

CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 416 W. Congress St., Suite 100 Tucson, Arizona 85701 520-770-3500 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the

James Doyle Sell Mining Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

ARIZONA DEPARTMENT OF MINERAL RESOURCES STATE OFFICE BUILDING 416 WEST CONGRESS TUCSON, ARIZONA 85701

t 1. 1

Copy for ReBrown Copy for were files of Copy for WAP TABLE TABLE

ASARCO Incorporateu DXIK -wop

JUL 2 1981

5.7 Exploration

COPPER RESERVES IN ARIZONA 1/

T.C. Herrica

COMP ANY	DEPOSIT	MAJOR MINERAL TYPE	MILLIONS OF TONS	AVERAGE CU CONTENT (%)	REMARKS
ANAMAX MINING COMPANY	Twin Buttes	Sulfide	305	0.65	With 0.03% Mo; cutoff @ 0.2% Cu
	1f	11	300	0.80	Pub. 1973; "outside current mine plans"; cutoff @ 0.4% Cu
	8.1	Oxide	41	0.96	Cutoff @ 0.6% Cu
	11	11	28	0.49	Pub. 1973; cutoff © 0.4% Cu
	Helvetia	Sulfide	320,	0.64	Pub. 1973; cutoff @ 0.3% Cu
	11	Oxide	20	0.55	Pub, 1973; acid soluble Cu; cutoff @ 0.3% acid soluble Cu
	🛶 Peach Elgin	Mixed	23	0.75	@ 0.4% Cu
ASARCO INCORPORATED	Mission	Sulfide	94.003	0.76	With 0.14 oz Ag/ton
	? Poston Butte	Mixed		0.47	Pub. 1972; 32-42.5 Mt possibl
. J. Errouchower	• Sacaton (OP)'	Sulfide	13.503	0.70	Pub. 1980
1 Elsenhever	Sacaton East	(UG) "	14.898	1.25	Pub. 1980
	San Xavier	11	165.805	0.52	With 0.06 oz Ag/ton
	Silver Bell	11	19.627	0.67	With 0.05 oz Ag/ton
	11	Oxide	28.9		
AZTEC MINING CORPORATION	Mame	Oxide	2	1.00	Unpublished est.
BS & K MINING COMPANY	Atlas	Mixed	251 /	1 05	Pub. 1980
CASA GRANDE COPPER COMPANY	Casa Grande	Mixed	351.4	1.05	Pup. 1760

7/81

TABLE

.

COPPER RESERVES IN ARIZONA $\underline{1}/$

COMPANY	DEPOSIT	MAJOR MINERAL TYPE	MILLIONS OF TONS	AVERAGE CU CONTENT (%)	REMARKS
CF&I STEEL CORP.	- Dragoon	Oxide		· · · ·	
CITIES SERVICE COMPANY	- Cactus	Mixed			/
	Copper Cities	Sulfide		1	,
	Miami	11		•	
	- Miami East	11	6	3.14	Reported 1981
	Old Dominion	11	110 1	~ • • •	
	Pinto Valley	IT	413.4	0.41	Includes "probable" ore
$\gamma \zeta$ cochise development group	Bisbee- North	Mixed (?)	20	0.80	Unpublished est.
· (COCHISE MINING CORP.	? San Juan	Oxide	20	0.50	Unpublished est.
CONTINENTAL OIL COMPANY	Poston Butte	Mixed	800	0.40	Pub. 1979
CYPRUS MINES CORP.	Bagdad	Sulfide	326	0.49	Pub. 1979; with 0.03% Mo
	11	Oxide .	38	0.33	Pub. 1979; acid soluble Cu
	11		97	0.19	Pub. 1979; stockpile; acid
	_	- • • • •	o 1077	~ 70	soluble Cu after prior leachi
	Bruce	Sulfide	0.1276		Pub. 1976; with 12.8% Zn
	I-10	Mixed	100	0,52	Unpublished est.; with
	- •	·	((1)	0.50	0.02% Ho
	Johnson	Oxide	6. 643	0.50	Pub. 1980; acid soluble Cu
	11 4	Mixed	10	-0.60	Pub. 1974
CYPRUS PINA MINING CO.	Pima	Sulfide	144,959	0.498	Pub. 1980
DUVAL CORP	Esperanza	Sulfide	54.959	0.27	With 0.033% Mo
	11	Oxide			
· · ·	Mineral Park	Sulfide	43.832	0.19	With 0.051% Mo
	11	Oxide	•		
4	- · Sierrita	Sulfide	398.752	0.30	With 0.035% Mo
EISENHOWER MINING CO.	Palo Verde	Sulfide	147.0029	0.64	
EL PASO COMPANY	Emerald Isle	Oxide	1.5	0.40	Pub 1977; or 3Mt @+ 0.1% Cu
FREEPORT MCMORAN INC.	Santa Cruz	Mixed			

TABLE

* · · · ·

r

COPPER	RESERVES	IN	ARIZONA	1/	

COMPANY	DEPOSIT	MAJOR MINÉRAL TYPE	MILLIONS OF TONS	AVERAGE CU CONTENT (%)	REMARKS
INSPIRATION CONSOLIDATED					
COPPER COMPANY	Christmas (OP)	Sulfide	11.613	0.62	,
	'' (OP)	Oxide			· · ·
	'' (UG)	Sulfide	20.131	1.78	Includes "probable" ore.
	Inspiration Area		245.224	0.58	Pub. 1980
	Ox Hide	Oxide	29.309	0.31	Pub. 1980; plus recoverable
	Sanchez	Oxide	79.362	0.36	Cu remaining in leach pads
KENNECOTT CORP.	- Chilito	Mixed			
	Lone Star	II	2000	0.41	Reported 1977
	Lone Star Ext.	11		- • •	hepoleos and
	Ray	Sulfide	606.144	0.70	Pub. 1981; with 0.01% MoS2
	Ray	Silicate	225.760	0.68	Pub. 1981
KERR-MCGEE CORPORATION	Red Mountain	Sulfide		0.71	Pub. 1970; 100Mt possible
KEYSTONE MINERALS INC.	Korn Kob	Oxide	8	0.50	Pub. 1973
MAQMA COPPER CO.	Copper Creek	Sulfide			,
	Kalamazoo	11	5 65 - 📑	0.72	Pub. 1969
	San Manuel	11	474	0.67	Reported 1978
	L F	Mixed	130	0.70	Pub. 1969
	Superior	Sulfide	9.8	4.80	Reported 1978
	- Vekol Hills		105	0.56	Pub. 1978; minable by open
					pit; with 0.014% Mo; 16Mt
· .		·		ویب <u>میں منطق</u> کا ک ^ی کو میں	oxide Cu
MCALESTER FUEL COMPANY	Zonia	Oxide	20.5	0.53	Pub. 1981
NAVAJO TRIBE (?)	White Mesa	Oxide	2	0.75	Pub. 1955
NORANDA MINES LTD.	Four Metals	Sulfide	6.3	0.26	Reported 1965; with 0.29% Mos
	Lakeshore	Sulfide (dissm)	241	0.70	Pub. 1969
	11	" (tactite)	23.6	1.69	11
	I I I	Oxide	207	0.71	
	Ventura	Sulfide	3	0.82	Reported 1965
ORACLE RIDGE MINING PARTNERS	Oracle Ridge	Mixed (?)	11	2.25	Reported 1977; with 0.64 oz Ag/ton (Pub. 1979)

TABLE	
-------	--

19 F F

COPPER RESERVES IN ARIZONA $\underline{1}/$

COMPANY	DEPOSIT	MAJOR MINERAL TYPE	MILLIONS OF TONS	AVERAGE CU CONTENT (%)	REMARKS
S. B. OWENS	Carlota	Oxide	4	0.85	Reported 1979
PHELPS DODGE CORPORATION	- Copper Basin	Sulfide	175	0•55 \	Pub. 1974; minable by open pit; with 0.02% Mo
	Copper Queen Dos Pobres Lavender	Mixed Sulfide ''	400	0.72	Pub. 1977
	Metcalf Morenci New Cornelia	11	415.970 662.462 126.623	0.77 0.80 0.63	Pub. 1975
	United Verde " Western Copper	" Oxide Sulfide	175	0.60	Unpublished est. Clastle Huf Smy
RANCHERS EXPLORATION & DEVELOPMENT COMPANY	Bluebird	Oxide	65	0.50	As of June 30, 1980
V.B. SMITH ESTATE	Dynamite	Sulfide			
SQUAW PEAK MINING CO.	Squaw Peak	Sulfide	30	0.35	Unpublished est.; with 0.012%Mc
STANDARD METALS CORP.	Antler	Sulfide	5.1	1.95	Pub. 1979; with 4.13% Zn, 0.94% Pb, & 1.05 oz Ag/ton; additional 2.5 Mt "possible" ore (Pub. 1980)
STRONG & HARRIS	Strong & Harris	Mixed	60	0.60	Unpublished est.; with 0.70% Zn
SUPERIOR OIL.	Pine Flats	Sulfide	12	0.50	Unpublished est.

.

TABLE

COMPANY	DEPOSIT	MAJOR MINERAL TYPE	MILLIONS OF TONS	AVERAGE CU CONTENT (%)	REMARKS
UNDETERMINED	Mineral Hill	Mixed			
UNION OIL	Turquoise	Oxide	10	0.50	Pub. 1975
UNITED STATES GOVERNMENT	Park Hill	Mixed (?)	30	0.45	Unpublished est.
UNITED STATES GOVERNMENT & U.S. METALS CORP.	Apex	Mixed (?)	··		
VAN DYKE COPPER CO. & SHO~ME COPPER CO.	- Van Dyke	Oxide	100	0.50	Pub. 1977

COPPER RESERVES IN ARIZONA 1/

Source: Company Annual Reports, Form 10-K's, and Prospectus; Professional Publications.

1/ Reserves are given with a grade of average total copper content as of December 31, 1980, unless stated otherwise under "Remarks." As used in this table, reserves generally mean those estimated quantities of ore which under presently and reasonably foreseen technical and economic conditions may be profitably mined and sold or processed for the extraction of their constituent values.

will fils Un fescures WLL Recop of calculated values from Prospectus', etc. Average Recovered per ton of prexassal ore 3 33 76 Silver Gold Mdyldenen. Ave an Ave Concentration Grade Record of Car Mine/Grau Berkely Open-Put 0.44% 74.8% 0.145 0.001 NA 1971-1975 Continentatast Open to 0.47% 76.2% 6.032 0.000 14 1974-1975 Butte UG Mine 3,16% 94,5% 9,85 0,002 NA 1971-1975 Jerington 1971-1975 Sulfice 83.1% NA NA NA 0.54% 1971-1975 Oxide 73.2% NH NA 0.43% ŇĂ Twin Butte 1971-1974 0.86 % 72,3% 0.005 NA 0.010 1973-1977 Sulfide 72.0% 1975-1977 axile 72.08 Utab Copper 0.6.4% NA 1972-1976 6.068 0.008 0.015 Chino 0.75% NA 1972-1976 6,004 6,0002 6,003 Ray 0.020 6.0001 6.002 0.99% NA 1972-1974

To Tom Osborne NU WLL Copy file On Pescrues

DRAFT

•

Part A

Bost Rated COPPER DEPOSITS WITH PRODUCTION POTENTIAL OF 75,000 TPY, OR MORE:

		Planned	Start	
Ŷ	to the the same	Yearly Copper Production*	of Productio	on Keserves
1.	Sar Chesmeh Iranian Govt.	145,000 (m)	1978	412M [≭] tons @ 1.12% Cu 1st 5-10 yrs @ 1.5%
	La Caridad, Son.Mexico Mexicana de Cobre (Govt.44%, pr	100,000(m) rivate 56%)	Sept. 1978	700M tons @ .70% Cu 1st 5-10 yrs @ .80%
3.	Cerro Colorado, Pan. Texas Gulf S and Panamanian Gov	200,000(m) /t.	1982 (?)	+600M tons @ .70% Cu
4.	OK Tedi, New Guinea Govt20%, operator, BHP-30%, A Gesellschaft-20%.	120,000(m) Amoco-30%,	1985	250M tons @ .94% Cu, .5gms Au
5.	Disputada, Chile Exxon	300,000(m)	1985 (?)	+500M tons 1.2% Cu
€.	Tenke Fungurume, Zaire Soc.Miniere de T.F.	130,000(m)	?	55M tons @ 5.6% Cu, .45% 6u СебАсТ
10,8	Michiquillay, Peru (10) Mineroperu 51% Japanese 49%	130,000(m)		460M tons @ .75% Cu + 1st 5 yrs, .90% Cu ∠
13-2	Quebrada Blanca (13) Chile, Codelco	100,000(m)	?	165M tons @ 1.00% Cu المام المسلم الم
9.	Safford - Phelps Dodge (4)		? or/	400M tons @ .72% Cu +200M tons @ .90% Cu
7 45	Andacolla, Chile (1) Enami, Noranda			350M tons @ .70% Cu - 30 cm for Cancing and a Const
A 11,	Toromocho, Peru Centromin	100,000(m)	?	330M tons @ .78% Cu . Dough ford
12.	Valley Copper, B.C. Cominco (81%)	70,000(m)		800M tons @ .48% Cu
8 13.	El Abra, Chile . S. Codelco	. ,	* '	1,500M tons @ 1.00% Cu port oxide
14.	Stikine, B.C. Kennecott-Hudson Bay		-	138M tons @ 1.38% Cu
1725.	El Arco, Mexico Industrial Minera Mexico			630M tons @ .60% Cu - procentile anter problem
•	El Pachon, Argentine St.Joe	100,000(m)	?	78014 tons @ .598 Cu - high undersition of area
15 17.	Quellaveco (う Centromin			200M tons @ .80% Cu - curet. p Q area -
*	* Metric tons except in USA and * Million	Canada (1809)		ce are
				T.H. Courtright
	Revised numbers	on list ge		

Port B

ş

- Harold: Following list of copper deposits not yet on stream with capacity to produce more than 75,000 tons Cu/year. Parily developed deposits listed highest in potential order of development then from there by grade with open pit favored over underground and some consideration for politics and geography - which can't be ignored. Location and ownership you already know.
 - 1. Sar Cheshmeh
 - 2. La Caridad
 - 3. Andacollo
 - 4. Tenge-Fungurume
 - 5. Disputada
 - 6. Quelleveco
 - 7. El Abra
 - 8. Quebrada Blanca
 - 9. OK Tedi
 - 10. Toro Mocho
 - 11. Michiquillay
 - 12. Cerro Colorado
 - (+75,000 tons Cu/yr possible from here up)
 - unlikely from here down

PD Safford
 Hanna Getty - Casa Grande
 El Arco
 Stikine
 Pachon
 Santa Rosa-Pilares
 Valley Cu (.48% Cu)
 Helvetia E
 Greater Butte

I made the assumption that with less than 0.9% Cu block cave or less than 0.5% Cu open pit would not exceed 75,000 tons Cu/year.

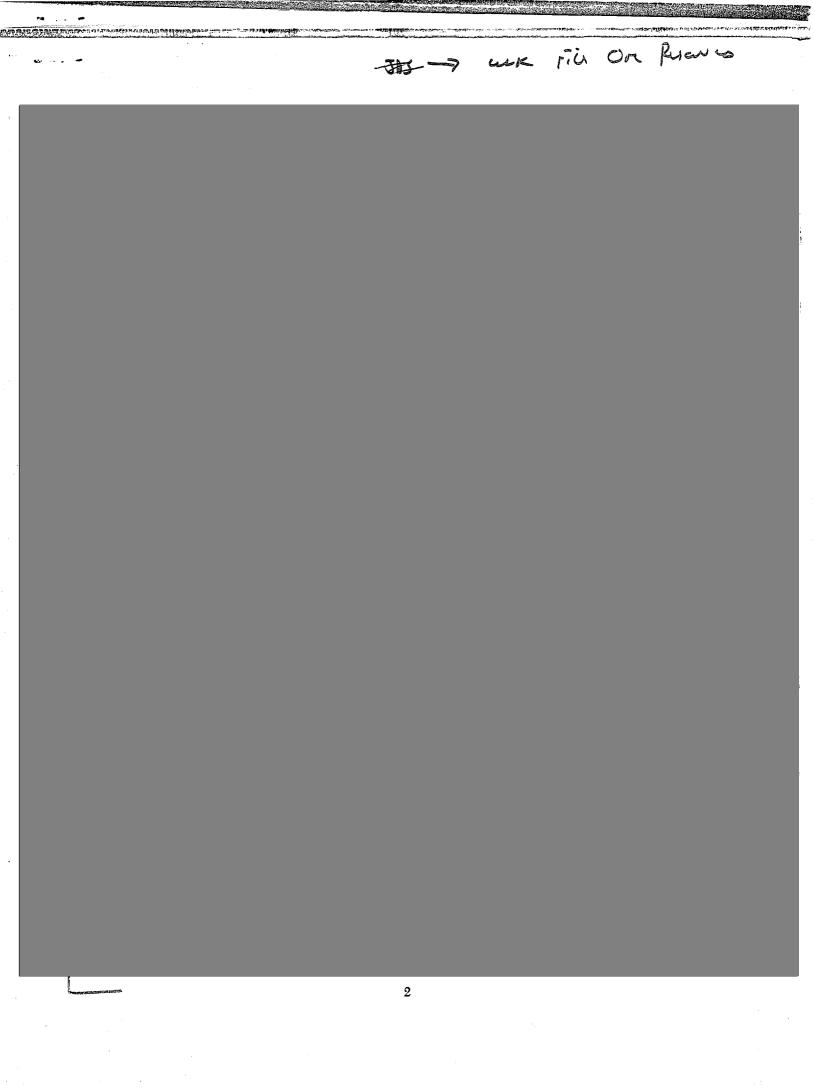
FTG

THE NORTHERN MINER July 4, 1974

ł.

1997. 1997

• 1


۰.

· Dre Reserves

THE NC

100 Mar

-

Dill

RECEIVES MAY 1 3 1974 S. W. U. S. EXPL. DIV.

Of perhaps passing interest in the attached

production data from

Kennecott'n 10-K report.

John

CC: J.H.C.

SECURITIES AND EXCHANGE COMMISSION Washington, D. C. 20549

FORM 10-K

ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934

Commission file number 1-1369 for the fiscal year ended December 31, 1973

> KENNECOTT COPPER CORPORATION (Exact name of registrant as specified in its charter)

13-5178150 New York (State or other jurisdiction of (I.R.S. Employer Identification No.) incorporation or organization)

161 East 42nd Street, New York, N. Y. (Address of principal executive offices)

212-687-5800 Registrant's telephone number, including area code

Securities registered pursuant to Section 12(b) of the Act:

Title of each class

Capital stock, \$5 par value

7-7/8% Debentures due 2001

Securities registered pursuant to Section 12(g) of the Act:

None (Title of Class)

Indicate by check mark whether the registrant (1) has filed all annual, quarterly and other reports required to be filed with the Commission and (2) has been subject to the filing requirements for at least the past 90 days. Yes X No

> COOPERS & LYBRAND CERTIFIED PUBLIC ACCOUNTANTS

10017 (Zip Code)

Name of each exchange on which registered

New York Stock Exchange Boston Stock Exchange

New York Stock Exchange

titanium slag and Sorelmetal, there are other materials which, at appropriate price levels, can compete with these products. With respect to iron powders, the Company's principal market is the United States, in which it competes with both other sellers of iron powders and sellers of competitive materials.

Copper

いたるまとないというないのであれたものできます。

Kennecott owns and operates four open-pit copper mines located in the western part of the United States. These mines contain large amounts of low-grade copper ore overlain or flanked by waste rock which must be removed before the ore can be mined. Molybdenum, gold, and silver, as well as certain other non-ferrous metals, are contained in small quantities in the ore and are extracted as by-products. At or near the location of each of its mines, Kennecott also owns and operates concentrating mills which convert the ore from the nearby mines into copper concentrates through a process of crushing, grinding and flotation, and smelters which process the copper concentrates into blister copper. The blister copper so produced is then either electro-refined at the Company's two electrolytic refineries, one of which is located near Salt Lake City, Utah and the other near Baltimore, Maryland, or, in some cases, fire refined at Chino Mines Division. Waste rock removed at each of the mines is hauled to waste dumps where it is subjected to a leaching process. An acidic solution is pumped to the top of the dumps and, percolating downward, leaches the soluble copper co the dumps and, percolating downward, leaches the soluble copper contained in the waste material. The resulting copper-bearing solution is treated in a nearby precipitation plant to produce precipitate sold directly to customers.

Throughout 1973 the Company's three largest mines and all of its smelters operated on a seven-day week. The smallest mine operated on a six-day week until March, 1973 and has operated on a seven-day week since that time. <u>Utah Copper Division</u>. Kennecott's largest mine is located

Utah Copper Division. Kennecott's largest mine is located at Bingham, Utah, approximately 28 miles southwest of Salt Lake City. Ore from this mine is transported by the division's railroad approximately 15 miles to concentrating and smelting facilities located near Magna, Utah. The table on the following page shows certain production data with respect to the Utah Copper Division for the three years ended December 31, 1973:

• • • •	Waste Removed (Thousands of tons)	Ore Mined (Thousands of tons)	Grade of Ore (Copper)	Copper Produced (tons) (1)	Molybdenum Produced (lbs.)	Gold Produced (ozs.)	Silver Produced (ozs.)
1971	84,504	35,008	0.69%	261,783	12,384,115	291,837	2,291,969
1972	89,572	34,952	0.68%	258,037	13,491,215	328,577	2,822,779
1973	99,596	38,268	C.65%	254,965	12,809,526	310, 547	2,703,338

 Includes copper produced from precipitates obtained by leaching waste dumps as follows:

1971, 48,571 tons; 1972, 48,517 tons; 1973, 45,574 tons.

Chino Mines Division. Kennecott's Chino mine is located near Silver City, in the southwestern part of New Mexico. Ore is transported by rail approximately nine miles to concentrating, smelting and fire refining facilities located at Hurley, New Mexico, where fire refined copper and, on occasion, blister copper, is produced. The following table shows certain production data with respect to the Chino Mines Division for the three years ended December 31, 1973:

	Waste Removed (Thousands of tons)	Ore Mined (Thousands of tons)	Grade of Ore (Copper)	Copper Produced (tons) (1)	Molybdenum Produced _(lbs.)
1971	19,664	7,257	0.94%	71,469	423,533
1972	18,334	6,345	0.88%	73,403	396,671
1973	22,129	8,102	0.88%	67,836	608,098

 Includes copper produced from precipitates obtained by leaching waste dumps as follows:

1971, 27,806 tons; 1972, 25,779 tons; 1973, 22,859 tons.

Ray Mines Division. Kennecott's Ray mine is located approximately 10 miles northwest of Kearny, Arizona. Two types of ore are mined from this property - a sulfide ore which is processed by customary concentrating and smelting facilities located at Hayden, Arizona, approximately 20 miles south of the mine, and a silicate ore which is

5

subjected to a hydrometallurgical process at a plant located adjacent to the mine site. The following table sets forth certain production data with respect to the Ray Mines Division for the three years ended December 31, 1973:

	Waste Removed (thousands of tons)	Ore Mined (thousands of tons)	Grade of Ore (Copper)	Copper Produced (tons) (1)	Molybdenum Produced (lbs.)	Gold Produced (ozs.)	Silver Produced (ozs.)
1971: Sulfide Silicate	23,243	7,647 2,631(2)	0.90% 1.39%	66,835 16,596	512,461 -0-	1,265 -0-	239,798 -0-
1972: Sulfide Silicate	26,600	7,747 2,617(2)	0.89% 1.25%	70,243 19,931	31,538(3) -0-	1,405 -0-	268,301 -0-
1973: Sulfide Silicate	27,393	8,619 3,704(2)	0.91% 1.35%	7 4, 194 24,714	611,307 -0-	1,213 -0-	234,994 -0-

 Includes copper produced from precipitates obtained by leaching waste dumps as follows:

1971, 16,507 tons; 1972, 16,471 tons; 1973, 14,595 tons.

(2) Figure represents silicate ore treated in leaching vats.

(3) Molybdenum recovery was suspended during most of 1972 due to depressed molybdenum prices.

Nevada Mines Division. Kennecott's smallest copper property is located at Ruth, Nevada, in the eastern part of the state. Ore produced at this property is shipped by Company railroad approximately 20 miles to concentrating and smelting facilities located at McGill, Nevada. The following table shows certain production data with respect to the Nevada Mines Division for the three years ended December 31, 1973:

	Waste Removed (thousands of tons)	Ore Mined (thousands of_tons)	Grade of Ore (Copper)	Copper Produced (tons) (1)	Nolybdenum Produced (1bs.)	Gold Produced (ozs.)	Silver Produced (ozs.)
1971	30,278	6,788	0.83%	39,459	33,053	46,687	129,002
1972	29,472	6,832	0.97%	38,962	60,134	19,511	100,287
1973	30,472	7,849	0.78%	50,012	259,385	30,296	202,732

 Includes copper produced from precipitates obtained by leaching waste dumps as follows:

1971, 1,683 tons; 1972, 1,682 tons; 1973, 1,831 tons.

6

SILVER STATE PROJECT

Open Pit Design and Grade Production Schedule

1) Pit designed for 0.8 oz/ton silver cutoff. Flexible grade production schedule at 7.0 MTY.

lst	5 years	of grade	1.742	oz /ton	w/	1:.311	ore:waste
next	1	11	1.569	11	11	1:.429	11
. 11	4	11	1.244	11	11	1:.640	11
. 11	1	11	1.166	11	11	1:.772	11
17	2	11	1.100	11	11	1:.885	*1

2) Pit designed for 0.8 oz/ton silver cutoff. Uniform grade production schedule at 7.0 MTY.

13 years of grade 1.433 oz/ton w/ 1:.544 ore:waste

3) Pit designed for 0.5 oz/ton silver cutoff. Flexible grade production schedule at 7.0 MTY.

lst	5 ye	ears of grade	e 1.742	oz/ton	w /	1:.311	ore:waste
next	1	ŧ1	1.569	11	н	1:.429	11
11	4	11	1.244	11	11	1:.640	* 1
14	1	11	1.135	11	11	1:.984	11
11	4	11	1.042	11	11	1: 1.280	11

4) Pit designed for 0.5 oz/ton silver cutoff. Uniform grade production schedule at 7.0 MTY.

15 years of grade 1.365 oz/ton w/ 1:.719 ore:waste

5) Pit designed for 0.5 oz/ton silver cutoff. High-grade followed by uniform grade production at 7.0 MTY.

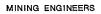
 1st
 2 years of grade
 2.00 oz/ton·w/
 1:.313
 ore:waste

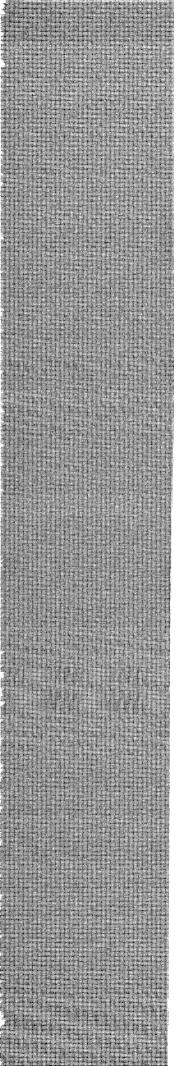
 next
 13
 "
 1.199
 "
 1:.313
 "

SLC Calculations based on Tucson Cost Estimates

SILVER STATE PROJECT

DCF-ROR Outcome


50 Million Cap. Invest. - 80% Recovery


Price Ag	* Pit Design (Cutoff and Product	tion Schedule		
	l) 0.8 oz Flex Prod	2) 0.8 oz Unif Prod	3) 0.5 oz <u>Flex Prod</u>	4) 0.5 oz <u>Unif Prod</u>	5) 0.5 oz Hi Gr. + Unif Prod
\$2.50/oz	5.9%	4.8 %	4.0 %	3.5 %	4.2 % :
3.00/oz	12.4	10.0	11.9	8.8	10.5
3.50/oz	17.6	14.5	17.3	13.1	15.5
· · · ·	50	Million Cap. Inve	st 90% Recover	<u>Y</u>	
2.50/oz	10.2 %	8.2 %	9.6 %	6.9 %	8.4 %
3.00/oz	16.4	13.5	16.0	12.1	14.3
3.50/oz	21.5	18.0	21.2	16.5	19.5
	60	Million Cap. Inve	st 80% Recover	<u>y</u>	
2.50/oz	3.3 %	3.2 %	1.3 %	2.0 %	1.9 %
3.00/oz	9.6	7.9	9.2	6.9	8.1
3.50/oz	14.2	11.9	14.0	10.8	12.5
	<u>60</u>	Million Cap. Inve	st 90% Recover	<u>. y</u>	
2.50/oz	7.6 %	6.3 %	7.0 %	5.8%	6.1 %
3.00/oz	12.2	11.0	12.9	9.9	11.5
3.50/oz	17.9	15.°0	17.6	13.8	15.9

* See following page for explanation

Copper in the U.S.—a Position Survey

MINING ENGINEERS

Company & property name & location	Yr. of initial prod.	Surface or under- ground	Reduction plant	Ore & waste tpd	Ore tpd	Avg. Cu content %	Avg. MoS. content %	Ore minerals	Gangue rock	Milling cap. tpd.
Asarco Silver Bell, Az	1954	s	concen. heap leach	44,000 •	10,500	n.a.	n.e.	chalcocite chalcopyrite	lgneous, sediment.	10,500
Mission, Az	1961	s	concen.	90,000 [,]	22,500	n.a.	n.a.	molybdenite chalcopyrite molybdenite	argillite hornfels	22,500
San Xavier North, Az	1973	s	vat leach	15,000	4,000	R.a.	п.а.	Cu oxides	tactite arkose argillites	поле
Anaconda Co. Butte, Mt. UG Butte, Mt. OP Butte, Mt. HL	1860's 1955	ນ ຮ	concen. heap leach	 253,000	3,600 48,200	п.а. п.а.	0 0	bornite, chal- cocite, chal- copyrite, en- argite, ten- monite, covellite	pyrile, quartz sericilized qtz. monz., qtz. porph.	2,600 48,200
Yerington, Nv	1953	S	vat leach concen.	65,000	28,000	n.a.	0	chrysocolla chalcopyrite	giz. monz. porph.	14 ,00 0
Twin Buttes, Az	1969	S	concen.	360,000	32 ,0 00	п.а.	n.a.	chalcopyrite molybdenite	qtz., qtz. monz., ls.	32,000
3agdad Copper Corp. Bagdad, Az	1937	s	concen. heap leach solv. extrac. elec. winning	30,000	5,600	0.70	0.03	chalcopyrite chalcocite molybdenite bornite, oxides	qtz. monz.	6,000
Cities Service Co. Copperhill, Tn	1899	U	concen. smelter	6,900	6,900	1.00	0	pyrile, pyrrhotile chalcopyrile sphalerile		6,900
Miami, Az Copper Cities, Az	1911 1955	s	leach concen. heap leach	28,000	14,000	0.50	0.007	chalcopyrile	qtz. monz.	14,000
Copper Range Co. White Pine, Mi	1955	U	concen.		22,800	1%	D	Cu, Ag chalcocite	shale, sandstone	24,500
Duval Corp. Esperanza, Az	1959	S	concen. heap leach	37,000	15,000	0.37	0.053	chalcocite chalcopyrite	igneous, metamorphs	15,000
Mineral Park	1964	s	concen.	38,000	19,000	0.42	0.062	ox. & carbs. as above	as above	19,000
Battle Mountain, Nv	1967	s	heap leach concen.	33,000	4,535	0.84	0	as above	igneous, sed.,	4,535
Sierrita, Az	1970	s	heap leach concen.	220,000	83,000	0.29	0.048	chalcopyrite	metamorph. igneous	83,050
nspiration Consolidated Copper Co. Inspiration, Az	1915	S	concen. heap leach vat leach smeiler	39,157	21,290	0.709	0.0121	bornite chalcocite chrysocolla malachite azurite	schist granit e	20,000
Christmas, Az	1962	S	elec. ref. concen.	30,357	5,111	0.798		chalcopyrite bornite chalcocite covellite	met. Is., qtz. diorite, andesite	5,500
Ox Hide, Az	196B	S	heap leach	9,671	6,705	0.344	_	ox & carbs	schist, qtz. monz. porph.	none
ennecott Copper Corp. Bingham, Ut	1904	s	concen. heap leach smeiter	376,543	106,560	0.677	0.0483	chalcopyrite bornite molybdenite	granite, porph., ls., quartzite	108,500
Ruth, Nv	1908	S	elec. ref. concen. heep leach	118,250	21,500	0.8	0.012	chalcopyrite chalcocite	qtz. monz., Is.	21,500
Chino, NM	1909	s	smelter concen. heap leach	87,196	22,970	0.865	0.013	chalcocite chalcopyrite	ls., shale, granodiorite,	22,800
Ray, Nv	1911	S	smelter concen. heap leach vat leach smelter elec. winning	115,000	35,400	0.94	0.025e	chaicocite chaicopyrite molybdenite chrysocolia	qtz. diorite diabase, schist, qtz. monz., quartzite	25,400
lagma Copper Co. Superior, Az	1912	U	concen.	3,500	1,600	4.5	0	chalcopyrite bornite	is., primary hematite,	4,000
San Manuel, Az	1956	U	concen. smelter elec. ref.	62,500	62,500	0.69	0.025	chalcopyrite chalcocite pyrite molybdenite	pyrite qtz. monz. porph.	62,500
help's Dodge Corp. Copper Queen, Az UG Copper Queen, Az OP	1878 1954	U	concen. heap leach	 21,700	2,648 14,700	4.4 0.64		chalcocite chalcopyrite	qtz. pozph., Is.	19,000°
Morenci, Az	1942	S	concen. heap leach	171,000	58,600	0.83	—	bornite chalcocite chalcopyrite	monz. porph., granite, Is.,	60,000
New Cornelia, Az	1917	S	smelter concen. smeller	97,000	33,500	0.70		covellite chalcopyrite bornite	diabase qtz. monz., rhyolite	34,000
Tyrone, NM	1969		concen.	189,000	48,000	0.85	_	chalcocite chalcocite	qtz. monz.	48,000
ima Mining Co. Pima Az	1057		heap leach	140 000	20 500	05	0.017	abalaamatta	motored	ED 500
Pima, Az anchers Exploration	1957	S	concen.	140,000	53,500	0.5	0.017	chalcopyrite molybdenite	metased.	53,500
Bluebird, Az	1964		heap leach solv. extrac. elec. ref.	25,000	12,000	0.5	_	chrysocolla	schist, granite	none
otes: ¹ Production curtailed Au ² Cathode Cu by electron	igust 1972 Ninning	a Tent • Inch	ative Ides Miami Perso	⁵ Inclu nnel ⁶ Tota	ides Lavend I for branch	ler pit ore	* At 38.2 * Ore Bo	7% No dy blasted; leach in p	blace	

United States Principal Copper Mine Statistics-

Rated Capacities and/or 1972 Production

Total Cu production tpy	Cu in concen- trates tpy	% Cu in cons.	Total Cu recovery %	Cu in ppts tpy	MoS ₂ produc- tion tpy	Products	Product shipped to	No. of employees wages	No. of employees salaried	New or ex- panded prod. tpy	Completion date
20,000	15,300	28	n.a.	4,700	120'	cons ppts	Hayden, Az El Paso, Tx	330	n.a.	none	
45,000	45,000	28	n.a.	0	1,800	cons	Hayden, Az El Paso, Tx	620	n.a.	none	
11,000	_	-	-	11,000	0	ppts	Hayden, Az El Paso, Tx	35	n.a.		
26,523 83,937 24,000	n.a. n.a.	26 26	n.a. n.a. 97.8	 24,000	0 0 0	cons anodes ppts	Anaconda, Mt Anaconda, Mt Anaconda, Mt	715 1,340 125	85 140 18	none none	
38,500	18,500	30	n.a.	20,000	0	ppts	Anaconda, Mt	458	102	none	
75,000	75,000	29	n.a.	0	1,850	cons cons	Hayden, In- spiration, Az	1,350	300	7.3 MM ore	7/74, 1/75
19,579	12,279	32	88	7,300°	384	cons cathodes	Hayden, Az White Pine, Mi	438	71	54,000 ³	1975
21,000	21,000	20	n.a.	0	0	blister Cu sulfate H₂SO₄ Fe pellets	market	1,700	40N	as stated	1973
22,300	20,000	27	87	6,100 2,300	180	Zn cons ppts cons ppts	Douglas, Az Inspiration, Az	521'	156*	none none	
72,000	n.a.	31	80.65	0	0	fire refined	market	2,424	516	none	
20,285	17,624	25	87	2,661	2,044	cons ppts	custom smelt	336	85	none	
26,559	22,091	20	76.3	4,468	2,919	cons	custom	310	101	none	
16,322	9,492	25.3	69.4	6,830	0	ppts cons	smelt custom	235	84	none	
68,940	68,940	26.1	84.5	0	9,731	ppts cons	smelt custom smelt	1,259	305	none	
53,987	25,347	38.24	76.41	22,738	370	ppt cathodes rod	market	1,344	311	9.1 MM ore	1973
11,244	11,244	20.43	71.97	0	0	cons	Inspiration	251	37	none	
4,848	_	_	41.7	4,848	0	ppt	Inspiration	51	6	none	
258,037	210,714	27.06	89.07	n.a.	11,254	cathodes anodes ppts	market	5,743	1,495	none	
45,000	42,000	18.5	78	3,000	110	blister ppts	Maryland	1,150	322	none	
75,700	55,800	20.0	79.3	n.a.	423	blister fire refined	market	1,047	318	none	
103,478	64,336	18	82	14,600	559	ppts anodes cathodes	Maryland Hurley, NM	1,590	475	none	
24,000	24,000	25	96.5	0	0	cons	San Manuel, Az	968	186	1.01 MM ore	8/73
144,000	144,000	28	92.7	0	4,200	cathodes rod	market	3,000	615	none	
26,900 21,600	23,000 16,600	17.4 10.3	94.8 69.3	0 5,000	0 0	cons & direct smel	P.D. smeiters	1,504°		none	
120,000	107,800		75.2	12,200	0	ppts anodes	P.D. refine	2,445"	_	none	
57,900	57,900	30.3	84.6	0	0	anodes	P.D. refine	1,288*	_	none	
100,000	96,000	21.3	77.5	4,000	0	cons ppts	P.D. smelters	671*	-	100,000	7/72
82,500	82,500	26	85	0	1,5007	cons	Dougias & San Manuel, Az	775	175	none	
7,500	_		50	0	0	cathodes	market	95	10	25,000 ⁸	

48 APRIL 1973

. . . .

Ore Reserves

en de la companya de La companya de la comp	4	<u>CAPITAL</u>	. COSTS PER TOP	N & PER LB KE	COVERABLE CU.	J. H. C. NOV 2119		
Property	Year	Ore Reserve (1000's t)	Total (1000's	and the second se	Capital Cost (1000's)	CC/ton	СС/16 Ке	c Remarks
Silverbell	1952	32,000 @ .90	460,800	14.40	\$17,000	53.1¢	3.68¢	·. ,
Copper Citic	cs 54	33,000 @ .73	396,000	12.0	8,413,4	25.5¢	2.12¢	Bought plant cheap from RF
Esperanza	59	48,815 @ .65/.021	.6 585,780	12.0(1)	22,752	46.6¢	√ 3,88¢	
Toquepala	1960	1,100,000 @ 1.0	19,250,000	(17.50 ?	251,493	22.9¢	1.31¢	•
Bethlehem	63	82,425 @ .614	860,517	10.44	19,150	23.2¢	2.23¢	
Mineral Park	c 65	70,596 @.492/.041	5 756,083	10.71(2)	29,136	41.3¢	3.85¢	
Palabora	66	315, 000 @ .68	3,619,350	11.49	112,000	35.5¢	3.09¢	
Twin Buttes	67	382,310 @ .83/.033	4,962,383	i2.9 8	198,000	51. 8¢	4.00¢	
Tyrone	68	304,896 @ .81	3,799,004	12.46	100,000	32.8¢	2.63¢	
Marcopper	69	85,700 @ .75	1,125,241	13.13	45,000	52.5¢	_4.00¢	
Sierrita	1970	538,000 @.329/.033	4,239,440	7.88(3)	178,000	33.1¢	4.20¢	
Lornex	71	293,000 @.427/.014	2,478,780	8.46(4)	138,000	47.l¢	5.57¢	· · · ·
Island Cu	71	280,000 @.52/.025	2,875,600	10.27(6)	68,500	24 . 5¢	2.38¢	•
Gibraltar	72	358,000 @.37 3/.016	2,409,340	6.73(5)	67,000 ot 30 or	18.7¢	2.78¢	
Similkameen	72	75,363 @ .526	694,093	9,21	71,000	94 . 2¢	10.23¢	• .

Notes:	(1)	10.92	16 s	Cu	4	1.08	lbs	Cu-	Mo	Equiv	
			Ħ	11	Ŧ		н	ł		ิน 🤅	· . :
	(3)	6.51	11	11	Ŧ	1.37	11	11	11	ับบ	
	(4)	7.86	11	11	÷	0,60	11	Έ.	÷н.	II.	
	(5)	5.97	11	п	+	0.76	11	n	n	11	÷.,
	(6)	9.10	n	Ħ	ŧ	1.17	11	- 11	ŧ	u	•

Data derived from various company annual reports, prospectus information. etc.

The ore reserves above are those reported - but it is. probable that most of the properties will eventually mine out more than the original reserves. Three of them -Silverbell, Copper Cities & esperanza are still operating, having mined out the original reserve some years since. It would appear that Similkameen (a Newmont property) must have potential for at least 150,000,000 tons.

TUCSON, ARIZO

J. W. STILL

17

4/19/

J. H. C.

RECENT NEW CANADIAN OPEN PITS

NOV 21 1973

Company	Year	Ore reserve Tons	%Cu/%Mo	Capital Cost	Tons/day	Capital cost per ton day
Brenda	1969	177,000,000 @	0.183/.049	000 و 500 نو 62	35,000	\$2500
Lornex .	1971	293,000,000 @	0.427/-014	\$138,000,000	38,000	\$3305
Island Cu	1971	280,000,000 @	0.52/.025	\$68,500,000	33,000	w2075
Gibraltar	1972	358,000,000 @	0.373/.016	₩67,00 <u>0</u> ,000	30,000	\$2233
Similkameen	1972	75,363,000 @	0.526	\$71,000,000	15,000	\$4867
Sacatur	1973			36,700,000	9,000 9,000	2.703 - without premin stripping

FIRST GENERATION - PORPHIRY COPPERS

Fig. forph a content OIC reserves

						· · ·			
& STILL	Mine	• Туре	Start	Ore Reserve at start MT Ore-Grade-MT Cu	MT Cu pro thru '67	Est Ore reerves 1/1/68 MT Ore-Grade- MT Cu	O _p erating Rate tons/day	Indicated Life-years	
	Utah*	OP	1905	12.4 @ 2.0% 0.248	9.001	1297.3 5 0.74% 9.600	99,000	40	-1 - 7
	Humboldt- Morenci	UG	1907	? @ 1.9% ?	0.625	DONE		-	
	Nevada Con	OP	1908	8.1 @ 2.0% 0.163	2.042	113.7 @ 0.74% 0.556	22,400	15	
	Braden	UG	1910	10.0 @ 2.7% 0.272	6,478	445.4 @ 1.83% 8.151	26,600	40	
CON	Miami	UG	1911	18.2 @ 2.58% D.469	1.247	DONE	نىچ كىنى ۋەلە كە چې ۋىچ		
SULTI	Ray*	OP	1911	50.0 @ 2.25% 1.125	1.861	306.5 @ 0.84% 2.478	25,900	35	
	Chino*	OP	1912	19.0 @ 2.59% 0.492	2.570	121.5 @ 1.02% 1.579	24,000	15	
- โหตุด ต	Inspiration*	OP	1915	45.3 @ 2.0% 0.906	1.939	98.9 @ 0.67% 0.668	20,270	13.7	
2012	Chuqui	OP	1915	203.3 @ 2.23% 6.764	9.241	1194.9 @ 1.40% 10.728	66,400	50	
87 9 9	Ajo	OP	1917	60.0 @ 1.5% 0.900	2.363	151.9 @ 0.66% 1.003	33,400	25	
GEOLOGI	Sac Hill Bisbee	OP	1923	11.2 @ 1.7% 0.190	0.218	DONE			
9 1 9	Andes	UG	1927	127.4 @ 1.51% 2.075	1.743	DONE			

1

Note: * Indicates leach production in addition to milled ore - Production figures include leach

MT Ore & MT Cu indicates millions of tons.

WLK

ETILL

6/68

5

Mine	Туре	Start	Ore Reserves at MT Ore-Grade-MT		MT Cu Pro thru 167	Est Ore reserve MT Ore-Grade- 1		Operating Rate tons/day	Indicated Life-years	6/68
Morenci-Clay*	OP	1942	284.0 @ 1.04% 2.	.942	3.081	767 .1 @ 0.73%	5.600	60,725	40	8
Bagdad*	OP	1943	36.7 @ 0.98% .0.	.360	0.275	27.5 @ 0.87%	0.242	6,000	12	
Castle Dome	OP	1943	40.4 @ 0.72% 0.	290	0.290	Done		ويور ميد والاقسي فللا	665-446 T	
Yerington	OP	1953	52,2 @ 0.92% O.	.483	0.457	45.2 @ 0.84%	0.380	16,000	10	
Lavender [*]	OP	1954	? ? 0.	494	0.485	6 1.0 @ 0.57%	0.347	17,450	10	
Copper Cities*	op	1954	32.9 @ 0.73% 0.	.239	0.268	43.5 @ 0.55%	0.242	12,000	10	
Silverbell*	OP	1954	32.0 @ 0.90% 0.	2 88	0.299	36.9 @ 0.65%	0.242	11,250	10	
San ^M anuel	UG	1956	457.9 & 0.75% 3.	.420	0.899	777.0 @ 0.73%	5.672	40,000	55	
Pima	OP	1957	7.8 @ 1.64% O.	128	0.261	118.0 @ 0.58%	0.685	30,000	12	
El Salvador	UG	1958	300.0 @ 1.63% 4.	890	0.753	253.8 @ 1.63%	4.137	16,000	48	
Esperanza*	OP	1959	48.8 @ 0.65% 0.	,317	0.205	39.9 @ 0.48%	0.192	14,700	8	÷
Toquepala	OP	1960	1100.0 3 1.00 11.	.000	1.212	829.4 @ 1.18%	9.787	37,600 .	70	
Mission	OP	196 1	80.0 @ 0.92% O.	736	0.294	56.7 @ 0.78%	0.442	17,500	9.5	
Mineral Park*	OP	1965	53.4 😔 0.54% 0.	2 88	0.072	42.4 @ 0.51%	0.217	16,800	8	
Palabora	OP	196 6	315.0 @ 0.68% 2.	142	0.151	292.8 @ 0.68%	1.991	33,000	24	
										,

Note * ¹ndicates leach production in addition to milled ore - Production figures include leach.

1

SECOND GENERATION - PORPHYRY COPPERS

MT ore & MT Cu indicates millions of tons.

STILL & STILL

CONSULTING MINING ENGINEERS & GEOLOGISTS

PRESCOTT, ARIZONA

15a

PLANTS PRESENTLY UNDER CONSTRUCTION

1.7219

STILL	Mine	Туре	Start	Indicated Ore Keserves	Operating Rate	Indicated Life
	Tyrone (PD)	OP	1969	126,750,000 © 0.78%	25,000	15
	Twin Buttes	OP	1969	300,000,000 © 0.75%	40,000	20
	Sierrita	OP	1971	420,000,000 @ 0.355%	60,000	20
	Exotica	OP	1970	150,000,000+ @ 1.35 %	31,000	13.4
^						

Notes on above:

PD in annual report gave only the expected grade and the 25,000 t/d milling rate - Assuming that PD would not tie into one at a \$100,000,000 capital cost unless it was good for a minimum of 15 years - the above reserve for Tyrone is estimated from a probable 15 year life.

Anaconda on Twin Buttes has put out only the expected 40,000 t/d milling rate. I have estimated the grade - and on the magnitude of the project costs, figured it had to have a 20 year minimum life - and figured the ore reserve tonnage on this basis.

6/68

ନ୍ଧ

See the two attached xerox sheets for published data on Duval-Sierrita & Exotica - from . which the above ore reserves were taken or deduced.

STILL

9/14 From: T. C. OSBORNE To: W Therez .

In case you haven't seen This.

J. H. C. SEP 1 9 1973

RECEIVED SEP 1 7 1973 S. W. U. S. EXPL. DIV.

Thelps Podge

(b) For the purpose of computing the ratio of earnings to fixed charges, earnings consist of income before extraordinary items, fixed charges, provision for taxes on income, and equity in earnings of investees. Fixed charges consist of interest expense and one-third of rental expense included in Note 13 of Notes to Consolidated Financial Statements.

(c) The pro forma ratio of earnings to fixed charges for the twelve-month period ended June 30, 1973, computed as provided in Note (b) above, after giving effect to the issuance of \$90,400,000 of Pollution Control Notes (assuming an interest rate of $6\frac{1}{4}\%$), the $4\frac{3}{8}\%$ Bond Due 1980 and the 7% Note Due 1987, is 7.31.

W. L. K.

ore

SEP 191973

Any material change in the price received by the Corporation for its copper has a material effect on its net income. The price received by Phelps Dodge for its mined copper in wire bar form increased from 42ϕ per pound in 1968 to 60ϕ per pound in April 1970. By the beginning of 1971, the price had been reduced to 53ϕ per pound and it remained within a range of $50\frac{1}{4}\phi$ - 53ϕ during 1971 and 1972. In February 1973 the price was increased from 53ϕ to 56ϕ and in March the present price of 60ϕ per pound was established.

Operating revenues and net income for 1968 and 1971 were adversely affected by strikes. Increases in operating revenues and net income in 1969 and 1970 reflect termination of the earlier strikes, initiation of production at the Tyrone, New Mexico mine and sales of copper at higher prices. Although the strike-affected production from the Corporation's mines in 1971 was below 1970 production, sales of the Corporation's mined copper in 1971 were slightly higher than sales of such copper in 1970. Copper production from the Corporation's mines and sales of its mined copper in 1970. Copper production from the Corporation's mines and sales of its mined copper in 1972 exceeded production and sales of such copper in 1971 by approximately 9% and 13%, respectively.

Net income for the periods shown above included the following dividends received, after income taxes, on the Corporation's 16% investment in Southern Peru Copper Corporation ("Southern Peru"): 1968—\$7,377,000; 1969—\$9,222,000; 1970—\$5,217,000; 1971—\$4,414,000; 1972—\$2,323,000. Dividends have been omitted since June 30, 1972 as a result of increased expenditures required to meet the construction schedule for development of Southern Peru's Cuajone copper orebody under a contract with the Peruvian Government.

BUSINESS AND PROPERTIES

Copper Mining

Current Operations. Phelps Dodge owns and operates open-pit copper mines at Morenci, Ajo and Bisbee, Arizona, and Tyrone, New Mexico, and underground copper mines at Bisbee. At each of these four locations Phelps Dodge owns and operates a concentrator, which converts ore from the adjacent mines into copper concentrates through a process of crushing, grinding and flotation. The concentrates are then smelted at one of Phelps Dodge's three smelters (see "Copper Smelting" below). At the Bisbee underground mines, veins and small deposits of higher grade ore are mined; most of this ore is concentrated at the Bisbee concentrator, and the balance is shipped directly to a smelter.

During the years 1970-72, Phelps Dodge produced the following tonnages of copper at its mines: 1970-312,881; 1971-279,807; 1972-304,926. The table below shows the quantities of waste

removed and copper ore mined, the average grade of such ore, and the tons of copper produced at each of the Corporation's mines for the three years ended December 31, 1972:

	Waste Removed (thousands of tons)	Ore Mined (thousands of tons)	Grade of Ore (copper)	Copper Produced (tons)
Morenci				
1970	34,516	19,173	0.85%	129,438
1971	36,347	16,590	0.85%	113,598
1972	33,013	17,215	0.83%	119,763
Ajo				
1970	15,875	10,562	0.68%	63,097
1971	18,198	9,244	0.67%	53,000
1972	18,518	9,792	0.70%	57,876
Tyrone				
1970	33,882	9,148	0.87%	59,046
1971	37,689	8,798	0.90%	60,189
1972	45,426	11,425	0.89%	78,756
Bisbee open-pit				
1970	13,225	4,850	0.77%	29,716
1971	6,733	4,575	0.68%	24,017
1972	1,798	3,761	0.64%	21,632
Bisbee underground				
1970		829	4.36%	31,584
1971		768	4.31%	29,003
1972	— .	643	4.41%	26,899

Production at all mines was adversely affected in 1971 by strikes which began July 1 and extended to August 2, 1971. Production at the Tyrone mine increased in 1972 as a result of the completion in July 1972 of a program to expand this mine's annual productive capacity from 60,000 to 100,000 tons.

Phelps Dodge expects that ore reserves at the Bisbee open-pit mine will be exhausted by the end of 1973 and that the open-pit mine will then be shut down. The Bisbee underground mines are expected to continue for a time thereafter, depending upon the relationship between production costs and the price of copper.

In 1969 Phelps Dodge began development of the new Metcalf mine near its Morenci mine in Arizona. This mine is expected to be ready for production by January 1, 1975, with an estimated annual rate of production in excess of 50,000 tons of copper. It is anticipated that both open-pit and underground mining techniques will be employed at the Metcalf mine, with the initial production coming from open-pit operations. The cost of developing the Metcalf mine, including the cost of pre-production overburden removal and construction of a concentrator, is presently estimated at \$180,000,000 of which \$101,896,000 was expended through June 30, 1973.

All the ore at Phelps Dodge's mines is classified as sulphide ore, except for some oxide ores at the Bisbee underground mines. As of January 1, 1973, Phelps Dodge estimated the copper ore reserves at its mines at not less than 1,580,000,000 tons of ore containing an estimated 9,430,000 tons of recover-

able copper. The table below sets forth such ore reserves (expressed in thousands of tons), together with average ore grades, at each of such mines:

	Ore Reserves	Grade of Ore
Morenci	700,000	0.80%
Ajo	146,000	0.63%
Bisbee		
Open-Pit	4,000	0.91%
Underground	1,000	5.40%
Tyrone	364,000	0.80%
Metcalf		
Open-Pit	221,000	0.73%
Underground	144,000	0.92%

Note: The term "ore reserves" means material which the Corporation considers may be profitably mined and treated for the extraction of its copper content. Grade means percentage of contained copper. It is not practicable to recover all the contained copper from copper ores. Estimates of reserves are based on the Corporation's engineering evaluations of assay values derived from samplings of drill holes and other mine openings.

• Production costs at Phelps Dodge's operating mines, per pound of copper mined, are lowest at Morenci and Tyrone, its largest mines, and are by far the highest at the Bisbee mines. Phelps Dodge anticipates that production costs at the Metcalf mine, when it begins operation, will be appreciably lower than those at Bisbee.

Development and Exploration. Phelps Dodge is currently conducting a preliminary development program on a low-grade sulfide copper deposit owned by the Corporation near Safford, Arizona. Phelps Dodge expects that this preliminary development program will be completed in 1973 at an estimated cost of \$15,000,000. The deposit, which the Corporation estimates to contain a probable 250,000,000 tons of ore averaging 0.92% copper, lies roughly 1,000 to 2,000 feet below the surface; the Corporation expects that mining will be by underground caving methods. The Corporation has not yet decided when development of this property will be continued to the production stage. The cost of full development of the property to the mining stage will be very substantial.

A Phelps Dodge subsidiary has discovered two zones containing copper, lead, zinc and silver mineralization in the northwestern part of the Cape Province of the Republic of South Africa. Drilling in the first zone indicates that if the mineralization is continuous in thickness and grade the zone may contain 70,000,000 tons of ore averaging 0.8% copper, 2.2% lead, 0.4% zinc and ½ ounce of silver per ton, a significant portion of which could be mined by open-pit methods. Drilling is continuing with encouraging results, but more drilling will be required in both zones. Feasibility studies to evaluate the commercial significance of the two discoveries are under way.

10

Copper Smelting

Phelps Dodge's copper smelters are located at Morenci, Ajo and Douglas, Arizona. The smelters have sufficient capacity to treat all production from the Corporation's presently operating mines, as well as some custom material for others. See "Environmental Quality" herein for a description of the impact of Federal and state air quality laws on the Corporation's smelters.

To provide adequate smelter capacity for ore mined at Tyrone after production at the Metcalf mine begins, Phelps Dodge is building a new smelter in Hidalgo County in southwestern New Mexico. The

på Ove reserves 5-23-13 Cypress Thompson Creek Mo, I daho Lou million tin 0,148% Mo

4				
			1	
	 	1 1	1	
		- 11		

Gre reserves

W.L. ..

MAT 9 1973

TABLE ONE

-...

GLOBE SUBDISTRICT

		Discovery	Status x	Type of		oduction	Reported Reserves	Additional Estimated Reserves
	Name of Mine	Year	Year	<u>Operation</u>	Tons of Ore	Pounds of Copper	Tons @ % Copper	Tons @ % Copper
1.	Defiance	1930	Closed 1948	Under- ground	1,500	Minor Pb-Zn-Ag	-V Production (\$100,00	0.00?)
2.	Vacey Constance	1886	Closed 1886	Under - ground	250	Minor Ag Produ	ction (\$100,000.00)	
3.	Highland	1929	Closed 1929	Under- ground	2,000	400,000		
4.	Irene	1880	Closed 1890	Under- ground	2,000	Minor Pb-Ag Pr	oduction (\$15,000.00)	
5.	Superior-Boston	1907	Closed 1926	Under- ground	65,000	19,556,000	(plus 1,343,000 oz.Ag)	
6.	Eureka	1906	Closed 1907	Under- ground	40,000	3,000,000		
7.	Iron Cap	1912	Closed 1928	Under- ground	683,000	60,000,000	(plus 1,256,500 oz.Ag)	`
8.	Arizona Commerical	1906	Closed 1930	Under- ground	800,000	92,000,000	(plus 580,000 oz. Ag)	
9.	Old Dominion	1882	Closed 1931	Under- ground	8,000,000	765,000,000	(plus 4,536,000 oz.Ag)	40,000,000 @ 1.0
10.	Albert L ea	1944	Closed 1946	Under- ground	1,200	Minor Cu-Pb-Zn	-Au-Ag Production \$28,5	00.00)
	Subtotal				9,594,950	939,956,000		40,000,000

COPPER CITIES-CACTUS SUBDISTRICT

		Discovery	Status / X	Type of	Pro	oduction	Reported Reserves	Additional Estimated Reserves
	Name of Mine	Year				Pounds of Copper		Tons @ % Copper
11.	Porphyry Reserve	1929	Closed 1930	Leaching	Surface Leaching	350,000	'	
12.	Copper Cities	1953	Operating 1971) Open Pit	56,755,205	662,841,497	9,000,000 @ 0.5	20,000,000 @ 0.5
13.	Diamond H	1970	Operating 1972		Minor (Incl	uded w/Copper Ci	ties) 19,000,000 @ 0.55	
14.	Altered Zone	, 						300,000,000 @ 0.3
15.	Continental	1896	Closed 1929	Under- ground	Development	Minor May be	partially stripped fo	r Pinto Valley.
16.	Castle Dome	1943	Closed 1970	Open Pit	41,442,617	578,183,368	Now site of Pinto Val	ley Operations.
17.	Pinto Valley	Announced 1973 D	Under Developmen	0pen			350,000,000 @ 0.45	300,000,000 @ 0.4
18.	Carlota	1929	Closed 1944	Under- ground	5,000	440,000	8,600,000 @ 1.3	7,000,000 @ 1.0
19.	Cactus	1908	Closed 1929	Under- ground	Development	Minor	20,000,000 @ 0.5	20,000,000 @ 0.5
20.	Black Bess	1920	Closed 1935	Under- ground	1,000	Minor Cu-Zn Pr	oduction (\$15,000.00?)	
	Subtotal				98,203,822	1,241,814,865	406,600,000	647,000,000

MIAMI-INSPIRATION SUBDISTRICT

-	Name of Mine	Discovery Year	Status x Year	Type of Operation		duction Pounds of Copper	Reported Reserves Tons @ % Copper	Additional Estimated Reserves Tons @ % Copper
21.	Smelter	1969	Drill Holes	Under- ground	uni tati			Several deep holes in mineral.
22.	Miami East	1968 De	1972 Under velopment 1973	Under - ground			80,000,000 @ 1.0	150,000,000 @ 0.8
23.	Occidental	-1969 D	rilling 1973	Under- ground				100,000,000 @ 1.0
24.	Van Dyke	1929	Closed 1945	Under ground	70,000	11,851,700	Part of Occidental-AN	1AX (22) Operations.
25.	Warrior	1904	Closed 1919	Under- ground	300,000	30,500,000		
26.	Miami	1911 L	eaching 1971	Leaching	152,702,609	2,512,879,221	28,000,000 @ 0.8	100,000,000 @ 0.7
27.	Red Hill	1967 De	Under velopment 1972	Open : Pit			64,000,000 @ 0.6	30,000,000 @ 0.5
28.	Inspiration	1914 0	perating 1971	Open Pit	238,843,111	4,251,951,861	85,000,000 @ 0.9	100,000,000 @ 0.7
29.	Blue Bird	1962 0	perating 1971	Open Pit	13,304,700	56,869,467	75,000,000 @ 0.52	20,000,000 @ 0.5
30.	Barney		Drilled Out 1972	Open Pit	~ ~		15,000,000 @ 0.5	
31.	Montezuma		Drilling 1973	Open Pit?				75,000,000 @ 0.7(?)

MIAMI-INSPIRATION DISTRICT - Cont'd.

		Discover	•	Type of	والبادية والمرجب سيجواني والمتبر الجاملان والمات الشمط كالمتكافئة	oduction	Reported Reserves	Additional Estimated Reserves
	Name of Mine	Year	Year	<u>Operation</u>	Tons of Ore	Pounds of Copper	Tons @ % Copper	Tons @ % Copper
32.	North Oxhide	1968	Operating 1971	Open Pit	11,593,552	31,174,822	35,000,000 @ 0.4	10,000,000 @ 0.4
22.	South Oxhide	1968 [Under Development 1973	0pen			50,000,000 @ 0.4	35,000,000 @ 0.4

Subtotal

416,813,972 6,895,227,071

432,000,000

620,000,000

TOTALS

	A			duction	_ Reported Reserves	Additional Estimated Reserves
Name of Dist.	Ave	erage	Ions of Ure	Pounds of Coppe	r Tons @ % Copper	Tons @ % Copper
Globe District Copper Cities District Miami District	12.65# Cu/	'ton recovered 'ton recovered 'ton recovered	9,594,950 98,203,822 416,813,972	939,956,000 1,241,814,865 6,895,227,071	 406,600,000 432,000,000	40,000,000 647,000,000 620,000,000
Superior (Magma) Ray San Manuel-K	20.02# Cu/	ton recovered ton recovered ton recovered				
TOTAL			524,612,744	9,076,997,936	838,600,000	1,307,000,000
Name of Mine	Discovery X	atus C Type of ar Operation				
OTHER						
Superior (Magma)	1911 Opera 19	iting Under- 171 ground	16,414,285	1,700,088,749	10,200,000 @ 5.8	10,000,000 @ 5.0
Ray	1911 Opera	· •	216,656,509	4,337,125,555	736,310,000 @ 0.82	200,000,000 @ 0.8
San Manuel-K	1955 Opera		189,118,417	2,489,495,468	1,003,000,000 @ 0.7	?

Cre repersons

FINANCIAL TIMES

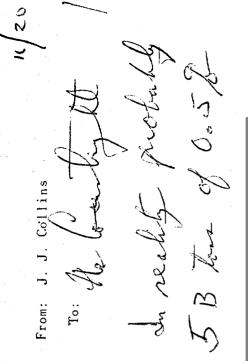
January 11, 1973

RECEIVER JAN 18 1973 S. W. U. S. EXPL. DIV.

4.

Mr Kurtz

ANGLO'S OPTION


IN MEXICO

An option until March 7, with a provision for a Do-day extension, has been granted by Pathno of The Hange to Hudson Bay Mining and Angle American of Canada to purchase its 58 per cent, shareholding in Lytton Minerals of Vanconver.

conver. Lytton has an option on a 49 per cent, shareholding in Minas del Otono S.A., of Mexico, which owas the La Verde copper deposain that country and has the right to designate the Mexican companes or nationals who may.

acquire the remaining 51 per cent. The proven ore reserves are reported as \$1.5m, short tons averaging 0.699 per cent, copper plus gold and silver values.

Ĵ

THE WALLACE MINER

November 9,1972

NOV 28 1972 NEW CERTVED NEW 21 1977. EXPLORATELY DEPT.

are reserve

び.

RST and BRST

۰.

eⁿ

5

÷

W. L. K. JAN 1 2 1972

AMERICAN SMELTING AND REFINING COMPANY Tucson Arizona

January 6, 1972

Memorandum

TO: W. L. Kurtz

FROM: J. D. Sell

Reserve Figures - Copper Major Deposits

This memorandum is to upgrade and supplement my memo to W. E. Saegart (June 16, 1971) entitled: Production - Grade - Reserves, Major Mines - Superior East Project Area. The figures, by company, are based on published reports unless otherwise indicated.

Anaconda Company. Sulfide reserves Sept. 1, 1968; World Mining, vol. 4, no. 13, p. 56, December 1968.

Twin Buttes 292,000,000 tons of 0.88% Twin Buttes 20,000,000 tons of 0.8% oxide stockpiled (Verbal) Eisenhower (Palo Verde) 76,400,000 tons of 0.65%(?) 1962 Mineral Yearbook Yerington 67,000,000 tons of 0.54% Yerington 28,000,000 tons of 0.57% oxide Butte, open pit 414,000,000 tons of 0.74% Butte, underground 12,500,000 tons of 4.27% Cananea 177,000,000 tons of 0.81% Cananea (Proposed Pit) 825,000,000 tons of 0.73% Pay Dirt, Sept. 1971

ASARCO. Prospectus, Jan. 1, 1968.

Mission	113,360,000 tons of 0.68%
Silver Bell	
Oxide Mine	21,140,000 tons of 0.68%
El Tiro Mine	27,343,000 tons of 0.73%
Leach Dumps	40,822,000 tons of 0.35%
San Xavier	
Sulfide	69,076,000 tons of 0.51%
Oxide	7,292,000 tons of 0.83%
Sacaton	
Open-pit	22,400,000 tons of 0.86% sulfide
Underground	14,558,000 tons of 1.36% sulfide

Bagdad Copper Company - 1969.

Bagdad	46,000,000	tons	of	0.69%
Ĥ	200,000,000	tons	of	0.50%
11	110,000,000	tons	of	0.40%

Cities Service Company - December 31, 1968.

Copper Cities	18,000,000	tons of	0.55%		
Diamond H	13,000,000	tons of	0.55%	sulfide	
Diamond H	6,000,000	tons of	0.55%	oxide	
Pinto Valley	350,000,000	tons of	0.45%	(Verbal	communication
					`

suggests at least twice this amount and possibly three times.) Miami Mine -- Expansion to NW into Inspiration townsite plus common boundary area with ICC Thorton pit suggests ± 100,000,000 tons at ± 0.5%.

Central zone of Copper Cities - Diamond H altered area is known to contain minor chalcocite and primary values running 0.3-0.35% copper under +300 feet of leached capping. Chalcocite is not sufficient to support stripping at this time. Note in U of A Porphyry Copper Volume, p. 154, reports.... "Recent drilling to the west (of Copper Cities), outside the pit, has shown a significant increase in copper with depth. A thickness of 200 to 300 feet of material averaging +0.4 percent total copper is overlain by 700 to 1000 feet of material averaging about 0.1 percent total copper." Area and thickness of primary suggests +300,000,000 tons of +0.3%.

Also, verbal pit foreman 1969, ore continues under the shallow dipping Drummond fault northeast side of Copper Cities pit. The "barren" hanging wall material will not presently carry the stripping necessary to expose \pm 20,000,000 tons of 0.5% in this area.

- Miami East. From reported depths and assays of the three companies involved in the faulted offset, it is suggested that Miami's portion may be 2 300,000,000 tons of ± 1.0%. Also verbal, the present Miami feasibility study probably is in the best area and involves some 80,000,000 tons. Underground work is being pushed into this area.
- Cactus Area. The area is underlain by a flat fault which cuts off a chalcocite-enriched mineral deposit suggested to be some 15-20,000,000 tons of ± 0.5%. Abundant oxide copper overlies and surrounds the sulfide body. Calculation of the size of altered schist breccia and possible grade suggests some 40,000,000 tons of +0.5% oxide copper in the block controlled by Cities Service.

W. L. Kurtz

Duval Corporation. Reserves of January 1, 1968. Mining World, v. 5, no. 3, p. 51, March 1969 and also see Prospectus.

Ithica Peak54,538,000 tons of 0.49% Cu + 0.044% MoEsperanza41,215,000 tons of 0.45% Cu + 0.032% MoCopper Canyon (Nev.)18,237,000 tons of 0.74% CuCopper Basin (Nev.)3,437,000 tons of 1.43% CuSierrita (1971)524,000,000 tons of 0.33% Cu + 0.033% Mo

El Paso-Hecla.

Lakeshore 207,000,000 tons of 0.71% oxide 241,000,000 tons of 0.7% sulfide 24,000,000 tons of 1.69%, tactite sulfide

Homestake Production. Verbal and visual information.

Carlotta 3,600,000 tons of 1.65% Kelly ore (fault zone) 5,000,000 tons of 1.03% Carlotta ore (breccia) (based on property boundary and mineral location it is calculated that the Carlotta block contains some 15,000,000 tons of ore.)

Inspiration Consolidated Copper Co. Annual Report for 1970, with reserves to January 1, 1971

Inspiration area	1,507,622,000	pounds	of	recoverable	copper
Christmas, underground	567,605,000	11	н	11	'n
Christmas, open-pit	278,122,000	11	11	11	11
Sanchez	160,917,000	11	11	11	t i

Kennecott Copper Corporation. "Proven" reserves as of January 1, 1971. World Mining, vol. 24, no. 6, p. 48, June 1971.

Ray Chino	736,310,000 tons of 0.82%
Nevada	452,307,000 tons of 0.78% 63,100,000 tons of 0.79%
Utah	1,773,000,000 tons of 0.71%
Safford	1,000,000,000(?) tons of +0.4%(?) (Not published)
Newmont Mining Company.	January 1, 1969. Various sources.
San Manuel	496,800,000 tons of 0.728% sulfide
San Manuel	130,000,000 tons of 0.70% mixed; of which
	0.47% is oxide copper
Kalamazoo	565,000,000 tons of 0.72% sulfide
Superior	10,400,000 tons of 5.7%
Vekol	107,000,000 tons of 0.55% Cu + 0.015% Mo

41.4.5.4

Occidental Minerals. Calculated from drill pattern and published reports indicates some 100,000,000 tons averaging between 0.50 and 1.2% copper as oxide.

Phelps Dodge Corporation. "Economic" ore reserves of January 1, 1971. Prospectus dated June 16, 1971.

Morenci 736,800,000 tons of 0.80% 🔩 Metcalf, open-pit 220,600,000 tons of 0.74% Metcalf, underground 126,700,000 tons of 0.92% Ajo 138,000,000 tons of 0.70% Bisbee, open-pit 8,100,000 tons of 0.94% Bisbee, underground 1,900,000 tons of 5.41% Safford, underground 250,000,000 tons (probable) of 0.92% Tyrone 292,200,000 tons of 0.81%

January 1, 1969. Pima Mining Company.

Pima

216,000,000 tons of 0.56%

Ranchers Exploration. Annual report, reserves of January 1, 1971.

Blue Bird Old Reliable Big Mike (Nev.) Big Mike (Nev.) 75,000,000 tons of 0.52% (open-ended) 4,000,000 tons of 0.74% 400,000 tons of 3%(?) in place 300,000 tons of 2%, mixed, in stockpile

James D. Sell

JDS: lad

Ore Reserves Celic poph C. Gruce Fes 9, 1971 (Jekol + 100 mill 0,55 0.015 mi 14 A, Ag 200 mill 0.5 (v - 50% 0x " 50%5 Sauchoz

•

2.4 million feet of drilling for uranium, a slight increase over the 2.2 million feet drilled in the prior year. In Texas, several small ore deposits and potential ore bodies tributary to the new mill were located. In New Mexico and Wyoming, large mineralized trend areas were defined. A significant portion of the 3.2 million feet of drilling scheduled for 1972 will be located on close-spaced patterns within these trend areas in an effort to determine whether commerical ore bodies actually exist there.

During 1971 Conoco continued upgrading its uranium land holdings. Tracts of prospective land were acquired in Wyoming, New Mexico, and Texas. In addition to acreage in these states, the Company holds land in Colorado and Utah. Conoco's uranium land holdings now total 584,000 net (618,000 gross) acres, compared with 648,000 net (772,000 gross) acres held at the end of 1970.

Metallics

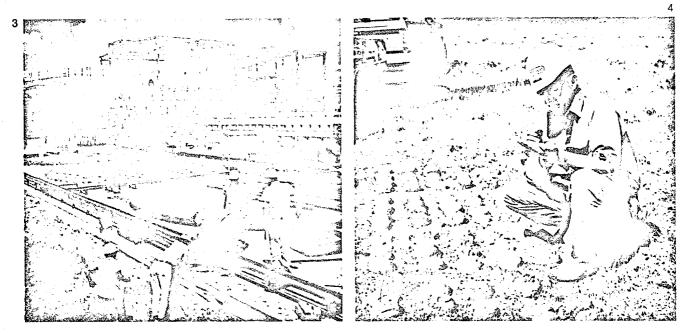
Drilling at the Company's Florence, Arizona copper prospect has confirmed the presence of an ore body which contains substantial tonnage of copper-sulphide ore overlain by an equally large oxide-ore zone. Indicated total ore reserves are about 500 million tons with an average grade slightly above 0.5% copper. During 1971 a first phase feasibility study of possible mining methods and ore-treatment processes was completed by an engineering contractor. The conclusions reached

were encouraging, but additional drilling as well as engineering and marketing studies will be required to resolve certain ground water problems and to determine whether the ore can be mined profitably at currently projected prices. In 1972 selected drilling will be conducted to give a more accurate determination of the grade and tonnage of this deposit. Also, detailed studies of alternative mining plans and metallurgical processes will begin during the year.

Although the bulk of Conoco's metallics exploration has been directed toward the Arizona copper prospect, the Company is expanding the range of its metallics exploration interests. Exploration programs also are being conducted in Nevada, Colorado, New Mexico, and selected areas of the southeastern states. Late in 1971, the boards of directors of Conoco and Hudson's Bay Oil and Gas

1. The Powder River Basin of Wyoming is one of the areas where Conoco is presently exploring for uranium.

2. Uranium ore is removed from several small surface mines in Karnes County, Texas and trucked to the nearby processing plant.


3. Construction of the Karnes County processing plant was completed, and the mill went into full operation during February 1972.

4. Geologists study core samples to detect mineralization. Mineral composition of the core samples is then determined in laboratories using modern analytical equipment.

Company Limited, a 54.9%-owned subsidiary, approved a joint venture between the two companies to explore for minerals in Canada. This venture, which became effective January 1, 1972, will place primary emphasis on exploration in British Columbia and in the southern portion of the Precambrian Shield area of east-central Canada.

Industry Perspective

Domestic uranium demand is expected to grow at an average annual rate of about 15% for the next 10 years. Although current levels of uranium supply should be adequate to meet demand until the late 1970's, uranium demand is expected to rise sharply toward the end of the decade. As a result, current mining and milling capacity will have to be tripled by the mid-1980's, and current levels of exploratory activity must be measurably increased in the immediate future in order to meet the long-range requirements.

CONOCO 1971 Annual Report.

FROM: J. H. COURTRICHT

To: J.J. Collins

Enclosed are two xerox copies of SURVEY OF FREE WORLD INCREASES IN COPPER MINE, SMELTER AND REFINERY CAPACITIES 1971 - 1977 (April 1972). WLK

cc: W.L. Kurtz w/l encl. L.P. Entwistle w/l encl. R.K. Kirkpatrick/S. Von Fay w/l encl. M.P. Barnes w/l encl. K. Whiting/J. Balla w/l encl. R.B. Sprague w/l encl. D.M. Fletcher w/l encl. S.A. Anzalone w/l encl.

International Wrought Copper Council

P.7251

Die Reserves

SURVEY OF FREE WORLD INCREASES IN COPPER MINE, SMELTER AND REFINERY CAPACITIES, 1971 - 1977

Prepared on behalf of the International Wrought Copper Council by the World Bureau of Metal Statistics.

Price

(including postage):	• Swiss Francs	1,000
	£	100
	U.S. \$	260

International Wrought Copper Council

P.7313_

	no 151 a.	a ferma a renf	and wittengo		I to The second
4				ni en las securitos y	ار به م ^ر ا دریمواد او و ۲۰ این مراجع است.
1 . T				•	
وار بندی میگیشود. ماه میشید ایشگیر این ماه این میگرد با		™ ، به مید 3 مثر مربع ۲۰۰۰ ها دسته مسینه مسی همی کومیو	ADDENDUM	• · · · · · · · · · · · · · · · · · · ·	P
				an second de la com	الم المحمد الأمر مام المحم
C-95,073		Since the Survey	was prepared	, the following :	
		ion has been rep		,	
656,43				a Last Linger &	in to this doubt
67. 22	SECTION	3	attainst date	่ว่าใม่ กา≜ระบั≜ึ่งเรื∉	المعاقوق يستبد المراج
3,500	Pages 3	- 12	•		FLATC
	Zambia -	Chingola Divisi	on	ingeneration of the second	
	Eve	andod output fro	m Stars 2 is	now expected to :	reach 55,000
•	tons ann	ually by 1st Jul	y. 1974 rathe	r than 1st Janua:	ry.
01545					
200 g T		<u>- 28 (et seq.)</u>			gitan an a
000,51	U.S.A.	tj‡egt to settett 1™.	intro etc.e	: Eller à cláo de 20	and an
	((2)	Asarco			
		The new San Aa	vier leaching	plant will now annual rate of	0.000 ± 005
		operation in m	110-1915 at an	annuar rate or	9,000 10115.
		Development of	the Sacaton	deposit will now	proceed
		with productio	on to begin in	late 1974 at an	
		rate of 19,000) tons.		
	(5)	Citica Sometor		Copper Division	
	(3)	UTTIES SERVICE	s - Teinlessee	Copper Division	
				velopment is now	
				of 57,000 tons p	
		-	l to take 2克 y	ears to come int	0
		production.			
	(9)	Hecla/El Paso			
		Production fro	m the Lakesho	re deposits is n	ot now
		expected to be		—	
	APPENDIX	2			
	Page 1	-			
				,	
	Germany	F.R.			
	The	smelter of Meta	allhutte Kall	GmbH closed down	in the
	autumn o	f 1971.		•	

The capacity for Huttenwerke Kayser A.G. at Lunen was 60,000 tons at the end of 1971.

APPENDIX 3

Page 1

Germany F.R.

The list of refinery capacities has been extended as follows, thus giving a more complete picture :

Company	,, e,, – – ey,yet e 20,8 m, etana, ye waka manaka samaka	Location	<u>Capacity</u> (Metric Tons)
Norddeutsche Affinerie		Hamburg	270,000
Berliner Kupfer-Raffin GmbH	Berli	in-Willmersdorf	15,000
Huttenwerke Kayser A.G.	■ Size ■ weeksise	Lunen	84,000
Kabel-und Metallwerke Gutehof	fnungshutte	Osnabruck	
Diehl		Nurnberg	3,500
Metallhutte Carl Fahlbusch	in the second seco	Rastatt	12,000
Felten & Guilleaume Kabelwerk	(e)	Koln-Mulheim	15,000
Friedrich Kemper	tha side at a	Duisburg	a al 1,800
Kabelwerk Rheydt		Rheydt	7,000
Vereinigte Deutsche Metallwei	rke Franl	kfurt-Heddernheim	13,200
)

jus mer kan justine fendinge keele stiff net rene in 50 aproximitan is misje(51) of aa munik mera of 3,000 weers

Development of the clearon depoint that the provision with repointed to logic its loss (provision that mate of digits toto.

ើមិន មិននៃទំនាំ ដែលនិងទ្រុម ស្នះនិការបំពុធមានដែរមូល ១៩ នៃទំ ភេស ភ្លាន ត្រូវ សារគោស៍ សង្គី សាព្រះសិរថមិននេះនេះសត្វសាកនេះ ស្តីនូវដែលបានសម្តាំ សមាត្ថាននេះ និង ណ៍មានស្ថានការអង្គី ទំនាំ សារណ៍ ដ៏ស្ថិតក្រាយសំនា អ្នកស្នះនេះ នេះ ស្ត្រីអ្នកស្តីនៃស្ត្រស្តីស្តីនេះ

And the set of the factor force of the set of the set

and a second s

The implete of Tolelibutte Hall Great clear in the constance in the

auto manual der . A souget ab sourced a sont of 4th July, 1972 . Titl no bus out de avoir Congra

CONTENTS

SECTION I:	Summary Tables of Annual Increases in Capacities, 1971-77 :	
•	Table I: Mine Capacities	
	Table 2: Smelter Capacities	
	Table 3: Refinery Capacities	·
SECTION 2:	Summary List of Major Increases	
SECTION 3:	Notes on Developments in Individual Countries.	
		Page
EUROPE:		<u></u>
Austria, Belgium, Finlan	d	3-1
France, Germany F.R., Gr	eece, Irish Republic	3→ 2
Italy, Norway, Portugal,	Spain	3- 3
Sweden, United Kingdom		3-4
Yugoslavia		3- 5
AFRICA:		
Algeria, Botswana		3 6
Ethiopia, Mauretania, Mo	rocco. Rhodesia	3 7
South Africa		3-8
South West Africa, Ugand	a.	3-9
Zaire		3-10
Zambia		3-11
		،،ر
ASIA:		
Burma, Cyprus, Formosa		3-14
India		315
Indonesia, Iran, Israel		3–16
Japan		3-17
Malaysia, Philippine Rep	ublic	3-18
South Korea, Turkey		3-19
NORTH/CENTRAL AMERICA:		
Canada		320
Cuba, Dominica, Guatemal	a, Haiti, Mexico	3-26
Nicaragua, Panama, Puert	o Rico	3-27
U.S.A.	:	3-28
	-	

.

•••/•••

CONTENTS (Cont.)

]

and the second		
		Page
SOUTH AMERICA:		
Argentina, Bolivia, Brazil		3-3
Chile		3-34
Ecuador, Peru		3-3
OCEANIA:		
Australia		3-3
S. Bougainville	and the second sec	3-3
		,
APPENDICES:		
1. Principal Mine Capacities - end 19	971	
2. Principal Smelter Capacities - end 19	971	
3. Principal Refinery Capacities - end 19	971	
	•	
1	and the second second	
e e de la companya d		
	· · · ·	
· · · · · · · · · · · · · · · · · · ·		
	10. I. I.	
	an tar an ann an	
	•	
· · ·		
· · ·		
	······································	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	en de la regeneration de la companya	
~		

•

SECTION I

SUMMARY TABLES OF ANNUAL INCREASES

IN CAPACITIES, 1971 -1 177

Table 1:	Mine Capacities
Table 2:	Smelter Capacities
Table 3:	Refinery Capacities

Basis of Assessment

The figures shown in the tables are intended to indicate the amount of capacity which will be available for production during each year. For example, where a new mine is expected to come into operation in the middle of a year, half of the total capacity has been included in that year and the balance in the following year.

 TABLE 1.
 FREE WORLD MINE CAPACITY : ANNUAL INCREASES, 1971 - 1977

 CAPACIT
 CAPACITY

PRODUCTION

•					11104444		10 10
ΤY							
974		1975		1976		1977	
se	Total	Incroase	Total	Increase	Tótal	Increase	Tota
							1

				1970	1971		1972		1973		1974		1975		1976		1977	
	1969	. 1970	1971	Total	Increase	Total	Increase	Total	Increase	Total	Increase	Total	Incroase	Total	Increase	Tótal	Increase	Total
EUROPE																		
Austria	2	2	3	2	1	3	-	3	- -	3	-	3	-	3	-	3	-	3
Finland	33	31	28	37	1	38	3	41	4	45	• -	45	-	45	-	45	-	45
F r ance	1	1	1	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1
Germany F.R.	1	1	1	1	-	1	-	1	-	1	-	1	-	1	-	1	· -	1
Greece	-	_	1	-	1	1	_	1	1	2	2	4	-	4	-	4	-	
irish Republic	6	8	12	8	6	14	2	16	4	20	-	20	· · ·	20	-	20	-	20
Italy	3	2	2	3	-	3		3	_	3	-	3		3	-	3	•	3
Norway	21	20	23	24	2	26	-	26	4	30	2	32	_	32	_	32	-	32
Portugal	4	4	5	5	-	5.	· · •	5	-	5	-	5	_	5	-	5	-	5
Spain	19	20	38	20	14	34	6	40	-	40	-	40	-	40	6	46	-	46
Sweden	23	23	28	30	2	32	3	35	5	40		40		40	-	40	-	40
Yugoslavia	91	98	107	105	10	115	15	130	5	135	5	140	-	140	-	140		140
Total	204	210	249	236	37	273	• 29	302	23	325	9	334	_	334	6.	340	-	340
											, ,							
AFRICA																		
Algeria	1	1	1	1		1	9	10	3	13	-	13	-	13	-	13	· · •	13
Angola	1	2	2	2	-	2	-	2	-	2	•	· 2	-	2	-	2	-	2
Botswana	-	-	-	-	-	-	-	-	7	7	. 9 -	16	-	16	-	16	-	16
Nauritania	-		4	· · •	4	4	18	22	3	25	-	25	-	25	- 1	25	-	25
Korocco	3	3	3	4	1	5	· 1	6	•	6	• .	· 6	-	6	-	6	-	6
Rhodesia	21	23	24	26	1	27	3	30	3	. 33	• .	33	-	33		33	-	33
-South African Republic	127	144	148	145	5	150	-	150	28	178	9	187	3	190	-	190	-	190
South West Africa	26	23	25	32	- 1	31	7	38	-	38		38		38	-	38	-	38
Uganda	17	18	16	18	- 2	16	· · · -	16	-	16	-	16	-	16	-	16	-	16
Zaire	364	387	408	390	20	410	, 15	425	78	503	10	513	20	533	50	583	64	647
Zanbia	720	684	651	705	-45	660	49	709	73	782	51	833	67	900	-	900	-	900
Total	1,280	1,285	1,282	1,323	-17	1,306	102	1,408	195	1,603	79	1,682	90	1,772	50	1,822	64	1,886
ASIA																		
Burma	1		1	1	-	1	· •	1	-		-		-		-	1	-	
Cyprus	21	20	18	• 21	-	21	-	21		21	• .	21	-	21	-	21	-	21
Formosa	3	3	2	4	-	4	· •	4	-	4	-	4	-	•	-	+		4
India	10	10	° 11	. 10	-	10	4	14	17	31	16	47	-	47	-	47	* -	47
Indonesia	-	-	-	-	-	-	-	-	40	40	19	· 59	•	· 59	-	59	•	59
Iran	1	1	1	1	-	1	· -	1	•	1	-	1	50	51	50	101	45	146
Israel	1 11	1 11	11	12	-	12	-	12	-	12	-	12	•	12	-	12	-	12
Japan	1.20	119	120	135	-	135	- 5	130	- 5	125		125	-	125	-	125	•	125
Malaysia		-	-	-	-	-	5. •	- 1	17	17	23	40	· •	40	-	40	- ·	40
Philippine Republic	131	160	175	170	15	185	20	205	10	215	-	215	-	215	-	215	-	215
South Korea	2	2	2	3	-	3	-	3	-	3	-	3	-	3	-	3	-	3
Turkey	31 331	31 358	30 371	32 389		32 404	20 39	52 443	20 99	72 542		72	· •	72	-	72 700	-	745
Total	331	358	371	389	15	404	39	443	9 9	542	58	600	50	650	50	700	45	745
					,							à						

Thousands of Metric Tons

TABLE 1 CONTINUED

														Thousa	nds of Net	ric Ton	S	
	PRO	DUCTION		1					CAPACITY			····			1			·
	40.00	1 4070	4074	1970	1971		1972		1973		1974		1975		1976		1977	
	1969	1970	1971	Total	Increase	Total	Increase	Total	Increase	Total	Increase	lotal	Increase	Total	Increase	Total	Increase	Total
MINE CAPACITY (CONTINUED)								•										
NORTH/CENTRAL AMERICA																		
Canada	52 0	611	653	620	75	695	25	720	114	834	' 106	940	40	980	40	1,020	10	1,030
Cuba	7	7	7	8	-	8	-	8	-	· 8	-	8	-	8		8	-	8
Haiti	2	5	5	5	-	5	-	5	-	5	-	5	-	5	-	5	- 1	5
Nexi co	66	61	64	70	7	77	16	93	10	103	3	106	60	166	. 60	226	-	226
Nicaragua	4	3	. 4	4	1	5	-5	-	-	-	•	-	-	-			-	-
Puerto Rico	-	-	-	-	44	4 602	50	4 740		-	3 20	-	-	4 005	-	-	48	48
U.S.A. Total	1,401	1,560 2,247	1,391 2,124	1,648	127	1,692 2,482	. 50	1,742 2,568	19 143	1,761 2,711	¹ _32 1 4 1	1,793	112 212	1,905	400	1,905		1,905
iotai	2,000	2,241	2,124	2,000	.121	2,402	00	2,000	143	2,111	141	2,852	212	3,064	100	3,164	58	3,222
SOUTH AMERICA				· ·							•	•			1 ·		· ·	ł
Bolivia	8	9	10	10	-	10	•	10	-	10	•	10		10		10		10
Brazil	4	5	5	7	1	8	2	10	12	22	25	47	-	47	21	68	1 11	79
Chile	688	686	7 08	756	94	850	35	885	35	920	104	1,024	-	1,024	-	1,024	-	1,024
Peru	199	212	193	220	5	225		225	-	2?5	6	231	26	257	· 60	317	· 70	387
Total	89 9	912	916	993	100	1,093	- 37	1,130	47	1,177	135	1,312	26	1,338	81	1,419	81	1,500
											•		1 A.	ł			1 ·	
DCEANIA			4-1	·			~				• -			1.			- · ·	1
Australia	131	158	174	160	19	179	34	213	28	241	17	258	-	258	-	258	-	258
Bougainville Total	131	158	174	160	19	179	120 154	120 333	60 88	180 421	. 7	187	-	187	•	187	•	187
Iotai	131	100	1/4	100	19	1/9	104	333	68	421	24	445		445		445		445
TOTAL	4,845	5,170	5,116	5,456	281	5,737	447	6,184	595	6,779	· 446	7,225	378	7,603	287	7,890	248	8,138
Allowance for Increases				1									100		100		150	
not yet announced			Į		•	1	-		-		-	ļ	100		100		50	1
	••••	1		· ·		1								<u> </u>	1			<u>†</u>
GRAND TOTAL	4,845	5,170	5,116	5,546	281	5,737	447	6,184	595	6,779	4 46	7,225	478	7,703	387	8,090	398	8,488
-		1	1	i	1	1	1			1		ł	1 · ·		1	1	1	1

TABLE Z. F	REE	WUKLD	SNELLER	CAPACITY :	ANNUAL	INCREASES	1811 - 1811	
		_			والاستراد والمستعلان	مرا درواند بن رها شدارا، بزندان خر <u>وم</u>	سينصبون والتقاعين والتراجين	

Thousands of Hetric Tons

		RODUCTIO		·					· · · · · · · · · · · · · · · · · · ·	CAD	ACITY					1110/12/01	OS OT MOTE	10 1015
· .	Pi		JN	1970	197	1	197	2	197		197	6	197	5	197	6	197	
· ·	1969	1970	1971	Total		Total	Increase	Total	Increase	Total	Increase	Total			Increase		Increase	
EUROPE Austria	11	11	11	12	_	12	3	15	1	16	1	17	1	18	2	20	2	22
Belgiua	56	54	54	62		62	_	62		62	-	62	-	62	-	62	-	62
Finland	35	35	33	50	-	50	-	50	-	50	-	50	-	50	-	50	-	50
France	10	9	7	n	-	11		11	-	n	-	11		11		11	-	. 11
Gernany F.R.	185	219	201	220	-	220	50	270	50	320	-	320	-	320	-	320) -	320
Italy	2	2	2	8	-	8	-	8		8	30	38	30	68	-	68		68
Norway	28	32	34	34	-	34	-	34	-	- 34	-	34	· • ·	34	-	34	-	- 34
Portugal	4	4	5	4	-	4	-	4	-	4.	. .	4	-	4	-	4	- ·	4
Spain	40	40	69	90	-	90	5	95	12	107	-	107	-	107) · -	107	- (107
Sweden	52	51	58	65	-	65	-	65	-	65	-	65	-	65	· • ·	65	-	65
Yugoslavie	83	90	94	90	15	105	15	120	10	130	- 5	135	5	140		140	-	140
Total	506	547	568	646	15	661	73	734	73	807	36	843	36	879	2	881	2	883
AFRICA						1	· ·					-						1 1
Rhodesia	21	23	24	23	2	25	-	25	-	25	-	25	•	25	-	25	-	25
South African Republic	127	145	150	150	-	150	-	150		150	-	150	-	150	-	150		150
South Kest Africa	28	27	29	35	_	35	-	35	· · •	35		35	.	35	-	35	-	35
Uganda	17	17	16	18	-	18		18		18	.	18	-	18	-	18	-	18
Zaire	364	3 86	408	435	-	435	30	465	30	495	15	510	-	510		510	-	510
Zanbia	704	683	644	732	15	747	15	762	-	762	61	823	72	895	-	895	-	895
Total	1,261	1,281	1,271	1,393	17	1,410	45	1,455	30	1,485	76	1,561	72	1,633		1,633	-	1,633
ASIA												1		i i				
Fordosa	3.	4	4	4	-	4	· •	4	-	4	-	4	-	4	-	4	-	4
India	10	9	10	10	-	10	4	14	17	31	16	47	– 1	47	-	47	-	47
Japan	501	606	605	679	145	824	176	1,000	44	1,044	•	1,044	-	1,044	-	1,044	- 1	1,044
S. Korea	6	5	6	8	- 1	8	- 1	8	-	8	13	21	2	23	J	23	-	23
Turkey	19	19	18	30	-	30	20	50	20	70	-	70	-	70	-	70	-	70
Total	539	643	643	731	145	876	200	1,076	81	1,157	29	1,186	2	1,188	-	1,188	-	1,188
				<u> </u>			<u></u>	1		<u></u>			de comercia de la com		L	dama ara ana	J.,	

a h. d. a

and the second

TABLE 2(CONTINUED)

-	معاصية فستصحب المتركب والمتحد المتكاف المتكر والمتحد والمتحد والمتحد والمتحد													111003	sanua UI	10111C 10	113		-
) PR	ODUCTIO	N					CAPI	CITY									
	•		1	ł	1970	197	1	1972		1973		1974		1975	5	1976	5	1977	
		1969	1970	1971	Total	Increase	Total	Increase	Total	Increase	Total	Increase	Total	Increase	Total	Increase			Total
	NORTH/CENTRAL ANERICA																		
	Canada	388	465	462	512	-	512	-	512	-	512	75	587	30	617	-	617		617
	Nexi co	57	60	59	95	-	95	7	102	5	107	-	107	-	107	-	107	-	107
	U.S.A.	1,509	11,561	1,421	1,650	-	1,650	4	1,654	46	1,700	100	1,800	-	1,800	-	1,800	-	1,800
	Total	1,954	2,086	1,942	2,257	-	2,257	11	2,268	51	2,319	175	2,494	30	2,524	-	2,524	-	2,524
	SOUTH ANERICA																		·
	Brazil	4	5	5	4	-	4	-	4	15	19	20	39	_	39		39		39
	Chile	647	647	625	810	-	810	-	810	-	810	-	810		810		810		810
	Peru	170	176	167	210	-	210	-	210	-	210	-	210		210	-	210	•	210
	Total	821	828	797	1,024	-	1,024	-	1,024	15	1,039	20	1,059	-	1,059	-	1,059	-	1,059
	OŒANIA										•								
	Australia	124	120	151	149	-	149	25	174	-	174	50	224	_	224		224	_	224
	TOTAL	5,205	5,505	5,372	6,200	177	6,377	354	6,731	250	6,981	386	7,367	140	7,507	2	7,509	2	7,511
	Allovance for increases										•								
	not yet announced			1		-		-		-		200		250		350		100	
1	not jet amounou		ļ									200		250		300		400	
	GRAND TOTAL	5,205	5,505	5,372	6,200	177	6,377	354	6,731	2 50 ·	6,981	586	7,567	390	7,957	352	8,309	402	8,711
							-		-		, i								
4		í	1	F	i	i			1					1 1		• 1			

Thousands of Metric Tons

TABLE 3. FREE WORLD REFINERY CAPACITY : ANNUAL INCREASES 1971 - 1977

Thousands of Metric Tons

.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	r		<u>п</u>	annierti	081							~~~					ورويدة بماغة فاستعط	Tuona	ands of Me	
Litto L			P			1070	107	1	103	<u></u>	107				107	<u>c</u>	1 105	C.	1 101	·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1		1000	1070	1071				the second s				the second s		The second s			and the second se	A second s	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1909	1310	1911	Iotal	Increase	Iotal	Increase	lotal	Increase	Iotai	Increase	lotai	Increase	lotai	Increase	Iotai	Increase	Iotal
Belgtus 287 338 313 390 10 400 20 420 - 440 - 440 - 440 - 440 - 440 - 440 - 440 - 440 - <td></td> <td>EUROPE</td> <td></td> <td>• .</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td> </td>		EUROPE											• .			1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Austria					1	20	3	23	1	24	1	25	1	26	2	28	2	30
France 37 34 29 42 - 433 - 33 - 33 30 63 30 93 - 93 - 33 - 33 - 33 30 63 30 93 - 93 - 93 - 93 - 93 - 93 - 93 90 100 - 100 - 105 - 105 - 105 - 105 - 105 - 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105	1	Belgium	287	338	313	390	10	400	20	420	-	420	-	420	-	420	- 1	420	-	420
Germany F.R. 402 406 400 466 - 460 32 32 32		Finland	34	34	32		-	48	-	48	-	48	-	48	-	48	-	48	-	48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		France		34			-		-	42	-	42	-	42	-	42	-	42	-	42
Norway 22 26 28 32 - 33 32 - 33 35 5 105 5 105<		Gernany F.R.		406	400		-	466	-	466	-	466	-	466	-	466	-	466	-	466
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Italy					-	33	-	33	•	33	30	63	30	93	-	93		93
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			22	26	28	32	-	32	• •	32	-	32	•	32	-	32	-	32	_ `	32
Sweden 52 51 50 55 - 55 10 65 - 65 140 - 140 - 140 - 140 -			4		4		-		-	4	-	4	-	4	-	4	-	4	-	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-30		-30		35	105	-		-	105	-	105	-	105
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1						-		-		10		-		-	65	-	65	-	65
Total 1,230 1,307 1,238 1,589 6 1,595 8 1,603 56 1,695 36 1,695 36 1,731 2 1,733 2		- 1									-	290	•	290	· 🕳	290	-	290	-	290
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															5		-	140	· •	140
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Total	1,230	1,307	1,238	1,589	6	1,595	8	1,603	56	1,659	36	1,695	36	1,731	2	1,733	2	1,735
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ł	AFRICA										·						} .		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1		1	1		,	_	1	_	,	_	1		,				,		,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Rhodesia	21	23	24	22	2	21		24	_	24	1	21	-	21	1	2	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				75													1		•	78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ł						_		-		-								-	
Total 860 870 838 942 2 944 52 996 52 1,048 36 1,084 - 1							_		_										1 -	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							2		1								1		-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								•••	_	•	Ű.	000	54	1,010	ŲŪ	1,004	-	1,004	1 -	1,004
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			· ·	
Japan 629 705 713 833 52 885 172 $1,057$ 44 $1,101$ $ 1,101$ $-$ <t< td=""><td></td><td></td><td>- 1</td><td></td><td>4</td><td>4</td><td>-</td><td></td><td>-</td><td>4</td><td>-</td><td>4</td><td></td><td>4</td><td>-</td><td>4</td><td>-</td><td>4</td><td>-</td><td>4</td></t<>			- 1		4	4	-		-	4	-	4		4	-	4	-	4	-	4
S. Korea $6 5 5 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 $							-						16		-		-		-	47
					713		52		172		44	•	-	1,101	-	1,101	-	1,101	-	1,101
kinekov i 12 i 14 i 16 i 16 i 17 i 17 i 17 i 17 i 17 i 17					5	- 1	-		-	-,	-	-	-		- [6	-	6	-	6
		Turkey	12	14	15	15		15	-	15	-	15	-	15	-	15		15	-	15
Total 660 737 747 868 52 920 176 1,096 61 1,157 16 1,173 - 1,173 - 1,173 - 1,173		Total	660	7 37	747	868	52	920	176	1,096	61	1,157	16	1,173	- '	1,173	-	1,173	-	1,173

• .--

.

TABLE	3 -	(Continued)

	1 9 9 1	<u>) </u>	TION			····					APAC	TY	<u> </u>				· · · · · · · · · · · · · · · · · · ·	
				1970	197	1	19	72	197		197		197	5	197	6	197	7
	1969	1970	1971	Total	Increase	Total	Increase	Total	Increase	Total	Increase	Total	Increase	Total	Increase			Total
Refinery Capacity (Contid)																		
<u>North/Central America</u> Canada Mexico	400	493 54	478 60	438	-	488	-	408	-	488	52	540 72	40 -	500 72	-	500 72	-	580 72
U.S.A. Total	2,009 2,474		1,734 2,322		34 34	2,484 3,044	180 130	2,664 3,224	-	2,664 3,224	52	2,664 3,276	40	2,664 3,316	-	2,664 3,316		2,664 3,316
<u>South America</u> Brazil Chile Peru Total	4 453 32 489	5 461 30 502	4 463 32 504	4 653 52 709		4 653 52 709		4 653 52 709	15 - 15	19 653 52 724	20 - 20	39 653 52 744		39 653 52 744		39 653 52 744	-	39 653 52 744
OCEANIA Australia	139	146	156	160	-	160		160		160	50	210	-	210	-	210	_	210
TOTAL	5,060	0,143	5,805	1,218	94	7,372	364	7,736	184	7,920	226	8,146	112	8,258	2	0,260	2	8,262
Allowance for increases not yet announced											100		250		250		400	
GRAND TOTAL	5,860	6,143	5,805	7,278	94	7,372	364	7,736	184	7,920	326	8,246	362	8,600	252	8,860	402	9,262

SECTION 2: SUMMARY LIST OF MAJOR INCREASES

COUNTR	<u>Y</u>	COHPANY	DEVELOPMENT	<u>CAP</u> 1970	ACITY D	ATE
EUROPE			MINES	•		
Austri	a	Kupferbergbau Mitterberg Ges. ø.b.t	Huhlbach, Salzburg 1.	2,000	3,000	1975
Finlan	đ	Outokumpu Oy	Yuonnos	•	6,500	1972
Greece		Hellenic Chemical Products and Fertilizer Co. Ltd.	i Kassandra		n.a.	1972
Irish	Republic	Northgate Exploration Ltd. Discovery Nines Ltd.	Tynaph Avoca	3,000	6,000 6-9,000	1972 1971-73
Norway	,	Folldal Verk A/S	Repptarfjord	•	4,500-6,000	1973
Spain		Rio Tinto Patino Ltd.	Cerro Colorado	-	20,000	1971
Sveder	I	Bol i den	Aitik	10,000	20,000	1974
Yugosl	avia	State Owned State Owned	Bor Bor	105,000	140,000 200,000	1974 n.a.

SMELTE RS

Austria	Montanwerke Brixlegg G.m.b.h.	Brixlegg	12,000	18,000	1975
Finland	Outokumpu Oy	Harjavalta	50,000	n.a.	n.a.
Germany F.R.	Norddeutsche Affinerie	Hamburg	-	100,000	1972
Italy	AMM	Aussa - Corno	-	60,000	1975
Spain	Rio Tinto Patino Ltd.	Huel va	40,000	75,000	1972-73
Yugoslavia	State Owned State Owned	Bor Bor	90,000	140,000 200,000	1974 n.a.

REFINERIES

Montawerke Brixlegg G.m.b.h.	Brixlegg	19,000	26,000	1975
Netallurgie Hoboken – Overpelt	01 en	240,000	270,000	1971
AMH	Aussa - Corno	•	60,000	1975
Rio Tinto Patino Ltd.	Huel va	40,000	75,000	1972-73
Boliden Aktiebolag	Ronnskar	55,000	60-65,000	1973
Williams Harvey	Liverpool	-	10,000	1972
State Owned State Owned	Bor Bor	90,000	140,000 200,000	1974 n.a.
	Netallurgie Hoboken – Overpelt ANNI Rio Tinto Patino Ltd. Boliden Aktiebolag Williams Harvey	Netallurgie Hoboken - OverpeltOlenAMMIAussa - CornoRio Tinto Patino Ltd.HuelvaBoliden AktiebolagRonnskarWilliams HarveyLiverpoolState OwnedBor	Netallurgie Hoboken - OverpeltOlen240,000ANNIAussa - Corno-Rio Tinto Patino Ltd.Huelva40,000Boliden AktiebolagRonnskar55,000Williams HarveyLiverpool-State OwnedBor90,000	Netallurgie Hoboken - Overpelt Olen 240,000 270,000 AMMI Aussa - Corno - 60,000 Rio Tinto Patino Ltd. Huelva 40,000 75,000 Boliden Aktiebolag Ronnskar 55,000 60-65,000 Williams Harvey Liverpool - 10,000 State Owned Bor 90,000 140,000

-

•

MINESAFRICAAlgeriaGovernmentKef-Oum-Theboul and other areas1,00013,0001973BotswanaBotswana R_S.T.Pikwe-15,5001973EthiopaNippon Mining Co.Asmara-100,0007n.a.MauritaniaSomimaAkjoujt-25,0001972MoroccoState/Japanese CompaniesBou Kerzia-n.a.1971RhodesiaR_T.Z.Empress-4-4,3001972MiD MangulaNorah-n.a.1972MID MangulaSilverside-n.a.1972Mouth AfricaConsortium of South African and U.S. CompaniesPrieska-40,000S. W. AfricaDamites Mining Co.Windhoek-8,0001972	HNES AFRICA Algeria Governeent Kef-Que-Thebaul and other areas 1,000 13,000 1973 other areas Botswana Botswana R,S.T. Pikwe - 15,500 1973 other areas Botswana Botswana R,S.T. Pikwe - 15,500 1973 other areas Botswana Sogiwa Akiguit - 25,000 1973 other areas Morecco State/Japanese Companies Bou Kerzia - n.a. 1971 other areas Morecco State/Japanese Companies Bou Kerzia - n.a. 1971 n.a. Redesia R, T, Z, Empress - 4-4,000 1971 n.a. 1972 n.a. Midesia R, T, Z, Empress - - n.a. 1972 n.a. n.a. 1973 n.a.	COUNTRY	COIPANY	DEVELOPMENT	1970 CAPA	CITY DAT FINAL
AFRICA Algoria Government Kef-Que-Theboul and other areas 1,000 13,000 1973 Botswana Botswana R.S.T. Pikue - 15,500 1973 Ethiopa Nippon Mining Co. Asmara - 100,0007 n.a. Mauritania Sogina Akjoujt - 25,000 1972 Moracco State/Japanese Companies Bou Kerzia - n.a. 1971 Rodesia R.T.Z. Empress - 4-4,300 1972 Modesia R.J.Z. Empress - n.a. 1972 Modesia R.J.Z. Empress - n.a. 1972 South Africa Osutor of South African and Prieska - 8,000 1972 <t< th=""><th>AFRICA Algeria Government Kef-Que-Theboul and other areas 1,000 13,000 1973 other areas Botswana Botswana R,S.T. Pikwe - 15,500 1973 other areas Botswana Botswana R,S.T. Pikwe - 15,500 1973 other areas Botswana Mippon Kining Co. Assara - 100,0007 n.e. Mauritania Sogina Akjoujt - 25,000 1973 other areas Morocco State/Japanese Companies Bou Kerzia - n.e. 1971 other areas Rhodesia R.T.Z. Empress - 4-4,300 1971 n.e. Rhodesia R.T.Z. Empress - 4-4,300 1971 n.e. MD Bangula Mans, Avondale and Angwa - n.e. 1972 n.e. 1972 n.e. South Africa Consortius of South African and Prieska - 40,000 1971 Soliniza South Africa 8,000 1972 Soliniza - n.e. n.e. n.e. n.e. n.e. n.e.</th><th></th><th></th><th></th><th></th><th></th></t<>	AFRICA Algeria Government Kef-Que-Theboul and other areas 1,000 13,000 1973 other areas Botswana Botswana R,S.T. Pikwe - 15,500 1973 other areas Botswana Botswana R,S.T. Pikwe - 15,500 1973 other areas Botswana Mippon Kining Co. Assara - 100,0007 n.e. Mauritania Sogina Akjoujt - 25,000 1973 other areas Morocco State/Japanese Companies Bou Kerzia - n.e. 1971 other areas Rhodesia R.T.Z. Empress - 4-4,300 1971 n.e. Rhodesia R.T.Z. Empress - 4-4,300 1971 n.e. MD Bangula Mans, Avondale and Angwa - n.e. 1972 n.e. 1972 n.e. South Africa Consortius of South African and Prieska - 40,000 1971 Soliniza South Africa 8,000 1972 Soliniza - n.e. n.e. n.e. n.e. n.e. n.e.					
Algoria Government Kef-Que-Theboul and other areas 1,000 13,000 1973 Botswana Botswana Botswana R,S,T. Pikwe - 15,500 1973 Ethiopa Nippon Mining Co. Asmara - 100,0007 n.a. Muritania Sogina Akjoujt - 25,000 1972 Moracco State/Japanese Companies Bou Kerzia - n.a. 1971 Rhodesia R.T.Z. Empress - 4-4,300 1972 Moracia Bans, Avondale and Angue - n.a. 1972 MD Rangula Morah - n.a. 1972 MD Rangula Hans, Avondale and Angue - n.a. n.a. South Africa Companies Several sines 386,000 1974 S. W. Africa Oamites Mining Co. Windhoek - 6,000 1974 South Africa Gesamines Several sines 386,000 460,000 1972 Sofial za Musos	Algoria Government Kef-Que-Theboul and other areas 1,000 13,000 1973 other areas Botswana Botswana R,S,T. Pikwe - 15,500 1973 Ethiopa Nippon Mining Co. Asmara - 100,0007 n.a. Hauritania Sogima Akjoujt - 25,000 1973 Koracco State/Japanese Companies Bou Kerzia - n.a. 1977 Rhodesia R.T.Z. Empress - 4-4,300 1972 Modesia R.T.Z. Empress - 4-4,300 1972 MiD Bangula Norah - n.a. 1972 MID Mangula Norah - n.a. 1972 MID Mangula Hans, Avendale and Angva - n.a. 1972 South Africa Consortius of South African and Prieska - 40,000 1974 Zaire Gecanines Several sines 366,000 460,000 1974 Sodisiza K.C.N. <	•.		MINES		••••••••••••••••••••••••••••••••••••••
other areasBotswanaBotswana R.S.T.Pikwe-15,5001973EthiopaNippon Kining Co.Aseara-100,0007n.a.HauritaniaSogiwaAkjoujt-25,0001972MoroccoState/Japanese CompaniesBou Kerzia-n.a.1971RhodesiaR.T.Z.Express-4-4,3001972MinodesiaR.T.Z.Express-4-4,3001971MID MangulaNorah-n.a.1972MID MangulaSilverside-n.a.1972MID MangulaSilverside-n.a.1972MID MangulaHans, Avondale and Angua-n.a.1972South AfricaConsortium of South African and U.S. CompaniesPrieska-40,0001974S. V. AfricaGaecaninesSeveral eines386,000460,0001974SoitaizaNixoshi-53,0001972SoitaizaNixoshi-74,0001974SoitaizaFininsenda-74,0001974SoitaizaR.C.M.Kalengua-74,0001974SoitaizaR.C.M.Baluba-22,0001970,000SoitaizaSinz100,0001973SoitaizaSinz100,0001974SoitaizaK.M.Baluba-22,0001974,000R.C.R.Baluba100,000 <td< td=""><td>other areas Botsvana Botsvana R, S, T. Pikus - 15,500 1973 Ethiopa Nippon Hining Co. Asmara - 100,0007 n.a. Mauritania Sogina Akjoujt - 25,000 1973 Morecco State/Japanese Companies Bou Kerzia - n.a. 1973 Rhodesia R, T, Z. Empress - 4-4,300 1973 Rhodesia R, T, Z. Empress - 4-4,300 1974 MiD Mangula Norah - n.a. 1972 MID Mangula Norah - n.a. 1972 MID Mangula Norah - n.a. 1972 South Africa Consontion Syndicate Inyati 3,400 4,600 1974 South Africa Osatise Mining Co. Windhosk - 8,000 1972 Sadial 2a Windhosk - 8,000 1972 Sadial 2a Kusosii - 53,000</td><td>AFRICA</td><td></td><td>• • • •</td><td>24</td><td>· •:-</td></td<>	other areas Botsvana Botsvana R, S, T. Pikus - 15,500 1973 Ethiopa Nippon Hining Co. Asmara - 100,0007 n.a. Mauritania Sogina Akjoujt - 25,000 1973 Morecco State/Japanese Companies Bou Kerzia - n.a. 1973 Rhodesia R, T, Z. Empress - 4-4,300 1973 Rhodesia R, T, Z. Empress - 4-4,300 1974 MiD Mangula Norah - n.a. 1972 MID Mangula Norah - n.a. 1972 MID Mangula Norah - n.a. 1972 South Africa Consontion Syndicate Inyati 3,400 4,600 1974 South Africa Osatise Mining Co. Windhosk - 8,000 1972 Sadial 2a Windhosk - 8,000 1972 Sadial 2a Kusosii - 53,000	AFRICA		• • • •	24	· •:-
Ethiopa Nippon Mining Co. Asmara - 100,0007 n.a. Mauritania Sogima Akjoujt - 25,000 1972 Morocco State/Japanese Companies Bou Kerzia - n.a. 1971 Rhodesia R.T.Z. Empress - 4-4,300 1972 Rhodesia R.T.Z. Empress - 4-4,300 1972 ND Mangula Norah - n.a. 1972 MD Mangula Hans, Avondale and Angwa - n.a. 1972 South Africa Consortium of South African and Prieska - 40,000 1974 Zaire Gescanines Several mines 386,000 460,000 1972 Zaire Gescanines Several mines 386,000 1973 Si	Ethiopa Nippon Hining Co. Asmara - 100,0007 n.a. Mauritania Sogima Akjoujt - 25,000 1977 Morocco State/Japanese Companies Bou Kerzia - n.a. 1977 Rhodesia R.T.Z. Empress - 4-4,300 1977 Rhodesia R.T.Z. Empress - 4-4,300 1972 MID Bangula Norah - n.a. 1972 MID Bangula Norah - n.a. 1972 MID Bangula Norah - n.a. 1972 MID Bangula Hans, Avondale and Angua - n.a. 1972 South Africa Consortium of South African and Prieska - 40,000 1974 Zaire Gecanines Several sines 386,000 460,000 1972 Sodisiza Tishinsenda - 74,000 1972 Sodisiza Tishinsenda - 74,000 1972 So	Algeria	Government		1,000	13,000 197
Kauritania Sogima Akjoujt - 25,000 1972 Rorocco State/Japanese Companies Bou Kerzia - n.a. 1971 Rhodesia R.T.Z. Empress - 4-4,300 1972 Rhodesia R.T.Z. Empress - 4-4,300 1971 Rhodesia R.T.Z. Empress - 4-4,300 1972 Rhodesia R.T.Z. Empress - 4-4,300 1972 Kin Mangula Noreh - n.a. 1972 ND Mangula Silverside - n.a. 1972 South Africa Consortium of South African and Prieska - 40,000 1974 S. V. Africa Danites Mining Co. Windhoek - 8,000 1972 Zaire Gecamines Several mines 386,000 460,000 1974 Stata - r.a. - n.a. - n.a. - South Africa Danites Mining Co.	Mauritania Sogima Akjoujt - 25,000 1972 Morocco Stata Bou Kerzia - n.a. 1971 Rhodesia R.T.Z. Empress - 4-4,300 1972 Mossina Shackleton - 6,000 1971 MiD Mangula Noreh - n.a. 1972 MID Mangula Noreh - n.a. 1972 MID Mangula Noreh - n.a. 1972 MID Mangula Kans, Avondale and Angue - n.a. 1972 South Africa Consortium of South African and Prieska - 40,000 1974 South Africa Dasites Mining Co. Windhoek - 8,000 1972 Zaire Gecanines Several mines 386,000 460,000 1974 Sodialza Musoshi - 53,000 1972 Sodialza Suzatof - n.a. - R.C.M. Krfulira 130	Botswana	Botswana R.S.T.	Pikve	· · · ·	15,500 197
Norocco State/Japanese Companies Bou Kerzia - n.a. 1971 Rhodesia R.T.Z. Empress - 4-4,300 1972 Rhodesia R.T.Z. Empress - 4-4,300 1972 MID Mangula Norsh - n.a. 1972 MID Mangula Norsh - n.a. 1972 MID Mangula Silverside - n.a. 1972 MID Mangula Silverside - n.a. 1972 South Africa Consortium of South African and Prieska - 40,000 1974 South Africa Ganites Mining Co. Vindhoek 8,000 1972 Zaire Gecanines Several mines 366,000 460,000 1974 Sodimiza Tenke - Fungurume 100,0007 1976 - n.a. n.a. Sodimiza Several mines 366,000 1970 - n.a. n.a. n.a. n.a. n.a. n.a. n.a.	Morocco State/Japanese Companies Stata Bou Kerzia Beni Hellal - n.a. 1,400 1971 Rhodesia R.T.Z. Messina Eapress - 4-4,300 1972 ND Mangula Norsh - r.a. 1972 - 7.a. 8,000 1971 MD Mangula Norsh - r.a. 1972 1972 - n.a. 1972 1971 South Africa Coronation Syndicate Inyeti 3,400 4,600 1971 South Africa Consortium of South African and U.S. Companies Prieska - 40,000 1972 Zaire Gecamines Several mines 386,000 460,000 1972 Zaire Gecamines Several mines 386,000 460,000 1972 Sodimiza Hunsshin - 100,000 1972 Sodimiza 550,000 1972 Zaire Gecamines Several mines 386,000 460,000 1972 Suizz - - - 74,000 1972 Suizef <td>Ethiopa</td> <td>Nippon Hining Co.</td> <td>Asmara</td> <td>•••</td> <td>100,000? n.a</td>	Ethiopa	Nippon Hining Co.	Asmara	•••	100,000? n.a
State Beni Hellal - 1,400 1971 Rhodesia R,T.Z. Express - 4-4,300 1972 MED Mangula Norah - 0.000 1971 MID Mangula Norah - n.a. 1972 MID Mangula Norah - n.a. 1972 MID Mangula Silverside - n.a. 1972 MID Mangula Hans, Avondale and Angwa - n.a. n.a. n.a. South Africa Consortium of South African and Prieska - 40,000 1974 S. W. Africa Oamites Mining Co. Windhoek - 8,000 1972 Zaire Gecanines Several mines 386,000 460,000 1976 Sodimiza Tshinsenda - 74,000 1976 Sinz - n.a. n.a. n.a. Sozief Tenke - Fungurume 100,000 1970,000 1973 R.C.M. Kufuira 130,000	State Beni Mellal - 1,400 1971 Rhodesia R,T,Z, Messina Empress - 4-4,300 1972 MID Mangula Shackleton - 8,000 1971 MID Mangula Norah - n.a. 1972 MID Mangula Silverside - n.a. 1972 MID Mangula Silverside - n.a. 1972 South Africa Consortium of South African and U.S. Companies Prieska - 40,000 1974 South Africa Oamites Mining Co. Windhoek - 8,000 1972 Zaire Gecanines Several mines 386,000 460,000 1974 Sodiniza Nusoshi - 53,000 1972 Satef Tenke - Fungurume - 100,0007 1975 Sodiniza Siza - n.a. n.a. Sozatef Tenke - Fungurume - 100,0007 1972 Zambia R,C,N, Kalengua	Hauritania	Somina	Akjoujt	•	25,000 197
Messina Shackleton - 8,000 1971 MID Mangula Norsh - n.a. 1972 MID Mangula Silverside - n.a. 1972 MID Mangula Silverside - n.a. 1972 MID Mangula Hans, Avondale and Angua - n.a. n.a. Coronation Syndicate Inyati 3,400 4,600 1971 South Africa Cansortium of South African and Prieska - 40,000 1974 Zaire Gecamines Several mines 366,000 460,000 1974 Sodimiza Musoshi - 53,000 460,000 1972 Sodimiza Tshinsenda - 74,000 1970 Sotimiza - n.a. n.a. n.a. Sozatef Tenke - Fungurume - 100,000 1973 R.C.M. Kalengua - 17,000 1971 R.C.M. Baluba - 22,000 48,000	Messina Shackleton - 8,000 1971 MID Mangula Norah - n.a. 1972 MID Mangula Silverside - n.a. 1972 MID Mangula Silverside - n.a. 1972 MID Mangula Hans, Avondale and Angua - n.a. n.a. n.a. Coronation Syndicate Inyati 3,400 4,600 1971 South Africa Camsortium of South African and U.S. Companies Prieska - 40,000 1972 Zaire Gecamines Several mines 386,000 460,000 1974 Sodimiza Nussofi - 53,000 1972 Sodimiza Nussofi - 53,000 1972 Sodimiza Nussofi - n.a. n.a. Sozatef Tenke - Fungurume - 100,000 1973 Zambia R.C.M. Kalengua - 17,000 1971 R.C.M. Kalengua - 1	Morocco			•	
South Africa Consortium of South African and U.S. Companies Prieska - 40,000 1974 S. W. Africa Oamites Mining Co. Windhoek - 8,000 1972 Zaire Gecamines Several mines 386,000 460,000 1974 Gecamines Several mines 386,000 460,000 1974 Sodimiza Musoshi - 53,000 1976 Sodimiza Musoshi - 74,000 1974 Sodimiza Tshinsenda - 74,000 1976 Simz - n.a. n.a. n.a. n.a. Sozatef Tenke - Fungurume - 100,000 1973 R_C.M. Kalengua - 17,000 1971 R_C.M. Baluba - 22,000 1973 R_C.M. Baluba - 250,000 270,000 N.C.C.M. Nc.C.C.M. Nchanga 315,000 1974 Wintera de Frangna Chilamberto Musushi - <td>South Africa Consortium of South African and U.S. Companies Prieska - 40,000 1974 S. W. Africa Oamites Mining Co. Windhoek - 8,000 1972 Zaire Gecamines Several mines 386,000 460,000 1974 Gecamines Several mines 386,000 460,000 1974 Sodimiza Nusoshi - 53,000 1972 Sodimiza Tshinsenda - 74,000 1976 Sinz - n.a. n.a. n.a. n.a. Sozatef Tenke - Fungurume - 100,0007 1975 Zambia R.C.M. Mufulira 130,000 190,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 15,000 1975 R.C.M. Kansashi -</td> <td>Rhodesia</td> <td>Nessina MTD Mangula MTD Mangula MTD Mangula</td> <td>Shackleton Norah Silverside Hans, Avondale and Angu</td> <td></td> <td>8,000 197 n.a. 197 n.a. 197 n.a. 197</td>	South Africa Consortium of South African and U.S. Companies Prieska - 40,000 1974 S. W. Africa Oamites Mining Co. Windhoek - 8,000 1972 Zaire Gecamines Several mines 386,000 460,000 1974 Gecamines Several mines 386,000 460,000 1974 Sodimiza Nusoshi - 53,000 1972 Sodimiza Tshinsenda - 74,000 1976 Sinz - n.a. n.a. n.a. n.a. Sozatef Tenke - Fungurume - 100,0007 1975 Zambia R.C.M. Mufulira 130,000 190,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 15,000 1975 R.C.M. Kansashi -	Rhodesia	Nessina MTD Mangula MTD Mangula MTD Mangula	Shackleton Norah Silverside Hans, Avondale and Angu		8,000 197 n.a. 197 n.a. 197 n.a. 197
Zaire Gecamines Several mines 386,000 460,000 1974 Gecamines Several mines Several mines 560,000 1978 Sodimiza Musoshi - 53,000 1978 Sodimiza Musoshi - 53,000 1978 Sodimiza Tshinsenda - 74,000 1976 Simz - n.a. n.a. n.a. n.a. Sozatef Tenke - Fungurume - 100,0007 1975 Zambia R.C.M. Mufulira 130,000 199,000 1973 R.C.M. Chambishi 24,000 48,000 1973 R.C.M. Kalengwa - 17,000 1971 R.C.M. Baluba - 50,000 1970 R.C.M. Baluba - 15,000 1971 R.C.M. Baluba - 15,000 1971 N.C.C.M. Nchanga 250,000 270,000 1972 N.C.C.N.	Zaire Gecamines Several mines 386,000 460,000 1974 Gecamines Several mines 560,000 1976 Sodimiza Musoshi - 53,000 1976 Sodimiza Tshinsenda - 74,000 1976 Simz - n.a. n.a. n.a. n.a. Sozatef Tenke - Fungurume - 100,0007 1975 Zambia R.C.M. Mufulira 130,000 190,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Baluba - 50,000 n.a. N.C.C.M. Baluba - 50,000 n.a. N.C.C.M. Kansanshi - 15,000 1977 N.C.C.M. Nchanga 250,000 270,000 1976 N.C.C.M. Nchanga 250,000 270,000 1976 N.C.C.M. Nchanga - 6,000 1971 SMELTERS SMELTERS - <td>South Africa</td> <td></td> <td>Prieska</td> <td>•</td> <td>40,000 197</td>	South Africa		Prieska	•	40,000 197
Gecamines Several mines 560,000 1978 Sodimiza Musoshi - 53,000 1972 Sodimiza Tshinsenda - 74,000 1976 Simz - n.a. n.a. n.a. n.a. Sozatef Tenke - Fungurume - 100,0007 1975 Zambia R.C.M. Mufulira 130,000 190,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 15,000 1975 R.C.M. Baluba - 15,000 1972 N.C.C.M. Kansanshi - 15,000 1972 N.C.C.M. Nchanga 315,000 1974 Miniera de Frangna Chilamberto Hkushi - 6,000 197	Gecamines Several mines 560,000 1976 Sodimiza Musoshi - 53,000 1972 Sodimiza Tshinsenda - 74,000 1976 Simz - n.a. n.a. n.a. Sozatef Tenke - Fungurume - 100,0007 1975 Zambia R.C.M. Nufulira 130,000 190,000 1973 R.C.M. Kalengwa - 17,000 1973 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 250,000 1971 R.C.M. Byana Mkubya - 15,000 1971 N.C.C.M. Nchanga 250,000 270,000 1972 N.C.C.M. Nchanga 315,000 1974 Miniera de Frangna Chilamberto Hkushi - 6,000 1971 <	S. W. Africa	Damites Mining Co.	Windhoek	• •	8,000 197
Zambia R.C.M. Mufulira 130,000 190,000 1973 R.C.M. Chambishi 24,000 48,000 1973 R.C.M. Kalengwa - 17,000 1971 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 22,000 1973 R.C.M. Baluba - 50,000 n.a. N.C.C.M. Bvana Mkubwa - 15,000 1972 N.C.C.M. Kansanshi - 15,000 1972 N.C.C.M. Nchanga 250,000 270,000 1972 N.C.C.M. Nchanga 315,000 1971 Miniera de Frangna Chilamberto Mkushi - 6,000 1971	Zambia R.C. M. Mufulira 130,000 190,000 1973 R.C. M. Chambishi 24,000 48,000 1973 R.C. M. Kalengwa - 17,000 1971 R.C. M. Baluba - 22,000 1973 R.C. M. Baluba - 50,000 n.a. N.C. C. M. Bvana Mkubwa - 15,000 1975 N.C. C. M. Kansanshi - 15,000 1972 N.C. C. M. Nchanga 315,000 1974 Miniera de Frangna Chilamberto Mkushi - 6,000 1971 SMELTERS Luilu 125,000 170,000 1972	Zaire	Gecamines Sodimiza Sodimiza Simz	Several mines , Musoshi Tshinsenda	386,000	560,000 197 53,000 197 74,000 197 n.a. n.a
N.C.C.N. Kansanshi - 15,000 1975 N.C.C.M. Nchanga 250,000 270,000 1972 N.C.C.M. Nchanga 315,000 1974 Miniera de Frangna Chilamberto Mkushi - 6,000 1971 SWELTERS SWELTERS Luilu 125,000 170,000 1972	N.C.C.N. Kansanshi - 15,000 1975 N.C.C.M. Nchanga 250,000 270,000 1972 N.C.C.M. Nchanga 315,000 1974 Hiniera de Frangna Chilamberto Mkushi - 6,000 1971 Zaire Gecamines Luilu 125,000 170,000 1972	Zambia	R.C.M. R.C.M. R.C.M. R.C.M. R.C.M. R.C.M.	Nufulira Chambishi Kalengwa Baluba Baluba		190,000 197 48,000 197 17,000 197 22,000 197 50,000 n.a
Zaire Gecamines Luilu 125,000 170,000 1972	Zaire Gecamines Luilu 125,000 170,000 1972 (cathodes)		N.C.C.H. N.C.C.H. N.C.C.H.	Kansanshi Nchanga Nchanga	250,000	15,000 197 270,000 197 315,000 197
Zaire Gecamines Luilu 125,000 170,000 1972	Zaire Gecamines Luilu 125,000 170,000 1972 (cathodes)			·•••	•	•
	(cathodes)	•		SMELTERS		
		Zaire	Gecamines	Luilu	125,000	

2 - 2

أشتعظه

]

faracer 64

1

1971 1974-75

Gecamines Zambia Roan Consolidat Nchanga Consoli

	LUIIU	125,000	(cathodes)
	Lubumbashi	125,000	155,000
ted Mines	Nufulira	200,000	230,000
Idated Copper Mines	Total	410,000	500,000

	COUNTRY	COMPANY	•	DEVELOPMENT	. بر	CAPAC		DATE
		n gan e				1970	FINAL	
			REFINERI	ES				
	AFRICA (Contid)		•				8 m. 1 m. 1 m. 1 m.	
•	Rhodesia	Coronation Syndicate		Inyati	4. ¹	•	n.a.	1971
	Zambia	Roan Consolidated Mine Nchanga Consolidated (Mufulira Total		185,000 296,000	247,000 356,000	1973 1974-75
	• •	nondiga obnoortdatee t	opper mines	totai	. •	230,000	550,000	1914-10
			-					
- 1999 	•				1 - 1 - 1 - 1 	à		
	•	•						
•			• 1 V		• •			
				•		-	-	
						Ĩ.	· .	
	· .		•	•	• *			
			n Arakan Arakan	ه : پ ^۲ ب	•		· · · · ·	
			•				. 4	
					· .			
مهال آنوا	•		•		· · · •		· · .	
	· · ·			•		•		
			· .					
				• •	•			
		4.						
	•	· •·			•	•		
	:				• •			
								•
			• • • •					
· · · ·	•			•		• *		
	•		· .			•	•	
			:	•	.		• -	
	,				•			
			,		•			

.

2-0

COUNTRY

COMPANY

DEVELOPIENT

CAPACITY 1970 F

FINAL

]

]

]

]

]

]

Ĩ

]

]

]

]

DATE

MINES

India Hindustan Copper Corp., Khatri - 21,000 19 Hindustan Copper Corp., Kolihan - 10,000 19 Hindustan Copper Corp., Apigundala - n.a., n. Hindustan Copper Corp., Rakha - 3,500 19 Indonesia Freeport Indonesia Inc. Erstberg - 59,000 19 Iran Sar Chesmeh Copper Sar Chesmeh - 145,000 19 Company of Karnan Government/Japanese Galah Zari - 18,000 n., Israel Tiana Copper Mines Tiama 12,000 n.,a. 19 Malaysia Manut Hine Developsent Co. Sabah - 40,000 19 Philippine Republic Atlas Consolidated Biga 48,000 77,000 19 Labo Hines Inc. Luzon - 1,400 19 Company of Karnan - 1,400 19 SKELTERS India Hindustan Copper Corporation Khetri - 31,000 19 Hili Kyodo Saelting Co. Jamanao - 84,000 19 Mispon Mining Hitachi 60,000 120,000 19 Mispon Mining Hitachi 70 - 31,000 19 Mispon Mining Hitachi 70 - 9 Mispon Mining Hitachi 70 - 9 Mispon Mining Hitachi 70,00 19 Mispon Mining Hitachi 70,00 19 Mispon Mining Hitachi 70,00 19 Mispon Mining Hitachi 70,000 19 Mispon Mining Hitachi 70,000 19 Mispon Mining Hitachi 70,000 19 Mispon Mining Hitachi 70,000 19 Mispon Mining Mitachi 70,000 19 Mispon Mining Mistoni 70,000 19 Mispon Mining Mistoni 70,000 19 Mispon Mining Mistoni 70,000 19 Mispon Mining Mistoni 70,000 19 Mis		•					
India Hindustan Copper Corp. Knitri - 21,000 19 Hindustan Copper Corp. Kolihan - 10,000 19 Hindustan Copper Corp. Agnigundala - n.a. n. Hindustan Copper Corp. Agnigundala - n.a. n. Hindustan Copper Corp. Rakka - 3,500 19 Indonesia Freeport Indonesia Inc. Erstberg - 59,000 19 Iran Sar Chesmeh Copper Sar Chesmeh - 145,000 19 Company of Kernan Government/Japanese Galah Zari - 18,000 n.a. Israel Tiana Copper Mines Tiana 12,000 n.a. 19 Malaysia Mamut Hine Development Co. Sabah - 40,000 19 Philippine Republic Atlas Consolidated Biga 48,000 77,000 19 Labo Hines Inc. Luzon - 1,400 19 Turkey Black Sea Copper Hines Murgul, Kuro & Espiyo 32,000 72,000 19 Netters India Hindustan Copper Corporation Khetri - n.a. n. Japan Onehase Smeiting & Refining Co. Onehase 90,000 288,000 n. Hibi Kyodo Sanalting Co. Jamanao - 84,000 19 Nippon Mining Hitachi 60,000 120,000 19 Nippon Mining Hitachi 60,000 120,000 19 Nippon Hining Saganoseki 120,000 240,000 19 Nippon Hining Saganoseki 120,000 240,000 19 Nippon Hining Kitachi 60,000 130,000 19 Nippon Hining Hitachi 60,000 140,000 19 Nippon Hining Hitachi 72,000 19 Nippon Hining Saganoseki 120,000 240,000 n. Japan Hiti Kyodo Saolting Co. Tamanao - 84,000 19 Nippon Hining Kitachi 72,000 19 Nippon Hining Kitachi 72,000 19 Nippon Hining Kitachi 72,000 19 Nippon Hining Hitachi 72,000 19 Nippon Hining Kitachi 72,000 19 Nippon Hining Kitachi 72,000 19 Nippon Mining Hitachi 72,000 19 Nippon Mining Hitachi 72,000 19 Nippon Nining Hitachi 72,000 19		ASIA	. · · ·		:	ه م عد من م	
Hindustan Copper Corp. Kollhan - 10,000 13 Hindustan Copper Corp. Agnigundala - n.a. n.a. n.a. Hindustan Copper Corp. Rakha - 3,500 19 Indonesia Freeport Indonesia Inc. Erstberg - 59,000 19 Iran Sar Chesmeh Copper Sar Chesmeh - 145,000 n.a. 16 Governeent/Japanese Qaleh Zari - 18,000 n.a. 16 Malaysia Masut Hine Development Co. Sabah - 40,000 19 Philippine Republic Atlas Consolidated Biga 48,000 77,000 19 Labo Hines Inc. Luzon - 1,400 19 Turkey Black Sea Copper Hines Murgul, Kure & Espiye 32,000 72,000 19 Iran Government Sar Chesseeh n.a. n.a. n.a. Japan Onshame Smeiting & Refining Co. Tamanao - 96,000 n.g. Suoi tono Toryo - 96,000 19 100,00		Formosa	Government	Chimei		n.a.	n.a.
Iran Sar Chesmeh Copper Company of Kerman Government/Japanese Sar Chesmeh - 145,000 19' Republic Israel Tiana Copper Mines Tiana 12,000 n.a. 19' Malaysia Malaysia Maaut Mine Developaent Co. Sabah - 40,000 19' Philippine Republic Atlas Consolidated Labo Mines Inc. Biga 48,000 77,000 19' Turkey Black Sea Copper Mines Margul, Kure & Espitye 32,000 72,000 19' India Mindustan Copper Corporation Khetri - 31,000 19' Japan Onahame Smeiting & Refining Co. Onahame 90,000 268,000 n.a. Japan Onahame Smeiting & Refining Co. Tamanao - 84,000 19' Suationo Toyo - 96,000 120,000 120,000 120,000 Mipon Mining Hitachi 60,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120,000 120		India	Hindustan Copper Corp. Hindustan Copper Corp.	Kolihan Agnigundala	-	10,000 n.a.	1973-74 1973-74 n.a. 1973-74
Company of Kernan Government/JapanessQaleh Zari-18,000n.s.IsraelTima Copper MinesTima12,000n.s.19MalaysiaNamut Nine Development Co.Sabah-40,00019Phillppine RepublicAtlas ConsolidatedBiga48,00077,00019Labo Mines Inc.Luzon-1,40019TurkeyBlack Sea Copper MinesMurgul, Kuro & Espiye32,00072,00019SHELTERSIndiaMindustan Copper CorporationKhetri-31,00019Igladhal-n.s.n.s.n.JapanOnshama Smeiting & Rofining Co.Onahama90,000288,00019JapanOnshama Smeiting & Rofining Co.Tamanao-84,00019Nippon MiningMitachi60,000120,0001019Nippon MiningSaganoseki120,000240,000n.TurkeyBlack Sea Copper MinesSamun-40,00019Mippon MiningSaganoseki120,000240,000n.TurkeyBlack Sea Copper MinesSamun-40,00019IranGovernmentSar Chesseh-n.a.n.JapanHibi Kyodo Smelting Co.Tamanao-84,00019JapanHibi Kyodo Smelting Co.Tamanao-84,00019SuntomoNithama120,000144,00019SuntomoNithama<	÷	Indonesta	Freeport Indonesia Inc.	Erstberg	-	59,000	1973
israelTimna12,000n.a.19MalaysiaMamut Mine Development Co.Sabah-40,00019PhilippineAtlas ConsolidatedBiga48,00077,00019RepublicAtlas ConsolidatedBiga48,00077,00019Labo Mines Inc.Luzon-1,40019TurkeyBlack Sea Copper MinesMurgul, Kure & Espiye32,00072,00019SMELTERSIndiaHindustan Copper CorporationKhetri-31,00019IranGovernmentSar Chesach-n.a.n.a.JapanOnahama Smeiting & Refining Co.Onahama90,000288,000n.JapanOnahama Smeiting & Co.Tamanaa-96,000120,000SunitomoToyo-96,000120,000120,000TurkeyBlack Sea Copper MinesSaesun-40,000REFINERIESIndiaHindustan Copper CorporationKhetri-31,000JurkeyBlack Sea Copper MinesSaesun-40,000IurkeyBlack Sea Copper MinesSaesun-40,000IndiaHindustan Copper CorporationKhetri-31,000JapanHibi Kyodo Smelting Co.Tamanao-n.a.JapanHibi Kyodo Smelting Co.Tamanao-84,000JapanSar Chesaeh-n.a.Japan <td></td> <td>[ran</td> <td>Company of Kerman</td> <td></td> <td>-</td> <td>•</td> <td>1975-76 n.a.</td>		[ran	Company of Kerman		-	•	1975-76 n.a.
MalaysiaNamut Mine Development Co.Sabah-40,00019Philippine RepublicAtlas Consolidated Labo Mines Inc.Biga Luzon48,000 -77,00019TurkeyBlack Sea Copper MinesMurgul, Kure & Esplye32,00072,00019SMELTERSIndiaMindustan Copper Corporation IngladhalKhetri - - n.e31,00019IranGovernmentSar Chesmeh-n.e. - - - -n.e. -n.e. -n.e. -JapanOnahama Smeiting & Refining Co. Nippon Mining Mippon Mining Mippon MiningTamanao 84,00019IurkeyBlack Sea Copper MinesSamsun-40,00019Sunitono Nippon Mining Mippon Mining Mippon MiningHitachi Bassun60,000120,00019IurkeyBlack Sea Copper MinesSamsun-40,00019IurkeyBlack Sea Copper MinesSamsun-40,00019IurkeyBlack Sea Copper MinesSamsun-40,00019IurkeyBlack Sea Copper Corporation MinesKhetri-31,00019IurkeyBlack Sea Copper Corporation MinesKhetri-31,00019IurkeyBlack Sea Copper Corporation MinesKhetri-31,00019IurkeyBlack Sea Copper Corporation MinesKhetri-31,00019IurkeyBlack Sea Copper Corporation Su		[srae]			12.000	-	1973
RepublicAtlas Consolidated Labo Hines Inc.Biga Luzon48,000 -77,00019 19TurkeyBlack Sea Copper MinesMurgul, Kure & Espiye32,00072,00019SHELTERSIndiaHindustan Copper Corporation IngladhalKhetri - n.a31,00019 19IndiaHindustan Copper Corporation IngladhalKhetri - n.a31,00019 19JapanOnehama Smeiting & Refining Co. Nippon Mining Nippon HiningTamanao Hitachi-84,00019 240,000TurkeyBlack Sea Copper MinesSamon Saganoseki-31,00019 120,00019 240,000100 120,00019 100IndiaHindustan Copper Corporation Nippon Mining Nippon Mining Nippon MiningKhetri Saganoseki-31,00019 19IranGovernment Sarches SamsunSarchesmeh - n.a31,00019 19IranGovernmentSar Chesmeh - n.a.n.a.JapanHibi Kyodo Smelting Co. Sunitomo NithamaTamanao - - 31,00019 19IranGovernment - -Sar Chesmeh - - - - 31,00019 19IranGovernment -		Malaysia			•		1973
SMELTERSIndiaHindustan Copper CorporationKhetri-31,00019Ingladhal-n.a.n.n.a.n.IranGovernmentSar Chesmeh-n.a.n.JapanOnahama Smeiting & Refining Co.Onahama90,000268,000n.Hibi Kyodo Smelting Co.Tamanao-84,00019SumitomoToyo-96,00019Nippon MiningHitachi60,000120,000120,000Nippon MiningSaganoseki120,000240,000n.TurkeyBlack Sea Copper MinesSamsun-40,00019EFFINERIESIndiaHindustan Copper CorporationKhetri-31,00019JapanHibi Kyodo Smelting Co.Tamanao-84,00019SumitomoNithama120,000144,00019SumitomoToyo-48,00019NithomoNithama120,000144,00019NithomoToyo-48,00019NithomoToyo-48,00019NithomoToyo-48,00019NithomoToyo-48,00019NithomoToyo-48,00019NithomoToyo-48,00019NithomoToyo-48,00019NithomoToyo-48,00019NithomoToyo				•	48,000	-	1971 1971
India Hindustan Copper Corporation Khetri - 31,000 19 Ingladhal - n.a. n. Iran Government Sar Chesmeh - n.a. n. Japan Onahama Smeiting & Refining Co. Onahama 90,000 288,000 n. Hibi Kyodo Smelting Co. Tamanao - 84,000 19 Sumitomo Toyo - 96,000 19 Nippon Mining Hitachi 60,000 120,000 19 Nippon Hining Saganoseki 120,000 240,000 n. Turkey Black Sea Copper Mines Samsun - 40,000 19 Iran Government Sar Chesmeh - n.a. n. Japan Hibi Kyodo Smelting Co. Tamanao - 84,000 19 Sumitomo - 40,000 19 Napon Hining Saganoseki 120,000 240,000 n. Hindia Hindustan Copper Corporation Khetri - 31,000 19 Iran Government Sar Chesmeh - n.a. n. Japan Hibi Kyodo Smelting Co. Tamanao - 84,000 19 Sumitomo Nijhama 120,000 144,000 19 Nijhama 120,000 144,000 19 Nijhama 120,000 144,000 19 Nippon Nining Hitachi 72,000 132,000 19 Nippon Nining Hitachi 72,000 132,000 19	•	Turkey	Black Sea Copper Mines	Hurgul, Kure & Esplye	32,000	72,000	1972
IranGovernmentSar Chesmeh-n.a.n.a.JapanOnahama Smeiting & Refining Co.Onahama90,000288,000n.a.Hibi Kyodo Smeiting Co.Tamanao-84,00019SumitomoToyo-96,00019Nippon MiningHitachi60,000120,00019Nippon MiningHitachi60,000240,000n.a.TurkeyBlack Sea Copper MinesSamsun-40,00019IndiaHindustan Copper CorporationKhetri-31,00019IranGovernmentSar Chesmeh-n.a.n.JapanHibi Kyodo Smelting Co.Tamanao-84,00019IndiaHindustan Copper CorporationKhetri-31,00019IranGovernmentSar Chesmeh-n.a.n.JapanHibi Kyodo Smelting Co.Tamanao-84,00019SumitomoNithama120,000144,00019SumitomoKithama120,000144,00019NitomoNithama120,000132,00019NitsubishiNaoshima84,000120,00019			•••••••				1071
JapanOnahama Smeiting & Refining Co. Hibi Kyodo Smelting Co. SumitomoOnahama90,000288,000n.Hibi Kyodo Smelting Co. SumitomoTamanao-84,00019SumitomoToyo-96,000120,00019Nippon MiningHitachi60,000120,00019Nippon KiningSaganoseki120,000240,000n.TurkeyBlack Sea Copper MinesSamsun-40,00019IndiaHindustan Copper CorporationKhetri-31,00019IranGovernmentSar Chesmeh-n.a.n.JapanHibi Kyodo Smelting Co. SumitomoTamanao-84,00019SumitomoNithama120,000144,00019SumitomoToyo-48,00019SumitomoNithama120,000144,00019SumitomoToyo-48,00019Nippon NiningHitachi72,000132,00019Nippon NiningHitachi72,000132,00019NitsubishiNaoshima84,000120,00019		India	Hindustan Copper Corporation		-	-	1974 n.a.
Hibi Kyodo Smelting Co. Tamanao - 84,000 19 Sumitomo Toyo - 96,000 19 Nippon Mining Hitachi 60,000 120,000 19 Nippon Mining Saganoseki 120,000 240,000 na Turkey Black Sea Copper Mines Samsun - 40,000 19 India Hindustan Copper Corporation Khetri - 31,000 19 Iran Government Sar Chesmeh - n.a. n. Japan Hibi Kyodo Smelting Co. Tamanao - 84,000 19 Sumitomo Nithama 120,000 144,000 19 Sumitomo Toyo - 48,000 19 Mitsubishi Naoshima 84,000 120,000 144,000 19		Iran	Government	Sar Chesmeh	•	n.a.	n.a.
REFINERIESIndiaHindustan Copper CorporationKhetri-31,00019IranGovernmentSar Chesmeh-n.a.n.JapanHibi Kyodo Smelting Co.Tamanao-84,00019SumitomoNiihama120,000144,00019SumitomoToyo-48,00019Nippon MiningHitachi72,000132,00019NitsubishiNaoshima84,000120,00019		Japan	Hibi Kyodo Smelting Co. Sumitomo Nippon Mining	Tamanao Toyo Hitachi	60,0 00	84,000 96,000 120,000	n.a. 1972 1971 1972 n.a.
IndiaHindustan Copper CorporationKhetri-31,00019IranGovernmentSar Chesmeh-n.a.n.JapanHibi Kyodo Smelting Co.Tamanao-84,00019SumitomoNiihama120,000144,00019SumitomoToyo-48,00019Nippon NiningHitachi72,000132,00019NitsubishiNaoshima84,000120,00019		Turkey	Black Sea Coppe r Mines	Samsun	-	40, 000	1972
Iran Government Sar Chesmeh - n.a. n. Japan Hibi Kyodo Smelting Co. Tamanao - 84,000 19 Sumitomo Niihama 120,000 144,000 19 Sumitomo Toyo - 48,000 19 Nippon Nining Hitachi 72,000 132,000 19 Nitsubishi Naoshima 84,000 120,000 19			<u>REF 11</u>	VERIES			
Japan Hibi Kyodo Smelting Co. Tamanao - 84,000 19 Sumitomo Niihama 120,000 144,000 19 Sumitomo Toyo - 48,000 19 Nippon Nining Hitachi 72,000 132,000 19 Nitsubishi Naoshima 84,000 120,000 19		India	Hindustan Copper Corporation	Khetr i	-	31,000	1974
Sumitomo Niihama 120,000 144,000 19 Sumitomo Toyo - 48,000 19 Nippon Mining Hitachi 72,000 132,000 19 Nitsubishi Naoshima 84,000 19		Ir an	Government	Sar Chesmeh	-	n.a.	n,a,
		Japan	Sumitomo Sumitomo Nippon Mining Nitsubishi	Niihama Toyo Hitachi Naoshima	72,000	144,000 48,000 132,000 120,000	1972 1971 1972 1972 1972 1972 1971

•	COUNTRY	COMPANY	DEVELOPMENT	CAPACITY		DATE	
	, 		<u></u>	1970	FINAL		
	NORTH/CENTRAL AMERICA				-		
	NUNTRY CENTRAL AMENTCA	· · · ·					
	•	MINES					
						•	
	Canada	Gibraltar Mines Ltd.(Placer)	Gibraltar/Pollyana		ñ.a.	1972	
	•	inco	Sudbury	161,000	191,000	1972	
	• •	Rio Algon	Lornex	•	51,000	1972	
		Sherritt Gordon Nines Ltd.	Ruttan Lake	-	35,000	1973	
-	•	Utah International Inc.	Port Hardy	-	50,000	1971/72	
		Valley Copper Nines Ltd.	Highland Valley	•	N.a.	19 7 3/74	
		(Cominco-Bethlehem Copper Corp)					
	• •	Gaspe Copper Nines (Noranda)	Copper Nountain	8,000	24-27,000	1972/73	
	•	Granisle Copper	Babine Lake	n.a.	N.a.	1972	
		Highmont Mining/Teck Corp.	Highland Valley	-	n.a.	1973	
		Mattabi Nines	Sturgeon Lake	-	n.a.	1972	
		Noranda	Newdan	-	13,500	1972	
	· .	Openiska (Falconbridge)	Openiska	18,000	27,000	1971/72	
·		Similkameen Mining Co. (Newmont)	Princetown	-	n.a.	1972	
		Alwin Mining Co.		-	5-7,000	1972	
	·	Dison Development (Crownex/Pechiney)	Sunro	-	n.a.	1971	
		Hudson Bay Nining	Two new mines	-	n. a.	1972	
		Hudson-Yukon Mining	Wellgreen	-	2,700	1972	
	× e - •	Selection Trust (Selco)	Uchi Lake	+	3,000	1971	
		Stall Lake Nines (Falconbridge)	Snow Lake	-	n.a.	1972	
	Guatemala	Basic Resources International	Oxec	-	n.a.	1972	
	Nexico	Asarco Nexicana	Inguaran	•	13,000	1971	
		Asarco Mexicana & Others	La Caridad	-	120,000	1976	
		Cia Ninera de Cananea S.A. de C.V.	Cananea	37,000	60,000	1974	
		Net-Hex Penoles S.A.		6,000	7,200	n.a.	
	•		с				
	Panama	Japanese Consortium	Petaguilla Commo Colomado	-	n.a.	n.a.	
		Pavonia S.A.	Cerro Colorado	-	n.a.	n.a.	
	Puerto Rico	Ponce Nining Co. (Kennecott-Amax)	Adjuntas	-	48,000	1977	
	U.S.A.	Anaconda	Several Hines	227,000	272,000	1975	
		Asarco	San Xavier		11,000	n.a.	
		Duyal	Sierrita	59,000	68,000	1974/75	
		Phelps Dodge	Tyrone	54,000	90,700	1972/73	
		Phelps Dodge	Hetcalf	•	45,000	1974	
		Pima Hining Co. (Cyprus Nines)	Pima	59,000	72,600	1971	
		Newmont	San Nanuel	91,000	136,000	1971/72	
		Newmont	Superior	19,000	36,000	1973/74	
		Hecla/El Paso	Lakeshore	•	32,000	1974/75	
		Ranchers	Bluebird	4,500	5,900	1972	
		Ranchers	Bluebird		6,600	1973	
		Kerr Addison Nines	Blue Hill	••	n.a.	1972/73	
		Shield	0.K.	n.a.	n.a.	1971	
		Earth Resources	Nacimiento	**	6,400	1971	
					•		

SMELTERS

Canada

Noranda Mines Ltd.

Murdochville (Gaspe)63,000

88,000 1973/74

:	COUNTRY	COMPANY	DEVELOPMENT	CAPACI 1970	FINAL	DATE
		SIELTERS (Cont	•d)		·····	
	Canada (Cont'd)	Noranda Nines Ltd. Inco	Noranda	204,000 170,000	254,000 200,000	1973/74 1974/75
	Hexi co	Asarco Nexicana S.A. Asarco Nexicana S.A.	San Luis Potosi La Caridad	30,000	42,000 n.a.	n.a. n.a.
	Puerto Rico	Ponce Hining (Kennecott-Arnax)	Ponce	•	n.a.	ñ.a.
	U.S.A.	Phelps Dodge Newmont	Southern Hidalgo San Manuel	85,000	? 91,000 135,000	1974 1974
		REFINERIES				
· · ·	Canada	Falconbridge Inco Canadian Copper Refiners	Becancour Kontreal	170,000 318,000	10,000 200,000 370,000	1975 1974/75 1974/75
	Nexico	Asarco Mexicana S.A.	San Luis Potosi	-	45,000	N.a.
	Puerto Rico	Ponce Mining (Kennecott-Amax)	Ponce	-	n.a.	n.a.
	U.S.A.	Nevmont-Magma Southwire	San Manuel Carrollton	-	181,000 65,000	1971 1971
			• •			
			•	*		

. .

n ar stariji. P

•

.

•

,

• •

· · ·

•

•

COUNTRY	COHPANY	DEVELOPMENT	CAPACI 1970	TY FINAL	DATE
SOUTH AMERICA					
	MINES				
Brazil	Cia Brazileira de Cobre Pignatari Group Pignatari Group	Ca¤aqua Caraiba Caraiba	8,000 -	12,000 35,000 70,000	1973 1973 ? 1976
 Chile	Cia Minera Exotica Cia Minera Andina Cia Cuprifera de Sagasca Enami Chile Exploration	Exotica Andina Sagasca Small Mines Chuquicamata	51,000 280,000	102,000 61,000 24,000 96,000 354,000	1971-72 1971-72 1972 1972 1972 1973-74
Peru -	Southern Peru Copper Corporation Hinero Peru Hinero Peru	Cuajone Cerro Verde Tintaya	-	130,000 31,500 n.a.	1976 1974 1974
	SMELTERS				•
Brazil	Pignatari Group Pignatari Group	Caraiba Caraiba	-	35, 000 70,0 00	71973 71976
Chile	Enant Enant	Las Yentanas Paipote	43,000 33,000	100,000 n.a.	n.a. n.a.
	REFINERS				
Brazil	Pignatari Group Pignatari Group	Caraiba Caraiba	-	3 5,000 70,000	71973 71976
Chile	Enani	Las Ventanas	85,000	120,000	n.a.

COUNTRY	COMPANY	DEVELOPMENT	CAPACI 1970	TY FINAL	DATE
OCEANIA	· · · · ·			•	
e	MINES			• •, •	
Australia	Nt. Lyell Mining & Railway Co.	Ht. Lyell	15,000	30,000	1973
neotraria.	Nt. Isa Hines Ltd.	Nt. Isa	100,000	150,000	1973
	Peko Mines N.L.	Varrego	-	10,000	1972
	Peko Mines N.L.	Geko	-	n.a.	71972
	Samin Co.	Burra	-	5,600	1971
	Electrolytic Zinc	Roseberry	1,500	3,000	1971
	North Broken Hill/Broken Hill	Kannantoo	-	7-8,000	1971 -
- · · · ·	South/Electrolytic Zinc/ McPhar	14 6		7 0 000 [°]	1071
• • • • • • •	Geophysics	Kanmantoo	-	7-8,000	1971
	Cobar Nines Pty. Ltd.	· ·	10,100	20,300	1974
· · · ·	Mitsubishi/Consolidated Goldfields	Gunpowder	. 🛥	10,000	n.a.
	Jododex Australia Pty. Ltd.	Tarago	-	n.a.	n.a.
Papua/New Guinea	Bougainville Copper Pty. Ltd(R.I.Z)	Bougainville	•	187,000	1972/74
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · ·	SMELTERS				
Australia	Peko	Tennant Creek	-	25,400 +	1972
	Ht. Isa Nines Ltd.	Mt. Isa	100,000	150,000	1974
	•		•	-	
	REFINERIES				
Australia	Copper Refineries Pty. Ltd.	Townsville	100,000	150,000	1974
		•		• •	

]

.

SECTION 3

NOTES ON DEVELOPMENTS IN

INDIVIDUAL COUNTRIES

EUROPE

Π

62

1. Austria

Mine Capacity

This is scheduled to increase from 2,000 to 3,000 tons per year between 1970 and 1975.

Smelter Capacity

Scheduled to increase from 12,000 to 18,000 tons per year between 1970 and 1975, with a further increase to 22,000 tons per year over 1976 and 1977 envisaged.

Refinery Capacity

Scheduled to increase from 19,000 to 26,000 tons per year between 1970 and 1975, with a further increase to 30,000 tons per year over 1976 and 1977 envisaged.

2. Belgium

Smelter Capacity

No increases have been announced.

Refinery Capacity

The capacity of the electrolytic refinery of Metallurgie Hoboken-Overpelt at Olen was increased during 1971 by 30,000 tons to 270,000 tons. No developments have been announced concerning the fire refinery (capacity 150,000 tons).

3. Finland

Mine Capacity

A new nickel-copper mine at Vuonnos was due to be brought into operation by Outokumpu Oy by the end of 1971. Nickel ore only will be mined during the first year using open pit methods. The underground mining of copper ore will start during 1972 at a rate of 300,000 tons of ore per year, containing 3% copper. Capacity is currently estimated at 6,500 tons per year (copper content).

.../...

3. Finland (Cont'd)

Smelter Capacity

The copper smelter at Harjavalta is being expanded to cover increased mine production.

Refinery Capacity

No increases have been announced.

4. France

No developments have been reported.

5. Germany F.R.

Mine Capacity

No developments have been reported.

Smelter Capacity

Norddeutsche Affinerie are building a new smelter with a capacity of 400,000 tons of concentrates per year for completion in mid - 1972.

Refinery Capacity

No developments have been reported.

6. Greece

The Hellenic Chemical Products and Fertilizer Co. Limited is developing the copper pyrites deposits at the Kassandra Mine and expects production to start in early 1973. Deposits are estimated at 2 million tons with a copper content of 1.5 - 2.0%. Mining rate will be 250,000 tons of ore per year.

Pechiney is reported to have taken over the rights in the Skouries and Stavros deposits from Placer Developments Limited. Skouries is a copper - gold deposit with proven reserves of 11.8 million tons open pit sulphide ore grading 0.72% copper, and a minimum 7 million tons of underground marginal grade material containing 1.05% copper. Stavros, in the Chalkidike Peninsula has probable reserves of 1 million tons with copper content of 2.5 - 3.0%.

7. Irish Republic

The capacity of the Tynagh mine (lead - zinc - silver - copper) operated by Northgate Exploration Limited, is being expanded to provide an additional 640,000 tons of ore per year (roughly double present capacity, i.e. an increase of 3,000 tons copper content per year). This increase is due to underground development (present production is by open pit) and is scheduled to begin late in 1972.

The Avoca mine in Country Wicklow (Discovery Mines Limited, owned by Avoca Mines Limited) was re-opened and production resumed at the end of 1970. Capacity is thought to be 6,000 tons per year and is expected to rise to 9,000 tons (copper content) by 1973.

7. Irish Republic (Cont'd)

At Allihies in County Cork, Argosy Mining Corporation (a subsidiary of Denison Mines) is examining the possibility of re-activating an old copper mine in conjunction with Cerro Corporation. At Aherlow, Limerick, Argosy is investigating a copper - silver prospect.

8. Italy

Mine Capacity

No new developments have been reported.

Smelter Capacity Refinery Capacity

AMMI has completed plans for a new electrolytic copper plant with an annual capacity of 60,000 tons at Aussa - Corno in the Province of Udine. Completion is due by 1975.

9. Norway

Mine Capacity

The Bidjovagge copper ore deposit in Finnmark was being developed by A/S Bidjovagge Gruber and was planned to come into operation in 1970. The Kautokeino mine was expected to produce concentrates containing 4,000 tons of copper per year, which were to be sent by road to the coast at Alta.

Ore deposits at Reptarfjord in Finnmark are to be developed by Folldal Verk A/S. Reserves are estimated at 10 million tons grading 0.7% copper on average. Mining and milling will be at a rate of 600,000 tons per year to produce 15,000 tons of 30 - 40%copper concentrates annually (4,500 to 6,000 tons copper). Production is scheduled to start early in 1973.

Smelter Capacity

No increases have been announced.

Refinery Capacity

No increases have been announced.

10. Portugal

No new developments have been reported.

11. Spain

Mine Capacity

Rio Tinto Patino's new Cerro Colorado mine is expected to produce 20,000 tons of copper in concentrate at full capacity. The concentrating plant was completed in December 1970.

Union Explosives - Rio Tinto and Rio Tinto - Patino continued exploration near Santiago de Compestela, North - Western Spain.

11. Spain (Cont'd)

Enough copper ore has been discovered to give a production of 10,000 tons of copper per year. The technical study has been completed and Rio Tinto Patino were examining financing during 1971.

Metallgesellschaft has acquired a 40% interest in Andaluza de Piritas which is to develop pyrite deposits at Aznalcollar, Southern Spain. The 50 million ton deposit is estimated to contain 250,000 tons of copper. The Company plans to extract 1.5 to 2 million tons per year of pyrites from 1975 as the initial stage (7,500 - 10,000 tons of contained copper).

Smelter Capacity Refinery Capacity

The capacity at the new 40,000 tons per year smelter/refinery complex at Huelva is due to rise to 75,000 tons by the end of 1972. This is to replace the old smelter/refinery (18,000 tons).

The refinery of SECEM at Cordoba closed during 1971.

12. Sweden

Mine Capacity

Boliden are expanding operations at the Aitik copper mine to enable an increase in ore production from the present 2 million tons per year to 5 - 6 million tons per year. The average copper content of the ore will decline from 0.5% to 0.4%. This is expected to produce an additional 10,000 tons of copper per year. The expansion is scheduled for completion by the end of 1973.

Smelter Capacity

No developments have been reported.

Refinery Capacity

Electrolytic capacity will be increased to 60 - 65,000 tons per year from 1973.

13. United Kingdom

Mine Capacity

Rio Tinto Zinc are drilling in Snowdonia (North Wales) to determine the feasibility of an open pit development.

Exploration work is being carried out in Scotland by a number of companies.

Refinery Capacity

Williams Harvey have now the capacity to produce 10,000 tons per year of refined copper.

/ . . .

14. Yugoslavia

Development of the Bor Complex has continued rapidly and capacity has now reached the 130,000 ton level. Further plans for increased production have been announced. Output is now expected to expand to 200,000 tons of copper per year, 10,000 tons of the extra 70,000 to come from existing sources and the remainder from new sources.

A major low grade porphyry deposit has been located at Krivelj, between Bor and Majdanpek. This is estimated to contain 400 million tons of 0.4% ore. It has been suggested that this should be capable of producing 70,000 tons of copper per year. Negotiations are at present underway for foreign financial support to develop the mine.

A loan has been made to Vardor Import - Export of Skopje by the Export - Import Bank of the U.S. to finance a feasibility study of copper deposits near Radovis, Macedonia. The project would involve development of an open pit mine and flotation concentrator.

Amongst other finds of copper are 70 million tons of mineable ore (295,000 tons contained copper) at Bucin and an ore body near Mojkovac grading 0.2% to 0.7% copper.

1. Algeria

It was reported that the Algerian Government had established a four year economic development plan, the mining sector of which included the projected re-opening of copper and iron pyrites mines in the Kef-Oum-Theboul area. The four year plan set a target for a total national production of 13,000 tons per year of copper by 1973.

.

. :

a . 19

.

.../...

.

and the second second second second second

2. Botswana

Revised sales and financing plans have been agreed for the Selebi-Pikwe project of Botswana RST. Construction began in 1970 of a plant which will consist of a concentrator and smelter equipped to produce copper-nickel matte. Since ore requirements in early years can be supplied from mining the Pikwe deposit (richer nickel area) alone, the completion of facilities to permit mining at Selebi (other than the mining shaft) will be deferred until 1979.

Through changes in mining plans and improvements in the proposed metallurgical operations, it has been possible to increase the scheduled production rate, particularly in earlier years. This is reported to be 42,000 tons of copper - nickel matte which was to yield 17,000 tons of nickel and 15,500 tons of copper for the first five years, starting in the second half of 1973.

Agreement has been reached on a 15 year sales contract with Metallgesellschaft for two - thirds of the nickel produced and all the copper.

Amax has agreed to purchase from Metallgesellschaft up to one half of the nickel and to participate in an undemnity to Metallgesellschaft against certain obligations that Metallgesellschaft will undertake.

Bamangwato Concessions Limited which owns the mining concession (and in which the Botswana Government owns a 15% interest, leaving BRST with 85%) also owns mining rights for deposits which have been explored at Matsitama.

Anglo American Corporation of South Africa Limited, launched an intensive prospecting programme in the Tati area at the beginning of 1971.

3. Ethiopia

Nippon Mining Company of Japan is believed to have located considerable copper pyrites deposits, assaying 3% copper in the Asmara district. The Company has announced that Ethiopian copper production could soon amount to 100,000 tons per year of high grade copper.

4. Mauritania

The first shipment of concentrates from the new copper mine near Akjoujt being developed by SOMIMA (44.6% owned by Charter Consolidated) took place at the beginning of April, 1971. 7,000 tons of concentrate were to have been shipped by the end of 1971 and as the copper content is high, i.e. 60% this would represent about 4,000 tons of copper. Full capacity should be reached in the second quarter of 1972 i.e. 40 - 44,000 tons of concentrate, 24 - 26,000 tons of contained copper.

5. Morocco

Mine Capacity

Several projects are proceeding for the exploitation of deposits of copper ores.

At El Bleida, south of Casablanca, Mitsui Mining and smelting are reported to have outlined 3 million tons of 3% copper ore. Nittetsu Mining and French mining interests have agreed to form a joint mining venture. If exploitation is feasible a production of 10,000 tons per year of copper is envisaged.

Also, Nittetsu Mining and Marubeni Iida were to join with the state run Bureau de Recherches et de Participations Miniere (BRPM) to develop a copper - lead - zinc deposit at Bou Kerzia. Start up was set for late 1971. No production details have so far been announced.

A copper ore benefication plant, owned by the state mining agency, was inaugurated in mid - 1971 at Tansrift near Beni Mellal in East Morocco. This will produce 4,000 tons of concentrates per year (36% copper).

The French mining concern S.A.C.E.M. is to finance prospecting and surveying work on copper ore deposits in the Tafilalet province of S. E. Morocco. The agreement provides for equal participation in an exploitation company by S.A.C.E.M. and B.R.P.M., should a commercial discovery be made.

6. Rhodesia

Mine Capacity

The new RTZ Empress copper - nickel mine is expected to come into full operation during 1972. Ore reserves are estimated at 15.8 million tons containing 0.81% nickel and 0.62% copper. Annual ore mining rate is expected to be 720,000 tons with a copper content of 4 - 4,300 tons.

•••/•••

6. Rhodesia (Cont'd)

The new Shackleton mine (Messina) was officially opened in October 1971. Full milling capacity is 480,000 tons per year which it is hoped will yield 8,000 tons per year of copper.

MTD (Mangula) Limited was to bring the Norah and Silverside mines into production early in 1972. Silverside, a copper - silver mine, will operate at 180,000 tons of ore per year. Norah will be a 600 tons per day ore operation initially, eventually doubling. The mines are not expected to reach optimum output for several years. Leaching of stockpiled oxide ore will be phased out during 1974. The Company's production of copper is therefore expected to vary between 15,000 tons and 17,200 tons during the next few years, but the planned average for the next five years is 16,300 tons.

MTD plans to develop the Hans and Angwa deposits which are in the same area. With Avondale, they will offset the declining production at Alaska, which will carry on at a reduced rate until the end of 1972.

The milling rate of the Inyati mine of Coronation Syndicate should rise from 272,000 to 372,000 metric tons in the current year. In June, 1971, ore reserves were put at 1,107,000 tons, grading 2.37% copper.

Copper will be a by - product of the nickel mining operation planned by the Shanghai Mining Corporation. An initial rate of 60,000 tons of ore per month is planned, from which 4,500 tons of nickel would be obtained.

The Anglo American Corporation is building a new nickel smelter refinery at Bindura, which will also produce a small quantity of copper.

It was acknowledged during 1971 that a smelter was operating at the Inyati mine of Coronation Syndicate and also that a small refinery had been installed during 1970 to produce some copper in a more marketable form.

7. South Africa

Mine Capacity

In a joint operation by Anglo Transvaal Consolidated Investment Company Limited, Middle Witwatersrand Limited and United States Steel Corporation, the major copper - zinc mine at Prieska will be brought into production early in 1973. The initial milling rate will be 100,000 tons per month and this will rise to 227,500 tons per month during the second half of 1974. The latter rate should yield about 40,000 tons per year of copper in concentrates.

Contracts have been concluded to sell Prieska's copper concentrates at L.M.E. prices to Norddeutsche, Italys Ammi and O'Okiep. The contracts are for a ten year period.

.../...

7. South Africa (Cont'd)

The Palabora Mining Company is carrying out a feasibility study of a further mine and processing plant expansion but no decisions have been announced.

Smelter Capacity -Refinery Capacity -

No expansions to existing capacities have been announced.

8. South West Africa

Mine Capacity

Oamites Mining Company (Pty) (a subsidiary of Falconbridge Nickel Mines Limited) brought its new copper mine near Windhoek into production during the fourth quarter of 1971. The milling rate was expected to have reached 40,000 tons of ore per month by the end of the year, with an increase to 50,000 tons per month in the first quarter of 1972. This latter rate should yield 8,000 tons per year of copper in concentrate.

In a joint venture with Nord Resources Corporation, Penarroya intends exploration and a feasibility study is to be undertaken in 1972 at its Gorob property. So far 1 million tons of 2.6% copper mineralisation have been reported.

The Matcheless Mine of Tsumeb, opened in June 1970, was closed in January 1972 as it was unprofitable.

Smelter Capacity

No expansions to the Tsumeb smelter have been announced.

.

9. Uganda

No announced plans for expansion.

AFRICA (Cont'd)

10. Zaire

Mine Capacity

Gecamines (La Generale des Carrieres et Mines du Zaire) plans to increase production from the 1970 figure of 386,000 tons to 560,000 tons by 1978. The project will be carried out in two stages, the first to raise output to 460,000 tons annually by 1974 and the second to 560,000 tons by 1978. The supply of electric power is presently being studied to ensure that development of copper production capacity is not held up by a shortage of electricity.

Sodimiza is developing two mines in the South of the Province of Shaba. Production at the first one, Musoshi, is scheduled to begin in October 1972 and the total production (53,000 tons of copper per year) will be exported to Japan in the form of concentrates (36% copper). The second site is at Tshinsenda which has an estimated 32 million tons of 5% copper ore. Work was begun at Tshinsenda in 1971, with the underground mine scheduled to open in 1976 with capacity of 74,000 tons copper per year.

In 1970 two more companies were organised, Simz and Sozatef. They have identical ownership by a consortium of five companies -Charter Consolidated Limited, Standard Oil of Indiana, Leon Templesman and Sons of New York, Mitsui and Company and Bureau de Rocherches Geologique, France. The Zairian Government holds a 20% interest. Sozatef is the company which is carrying out drilling and a feasibility study in the Tenke-Fungurume area. When completed an investment proposal will be submitted to the Government. The type of operation and amount of investment will depend on the results of the study but, the construction of complete facilities including refining plants is promised. It is thought that production could start in 1975 at an annual rate of 100,000 tons of copper.

Falconbridge Nickel Mines Limited is also prospecting in Zaire, near Pweto.

If all these projects come into operation the production of copper in Zaire could reach 800,000 tons of copper annually by 1980.

Smelter, Electrowinning and Refinery Capacity

In 1972 an extension of the facilities at Luilu will raise output from the present level of 125,000 tons to 170,000 tons of cathodes per year. Production of blister copper at Lubumbashi will also be raised by 30,000 tons by installing an oxygen producing unit in 1973.

No announcements have been made so far regarding any increases in refinery capacities.

11. Zambia

Mine Capacity

Roan Consolidated Mines

Published information suggests that main developments will be as follows. It is possible, however, that the precise pattern of development will be subject to some alteration.

(1) Mufulira :

Under the original planned expansion programme, capacity was to have been raised from 165,000 tons in 1968 to 190,000 tons by early 1971. Because of the disaster in September, 1970, this tonnage is now expected during 1973.

(2) Chambishi :

An expansion from the current 24,000 tons per year will be brought in gradually to reach 48,000 tons per year early in 1973. This increase will come from underground workings as the open pit will be gradually phased out over the next seven years.

(3) Kalengwa :

The concentrator started operations in March 1971 and by June 1971 most sections of the plant were operating satisfactorily. The mine should operate for six years at 17,000 tons of copper per year.

(4) Baluba :

To be developed for an initial production of 22,000 tons per year of copper. This rate should be reached by the second half of 1973 and will eventually be increased to 50,000 tons per year to offset the expected decline of production at Luanshya. This will bring Luanshya division up to 120,000 tons per year.

(5) Total Capacity

Taking the Mufulira disaster into account, total capacity was expected to be about 240,000 tons during 1971, rising to 400,000 tons by 1975.

N^{*}Changa Consolidated Copper Mines

(1) Rokana Division :

Mining at depth is becoming increasingly difficult but drilling has revealed a possible considerable extension to existing ore reserves. Open pit production will commence in 1973 from oxide zones

.../...

11.

Zambia (Cont'd)

(1) Rokana Division (Cont'd)

overlying the Central and Mindola North ore bodies. An output rate of 95,000 tons of ore per month is expected and design work on the extra concentrating facilities required is in progress. The Bwana Mkubwa mine near Ndola was re-opened and first concentrates were delivered in April, 1971. Full annual capacity is 15,000 tons and the mine is expected to be in operation for 8 years.

By 1974 Rokana's production will have increased from 100,000 to 125,000 tons.

(2) Chingola Division :

A major solvent extraction unit is being installed at Nchanga to treat low grade tailings and oxide concentrates. Leach cementation is being used for Stage 1 which was to be commissioned in October, 1971 - this should add 20,000 tons of copper annually to production. Stage 2 will be a liquid ion exchange process to replace leach cementation. Expanded output is scheduled to rise to 55,000 tons annually by 1st January, 1974 and to continue for twelve years.

By 1974 Chingolas production will have increased from 250,000 to 315,000 tons.

(3) Konkola Division :

It is planned to re-open the Kansanshi mine at an annual rate of 15,000 tons of copper. It was originally planned to treat the ore using the Torco process but investigations are now in progress on treatment by solvent extraction.

By 1975 Konkola production will have increased from 45,000 to 60,000 tons.

(4) Total Capacity :

Total Capacity is forecast to reach 500,000 tons by late 1974.

Mwinilunga (1970) Limited

This Company is continuing its work on the promising areas of mineralisation at Lumwana, discovered by R.S.T., in the North Western Province. The areas are believed to contain 200 million tons of copper mineralisation at a grade of just under 1%.

Mcushi Copper Mines

An Italian Company, Miniera de Fragna Chilamberto,

11. Zambia (Cont'd)

Mkushi Copper Mines (Cont'd)

has developed the small Mkushi open pit mine, 150 miles south east of the main copperbelt. Ore reserves are 5 million tons grading 2.5% copper. Concentrate is being smelted at Rokana and delivery started in April, 1971. Actual production is likely to be 6,000 tons per year (copper content).]

Smelter and Electrowinning Capacity

(1) Roan Consolidated Mines

The expansion in capacity at Mufulira from 200,000 to 230,000 tons was completed in May, 1971.

(2) N'changa Consolidated Copper Mines

Total capacity is expected to rise from 410,000 tons in 1971 to 500,000 tons in 1974/75.

Refinery Capacity

(1) Roan Consolidated Mines

Expansion at Mufulira from 185,000 tons to 247,000 tons is due during 1973.

- (2) N^t changa Consolidated Copper Mines
 - (a) Refinery Tankhouse Capacity Total refining capacity will rise from 296,000 tons in 1971 to 356,000 tons in 1974/75.
 - (b) Refinery Furnace Capacity This remains constant at 271,000 tons.
- Note: In its annual report, Mindeco stated that current plans envisaged an expansion to 900,000 tons production by 1975, but, that some slight delays may be encountered.

ASIA

1. Burma

Mine Capacity

Japanese interests are studying a plan to provide technical assistance in the development of copper reserves at Monywa, north west of Mandalay. Estimated reserves are put at 15 million tons of ore, grading 1.3 to 1.5 per cent copper.

2. Cyprus

Mine Capacity

Some existing deposits are now nearly worked out. Possible new ore bodies are being investigated but it seems probable that these will be used to replace worked out deposits and will not result in any significant increase in capacity.

3. Formosa

Mine Capacity

The government is to assist in the development of copper deposits in the Chimei district. Reports quote reserves as 300,000 tons of porphyritic ore.

.4. India

Mine Capacity

After many postponements, the Hindustan Copper Corporation's Khetri copper project was officially inaugerated in August, 1970. Initially there was to be experimental production on a limited scale with any ore extracted being stockpiled as concentration is not scheduled to start until 1972. The project is expected to reach full production by 1973 - 1974 at a rate of 21,000 tons per year (copper content) from the Khetri mine and 10,000 tons from the Kolihan mine if there are no further delays.

New copper - lead deposits at Agnigundala seem likely to be developed by the Hindustan Copper Corporation.

There are three zones of mineralization :

Bandalamottu : Ore reserves 1.0 million tons grading 1.03% copper

Nallakonda : Ore reserves 3.7 million tons grading 2.00% copper

Dhukonda : Ore reserves 2.2 million tons grading 1.53% copper

No details are so far available on when development is likely to begin.

Large copper deposits have been discovered in Bihar (Rakha copper mine). These will also be developed by the Hindustan Copper Corporation. A production of 3,500 tons of copper per year is envisaged. Total reserves are estimated at 13.9 million tons grading 1.5% copper. No production date has been announced but it seems likely to be 1973 - 1974.

Copper deposits have been discovered in Kalyadi in Mysore State. Recent reports give ore reserves of 1.5 million tons averaging 1.5% copper.

Large copper deposits have been revealed in Malenjguni area of the Balaghat district in Madhya Pradesh but no details are available.

Smelter Capacity -Refinery Capacity -

The Khetri and Kolihan mines will be served by a new smelter/ refinery complex at Khetri. Production could begin in 1973 with full capacity being reached in 1974. Capacity will be 31,000 tons.

On the strength of the discovery of the Kalyadi deposit, it is expected that a smelting plant will be set up at Ingladhal where the state owned Chitradurga Copper Company is already functioning.

The Indian Copper Corporation (the government has recently taken over management, prior to its nationalisation) was expanding smelter capacity from 10,000 to 16,500 tons of copper per year. This expansion was due for completion by October 1971. Initially, production would only increase by 3,500 tons annually. The remaining 3,000 tons will be produced after the Rakha mine comes into production.

5. Indonesia

The Ertsberg copper project in West Irian (western half of New Guinea) is being developed by Freeport Indonesia Inc. (subsidiary of Freeport Sulphur) for production and initial shipment of concentrates scheduled for January 1973. The open pit mine is expected to produce 59,000 tons per year (copper content of concentrate). Two thirds of production will be supplied to Japan and the remaining third to Western Germany.

6. Iran

Mine Capacity

It was announced at the end of 1971 that the Iranian Government is to go ahead and develop Sar Chesmeh.

The Sar Chesmeh Copper Company of Kerman is to be formed to take over the project. This is planned to come into production in four years at 145,000 tons per year of copper for the first decade. Proven reserves are 400 million tons averaging 1.2% copper.

A Japanese concern and a private Iranian company will jointly explore the Qaleh Zari copper mine in Khorrasan. Ore reserves are reported as 2 million tons grading 5% copper. It is hoped to produce 50,000 tons of concentrates per year (36% copper).

Rumania has agreed to join in a search for copper in south - eastern Iran.

Smelter Capacity -Refinery Capacity -

A smelting/refining complex is planned to treat the mine output. The Government has indicated that it will seek to form some of the output into finished products such as sheet and cable.

7. Israel

Timma Mines are reported to be opening a second underground mine for operation in 1973. It is expected that this will boost current output of copper ore at Timma beyond the 1 million tons per year rate. It is not known whether this will result in a large increase in copper production or not.

8. Japan

ASIA

Mine Capacity

Mine production is not expected to rise in Japan and is eventually expected to decline. This decline is likely to be accelerated because of pollution problems when smelting pyrite which is a by - product of many of the ores. Mitsubishi announced the closing of three mines, the Myoho mine in March 1972, the Washiaimori mine in September 1972 and the Ikuno mine in March 1973. Mining has reduced production at its big Yanahara mine. Sumitomo has announced the closure of the Besshi mine in March 1973 for safety reasons. The capacity of this mine (one of Japan's largest) is at present about 5,000 tons contained copper. A new copper ore vein has been discovered by Furukawa Mining in Akita prefecture. The deposits are thought to contain 1 million tons of 2% copper ore.

Smelter Capacity

(1) Onahama Smelting & Refining Co.

Capacity is currently 144,000 tons per year and this is due to double.

(2) <u>Hibi Kyodo Smelting Company (55% Mitsui, Nittetsu,</u> Furukawa) -

built a new 84,000 ton per year smelter at Tamanao and which was due on stream by January 1972.

(3) Sumitomo

The new Toyo flash smelter was commissioned in 1971 and has a capacity of 96,000 tons.

- (4) <u>Nippon</u>
 - (a) Plans to increase the capacity of the Hitachi smelter to 120,000 tons per year. The expansion would be completed in the latter half of 1972. This expansion design also should help to reduce air pollution.
 - (b) Plans to increase capacity at Saganoseki to 240,000 tons per year.

Refinery Capacity

(1) Hibi Kyodo Smelting Company (55% Mitsui) -

built a refinery (associated with the flash smelter) with an annual capacity of 84,000 tons at Tamanao. Start up was due for January, 1972.

(2) Sumitomo -

The Niihama refinery has recently been expanded to 144,000 tons capacity. Also a 40,000 ton capacity electrolytic refinery is due for completion by July or August, 1971 at the Company's Toyo smelter.

ASIA

8.

Japan (Cont^{*}d)

(3) Nippon -

- Capacity at the Hitachi refinery will reach 132,000 tons on completion in April, 1972 of a refining plant with 60,000 tons capacity.
- (4) <u>Mitsubishi</u> -

Capacity at the 84,000 ton per year Naoshima refinery was to be increased to 120,000 tons by 1972.

(5) Mitsui Metal Mining -

were expanding capacity at Takehara from 76,000 tons to 84,000 tons by 1971.

(6) A number of Japanese companies may build a smelter/ refinery on Okinawa.

9. Malaysia

Mine Capacity

The Mamut Mine Development Company (in which a Japanese consortium has 51% interest) is ready to sign a contract with the Malaysian Government on the development of the copper deposits in the Mamut area of Sabah. Ore reserves are estimated at 76 million tons averaging 0.66% copper. There has been some delay due to the depressed copper market. The Japanese hope to import 40,000 tons of copper in concentrate annually. Production is due to start up in July 1973.

10. Philippine Republic

Mine Capacity

- (1) Atlas Consolidated has expanded production by constructing a new mill near the present one at the Greater Biga -Barot pit area on Cebu. The ore will come from the expanded low grade Biga pit. Total production from both mills is to be 77,000 tons contained copper per year starting September 1971, an increase of 29,000 tons over the 1970 production. All concentrates produced will be supplied to Mitsubishi.
- (2) Labo Mines Inc. was to start production from a surface copper deposit on Luzon Island. Expected production was about 1,400 tons of copper in the first year with deliveries starting in mid - 1971.
- (3) Nippon Mining Company and local interests plan to develop the Dizon copper mine. Reserves are put at 75 million tons of ore averaging 0.5% copper. Production is expected to be 70,000 tons of concentrates (containing 14,000 tons of copper) per year and all production will go to Japan. Production was expected to commence in January 1974 but there is now a possibility of some delay.

•••/•••

10. Philippine Republic (Cont¹d)

- (4) A small deposit owned by Batong Buhay Gold Mines Company and Nippon Mining Company (25%) was expected to be brought into production during 1975 at a rate of 10,400 tons of concentrates per year. However, this too may be delayed.
- (5) Benguet Consolidated Inc. has discovered a new deposit of 660,000 tons of 3.08% copper ore.

Smelter Capacity

The Philippine Government is reported to be considering construction of a copper smelter with a capacity of 60 - 100,000 tons of copper per year. If plans are realized it would be in operation by 1974.

11. Korea S.

Mine Capacity 😁

No reported developments.

Smelter Capacity

The Department of Commerce and Industry is planning to install a 15,000 tons per year smelter in Musan with production scheduled for 1974. The country's existing capacity is reported as 7,400 tons per year.

12. Turkey

Mine Capacity

Black Sea Copper Mines (49% Etibank and 51% consortium of private banks) is due to come into full operation in 1972. The development programme covers expansion of existing mines at Murgul, Kure and Espiye. This will provide an extra 40,000 tons copper content annually to feed the new smelter at Samsun.

Refinery Capacity

No plans have been announced so far for expansion of the two existing refineries or the establishment of a new one.

ASIA

1. Canada

Mine Capacity

During the next few years there will be a considerable number of new developments and expansions to existing facilities resulting in a rapid increase in Canadian mine capacity.

- (1) Major New Projects
 - (a) Gibraltar Mines Limited (Placer 100%)

The Gibraltar/Pollyana copper - molybdenum properties at Williams Lake in British Columbia are to be brought into production at a rate of 27,000 tons of copper molybdenum ore per day. Ore reserves are 324.8 million tons averaging 0.373% copper and 0.016% molybdenite, cut - off grade is 0.25% copper. The pit is being planned so that 49.9 million tons with an average copper equivalent grade of 0.436% can be mined in the early years of the operation. Production is scheduled to begin in June, 1972. A sales contract has been signed with Nippon Mining Company for the sale of all concentrates produced to December, 1981.

(b) Granduc Mines Limited (Newmont - Asarco) :

The Granduc mine started up in November, 1970. Ore reserves are 40 million tons averaging 1.73%. Capacity of 38,000 tons per year was not expected to be reached until late 1971. All concentrate will be exported to Japan.

(c) Inco :

Copper capacity was due to be increased by 40,000 tons to 191,000 tons per year by 1972 through six new nickel mines, mainly in the Sudbury area. However, it is not yet known what effect the cut-back to 70% of nickel capacity will have on copper production.

- (d) The Lornex Mining Corporation (Rio Algom) : is developing a major new low grade copper - molybdenum ore body. Reserves are 265 million tons of ore averaging 0.427% copper. Production is scheduled for start-up in the second quarter of 1972. Full annual capacity of 51,000 tons per year copper content is not expected to be reached until 1975 although, the bulk of capacity will come on stream in the first two years of production. All concentrate will be shipped to Japan for the first twelve years. It is not yet known whether the current Japanese request for a 20% cut-back in shipments will be agreed to.
- (e) Sherritt Gordon Mines Limited : is to bring the Ruttan Lake copper - zinc property into operation at an initial ore milling rate of 9,000 tons per day by 1st January 1973, with full production to be reached by

.../ ...

1.

Canada (Cont'd)

lst July 1973. Ore reserves so far are 46 million tons
grading 1.47% copper and 1.61% zinc. Mining will be
from an open pit for the first five years at a rate of
3.2 million tons of ore per year. Production seems
likely to be in the region of 35,000 tons per year
copper content.

- (f) Utah International Inc : has developed a major coppermolybdenum mine near Port Hardy on Vancouver Island. Ore reserves are 255 million tons averaging 0.52% copper and 0.029% molybdenum. Tune up of the mill started in October 1971 and initial production of concentrates was due early in 1972. Full annual capacity will be 50,000 tons copper content. 60% of the concentrate will go to Mitsui Mining and Smelting for the first 10 years and 30% will go to Dowa and Mitsubishi for the first 5 years.
- (g) <u>Valley Copper Mines Limited (Cominco-Bethlehem Copper</u> Corporation)

A number of alternatives have been studied to determine the most feasible method of bringing this large copper property into production. The deposit extends into Bethlehem Copper's property. A milling rate of 36,000 tons per day is now envisaged. Ore reserves are 685 million tons averaging 0.48% copper. Negotiations were reported to be taking place with a Japanese consortium for disposal of much of the concentrates. Production is unlikely to begin before 1973 - 1974.

(2) Other New Developments and Expansions.

(a) <u>Gaspe Copper Mines (Noranda)</u>: will triple the mining and concentrating capacity at the Company's Copper Mountain Mine, where an estimated 109 - 136 million tons of new open pit ore has been found grading 0.36% copper. This should lead to more than double the current concentrate production of 33,000 tons per year and the corresponding amount of copper in concentrate (currently 8 - 9,000 tons per year). Work on this increase is due to begin early in 1972 and to be completed by the second quarter 1973.

A REAL PROPERTY.

- (b) <u>Granisle Copper</u>: due to increased ore reserves at its Babine Lake mine is increasing the milling rate from 5,900 tons per day to 12,700 tons per day. This is to be completed by September, 1972.
- (c) Highmont Mining Corporation/Teck Corporation :

The decision has been made to put this copper molybdenum property in Highland Valley into production. The operating rate will be 22,700 tons per day of ore and large scale production is scheduled for mid-1973. Ore reserves are 136 million tons grading 0.285% copper and 0.051% molybdenite. In the initial years

.../...

1. Canada (Cont'd)

. 45.95 million tons of ore with a 0.463% copper equivalent are available.

(d) <u>Mattabi Mines (Mattagami Lake Mines 60%, Abitibi</u> Paper Co. 40%) :

Will bring the copper - zinc - silver mine at Sturgeon Lake into production by 1st July 1972. A milling rate of 2,700 tons per day is planned. Ore reserves for this zone are 12 million tons averaging 0.91% copper. Mattagami Lake mines, has discovered at least one new ore body, the Lyon Lake desposit, in the same area.

(e) Noranda (Bell Copper Division) :

To bring the Newman copper property on Babine Lake into production in late 1972 at a rate of 9,000 tons per day of ore. Reserves are 46.3 million tons assaying 0.5% copper. Capacity will be 13,500 tons per year copper.

(f) Opemiska Copper Mines (Falconbridge Nickel Mines) :

Capacity was being raised by 50% to 2,700 tons of ore daily during 1971 - 1972 to give an additional 9,000 tons of copper per year.

(g) Similkameen Mining Co. (Newmont Mining Corp.) :

Is to bring its property near Princetown into production at a mining rate of 13,600 tons per day of ore. Initial concentrate production is expected in late 1972. Reserves are 68.9 million tons averaging 0.53% copper, all of which can be mined by open pit methods. Newmont have signed a contract for the sale of concentrates to Mitsubishi.

(3) Small Mines

(a) Alwin Mining Company :

A new mine was to begin production early in 1972 with a capacity of 5 - 7,000 tons contained copper per year. The concentrates will be shipped to Hamburg for a five year period.

- (b) <u>Dison Development (Crownex/Pechiney)</u> : was to restore to production the Sunro mine at Jordan River, at a rate of 1,400 tons per day by end of 1971. Proven and probable ore is 1,593,000 tons of 1.21% copper after 20% dilution.
- (c) Hudson Bay Mining :

Developing two new mines in the Flin Flon area. These are :

.../...

- 1. Canada (Cont^{*}d)
 - (i) White Lake Mine (copper zinc silver), due to come into production in mid - 1972 at a milling rate of 249 tons per day. Ore reserves are 319,000 tons averaging 2.22% copper and 6.2% zinc.
 - (ii) <u>Chost Lake Mine</u> (copper zinc silver), planned to begin production early in 1972 at an ore milling rate of 218 tons per day. Ore reserves are 236,800 tons averaging 1.42% copper and 11.6% zinc.
 - (d) Hudson-Yukon Mining (93.16% Hudson Bay) : plans to bring its Wellgreen copper nickel mine in the Yukon into production in mid 1972. Ore reserves are 670,000 tons grading 2.04% nickel and 1.42% copper. The annual ore milling capacity will be 180,000 tons. The concentrates, which are expected to yield 2,700 tons of copper and approximately 3,500 tons of nickel per year, will be shipped to Japan.
 - (e) <u>Selection Trust Limited</u> (Selco) : brought the copper zinc - silver mine at Uchi Lake into production in July 1971 through its subsidiary South Bay Mines. Annual capacity is expected to be 3,000 tons copper content.
 - (f) Stall Lake Mines (Falconbridge) :

Scheduled to bring its mine at Snow Lake into production during 1972 at a mill rate of 360 - 450 tons per day. Ore reserves are 609,000 tons grading 5.38% copper and 2.28% zinc.

- (4) Potential Additional Developments under Review
 - (a) Bethlehem Copper Corporation : hopes that its J-A Zone will be in production in the second half of 1974 and that between this zone and the present Highland Valley operations, production will reach 24 - 27,000 tons of ore per day. This is nearly double the current milling rate of 14,000 tons per day. Drilling so far on the J-A Zone indicates 272 million tons of 0.45% copper or better. A preliminary open pit has been designed containing about 113 - 136 million tons of 0.603% copper and 0.018% molybdenum. A production decision will be made by October 1972.

At the Company's Maggie property, drilling has now outlined 181 million tons of copper and molybdenum ore grading 0.40% copper equivalent. However this deposit is now taking second place to the J-A Zone.

(b) Casino Silver Mines (Brameda Resources) :

Feasibility studies were being carried out on Casino's copper - molybdenum property in the Yukon by Brameda. Work to date has indicated 162 million tons grading 0.37% copper and 0.039% molybdenite or 0.45% copper equivalent.

•••/•••

l.

- Canada (Cont[•]d)
 - (c) Falconbridge Nickel Mines :
 - A large low grade deposit, the Catface Copper Mines project on Vancouver Island, was under study during 1971.
 - (d) Great Lakes Nickel Corporation : decided to bring into production its big copper - nickel deposits at Thunder Bay, Ontario, and is trying to arrange financing. A 5.5 million tons per annum mining and milling rate is reported to be technically and economically viable. Ore already detailed is in excess of 90 million tons grading 0.4% copper and 0.2% nickel. It is hoped to start mine development at an early date and commence production within three years. Annual capacity should be approximately 20,000 tons of copper per year.
 - (e) Hudson Bay Mining and Smelting :

A copper - zinc ore body to be called the Centennial Mine has been discovered near Flin Flon. Reserves so far indicated are 1.4 million tons averaging 2.06% copper.

(f) Liard Copper Mines (Hecla) :

Considering development of its low grade copper molybdenum deposit at Schaft Creek. Reserves now stand at 256 million tons grading 0.40% copper and 0.038% molybdenite for a combined grade of 0.51% copper equivalent. An open pit operation is indicated with a possible rate of 27,000 tons per day of ore.

(g) Sturgeon Lake Mines (Falconbridge) :

Drilling on the Sturgeon Lake deposit indicates 1,749,000 tons mineable by open pit methods averaging 3.0% copper, 7.85% zinc and 4.54 oz. silver per short ton. Also indicated is a further 234,000 tons grading 1.39% copper, 2.85% zinc and 1.65 oz. silver per short ton that may be recoverable by ramp mining. Minimum rate for an operation on this deposit would be 900 tons of ore per day but more likely to be 1,400 tons per day.

(5) Mine Closures

- (a) Kerr Addison's Quemont Mine June, 1971
- (b) Churchill Copper's Magnum Mine October, 1971
- (c) Anaconda Cominco's Caribou Mine November, 1971

Smelter Capacity

(1) Noranda Mines Limited :

Plans to increase capacity at its Gaspe Copper Mines Limited, smelter at Murdochville by 25,000 tons per

1.

Canada (Cont'd)

year by the end of 1973.

At Noranda an increase of 50,000 tons is planned by the end of 1973.

(2) <u>Inco</u>:

Increases in mine production will mean increases in smelting capacity and this is being done. Capacity is expected to rise by 30,000 tons by the end of 1974.

(3) Bethlehem Copper Corporation :

Currently studying the feasibility of a copper smelter, start to coincide with the possible mining of the J-A Zone.

(4) Cominco :

Looking at the possibility of a 63,500 tons per year smelter for Kimberley, B.C. Should it prove feasible it could be in production in two years.

(inclusion)

Summer

Refinery Capacity

- <u>Falconbridge Nickel Mines Ltd</u>: to build a new nickel/ copper refinery at Becancour with start-up expected in 1975, a year later than originally planned. The nickel/ copper matte feed will come from the smelter at Falconbridge and the annual capacity of the refinery will be 10,000 tons of copper and 13,600 tons of nickel. Cobalt and sulphur will also be produced.
- (2) Inco :

Increases in mine production will mean increases in refinery capacity and this is being done. Capacity is expected to rise by 30,000 tons by end of 1974.

- (3) Canadian Copper Refiners :
 - Increasing capacity by 52,000 tons from the current 317,500 tons by the end of 1973.
- (4) Ontario is studying the possibility of a smelter/ refinery complex to serve its small producers. No single producer being large enough to build one.

2. Cuba

No new developments have been reported.

3. Dominica

There are known to be copper deposits in the Cordillera central area with reserves estimated at up to 50 million tons, averaging 1% copper.

There are also three potential development areas where preliminary examinations indicated substantial tonnages assaying more than 4% copper. The areas are :

> El Mayor - Copper (Sulphide) El Cuaron - Copper - Gold El Recodo - Copper - Silver - Gold

4. Guatemala

· · · · •

Basic Resources International of Canada commenced work during 1971 on the Company's high grade copper property at Oxec. This will be brought into production at a rate of 900 tons per day of ore, probably during 1972. Proven reserves are 1.33 million tons of ore grading 2.58% copper. Another zone has probable reserves of 216,000 tons grading 2.131% copper.

5. Haiti

No developments have been reported.

6. Mexico

Mine Capacity

Asarco Mexicana has developed a new mine at Inguaran (State of Michoacan). Production began early in 1971 at an annual rate of 13,000 tons. Reserves are 4.4 million tons averaging 2% copper.

A new Company, Cia Mexicana de Cobre S.A., has been formed by Asarco Mexicana S.A. and others to develop a new mine, La Caridad near Nacozari. Reserves are 635 million tons of 0.8% copper. Full capacity of 120,000 tons is expected to be reached by 1976.

Cia Minera de Cananea S.A. de C.V. (49% Anaconda) plans to increase production at Cananea to 60,000 tons per year from the current 37,000 tons per year by 1974. A further increase to 127,000 tons per year is envisaged in 1980 - 1982.

Met-Max Penoles S.A. plans to increase production by 20% from the current 500 - 600 tons per month of copper.

A considerable amount of exploration is being undertaken and several promising ore bodies are reported to have been discovered. However, no firm development programmes have been announced.

Smelter Capacity

Asarco Mexicana S.A. has begun work on the expansion of the San Luis Potosi smelter from its current 30,000 tons per year to 42,000 tons

6. Mexico (Cont'd)

per year to allow smelting of the Inguaran concentrates.

A Smelter/refinery will be built to process the production from La Caridad. The Government has suggested that this is done as a joint operation with the Cananea Company because of the large amount of investment required.

Refinery Capacity

A new electrolytic refinery with a capacity of 45,000 tons per year will be built at San Luis Potosi by Asarco Mexicana S.A.

7. Nicaragua

The Falconbridge subsidiary La Luz Mines is phasing out its Rosita copper mine due to declining copper prices and a deterioration in the grade of ore.

8. Panama

A Japanese Consortium has decided to finance the exploration of the copper deposits in the Azuero Petaquilla area. Copper reserves have been confirmed in three places totalling some 300 million tons averaging 0.7 - 0.75% copper.

Pavonia S.A. (affiliate of Canadian Javelin) is continuing its exploration of the Cerro Colorado copper property. This is a massive copper/molybdenum porphyry deposit in the Chiriqui Province of Western Panama.

9. Puerto Rico

A final decision by the Government of Puerto Rico is awaited concerning the proposed development by Kennecott and Amax (through Ponce Mining Co.) of two mines at Adjuntas. A smelter/refinery at Ponce to process the concentrate is planned. Capacity is expected to be 48,000 tons per year. Production does not seem likely before 1977. 10. U.S.A.

Mine Capacity

A major expansion of mine production is expected to take place during coming years.

Among principal developments are :

(1) Anaconda

The Company has stated that it intends to increase domestic mine production from the current 227,000 ton level to 272,000 tons per year by 1975 and that Twin Buttes should be expanded.

(2) Asarco

A leaching plant is to be constructed at the San Xavier mine to handle some of the copper bearing siliceous ore at present being used as converter flux. Additional annual copper production seems likely to be 11,000 tons. No firm production date has been announced as the project has been delayed because of a law suit brought by the Papago Tribe.

A feasibility study of the Sacaton deposit is now in progress. Ore reserves are 29.9 million tons grading 0.76% copper susceptible to open pit mining and 12.7 million tons grading 1.37% susceptible to underground mining.

(3) Cities Services - Tennessee Copper Division

A new sulphide ore body at Pinto Valley is being studied. If feasible production could begin in 1975 at the rate of 45,000 tons of copper per year. This is also dependent upon availability of smelting capacity.

(4) Duval

Production at the new Sierrita mine in Arizona will be increased from the current 59,000 tons per year to 68,000 tons per year by 1974/1975. However, in December 1971, the Company closed the Esperanza mine for 9-12 months due to a build up of excess concentrates for smelting. Capacity at Esperanza was 22,700 tons per year.

(5) Phelps Dodge

Capacity at the Tyrone mine is currently being expanded from 54,000 tons to 90,700 tons. Completion is expected in late 1972 or early 1973.

The new Metcalf mine is being developed for production to begin in mid 1974 at an annual rate in excess of 45,000 tons.

.../...

The increase in capacity at Tyrone will offset the loss of production at the Bisbee mine which is to close due to exhaustion of ore, probably early in 1973.

$10 \cdot U \cdot S \cdot A \cdot (Cont \cdot d)$

Phelps Dodge (Cont'd)

Preliminary development at the Safford project in Arizona is being carried out. A decision on when to continue development of this property to the production stage will not be made for some time.

(6) <u>Kennecott</u>

Studies are continuing at the Spar Lake, Montana project.

(7) Pima Mining Co (Cyprus Mines 50%)

Expansion at the Pima mine was expected to be completed by the end of 1971. Output at Pima would therefore increase by 13,600 tons to 72,600 tons of copper in concentrates annually.

(8) Newmont

Capacities at both San Manuel and Superior are being increased to give a total additional capacity of 62,000 tons. The San Manuel expansion (45,000 tons) due to have been completed in late 1971 and Superior (17,000 tons) is due by 1973 - 1974.

(9) Hecla/El Paso

These companies plan to develop jointly the Lakeshore deposits (Arizona). Ore reserves are 22 million tons of tactite ore averaging 1.69% copper and 406 million tons of sulphide and oxide ores averaging 0.70% copper. Capacity is expected to be 32,000 tons and production is due to begin in late 1974. The company has also constructed a pilot oxide ore leaching plant and may produce some additional copper from oxide ore.

(10) Ranchers Exploration and Development Corp.

At the Bluebird mine in Arizona production is expected to increase from the 1971 production of 5,400 tons to 5,900 tons in 1972 and 6,600 tons in 1973. Ore reserves have also been increased considerably to some 68 million tons grading, on average, 0.52% copper.

(11) Kerr Addison Mines

The copper - zinc property of Black Hawk Mining near Blue Hill, Maine is to be brought into production by the end of 1972. Ore reserves are 513,000 tons grading 16.8% zinc and 0.62% copper, plus 222,000 tons grading 2% copper. In addition to possible high grade zinc ore there are possible reserves of 816,000 tons of copper ore in the extensions of the proven and the probable zones. The planned mining rate is 900 tons per day of ore.

(12) Shield

Production at the O.K. open pit started up in May 1970 at a milling rate of 18,000 tons ore per month and reached a rate of 41,000 tons per month by June, 1971. The rate was scheduled to reach 54,000 tons by August, 1971 when the Maria orebody would be brought in.

10. U.S.A. (Cont'd)

(13) Earth Resources

The small open pit at Nacimiento in New Mexico was started up at the end of May, 1971. Planned production rate is 6,350 tons of copper in concentrates per year for 5 years.

(14) Copper Range

Planned expansions at White Pine have now been deferred indefinitely.

Smelter Capacity

(1) Phelps Dodge

A new smelter will be built in Southern Hidalgo County, New Mexico. It will be designed to treat the full output of the Tyrone mine which is being expanded to 90,700 tons per year copper for early 1973.

(2) Newmont

The Magma smelter at Superior has been closed and the San Manuel smelter is being expanded to take additional mine capacity from both San Manuel and Superior. One or more of the existing reverberatory furnaces will be replaced with one or more flash smelting furnaces as a part of the emission control plans. Production increase seems likely to be in the region of 50,000 tons and full capacity should be reached by 1974.

(3) Cities Services (Tennessee Copper)

Included in expansion and modernisation programme at Copper Hill are new smelting facilities. This could give a 25% increase in production of copper by mid - 1972.

Refinery Capacity

(1) Newmont

The new refinery built by Magma at San Manuel was due to enter production on 1st December, 1971. Capacity is 181,000 tons of copper per year.

(2) Southwire

The Company's new secondary refinery at Carrollton, Georgia was started up in June 1971. Full capacity of 65,000 tons per year was due to be reached by December 1971.

(3) Phelps Dodge

The Company closed an outmoded section of the Laurel Hill refinery at the beginning of November 1971. The capacity was therefore reduced by 33,000 tons to 65,000 tons.

SOUTH AMERICA

1. Argentina

Falconbridge have been awarded exploration rights for five years for copper, molybdenum and other minerals in Neuquen province.

Several companies including Cities Services Co., Rio Tinto Zinc, Union Mines of South Africa and Noranda are among those seeking a contract to develop potentially large deposits of copper and other minerals at Catamarca. The property is owned by an Argentine state mining agency (YMAD). Cities Services is also hoping to develop a separate property at Catamarca, close to the YMAD area.

2. Bolivia

No developments have been reported.

3. Brazil

A number of new copper deposits have been discovered, principally in North West Brazil.

The Cia Brazileira de Cobre is planning to increase capacity to 12,000 tons per year of copper in concentrate by 1973 at its Camaqua mines (Rio Grande do Sul).

Development is also planned of the copper deposits at Caraiba, Bahia. The ore grades 1.50 - 2.12% copper and start-up is hoped to be mid - 1973. Initial capacity will be 35,000 tons per year, rising eventually to 70,000 tons.

Copper production in Brazil is envisaged at 79,000 tons per year by 1976.

Smelter Capacity -Refinery Capacity -

The Caraiba development programme provides for a smelter and refinery at Jaguarari with an initial capacity of 35,000 tons of electrolytic copper rising to 70,000 tons per year.

SOUTH AMERICA

4. Chile

Mine Capacity

The latest official Chilean announcement on expected production for the large mines gives a 22% increase over 1971 to 720,000 tons for 1972 and a 45% increase over 1971 to 840,000 tons for 1974. It is now expected that Chilean production will not reach 1 million tons until 1974.

The following increases to capacity were planned.

(1) Exotica

Production commenced at the end of 1970 and production was building up during 1971. Full capacity will be 102,000 tons.

(2) Rio Blanco

The first shipment of production took place at the beginning of 1971. Full annual capacity will be 61,000 tons and two thirds of production will be supplied to Japan for the first 10 years.

(3) Sagasca

Due to come into full production in 1972 at an annual rate of 24,000 tons. Half this production is to go to Dowa for the first 6 years.

(4) Small Mines

Enami planned to increase capacity of small mines by 45,000 tons by 1972 through expansion of some existing mines and development of new mines to give a total capacity of 96,000 tons.

A potential new mine is the Sierra Gorda project of Atlas Explorations which would proceed as a joint venture with the Chilean Government. The deposit is estimated to contain 18 million tons of sulphide mineralization with an average grade of 1.0% copper and 0.15% molybdenite.

The U.N. Development programme reported finding 300 million tons of 1% copper ore at Las Pelambres, 750,000 tons of 2% ore at Augustinas, 400,000 tons of 2% ore at El Rubio, near Las Serena, and an estimated 500,000 tons of 2% copper at Braillador also near La Serena.

Smelter Capacity

It is proposed to increase the capacity at Las Ventanas to 100,000 tons. Some increase is also proposed for Paipote.

Refinery Capacity

The capacity of the Las Ventanas refinery is to be increased to 120,000 tons.

SOUTH AMERICA

5. Ecuador

A U.N. exploration team has discovered copper deposits in the Chauca Valley. Deposits are indicated to be of 100 million tons grading 0.5% - 0.8% copper. Japan's Overseas Mineral Resources Development Co. has signed a contract for exploration and development with the Government and will start preparations for full scale development if reserves of more than 50 million tons are confirmed. Work has begun on access roads into the Chauca area.

6. Peru

Mine Capacity

The following major projects are now expected to be brought into operation :

- (1) <u>Cuajone (Southern Peru Copper Corporation)</u> capacity 130,000 tons is to brought into production, probably during 1976.
- (2) Cerro Verde

British Smelter Construction Limited and Wright Engineers of Vancouver are to exploit and develop this mine. Minero Peru will operate the mine when construction is completed in mid - 1974. Reserves are now estimated as 150 million tons of ore grading 1.09% copper. By late 1974 it is hoped that the mine will be producing at a rate of 31,500 tons copper annually. At a later stage it is hoped to expand production to 50,000 tons per year.

(3) Tintaya

Minero Peru has been authorised to put this mine into production during 1974.

A recent statement put Peruvian copper production at 400,000 tons per year by 1975 against the current 200,000 tons. This increase would come from the above developments. A further increase to 700,000 tons per year would result from the development of Michiquillay, Quellaveco, Antamina and Ferrobamba with the co-operation of foreign concerns.

Smelter Capacity Refinery Capacity

The Peruvian Government is reported to be having discussions with Japanese concerns over the construction of a 150,000 ton/year copper refinery at Ilo. If an agreement is reached the refinery could possibly be completed within 3 years.

OCEANIA

1. Australia

Mine Capacity

An intensive exploration programme involving many companies is taking place. Developments now scheduled for production include :

- (1) <u>Mount Lyell (Tasmania)</u> : is doubling capacity to 30,000 tons by 1973 through the development of new shafts.
- (2) Mount Isa

Capacity is expected to rise to 150,000 tons by mid-1973 consequent upon the commissioning of new shafts and concentrator.

(3) Peko :

The new Warrego mine is expected to come into production in June, 1972 reaching full capacity of 10,000 tons by 1973 when it will be the largest mine in the Tennant Creek area. Reserves are 5 million tons grading 2.6% copper. Development is also taking place at the smaller Geko mine in the same area for a planned milling rate of 100,000 tons of ore per year. Reserves are 1.4 million tons averaging 3.8% copper. Start-up could now be during 1972. The Company has ceased operations at the Ivanhoe mine.

(4) Samin Co.

The Burra mine was reopened in May, 1971 for initial treatment of 300 tons per day of ore (105,000 tons per year giving 1,600 tons per year copper content). A second stage was to be commissioned by November, 1971, bringing final ore production to 1,000 tons per day (350,000 tons per year, giving 5,600 tons per year copper content). Ore reserves are 3.3 million tons averaging 1.6% copper.

(5) Electrolytic Zinc

Expansion to double production to 3,000 tons per year was completed late in 1971.

(6) North Broken Hill/Broken Hill South (51%)/Electrolytic Zinc/McPhar Geophysics

A consortium of these companies was developing the Kanmantoo deposit for probable initial production late in 1971. The ore is to be mined by open pit methods at a rate of 750,000 tons per year for 7 years, giving an output of 7/8,000 tons per year copper content. Reserves are 5.3 million tons averaging 1% copper. Concentrates are likely to be smelted at Port Kembla.

(7) Cobar Mines Pty. Limited

Doubling mine capacity to 20,300 tons copper content of concentrates by 1974.

•••/•••

OCEANIA

1. Australia (Cont'd)

(8) Pacific Copper Explorations Limited

Feasibility study completed on its Cadia properties shows aggregate ore reserves at 27.77 million tons grading 0.7% copper with supplementary precious metal content. The Company is negotiating for financing to bring the properties into production at a rate of 4,000 tons per day of ore for 22 years.

- (9) <u>Mitsubishi/Consolidated Gold Fields</u>: To establish a joint company to produce 10,000 tons per year of contained copper at the Gunpowder copper treatment plant of Surveys and Mining which they have taken over. All production will go to Japan.
- (10) Jododex Australia Pty. Ltd. (St. Joe Minerals/Phelps Dodge) :

To go ahead with mining its copper - silver - lead deposit at Tarago, N.S.W. Ore reserves are 7.1 million tons averaging 2.9% copper (mining to begin in 1973?). •

Smelter Capacity Refinery Capacity

Capacity is expected to increase in line with the expansion of mine production.

<u>Peko</u>: Completed construction at the end of January, 1972 of its new flash smelter at Tennant Creek. Capacity is to be in excess of 25,400 tons per year of copper.

2. Bougainville

The RTZ development on Bougainville Island (Solomon Islands) by Bougainville Copper Pty. Limited is due to start up in April, 1972, earlier than scheduled. The annual capacity is expected to be 187,000 tons. Agreement was reached with the Japanese industry for the supply of 950,000 tons of copper in concentrate over 15 years starting in 1972. It is reported to have been agreed that 10% (9,500 tons per year copper content) of the concentrates will be toll smelted in Japan and returned to Bougainville Copper in ingots from June, 1972 to March, 1974. (The Japanese originally requested a 20% cut back in shipments). The balance of production will be supplied to West Germany and Spain. whhendry

PRINCIPAL MINE CAPACITIES AT END OF 1971

COUNTTY	COMPANY	MINE /AREA	CAPACITY (METRIC
EUROPE Austria	Kupferbergbau Mitterberg Ges.m.b.	H.Nuhlbach, Salzburg	3,000
Finland	- Outokumpu Oy Outolumpu Oy	Outokumpu (Keretti) Several smaller mines	10,000 28,000
Irish Republic	Gortdrum Hines Ltd. Discovery Hines Ltd.	Gortdrum Avoca	6,000 6,000
Norway	A/S Borregard A/S Sulitjelma Gruber A/S Bidjovagge Gruber	Tverrfjellet Sulitjelma Bidjovagge	6,000 5,000 4,000
Spain	Compania Espanda de Minas de Rio Tinto S.A.	Rio Tinto	17,000
,	Rio Tinto Patino S.A.	Cerro Colorado	20,000
Sweden	Boliden Aktiebolag Boliden Aktiebolag	Aitik Many small pyrites mines	10,000 22,000
Yugoslavia	State owned	Bor) Najdanpek)	115,000
AFRICA Hauritania	SONIMA	Akjoujt	22 ,000
Rhodesia	Nessina	Hangula) Guai River)	21,000
•••	Coronation Syndicate	Shackleton Inyati	8,000 4,600
South African Republic	c.Palabora Nining Company Nessina	Palabora Nessina	98,000 13,000
· .	OlCKiep	Nababeep South) Nababeep Kloof) East O ¹ OKiep & Others)	36,000
S. W. Africa	Tsuneb	Tsumeb) Kombat)	30,000
Uganda	Kilembe Copper Cobalt Co.	Kilembe	16,000
Zairø	Gecamines	Several mines	410,000
Zanbia	New Nchanga Consolidated Copper Mines Ltd. 4 4 5 Roan Consolidated Hines Ltd.	Rokana Chingola Konkola Luanshya	105,000 270,000 45,000 100,000
	Roan Consolidated Nines Ltd. Roan Consolidated Nines Ltd. Roan Consolidated Mines Ltd. Roan Consolidated Mines Ltd. Roan Consolidated Mines Ltd.	Chambisha Chibuluma Kalengwa Hufulira	34,000 24,400 17,000 96,000(rate of 8,000 per
		•	sold per sonth)

PRINCIPAL MINE CAPACITIES AT END OF 1971 (Contid)

1

J

]

J

J

J

1

	COUNTRY	COMPANY	MINE/AREA	CAPACITY (METRIC TONS)
	ASIA	Curry Minor Corporation)		·
	Cyprus	Cyprus Mines Corporation) Cyprus Sulphur & Copper)		
•	1997 - 1997 -	Co. Ltd.	Several small mines	21,000
		Hellenic Hining Co. Ltd.)		
	Japan	Dowa Mining Co.)		
	·	Furukawa Nining Co.)		
		Mitsubishi Metal Mining)		130,000
	,	Mitsui Mining & Smelting)		
		Nippon Nining Co.		
		Sumitomo Metal Mining)		
	Philippine Rep.	Atlas Consolidated	Greater Biga-Barot	77,000
	cuttibbus veb.	Harcopper Hining Co.	Labo	40,000
		Harinduque Mining	Sipalay & Bapacay	41,000
	• •	Lepanto Consolidated	Lepanto	30,000
		Philex Mining	Tuba	18,000
				•
	Turkey	Black Sea Copper Mines (Etibank)	Hurgul	
			Kure and Espiye	32,000
	NORTH/CENTRAL AMERICA			65 666
	Canada	Bethlehem Copper Corporation	Jersey	22,000
-		Brenda Nines Ltd.(Noranda)	Brenda	16,500
		Granduc Mines Ltd.	Granduc	38,000
		(Newmont-Asarco) Inco		161,000
		Sherritt Gordon Mines Ltd.	Fox Lake	20,000
		Sherritt Gordon Nines Ltd.	Lynn Lake	6,000
	•	Hudson Bay Mining & Smelting	Various	45,000
		Craigmont Nines	Merritt	18,000
		Falconbridge Nickel Nines Ltd.	Several	22,000
		Gaspe Copper Nines	Needle Nountain)	37,000
•			Copper Nountain)	
		Noranda	Horne)	51,000
			Geco)	
		Ecstall Nining (Texas Gulf	Kidd Croek	52,000
		Sulphur) Selection Invet (Selec)	Nehi Leko	2 000
		Selection Trust (Selco) Opemiska Copper Nines	Uchi Lake Springer)	3,000
		opeariska copper annes	Perry)	29,000
			Robitaille)	23,000
		Patino Mining Corp.	Copper Rand)	15,000
•			Portage Island)	,
		Utah International Inc.	Port Hardy	50,000
	Mexi co	Cia Minera de Cananea S.A.de C.V.		40,000
		Asarco Mexicana S.A.	Inguaran	13,000
	11 9 4		Stilver Dell)	
	U.S.A.	Asarco	Silver Bell) Mission)	73,000
			San Xavier)	10100
		Anaconda	Twin Buttes)	e e
•			Berkley)	227,000
			Need Heights)	
			Others)	1
			-	***/***

COUNTRY	COHPANY	MINE/AREA	CAPACITY (IET TON
	•		100
U.S.A. (Cont ¹ d)	Bagdad Copper Corp.	Arizona	18,000
	Copper Range	White Pine	74,000
•	Duval	Sierrita	59,000
	Duval	Ithica Peak	23,000
	Đuval	Battle Nt.	14,000
	Inspiration Consolidated	Inspiration)	
		Christmas)	65,000
		Ox-hide)	
U.S.A.	Kennecott Copper Corp.	Bingham (Utah)	281,000
	Kennecott Copper Corp.	Ruth (Nevada)	45,000
	Kennecott Copper Corp.	Ray (Arizona)	102,000
	Kennecott Copper Corp.	Chino (N.M)	86,000
	Magna Copper Corp (Newmont)	San Nanuel)	109,000
		Superior)	
	Phelps Dodge	Horenci	130,000
	Phelps Dodge	Ajo	65,000
	Phelps Dodge	Bisbee	55,000
	Phelps Dodge	Tyrone	54,000
	Pima Mining Co.(Cyprus Hines)	Piga	73,000
	• • • • •	r i wa	44,000
	Tennessee Copper Co.		441000
SOUTH AMERICA			
Chile	El Teniento S.A.	El Teniente	180,000
	Compania de Cobre Salvador S.A.	El.Salvador	100,000
	Anaconda	Exotica	34,000
	Andina Nining Co.	Andina	61,000
	Compania de Cobre Chuquicamata	Chiquicamata	300,000
	S.A.	and dat any and	
	Cia Ninera Disputada de la Condes	Di sputada/Sol dado	36,000
	Empress Ninera de Nantos Blancos	Mantos Blancos	35,000
	ENAMI		51,000
D			310,000
Peru	Southern Peru Copper Corp.	Toquepala	140,000
	Cerro de Pasco	Cobriza)	35,000
		Morococha)	· · ·
AUSTRALIA	Nt.Lyell Nining & Railway Co.	Mt. Lyell	15,000
	Nt. Isa Nines Ltd.	Nt. Isa	110,000
	Cobar Nines Pty. Ltd.	Cobar	10,000
	Peko/Hallsend	Peko)	I V § U U U
	T GRUJHATTSONG	Orlando)	10,000
		147.1 241111014	10-000
		lvanhoe)	1

PRINCIPAL SHELTER CAPACITIES AT END OF 1971

COUNTRY	COMPANY	SHELTER	CAPACITY (NETRIC
EUROPE		· · · ·	· · · · · · · · · · · · · · · · · · ·
Austria	Montanwerke Brixlegg G.m.b.h.	Brixlegg	12,000
Belgium	Netallurgie Hoboken	Hoboken	45,000
	Metallo-Chimique S.A.	Beerse	17,000
Finland	Outokumpu Oy	Harjavalta	50,000
France	Societe Francais d/Affinage du Cuivre	Paissy	11,000
Gernany F.R.	Norddeutsche Affinerie	Hanburg	75,000
	Berliner Kupfer-Raffin G.m.b.H.	Berlin-Willmersdorf	15,000
	Duisburger Kupferhutte	Duisburg	30,000
· · · ·	Metallhutte Kall G.m.b.H.	Kall (Eifel)	20,000
	Huttenwerke Kayser A.G.	Lunen	42,000
Spain	Rio Tinto Patino S.A.	Huelva	40,000
5 - ¹	Rio Tinto Patino S.A.	-Rio Tinto	18,000
	Electrolysis del Cobre S.A.	Barcelona	15,000
	Industrias Reunidas Minera- Netalurgicas S.A.	Asua	18,000
Sveden	Boliden Aktiebolag	Ronnskar	60-65,000
G #GUGH	burnen aktroburay	nomiskar	00-0 <i>3</i> 2000
Yugoslavia	Rudarsko Tapionicarsk Bazen Bor	Bor	105,000
AFRICA			
Rhodesia	Nessina-Rhodesia Smelting & Refining Co. Ltd.	Alaska .	23,000
S. African Rep.	Messina Transvaal Development Co.	Nessina	20,000
	Palabora Mining Co. Ltd.	Palabora	89,500
	O'OKiep Copper Co. Ltd.	Nababeep	40,000
S. W. Africa	Tsumeb Corporation Ltd.	Tsumeb	35,000
Uganda	Kilembe Hines Ltd.	Jinja	10,000
Zaire	Gecamines	Likasi-Shituru	185,000
	Gecamines	Lubumbashi	125,000
	Gecamines	Liulu	125,000
Zambia	Roan Consolidated Nines	Nufulira	230,000
	Roan Consolidated Mines	Luanshya	122,000
	NCCN	Chingola)	420,000 (including
	NCCM	N ^I Kana)	electrowinning)
AS IA	· · · · · · · · · · · · · · · · · · ·	• • •	
Japan	Mitsubish Netal Hining	Naoshima	146,000
	Onahama Swelting & Refining	Onahama	90,000
·	Furukawa Nining Co.	Ashio	38,000
	Dowa Mining Co.	Kosaka)	54,000
	Dowa Mining Co.	Okayama)	
-	Nitsui Hining Co.	. Kibi	47,000
	Nippon Nining Co.	Hitachi	60,000
		· • •	

PRINCIPAL SMELTER CAPACITIES AT END OF 1971 (Contid)

COUNTRY	CONPANY	SIELTER	CAPACITY (IETRIC
			TONS)
Japan(Cont ¹ d)	Nippon Hining Co.	Saganoseki	120,000
• • •	Sumitomo Metal Mining Co.	Kunitomi	16,000
	Sumitowo Metal Hining Co.	Besshi	108,000
•	Sumitono Netal Mining Co.	Τογο	96,000
	Rasa Industry	Hiyako	24,000
	Toho Zinc	Onahama	18,000
India	Indian Copper Corp.	Houbhander	10,000
Turkey	Etibank	Hurgul	11,000
	Etibank	Ergani	/ 19,000
NORTH/CENTRAL AVERIC			
Canada	inco .	Copper Cliff	,170,000
	Inco	Coniston	l l
	Falconbridge Nickel Mines Ltd.	Falconbridge (Ont.)	30,000
	Gaspe Copper Nines Ltd.	Murdochville (Que.)	63,000
,	Hudson Bay Mining & Smelting Co. Ltd.	Flin Flon	45 , 000
	Noranda Nines Ltd.	Noranda (Que.)	204,000
Nexi co	Asarco Hexicana S.A.	San Luis Potosi	30,000
	Campania Ninera de Cananea S.A.	Cananea	- 37,000
	Cia Ninera Nacocozac S.A.	Conception del Oro	25,000
	Cia Minera de Santa Rosalia	Santa Rosalia	10,000
U.S.A.	American Netal Climax Inc.	Cartaret	40,000
•	Asarco	Tacoma .	105,000
	Asarco	El.Paso	77,000
	Asarco	Hayden	80,000
	Anaconda	Anaconda	170,000
	Inspiration Consolidated	fliani	70,000
	Kennecott Copper Corp.	Garfield (Utah)	300,000
	Kennecott Copper Corp.	Hurley (Chino)	100,000
	Kennecott Copper Corp.	NcGill (Nev.)	100,000
	Kennecott Copper Corp.	Kayden (Ray)	100,000
	Nagma	San Nanuel	85,000
	Phelps Dodge	Douglas	140,000
	Phelps Dodge	Norenci	80,000
	Phelps Dodge	Ajo	70,000
	Copper Range	White Pine	81,000
	Bagdad (electrowinning)	Arizona	6,500
SOUTH AFERICA			
Chile	Andes Copper Mining Co.	Potrerillos	100,000
	Chile Exploration	Chuqui camata	319,000
	Sociedad Ninera El Teniente S.A.	Caletones	255,000
	Cia Minera Disputada de las Condes S.A.	Chagres	30,000
	ENANI	Las Ventanas	43,000
	ENAMI	Paipote	33,000
	Mantos Blancos	Mantos Blancos	30,000
Peru	Southern Peru Copper Corp.	110	160,000
	Cerro de Pasco Corp.	La Oroya	50,000
	· · · · · · · · ·	•	•
AUSTRALIA	Mt. Isa Mines Ltd.	Mt. Isa	100,000

Sub-

Appendix 3

PRINCIPAL REFINERY CAPACITIES AT END OF 1971

COUNTRY	COHPANY	REFINERY	CAPACITY (METRIC TONS)
FUDODE			
<u>EUROPE</u> Austria	Hontanuerke Brixlegg G.m.b.H.	Brixlegg	20,000
Belgium	Metallurgie Hoboken Metallo-Chimique S.A.	01 en Beerse	270,000 40,000
Finland	Outokuapu-Oy	Pori	43,000
France	Cie Gle d ⁱ Electrolyse du Palais	Le Palais	32,000
Germany F.R.	Norddeutsche Affinerie Berliner Kupfer-Raffin G.m.b.H. Huttenwerke Kayser A.G. Metallhuttenwerke Lubeck A.G. Osnabrucker Kupfer und Drahtwerke	Hamburg Berlin-Willmersdorf Lunen Lubeck-Herrenwyk Osnabruck	270,000 15,000 97,000 20,000 13,000
Italy	Societa Netallurgica Italiana A. Tonolli e C	Fornaci di Barga Paderno Dugnano	23,000 10,000
Norway	Falconbridge Nikkelverke A/S	Kristiansand	26,000
Spain	Rio Tinto Patino Electrolisis de Cobre S.A. Industrias Reunidas Ninero- Hetalurgicas S.A.	Huelva Palencia Asua	40,000 12,000 16,000
Sweden	Boliden Aktiebolag	Ronnskar	55,000
United Kingdom	British Copper Refiners	Prescott) electrolytic & fire Widnes) refining	173,000
	Elkington Copper Refiners	Walsall	25,000
•	Enfield	Brinsdown	66,000
	Williams Harvey & Co. Ltd.	Liverpool -	10,000
· · ·	I.M.I. Refiners Ltd.	James Bridge	50,000
Yugoslavia	Rudarsko Topionicarsk Buzen Bor	Bor	105,000
AFRICA Rhodesia	Nessina-Rhodesia Smelting & Refining Co. Ltd.	Alaska	20,000
S. African Rep.	Nessina Palabora Nining Co.	Nessina Palabora	20,000 57,500
Zaire	Gecamines	Likasi-Shituru	230,000
Zambia	Roan Consolidated Nines Roan Consolidated Nines NCCM NCCM	Nufulira N¹dola Chingola Rokana (NªKana)	185,000 130,000 271,000(Furnace) 200,000(Tankhouse)
ASIA			
Japan	Nitsubishi Notal Nining Mitsubishi Netal Nining	Naoshi wa Osaka	120,000 04,000

PRINCIPAL REFINERY CAPACITIES AT END OF 1971 (Contid)

]

-

Brinchas al

Number of Street, Stre

Name and Address of the Indiana

. Secondaria

berne of

becaused by

the second

Para Caral

Junear

COUNTRY	COMPANY	REFINERY	CAPACITY (IETRIC TONS)
Japan (Cont'd)	Onahama Smelting Refining Co.	Onahama	120,000
•••••••••••••••	Dowa Hining Co.	Kosaka	44,000
	Dowa Nining Co.	Okayana	11,000
	Furukawa Hining Co.	Nikko	48,000
	Nippon Mining Co.	Hitachi	72,000
			•
	Nippon Nining Co.	Saganoseki	160,000
	Sumitomo Netal Mining Co.	Besshi	144,000
	Toho Zinc	Onahama	14,000
	Mitsui Netal Hining Co.	Takehara	84,000
NORTH/CENTRAL AIER	ICA	•	
Canada	Inco	Copper Cliff	170,000
	Canadian Copper Refiners	Hontreal	318,000
Nexico	Cobre de Mexico, S.A.	Atzacapotzalco	72,000
U.S.A.	anax	Carteret	236,000
Usvens .	ASARCO	Baltimore	-
			283,000
	ASARCO	Perth Amboy	152,000
	ASARCO	Tacona	142,000
	Anaconda	Great Falls	172,000
	International Smelting &	Raritan	136,000
	Refining Co. (Anaconda)	•	
	Inspiration Consolidated	Inspiration	64,0 00
	Kennecott Copper Co.	Garfield (Utah)	169,000
	Kennecott Copper Co.	Hurley (N.H.)	93,000
	Kennecott Refining Corp.	Naryland	250,000
	Phelps Dodge	El Paso	404,000
	Phelps Dodge	Laurel Hill	65,000
	Copper Range	White Pine	81,000
	Cerro Copper Products (Cerro Corp)	St. Louis	40,000
	Chemico	Alton (111.)	30,000
	Newnont-Nagna	San Manuel	
	· · ·		181,000
·	Reading Netals	Ontelaunee (Pa.)	18,000
	Southwire	Carrolton	65,000
SOUTH ANERICA			
Chile	Andes Copper Nining Co.	Potrerillos	72,000
	Chile Exploration	Chuqui camata	369,000
	ENANI	Las Ventanas	85,000
	Sociedad Hinera El Teniente	Caletones	100,000
Peru	Cerro de Pasco Corporation	La Oroya	52,0 00
AUSTRALIA	Copper Refineries Pty. Ltd.	Townsville	100,000
And and a state of the second	Electrolytic Refining & Smelting	Port Kembla	60,000

COPPER AND BRASS

Another strong year ahead for copper

PD's Munroe sees tight supply in '70

and an easing market for following years

With foreign and dealer copper priced in the 75ϕ range, with domestic producer copper at 52ϕ , with copper production and consumption—both domestic and foreign—at rec-

ord levels, and with copper inventories by and large near rock bottom, high copper prices may well prevail for much—if not all—of 1970. This forecast of next year's copper market was advanced by Phelps Dodge president George B. Munroe at a recent meeting of the Investment Analysts Society of Chicago.

"However, world copper mining capacity will increase in 1970 and over the next several years at

a faster rate than it has recently," Munroe stated. "And this should bring about a gradual easing of market conditions."

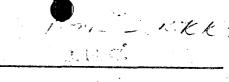
"Near-term forecasts for copper are fraught with uncertainties," Munroe said. "Foremost among these is the level of business activity in the US in 1970. . . Other question marks are the level of economic activity in Europe and Japan, progress in bringing the Vietnam war to an end, and uncertainties arising out of labor disputes and political considerations." But high prices should prevail.

file Coppar

Free World copper mine capacity is scheduled to increase by almost 10% in 1970 and 32% by the end of 1973, Munroe said (see table below). Since this yields a cumulative annual production increase of 7.2% a year against a historical rate of increase in consumption of $4\frac{1}{2}$ % a year—there is an indicated excess of copper production over consumption for the 1971-1973 period. However, Munroe stated, it is not anticipated that this will do more than provide copper consumers reasonable protection with regard to future copper supply.

As to the wide spread between the prices of domestic producer copper and all other copper, Munroe said, this differential causes undesirable distortions in the copper consuming sector of the economy, and he expressed his belief that over some reasonable period of time this spread will have to be eliminated.

HOW FREE WORLD COPPER CAPACITY WILL GROW


(tpy)					Total	Est.	
North America	Est. capacity at end of 1969	Additiona 1970	al capacity scheduled 1971	for completion 1972	1973	planned 1970-1973	capacity at end of 1973
United States Canada Other	1,775,000 685,000 95,000	115,000 67,500 (2,500)	65,000 14,000 4,000	65,000 104,000	215,000 (15,000) 10,000	460,000 170,500 11,500	2,235,000 855,500 106,500
Subtotals	2,555,000	180,000	83,000	169,000	210,000	642,000	3,197,000
South America Chile Peru Other Subtotals	830,000 240,000 11,000 1,081,000	217,500 	108,000 5,000 	15,000 50,000 	50,000 50,000	340,500 105,000 445,500	1,170,500 345,000 11,000 1,526,500
Africa Zambia Republic of the Congo Republic of South Africa South West Africa Other Subtotals	825,000 385,000 140,000 38,000 41,000 1,429,000	46,000 2,000 30,000 78,000	25,000 	58,000 	25,000 30,000 15,000 70,000	96,000 58,000 30,000 2,000 45,000 231,000	921,000 443,000 170,000 40,000 86,000 1,660,000
Asia Japan Philippines Other Subtotals	140,000 140,000 85,000 365,000	5,000 40,000 45,000	5,000 	5,000 30,000 208,000 243,000	5,000 120,000 125,000	20,000 70,000 328,000 418,000	160,000 210,000 413,000 783,000
Australia	150,000	22,000		12,000		34,000	184,000
Europe Yugoslavia Finland Other Subtotals	85,000 40,000 95,000 220,000	5,000 25,000 30,000	15,000 7,000 4,000 26,000			20,000 7,000 29,000 56,000	105,000 47,000 124,000 276,000
Provision for unannounced increases Total net increases planned Total free world capacity Percent increase Source: Phelps Dodge	5,800,000	572,500 6,372,500 9.9%	252,000 6,624,500 4.0%	547,000 7,171,500 8.3%	50,000 505,000 7,676,500 7.0 %	50,000 1,876,500 7.2% per year	50,000 7,676,500

.

PAY DIRT for October 27, 1969

.

Miami - District

14.54

Copper

PROSPECTUS 00710

-2 upper of periods sälläive sohteellees EXCHANGE OFFER

TO HOLDERS OF COMMON STOCK OF.

Cities Service Company

17 topo 2,370,•133 with Country d filtes Service

ambos de Relakte (n. 111

2,370,000 Shares

Atlantic Richfield Company the antice terraries and 13 Common Stock ed blocm deliky utbale $\sim 10^{\circ}$

(Par Value \$5)

EXCHANGE OFFER

Cities Service Company ("Cities") hereby offers to exchange 2,370,000 shares of Common Stock ("Atlantic Richfield Common Stock") of Atlantic Richfield Company ("Atlantic Richfield") owned by Cities for shares of Cities Common Stock in the ratio of

1 SHARE OF ATLANTIC RICHFIELD COMMON STOCK

for

2 SHARES OF CITIES COMMON STOCK

Holders of \$4.40 Cumulative Convertible Preferred Stock of Cities ("Cities Preferred Stock") and holders of \$2.25 Cumulative Convertible Preference Stock of Cities ("Cities Preference Stock") may make arrangements to tender Cities Common Stock by delivering Cities Preferred Stock or Cities Preference Stock, or by converting Cities Preferred Stock or Cities Preference Stock, and then tendering Cities Common Stock, all as more fully set forth herein under "Exchange Offer".

> THE EXCHANGE OFFER WILL EXPIRE AT 3:30 P. M. NEW YORK TIME, ON OCTOBER 22, 1969, UNLESS EXTENDED BY CITIES AS PROVIDED HEREIN.

The First Boston Corporation and Loeb, Rhoades & Co. have been retained by Cities as Dealer Managers to form and manage a group of Soliciting Dealers, including the Dealer Managers, to solicit exchanges under the Exchange Offer. Each Soliciting Dealer will be paid a fee by Cities of 75¢ for each share of Cities Common Stock exchanged under the Exchange Offer through the efforts or facilities of such Soliciting Dealer, as evidenced by the appearance of the name of such Soliciting Dealer on Exchange Forms, subject to a maximum aggregate fee of \$1,500 to Soliciting Dealers with respect to shares exchanged by any one beneficial owner. Gities will also pay the Dealer Managers in the aggregate a fee equivalent to \$50,000 plus 5¢ for each share of Cities Common Stock exchanged under the Exchange Offer, plus all reasonable out-of-pocket expenses, including counsel fees, incurred by them. Cities has agreed to indemnify the Dealer Managers and Soliciting Dealers against certain liabilities. See "Solicitation of Tenders and Expenses" herein for additional information.

THESE SECURITIES HAVE NOT BEEN APPROVED OR DISAPPROVED BY THE SECURITIES AND EXCHANGE COMMISSION NOR HAS THE COMMISSION PASSED UPON THE ACCURACY OR ADEQUACY OF THIS PROSPECTUS. ANY REPRE-SENTATION TO THE CONTRARY IS A CRIMINAL OFFENSE.

The First Boston Corporation

Loeb, Rhoades & Co.

£,

The date of this Prospectus is October 1, 1969.

Cities Service]

Cities Service operates fertilizer plants at Cedartown, Georgia; Tuscaloosa, Attalla, Montgomery and Decatur, Alabania; and New Albany, Indiana. In addition, it operates 249 fertilizer bulk blending plants in the Midwest, Southeast and in western Texas.

Cities Service owns a majority interest in a phosphatic fertilizer, sulfuric acid and phosphoric acid plant in Cubatao, Brazil; a 68.7% interest in a mixed fertilizer blending plant in Corinto, Nicaragua; and a 49.65% interest in a Belgian company engaged in the production and marketing of nitrogen fertilizers.

The fertilizer industry is being adversely affected by a general condition of over capacity in terms of present demand.

Industitial Chemicals

Inorganic chemical products include sulfuric acid produced at Copperhill, Tennessee; East Tampa, Florida; Augusta, Georgia; and Lake Charles, Louisiana. In addition, the Copperhill complex produces liquid sulfur dioxide, copper chemicals, sodium hydrosulphite, secondary zinc oxide, ferric sulfate and a variety of sulfonation products. Aluminum sulfate also is produced at Augusta and Cedar Springs, Georgia and Fernandina Beach, Florida. Chemicals produced at East Tampa, other than plant foods, are sodium fluosilicates and hydrofluosilicic acid. Chlorosulfonic acid and potassium sulfate are produced at Lockland, Ohio and other specialized chemicals are produced at East Point, Georgia.

Metals

Ducktown Basin, Tennessee

Engineering studies are underway for a 25% expansion in operations along with extensive modernization of the Copperhill facilities. The limits of the ore body are not established but the proven reserves would sustain the increased rate for 20 years. The average ore mining rate for the past 5 years has been 1,565,996 tons per year. Beneficiation and smelting of this ore provides sulfur dioxide (which is converted into sulfuric acid), copper, iron sinter (approximately 68% iron), and zinc concentrate (approximately 60% zinc).

The operations at Copperhill were suspended on September 15, 1969 as a result of a strike. Negotiations between the Company and unions representing the employees are continuing.

Globe-Miami Mining District, Arizona

The Copper Cities and Diamond H open pit mines are estimated to have ore reserves (as of December 31, 1968) of 31 million tons of .55% ore—approximately 290 million pounds of recoverable copper. The average ore mining rate over the past 5 years was 3,427,372 tons per year. Copper is recovered from this ore by milling and flotation. The Copper Cities mine also currently produces annually 5 million pounds of copper by leaching and precipitation.

Leaching operations at the block-caved Miami mine currently produce 13 million pounds of copper annually. This rate will decline gradually over a number of years.

Leaching operations are also conducted at the Castle Dome property. Current production is one million pounds of copper annually which has declined to the point that this operation will be discontinued later this year.

Internal Consumption

A part of the copper produced is fabricated at Company owned plants into plate, sheet, strip and roll copper at Seymour, Connecticut and into insulated wire and cable at Chester, New York.

Approximately 12 million pounds of copper per year are used in the production of copper chemicals at Copperhill, Tennessee.

Exploration

On the Miami East project, in a down-faulted block of the Miami-Inspiration ore body, 6 holes drilled in 1969 have encountered copper mineralization at depths ranging from 2,460 to 3,300 feet.

The average thickness of mineralization is 465 feet containing 1.51% copper. The distance between the present extremities of the drilling is about 1,900 feet. It is estimated that 6 additional holes will be drilled by the end of this year.

During the past six years, 150 drill holes have proved the occurrence of widespread low grade copper mineralization in the immediate vicinity of the old Castle Dome mine, about 8 miles northwest of Miami, Arizona. A computer study of the data from this drilling is being made to optimize tonnage and grade of prospective ore and waste in order to evaluate the open pit mining feasibility of this project. Preliminary estimates indicate over 300,000,000 tons of possible ore containing .45% copper.

Cities Service has a 34% interest in Union Minera del Sur, S. A. de C. V., a Mexican company engaged in exploration for sulfur and other minerals in Mexico. A sulfur discovery by this company was announced on November 12, 1968.

A total of 60 holes has been drilled on two of the seven concession areas held. Sulfur with a net thickness of three feet or more has been encountered in 20 of the holes in two separate mineralized areas. Exploration indicates sulfur reserves exceeding 1,500,000 tons, but the full extent and value of the deposit is not known. Drilling is continuing.

i kaj de la statili.

Other Operations

Marine

The vessels comprising the marine fleet owned by Cities Service traveled 825 thousand miles and transported 24 million barrels of crude oil and petroleum products and 25,000 long tons of grain during the first six months of 1969. The 15 vessels in this fleet range in size from T-2 class to three 70,000-ton tankers. Total fleet tonnage is 610,000 deadweight tons. Cities Service tankers are in both foreign and domestic service and are used for Cities Service movements and for chartering to others, including the Military Sea Transport Service. Barges and shallow draft tankers are also chartered for domestic movements.

Helium

Cities Service owns and operates the Jayhawk Helium Plant 13 miles east of Ulysses, Kansas. The plant, located on a 200-acre site in the Hugoton natural gas field, processes in excess of 500 million cubic feet of natural gas daily for the extraction of crude helium. Pursuant to a firm contract with the United States Government, Cities Service for 22 years from 1961 will tender to the United States Government the helium output and the Government will pay for such helium, whether taken or not, at an initial price of \$11.78 per Mcf, subject to escalation, but limited to a maximum amount of \$9,100,000 annually. The General Accounting Office has filed a report with Congress recommending that certain helium supply contracts, including the Cities Service contract, negotiated by the Department of the Interior be amended to include provision for price redetermination. The results of such recommendation are indeterminable at this time.

The Jayhawk Plant also processes crude helium delivered by pipeline from the Company's 50% owned Sunflower Plant, located near Scott City, Kansas. The crude helium produced in excess of Government requirements is refined and sold either as a gas or liquid.

Real Estate

Cities Service owns several office buildings in the financial district of New York City. The more important buildings are those located at 52 Wall Street, 60 Wall Street and 70 Pine Street (also known as Sixty Wall Tower). The latter is located on land partly owned in fee and partly held under long-term lease; while the other buildings are located on land owned in fee.

Cities Service also owns a 50% interest in two office buildings under construction. In Atlanta, Georgia, a building is scheduled for completion in early 1970 in which Cities Service will lease approxi-