

CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 416 W. Congress St., Suite 100 Tucson, Arizona 85701 520-770-3500 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the

James Doyle Sell Mining Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

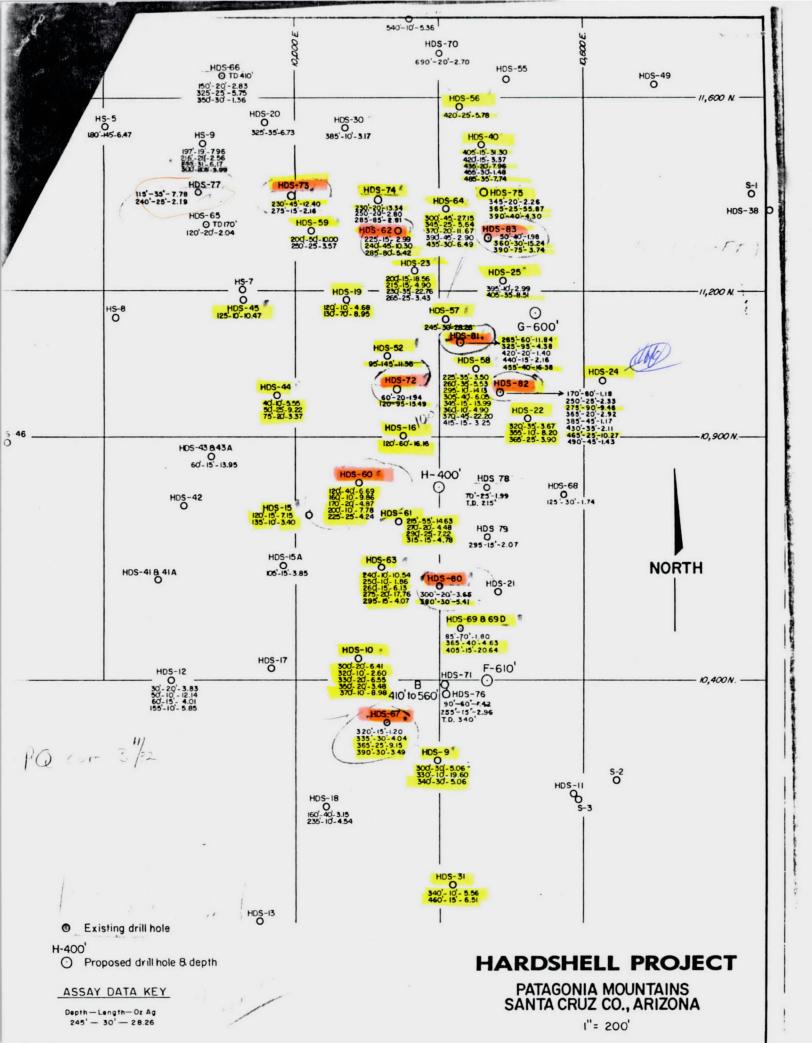
QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

footage Barrel No. 7 10-50 HDS-51 (aloo7A) 74 90-535 320-580 HDS-5-2 (7A) 763-807 9 10-180 HDS-49 190-390 HDS-50 10-365 HDS-70 9 325-395 HDS-71 10 10-440 HOS-49 & 408-91 325-395 HOS 16 19 10-280 105-41 8400-84 18 10-420 HDS-42 Replicate +1DS-78 10-1120 HD-82 19 10-260 HDS-43 20-260 oduplice HDS-71 22 10-430 HDS-44 LI 40-525 HDS-22 10-525 HDS-77 23 10-370 HDS-46 Duglicate HDS-77 10-370 HDS-78 25 10-510 HDS-32 alugheras HDS-80 25 31 310-550 HDS-31 10-300 HDS-33 cliphia HDS-31 43-43A 10-450 10-95 +1D5-23 duplies HP5-61 662 44 10-30 HDS-24; 10-200 HDS-20 285-445 HDS-32 5-2 55 6-465 HDS-17 aloe HDS-13 54 0-435 HDS-16 58 0-435 HDS-9 41 0-330 HDS-2 also HDS-13 43 0-425 HDS-10 44 0-475 HOS-8 1.2 68 Selection esternal HOS-38 also HDS-39 & HDS-103 69- C9D HDS-39 # HDS-40 13.63 74 0-380 HDS-3 75 0-370 HDS-1 22 57 0-335 HDS-11 4:3-571 20 =49-D man 영산이 and the state 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -1. 30 2. - 3.4 - . 4 -12

Hadshell Mond Mardshell marte outline. Holes as overtined by WIK, if used, Tabalation of hole, sample footase, weight, recover, assay, weight, note on recovery factor, sample newber Telex to Brown 12, ash if she needed Noto. All of sangle sent. No material light in Tuesa

HARDSHELL MET SAMPLES FOR CENTRAL RESEARCH


		should be these inte									
	HDS-83:	365-425	97#								
	HDS-82:	280 - 365	156.#	\supset							
(A)	HDS-81:	320-340	297								
(B)	HDS-81.	390-420	4 martin								Ť
		or									
		450-550									
	HDS-80:	380-430	HEY I								
	HDS-77:	115-150	120-125	= 12 [±]	X						
	HDS-73:	230-280	. 49#								
	HDS-72:	120-180	55 12		. ·						
	HDS-67:	280 - 385 350-420	12#	L							
	HDS-60:	120-190	8-1-					<i>.</i> .			
P	HDS-62:	240 245-360	16=								
-	• Mark buc	ket by Ho	each sample le # & (MET Make up sa	-CR) -	Examp	le HDS-	83 (ME:	r-CR)			-all laft
		Hazen-De	nver, Pack gal. bucke	a each in	nd 320-	340' (HD	S-81A	(MET-NAZ)		2h • only 34 [#] . 1	way were
-	Best if	complete	sequence ma	kes up	composi	te.				~	
	Because from	of errati any inter	c hi gh grad val - use a	e/low g t least	rade se 5 samp	quences les for	do not 50 Ibs.	use more	than 10	pounds	*

FRK 1/26/84

FROM: W. L. KURTZ

To:

On the may I'd Say the interest worked in yellaw

October 18, 1983

To: J. D. Sell

From: F. R. Koutz

map + invento

Estimated Costs Large Diameter Coring Program Hardshell Project Santa Cruz County, AZ

As requested in your note of Oct. 14 the following are very roughly estimated costs of a large diameter coring program at Hardshell to provide samples for metallurgical and geomechanical testing. Drilling cost figures were obtained from Russ Beddow, Longyear (Phoenix, 258-6543) and Clark Hirschi, Boyles Bros. (Phoenix, 944-1731). Joy apparently does no coring over NC (2.4")diameter. It is also suggested that we contact Shelton Drilling who did the coring at Sacaton and who has core drilled (DDH S-6) at Hardshell.

I have consulted N. P. Whaley's (8-30-79) estimates for 6" coring at Hardshell (basement files), A. Dalla Vista's (5-28-70) report on Sacaton 6" coring, and B. E. Kilpatrick's (Nov. 1970, p. 83) La Caridad report to help prepare these estimates.

The major uncertainty is rate of coring and bit life in the jasperoids and vuggy jasperoids. I suspect that we will not get a foctage bic from anyone, although Longyear would like to look at our previous core and the site with outcropping jasperoid before deciding. All have suggested that PQ (3.345") core, if suitable, would be much preferable as it is wireline compared to conventional for 6" (5.97") core. As R. L. Brown has phoned (Oct. 17) that 50 pounds per interval will be sufficient for metallurgical tests, PQ core may be suitable as it would produce 210 pounds/20 feet of core.

Rig-time estimates were \$100/hr. although Boyles would give us a Longyear 44 Hydrostat. which could handle PQ to 500-600' for \$70/hour. I also believe that due to the probable difficulty in getting through the massive jasperoid caprock to the manto with core drilling we should hammer-drill to just above the manto and case and then core drill. A rig capable of doing both hammer/ rotary top-holing might be slightly more than \$100/hr. but we might be better off having 2 separate rigs and/or contractors for top holes and core.

Drilling rate is estimated at a maximum of 2 ft./hr. as Sacaton drilling averaged 2-4'/hr. (actual drilling time). The rate could be <u>considerably</u> less. Diamond impregnated bits will probably give better penetration than set bits but apparently will have to be special ordered for 6" bits. Boyles indicated that a common 6" set bit contained 76 carats (115 carat bits were used at Sacaton) which, with using \$25/carat diamonds and a \$646 setting charge would be \$2546/bit. Diamond recovery should be about 50% (it was 70% at Sacaton but with more diamonds) which would put bit costs @ \$1596 each. Boyles estimated that a 6" impregnated bit would cost only slightly less than a set bit and would last longer but would have no diamond salvage value. Standard PQ impregnated bits are \$1200 each. Bit life is estimated at 100 feet of drilling (Sacaton averaged 220 ft.) but could be <u>considerably</u> less. In 1972 Mettler Bros. consumed 18 NQ set bits drilling 253' and 4 BQ set bits drilling 115' at Hardshell. With larger diameter core bit life (especially impregnated bits) should be better.

Most of the manganese oxide manto zone at Hardshell ranges from 60-150' thickness; 120' is used for an average core intercept to allow a little rock above and below the zone to be cored. For the 8 proposed holes this would be 960 feet of coring. At 2'/hr. this would take 480 hours of actual coring or about 2 month's time on a 10 hr./day x 6 day week. Average top-hole hammer drilling would probably be about 250 feet per hole and should take a week for 8 holes.

Total estimated costs are about 50% more for 6" vs. PQ coring and the advantages of over 3 times the sample volume may not overweigh the problems with conventional vs. wireline coring and the larger equipment, casing, etc. needed for 6" core. In any case the drilling procedure, logging, photographing, geomechanical testing, splitting (?), crushing and assaying need to be discussed before a large diameter coring proposal is finalized. Most of the 8 holes should also be located so that they can be deepened by smaller-diameter diamond drilling to test for <u>sulfide limestone replacement</u> deposits which have a good potential of being underneath Hardshell.,

Alata R. Mars

Fleetwood R. Koutz

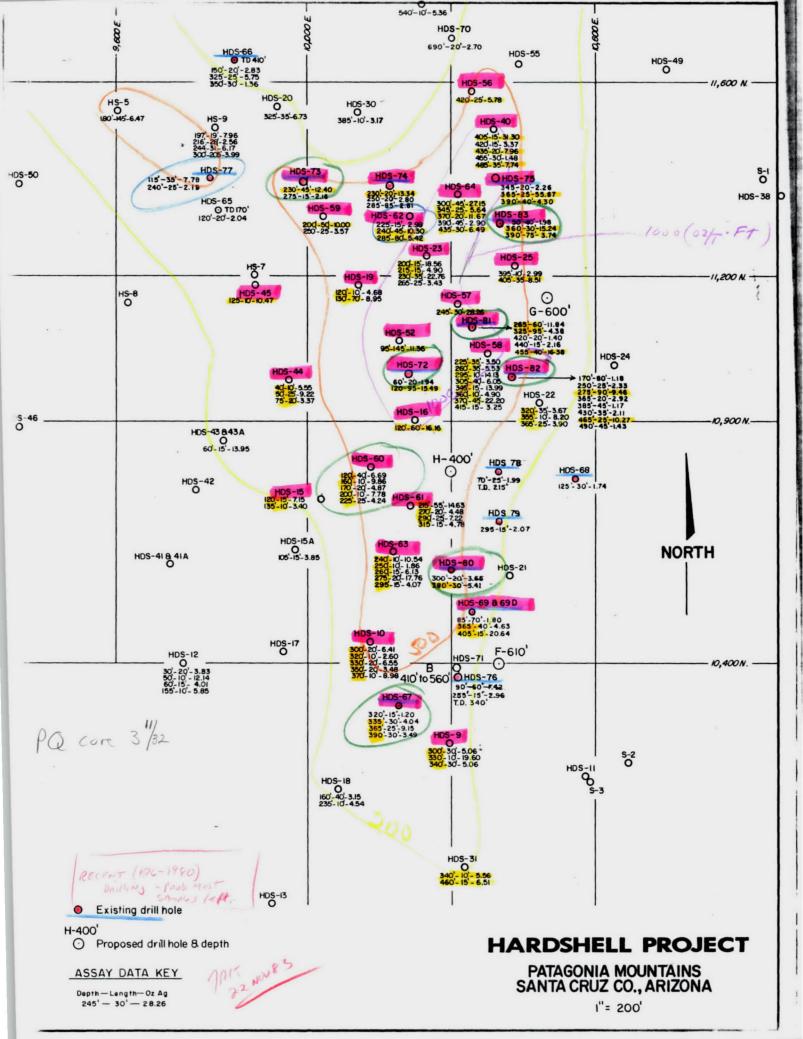
FRK/cg

Attachment

cc: SAAnzalone (w/attachment)

F. R. Koutz 18 Oct. 1983

Rough Estimates - Hardshell Large Diameter Core Drilling


MnOxide manto:60-150' thickness - say 120 feet average 8 holes x 120' = 960' core = 48 x 20' samples.

at density of 2.8 gm/cc

6"	core	(5.97'') =	33.8	lbs./ft.	=	676	1bs/20	ft.	=	16.2	tons/960'
PO	core	(3.345'') =	10.5	lbs./ft.	=	212	1bs/20	ft.	=	5.1	tons/960'
											tons/960'

	6 000	3"core
At 2'/hr. drilling (2'-4'/hr. @ Sacaton) = 480 hours for 960' Drilling time rig cost	\$ 100/hr. 48,000	\$ 70/hr. 33,600
<pre>Plus 20% other rig time: moving, rigging, mixing mud, etc. (1.76'/hr. was overall drilling rate at Sacaton)</pre>	9,600 \$ 57,600	6,720 \$ 40,320
Iotai Kig ööse	φ 97,000	
Mud, additives, cement(!), water, boxes, drums, etc.	12,000	8,000
Bits (10 x 100' each) - Impregnated	25,000	12,000
Diamond Drilling Total	\$ 94,600	\$ 60,320
(Sacaton was \$23.98, 1970): Cost/Ft.	98.54	62.83
<pre>250' x 8 holes = 2000' hammer drilling (including bit additives)</pre>	@ \$12/ft. (9 7/8")	@ \$10/ft. (7")
. Hammer Drilling Total	\$ 24,000	\$ 20,000
Casing (2000') (some will be salvageable) Escalated from N.P.Whaley 1979 figures	8 5/8" \$ 7/ft.	6" \$ 5/ft.
	\$ 14,000	\$ 10,000
Top Hole Cost	\$ 38,000	\$ 30,000
<pre>Misc.;Salaries and labor supervision, logging: (2 months) Road and Site Work (no major <u>new</u> roads) Shipping to N.J. @ \$8.97/100 lbs.</pre>	\$ 8,000 2,000 2,900	\$ 7,000 2,000 915
GRAND TOTAL COSTS	\$145,500	\$100,235
Cost/Ft. of Core	\$ 151.56	\$ 104.41
1070)		

(Sacaton was \$41.62/ft. actual coring - 1970)

ASARCO

March 28, 1980

Hardshell Rejects

Hardshell project rejects stored in 55-gallon drums, Ventura Street warehouse.

Barrel No.	Hole No.	Interval
-HDS-1	HDS-76 HDS-75	0-150 0-370,
HDS-2	HDS-61	0-330
HDS-3	HDS-74 HDS-73	0-380 0-100
HDS-4	HDS-60	0-255
HDS-5	HDS-73 HDS-72	100-340 0-210
HDS-6	HDS-59	0-335
	HDS-72 HDS-71	210-245 50-310
HDS-8	HDS-64	0-475
HDS-9	HDS-58	0-435
HDS-10	HDS-63	0-425
HDS-11	HDS-57 HDS-57 HDS-56	0-335 Duplicate Duplicate
HDS-12	HDS-62	0-385
HDS-13	HDS-54 HDS-55 HDS-61 HDS-62 HDS-70	500-TD(?) Duplicate Misc. Misc. Misc.
HDS-14	HDS-70	
HDS-15	HDS-54	0-500
HDS-16	HDS-56	0-435

Hardshell Rejects Ventura Street Warehouse March 28, 1980 page 2

Barrel No. Hole No. Interval 0-465 HDS-17 HDS-55 HDS-18 HDS-49 10-525 HDS-19 HDS-50 10-435 10-110-HDS-51 HDS-20 HDS-51 115-254 HDS-52 10-280 285-445 HDS-21 HDS-52 HDS-38 10-250 10-200 HDS-39 HDS-22 HDS-39 210-480 HDS-40 10-310 HDS-41 5-35 HDS-40 320-380 HDS-23 10-60 HDS-41 HDS-41 5-40 HDS-42 45-105 HDS-43 10-45 HDS-43A 10-95 HDS-24 HDS-44 10-30 HDS-45 10-230 HDS-46 10-125 HDS-25 HDS-47 10-540 HDS-26 HDS-47 540-590 HDS-48 10-125 HDS-48 20-125 HDS-27 HDS-35 120-190 HDS-S36 10-150 HDS-37 10-75 HDS-38 470-550 HDS-28 HDS-35A 10-50 HDS-38 260-460 10-110 HDS-S35 HDS-29 HDS-36 10-150 HDS-32 10-310 HDS-32 566-575 HDS-33 10-200 HDS-30 HDS-34 10-50 HDS-35 10-190 HDS-33 420-580

Hardshell Rejects Ventura Street Warehouse March 28, 1980 page 3

: • s

Ľ

Barrel No.	Hole No.	Interval
HDS-31	HDS-31 HDS-32 HDS-33	310-550 320-550 210-410
HDS-32	HDS-26 HDS-25	10-200 10-510
HDS-33	HDS-30 HDS-31	10-410 10-300
HDS-34	HDS-28 HDS-29	10-490 10-150
HDS -3 5	HDS-27	10-585
HDS-36	HDS-66	6-5, 10-150; 190-175; 180-285; 295-325; 380-390; 395-405; 410-TD
- HDS-37	HDS-67	Selective Interval
	HDS-68	Selective Interval
₩DS-39	HDS-68+69 (1/3 Barrell)	
HDS-40	HDS-69+65	Selective Interval
	HDS-69+65 HDS-15A HDS-15 HDS-16	Selective Interval 10-210 10-150 10-280
	HDS-15A HDS-15	10-210 10-150
HDS-41	HDS-15A HDS-15 HDS-16 HDS-18	10-210 10-150 10-280 10-420
HDS-41 HDS-42	HDS-15A HDS-15 HDS-16 HDS-18 HDS-17 HDS-19 HDS-20	10-210 10-150 10-280 10-420 10-320 10-260 10-387
HDS-41 HDS-42 HDS-43	HDS-15A HDS-15 HDS-16 HDS-18 HDS-17 HDS-19 HDS-20 HDS-21 HDS-21	10-210 10-150 10-280 10-420 10-320 10-260 10-387 10-250 250-510
HDS-41 HDS-42 HDS-43 HDS-44	HDS-15A HDS-15 HDS-16 HDS-18 HDS-17 HDS-19 HDS-20 HDS-21 HDS-21 HDS-22	10-210 10-150 10-280 10-420 10-320 10-260 10-387 10-250 250-510 10-430
HDS-41 HDS-42 HDS-43 HDS-44 HDS-45	HDS-15A HDS-15 HDS-16 HDS-18 HDS-17 HDS-19 HDS-20 HDS-21 HDS-21 HDS-22 HDS-24 HDS-22 HDS-23	10-210 10-150 10-280 10-420 10-320 10-260 10-387 10-250 250-510 10-430 20-590 440-525 10-370

Hardshell Rejects Ventura Street Warehouse March 28, 1980 page 4

Ć

Barrel No. Hole No. Interval HDS-49 HDS-10 10-440 10-180 HDS-9 HDS-50 190-390 HDS-9 HDS-8 180-410 Ð HDS-51 HDS-7A 90-360 HDS-7 10-50 HDS-8 10-170; 480-570 HDS-7A HDS-52 90-535; 370-580 HDS-53 HDS-79 200-520 2 HDS-54 ø HDS-55 HDS-80 455-490 335-340; 385-390;410-420; 435-440; HDS-79 445-450; 460-490 HDS-78 170-215 HDS-76 240-340 HDS-56 HDS-76 HDS-77 HDS-57 HDS-49 HDS-47 140-70 HDS-58 HDS-50 HDS-49 250-TD HDS-59 HDS-47 Box #1 HDS-46 0-TD HDS-45 205-230 HDS-60 HDS-45 Duplicate HDS-45 Box #1 & 2 HDS-44 65-100 HDS-61 HDS-44 HDS-44 Duplicate HDS-43 HDS-62 HDS-43A HDS-43A Duplicate HDS-42 Duplicate HDS-63 HDS-42 HDS-41 HDS-41 Duplicate

Hardshell Rejects Ventura Street Warehouse April 29, 1980 page 5

٠,

S.

Barrel No.	Hole No.	Interval
HDS-64	HDS-40	270-TD
HDS-65	HDS-40 HDS-40	10-270 Duplicate
HDS-66	HDS-47 HDS-50 HDS-49	525-575 120-330 10-130
HDS-67	HDS-39	
HDS-68	HDS-38	Duplicate
HDS-69	S-6	5-422.9
HDS-70	HDS-8 HS-9	581-792. 10-335
HDS-71	HS-9 S-11	335-395 606-853
HDS-72	HDS-24 HDS-7A	607-840.3 783-887
HDS-73	HDS-31 HDS-30 HDS-34 HDS-37	Duplicate Duplicate 0-50 0-75
HDS-74	HDS-21	10-580
HDS-75	HDS-20 HDS-21	10-387 Duplicate
HDS-76	HDS-22	10-525
HDS-77	HDS-22 HDS-23	Duplicate Duplicate
HDS-78	HDS-18 HDS-23	Duplicate 10-370
HDS-79	HDS-24	10-590
HDS-80	HDS-25 HDS-20	Duplicate Duplicate
HDS-81	HDS-19 HDS-19	20 -26 0 Duplicate
HDS-82	HDS-18	10-420
HDS-83	HDS-17 HDS-17 HDS-15A	20-320 Duplicate Duplicate

continued .

Hardshell Rejects Ventura Street Warehouse April 29, 1980 page 6

٩,

2

Barrel No.	Hole No.	Interval
HDS-84	HDS-16	10-280 Duelieste
	HDS-16	Duplicate
HDS-85	HDS-7A F-2	594-783 10-130
		-
HDS-86	HDS-12 HDS-12	Duplicate 175-240
	HDS-13	30-210
HDS-87	HDS-13	220-340 10-444
	HDS-14	
HDS-88	HDS-15 HDS-15	Duplicate 3 0-1 60
	HDS-15A	10-220
HDS-89	HDS-11	320-600
	HDS-12	10-170
HDS-90	HDS-10 HDS-11	Duplicate 20 - 310
		-
HDS-91	HDS-10	10-440
HDS-92	HDS-9 HDS-9	20-390 Duplicate
	-	·
HDS-93	HDS-8	260-573
HDS-94	HDS-7A HDS-8	4 90-57 0 10-250
HDS-95	HDS-7	10-83
	HDS-7A	10-290
HDS-96	HDS-7A	300-480
HDS-97	HDS-77	
HDS-98	HD5-76	•
₩HDS-99	HDS-79	
→HDS-100	HDS-78	
	HDS-80	
•HDS-102	HDS-80	
	HDS-79	

Hardshell Rejects Ventura Street Warehouse April 28, 1981 page 7

Barrel No.	Hole No.	Interval No.	
🥓 HDS-103	HDS-81	175-500 Missing intervals: 205-220; 260-265	225-230;
	HDS-68	285-290	
	HDS-69	155-160 295-300 385-390 410-415	
	HDS-80	90-100	
HDS-104	HDS-83	0-475 Missing intervals: 110-120; 450-455	260-265;
- HDS-105	HDS-82	500-560 Missing intervals: 510-515;	515-520
- HDS-106	HDS-82 ·	500-560 Missing intervals: 90-100;	470-475

June 15, 1984

FILE MEMO

HARDSHELL PROJECT Central Research Project 3103 :

Apparently, Harold Stone will inventory and separate the reject samples that are available for the holes and intervals listed on the "Hardshell Project - Zone 3 Intervals For Drill Holes" memo dated June 15, 1984.

From a review of the holes selected and intervals shipped to Central Research, letter, James D. Sell to Dr. M. El Tawil, February 27, 1984, these holes are representative of the Zone 3 mineralized area. The only intervals that do not represent Zone 3 are: HDS-81-A intervals 390-420, and HDS-82 intervals 280-290.

It would appear that the only additional Central Research testing that would be required at this time would be to selectively test several intervals in the five holes not yet tested, according to the May 22, 1984 Progress Report.

David F. Skidmore

DFS/mck

cc: RJKupsch - all w/attach. TEScartaccini RLBrown WLKurtz HMStone DECrowell

FILE MEMO

Southwestern Mining Department

June 15, 1984

HARDSH	ELL PROJECT	r - zone-3	Intervals	for Drill Holes
Hole No.	From	To	+3 oz	(From-to, intervals)
HS -5	180	330	<u>Except</u>	180-190 208-217 227-233 278-284 299-302 311.5-313
HS -7	126	161	Only	126-130 138-147.5
HS -8	137	207	Only	194-198
HS -9	194	242	Only	197-229
HDS-9	290	390	Only	300-370
HDS-10	290	380	Except	290–300 320–330
HDS-12	50	195	Only	50- 75 155-165
HDS-15	120	160	Only	120-145
HDS-16	120	180	<u>A11</u>	
HDS-17	220	240	None	
HDS-18	180	380	Only	180-190, 235-255
HDS-19	110	230	Except	110-120, 205-230
HDS-20	285	375	Only	295-300, 325-360
HDS-22	320	415	Except	350-355, 370-380 390-410

÷

HARDSHELL P	ROJECT				
Page 2 Hole No. HDS-23	From 200	<u>To</u> 315	+3 oz (Fi Except	rom-to, intervals) 290-315	
HDS-25	395	485	Only	395-400, 405-440	
HDS-30	360	420	Only	360-365, 385-390	
HDS-31	456	553	Only	460-475	· ·
HDS-40	400	560	Except	430-435, 460-485 525-560	
HDS-41A	0	65	Only	0-10, 15-20	
HDS-42	0.	90	Only	5- 20	
HDS-43A	55	85	Only	55- 80	
HDS-44	50	90	All		
HDS-45	125	155	Only	125-130	
HDS-46	75	120	None		
HDS-47	510	590	Only	510-515, 540-550	
HDS-50	410	435	None		
HDS-52	90	215	Except	90- 95	
HDS-56	420	455	Except	445-455	
HDS-57	245	340	Only	245-275	
HDS-58	275	435	Except	425-435	5
HDS-59	21.0	335	Only	210-250, 255-275	
HDS-60	120	255	Only	120-190, 200-210, 225-250	
HDS-61	220	330	All		
HDS-62	220	385	Except	220-225, 365-385	
HDS-63	240	410	Only	240-250, 260-310, 320-330	
HDS-64	295	465	<u>Except</u>	295-300, 395-405 430-435	
HDS-65	125	170	Only	125-130	

HARDSHELL PRO	JECT			
Page 3 Hole Nc. HDS-66	From 325	<u>To</u> 410	<u>+3 Oz (Frc</u> Only	<u>m-to, intervals)</u> 325-350
HDS-67	305	440	<u>Only</u>	340-400, 405-410, 415-420
HDS-69 HDS-70 HDS-72	405 505 120	475 650 210	Only None All	405–420
HDS-73	230	300	Except	260-270, 275-285, 290-300
HDS-74	220	380	<u>Önly</u>	230-240, 245-250, 260-270, 295-310, 320-325, 340-360
HDS-75	350	430	Only	355-430
HDS-77	115	155	Only	115-135
HDS-79	370	390	None	
HDS-80	295	435	Only	310-315, 385-400
HDS-81	270	370	Except	365-370
HDS-82	290	500	Only	290-375, 460-490
HDS-83	355	465	Only	360-395, 405-425, 435-450

The following holes did not indicate a zone-3 through the geological logging or stopped short of hitting zone-3.

S- 2	Zone-1 only	HDS- 21	No Zone-3
S- 3	Zone-1 only	HDS- 24	14 TE TR
S- 6	Zone-1 only	HDS-38	Zone-1 only
HDS-13	No Zone-3	HDS-49	Zone-1 only
HDS-15A	No Zone-3	HDS-55	Into Zone-2 only
HDS-68	Zone-1 only		

HDS-71 Into Zone-2 only

HDS-78 Zone-1 only

D. F. Skidmore June 15, 1984

Mineral Beneficiation Department

June 19, 1984

File Memorandum: Misc 11A

Subject: Hardshell Drill Hole Samples taken from Drums in Warehouse Yard - June 19, 1984

> HDS 20-340 20-335 20-355 HDS 19-170D 19-180D 19-185D 19-200D HDS 15-135D 15-140D HDS 44-65 44-70 44-75 44-80 44-85 HDS 45-130 HDS 67-340-345 345-350 350-355 355-360

T. D. Henderson,

TDH/ab

cc: DFSkidmore WLKurtz, HMStone DECrowell/File Copy

Southwestern Exploration Division

ASARCO

September 28, 1981

To: T. D. Henderson

From: F. R. Koutz

Hermosa Metallurgical Sample Hardshell Project Santa Cruz County, Arizona

I have composited a 75 pound metallurgical sample from the Hermosa Mine at the Hardshell Project. This sample is composed of crusher reject material from chip samples cut by F. Michel and D. Martinez in August. The sample should be fairly representative of low-manganese ores such as were mined 100 years ago (4.26 oz Ag/T, 0.79% Pb). I also have a 5 pound sack of higher-grade material (25.7 oz Ag/T, 2.24 % Pb) which can be used as a character sample or for special tests.

We would like to see if you can improve on the 48-55% Ag recovery by cyanidation reported on similar ores from Hermosa (April 1968, report of Proj. M103, EPOTL, H. F. Keeler, Sample No. 3) with some minor additional treatment, possibly to remove deleterious Sb or As. A 31 ton lot of Hermosa ore shipped in 1950 ran:Ag: 41 oz/T, 1.7% Pb, 0.5% Cu, 2.7% Fe + Mn, 59% SiO₂, $3.1\%Al_{O_3}$ 0.41% As, 2.8% Sb. The 75 pound sample should be well mixed² before use. Please cut out a 5-10 pound representitive sample for possible future mineralogic work. The heads should be assayed for at least Ag, Au, Cu, Pb, Zn, Fe, Mn, Sb, As, Ba, Bi, SiO₂, Al₂O₃.

Much of the silver in Hermosa ores is contained in silver halides: Ag(Br, Cl). A minor amount may be in cryptomelane-group minerals as is found in the main Mn-oxide rich manto: (K, Pb, Ag, Ba) Mn_80_{16} , but manganese content should be low - less than 1%. A minor amount of the silver may be as silver sulfide in iron oxides as at Rochester or in plumbojarosite-type minerals. Much of the lead is contained in pyromorphite-mimetite: $Pb_5(P0_4, As0_4)_3$ Cl, cerussite: $PbC0_3$ or beudanite-hidalgoite: $Pb(Fe,Al_3)(S0_4)(As0_4)(OH)$ Bindheimite Pb_5 Sb₂ O_6 (0,OH) has also been identified. Major gangue minerals are orthoclase, quartz, sericite, kaolinite, hematite, and goethite. I am not sure what the magnetitic material reported by Keeler was: possibly an iron or manganese oxide.

Most of the silver halides and lead minerals are closely associated with hematitic clays or goethite-rich former sulfide vugs so I expect that the finer-grind sizes will contain higher values. The silver halides also have a wax-like texture so their recovery may be related to grinding.

Of historical interest is the reported 87-90% Ag recovery by amalgamation with silver bullion 0.998 Fine. There are at least several hundred thousand tons with potential up to 1-2 million tons of shallow Hermosa-type ores in the east Hardshell area and considerable tonnages of low-manganese ores (e.g. samples 1 & 2 of project M103) overlie the manganese-rich Hardshell main manto ores. Perhaps this testing will improve recoveries of lowmanganese ores at Hardshell.

IR. Kons

F. R. Koutz

FRK/sk cc::::WDPayne DECrowe11

Hermose Mine	(underground)
Metallurgi	cal Samples
Marked:	ERM-81-MET

Sample No.	Weight:	<u>lbs</u>	Ag: oz/T	Pb %
ERM A-1	9.9		3.03	1.02
A-2	5.4		2.04	0.09
A-4	5.8		2.50	1.02
B-1	6.4		3.54	0.64
B-4	10.7		10.45	1.10
B-5	6.0		9.89	1.02
B-6	6.8	~	1.36	0.52
BC-1	8.4		4.29	0.68
BC-3	15.8		1.64	0.36
	75.2		4.26	0.79
	\uparrow		7	~~
Composite:	Total		Weighted	Means
ERM B-3	5.3	1 .	25.69	2.24
1 sack High-grade cl	naracter :	sampie		

cc: WDPayne File/DEC/BWA/ARR

Mineral Beneficiation Department

October 30, 1981

Memorandum to: Mr. F. R. Koutz

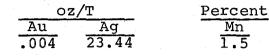
Subject: Metallurgical Testing of Hermosa Mine Samples

Several cyanide leach tests have been run on the two samples of Hermosa Mine ore which you gave me the end of September. These samples are described in your memorandum of September 28th.

The objective of this test program was to determine (1) the silver extractions attainable by conventional cyanide leaching of fine ground raw ore and (2) possible means of improving the silver extraction.

Introduction:

Leach tests were run on a sample of Hermosa mine ore in 1968 by Mr. H. F. Keeler at the El Paso Ore Testing Laboratory (reported April 1968, Project No. M103). This sample (No. 3 in the report) contained 3.27 oz. Ag per ton. Keeler investigated the effects of lime alkalinity, cyanide solution strength, leach time and fineness of grind on silver extraction by cyanidation of fine ground ore. He concluded that fineness of grind affected silver recovery somewhat, but the other three factors had little effect. He also found that some of the silver is apparently associated with manganese, because a preleach with sulfurous acid to dissolve manganese improved silver extraction by subsequent cyanide leaching. Improvement was from about 53 percent silver extraction without SO2 preleach to 63 percent with preleach.


Description of Samples:

The larger composite sample on which most of the test work was done (ERM-81), assayed as follows:

				Per	cent		
02	<u>z/T</u>		,		Total		
Au	Ag	Mn	SiO2	A1203	Ca0*	Ba	Pb
.008	4.03	0.3	62.6	17.4	0.21	0.10	0.5
		Zn	As	Sb	Cu	Fe	Bi
		0.07	0.28	0.103	.026	2.3	ND
	•	$\frac{\text{Sulf}}{0.1}$		Availa <u>CaCo</u> 4.0	03		

* Total CaO is a total calcium determination reported as CaO; "Available CaO" is a determination of acid consumption by leaching the sample. It is reported as percent CaCO3. This value is too high in relation to the total CaO to be all due to calcium carbonate.

The smaller higher grade sample (ERM B-3) was assayed only for silver, gold and manganese:

Three series of cyanide leach tests were run on Sample ERM-81.

The first tests were a grind series to determine the effect of fineness of grind on silver extraction by cyanide leaching. On the basis of Keeler's previous work a cyanide solution strength of 3.0 lbs. NaCN per ton solution was used, along with a rather high lime dosage (+ 10 lbs. CaO per ton of solution) since lime consumption from previous test work was high. The bottle leaches were agitated for 43 hours at a solution to solids ratio of about 2:1 (33% solids). Results of these tests are shown below. Silver recoveries are based on the silver assay of the heads sample from the lot of ore tested (4.03 oz. Ag per ton) and the individual tailing assays:

			Tails	(Consump	otions
	. Grind %	Leach	Assay	% Ag	lbs/T	Ore
Test No.	Passing 200-Mesh	Hq	oz/T Ag	Extraction	NaCN	<u>Ca0</u>
1	55.2	12.2	1.68	58.3	0.85	16.4
2	70.5	12.3	1.44	64.3	0.83	16.6
3	81.6	12.3	1.28	68.2	0.94	16.6
4	92.5	12.3	1.16	71.2	1.05	16.8

These results show a steady improvement in silver recovery from 58 to 71 percent as the fineness of grind is increased from 55 to 93 percent passing 200-mesh (74 micron). Cyanide consumptions increased slightly at finer grinds.

The next tests investigated the effects of longer leach time on silver extractions. These used 3.0 lb. NaCN and 10 lb. CaO per ton of leach solution and approximately 33 percent leach solids, the same as tests 1-4. However the leach time was extended to 70 hours. One test (No. 5) used a grind of 81.6% passing 200-mesh and the other (No. 6) was ground to 92.5% passing 200-mesh. Results are shown below:

Test No.	Grind % Passing 200-Mesh	Leach pH	Tails Assay oz/T Ag	<pre>% Ag Extraction</pre>	Consump lbs/T <u>NaCN</u>	
5	81.6	12.2	0.98	75.7	1.11	17.2
6	92.5	12.3	1.04	74.2	1.13	

Silver extractions were improved in both cases by extending the leach time to 70 hours. At the 81.6% minus 200-mesh grind the recovery increased from 68.2 to 75.7 percent; at 92.5% passing 200-mesh the recovery increased from 71.2% to 74.2%. As would be expected cyanide consumption was also somewhat higher with the longer leach time (1.1 lb. NaCN per ton ore compared to 1.0 lb. at 43 hours).

Further tests were then run to determine what effect various pretreatments or additives during leaching might have on silver recovery. Test L-1 used aeration during agitation with lime for 15 hours as a pretreatment. It is known that some sulfide minerals, particularly those of arsenic and antimony, decompose in alkaline cyanide leach solutions to form reducing agents, which interfere with cyanide leaching be consuming oxygen from the solution. The preaeration treatment should oxidize these compounds and neutralize their harmful effects on the cyanide leach. It might also be possible to achieve this by an oxidizing roast of the ore prior to cyanidation but this was not considered economically feasible for this grade of ore.

Test L-2 used a SO₂-H₂SO₄ preleach (at pH 1.2 for 22 hours) to dissolve manganese. This is the standard method for breaking down refractory manganese-silver minerals to render the silver amenable to cyanidation. Silver is not dissolved by the SO₂ leach. The manganese content of the acid leach solution indicated that most of the Mn in the ore was dissolved by this preleach. After the preleach, the pulp was filtered and washed on the filter to remove the acid manganese leach solution. It was then repulped with water and lime was added to make the pulp alkaline before cyanide leaching.

In test L-3 a cyanide leach was run with addition of lead acetate to the lime-cyanide leach solution. The amount added was equivalent to one lb. of lead per ton of ore. Addition of a soluble lead salt to cyanide leach solutions is a recognized method of combating soluble sulfide minerals which interfere with cyanidation by forming sulfide in solution which precipitates the silver. It is often useful for ores containing As and Sb, and has been found to be beneficial for cyaniding the Rochester ore.

Test L-4 was a standard cyanide test run as a control using the same conditions of grind, cyanide strength, and leach time.

All four of these tests were run in agitated beakers. After pretreatments, cyanide was added, and the cyanide leaches were agitated for 64 hours. The grind used in all four of these tests was 81.6% passing 200-mesh.

Results of these tests are summarized on the following page:

			Tails		Consump	DITIONS
	Special	Leach	Assay	% Ag	lbs/T	Ore
Test No.	Treatment	PH	oz/T Ag	Extracted	NaCN	CaO
L-1	Aeration with lime 15 hours	11.2	1.20	70.2	4.75	6.5
L-2	Preleach with SO ₂ -H ₂ SO ₄ 22 hours	11.4	0.82	79.6	4.38	10.1*
L-3	Lead acetate to leach, 1 lk Pb per ton		1.10	72.7	4.24	6.6
L-4	None	11.3	1.14	71.7	2.92	6.6

-4-

* 50% more lime added to this leach to be sure acid leach residue was made alkaline. Therefore CaO consumption was higher.

The only treatment that showed a significant improvement was the SO2 preleach before cyanidation. This increased the silver extraction from 72 to 80 percent which would indicate that roughly one-third of the silver not dissolved by straight cyanidation is tied up with manganese.

Test on High Grade Sample:

One leach test was run on ERM-B3. It was leached for 70 hours with a solution containing 2.6 lbs. NaCN and 8.7 lbs. CaO per ton at 30% percent solids. The grind was not determined but the grinding time used should have given about 80% passing 200-mesh.

Silver extraction on this sample, assaying 23.44 oz. Ag/T, was 83.4% based on the leach tailing assay of 3.90 oz. Ag per ton.

Cyanide consumption was 2.2 lbs. per ton ore; CaO consumption was 16.2 lbs. per ton.

It was noted that both samples of Hermosa ore were quite sticky, but this higher grade sample was extremely so. It required grinding at lower solids to get the ore out of the mill. Both ore types would present settling or filtration problems in a cyanide leach plant.

Conclusions:

The Hermosa Mine sample ERM-81 gave 72 percent silver extraction using a 64-hour leach with 3.0 lb. NaCN per ton solution.

The only pretreatment that significantly improved recovery (to 80%) was an SO₂ preleach.

Both finer grinding and longer leach times improve silver extraction, grinding having the greater effect, 1/

November 4, 1981

File Memorandum: Misc 11A

Subject: Discrepancies in Calculated Heads and Silver Recoveries of Hermosa Mine Ore Leach Tests

During the recently reported (memorandum TDH to F. R. Koutz, October 30, 1981) cyanide leach tests on Hermosa Mine samples, there were serious differences between assay heads and heads calculated from leach residue and solution weights and silver assays. I originally intended to calculate heads on all tests and base silver recoveries on the calculated heads. The heads sample and leach residues were fire assayed at Mountain States. The first set of leach solutions (Tests 1-4) were assayed for silver by AA at Copper States. When these assays were used the calculated heads were consistently lower than the assay heads. Therefore the solutions were reassayed by AA at Mountain States, resulting in much higher silver values and calculated heads which were higher then the assay heads. It was for this reason that the leach residue and heads fire assays were used to determine silver recoveries.

There is insufficient sample left to run a fire assay (Chiddy method or similar type) on the solutions. On future tests this will be done to compare results with direct AA silver analyses of the solutions. Also both sets of solution assays will be used along with leach residue fire assays, to calculate heads and compare these with fire assays of the heads sample. Apparently the direct AA assays of solutions for silver is not giving reliable results.

As a further check I have requested Hazen to send the heads sample and residues from tests 1-4 to Skyline for reassay (by fire assay) to check Mountain States original fire assay results.

Assays, calculated heads and silver recoveries by the various sets of data are shown in the attached table.

If we are not able to get good checks on calculated vs. assay heads in future silver or gold leach test work using local assay lab results, I would recommend that test products be sent either to the Asarco Umpire Lab in El Paso or the Central Research Department for analysis.

anderso T. D. Henderson, Jr/.

TDH/ab Attachment (table)

cc: FRKoutz WDPayne File/DEC/ARR/BWA

Hermosa Sample Leach Tests Comparison of Assays and Calculated Heads by Different Assay Lab Results

Test No.	Ratio Solution to Solids	Mountain States Tails Assay* Oz Ag/T	Copper Solution* Assay oz/T		Mountain Solution* Assays oz/T	
1 2 3 4	2.033 2.078 2.038 2.050	1.68 1.44 1.28 1.16	.916 1.073 .962 .878	3.54 3.67 3.24 2.96	1.458 2.100 1.633 1.429	4.64 5.80 4.61 4.09
1 1		4 02*				

Heads Sample

4.03*

* All assays of solid samples were fire assays run by Mountain States.

** All solutions silver assays were direct AA assays of pregnant solutions.

Comparison of Silver Recoveries from Different Sets of Assay Data

Test No.	MS Tails Assays, CS Solution Assays	MS Tails Assays MS Solution Assays	MS Tails Assays* MS Heads Assay
1	52.6	63.8	58.3
$\overline{2}$	60.8	75.1	64.3
3	60.5	72.2	68.2
4	60.8	71.6	71.2

* These results were reported in metallurgical report.

Southwestern Exploration Division

February 8, 1984

R. L. Brown New York Office

> Rotary Cuttings Rejects Hardshell Samples Santa Cruz County, AZ

Rotary cuttings rejects have been separated out for Hardshell drill hole numbers 60, 62, 67, 72, 73, 77, 80, 81, 82, and 83.

The sample interval, weight of sample, and the silver assay for each hole is listed on 4 of the six pages telecopied to you.

The Hardshell drilling map is the fifth page and shows an outline of the +5 ounce silver manto as generally expressed by Pickard on his reserve estimate.

Please advise on the person-place to send these samples which are the first run of the metallurgical research.

Please advise on further samples which are desired for continued research.

Also to be forwarded to Central Research will be a copy of the available SWED assays for these intervals. All samples were assayed for silver but not all for copper, lead, zinc, manganese, and silica.

The Mission Unit X-Ray Fluorescence data being accumulated by Al Raihl is presently available for hole numbers 60, 72, 73, 80, 82, and 83.

James D. Sell

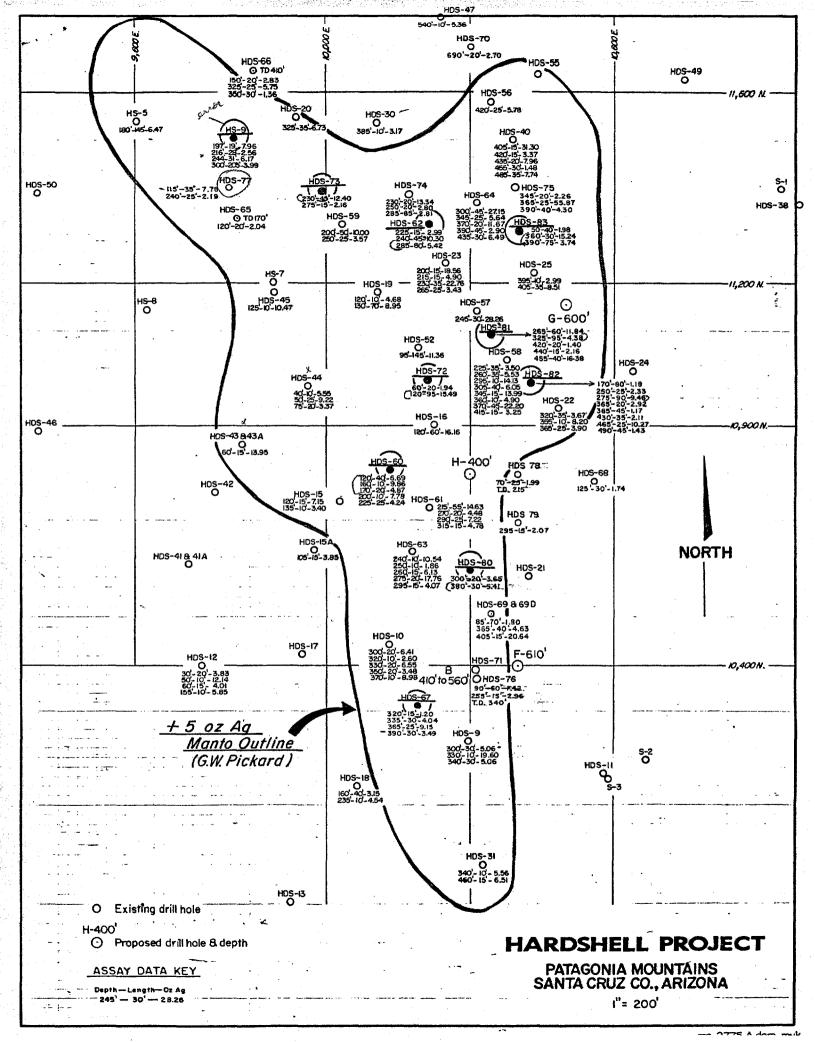
JDS/cg

Hole No.	Footage	Weight (Lbs.)	Assay Ag (opt)
HDS-60	130-135	11	4.14
	135-140	6	6.13
	140-145	10	5.68
	145-150	9	5.62
	150-155	9	3.78
	155-160	4	4.61
	> 160-165	10	6.03
	170-175	$10^{\frac{1}{2}}$	4.75
	175-180	10	4.55
	> 185-190	5 84th	3.22
HDS-62	260-265	7½	3.39
	285-290	3	4.70
	290–295	.3	3.38
	295-300	2	4.74
	300-305	3	6.67
	305-310	5	6.90
	310-315	3	6.82
	315-320	2	4.69
ан 1977 г. Ал 1977 г.	320-325	5 ¹ 2	6.31
	325-330	2	6.29
ана сталана. • С	330-335	6	6.91
	335-340	5 ¹ 2	5.55
	340-345	5½	3.81
	345-350	$2\frac{1}{2}$	5.20
	350-355	5	6.61
	355-360	5 45#	4.86
HDS-67	380-385	12 12 [#]	6.31

> = gap in sequence.

- 1 -

		Weight	Assay
Hole No.	Footage	<u>(Lbs.)</u>	<u>Ag (opt)</u>
HDS-72	120-125	5	62.74
	125-130	5 ¹ 2	52.26
	130-135	3	8.63
	135-140	3	3.57
	140-145	3 ¹ 2	7.94
	145-150	4	9.70
	150-155	2	6.90
	155-160	3	18.46
· · ·	160-165	4 ¹ 2	18.08
	165-170	3	15.57
	170-175	8	5.89
	175-180	11 55 th	11.11
HDS-73	230-235	5	9.25
	235-240	5	22.22
	240-245	7 ¹ 2	10.75
	245-250	3 ¹ 2	23.22
	250-255	5	12.36
	255-260	6	17.57
	260-265	9	2.64
	265-270	10	2.72
	270-275	9	10.83
	275-280	9 ¹ 2 49 [#]	1.61
HDS-77	120-125	16	27.92
	> 145-150	12	2.07
HDS-80	380-385	14	2.04
	385-390	$14\frac{1}{2}$	15.15
	390-395	13	8.35
	395-400	13	3.35
	400-405	$11\frac{1}{2}$	1.73
Cont. on r	bage 3		

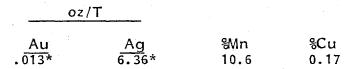

Cont. on page 3

> = gap in sequence.

- 2 -

Hole No.	Footage	Weight (Lbs.)	Assay Ag (opt)
HDS-80	405-410	10	1.82
Cont.	410-415	$12\frac{1}{2}$	0.83
	415-420	11	0.86
	420-425	10 ¹ 2	0.68
	425-430	13 ¹ 2,23 ¹⁷	0.30
HDS-81-A	390-395	8	9.54
	395-400	111/2	5.14
	400-405	$11\frac{1}{2}$	4.63
	405-410	14	3.13
	410-415	12	3.69
	415-420	7 د۹	2.11
HDS-81-B	320-325	11	8.91
	325-330	$7\frac{1}{2}$	6.56
	330-335	$10\frac{1}{2}$	6.52
	335-340	5 3 ⁴ *	3.91
HDS-82	280-285	12	4.91
	285-290	12	5.04
	290-295	6	8.80
•	295-300	5 ¹ 2	13.65
	300- 305	9 ¹ 2	10.22
	305-310	9 ¹ 2	4.91
	310-315	11	6.30
	315-320	$11^{\frac{1}{2}}$	11.33
	320-325	13	11.61
	325-330	10	18.79
	330-335	11	5.99
	335-340	8	8.86
	340-345	6 ¹ 2	10.50
	345-350	9 ¹ 2	16.25
	350-355	10	12.18
	355-360	6 ¹ 2	10.13
	360-365	8 154	6.07

Hole No.	Footage	Weight (Lbs.)	Assay Ag (opt)
HDS-83	365-370	10	26.05
	370-375	8	23.93
	375-380	7 ¹ 2	12.44
	380-385	7	7.55
	385-390	13	14.30
	390-395	10	3.57
	395-400	11	2.82
	400-405	··· 4	1.98
	405-410	9 ¹ 2	3.55
	410-415	6 ¹ 2	7.34
	415-420	8	4.83
	420-425	4 900	3.18



July 6, 1984

File Memorandum: Misc 11A

Subject: Kerley Process and Standard Cyanide Leach Tests of Hardshell Ore Composite

A composite was made from nineteen drill hole intervals of Hardshell ore representing six holes (HDS 15, 19, 20, 44, 45 and 67). All of the intervals were from intercepts assaying more than 3 opt Ag in Zone 3. Duplicate heads samples were cut from the composite and assayed. Results were as follows:

* Average of one assay on each heads sample.

Grinding tests were run by CEC on 500-gram charges of 10-mesh composite. A 20-minute grind gave a product size of 1.5% +65 and 70.1% -200 mesh, and this grind was used in the leach tests.

Two tests were run, a standard cyanide leach on the raw ore and a leach using the Kerley process of ammonium thiosulfateammonium sulfite with a copper catalyst.

Standard Cyanide Leach:

Ore ground to 70 percent passing 200-mesh was leached at room temperature (20° C) and 34 percent solids with a leach solution containing 4.1 lbs. NaCN per ton and lime added to a pH of 11.5. Leaching was done with agitation and addition of 1 cu. ft. per hour of air for 24 hours. At the end of the leach the pH was 10.5.

Leach pulp was filtered and the filter cake was given two water washes of 100 ml. each. Preg and wash solution assayed 0.199 opt Ag and tails assayed 5.99 opt Ag. On this basis the calculated heads assay was 6.397 opt Ag and the silver extraction was 6.4 percent. Calculated cyanide consumption was 4.1 lbs. NaCN per ton ore; lime consumption was 10.9 lbs. (100% CaO) per ton ore.

Kerley Leach Process:

A 500-gram charge of ore was ground to 70 percent passing 200-mesh. The ground ore was washed into a 2000 ml. beaker, allowed to settle and decanted to give an initial pulp weight of 1306 grams (500 grams solids and 806 grams water). To this was added 170 grams at ammonium sulfite, 150 grams of ammonium thiosulfate and 16 grams of CuSO4.5H20. This made a leach solution of the following composition by weight:

Ammonium	Sulfite	14.98
Ammonium	Thiosulfate	13.18
Copper		0.35%

The pH of the leach solution was 8.8 so it was not necessary to add ammonium hydroxide. The pulp was heated with agitation to 53°C and leaching was continued for five hours at temperatures ranging from 51-54°C. During this time the pH of the solution decreased from 8.8 to 8.0 at the end of the five-hour leach.

The pulp was filtered and the leach tails given two water washes of 100 ml. each. The preg and wash solution contained 0.718 opt Ag and 1.08% Mn. An SO3 analysis showed 0.55 mg. per liter of sulfite ion remaining. This assay is probably low in view of the weight of manganese dissolved during the leach. The preg and wash solution contained 12.9 grams of Mn. This should have consumed 54.6 grams of ammonium sulfite compared to 170 g. added to the leach solution, leaving a residual SO3 content of 6.7 percent. The leach tail assayed 4.66 opt Ag and 9.69% Mn.

On the basis of these assays the calculated head silver assay was 6.159 opt and the silver extraction was 27.8. The calculated head for manganese was 11.82% Mn and manganese extraction by the leach was 21.8 percent.

Conclusions:

This composite of Hardshell ore was refractory to cyanidation. A standard cyanide leach for 24 hours gave only 6.4 percent silver extraction.

The Kerley process leach at 50-55°C for five hours gave only 27.8 percent silver extraction which agrees pretty much with previous Kerley process leaches done on Hardshell ore at Central Research (12.5-30.8 percent silver extractions).

T. D. Henderson, Jr.

TDH/ab Attachment

cc: WLKurtz, with attach. DFSkidmore, "" DECrowell/File Metallurgical Calculations

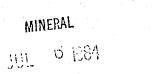
Cyanide Leach:

Tons P&W per ton feed = $\frac{1032.1}{504.8}$ = 2.045

Silver content of P&W = $2.045 \times 0.199 \text{ oz}/\text{T} = 0.407 \text{ oz}.$

Tons tails per ton feed = 1.0

Silver content of tails = $1 \times 5.99 = 5.99$


Total = 6.397 oz

Silver extraction = $\frac{100 \times .407}{6.397}$ = 6.4%

Kerley Process Leach:

Tons P&W per ton feed = $\frac{1193.2}{500}$ = 2.386 Tons tails per ton feed = $\frac{477}{500}$ = 0.954

		Assa	iys				
		opt		Cont	ents	Distr	ibution
Product	Weight	Ag	<u>Mn</u>	Ag	Mn	Ag	Mn
P&W	2.386	.718	1.08	1.713	.0258	27.8	21.8
Leach Tails Calc Heads	0.954	4.66	9.69	$\frac{4.446}{6.159}$.0924 11.82응	$\frac{72.2}{100.0}$	$\frac{78.2}{100.0}$

BENEFICIATION DEPT

DATE: <u>6/2</u>	9/84
REPORT NO:	513

ATTN: TOM HENDERSON

84-451

ASARCO

P.O. BOX 5747 Tucson, AZ 85703

TO:

ASSAY REPORT

CEC	CLIENT					ASSAY			
CONTROL NO.	SAMPLE NO.	DESCRIFTION	Ag T.Oz/t	<u>Mn</u>	NaCn Lb/ton	CaO Lb/ton	SO3 Mg/1	Wt	рН
6165	HS-1	pregnant solution	0.199	-	1.85	1_0.10		1032.1	10.50
6166	·	tails	5.99	-				504.8	
6167	HS-2	pregnant solution	0.718	1.08			0.55	1193.2	6.90
6168	HS-2	tails	4.66	9.69				477.0	
			,						
					_			-	
						-		-	
			-		-	-			

imetta i

🚝 nginee ing &

Construction Co., Inc.

APPROVED BY:

R. nelson / lm

F.O. BOX 36446 TUCSON ARIZONA 85740

L ...

(602) 297-7231

REPROVED E

TO: ASARCO Incorporated P. O. Box 5747 Tucson, AZ 85703 MINERAL

DATE:	6/22/84
DEPORT NO.	512

84-451

101. 5 1004

ASSAY REPORT

BENEFICIATION DEPT

CEC	CLIENT					ASSAY		
CONTROL	SAMPLE	DESCRIPTION	Au	Ag	Mn	Cu		
NO.	NO.		T.Oz/T	T.Oz/T	cio	8		
6163 <u>1</u>	x	Leach head	0.009	6.39	13.4	0.17		
6163 2	x	Leach head	0.017	6.34				
		Check assay			10.6			
		-						
							· ·	· · · · · · · · · · · · · · · · · · ·
	· · ·							

x Sample run in duplicate

APPROVED BY:


6701 S. WILMOT RD.

TUCSON, ARIZONA 85708

6/22/84 DATE:

NAME :

Ennes Trace SAMPLE: ASARO-1

PROJECT: 84-451

WRT SCREEN ANALYSIS						
WEIGHT RETAINED	PERCENT RETA INED	CUMULAT IVE PERCENT RETA INED	CUMULATIVE PERCENT PASSING			
41,5	9,3	4,3	91.7			
39.5	7.9	16.2	75,5			
62.1	12.4	28,6	46,9			
68.5	13,7	42,3	4.6			
287,4	57.7	17:00				
500,0	100-10					
		·				
	WEIGHT RETAINED 41,5 39,5 62.1 68,5 288,4 500,0	WEIGHT RETAINED 41,5 9,3 39,5 7,9 62.1 12.4 68.5 13,7 288.4 57.7 500.0 100 ⁻⁷ 10	WEIGHT RETAINED PERCENT RETAINED CUMULATIVE PERCENT RETAINED 41,5 8,3 4,3 39,5 7,9 16,7 62.1 12,4 28,6 68,5 13,7 42,3 288.4 57,7 17.00 500.0 100 7/6 - 100 100 7/6 -	WEIGHT RETAINED PERCENT RETAINED CUMULATIVE PERCENT RETAINED CUMULATIVE PERCENT RETAINED CUMULATIVE PERCENT RETAINED 41,5 9,3 4,3 91.7 39,5 7.9 16.7 75.5 62.1 12.4 28.6 46.9 48.5 13.7 42.3 41.6 282.4 57.7 11.00 500.0 100510 282.4 57.7 11.00 500.0 100510		

ball charge = 9626 g

Cimetta Engineering & Construction Co., Inc.

1 1 1

-

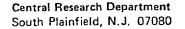
6/22/84

NAME:

DATE

SAMPLE: ASA2CU- C 84-451 PROJECT:

Wet screen analysis						
SCREEN SIZE	WEIGHT RETA INED	PERCENT RETA INED	CUMULATIVE PERCENT RETAINED	CUMULATIVE PERCENT PASSING		
+65	7.7	1.5	1.5	98.5		
+100	20,4	4.1	5.6	94.4		
+150	45,9	9.2	14.8	85.2		
+205	75.7	15,1	299	701		
- J. 0.2	350,3	70,1	100,0			
TOTAL	500	100				
			•			
• • • • • • • • • • • • • • • • • • •	-				-	


ball mill charge = 9626g

WAR

- 1 set

TOS

July 6, 1984 Ref: 3103

Dr. V. Kudryk B U I L D I N G

ASARCO

Hardshell Test Work

Some problem areas have been encountered in the on-going reduction roastcyanide leach test program. High silver contents of leach residues from ore samples of very high grade (30-75 oz/t) are being experienced. Although silver extractions exceeding 80% are being obtained from these samples, the silver contents of the leach residues remain unacceptably high (7-15 oz/t). Electron microprobe examination of the high-silver leach residues and a comparison of total vs. non-refractory silver analyses indicate that most of the silver is contained in the manganese minerals and not encapsulated in the silica. This leads to the conclusion that the reduction-roast and/or cyanide leach conditions for those samples still have to be optimized.

The test program has so far consisted in running the samples obtained from the Exploration Department under a single set of conditions; namely, reduction roasting with propane at 550° C for 20 minutes followed by leaching at 33% solids in 5 g/l NaCN solution for 48 hours. Those are the optimum conditions for the Upper Manto sample used in past studies. While those conditions give very favorable results with most of the samples being tested, some optimization work appears to be necessary with the exceptionally high grade samples.

Factors that may be affecting silver extraction from high grade samples include roasting time and temperature, particle size and silver concentration limitations in solution; i.e., at high silver concentrations in solution the leaching rate may be adversely affected. This can be rectified by leaching at lower percent solids or using multistage leach techniques.

From the standpoint of plant design, it has so far been assumed that both preheating and reduction would be carried out in an indirect fired rotary kiln. Significant energy savings could be realized, however, if it were feasible to preheat the ore in a direct fired kiln then transfer the hot ore to the indirect fired kiln for reduction and cooling. Test work will be required in order to determine the feasibility of this approach.

RECEIVED

JUL 91984

FXPLORATION DEPARTMENT

Dr. Kudryk

In light of the large number of samples that must be treated in this test program it would be highly desirable to prepare composites of samples with chemical or mineralogical similarities or based on an established mining plan. This would save a great deal of time in arriving at the optimum conditions for each ore type or zone.

It will still be necessary to test the intervals from each hole separately. However, more useful information would be gained by testing each sample under the conditions that were arrived at for its particular category from the optimization work done on the composites.

M. El Tawil

MET/ds

cc: R. L. Brown D. E. Crowell F. T. Graybeal R. J. Kupsch T. C. Osborne W. P. Roe T. E. Scartaccini J. D. Sell

Southwestern Exploration Division

June 26, 1984

To: J. D. Sell

From: F. R. Koutz

Central Research-Hardshell Assay Comparisons Hardshell Project Santa Cruz County, AZ

W. L. Kurtz passed a copy to me of M. El Tawil's note of June 11 to F. T. Graybeal, noting 4 Ag assay values in the 8-28 opt range that were 15-60% lower in our values than the check samples sent to El Paso. This is not surprising since they are not assaying the same sample. I would not trust what crusher reject samples that remain after shipping, multiple handling and splitting numerous times for previous metallurgical samples to provide a replicate assay of the original pulp.

I agree that it would be a good idea to check assay the higher grade Ag intervals but the pulps rather than old rejects should be used. You will note the rather high (at least these days) Au assays which itself is a reason for a reassay program. I have spoken to D. F. Skidmore and apparently a Ag-Au check assay program will take place in the near future.

You also might note that I did a check assay program on composite intervals in 1980 (April 10, 1981 memo) for Au and Ag after American Analytical provided us with a number of high Au assays on HDS 81, 82 and 83. The Ag values were quite similar between AARL and Hunter Labs (Reno).

As mentioned to you previously I would like to run the previous Hermosa area drilling and underground and surface sampling pulps for Au as soon as someone comes up with the assay money. The Au content may add considerably to the Ag heap leach value of the low Mn oxide Hermosa mineralization.

J.R. Kart

F. R. Koutz

FRK/cg

cc: DEC/ARR

Need to check exactly what Tunil assayed - Le Mentiwed Scoreening Me Scouple, Also assay initial. Sylvedly FTG chaking Make sure we get this rejulted, May want to check as polps

Central Research Department South Plainfield, N.J. 07080

May 22, 1984 Ref: 3103

Dr. V. Kudryk B U I L D I N G

Evaluation of Hardshell Drill Samples A Progress Report

Rotary drill cuttings from the Hardshell deposit were received at Central Research on March 7, 1984. Sixty of the 5-foot interval samples assay 5 oz/t silver or more. These are being subjected to reduction roasting-cyanidation to determine the quantity of silver that can be extracted from the ore using the reduction roasting-cyanidation process.

Reduction of the - 1/2 inch ore is carried out in an indirectly heated tube furnace in the presence of propane at 550° C for 20 minutes. The total contact time with propane is 75 minutes; 55 minutes for heat-up from ambient temperature, then maintaining 550° C for 20 minutes. The roasted ore is then cooled in an inert nitrogen atmosphere to prevent reoxidation. This is followed by dry grinding the ore to -65 mesh and leaching with sodium cyanide solution containing 5 g/l NaCN. Silver extractions are calculated from Ag assays of the pregnant solutions and leach residues.

Results from 15 of the five-foot drill samples from holes HDS-60, HDS-77, HDS-80, HDS-82 and HDS-83 are given in Table I.

The analytical results available at this time indicate the following:

- 1. The silver assays of most of the samples, according to assays performed at Central Research, are substantially higher than the assays reported by the Exploration Department (see Table II). This raises a question about boarder-line samples which are reported to contain 4-5 oz/t Ag. Those will be reassayed at Central Research and the ones that show 5 oz/t will be processed.
- 2. Approximately 72-88 % of the silver is extracted from the ore using the $550^{\circ}C-20$ min. propane reduction process followed by cyanidation.
- 3. There are substantial variations in the quantity of silver remaining in the leach residues, ranging from 0.99 to 7.32 oz/t. Available data indicate that the quantity of unextractable silver increases with increasing silver assays of the ore.
- 4. There was little or no difference in silver extraction between leach times of 24 and 48 hours. All leaches were carried out for 48 hours with intermediate solution samples taken at 4 and 24 hours.
- 5. An increase in reduction time from 20 to 40 minutes resulted in no improvement in recovery. An increase in reduction temperature from 550 to 675°C resulted in some improvement in recovery. In the case of sample

RECEIVED

MAY 2 9 1984

EXPLORATION DEPARTMENT

€,

HDS-77 (120-125), the increase in temperature reduced the residue assay from 7.32 to 5.55 oz/t. This will be further investigated at the end of this test program. Also, leaching tests on -1/2 inch roasted ore will be conducted without prior grinding. Previous tests on upper and lower manto and higher grade ores have revealed that leaching of the -1/2 inch ore gives the same Ag extraction as leaching of the ground ore, but longer leaching times are required.

V. Puskar

VP/MET/ds

Encs.

R.L. Brown cc: D.E. Crowell F.T. Graybeal W.P. Roe J.D. Sell

Table I

Silver Extraction from Various Hardshell Samples

Roast Conditions:

Particle size	- 1/2 inch	Temp. 550 ⁰ C
Time at Temp.	20 min.	Red. Gas Propane

Leach Conditions:

	Particle S Sol. streng		65 mesh g/l NaCN		% Solids Leach tim	25 e 48 1	hours
Hole	Footage	and the second s	d Assays		ts of Cyan		
		Ag oz/t	$\frac{Mn}{\%}$	$\frac{\text{Calc.Hd}}{\text{oz/t}}$	$\frac{\text{Residue}}{\text{oz/t}}$	$\frac{\text{Ag Extra}}{\text{oz/t}}$	%
			<u></u>		<u></u>	02/1	<u></u>
HDS-60	135 - 140	6.13	9.0	6.85	1.9	4.95	72.3
	140-145	5.68	10.7	5.93	1.43	4.50	75.9
	145-150	5.62	10.1	5.99	1.55	4.44	74.1
	160-165	6.03	19.2	6.72	1.26	5.46	81.3
HDS-77	120-125	27.92	14.3	37.95	7.32	30.63	80.7
HDS-80	385-390	15.15	25.0	26.71	4.70	22.01	82.4
	390-395	8.35	14.4	13.73	2.37	11.36	82.8
HDS-82	290-295	8.80	6.0	12.60	2.19	10.41	82.5
HDS-83	365-370	26.05	23.0	32.62	4.30	28.32	86.8
	370-375	23.93	27.7	30.09	3.42	26.67	88.6
	375-380	12.44	27.2	17.03	2.54	14.49	85.1
	380-385	7.55	26.5	10.69	1.99	8.70	81.4
	385-390	14.30	28.1	20.45	3.27	17.18	84.0
	410-415	7.34	27.6	8.58	1.61	6.97	81.3
	415-420	4.83	22.4	5.85	0.99	4.86	83.2

<u>Table · II</u>

Assay Comparisons for Selected Hardshell Samples

Hole Interval		Silver Assay, oz/t				
· · · · · · · · · · · · · · · · · · ·		Exploration Dept.	Central Research			
HDS-60 HDS-60	145-150 160-165	5.62 6.03	6.25 7.13			
HDS-77	120-125	27.92	35.9			
HDS-80 HDS-80	385-390 390-395	15.15 8.35	$\begin{array}{c} 25.4 \\ 12.7 \end{array}$			
HDS-83	365-370	26.05	30.0			

Exploration Department Western USA

June 13, 1984

Note to Carol

Please get in touch with Harold Stone and tell him that he will need to work on Hardshell samples next week. He should be able to do this and also take care of Superior East drilling.

We will need the Hardshell information--his instructions will come from Dave Skidmore--by next Thursday night.

W. L. Kurtz

WLK/cg

xc: DFSkidmore JDSel1 /

JOS-d contacted AMS. He see no problems. Will come in pice on June 18 or 19 × do as Skidmore wants.

Mineral Beneficiation Department

ASARCO

July 12, 1984

File Memorandum: Misc 11A

Subject: Hardshell Zone 3 Composite

The 10-mesh reject of a composite of Hardshell Zone 3 ore is stored at the Ventura Warehouse in a white 5-gallon pail marked "Hardshell Zone 3 Composite June 1984". This was the composite made up from nineteen drill hole intervals in six holes. The test work using the Kerley process vs. cyanidation (ref. TDH memo of July 6, 1984) was done on this sample which assayed:

Oz	/T		
Au	Ag	<u>% Mn</u>	<u>% Cu</u>
.013	6.36	10.6	0.17

It is a good sample of refractory Hardshell ore. Standard cyanide leaching (4 lb. NaCN/T solution, 24 hours, 70% passing 200 mesh grind) gave only 6 percent silver extraction.

There are 33 plastic bags each containing about 500 grams of 10mesh ore (16.5 Kg. total).

J.D. Henderson, Jr.

TDH/ab

cc: WLKurtz DFSkidmore File/DEC/ARR

xe: JDS FRK

Exploration Department Western USA

March 6, 1984

R. L. Brown New York Office

Hardshell Metallurgy

Mr. Sell has verbally informed Mr. Tawil to conduct tests only on those 5' samples that contain 5 ounces or more silver.

Mr. Sell will also determine what other rejects containing +5 ounces are available.

U. L. K.A. W. L. Kurtz

WLK/cg

cc: M. Tawil J. D. Sell

Exploration Department Frederick T. Graybeal

Chief Geologist

March 2, 1984

Mr. J. D. Sell, Manager Southwestern Exploration Dept. Tucson, Arizona

> Hardshell Metallurgical Samples Arizona

Dear Mr. Sell:

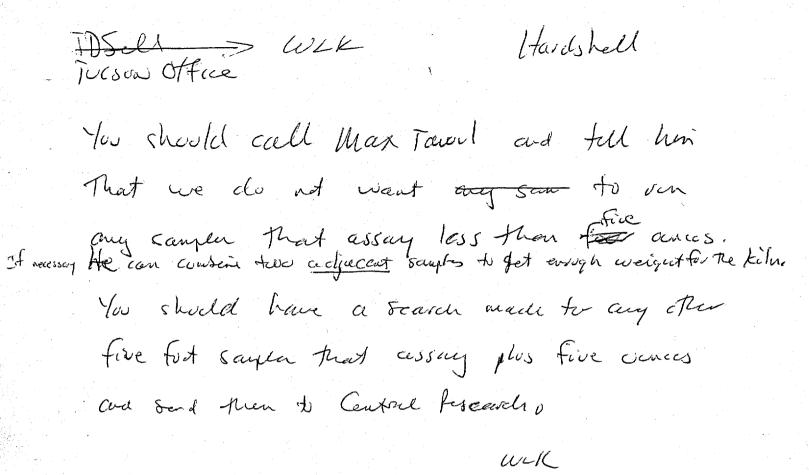
cc: W. L. Kurtz

Your letter of February 27th to Dr. El Tawil indicates that all samples listed on pages 1-4 will be sent to Central Research. There are approximately 100 samples listed and at one sample per day it will take about 100 days to complete the work. I note that at least 20 of these samples are significantly below the 5 oz. Ag cut-off utilized by Mr. Pickard in his ore reserve study and that most or all of these samples are in continuous zones of low grade mineral-I question whether these low grade samples should ization. be evaluated at this time and suggest that samples from other drill holes, including some outlying holes such as HDS-40, 44, 56, HS-5, and some of the other interspaced intersections might not be better choices for this rather extensive metallurgical program.

Please discuss this with Mr. Kurtz and if you agree, advise Dr. El Tawil to defer work on the low grade isolated samples at the present time. Also, I suggest that you contact Dr. El Tawil every month or so to determine his progress and whether additional samples are required, rather than wait for him to advise you.

Very truly yours, F. T. Gravbeal

RECEIVED


MAR - 5 1984 S. W. U. S. EXPL-DN.

ASARCO Incorporated 120 Broadway New York, N.Y. 10271 (212) 669-1000 Telex: ITT 420585 RCA 232378 WUI 62522 Cables: MINEDEPART Telegrams: WU 1-25991

3/5/84 FROM: J. D. SELL To: FT Grayhed Handshell Wetall. you not of 3/2 had been verbally possed on to me by were and I called may 9 let informed him not to run anything less than 503 - but to hald all tel got is finished. Will get other namples as the week gets going & they (Central Research) see the meed. Thanks-

(201) 75-6-4500

March 2,1984 53

cc. FTGompool

Telephone to Mor. Samples have not are , but they will ren only the plus 500 , rens at present. Will hold all polps the until perthes notice. 3/2/

- Aug

Exploration Department

Frederick T. Graybeal Chief Geologist

March 2, 1984

Dr. M. El Tawil Section Head, Mineral Science Central Research Department

Hardshell Metallurgy

Dear Dr. El Tawil:

Individual 5' drill samples from the Hardshell deposit are being forwarded to you from the Southwestern Exploration Division by Mr. J. D. Sell. Some of the intervals are relatively low grade (less than about 4 oz. Ag) and it is questionable whether reduction roast tests should be performed on these samples. I have asked Mr. Sell and Mr. Kurtz to consider whether only the higher grade samples should be tested and they will advise you.

I also have your memo of February 29th regarding the reduction-roast process. My review of your previous summary of this work indicated that there was a background of unrecoverable silver in the range of 0.7-2.0 oz. Ag which had no relationship to position within the deposit. I concluded that recoveries were simply a function of grade, that there is only one ore type, and reference to position of mineralization in upper or lower manto areas was irrelevant. This new test program should further clarify these points.

I also note in your memo of February 29th that you estimated capital costs for a heap leach plant using the Alligator Ridge model. These costs are higher by 2-3x (in constant dollars on per ton basis) than any other large or small heap leach operation built in the Western United States over the past 7 years. I realize that your estimate was only approximate and subject to major revision, but I anticipate Asarco would substantially underrun the costs incurred at Alligator Ridge.

Very truly yours, J.T. Graybea RECEIVED F. T. Graybeal

MAR - 5 1984 s. w. u. s. expl. 40%.

cc: W. L. Kurtz J. D. Sell

ASARCO Incorporated 120 Broadway New York, N.Y. 10271 (212) 669-1000 Telex: ITT 420585 RCA 232378 WUI 62522 Cables: MINEDEPART Telegrams: WU1-25991

MAR 2 1984

Central Research Department South Plainfield, N.J. 07080

RECEIVED

MAR 2 1984

February 29, 1984 Re: 3103

Dr. V. Kudryk B U I L D I N G

EXPLORATION DEPT.

Silver Recovery from Hardshell By the Reduction-Roast Process

Laboratory investigations carried out at Central Research showed that reduction roasting followed by cyanidation is the preferred process for treating Hardshell ores because of its high recovery and simplicity with respect to metallurgy and tailings disposal.

The process consists of crushing the ore to minus 1/2inch, roasting with propane gas or coal in an indirectheated rotary kiln at 500-600 C, cooling and cyanidation using conventional heap leaching. Propane reduction was Recovering a function of grade, found to give silver extractions of 80-85% with the Hot yor [Manto. upper manto ore and about 70% with the lower manto. Test work with coal reduction has so far indicated 10-15% lower silver recoveries and hence the process requires further investigation. If recoveries were to be improved to the level attained by propane reduction then coal reduction would be the more economical approach. Cooling of the roasted ore is then carried out in an indirect rotary cooler since heap leaching is to be used in the cyanidation step. (Water quenching would be acceptable if grinding-agitation leaching is used in cyanidation).

Indirect-heat kiln roasting, although offers lower thermal efficiency, enables the use of much less reducing gas (propane) to maintain the reducing atmosphere without interference from combustion gases. Furthermore, a much simpler, less costly dust collection system will be required with indirect-heat kilns. It should be noted that the manganese minerals in the ore are very friable and a considerable amount of fines is to be expected even in a fairly coarse (1/2 inch) crushed product.

Figure I illustrates the flowsheet for reduction-reasting and heap leaching. A general depiction of the reduction roasting installation is shown in Figure II.

Dr. V. Kudryk

A preliminary estimate of the capital and direct operating costs of the process is presented in Tables 1 and 2. Those costs are based on the results obtained from test work carried out with samples of upper and lower manto ores. A test program will begin shortly in which the process will be applied to numerous samples which encompass the entire range of silver assays and are geographically spread throughout the deposit both laterally and vertically. Upon completion of this test work, it will be possible to carry out a complete economic evaluation using realistic recoveries.

M. El Tawil

MET/jh

cc: R.L. Brown, D.E. Crowell, <u>F.T. Graybeal</u>, T.C. Osborne, W.P. Roe

Capital Investment

Basis 2000 TPD			Mil	lion Dolla	irs
Kilns (Two 10'D x	110' long) @\$:	1.25 MM each		7.5(1)	
Heap leach plant			•	24.0(2)	
Mine Investment				7.5(3)	
Total Capital Inv	estment			39 .0	
· · ·		•			

(1) Using a factor of 300% to include installation, cooler and accessory equipment such as bins, conveyors, etc. (Verbal quotation from Bartlett - Snow on Feb. 24, 1984).

(2) Using cost of the heap leach operation at Amselco's Alligator Ridge Operation (Ely, Nev.).

(3) Re: Report by Mr. A.R. Raihl dated July 22, 1979 and adding 50% escalation (10% per year).

For and way the costheat d all the plants.

Plant

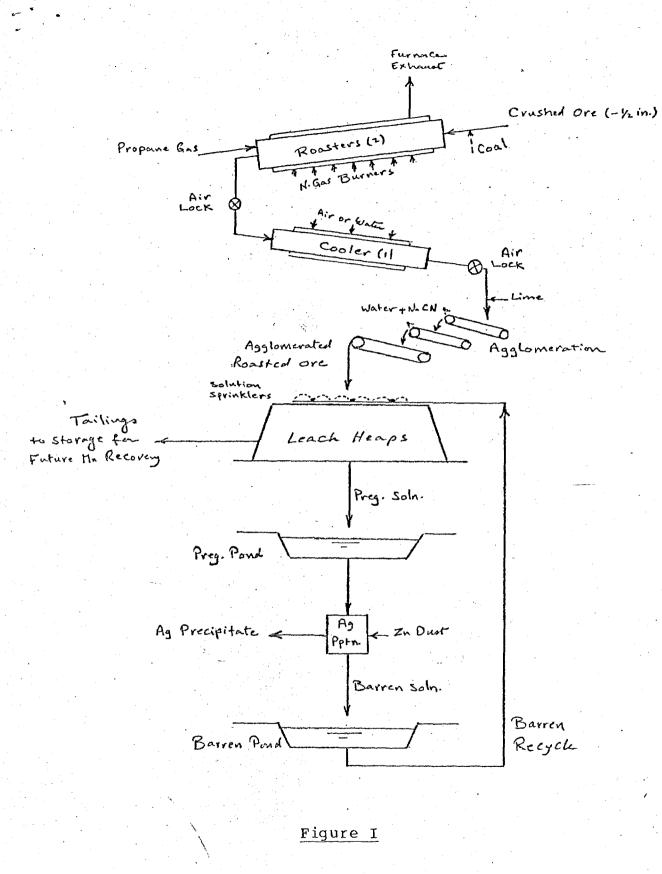
Direct Operating Costs

A - Propane Reduction

Operating Lab	or - 34 persons @ \$25,000/pe	erson	\$850 ,0 00
Supervision -	15% of operating labor		\$127,500
Maintenance:	Material - 15% of equipment Labor - 10% of equipment co	t cost(1) ost	\$1,575,000 \$1,050,000
Utilities:	Power - \$0.78/t Fuel(2)- \$8.07/t		\$546,000 \$5,650,000
Reagents:	Reducing gas - \$2.25/t Lime - \$0.60/t NaCN - \$1.04/t Zn dust - \$0.30/t Total - \$4.19/t		\$ <u>2,933,000</u>

Total Direct Costs

\$12,731,500/yr.


or about \$18.00/t

B - Coal Reduction

With coal reduction all costs will remain the same except for the reducing gas cost of \$2.25/t being replaced by the cost of coal at \$1.35/t. This results in a decrease in total direct operating cost to \$12,101,500/year or \$17.30/t.

(1) Purchase cost of 2 kilns (\$2.5MM) plus 1/3 of heap leach plant cost (\$8.00MM)

(2) Using heat requirement of 565,000 BTU/Ton and 35% thermal efficiency. Energy cost - \$5.00/MM BTU

i · ·

Flowsheet for the Reduction-Roast, Heap-Leach Process

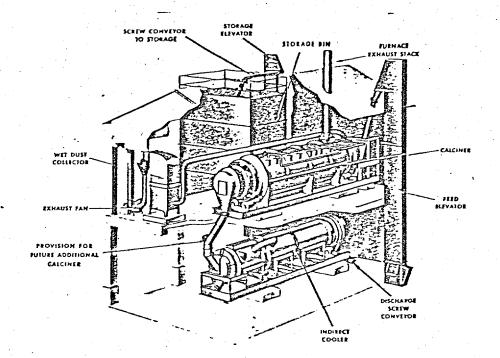


Figure II

Indirect-Heat Calciner-Cooler Installation

ил						· · · ·	4DS. N	MET SA	MPLES		
CUST	OMER COUNTER	NAME , , , , , , , , , , , , , , , , , , ,	FROM (PLEA			NT) TE-7 / 4	2 020	90		UPS CO	
		STREET D	one /	1751172	TOR	428	BY				
		5× C	5747					(uha) (Inited	Parc	el Serv
SHIP	PING RECORD	CITY TUC	,大之	S1	ATE 5-	76 🖑		\sim			
		· · · · · · · · · · · · · · · · · · ·		C.O.D.	DECLARED	UPS	TYPE	CUSTOMER		SUSE ONL	CHARGES
PACKAGE				AMOUNT	VALUE	ZONE	CHARGE		DATE	TRANS	AMOUNT
1.	NAME ASHIZ	CO. INC	_	\$			C.O.D.	Rick	511	nold	2
	STREET DI	ALZ TRLE	RAS:		\$20-1	X	EXCESS		TR		<u> </u>
1 1	CITY DU PI	STATE J	TMILS			177	PACKAGE		-		70.1
	NAME	NTN VIELO 10	0100	\$			C.O.D.				<u></u>
A	STREET	·····		The second second	s I		EXCESS				<u> </u>
	CITY	HING STATE	ZIP	Carlos and C		<u>py</u>	VALUATION	u			·
						18	PACKAGE				>15
	NAME			\$.			C.O.D.			1	
- X	STREET	Mane			\$	14	EXCESS	4			
J	CITY	STATE	ZIP	1.114230.27.27.17.17.17.17.17.17.17.17.17.17.17.17.17		10	PACKAGE			· · ·	(7)
	NAME			\$		- Dec	C.O.D.				
	STREET	5.4		<u> </u>	\$	da	EXCESS				
	CITY	STATE	ZIP			ΥY Ι	VALUATIO	· · · · · · · · · · · · · · · · · · ·			
	NAME			\$		1	PACKAGE				200
		(, ,	<u>k//</u>	1	C.O.D.				
	STREET	VIAL			\$V_ (b/!	EXCESS VALUATION				
9	CITY	STATE	ZIP	the Carlo		X	PACKAGE	\square			211
SHIPPI	ER COMPLETE ALL INF	ORMATION SHOWN ABOV	'E		·	4	 A	-	тс	DTAL	
A DUP	LICATE ADDRESS LAB	EL MUST BE ENCLOSED IN	N EACH PACK	AGE LISTED	ABOVE		_!!(CHA	ARGES	
	S A GREATER VALUE IS I	DECLARED IN WRITING ON TH	HIS RECEIPT, T	HE SHIPPER	HEREBY DE	CLARES	AND				
BY THI	S RECEIPT IS \$100, WHIC	CH IS A REASONABLE VALUE	UNDER THE (CIRCUMSTAN	CES SURRO	UNDING	THE MAX-	TI	hank Yo	u For L	Ising
NOT M	ALUE FOR AN AIR SERV	ICE SHIPMENT IS \$5,000 AND I 9 MONTHS OF SHIPMENT DA WISE NOTED ON C.O.D. TAG.	TE ARE WAIVE	D, CUSTOME	BILITY IS \$5 R'S CHECK A	CCEPTE					

U1227TC5 REV 8-81

「日本の」の

100

Turie Should at 2 mil

100

United Parcel Service

CUST	OMER COUNTER	NAME LI M S	FROM (PLEA:	se use sta ASHI		TO A	NT) I ^{III} /Z.	585	*		UPS C	ER RECEIPT - WHITE OPY - CANAI
4 4		STREET PY	5747	1	- L L				UDS	United	d Parc	el Servic
SHIF	PPING RECORD	CITY TUC	HZ			70	zif ک	,	\bigcirc		S USE ON	
PACKAGE	SEND TO ADDRESS	3		C.O.D. AMOUNT		LARED	UPS ZONE	TYPE CHARGE	CUSTOME		TRANS	CHARGES AMOUNT
	NAME ASARCI	DTNC		\$.				C.O.D.	KUL	16 <	Km)	lu
	STREET DI DI	4 K TREE R	5		\$10	5	2	EXCESS VALUATIO		I XIB)	
1911 1911	CITY SO PLA	INVIEW STATE	07850				2/1	PACKAGE	:			2094
	NAME	an a		\$.		1		C.O.D.				
7	STREET (SHULP			\$. '	53	EXCESS VALUATIO	N			
	CITY	STATE	ZIP				18	PACKAGE	:			2094
-	NAME			\$				C.O.D.				
2	STREET (1110			\$	and a state of the	5	EXCESS VALUATIO	N			
V	CITY	STATE	ZIP	THE M	- ANDER	ntv ræje Gra	18	PACKAGE				2655
	NAME			\$				C.O.D.				
A	STREET	C A A D C			\$		$\overline{2}$	EXCESS VALUATIO	N			
	CITY	STATE	ZIP	a merika ang		1	P/c	PACKAGE	:		17 -	7655
·····	NAME			\$	11		10	C.O.D.				
Ę	STREET	SAM			\$	1. 1	2	EXCESS VALUATIO	N			
J	CITY)(CULLA_STATE	ZIP			/ · · · (1/8	PÁCKAGE	:			3728
SHIPP		FORMATION SHOWN ABOV	E	. <u></u>	- 		1		~	Т	OTAL	
A DUF	PLICATE ADDRESS LA	BEL MUST BE ENCLOSED IN	N EACH PACH	AGE LISTE	D ABO	DVE]	<u>M</u>	CH	IARGES	
AGREE BY TH TRANS IMUM NOT M	ES THAT THE RELEASED IS RECEIPT IS \$100, WH SPORTATION, THE ENTR VALUE FOR AN AIR SER JADE TO CARRIER WITH	DECLARED IN WRITING ON T VALUE OF EACH PACKAGE OF IICH IS A REASONABLE VALUE Y OF A C.O.D. AMOUNT IS NOT VICE SHIPMENT IS \$5,000 AND IN 9 MONTHS OF SHIPMENT DA ERWISE NOTED ON C.O.D. TAG.	ARTICLE NOT UNDER THE (A DECLARATI) THE MAXIMUM TE ARE WAIVE	THE SHIPPER FENCLOSED CIRCUMSTAN ON OF VALUE I CARRIER LI D. CUSTOME	I HERE IN A P ICES S E. IN A ABILIT R'S CI	BY DE ACKAC SURRO DDITIC Y IS \$5 HECK A	CLARES GE COVE UNDING N, THE I ,000. CLA CCEPTE	AND RED THE MAX- AIMS D AT	2	Thank Y	ou For	Using
									Ur	nited Pa	arcel S	ervice

U1227TC5 REV 8-81

.

مە مەربۇپ		RECEIVED	FROM (PLEAS	SE USE STAL	MP OR PRI	NT)				SHIPPER	R RECEIPT — WHITE
CUST	OMER COUNTER	NAME H NI STO	7112= 1	ASAR	DA	2/2	$(\Lambda d/\mathbf{E})$	- %		UPS CO	PY - CANAF
¥		STREET	$\frac{1}{1}$	/				UDS U	Inited	l Parc	el Servic
SHIF	PING RECORD		<u>4</u> 7	ŠT	ATE	ZI	3			, are	
		L_/00/	NL		<u> </u>	16	<u></u>]		FOR UP	S USE ONL	
PACKAGE	SEND TO ADDRESS	. /		C.O.D. AMOUNT	DECLARED VALUE	UPS ZONE	TYPE CHARGE	CUSTOMER COUNTER	DATE	TRANS	CHARGES AMOUNT
	NAME/15ARLU.	INC.		\$		開始	C.O.D.	Kil	1.51	-mpl	5
	STREET	AK TREE	PD		\$/(7)	ŀΨ	EXCESS VALUATION		Â	123	
	CITY PLAIN	JVIPII NJ	0705	\mathcal{O}^{+}		16	PACKAGE		1/A		21.42
	NAME			\$.		10	C.O.D.				
7	STREET	VIII C			\$	UF	EXCESS VALUATION				
	CITY	STATE	ZIP			78	PACKAGE				1737
	NAME			\$		an a	C.O.D.				
7	STREET	la . A			\$	5)	EXCESS VALUATION				
J	СІТҮ	SCH (STATE	ZIP	ONE CONTRACTOR		1/8	PACKAGE				2054
	NAME			\$		1	C.O.D.				
	STREET	Sternet			\$	\$7	EXCESS VALUATION				
	СІТҮ	STATE	ZIP		<u> </u>	10	PACKAGE				1155
	NAME	-		\$		41	C.O.D.				
5	STREET (1110			\$ \/	hð	EXCESS VALUATION		·····、		
J	СІТҮ	STATE	ZIP			1/8	PACKAGE				1587
SHIPP	ER COMPLETE ALL INFO	RMATION SHOWN ABOV	E		l	<u> </u>		<u></u>	Т	OTAL	· · · · · · · · · · · · · · · · · · ·
A DUP	LICATE ADDRESS LABEL	. MUST BE ENCLOSED IN	І ЕАСН РАСК	AGE LISTED	ABOVE	•••••]	DE	СН	ARGES	
AGREE BY TH TRANS IMUM V	IS A GREATER VALUE IS DE IS THAT THE RELEASED VAL IS RECEIPT IS \$100, WHICH PORTATION. THE ENTRY OF VALUE FOR AN AIR SERVICE ADE TO CARRIER WITHIN 9 IR'S RISK UNLESS OTHERWI	LUE OF EACH PACKAGEOR IS A REASONABLE VALUE A C.O.D. AMOUNT IS NOT S SHIPMENT IS \$5,000 AND MONTHS OF SHIPMENT DA	ARTICLENOT UNDER THE C A DECLARATIC THE MAXIMUM	ENCLOSED CIRCUMSTAN	IN A PACKA CES SURRO IN ADDITI BILITY IS \$	GE COVI UNDING DN, THE 5,000, CL	ERED THE MAX- AIMS			ou For U arcel Se	•

an and helicity and

Exploration Department Southwestern United States Division James D. Sell

Manager

February 27, 1984

Dr. M. El Tawil ASARCO Incorporated Central Research Department 901 Oak Tree Road South Plainfield, NJ 07080

> Hardshell Metallurgical Samples - Arizona

Dear Dr. El Tawil:

In accordance with your instructions by telephone (2/27/84) I am shipping the Hardshell metallurgical samples per F. T. Graybeal's letter of 2/21/84.

The shipment, in plastic pails, will be sent to the attention of Engineer Victor Puskar and will be transported by UPS.

Attached is a list of the drill holes, sample footages, approximate pounds, and our silver assay for the interval, along with my letter to R. L. Brown dated 2/8/84.

Additional samples are available from the deposit and can be secured and sent to you. Please give us some lead time if additional sampling is needed.

See you in Tucson soon.

Sincerely,

James D. Sell James D. Sell

JDS/cg Attachments

Eng. V. Puskar, CRD cc: RLBrown/FTGraybeal DECrowell WLKurtz FRKoutz TCBenavidez) also segarate littles of instruction to Them. HMStone

> ASARCO Incorporated P. O. Box 5747 Tucson, Az 85703 1150 North 7th Avenue (602) 792 - 3010

Southwestern Exploration Division

February 8, 1984

R. L. Brown New York Office

> Rotary Cuttings Rejects Hardshell Samples Santa Cruz County, AZ

Rotary cuttings rejects have been separated out for Hardshell drill hole numbers 60, 62, 67, 72, 73, 77, 80, 81, 82, and 83.

The sample interval, weight of sample, and the silver assay for each hole is listed on 4 of the six pages telecopied to you.

The Hardshell drilling map is the fifth page and shows an outline of the +5 ounce silver manto as generally expressed by Pickard on his reserve estimate.

Please advise on the person-place to send these samples which are the first run of the metallurgical research.

Please advise on further samples which are desired for continued research.

Also to be forwarded to Central Research will be a copy of the available SWED assays for these intervals. All samples were assayed for silver but not all for copper, lead, zinc, manganese, and silica.

The Mission Unit X-Ray Fluorescence data being accumulated by Al Raihl is presently available for hole numbers 60, 72, 73, 80, 82, and 83.

James D. Sell

JDS/cg

Hole No.	Footage	Weight (Lbs.)	Assay Ag (opt)
HDS-60	130-135	11	4.14
	135-140	6	6.13
	140145	10	5.68
	145-150	9	5.62
	150-155	9	3.78
	155-160	4	4.61
	> 160-165	10	6.03
	170-175	$10^{\frac{1}{2}}$	4.75
	> 175-180	10	4.55
	185-190	5	3.22
HDS-62	260-265	7 ¹ 2	3.39
	285-290	3	4.70
	290-295	3	3.38
	295-300	2	4.74
	300-305	3	6.67
	305-310	5	6.90
	310-315	3	6.82
	315-320	2	4.69
	320-325	5 ¹ ⁄2	6.31
	325-330	2	6.29
	330-335	6	6.91
	335-340	5 ¹ 2	5.55
	340-345	5 ¹ 2	3.81
	345-350	$2\frac{1}{2}$	5.20
	350-355	5	6.61
	355-360	5	4.86
HDS-67	380-385	12	6.31

> = gap in sequence.

27

Hole No.	Footage	Weight (Lbs.)	Assay Ag (opt)
HDS-72	120-125	5	62.74
	125-130	5 ¹ 2	52.26
	130-135	3	8.63
	135-140	3	3.57
•	140-145	3^{1}_{2}	7.94
	145-150	4	9.70
	150-155	2	6.90
	155-160	3	18.46
•	160-165	412	18.08
	165-170	- 3	15.57
	170-175	8	5.89
	175-180	11	11.11
HDS-73	230-235	5	9.25
	235-240	5	22.22
	240-245	7 ¹ 2	10.75
	245-250	3 ¹ 2	23.22
	250-255	5	12.36
	255-260	6	17.57
	260-265	9	2.64
	265-270	10	2.72
	270-275	9	10.83
•	275-280	9 ¹ 2	1.61
HDS-77	120-125	16	27.92
	> 145–150	12	2.07
HDS-80	380-385	14	2.04
	385-390	$14\frac{1}{2}$	15.15
	390-395	13	8.35
	395-400	13	3.35
	400-405	$11\frac{1}{2}$	1.73
Cont on n	222 3		

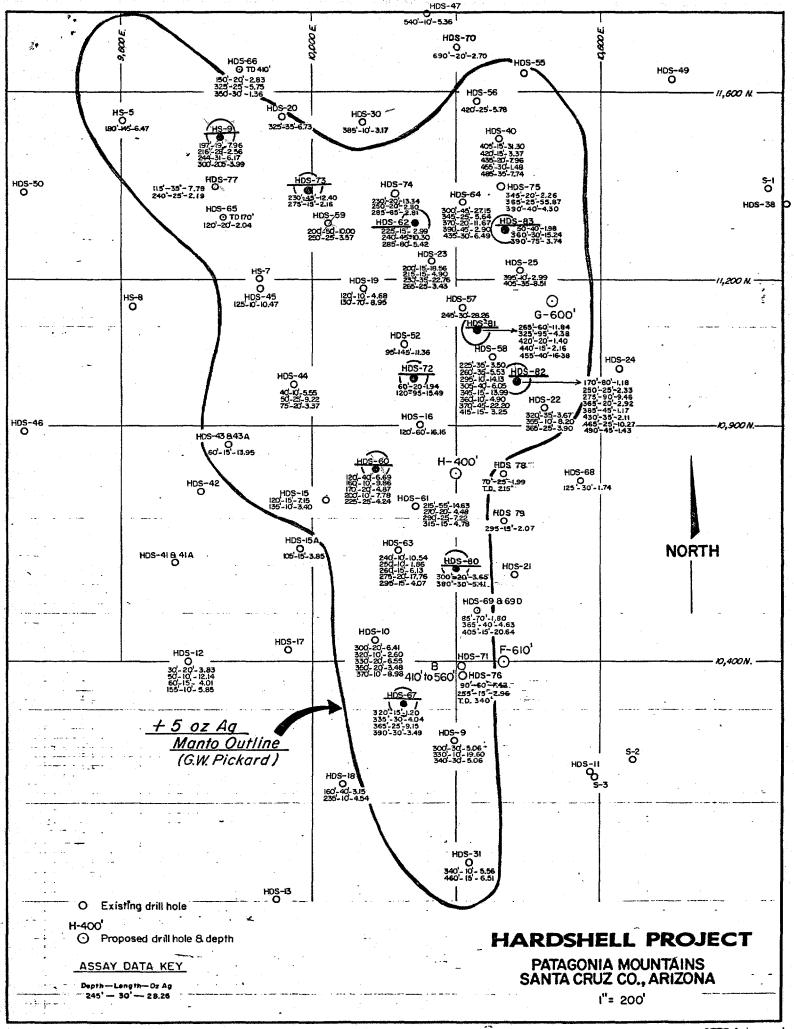
Cont. on page 3

> = gap in sequence.

Hole No.	Footage	Weight (Lbs.)	Assay Ag (opt)
HDS-80	405-410	10	1.82
Cont.	410-415	$12\frac{1}{2}$	0.83
	415-420	11	0.86
	420-425	$10^{\frac{1}{2}}$	0.68
	425-430	1312	0.30
HDS-81-A	390-395	8	9.54
	395-400	$11\frac{1}{2}$	5.14
	400-405	$11\frac{1}{2}$	4.63
	405-410	14	3.13
	410-415	12	3.69
	415-420	7	2.11
HDS-81-B	320-325	11	8.91
	325-330	7 ¹ 2	6.56
	330-335	$10\frac{1}{2}$	6.52
	335-340	5	3.91
HDS-82	280-285	12 .	4.91
	285-290	12	5.04
	290-295	6	8.80
	295-300	5 ¹ 2	13.65
	300-305	9 ¹ 2	10.22
	305-310	9 ¹ 2	4.91
	310-315	11	6.30
	315-320	$11\frac{1}{2}$	11.33
	320-325	13	11.61
	325-330	10	18.79
	330-335	11	5.99
	335-340	8	8.86
	340-345	6 ¹ 2	10.50
	345-350	9 ¹ 2	16.25
	350-355	10	12.18
	000 070	- 1	

355-360

360-365


 $6\frac{1}{2}$

8

10.13

6.07

Hole No.	Footage	Weight (Lbs.)	Assay Ag (opt)
HDS-83	365-370	10	26.05
	370-375	8	23.93
	375-380	7 ¹ 2	12.44
	380-385	7	7.55
	385-390	13	14.30
	390-395	10	3.57
	395-400	11	2.82
	400-405	4	1.98
	405-410	9 ¹ 2	3.55
	410-415	6 ¹ 2	7.34
	415-420	8	4.83
	420-425	4	3.18

- - 2775 A dom . mule

Exploration Department Frederick T. Graybeal Chief Geologist

February 21, 1984

Mr. J. D. Sell, Manager Southwestern Exploration Division Tucson, Arizona

> Hardshell Metallurgical Samples Arizona

Dear Mr. Sell:

Dr. M. El Tawil advises that the sample kiln at Central Research which is used to run bench scale reduction-roast tests on Hardshell silver ore is now available. He notes that each test will require approximately 2½ lbs. of sample material with additional needed for assay work. It would appear that 4 to 5 lbs. per sample would be a reasonable minimum weight. Each test takes about 1 day.

I suggest you send Dr. El Tawil about 50 samples, each weighing no more than 5 lbs., which encompass the entire range of silver assays and are geographically spread throughout the deposit, both laterally and vertically. To simplify sample preparation, I suggest that only individual 5' assay intervals be sent, even though these intervals are less than a minimum mining height.

The purpose of this work would be to look for variations in metallurgical response which might not be related to obvious geological characteristics. Please send the samples to Dr. El Tawil and mark me for a copy of your transmittal letter. The research will be conducted using identical test parameters so that if future modifications are made in the reduction-roast flow sheet, non-uniform behavior of the

RECEIVEL

JDS

FEB 2 7 1984

EXPLORATE & DEPARTMENT

ASARCO Incorporated 120 Broadway New York, N.Y. 10271 (212) 669-1000 Telex: ITT 420585 RCA 232378 WUI 62522 Cables: MINEDEPART Telegrams: WU 1-25991 Hardshell ore would be known and could be retested. If you have any questions, please call me or Dr. El Tawil. Remember, that it is Mr. Brown's desire to keep the kiln turning until we have a better feeling for the presence or absence of variable metallurgical response of Hardshell ores.

Very truly yours, A. Haybeal. F. T. Graybeal

cc: Dr. M. El Tawil D. R. Crowell W. L. Kurtz

(225) notles 2/202 5-9-5 - samples 200 - 230 15 None (3.80) 44 19 None for) 9 43-43A None 77 (265) 44 None (10) 65 45 None 73 250) 59 250-7275 3/202 (275) 59 Sentpres 60 \$ 210-245 402 (135) 230-235 45 (130-190) 45 Kone (200) .19 (45) 46 None 44 285-290 (r) 73 W-YJA (145) ~ (120-150) 230 - 360 77 15 (250) " 60 200 14 × . A 14 A \$ 6.1 a in National 1

Southwestern Exploration Division

July 16, 1984

To: H. M. Stone

From: J. D. Sell

Additional Samples Available? Hardshell Samples Santa Cruz County, AZ

Dr. M. El Tawil called on 7/13/84 and asked if we had samples below the last footages listed below. The holes and last footages he has received are:

Hole	Last Footage Sample
HDS-60	185-190
-62	355-360
-72	175-180
-73	275-280
-82	360-365
-83	420-425

If you do, please call Dr. El Tawil and tell him. He will probably ask that they be sent.

Has the list of the remainder of the Hardshell samples been sent to him?

James D. Sell

JDS/cg

cc: FRKoutz

Southwestern Exploration Division

July 16, 1984

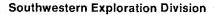
H. M. Stone To:

From: J. D. Sell

Hardshell Project Santa Cruz County, AZ

According to your inventory of July 11 the following samples are available for shipment to Central Research as requested by Max El Tawil on July 13, 1984:

Hole No.	Footage	Hole No.	Footage
HDS-60	230–235 240–245	HDS-82	365-370 460-465 465-470
HDS-62	360-365		475–480 480–485
HDS-72	180–185 185–190		485-490
	190-195 195-200 200-205 205-210	HDS-83	435–440 440–445 445–450


HDS-73 285-290

Please prepare all these samples for shipment by UPS to: M. El Tawil, ASARCO Incorporated, Central Research Department, 901 Oak Tree Road, South Plainfield, NJ 07080.

Jeanes & Sell James D. Sell

JDS/cg

cc: RLB DEC/ARR FRK RJK TES/DFS WLK ME1T

JOS

July 12, 1984

To: RLBrown DECrowell FRKoutz RJKupsch WLKurtz ARRaihl TEScartaccini DFSkidmore HMStone

From: JDSell

Hardshell Project Santa Cruz County, AZ

Attached is the inventory prepared by H. M. Stone of the reject samples available on the Hardshell Project. These are stored in the Ventura warehouse.

James D. Sell

JDS/cg

Attachment

HMStone 7/11/84

HARDSHELL PROJECT

(Central Research Project #3103)

Reject samples are available for the holes & intervals listed below.

Barrel No.	Hole No.	Footage	Lbs.
HDS-51	HDS-7A	120-130	3
		130-140	5
		140-150	4
HDS-51	HDS-8	190-200	9
HDS-50	HDS-9	200-210	6
		210-220	6
		220-230	5
HDS-49	HDS-10		No Samples
HDS-89	HDS-12		No Samples
HDS-88	HDS-15		No Samples
HDS-84	HDS-16		No Samples
HDS-83	HDS-17	•	No Samples
HDS-78	HDS-18		No Samples
HDS-81	HDS-19	•	No Samples
HDS-80	HDS-20		No Samples
HDS-75	HDS-21		No Samples
HDS-76	HDS-22		No Samples
HDS-78	HDS-23	195-200	2
		200–205 205–210	1
		210-215	0
		215-220	1/2
		220-225	õ
		225-230	0
		230-235	12
		235-240	1/2
		240-245	0 0
		245-250 250-255	0
		255-260	0
		260-265	1
		265-270	1/2
		270-275	0
		275-280	1
		280-285 285-290	¹ 2 2
		205-250	4

Barrel No.	Hole No.	Footage	Lbs.
HDS-80	HDS-25	395 - 400	1
		400-405	0
		405-410	1 ₂
	. · · ·	410-415	-2 1
		415-420	4
		420-425	1 <u>2</u>
		425-430	0
		430-435	0
		435-440	0
		260 265	0
HDS-73	HDS-30	360-365	2
		385-390	0
HDS-73	HDS-31	460-465	1
		465-470	1 ₂
		470-475	Ō
		470 479	
HDS-64	HDS-40	400-405	0
		405-410	1 <u>4</u>
		410-415	
		415-420	1,
		420-425	2
		425-430	$\frac{1}{1_2}$
		425-450	2
		435-440	14
		440-445	2
		445-450	1
		450-455	14
		455-460	12
		485-490	1_2
		490-495	1 <u>2</u>
	4 · · · · ·	495-500	1
		500-505	1 ¹ /2
		505-510	2 1 ₂
		510-515	1/2
	·	515-520	1
		520-525	14
HDS-23	HDS-41A	0- 10	No Samples
1100-20	1100-41A	15- 20	-
		15- 20	No Samples
HDS-23	HDS-42	0- 5	No Samples
	· —	5-10	No Samples
		10-15	No Samples
		15- 20	No Samples

Barrel No.	Hole No.	Footage		Lbs.
HDS-23	HDS-43A	55- 60	No	Samples
1100 25	100 1011	60- 65	No	Samples
		65-70	No	Samples
		70-75	No	Samples
		75- 80	No	Samples
HDS-24	HDS-44	45- 50	No	Samplag
1105-24	1100-44	4J- 50 50- 55	No	Samples
		50- 55 55- 60		Samples
		60-65	No	Samples
			No	Samples
		65-70	No	Samples
		70- 75	No	Samples
		75- 80	No	Samples
		80- 85	No	Samples
		85- 90	No	Samples
HDS-24	HDS-45	125-130	No	Samples
HDS-24	HDS-46	70- 75	No	Samples
		75- 80	No	Samples
		80- 85	No	Samples
		85-190	No	Samples
		90- 95	No	Samples
		95-100	No	Samples
		100-105	No	Samples
		105-110	No	Samples
		110-115	No	Samples
		115-120	No	Samples
HDS-25	HDS-47	510-515		7
		540-545		3
		545-550		3
		545 550		5
HDS-26	HDS-50	405-410		1
		410-415		2
		415-420		6
		420-425		7
		425-430		6 7 6
		430-435		2
				-

Barrel No.	Hole No.	Footage	Lbs.
HDS-20	HDS-52	95-100	5
&	,	100-105	No Sample
HDS-21		105-110	0
		110-115	0
		115-120	6
		120-125	2
		125-130	0
		130-135	0
		135-140	No Sample
		140-145	0
		145-150	3
		150-155	4
		155-160	0
	· · · ·	160-165	6
		165-170	0
		170-175	0
		175-180	0
		180-185	0
		185-190	0
		190-195	5
		195-200	0
		200-205	0
		205-210	Ö
•		210-215	0
HDS-16	HDS-56	415-420	4
	A	420-425	4
		425-430	3
		430-435	9
		435-440	4
		440–445	4
HDS-11	HDS-57	245-250	7
		250-255	6
		255-260	2
		260-265	6
		265-270	1/2
		270-275	2

Barrel No.	Hole No.	Footage	Lbs.
HDS-9	HDS-58	275-280	9
		280-285	5
		285-290	5
		290-295	11
		295-300	0
		300-305	0
		305-310	5
		310-315	2
	· *	315-320	7
		320-325	3
		325-330	0
		330-335	õ
		335-340	0
		340-345	3
		345-350	0
		350-355	0
		355-360	0
		360-365	5
		365-370	4
		370-375	
			3
		375-380	0
		380-385	2
		385-390	4
		390-395	3
		395-400	No Sample
		400-405	0
		405-410	0
		410-415	2
		415-420	3
		420-425	1/2
HDS-6	HDS-59	210-215	0
		215-220	2
		220-225	0
		225-230	0
		230-235	0
		235-240	2
		240-245	2
		245-250	0
		250-255	$1\frac{1}{2}$
		255-260	3
		260-265	3 5
		265-270	2 ¹ 2
		270-275	3
			-

Barrel No.	Hole No.	Footage		Lbs.	
HDS-4	HDS-60	120-125	No	Samples	
		125-130	No	-	
		130-135	No	-	
		135-140	No	=	
		140-145	No	-	
		145-150	No	-	
		150-155	No	Samples	
		155-160	No	Samples	
		160-165		Samples	
		165-170	No	Samples	
		170-175	No	Samples	
		175-180	No	-	
		180-185	No	-	
		185-190	No	-	
•		105 190	no	Dampres	
		200-205	No	Samples	
. ·		205-210	No	Samples	
		225-230	No	Samples	
		230-235	110	3	
		235-240	No	Samples	
		240-245	110	3	
		245-250	No	Samples	
		240-200	NO	pampies	
HDS-2	HDS-61	220-225	No	Samples	
		225-230		3	
		230-235		5.	
		235-240	No		
		240-245		5	
		245-250	No	Samples	
		250-255	No	Samples	
		255-260	No	Samples	
		260-265	No	Samples	
		265-270	No	Samples	
		270 - 275		3	
		275-280		2	
		280-285		3	
		285-290	No	Samples	
		290-295		6	
		295-300	No	Samples	
		300-305	No	Samples	
		305-310		2	
		310-315	No	Samples	
		315-320	No	Samples	
		320-325		7	
		325-330	No	Samples	
				1	

			÷ 1
Barrel No.	Hole No.	Footage	Lbs.
HDS-12	HDS-62	225-230	5
		230-235	7
		235-240	4
		240-245	2
		245-250	No Samples
		250-255	No Samples
		255-260	No Samples
		260-265	No Samples
		265-270	No Samples
		270-275	No Samples
		275-280	No Samples
		280-285	No Samples
		285-290	No Samples
		290-295	No Samples
		295-300	No Samples
		300-305	No Samples
		305-310	No Samples
		310-315	No Samples
		315-320	No Samples
		320-325	No Samples
	•	325-330	No Samples
		330-335	No Samples
		335-340	No Samples
		340-345	No Samples
		345-350	No Samples
		350-355	No Samples
		355-360	No Samples
		360-365	6
HDS-10	HDS-63	240-245	No Samples
		245-250	5
		260-265	7
		265-270	$1\frac{1}{2}$
		270-275	1
		275-280	No Samples
1. T	· .	280-285	8
		285-290	No Samples
		290-295	No Samples
		295-300	1
		300-305	7
		305-310	2
		320-325	6
		325-330	3

Barrel No.	Hole No.	Footage	Lbs.
HDS-8	HDS-64	300-305 305-310 310-315 315-320	l 3 No Samples No Samples
		320-325 325-330	No Samples No Samples
		330-335	No Samples
		335-340 340-345	No Samples 7
		345–350 350–355	2 2
		355-360 360-365	4 No Samples
		365-370 370-375	3 No Samples
		375-380 380-385	No Samples No Samples
		385-390 390-395	No Samples 2
		405-410	
		410-415	5
		415-420 420-425	No Samples 2
		425-430	4
		435-440 440-445	1 1
		445-450 450-455	No Samples No Samples
		455 - 460 460-465	No Samples 2
HDS-40	HDS-65	125-130	No Samples
HDS-36	HDS-66	325-330 330-335	No Samples No Samples
		335-340	No Samples
		340-345 345-350	No Samples No Samples

Barrel No.	Hole No.	Footage	Lbs.
HDS-37	HDS-67	360-365 365-370 370-375 375-380 380-385 385-390 390-395 395-400	No Samples No Samples No Samples No Samples No Samples No Samples No Samples
		405-410 415-420	No Samples No Samples
HDS-39	HDS-69	405-410 410-415 415-420	No Samples No Samples No Samples
HDS-5	HDS-72	120-125 125-130 130-135 135-140 140-145 145-150 150-155 155-160 160-165 165-170 170-175 175-180 180-185 185-190 190-195 195-200 200-205 205-210	No Samples No Samples 9 6 8
HDS-5	HDS-73	230-235 235-240 240-245 245-250 250-255 255-260	No Samples No Samples No Samples No Samples No Samples No Samples
		270–275 285–290	No Samples 7

Barrel No.	Hole No.	Footage	Lbs.
HDS-3	HDS-74	230–235 235–240	2 4
		245-250	3
		260-265 265-270	No Samples 10
		295-300 300-305 305-310	5 7 7
		320-325	6
		340-345 345-350 350-355 355-360	8 7 6 6
HDS-1	HDS-75	355-360 360-365 365-370 370-375	6 5 5 No Samples
		375-380 380-385 385-390 390-395	No Samples No Samples No Samples No Samples
		395-400 400-405 405-410 410-415	No Samples No Samples No Samples No Samples
		415-420 420-425 425-430	No Samples No Samples No Samples
HDS-56	HDS-77	115-120 120-125 125-130 130-135	No Samples No Samples No Samples No Samples
101-102	HDS-80	310-315	12
а. С.		385-390 390-395 395-400	No Samples No Samples 12

Barrel No.	Hole No.	Footage	Lbs.
HDS-103	HDS-81	270–275 275–280	3 3
		280-285	No Samples
		285-290	8
		290-295	3
	•	295-300	12
	1 .	300-305	11
		305-310	13
		310-315	12
		315-320	11
		320-325	No Samples
		325-330	No Samples
		330-335	No Samples
		335-340 340-345	No Samples 10
	1	345-350	11
		350-355	No Samples
		355-360	4
		360-365	8
		500 505	0
	1100 00	290-295	No Samplos
HDS-106	HDS-82	290-295	No Samples No Samples
		300-305	No Samples
		305-310	No Samples
× *		310-315	No Samples
		315-320	No Samples
		320-325	No Samples
		325-330	No Samples
		330-335	No Samples
		335-340	No Samples
		340-345	No Samples
		345-350	No Samples
		350-355	No Samples
		355-360	No Samples
		360-365	No Samples
		365-370	6
		370-375	No Samples
		460-465	9
		465-470	10
		470-475	No Samples
		475-480	9
		480-485	7
		485-490	9

Barrel No.	Hole No.	Footage	Lbs.
HDS-104	HDS-83	360-365 365-370 370-375 375-380 380-385 385-390 390-395	No Samples No Samples No Samples No Samples No Samples No Samples
		405-410 410-415 415-420 420-425 435-440 440-445 445-450	No Samples No Samples No Samples No Samples 8 11 4