts of sulfides and semioxidized iron (Limonite). Malachite and azurite oxide copper minerals were detected in the oxide rougher concentrates. Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -5-

D. Flotation Tailings Cyanidation

Cyanidation of flotation tailings indicated that gold and silver extraction increased significantly when the tailings were reground from 83 percent minus 200 mesh to 88 percent minus 400 mesh. Unfortunately the cyanide consumption increased drastically in the reground tails test. Results are summarized as follows:

		Flotatio	n Tailings Cyar			
				Gold	Reagents	
Test		Gold As	say, oz/Ton	Extracted,	1b/Ton	Tails
No.	Grind	Residue	Calc. Head*	98	NaCN	Lime
8	83.1% -200 M	0.298	0.388	23.3	1.84	1.9
9A	87.9% -400 M	0.208	0.438	52.5	20.5	2.5
				Silver		
-		Silver A	ssay, oz/Ton	Extracted,		
		Residue	Calc. Head*	8		
8	83.1% -200 M.	7.38	8.28	11.0		
9A	87.9% -400 M	5.54	8.95	38.1		
*F10+-	tion Tails					

The leach solution from Regrind Test No. 9A contained 1180 ppm Fe and 136 ppm Cu. Based on these assays, approximately 13.4 lb NaCN per ton of tails was complexed as ferro-cyanide, while 0.5 lb NaCN per ton of tails was complexed as copper cyanide.

The use of cement instead of lime for pH control may reduce the cyanide consumption during cyanidation of reground flotation tailings.

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -6-

E. Concentrate Amalgamation

The gravity and flotation concentrates from Test No. 9 were amalgamated to determine the amount of free gold and silver present. Results, summarized on the following page, indicate that almost 70 percent of the gold and 50 percent of the silver in the gravity (table) concentrate was amalgamated. Less than ten (10) percent of the gold and silver in the flotation concentrates was amalgamated.

P-1583C: A. F. Budge Mining Ltd. Flotation Concentrate Amalgamation

- Test 9 -

	Gold Assa	Gold Recovered By Amalgamation,	
Product	Amalgam Feed	Amalgam Tails	%
Table Conc.	1.909	0.609	68.1
Sulfide Flot. Conc.	19.241	17.494	9.1
Oxide Flot. Conc.	1.562	1.539	1.5

Recovered	
%	
48.1	
2.3	
0.4	
	2.3

III. Test Procedures

Procedures summarized in this section are also described in individual test data sheets attached to the end of this report.

A. Direct Ore Cyanidation

Test procedure was described in our report of December 29, 1988 (re: P-1583C).

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -7-

B. Gravity - Flotation Concentration

The hand-pan gravity concentration test (No. 7) was performed as follows: 1000 grams of minus 20 mesh sample was ball mill ground to 83 percent minus 200 mesh and hand-panned using a small gold pan followed by a vanning plaque. The gravity tailings were transferred to a 1000 gram "Agitair" flotation machine and conditioned for five minutes with 0.10 lb/ton A-208 promoter and 0.03 lb/ton A-350 (potassium Amyl Xanthate). A rougher concentrate was subsequently floated for three minutes. Rougher tailings were conditioned five minutes with 0.5 lb/ton CuSO₄ and 0.05 lb/ton A-350 and a second rougher floated for one minute. These rougher concentrates were combined prior to filtering and drying.

The sulfide flotation tails were conditioned for eight minutes with 0.35 lb/ton NaHS (sulfidizing reagent) and 0.10 lb/ton A-350 prior to four minutes flotation. An MIBC-F65 frother mixture was used as required to maintain a stable froth. Flotation reagents used in these tests are manufactured by Cyanamid Corporation.

The table gravity concentration test (No. 9) was performed by tabling four kilograms of minus 35 mesh sample on an eighth deck Deister concentrating table. The table tailings were settled, clear water decanted, and the table tails were reground to 75 percent minus 200 mesh and floated as described earlier.

C. Flotation Tailings Cyanidation

Four hundred grams of dried flotation tailings from Test No. 7 was mixed with an equal weight of water and the pH adjusted to 11.5 with hydrated lime. Sodium cyanide was added to provide an initial solution concentration of ten lb/ton, and the slurry was bottle roll leached for 72 hours.

A second tailings cyanidation test was performed as follows: one kilogram of dried flotation tailings from Test No. 9 was reground in a ball mill to 88 percent minus 400 mesh. The slurry was adjusted to pH 12 with hydrated lime and cyanide was added to provide an initial solution concentration of 20 lb/ton. The slurry was subsequently bottle roll leached at 50 percent solids for 72 hours. The cyanide concentration was reconstituted to 20 lb/ton of solution after 24 hours of leaching.

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -8-

D. Concentrate Amalgamation

Table, sulfide rougher, and oxide rougher concentrates from Test No. 9 were amalgamated separately as follows: each concentrate was diluted to approximately 10 - 15 percent solids and 25 grams of clean mercury added. A small amount (1.0 - 0.5 grams) of NaOH was added and the slurry was bottle rolled for four hours. The loaded amalgam was then separated from the sample by careful hand panning.

If you have any questions or we can be of further service, please call.

Sincerely,

DAWSON METALLURGICAL LABORATORIES, INC.

Philip Thompson Vice President

PT/fg

cc: Mr. Frank Millsaps Millsaps Mineral Service

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

 PROJECT NO.
 P-1583C

 DATE
 01/05/89

 BY
 _______GSN

 TEST NO.
 7
 NAME
 A. F. Budge
 Comp No. 1

 20 min BM grind @ 50% solids followed by gravity concentration & bulk sulfide flotation
 Comp No. 1

Product	Weight % W		Assay			Units				Distribution		
			Au	Ag		Au	Ag		Au	Ag		
Gravity Conc.	14.6	0.73	3.692	223.91		0.0270	1.640		4.28	12.17		
Sulfide Ro.Conc.	17.3	0.87	23.008	410.56		0.1997	3.563		31.57	26.45		
Oxide Ro. Conc.	12.7	0.64	2.446	22.42		0.0156	0.143		2.46	1.06		
Rougher Tail	1949.0	97.76	0.399	8.31		0.3901	8.124		61.69	60.31		
Head Calculated	1993.6	100.00	0.632	13.47		0.6324	13.469		100.00	100.00		
Head Assay			0.617	13.36								
										<i>i</i> **		
Gravity and Sulfide		1.60	14.167	325.13		0.2267	5.203		35.85	38.62		
Grav. & Flotation		2.24	10.830	238.94		0.2423	5.345		38.31	39.69		

												GRINDI
OPERATION		BM	Grav.	Cond	Sulfide Ro	o Cond	Ro #2	Oxide Ro				PRODU
TIME	1	20	Conc	5	3	5	1	8/4				RoTail
REAGENTS - LBS PER TON		1.00	-									
-20m Ore	gm	2000									MESH	%
H20	gm	2000									+ 10	
A-208				.10					Contraction of the second		+ 14	
A-350				.03		0.05		.10			+ 20	
CuS04				1. 1999 S. 199		0.50					+ 28	1 Contractor
MIBC-F65 3:1				0.032				0.016			+ 35	,
NaHS @ 35%								0.35			+ 48	в 0.0
		Sec.	A section of the		and the second	AR AND AND AND	Children and				+ 65	5 0.0
	Asset 1		1. 1. 1. 1. T.				and the second		all and the second	dis and the dist	+ 100	0 0.8
							112 - 11	·			+ 150	0 5.1
MACHINE				2000	2000	2000	2000	2000			+ 200	
R.P.M.		1	C. CAS	800		800	800	800			+ 325	
рН	12 15	1	No Incention	8.1	6						-325	
% SOLIDS	C. Carlo	50	•								Area and a	
TEMPERATURE							The state				% -200	0 83.1

REMARKS: Pan Conc - minor heavy mineral fraction to grav. conc.; 2 grains of -200m free gold observed, mainly iron oxides, minor pyrite, Cu oxides.

Sulfide Ro No 1 - free gold +60m to -400m, dirty brown iron oxide, some pyrite & Cu oxide, trace native Cu. Oxide Ro No 1 - mainly Cu oxide (azurite, malacite, chrysocolla)

NAME A. F. Budge

P. O. Box 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-1583C				
DATE	01/13/89	. •			
BY	GSN				

Test No. 7 RoTail

72 hour leach @ 50% solids with 10 lbs NaCN/ton soln

8

PRODUCT	Weight	WEEK			ASSAY			UNITS		Di	STRIBUT	ON	
				Au	Ag			Au	Ag	Au	Ag	T	1
	457.6			0.079	0.80			0.3615	3.6608	23.3	11.0	1	1
leach res	399.4			0.298	7.38				29.4757	76.7	89.0		
Total (Calc)	400			0.388	8.28			1 5517	b2 10(5				-
Total (Assay)	400			0.399	8.31			1.551/	33.1365	100.0	100.0		
												1	
						· · · · · · · · · · · · · · · · · · ·							
													1
OPERATION		NaCN		NaCN								GRIN	DING
TIME		Leach		Leach								PROC	DUCT
		On	72 Hrs.	Off					1			Leach	
REAGENTS - LBS PER TON		300 1/13									1.1.1	Residue	
Flotation Tail	gm	400.0						5 - 1 - 1 - 1			MESH	*	
H20	gm	400.0					1				+10		
Ca(OH)2	gm	.5									+14		
NaCN	gm	2.2									+20		
											+28		
						and the second second			10 X 10 X		+ 35		
NaCN Titration, 1b/t	on sol	n		8.01							+48	0.0	
Ca(OH) ₂ Titration, 1		soln		0.5			. 3				+65	0.0	
NaCN Consumed, 1b/to:				1.84						and the second	+100	0.8	
Ca(OH) 2 Consumed, 1b.	/ton o	re		1.93							+150	5.1	
MACHINE			2.1.2.2.						1		+ 200	11.0	
R P.M.				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1			1.		+325	27.0	
pH	1.5.2.1	8.2/11.4		11.7							-325	56.1	
% SOLIDS			1.1.1.1.1.1										
TEMPERATURE		S. 199									C. S. S. S.		1.4.4

REMARKS:

TEST NO._

TEST NO. 9 (Page 1 of 2)NAME

DAWSON METALLURGICAL LABORATORIES, INC.

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

PROJECT NO. <u>P-1583C</u> DATE <u>01/12/89</u> BY <u>GSN</u>

Comp. 1

4 kg gravity concentration followed by sulfide & oxide flotation followed by Ro Tail NaCN leach

A. F. Budge

Product	Weight	% Wt.		Assay		Units		Distribution	V1G
			Au	Ag	Au	Ag	Au	Ag	
Gravity Conc.	117.1	2.93	1.909	165.27	0.0559	4.838	8.40	33.42	
Sulfide Flot Co	onc. 44.1	1.10	19.241	169.56	0.2121	1.869	31.88	12.91	
Oxide Flot. Con	ic. 20.2	0.51	1.562	11.45	0.0079	0.058	1.19	0.40	
Oxide Flot. Tai	ls. 3818.6	95.47	0.408	8.08	0.3895	7.714	58.54	53.27	
Head Calculated	4000.0	100.00	0.665	14.48	0.6654	14.479	100.00	100.00	
Head Assay			0.617	13.36					
	ж Х							é e	
Comb. Flot. Con	с.	1.61	13.687	119.89	0.2200	1.927	33.07	13.31	
Grav.+Sulf Flot	Con	4.03	6.651	166.44	0.2680	6.708	40.28	46.33	
Grav.+Comb. Flo	ot Con	4.54	6.084	149.18	0.2759	6.766	41.46	46.73	

				Sulfide	Sulfide	Oxide		Sulfide	8 - 8 - F	Oxide			GRI	NDING
OPERATION	Table	Grav Conc	BM	Ro #2	Ro #2	Ro #1		Ro Conc		Ro Conc			PRO	ррост
TIME		Ama1	$\frac{1}{2}$ X 10	5/4	5/2	4/4		Amal		Amal			Float	Lead
REAGENTS - LBS PER TON	1.1.1.1.1.1					· · · · · · · ·		4 Hrs.		4 Hrs.	(1997) - M. (1997)		Tail	Res
Ore gm	4000.0		3900									MESH	%	
H2O (as required)					A							+ 10		
A-208			0.1									+ 14		
A-350	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			0.03	0.05	0.10						+ 20		
CuSO ₄					0.50							+ 28		
MIBC - F65 3:1				0.048		0.016	1.1.1		1.			+ 35		
NaHS @ 35%						0.22					1.	+ 48	0.0	0.
		5				·	-		-			+ 65	0.6	0.
NaOH gm		.56						1.0		0.5		+ 100	3.2	0.
Hg gm		25.38						25.04	1.5	25.11		+ 150	8.0	
MACHINE	and the second	(25.70)	2 X	2000	2000	2000		(25.11)		(25.13)		+ 200	13.6	
R.P.M.		1.1.1.1.16		800	800	800			- 18 M. L.	Participants		+ 325		
рН		Part of the second		8.8	and the second second							-325		
% SOLIDS												+400		4.
TEMPERATURE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.19	1000	and the second	State State	and the	1 Sec. 2	24 1 20			-400	and the second sec	88.

REMARKS: Gravity Conc. - free gold +32 to -400m (200m predominant) iron oxide, lead carbonate, minor sulfide (pyrite) Sulfide Conc. - free gold 200 to -400m some Au corners locked with quartz or iron oxide, minor sulfides Oxide Conc - no free gold observed

Grav. Conc. Amalgam - (lead carbonate) also amalgamating

P. O. Box 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-1583C
DATE	01/12/89
BY	GSN & LA
a 1	

Comp 1

TEST NO. 9 (page 2 of 2) NAME A. F. Budge

Gravity Tail - Flotation tail reground prior to 72 hour leach @ 50% solids with 10 lbs NaCN/ton soln

PRODUCT	Weight	WEEK Total	mg	ASSAY	oz/	ton	UNITS	Ю	STRIBUTIO	N	
		Au	Ag		Au	Ag		Au	Ag		T
Sulfide Conc Amal Conc	25.11	2.641						9.1	2.3		
Sulfide Conc Amal Tail	44.1	26.451	250.58		17.494	165.73		A STATE OF THE OWNER	97.7		1
Total	(44.1)	29.092	256.37		19.241						
Oxide Conc Amal Conc	25.13	0.016	0.03					1.5	0.4		
Oxide Conc Amal Tail	20.2	1.066	7.90		1.539	11.41		98.5	99.6		
Total	(20.2)	1.082			1.562	11.45					
Table Conc Amal Conc	25.70	5.221	318.93					68.1	48.1		
Table Conc Amal Tail	117.1		344.59		0.609	85.83		1	51.9		
Total	(117.1)		663.52	lank wijsche	1.909						
	<u> </u>									GRIN	DING
OPERATION										PROC	
TIME	Same in										, ist
REAGENTS - LBS PER TON											
									MESH	*	
									+10		
			1		1.11.2				+14		
								-	+20		
								and the second	+28		
			1						+ 35		
									+48		
······································					·····			- Andrew Aller	+65		
									+100		
MACHINE						100 m			-150		
R P.M.			1						+ 200		
pH									+325		
* SOLIDS									-325		
TEMPERATURE											

REMARKS:

P. O. Box 7685 5217 Major Street Murray, Ulah 84107 Phone: 801-262-0922

PROJECT NO.	P-1583C
DATE	01/19/89
BY '	LA

Comp 1

Grav. Tail - Flot	ation tai	11 regro	ound prio	r to 72	nour lea	ach with 20.	LDS NAUN/L	.on som				S. 201
PRODUCT	Weight	WEEK	oz	/ton	ASSAY	ppm		UNITS		Di	STRIBUT	ON
	_		Au	Ag	Cu	Fe		Au	Ag	Au	Ag	
Leach Soln	1081.3		0.212	3.15	136	1180		2.2924	34.0610	52.5	38.1	
Leach Residue	997.7		0.208	5.54			•		55.2726	47.6		
Total Ro Tail	997.7		0 / 20	0.05								
Ro. Tail			0.438	8.95				4.3676	89.3336	100.0	100.0	
			0.400	8.08				_				
	1											>
			NaCN			NaCN					- 10 CT	GRINC
OPERATION		BM	Leach			Leach						PROD
		60	On			Off						Leach
LAGENTS - LBS PER TON		1200 0	2:35	9:00 1/20	4:00 1/20							Residue
Float Tail	1	1000.0									MESH	*
H20		1000.0									+10	
<u>Ca(OH)₂</u> NaCN	gm	·····	3.0	10 0							+14	
NaCN NaCN Titration, 11	gm h/ton col		10.0	10.58	10.00						+20	
CaO Titration, 1b				.57	19.00	<u>19.13</u> 3.2		-			+28	
NaCN Consumed, 1b				3.0		20.5					+35	
Ca(OH) ₂ Consumed 1		i1				2.5					+48	0.0
			1		1	2.5					+05	0.0
											+150	0.0
MACHINE											+ 200	0.2
R P.M.											+325	7.1
ын		7.8		12.5		12.0		1.85			-325	
N SOLIDS											+400	5.1
EMPERATURE											-400	87.9

REMARKS:

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Client <u>Dawson Metallur</u> Sample Identification	Oz / Ton Au	Oz / Ton Ag	Remarks
			* Ounces per ton of 2000 lbs.
-1583 C A.F. Budge			
-7 Comp #1 Oxide Ro Conc	1.065mg	9.76mg	
Sulfide Ro Conc	13.647mg	243.52mg	
Pan Conc	1.848mg	112.08mg	
Ro Tail	.397	8.31 8.31	
Bianch			
	1 · · · · · · · · · · · · · · · · · · ·		

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Client <u>Dawson Metallus</u> Sample Identification	Oz/Ton Au	Oz / Ton Ag	Remarks
			* Ounces per ton of 2000 lbs.
P-1583C A.F. Budge Leach Solns.			
I-8 Tno 7 Ro tail	.079	.80	
I-9 Comp l ro tail	.079 .037 .038	.80 .05 .05	
1583C Leach Residues			
1-8 T-no7 Ro Tail	.297	7.38	
E-9 Comp 1 Ro tail	.298 .390 .390	7.38 8.74 8.74	
Burnich			
성영 방법 영상 영상 방법이다. 			
			김 교육은 물건이 있다. 이 가지가 생각하지 같은 것은 것은 것은 것은 것은 것을 했다.
: 2012년 2012년 1월 1912년 1월 191			

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received

Date Reported 1-19-89

Client <u>Dawson Metallu</u> : Sample Identification	Oz/Ton Au	Oz / Ton Ag	Remarks
			* Ounces per ton of 2000 lbs.
-1583C A.F. Budge -9 Products C-1 ulfide conc Amal. tail loat ro Tail able Conc Amal. Tail	17.488 17.500 .405 .410 .611 .607	165.73 165.72 8.08 8.08 85.80 85.80	
xide Conc Amalg. Tail ulfide Conc Amal. Conc xide Conc Amal, Conc	1.066m 2.641m .016m	g 5.79mg	19.9 grams
Sumah			

ASSAY LAB, INC. 1376 W. 8040 So. Unit#4 West Jordan, Utah 84084

Date Received			Date Reported 1-17-89
Client <u>Dawson Metallun</u> Sample Identification	rgical La Oz/Ton Au	oz/Ton Ag	Remarks
			* Ounces per ton of 2000 lbs.
-1583C A.F. Budge T-9 Comp 1 TableConc Am.	5.221m	g 318.93mg	
n IS /			
Recorder			
7			
월월 일이 같은 것이 있다. 월월 일이 같은 것이 있는 것이 있다.			

ASSAY LAB, INC. 1376 W. 8040 So. Unit #4 West Jordan, Utah 84084

Date Received			Date Reported 1-25-89
Client <u>Dawson Metall</u>	urgical Lab Oz/Ton Au	Oz/Ton Ag	Remarks
			* Ounces per ton of 2000 lbs.
P-1583C A.F. Budge			
Leach Residue Comp #1	2		
T-9A	.209	5.54 5.54	
Leach Soln Comp #1 T-9A	.212	3.15 3.15	
nU1			
Beameli			
De			

WESTERN ANALYTICAL, INC. 2417 South 2700 West Salt Lake City, Utah 84119 (801) 973-9238

CERTIFICATE OF ANALYSIS

Feb. 6, 1989 P89-042 E Your P-1583 C A. F. Budge

DAWONS METALLURGICAL SERVICES MR. HARMEL DAWSON PO BOX 7685 MURRAY, UTAH 84107

Dear Mr. Dawson:

Transmitted herewith are the analytical data for the sample delivered to our laboratory for Cu and Fe analysis.

SAMPLE	Cu	Fe	
IDENTIFICATION	ppm	ppm	
#9 A Leach Soln	136.	1180.	

E. H. PHILLIPS

Laboratory Director

Charges: \$10.00

EHP/cp

P.O. Box 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

February 2, 1989

A. F. Budge Mining Ltd. 4301 North 75th Street Suite 101 Scottsdale, Arizona 85251

Attention: Mr. Dale Allen Ms. Carole O'Brien

Subject: Results of Continued Laboratory Testing on a High Grade Gold-Silver UVX Sample. Our Project No. P-1583C.

Gentlemen:

In accordance with discussions between Mr. Frank Millsaps and ourselves, laboratory test work was continued on a high grade gold-silver sample from the UVX Property identified as P-1583C Composite No. 1. A series of gravity concentration tests followed by bulk sulfide flotation of the gravity tailings and subsequent cyanidation of the flotation tailings was performed to determine gold and silver extraction. Specific test work performed included:

- Gravity concentration (hand-pan) of a ball mill ground sample followed by flotation of the gravity tailings.
- Gravity concentration (tabling) of a -35 mesh sample followed by flotation of the reground gravity tailings.
- Cyanidation of flotation tailings.
- Amalgamation of gravity and flotation concentrates.

Results of direct cyanidation tests on ball mill ground Composite No. 1, originally reported December 29, 1988, are also included in this report.

I. Sample Description And Head Analysis

A UVX sample, received at our laboratory December 15, 1988, and assigned our Lot No. P-1583C Composite No. 1 was used in this test work. This sample was described in our December 29, 1988, report to Mr. Allen and Ms. O'Brien.

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -2-

Head assay results and back-calculated head assays from test work are presented below:

P-15	583C:	Α.	F.	Budge	Mining,	Ltd	•
Head	Assay	Re	sul	ts: (Composite	No.	1

	Head Assay	, oz/Ton	
	Au	Ag	
Assayed Head	0.617	13.36	
Avg. Back-Calc. Head*	0.656	13.82	

*Avg of 3 tests

The sample was a salmon pink color indicating the presence of iron oxides.

II. Test Results

Results presented in this section are also included in individual test data sheets attached to the end of this report.

A. Summary

Results indicate that slightly higher gold and silver extractions were obtained from this sample by a combination of gravity concentration, flotation, tailings regrind and cyanidation than by direct cyanidation. These results are summarized below:

Test		Gold Assay,	oz/Ton	Gold Extracted,
No.	Description	Residue	Head	- %
3	Direct Cyanidation	0.285	0.672	57.6
7,8	Gravity, Flotation, Tails Cyanidation	0.298*	0.632	52.7
9, 9A	Gravity, Flotation, Reground Tails Cyanidation	0.208*	0.665	72.2

P-1583C: A. F. Budge Mining Ltd. Test Results Summary

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -3-

			Silver Assa	y, oz/Ton	Silver Extracted,	
			Residue	Head	<u> </u>	
3		Direct Cyanidation	6.84	13.51	49.4	
7,	8	Gravity, Flotation, Tails Cyanidation	7.38*	13.47	46.3	
9,	9A	Gravity, Flotation, Reground Tails Cyanidation	5.54*	14.48	67.0	

*Flotation Tailings Leach Residue

The increased gold and silver extraction obtained in the gravityflotation concentration, reground tailings cyanidation flowscheme may not be economically justified due to the increased treatment cost. In addition, concentrate treatment will incur additional loss of precious metal.

B. Direct Ore Cyanidation

Cyanidation of whole ore samples ball mill ground to 92 percent minus 200 mesh extracted approximately 58 percent of the gold and 50 percent of the silver in 72 hours. Results are presented below:

		e Cyanidat	ion	
	- T	est 3 -		
	Assay,	oz/Ton	Distribu	ution, %
Product	Au	Ag	Au	Ag
Solution	0.379	6.54	57.56	49.37
Residue	0.285	6.84	42.44	50.63
Total (Calc)	0.672	13.51	100.00	100.00
NaCN Consumed:	4.14 lb/to	n ore		
Lime Consumed:	4.1 1b/to	n ore		

These results were included in our December 29, 1988, report to Mr. Allen and Ms. O'Brien.

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -4-

C. Gravity - Flotation Concentration

Approximately 40 - 45 percent of the gold and silver in the sample was recovered by gravity concentration followed by flotation. Less than ten (10) percent of the gold was recovered into gravity concentrates. These results are summarized below:

P-1583C:	Α.	F.	Budge	Mining	Ltd.
Gravity -	Flo	ota	tion C	oncentra	ation

ſest		Weight	Assay,	oz/Ton	Distri	bution, %
No.	Product		Au	Ag	Au	Ag
7	Gravity Conc.	0.73	3.692	223.91	4.3	12.2
	Sulfide Ro. Conc.	0.87	23.008	410.56	31.6	26.5
	Oxide Ro. Conc.	0.64	2.446	22.42	2.5	1.1
	Oxide Ro. Tails	97.76	0.399	8.31	61.6	60.2
	Total	100.00	0.632	13.47	100.0	100.0
9	Gravity Conc.	2.93	1,909	165.27	8.4	33.4
	Sulfide Ro. Conc.	1.10	19.241	169.56	31.9	12.9
	Oxide Ro. Conc.	0.51	1.562	11.45	1.2	0.4
	Oxide Ro. Tails	95.47	0.408	8.08	58.5	53.3
	Total	100.00	0.665	14.48	100.0	100.0

Tests 7 and 9 were similar except that a gravity concentrate was produced in Test No. 7 by hand panning a ball mill ground sample, while the gravity concentrate in Test No. 9 was produced by tabling a sample crushed to 35 mesh. The table tailings were then reground prior to flotation.

Free gold, ranging in size from 35 to 400 mesh, was observed in the gravity concentrates, with only minor amounts of pyrite detected. Sulfide flotation concentrates contained much finer gold (200 mesh top size) with minor amounts of sulfides and semioxidized iron (Limonite). Malachite and azurite oxide copper minerals were detected in the oxide rougher concentrates. Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -5-

D. Flotation Tailings Cyanidation

Cyanidation of flotation tailings indicated that gold and silver extraction increased significantly when the tailings were reground from 83 percent minus 200 mesh to 88 percent minus 400 mesh. Unfortunately the cyanide consumption increased drastically in the reground tails test. Results are summarized as follows:

P-1583C: A. F. Budge Mining Ltd. Flotation Tailings Cyanidation Gold Reagents Consumed Test Gold Assay, oz/Ton Extracted, 1b/Ton Tails No. Grind Residue Calc. Head* 8 NaCN Lime 8 83.1% -200 M. 0.298 0.388 23.3 1.84 1 9 9A 87.9% -400 M. 0.208 0.438 52.5 20.5 2.5 Silver Silver Assay, oz/Ton Extracted, Residue Calc. Head* 8 83.1% -200 M. 8 7.38 8.28 11.0 9A 87.9% -400 M. 5.54 8.95 38.1 *Flotation Tails

The leach solution from Regrind Test No. 9A contained 1180 ppm Fe and 136 ppm Cu. Based on these assays, approximately 13.4 lb NaCN per ton of tails was complexed as ferro-cyanide, while 0.5 lb NaCN per ton of tails was complexed as copper cyanide.

The use of cement instead of lime for pH control may reduce the cyanide consumption during cyanidation of reground flotation tailings.

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -6-

E. Concentrate Amalgamation

The gravity and flotation concentrates from Test No. 9 were amalgamated to determine the amount of free gold and silver present. Results, summarized on the following page, indicate that almost 70 percent of the gold and 50 percent of the silver in the gravity (table) concentrate was amalgamated. Less than ten (10) percent of the gold and silver in the flotation concentrates was amalgamated.

P-1583C: A. F. Budge Mining Ltd. Flotation Concentrate Amalgamation

- Test 9 -

	Gold Assa	Gold Recovered By Amalgamation,	
Product	Amalgam Feed	Amalgam Tails	<u> </u>
Table Conc.	1.909	0.609	68.1
Sulfide Flot. Conc.	19.241	17.494	9.1
Oxide Flot. Conc.	1.562	1.539	1.5

	Silver Ass	ay, oz/Ton	Silver Recovered By Amalgamation,	
	Amalgam Feed	Amalgam Tails	90	
Table Conc.	165.27	85.83	48.1	
Sulfide Flot. Conc.	169.56	165.73	2.3	4
Oxide Flot. Conc.	11.45	11.41	0.4	

III. Test Procedures

Procedures summarized in this section are also described in individual test data sheets attached to the end of this report.

A. Direct Ore Cyanidation

Test procedure was described in our report of December 29, 1988 (re: P-1583C).

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -7-

B. Gravity - Flotation Concentration

The hand-pan gravity concentration test (No. 7) was performed as follows: 1000 grams of minus 20 mesh sample was ball mill ground to 83 percent minus 200 mesh and hand-panned using a small gold pan followed by a vanning plaque. The gravity tailings were transferred to a 1000 gram "Agitair" flotation machine and conditioned for five minutes with 0.10 lb/ton A-208 promoter and 0.03 lb/ton A-350 (potassium Amyl Xanthate). A rougher concentrate was subsequently floated for three minutes. Rougher tailings were conditioned five minutes with 0.5 lb/ton CuSO₄ and 0.05 lb/ton A-350 and a second rougher floated for one minute. These rougher concentrates were combined prior to filtering and drying.

The sulfide flotation tails were conditioned for eight minutes with 0.35 lb/ton NaHS (sulfidizing reagent) and 0.10 lb/ton A-350 prior to four minutes flotation. An MIBC-F65 frother mixture was used as required to maintain a stable froth. Flotation reagents used in these tests are manufactured by Cyanamid Corporation.

The table gravity concentration test (No. 9) was performed by tabling four kilograms of minus 35 mesh sample on an eighth deck Deister concentrating table. The table tailings were settled, clear water decanted, and the table tails were reground to 75 percent minus 200 mesh and floated as described earlier.

C. Flotation Tailings Cyanidation

Four hundred grams of dried flotation tailings from Test No. 7 was mixed with an equal weight of water and the pH adjusted to 11.5 with hydrated lime. Sodium cyanide was added to provide an initial solution concentration of ten lb/ton, and the slurry was bottle roll leached for 72 hours.

A second tailings cyanidation test was performed as follows: one kilogram of dried flotation tailings from Test No. 9 was reground in a ball mill to 88 percent minus 400 mesh. The slurry was adjusted to pH 12 with hydrated lime and cyanide was added to provide an initial solution concentration of 20 lb/ton. The slurry was subsequently bottle roll leached at 50 percent solids for 72 hours. The cyanide concentration was reconstituted to 20 lb/ton of solution after 24 hours of leaching.

Mr. Dale Allen Ms. Carole O'Brien A. F. Budge Mining Ltd. February 2, 1989 Page -8-

D. Concentrate Amalgamation

Table, sulfide rougher, and oxide rougher concentrates from Test No. 9 were amalgamated separately as follows: each concentrate was diluted to approximately 10 - 15 percent solids and 25 grams of clean mercury added. A small amount (1.0 - 0.5 grams) of NaOH was added and the slurry was bottle rolled for four hours. The loaded amalgam was then separated from the sample by careful hand panning.

If you have any questions or we can be of further service, please call.

Sincerely,

DAWSON METALLURGICAL LABORATORIES, INC.

Philip Thompson Vice President

PT/fg

cc: Mr. Frank Millsaps Millsaps Mineral Service

R

DAWSON

METALLURGICAL

LABORATORIES, INC.

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

 PROJECT NO.
 P-1583C

 DATE
 01/05/89

 BY
 GSN

TEST NO. 7 20 min BM grind @ 50	TEST NO.7NAMEA. F. Budge20 min BM grind @ 50% solids followed by gravity concentration & bulk sulfide flotation					Comp No. 1				
Product	Weight	% Wt.		Assay			Units		Distribution	V1G
	and the second second		Au	Ag		Au	Ag	Au	Ag	
Gravity Conc.	14.6	0.73	3.692	223.91		0.0270	1.640	4.28	12.17	
Sulfide Ro.Conc.	17.3	0.87	23.008	410.56		0.1997	3.563	31.57	26.45	
Oxide Ro. Conc.	12.7	0.64	2.446	22.42		0.0156	0.143	2.46	1.06	
Rougher Tail	1949.0	97.76	0.399	8.31		0.3901	8.124	61.69	60.31	
Head Calculated	1993.6	100.00	0.632	13.47		0.6324	13.469	100.00	100.00	
Head Assay			0.617	13.36					r" `	
Gravity and Sulfide		1.60	14.167	325.13		0.2267	5.203	35.85	38.62	111
Grav. & Flotation		2.24	10.830	238.94		0.2423	5.345	38.31	39.69	

											6		GRINDIN
OPERATION		BM	Grav.	Cond	Sulfide Ro	Cond	Ro #2	Oxide Ro		1			PRODUC
TIME		20	Conc	5	3	5	1	8/4				a da sera da	RoTail
REAGENTS - LBS PER TON													· · · · · · · · · · · ·
-20m Ore	gm	2000								-		MESH	%
H20	gm	2000										+ 10	
A-208				.10				1				+ 14	
A-350				.03		0.05		.10			21	+ 20	
CuSO4		•		14.20		0.50						+ 28	
MIBC-F65 3:1				0.032				0.016				+ 35	
NaHS @ 35%						7		0.35				+ 48	0.0
		1				1.1.2				1. 1. 1. 1.		+ 65	0.0
					and the state				14			+ 100	0.8
			1.1.1.2				-					+ 150	5.1
MACHINE			1	2000	2000	2000	2000	2000				+ 200	
R.P.M.			a faith a	800	800	800	800	800				+ 325	
рН				8.1		1			1.3 - ¹ 1.			-325	
% SOLIDS	11.04	50		in the second seco						1			
TEMPERATURE	51.55			100 H-					1000	and the second		% -200	83.1

REMARKS: Pan Conc - minor heavy mineral fraction to grav. conc.; 2 grains of -200m free gold observed, mainly iron oxides, minor pyrite, Cu oxides.

Sulfide Ro No 1 - free gold +60m to -400m, dirty brown iron oxide, some pyrite & Cu oxide, trace native Cu. Oxide Ro No 1 - mainly Cu oxide (azurite, malacite, chrysocolla)

A. F. Budge

P. O. Box 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-1583C	
DATE	01/13/89	122
BY	GSN	

Test No. 7 RoTail

72 hour leach @ 50% solids with 10 lbs NaCN/ton soln

NAME_

8

TEST NO.____

PRODUCT	Weight	WEEK			ASSAY			UNITS			D	DISTRIBUTION			
				Au	Ag		T		Au	Ag	Au	Ag	T		
RoTail leach soln	457.6			0.079	0.80					3.6608	23.3	11.0	1	-	
leach res	399.4			0.298	7.38			1	1.1902	29.4757	76.7	89.0		-	
														-	
Total (Calc)	400			0.388	8.28				1.5517	33.1365	100.0	100.0	1	-	
Total (Assay)				0.399	8.31	· · · · · ·		1		1		100.0	1	-	
	· · · · · ·							1	1				1	-	
									1	1			1		
						/							+	-	
	!	<u> </u>				,		1	1				1	-	
		['			1	· · · · · · · · · · · · · · · · · · ·			1	1			1	-	
		(/	,		((····································				1			+1		
				<u> </u>	'	[]	'			++	·		+		
		NaCN		NaCN	,				+	deserved to the second			GRIN	DING	
OPERATION		Leach	· · · · · · · · · · · · · · · · · · ·	Leach	\square								PROD	JUCT	
TIME		On	72 Hrs.	Off	/								Leach		
REAGENTS - LBS PER TON		300 1/13				1	1					1	Residue	<u> </u>	
Flotation Tail	gm	400.0										MESH	×	-	
H20	gm	400.0				1		1				+10	+	<u> </u>	
Ca(OH)2	gm	.5					[]	[+14			
NaCN	gm	2.2										+20	++		
												+28	++		
								[]				+ 35			
NaCN Titration, 1b/t	con sol	n		8.01								+4.8	0.0		
Ca(OH) ₂ Titration, 1		soln		0.5								+65	0.0		
NaCN Consumed, 1b/to	on ore			1.84							The second second	+100	0.8		
Ca(OH) ₂ Consumed, 1b	s/ton o	re		1.93		President and the						-150	5.1		
MACHINE												+ 200	11.0		
R P.M.		AN AND										+325	27.0		
pH	!	8.2/11.4		11.7						The second second		-325	56.1		
% SOLIDS															
TEMPERATURE	1	ALC: NO DE	respective to the		S. Sand Start	1993 - 19	a National States	1. S.						15 . 15	

REMARKS:

P. O. BOX 7685 5217 Major Street Murray, Utah 84107-0685 Phone: 801-262-0922

PROJECT NO.	P-1583C	đ
DATE	01/12/89	
BY	GSN	
BY	GSN	

TEST NO. 9 (Page 1 of 2)NAME

A. F. Budge

Comp. 1

4 kg gravity concentration followed by sulfide & oxide flotation followed by Ro Tail NaCN leach

Product	Weight	% Wt.		Assay		Units		Distribution	V1G
			Au	Ag	Au	Ag	Au	Ag	
Gravity Conc.	117.1	2.93	1.909	165.27	0.0559	4.838	8.40	33.42	
Sulfide Flot Conc.	44.1	1.10	19.241	169.56	0.2121	1.869	31.88	12.91	
Oxide Flot. Conc.	20.2	0.51	1.562	11.45	0.0079	0.058	1.19	0.40	
Oxide Flot. Tails.	3818.6	95.47	0.408	8.08	0.3895	7.714	58.54	53.27	
Head Calculated	4000.0	100.00	0.665	14.48	0.6654	14.479	Anterior ter for the set of the set of the set	100.00	
Head Assay			0.617	13.36					
Comb. Flot. Conc.		1.61	13.687	119.89	0.2200	1.927	33.07	13.31	
Grav.+Sulf Flot Con		4.03	6.651	166.44	0.2680	6.708	40.28	46.33	
Grav.+Comb. Flot Con		4.54	6.084	149.18	0.2759	6.766	41.46	46.73	

				Sulfide	Sulfide	Oxide	Sulfide	Oxide		GRI	NDING
OPERATION	Table	Grav Conc	BM	Ro #2	Ro #2	Ro #1	Ro Conc	Ro Conc		PRO	толфс
TIME		Amal	$\frac{1}{2}$ X 10	5/4	5/2	4/4	Amal	Amal		Float	Lead
REAGENTS - LBS PER TON				10			4 Hrs.	4 Hrs.		Tail	Res.
Ore gm	4000.0		3900						MESH	%	
H2O (as required)									+ 10	1	
A-208			0.1						+ 14		1000
A-350	200 J	and the second		0.03	0.05	0.10			+ 20	i l	
CuSO4					0.50			Sec. 1	+ 28	1	
MIBC - F65 3:1				0.048		0.016			+ 35	,	
NaHS @ 35%						0.22			+ 48	0.0	0.
	1.5							1. The second second	+ 65	0.6	
NaOH gm	and the second	.56					1.0	0.5	+ 100		
Hg gm		25.38					25.04	25.11	+ 150	8.0	
MACHINE		(25.70)	2 X	2000	2000	2000	(25.11)	(25.13)	+ 200		
R.P.M.				800	800	800			+ 325		
pH				8.8					-325		
% SOLIDS		32				1.			+400	and the second se	4.
TEMPERATURE								Sec. States -	-400		88.

REMARKS: Gravity Conc. - free gold +32 to -400m (200m predominant) iron oxide, lead carbonate, minor sulfide (pyrite) Sulfide Conc. - free gold 200 to -400m some Au corners locked with quartz or iron oxide, minor sulfides Oxide Conc - no free gold observed Grav. Conc. Amalgam - (lead carbonate) also amalgamating

P. O. Box 7685 5217 Major Street Murray, Utah 84107 Phone: 801-262-0922

PROJECT NO.	P-1583C
DATE	01/12/89
ВҮ	GSN & LA

Comp 1

TEST NO. 9 (page 2 of 2) NAME A. F. Budge

Gravity Tail - Flotation tail reground prior to 72 hour leach @ 50% solids with 10 lbs NaCN/ton soln

PRODUCT	Weight	WEEK Tot	al	mg	ASSAY	oz/	ton	UNITS	D	STRIBUTIC	N	
			Au	Ag		Au	Ag		Au	Ag		T
Sulfide Conc Amal Conc	25.11	2	.641	5.709		1			9.1	2.3		1
Sulfide Conc Amal Tail	44.1			250.58		17.494	165.73			97.7		+
Total	(44.1)	29	.092	256.37		19.241	169.56					1
Oxide Conc Amal Conc	25.13	0.	.016	0.03					1.5	0.4		-
Oxide Conc Amal Tail	20.2	1.	.066	7.90		1.539	11.41		98.5			
Total	(20.2)		.082	7.93		1.562	11.45		90.5	99.0		
Table Conc Amal Conc	25.70	5.	.221	318.93					68.1	48.1		
Table Conc Amal Tail	117.1			344.59		0.609	85.83		31.9			+
Total	(117.1)			663.52		1.909			51.9	51.9		
	<u></u>				l	l					GRIN	DING
OPERATION										1		DUCT
TIME		-		· · · ·							1.1.1	T
REAGENTS - LBS PER TON												
							·			MESH	* *	
			-							+10		
										+14 +20		
										+28		
										+ 35		
						1				+4.8		-
										+65		
							200 C			+100		
MACHINE										-150		1. A.
A P.M.										+ 200		
pH						State of the				+325		
% SOLIDS										-325		
Contraction of the second se												
TEMPERATURE			l		- International		1.1.1.1.1					

REMARKS:

P. O. Box 7685 5217 Major Street Murray, Ulah 84107 Phone: 801-262-0922

PROJECT NO.	P-1583C					
DATE	01/19/89					
BY '	LA					

GRINDING

PRODUCT

*

Comp 1

1 freedown

TEST NO. 9A NAME A. F. Budge Grav. Tail - Flotation tail reground prior to 72 hour leach with 20 lbs NaCN/ton soln PRODUCT WEEK oz/ton Weight ASSAY ppm UNITS DISTRIBUTION Au Ag Cu Fe Au Ag Au Ag Leach Soln 1081.3 0.212 3.15 136 1180 2.2924 34.0610 52.5 38.1 Leach Residue 997.7 0.208 5.54 2.0752 55.2726 47.6 61.9 Total Ro Tail 997.7 0.438 8.95 4.3676 89.3336 100.0 100.0 Ro. Tail 0.408 8.08 NaCN NaCN OPERATION Leach BM Leach TIME 60 On Off Leach REAGENTS - LBS PER TON 9:00 1/204:00 1/20 2:35 Residue Float Tail 1000.0 gm MESH H20 1000.0 gm +10 $Ca(OH)_2$ 3.0 gm +14 NaCN 10.0 10.58 gm +20 NaCN Titration, 1b/ton soln 19.00 19.13 .57 +28 CaO Titration, 1b/ton solu 3.8 3.2 + 35 NaCN Consumed, 1b/ton Tail 20.5 +48 0.0 Ca(OH) 2 Consumed 1b/ton Tail 2.5 +65 0.0 +100 0.0 -150 0.0 MACHINE +200 0.2 RP.M. +325 7.1 pH 7.8 12.5 12.0 -325 **%** SOLIDS 5.1 +400 TEMPERATURE -400 87.9

REMARKS: