

CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 3550 N. Central Ave, 2nd floor Phoenix, AZ, 85012 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the Anderson Mine Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

TABLE OF CONTENTS

VOLUME III - ORE PROCESSING

SECTION				PAGE
	VOLU	IME III	- INTRODUCTION	v
8	MILL	ING		8-1
	8.1	Mill D	esign Criteria (General)	8-1
		8.1.1 8.1.2	Site Location and Conditions Ore Characteristics	8-1 8-3
	8.2	Proces	s Design Criteria	8-5
		8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8	General Ore Receiving and Grinding Leaching CCD Circuit and Clarification Solvent Extraction Yellowcake Precipitation & Washing Yellowcake Drying & Packaging Tailing Disposal	8-5 8-6 8-6 8-7 8-8 8-8 8-8 8-8
	8.3	Proces	s Description	8-10
		8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6 8.3.7 8.3.8 8.3.9 8.3.10	General Ore Receiving Grinding Leaching CCD Circuit Clarification Solvent Extraction Yellowcake Precipitation & Washing Yellowcake Drying & Packaging Tailing Disposal System	8-10 8-11 8-12 8-12 8-12 8-14 8-14 8-14 8-15 8-16 8-17
	8.4	Proces	s Equipment List	8-18
	8.5	Instru	mentation	8-41
		8.5.1 8.5.2 8.5.3	Grinding Leaching CCD and Clarification	8-41 8-42 8-42

C	- 11	ΓΤΛ	M
ິງເ	-0	1 1 (או

.8

9

ON				PAGE
	MILL	ING (Cor	ntinued)	
	8.5	Instru	mentation (Continued)	
		8.5.4 8.5.5 8.5.6 8.5.7	Solvent Extraction Precipitation Yellowcake Washing & Drying Dust Collecting System	8-42 8-43 8-44 8-44
	8.6	Mill Fa	acilities	8-45
		8.6.1 8.6.2 8.6.3 8.6.4 8.6.5	Site Description Steam Generation Standby Power Water Distribution Sanitary Sewage	8-45 8-46 8-47 8-48 8-50
	8.7	Mill C	osts	8-51
		8.7.1 8.7.2	Mill Capital Cost Estimate Mill Operating Cost Estimate	8-51 8-54
	TAIL	ING DAM		9-1
	9.1	Site S	election	9-2
	9.2	Ground	water	9-3
	9.3	Design	Considerations	9-4
		9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 9.3.7 9.3.8 9.3.9	General Impervious Core Downstream Shell Transition Zone Upstream Shell Stability Storage Volume and Surface Area Radiochemical Contaminant Migration Water Balance	9-4 9-4 9-6 9-6 9-6 9-7 9-7 9-7
	9.4	Constr	uction Considerations	9-10
		9.4.1 9.4.2	Pre-construction Investigations Preparation of Foundation, Key Trench, and Abutments	9-10 9-10
		9.4.3 9.4.4	Earthwork Quantities Inspection During Construction	9-11 9-11

SECTION				PAGE
9	TAIL	ING DAM	(Continued)	
	9.5	Pond O	peration	9-13
		9.5.1 9.5.2	Tailing Discharge System Evaporation System	9-13 9-13
	9.6	Inspec	tion and Instrumentation	9-16
		9.6.1 9.6.2 9.6.3	Inspection & Maintenance Instrumentation Groundwater Monitoring	9-16 9-16 9-16
	9.7	Abando	nment Considerations	9-18
		9.7.1 9.7.2 9.7.3	General Abandonment Cover Revegetation	9-18 9-18 9-19
	9.8	Capita	1 and Operating Costs	9-20
10	ANCI	LLARY C	ONSIDERATIONS	10-1
	10.1	Access	Road	10-1
	10.2	Water	Supply	10-6
	10.3	Power		10-8
	10.4	Commun	ications	10-14
11	ENVI	RONMENT	AL	11-1
	11.1	Waste	Management	11-1
		11.1.1 11.1.2	Gaseous Emissions Liquids and Solids	11-2 11-6
	11.2	Nuclea	r Instruments Sources	11-14
	11.3	Enviro	nmental Considerations	11-15

EXHIBIT III-A - DRAWINGS

Draw	ing No.	MEC-001	Mine Area Plot Plan
Draw	ing No.	MEC-002	Tailing Disposal System
Draw	ing No.	21-53-0-100	Plant Site Perspective
Draw	ing No.	21-53-0-101	Flowsheet - Ore Receiving, Grinding &
5		01 50 0 100	Leaching
Draw	ing No.	21-53-0-102	Flowsheet - CCD, Clarification & Lailing
Draw	ing No.	21-53-0-103	Flowsheet - Solvent Extraction, Strip-
D		01 50 0 104	ping, ic Precipitation & Packaging
Draw	ing No.	21-53-0-104	Mill & Mine Facility Plot Plan
Draw	ing No.	21-53-0-105	Ore Receiving and Conveying, General
Dway	ina No	21 52 0 105	Mill Duilding Conousl Annangement
Draw	ing No.	21-53-0-106	Plans
Draw	ina No	21-53-0-107	Mill Building - General Arrangement
bran	ing no.	21 33 0 107	Elevations
Draw	ina No.	21-53-0-108	Leach and Filter Area General Arrange-
Di un	ing not		ment Plans and Elevation
Draw	ina No.	21-53-0-109	CCD Thickeners - General Arrangement
	J		Plans and Elevation
Draw	ina No.	21-53-0-110	Solvent Extraction & Stripping General
	5		Arrangement Plan & Elevations
Draw	ing No.	21-53-0-111	One-line Utility Diagram
Draw	ing No.	21-54-0-112	Plant Electrical One-line Diagram
Draw	ing No.	21-53-0-113	Ore Receiving and Conveying Emission
	·		Control
Draw	ing No.	21-53-0-114	Mill Building Emission Control #1
Draw	ing No.	21-53-0-115	Mill Building Emission Control #2
Draw	ing No.	21-53-0-116	Leach & Filter Area Emission Control
Draw	ing No.	21-53-0-117	CCD Thickener Emission Control
Draw	ing No.	21-53-0-118	Mill & Mine Facility Plot Plan Emission
			Control and Fire Protection
Draw	ing No.	MEC-005	Environmental Monitoring, Mine Area
			Plot Plan
Draw	ing No.	21-53-0-119	Process Flowsheet Block Diagram #1
Draw	ing No.	21-52-0-120	Process Flowsheet Block Diagram #2
EXHIBIT I	II-B -	PULP & WATER	BALANCE
EXHIBIT I	II-C -	MILL EQUIPMEN	T PERFORMANCE SPECIFICATIONS
EXHIBIT I	II-D -	GENERAL SPECI	FICATIONS
EXHIBIT I	II-E -	MILL CAPITAL	COST ESTIMATE DETAILS

EXHIBIT III-F - MILLING COMMENTS

This feasibility study report is a compilation and summation of three years of investigations by Minerals Exploration Company and their consultants for the purpose of evaluating the economic viability of the Anderson Project, Yavapai County, Arizona. The study is reported in three volumes:

Volume	Ι	-	Executive Summary
Volume	II	-	Geology and Mining
Volume	III	_	Ore Processing

Volumes I and III were written jointly by Minerals Exploration Company and Morrison-Knudsen Company. Minerals' staff authored Volume II, and Morrison-Knudsen edited and compiled all three volumes. Volume III describes the ore processing, tailing disposal, ancillary and environmental design considerations for the proposed 2000 tpd Anderson Uranium Mill.

The major processing steps include semiautogenous and rod mill grinding, sulfuric acid leaching, countercurrent decantation (CCD), solvent extraction (S-X) and precipitation of a uranium concentrate with anhydrous ammonia. The flowsheets for this process are presented in both the pictoral and block diagram formation in Exhibit III-A. The millsite perspective is presented as an isometric drawing in Exhibit III-A, to help the reader visualize the millsite layout.

The results of all the investigations to date are incorporated into a Financial Analysis presented in Volume I. The remainder of the report

۷

describes the design basis and operating philosophy used to estimate the capital and operating costs required to develop this analysis.

This report is considered to be a final feasibility study, accurate to within plus or minus 15 percent. Additional investigations are recommended in certain areas to study possible cost reductions. However, these possible reductions or unforeseen cost additions are not expected to exceed the stated limits of accuracy.

The investigations and studies which generated the data and criteria for this volume of the Final Feasibility Study are described in the following reports:

TECHNICAL STUDIES

- a. Preliminary Feasibility Study, Morrison-Knudsen, December 1977
- b. Design Report Proposed Tailings Impoundment, Anderson Uranium
 Project, Dames & Moore, May 1978

HYDROLOGICAL

- a. Progress Report Exploration for Water Supply, Anderson Mine, Arizona, Water Development Corporation, June 1977
- Legal Evaluation of Alternative Sources of Water for the Anderson Mine Project, Yavapai Co., Arizona, D.P. Kearns & J.C. Lacy, March 1978

ENVIRONMENTAL

a. Socio-Economic Evaluation - Anderson Project, Minerals Exploration
 Company, April 1977

- b. Wildlife and Vegetation Baseline Study Anderson Uranium Project
 Area, Dames & Moore, January 1978
- c. Wildlife and Vegetation Baseline Inventory Proposed Water Pipeline Palmerita Ranch to Anderson Mine Project, Dames & Moore, January 1978
- d. Preliminary Report of Field Paleontological Resources, Museum of Northern Arizona, June 1977
- e. An Archaeological Survey of the Anderson Mine Area of West-Central Arizona, Museum of Northern Arizona, February 1978
- f. Application for Certificate of Environmental Compatibility Bagdad to Black Mountain 115 kv Line, Arizona Public Service, January 1978
- g. Anderson Uranium Project Environmental Report, Woodward-Clyde Consultants

METALLURGICAL

- Alkaline Leaching of Anderson Mine Samples, Hazen Research, August 1977
- b. Acid Leaching of Anderson Mine Samples, Hazen Research, August 1977
- c. Metallurgical Summary and Preliminary Design Data, A.H. Ross & Associates, September 1977
- d. Uranium Recovery from Anderson Mine Ore, Hazen Research, March 1978
- e. Metallurgical Summary and Mill Design Criteria for the Anderson Uranium Deposit, A.H. Ross & Associates, May 1978

SECTION 8

MILLING

8.1 MILL DESIGN CRITERIA - GENERAL

8.1.1 Site Location and Conditions

The mill site is located at Yavapai County, Arizona. The project area is situated along the northeast margin of the Date Creek Basin about 45 miles northwest of Wickenburg, Arizona. The mill site elevation is about 1950 feet above sea level, and the tailing pond will be situated some 200 feet below this level. The general location of the facility in respect to the State of Arizona is shown in Figure 8.1-1, Location Map.

The following data has been utilized for this study:

Elevation

Mill Site (average) - 1,950 ft.

Tailing Pond (approximate base) - 1,750 ft.

Temperatures

Mean Daily (maximum) - 86.6° F
 (minimum) - 51.8° F
Maximum (extreme) - 120° F (July)
Minimum (extreme) - 10° F (January)

<u>Wind</u>

Predominant Direction - West Southwest Velocity (maximum) - 80 MPH Average - 7 MPH

Precipitation

Mean Yearly Rainfall - 7.47 inches per year Average 24 Hour, 100 Year Storm - 4.5 inches Maximum Probable 100 Year Storm - 12.5 inches

Evaporation Rate

76 to 80 Inches per Year (U.S. Department of Commerce, 1968)

Seismic

Zone II (Moderate damage; corresponding to intensity VII of the Modified Mercalli Intensity Scale of 1931. Ref.: "Uniform Building Code, 1970 Edition, Volume 1, Page 122.)

8.1.2 Ore Characteristics

The host rock consists mostly of carbonaceous shale, siltstone and limestone, with both relatively hard and soft layers. The deposit consists mainly of two ore horizons, referred to as the Middle Zone and the Lower Zone. These zones are highly variable with respect to both uranium and carbonate content. Chemical analyses of the ore were performed by Hazen Research, Inc., in April 1977, on drill core samples obtained from field drilling programs completed in 1975, 1976, and 1977. The CO₂ content varies from 0.03 to 32 percent CO₂, and U₃O₈ from 0.03 to 0.5 percent with no apparent correlation between them. The uranium mineral, as identified by the U.S. Bureau of Mines, Salt Lake City, on samples from the Anderson deposit is tyuyamunite $(Ca (UO_2)_2 (VO_4)_2 \cdot 5-8 H_2O).$

In December 1977, a composite corresponding to the "middle" and "late" mining periods was made, to approximate as close as possible, the predicted long term mill head grade of 0.069 percent $U_{3}O_{8}$.

Six different composites were prepared, each of which corresponds to a mining area. The composites, labelled A to F, are also intended to represent a time sequence of mining.

The composites analyzed as follows:

<u> </u>	<u> </u>	<u>C</u>	D	<u> </u>	F
75	81	136	68	80	46
2.36	2.41	2.28	2.38	2.41	2.47
0.064	0.092	0.084	0.066	0.042	0.049
0.061	0.100	0.091	0.067	0.045	0.049
0.089	0.062	0.15	0.10	0.066	0.14
0.005	0.009	0.015	0.005	0.008	0.002
8.0	9.1	3.4	2.7	6.2	1.6
0.16	0.13	0.17	0.14	0.15	0.17
0.01	0.01	0.01	0.01	0.01	0.01
0.49	0.70	1.08	1.03	0.96	0.02
	A 75 2.36 0.064 0.061 0.089 0.005 8.0 0.16 0.01 0.49	A B 75 81 2.36 2.41 0.064 0.092 0.061 0.100 0.089 0.062 0.005 0.009 8.0 9.1 0.16 0.13 0.01 0.01 0.49 0.70	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Other ore characteristics are as follows:

Specific Gravity	2.38
Bulk Density as Mined Ore	
Compacted	110 lb/cu ft
Loose	100 lb/cu ft
Moisture (Mine Run) - Assumed	15% maximum
Mill Design	10%

8.2 PROCESS DESIGN CRITERIA

8.2.1 General

Plant Feed Rate (dry basis): 2,000 TPD (average)

Design (90% Op. Eff.) 2,200 TPD (91.7 TPH)

Annual Rate 730,000 TPY (dry ore)

Ore Grade:

Average	0.069% U ₃ 08
Design	0.10% U ₃ 08
Overall Recovery	88.5%

U₃08 Production (calculated) (100% U₃08):

Pounds Per Day2,443 (average), 3,960 (design)Pounds Per Year891,549

8.2.2 Ore Receiving and Grinding

Grinding Circuit

Product Size

Pulp Density

Ore Pad	Gravel surfaced for ore storage, 550,000 ton capacity. 35-ton capacity end-dump trucks will be employed.
Feeding Method	3-1/2-yard front-end loader

Semiautogenous grinding and rod mill grinding in closed circuit with a screen.

Nominal minus 28 mesh and 80% passing 300 microns.

SAG mill and rod mill discharge 55% solids (by weight)

12.8

Work Index

8.2.3 Leaching

Pulp Density	45% solids (by weight)
Flow	609.6 GPM
рН	1.5
emf (terminal)	minus 350 mv
Temperature	175° F
Acid Consumption (100% H ₂ SO ₄):	
Average	415 lb/ton
Design	650 lb/ton
Chlorate Consumption:	
Average	6 lb/ton
Design	12 1b/ton
Retention Time	acid kill stage 1.5 hr remaining tanks <u>4.5 hr</u> TOTAL 6.0 hr

8.2.4 CCD Circuit and Clarification

Number of Stages	5
Unit Area Required	7.0 sq ft/ton/24 hr
Size	140-ft diameter
Flocculant Usage:	
Туре	Mg 200 (Dow Chemical)
Dosage:	
No. 1 Thickener	0.15 1b/ton
Total CCD	0.37 lb/ton
Underflow Pulp Density:	
Flowsheet	38%
Design	35%

Flow (at 38% solids)	765.5 GPM
Pregnant Liquor Flow (to S-X)	1,560 GPM
Glue Dosage:	0.10 1b/ton
Concentration	7.2 gpl

8.2.5 Solvent Extraction

Feed	1,560 GPM
Grade (average)	0.131 gpl
Grade (maximum)	0.211 gpl
Number of Stages	4
Solvent Concentration	2.5% Alamine 336 (by volume)
•	2.5% Isodecanol (by volume)

Organic Loading Advance Organic Flow

Settler Area

Stripping:

Number of Stages Strip Solution

Strip Liquor Flow

Strip Liquor Grade

Settler Area

NH₃ Requirement for Neutralization

Regeneration Stages

4 150 GPM $(NH_4)_2SO_4$ with pH controlled at 4.0 - 4.3 with gaseous ammonia 13.2 GPM 25 gpl U₃O₈ 160 sq ft per stage 0.4 lb/lb U₃O₈ 1

95.0% Kerosene (by volume)

2,100 sq ft per stage

2.0 gp1 U308

165 GPM

8.2.6 Yellowcake Precipitation and Washing

Precipitation Temperature	140° - 160° F
рН	7.3 - 8.2
NH ₃ Required	0.2 1b/1b U ₃ 0 ₈ (approx.)
Washing Thickener:	
Underflow	33% solids for flowsheet
Overflow	200 ppm solids
Centrifuge:	
Discharge Density	60% solids
Centrate Solids	2.0% of feed solids

8.2.7 Yellowcake Drying and Packaging

Dryer Feed (design)	40% solids
Capacity - Dry Solids/Day	4,680 lb yellowcake at 85% $\mathrm{U}_{3}\mathrm{O}_{8}$
Moisture Specification of Dried Product	Less than 2%
Packaging:	
Bulk Density of Yellowcake	80 lb/cu ft (loose)
Drum Capacity (55 gallon)	900 lb (approx.) per drum

8.2.8 <u>Tailing Disposal</u>

No. 5 Thickener Underflow Density:

Flowsł	neet				38%	
Desigr	۱				35%	
Solids	5				91.7	ТРН
Flow ((at	38%	solids)	(slurry)	765.5	5 GPM

Flow (at 38% solids) (solution)605.7 GPM (Sp. Gr. 1.03)Raffinate Bleed0Total Volume to Tailing Pond765.5 GPM

8.3 PROCESS DESCRIPTION

8.3.1 General

The proposed uranium mill will process an average of 2000 short tons of ore per 24 hours, operating 365 days per year. During the first two years of operation, the estimated ore grade will be 0.080% U₃08 and the overall mill recovery, 90.13 percent. Under these conditions the mill will produce 1,052,718 pounds of U₃08 per year. For the remainder of the operation life, approximately 7.8 years, the mill will process 2000 short tons of ore per day with an average grade of 0.07% U₃08 and 88.6 percent overall recovery, with an annual production of 891,549 pounds of U₃08. A pictorial flowsheet of the process is shown in Drawing Nos. 21-53-0-101, 21-53-0-102 and 21-53-0-103 of Exhibit III-A. The Mill and Mine Facility Plot Plan, depicting the general plant layout, is shown in Drawing No. 21-53-0-104.

8.3.2 Ore Receiving (Drawing No. 21-53-0-105)

The mined ore will be hauled to the mill site in 35-ton capacity trucks. Ore hauling will commence nine months prior to mill start-up to accumulate a 550,000-ton stockpile. High grade ore will be blended with low grade ore to maintain a constant average mill feed grade. This ore will be transported from the stockpile to feed hopper with a front-end loader. The feed hopper capacity is 100 tons, and it will be equipped with a fixed grizzly with 18-inch square openings. The ore will be removed from the hopper by a 48-inch by 16-foot apron feeder. The feeder will discharge the ore through a fixed grizzly

(4-inch spacing) onto a 48-inch belt conveyor that conveys the ore to a semiautogenous mill located in the mill building. A dust collecting system has been provided in the hopper discharge area. All conveyors will be hooded at the discharge end and skirted at the feed end.

The wet scrubber has been rated to provide 99.5 percent efficiency.

A sump pump will be provided for cleaning purposes and to pump the scrubber discharge to the grinding area.

8.3.3 Grinding (Drawing No. 21-53-0-106)

The ore will be fed into the SAG mill feed chute. The feed rate is monitored by an automatic belt scale. Water is added on a controlled basis to produce a pulp of 55 percent solids. Grinding balls will be periodically added to the feed of the SAG mill.

The SAG mill discharge will pass through a trommel screen with 3/8-inch openings. The plus 3/8-inch material will be conveyed to feed a rod mill.

A tramp iron magnet will be installed on top of the oversize conveyor and ahead of the rod mill to prevent broken or worn out balls entering the rod mill. The minus 3/8-inch slurry will be pumped to the feed end of the rod mill. Water will be added to produce a discharge pulp of 55 percent solids. The rod mill discharge will be pumped to a screen to separate the minus 28-mesh product, which is finished product from the grinding circuit. The plus 28-mesh product will return to the rod mill for regrinding.

Due to the wide variation in ore hardness, variable speed drives will be installed on both the SAG and the rod mills.

8.3.4 Leaching (Drawing No. 21-53-0-108)

The ore pulp will be sampled and then pumped into two "acid kill" tanks. These two tanks will be in series and sized to handle the foam and high viscosity of the acid kill step. These tanks will provide about 1.5 hours of retention time for a pulp of 45 percent solids. Four additional leach tanks will provide about 4.5 hours of retention time. Mechanical agitators will be used in all six leach tanks.

Acid consumption during leaching has been estimated at 415 pounds per ton (100 percent H_2SO_4); however, acid handling facilities will be sized to handle up to 600 pounds H_2SO_4 per ton. Sodium chlorate solution will be added under controlled conditions to oxidize the ore. A leach temperature of 175° F will be maintained through the addition of steam. Adequate instrumentation will be provided to control reagent additions and temperature throughout the leaching process.

A wet scrubber will be provided to clean the fumes generated in the circuit. Scrubbed effluents will be returned to the circuit while clean gases will be released to the atmosphere.

8.3.5 CCD Circuit (Drawing No. 21-53-0-109)

The leaching pulp will discharge into a sump and will be pumped to the first of five 140-foot diameter washing thickeners.

In order to achieve adequate flocculation, the leached slurry will be mixed with thickener overflow solution in a sump and pumped to a mechanically agitated thickener feed mix tank. Part of the flocculant solution will be added to this tank while the balance is added by stages to the launder and finally to the thickener center well.

Thickener underflows will be handled with two diaphragm pumps, with both pumps required to handle the full tonnage rate at 35 percent solids.

Centrifugal pumps will be provided as spares for the diaphragm pumps. Two underflow lines will be provided for each thickener, with instrumentation provided to one line only (pulp density measurement and flow control).

A centrifugal pump will be utilized for feeding each thickener feed tank.

Piping will be arranged so that any thickener may be by-passed and recycled.

Raffinate solution and/or fresh water will be added to the fifth thickener and the thickener overflow will be advanced through the CCD circuit to the first thickener, thus generating the pregnant solution. The pregnant solution will contain about 150-250 ppm solids in suspension. The fifth thickener underflow, at approximately 38 percent solids, will be discarded after proper sampling to the tailing disposal area.

8.3.6 Clarification (Drawing No. 21-53-0-109)

In order to reduce the solids content of the pregnant solution from 150-200 ppm to 35-80 ppm, the solution will be pumped to a clarifier. A 70-foot diameter tank equipped with a rake mechanism will be provided for this purpose. A glue solution, at a rate of 0.1 pounds per ton, will be added to the clarifier to flocculate the suspended solids. The clarifier overflow will be pumped through a battery of three "polishing" sand filters. The filtrate, containing less than 10 ppm solids, will be routed to a holding tank to provide feed to the solvent extraction circuit.

8.3.7 Solvent Extraction (Drawing No. 21-53-0-110)

This circuit will have four stages of extraction and four stages of stripping. The clarified pregnant leach solution will be fed to the extraction circuit at a rate of 1,560 gpm with 0.131 gpl U_3O_8 . The pregnant liquor solution will enter the first stage of extraction at the mixer tank where it is placed in intimate contact with an organic extractant to react with the uranium in solution. The organic extractant composition will be 2.5% Alamine 336, 2.5% isodecanol and 95% kerosene by volume.

Each stage of solvent extraction will include a "mixer" where the aqueous and organic solutions "intermix", followed by a "settler" where the two phases separate ("disengage"); the organic phase floating atop the aqueous phase in the settler. The barren aqueous solution, or raffinate, will be recycled to the circuit as wash solution to the last thickener of the CCD thickener.

The loaded organic will be pumped through a heat exchanger to the first stage of stripping. The temperature will be maintained at 86° F with steam. The strip solution used in this process contains 150 gpl of ammonium sulphate $[(NH_4)_2SO_4]$. The solution pH will be maintained at 4.0-4.3 with gaseous ammonia.

The loaded organic will be successively contacted with the strip liquor in four stripping stages to transfer the uranium to the aqueous phase. The pregnant uranium strip liquor will be subjected to a precipitation process with gaseous ammonia. A portion of the barren organic solution will be bled off to a regeneration mixer/settler for the purpose of removing impurities such as molybdenum and other organic contaminants which otherwise might build up in the circuit and prevent an efficient uranium extraction. The contaminant removal will be accomplished by treating the organic with a sodium bicarbonate solution and then returning the cleaned solvent to the barren organic storage tank.

An adequate fire protection system will be provided for this area. Heat sensors, properly located, will open water spray valves to deluge the surface of the tanks with water. The opening of the water valves will be alarmed in the control room.

8.3.8 <u>Yellowcake Precipitation and Washing</u> (Drawing No. 21-53-0-107) The pregnant strip solution will be heated to 140°-160° F in a heat exchanger and fed to two agitated precipitation tanks in series. The pH will be adjusted to 7.3 to 8.2 with ammonia to precipitate uranium as ammonium diuranate.

The precipitate slurry will report to an 18-foot diameter washing thickener. The thickener overflow (barren strip solution) will return to the strip solution make-up tank after clarification in a continuous sand-type filter. The thickener underflow will be mixed with water for washing and dewatering in a centrifuge. The centrate reports back to the yellowcake washing thickener and the centrifuge solids will discharge to a dryer/calciner at about 60 percent solids. Gaseous and dust emissions in the precipitation area, yellowcake thickener and centrifuge, will be controlled with a wet scrubber installation. Any failure in the scrubber fan or water supply to the scrubber will be alarmed in the control room.

8.3.9 <u>Yellowcake Drying and Packaging</u> (Drawing No. 21-53-0-107) The dryer/calciner unit will be an oil-fired, multiple hearth, Herreshoff-type furnace operated at about 750° F (higher temperatures can be achieved with this unit, if required).

> The dryer will discharge into a roll mill to break any lumps larger than 0.25 inches. The yellowcake product, with less than two percent moisture and minus 0.25 inches, will be stored in a 275-cubic foot bin for packaging on the day shift.

The final product will be packed in 55-gallon steel drums (approximately 900 pounds per drum), hand-sampled and stored in shipping lots of approximately 40,000 pounds.

* 5

8.3.10 Tailing Disposal System (Drawing No. MEC-002)

Tailing slurry at about 38 percent solids will be gathered in a tailing sump. The tailings will consist of waste solids from the ore, water, minor quantities of unrecovered uranium values and small amounts of chemicals used in the milling process. The effluent stream will be sampled prior to the disposal.

The tailings will be transported by gravity to the tailing pond via high molecular weight plastic pipeline. A system of multiple drop boxes will be used to break the hydrostatic pressure generated between the mill site elevation and the tailing disposal area (approximately 200 feet difference).

The total length of pipe required will be approximately 1800 feet. The pipeline slope will be 1.5 percent. Ten drop boxes are included in the estimate for this study.

A system of multiple discharge points will be used at the tailings dam. The manifold system can be operated in such a manner that a damp sand beach can be maintained around the periphery of the pond.

8.4 PROCESS EQUIPMENT LIST

The major equipment items and related procurement information are presented in the following equipment list. This equipment requirement is based on the flowsheet developed for this final feasibility study. The equipment requirements may change slightly when the final flowsheet is developed for detailed engineering.

Client:	MEC
lob:	Anderson Project
Logation	Wickenburg, Arizona

Location:_

(

M-K Job No.:____]]]]4____

Date:____ Page 1 of 22

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
002	Air Compressor Rotary screw type, 450 cfm, 125 psig ma	100 K	3,370	14-16	15,276	Holyoke, Mass. (Worthington)
003-004	Boilers 22,000 lb/hr, 125 psig max, with water treatment, feed system, deareator, fuel oil fired, complete package system	50	125,825	10	107,737	Kewanee, Il. (Kewanee)
005	Domestic Water Tank 40,000 gal capacity, mild steel, covered, with inspection manhole				29,800	Site
006	Forklift Truck l ton capacity		4,200	16	11,800	Arizona (Clark-Michigan)
007	Water Tank 500,000 gal capacity, mild steel, open	ор			94,880	Site
008	Fire Water Pump, Electric 1000 gpm, 125 psi with drive and motor	100	3,000	16	8,000	Indianapolis, In. (Peerless)
009	Fire Water Pump, Diesel . 1000 gpm, 100 psi with drive and motor		5,000	32	18,000	Indianapolis, In. (Peerless)

6i-8

Client:	MEC
Job:	Anderson Project
Location:	Wickenburg, Arizona

M-K Job No.:<u>1114</u> Date:_____

(

Page 2 of 22

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
010	Instrument Air Compressor 45 cfm, 60 psig, with drive and motor	7-1/2	850	8-10	1,922	Denver, Co. (Worthington)
011	Sulfuric Acid Unloading Compressor 100 cfm, 100 psig, with drive and motor	25	1,180	8	4,500	Denver, Co. (Worthington)
012	Emergency Power Generator 1000 kw, 480 v, 3 phase, 60 hz, diesel powered, skid mounted		22,575	16	102,546	Redwood City, Ca. (Allis-Chalmers)
013	Fresh-water Pump 150 gpm, 75' tdh, with drive and motor	5	344		861	Indianapolis, In. (Peerless)
014-015	Glandwater Pumps Horizontal centrifugal, cast iron, 150 gpm, 100' tdh, with drive and motor	10	610	18	1,762	Seneca Falls, NY (Gould)
016-017	Fresh Water Pumps, 800 gpm, 150' tdh	50	1,275		1,000	Indianapolis, In. (Peerless)
018-019	Potable Water Pumps, 36 gpm, 116' tdh	3	350		410	Indianapolis, In. (Peerless)
020	Potable Water Filtration Unit Duplex Mover		275		1,715	Michigan (Ronnigen-Petter)
021	Chlorination Unit for Potable Water 20 gpm		75		1,000	Philadelphia (PH Advance)

Client:	MEC	
Job:	Anderson	Project
Location	Wickenbur	ra. Arizona

Equipment Number	Description	₩ P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point . Remarks
101-101a	Front-end Loader, 3-1/2 cu yd Rubber tired			26	78,051	Arizona (Caterpillar)
102	Surge Hopper, 100 ton capacity					
103	Apron Feeder, 48" x 16' Heavy duty, V.S. drive, 300 tph max	7-1/2	24,500	16	34 , 750	Duluth, Minn. (NICO)
104	Belt Conveyor, 48" x 304' SAG mill feed conveyor, components and motor only; structure not included	15	29,140	6-8	53,878	Clarksdale, Miss. (Stephans- Adamson)
105	Belt Scale, SAG mill feed 48 ", 0-300 tph, \pm 0.5% accuracy with integrator and recording chart		350	6-8	5,410	Modesto, Ca. (Autoweigh, Inc.)
106	Semiautogenous Grinding Mill 16' diam x 5' with variable speed drive, motor and trommel screen	500	265,000	52	505,000	York, Pa. (Koppers)
107	SAG Mill Discharge Sump 900 gallon capacity					
108-109	Rod Mill Feed Pumps, Horizontal centrifugal, R.L., SS trim, 700 gpm, 52% solids, 25' tdh, with drives and motors	25	1,550 ea	14-16	3,255 ea	Colorado Springs, Co. (DECO)

Location: WICKENDURY, Arizona

8-21

M-K Job No.:______ Date:_____ Page 3 of 22

Job: <u>Anderson Project</u> Location: Wickenburg, Arizona	Client:	MEC
Location: Wickenburg, Arizona	Job:	Anderson Project
	Location:	Wickenburg, Ărizona

8-22

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
110	Trommel Oversize Belt Conveyor No. 1 18" x 18'; components and motor only; structure not included	5	3,100	6-8	4,413	Clarksdale, Miss. (Stephans-Adamson)
111	Trommel Oversize Belt Conveyor No. 2 18" x 64'; components and motor only; structure not included	5	5,300	6-8	6,175	Clarksdale, Miss. (Stephans-Adamson)
112	Tramp Iron Magnet self-cleaning electromagnet, with control, drive and motor	3	2,700	12	5,500	Cudahy, Wisc. (Stearns-Magnetics)
113	Rod Mill, 9'6" diam x 16' with variable speed drive, motor	600	195,000	52	322,000	York, Pa. (Koppers)
114	Rod Mill Discharge Sump 1200 gallon capacity					
115-116	Classifier Screen Feed Pumps Horizontal centrifugal, R.L., SS trim, 700 gpm, 55% solids, 25' tdh, mechanical seals, with drives and motor	25	1,550 ea	14-16	3,255 ea	Colorado Springs, Co. (DECO)
117	Classifier Screen sieve bend type, 6' wide		1,500	6	5,500	Stamford, Ct. (Dorr-Oliver)

EQUIPMENT LIST

Page 4 of 22

.

Client:	MEC
lob:	Anderson Project
Location:	Wickenburg, Arizona

8-23

Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
Sampling System, Leach Feed Complete 3-stage system with motors and drives. Interconnecting piping not included	1	850	14-16	7,900	Colorado Springs, Co. (DECO)
Leach Feed Sump, 1200 gallon capacity					
Leach Feed Pumps, horizontal centrifugal, R.L., SS trim, 700 gpm, 50% solids, 50' tdh, mechanical seals, with drives and motors	15	1,550 ea	14-16	3,050 ea	Colorado Springs, Co. (DECO)
Density/Flowmeter, Leach Feed		170	18	8,009	Rochester, NY (Taylor) Austin, TX (Texas Nuclear)
Wet Scrubber, Ore Receiving Area 2000 cfm, M.S. construction, with fan, drive, and motor	10	1,050	10	6,795	Cleveland, Ohio (Sly Mfg. Co.)
Sump Pump, Ore Receiving Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh	7.5	500	16-18	1,558	Salt Lake, Ut. (Galigher)
Sump Pump, Grinding Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh	7.5	500	16-18	1,558	Salt Lake, Ut. (Galigher)
Rod Mill Rod Charger Machine	5	6,000	16-18	9,000	Phoenix, Az. (Riffle Mfg. Co.)
	Description Sampling System, Leach Feed Complete 3-stage system with motors and drives. Interconnecting piping not included Leach Feed Sump, 1200 gallon capacity Leach Feed Pumps, horizontal centrifugal, R.L., SS trim, 700 gpm, 50% solids, 50' tdh, mechanical seals, with drives and motors Density/Flowmeter, Leach Feed Wet Scrubber, Ore Receiving Area 2000 cfm, M.S. construction, with fan, drive, and motor Sump Pump, Ore Receiving Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh Sump Pump, Grinding Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh Rod Mill Rod Charger Machine	DescriptionH P RPMSampling System, Leach Feed Complete 3-stage system with motors and drives. Interconnecting piping not included1Leach Feed Sump, 1200 gallon capacity15Leach Feed Pumps, horizontal centrifugal, R.L., SS trim, 700 gpm, 50% solids, 50' tdh, mechanical seals, with drives and motors15Density/Flowmeter, Leach FeedWet Scrubber, Ore Receiving Area 2000 cfm, M.S. construction, with fan, drive, and motor10Sump Pump, Ore Receiving Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh7.5Sump Pump, Grinding Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh7.5Rod Mill Rod Charger Machine5	DescriptionH P RPMWeight lbsSampling System, Leach Feed Complete 3-stage system with motors and drives. Interconnecting piping not included1850Leach Feed Sump, 1200 gallon capacity11150Leach Feed Pumps, horizontal centrifugal, R.L., SS trim, 700 gpm, 50% solids, 50' tdh, mechanical seals, with drives and motors151,550 eaDensity/Flowmeter, Leach Feed170Wet Scrubber, Ore Receiving Area 2000 cfm, M.S. construction, with fan, drive, and motor101,050Sump Pump, Ore Receiving Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh7.5500Sump Pump, Grinding Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh7.5500Rod Mill Rod Charger Machine56,000	DescriptionHP RPMWeight lbsDelivery WeeksSampling System, Leach Feed Complete 3-stage system with motors and drives. Interconnecting piping not included185014-16Leach Feed Sump, 1200 gallon capacity151,550 ea14-16Leach Feed Pumps, horizontal centrifugal, R.L., SS trim, 700 gpm, 50% solids, 50' tdh, mechanical seals, with drives and motors151,550 ea14-16Density/Flowmeter, Leach Feed17018Wet Scrubber, Ore Receiving Area 2000 cfm, M.S. construction, with fan, drive, and motor101,05010Sump Pump, Ore Receiving Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh7.550016-18Sump Pump, Grinding Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh7.550016-18Rod Mill Rod Charger Machine56,00016-18	DescriptionH P RPMWeight Beivery RPMDelivery WeeksPrice SSampling System, Leach Feed Complete 3-stage system with motors and drives. Interconnecting piping not included185014-167,900Leach Feed Sump, 1200 gallon capacity Leach Feed Pumps, horizontal centrifugal, R.L., SS trim, 700 gpm, 50% solids, 50' tdh, mechanical seals, with drives and motors151,550 ea14-163,050 eaDensity/Flowmeter, Leach Feed170188,009Wet Scrubber, Ore Receiving Area 2000 cfm, M.S. construction, with fan, drive, and motor101,050106,795Sump Pump, Ore Receiving Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh7.550016-181,558Sump Pump, Grinding Area Vertical centrifugal, R.L., SS trim, 50 gpm, 35' tdh7.550016-181,558Rod Mill Rod Charger Machine56,00016-189,00016-181,558

M-K Job No.:______ Date:_____

Page 5 of 22

(

Client:	MEC
Job:	Anderson Project
Location:	Wickenburg, Arizona

8-24

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
127	Grinding Area Overhead Crane 80' span, 15 ton capacity with 5 ton auxiliary	28.5	33,730	15	63,720	Arizona (Shepard-Niles)
128	SAG Mill Liner Handler	15	8,500	52	50,000	York, Pa. (Koppers)
201-202	Acid Mix Tanks 20'Øx 26', mild steel, rubber lined					
203-206	Leach Tanks 20' Ø 22', mild steel, rubber lined					
207-212	Agitators, Acid Mix and Leach Tanks wetted parts 316 SS, motor and drive included	150	23,000 ea	16-18	51,490 ea	Salt Lake, Ut. (Galigher)
213	Leach Discharge Sump 6'Øx10', mild steel, rubber lined					
214-215	Leach Discharge Pumps horizontal centrifugal, R.L., SS trim, 750 gpm, 50' tdh, 45% solids, mechanical seals, with drives and motors	25	1,550 ea	14-16	3,050 ea	Colorado Springs, Co. (DECO)
216	Wet Scrubber, Leaching Area 5000 cfm, SS construction, with fan, drive, and motor	15	1,500	10	8,960	Cleveland, Ohio (Sly Mfg. Co.)

M-K Job No.:______ Date:_____

Page 6 of 22

Client: MEC Job: Anderson Project Location: Wickenburg, Arizona	Equipme Numbe	ent Description er	H P R P M	Weight Ibs
	Client: Job: Location:_	MEC Anderson Project Wickenburg, Arizona		

FOB Point Delivery Price Weeks S Remarks 217 Sump Pump, Leaching Area 5 1,562 467 16-18 Salt Lake, Ut. (Galigher) Vertical centrifugal, R.L., SS trim, 50 gpm, 30' tdh, with drive and motor Thickener Feed Sumps 301-305 8' Ø x 8', rubber lined mild steel 306-315 Thickener Feed Pumps 100 5.050 ea 14-16 8,485 ea Colorado Springs, Co. (DECO) Horizontal centrifugal, R.L., SS trim, 2700 gpm, 50' tdh, complete with drives and motors 316-320 lMix Tanks 8' Ø x 8', rubber lined mild steel 321-325 Agitators, Mix Tanks 7.5 1,800 ea 16-18 3,800 ea Salt Lake, Ut. (Galigher) Wetted parts rubber covered mild steel, with drives and motors 326-330 Thickeners 140' Ø x 10', mild steel, rubber covered. 331-335 Thickener Mechanisms 5 86.400 ea 169,760 ea Colorado Springs, Co. (DECO) 50 Center pier type, 316 SS rake arms, 1.5 blades and cone, with lifting device, drives and motors 336-345 Thickener Underflow Pumps 7.5 5,500 ea 21,000 ea Stamford, Ct. (Dorr-Oliver) 30 Diaphragm type, rubber lined, 910 gpm, 35' tdh, complete with drives and motors

Page 7 of 22

Date:

M-K Job No.:_ 1114

M-K Job No.:<u>]]]4</u> Date:_____

Page 8 of 22

ć,

٩

Client:	MEC
Job:	Anderson Project
Location:	Wickenburg, Arizona

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
346-350	Thickener Underflow Stand-by Pumps Horizontal centrifugal, R.L., SS trim, 910 gpm, 35' tdh, with drives and motors	20	2,100	14-16	4,040 ea	Colorado Springs, Co. (DECO)
351-355	Density/Flowmeters, Thickener U'Flow Gamma gage type with magnetic flowmeter tantalum electrodes, neoprene lined		1,110 ea	24	4,500 ea	Arlington Heights, Il. (K-Ray) (Foxboro)
356	No. 1 Thickener Overflow Sump 8'Øx8', M.S., rubber covered					
357-358	No. 1 Thickener Overflow Sump Pumps Horizontal centrifugal, R.L., SS trim, 1800 gpm, 20' tdh, with motors and drives	20	1,825 ea	14-16	4,372 ea	Colorado Springs, Co. (DECO)
359	Sampling System, Tailing Two-stage, complete with timer drives and motors	1	625	16-18	5,400	Colorado Springs, Co. (DECO)
360	Tailing Sump 8'Øx8', M.S., rubber covered					
361	Sump Pump, CCD Area Vertical centrifugal, 50 gpm, 25' tdh, R.L., SS trim, with drive and motor	5	467	16-18	1,502	Salt Lake, Ut. (Galigher)

Ъ.

Client:	MEC
lob:	Anderson Project
Location:	Wickenburg, Arizona

M-K Job No.:<u>1114</u> Date:____ Page 9 of ²²

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
401	Clarifier-Thickener 70'Øx18', M.S., rubber lined					
402	Clarifier Mechanism Wetted parts 316 SS, with lifting device, drives and motors	5 1.5	35,000	40	68,000	Colorado Springs, Co. (DECO)
403	Clarifier Underflow Pump Horizontal centrifugal, R.L., SS trim, 20 gpm, 30' tdh, with drive and motor	3	300	14-16	1,840	Colorado Springs, Co. (DECO)
403a	Flowmeter, Clarifier Underflow Magnetic type, tantalum electrodes, teflon lined, with transmitter and recorder		85	16	4,614	Rochester, NY (Taylor)
405-406	Sand Filter Feed Pumps Horizontal centrifugal, R.L., SS trim, 1800 gpm, 80' tdh, with drives and motors	60	2,300 ea	14-16	5,550 ea	Colorado Springs, Co. (DECO)
407-409	Sand Filters 11' Ø x 6', M.S., rubber covered, skid mounted, complete with anthracite media		160,000	20-22	190,000	Los Angeles, Ca. (Western Water Equipment Co.)
410	Pregnant Solution Storage Tank 50' Ø x 28', M.S., rubber covered					
411-412	Sand Filter Backwash Pumps Horizontal centrifugal, R.L., SS trim, 1000 gpm, 135' tdh, with drives and motors	75	2,300 ea	14-16	5,550 ea	Colorado Springs, Co. (DECO)

.

Client:	MEC
Job:	Anderson Project
Location:	Wickenburg, Arizona

8-28

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
413-414	Solvent Extraction Feed Pumps Horizontal centrifugal, R.L., SS trim, 1800 gpm, 30' tdh, with drives and motors	30	2,250 ea	14-16	4,300 ea	Colorado Springs, Co. (DECO)
501	Sampling System, S-X Feed Single stage, complete with timer		25	10	1,835	Yorkville, Il. (Bristol)
502	Flowmeter, Solvent Extraction Feed Magnetic type, tantalum electrodes, teflon lined, with transmitter and recorder		130	16	6,317	Rochester, NY (Taylor)
503-506	Mixer-Settler Tanks, Extraction Mixer tanks, 8' x 8' x 8' Settler tanks, 30' x 70' x 5-1/2' FRP lined concrete					
507-510	Agitators, Extraction Mixers Wetted parts 316 SS, with drives and motors	10	2,600 ea	16-18	7,878 ea	Salt Lake, Ut. (Galigher)
511-512	Raffinate Feed Pumps Horizontal centrifugal, 316 SS, 1800 gpm, 30' tdh, with drives and motors	25	2,350 ea	18	6,100 ea	Seneca Falls, NY (Gould)
513	Sampling System, Raffinate Single stage, complete with timer	1	25	10	1,835	Yorkville, Il. (Bristol)
514	Raffinate Tank 65'Øx12', M.S., FRP lined					

.

M-K Job No.:______ Date:_____

Page 10 of 22
.

Client:____MEC Job:____Anderson_Project Location:_Wickenburg, Arizona___

(

M-K Job No.:_______1114_____

Date:_____

Page 11 of 22

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
515-516	Raffinate Tank Discharge Pumps Horizontal centrifugal, 316 SS, 1800 gpm, 30' tdh, with motors and drives	25	2,350 ea	18	6,100 ea	Seneca Falls, NY (Gould)
517-518	Flowmeters, Raffinate Magnetic type, tantalum electrodes, teflon lined, with transmitter and recorder		130 ea	18	6,317 ea	Rochester, NY (Taylor)
519-520	Pregnant Organic Feed Pumps Vertical centrifugal, 316 SS, 220 gpm 20' tdh, with drives and motors	5	595 ea	18	5,617 ea	Seneca Falls, NY (Gould)
521	Pregnant Organic Tank 18' Ø x 14', FRP lined mild steel, covered and vented					
522-523	Pregnant Organic Tank Discharge Pumps Horizontal centrifugal, 316 SS, 220 gpm, 30' tdh, with drives and motors	5	520 ea	18	1,522 ea	Seneca Falls, NY (Gould)
524	Pregnant Organic Tank Bleed Off Pump Horizontal centrifugal, 316 SS, 20 gpm, 20' tdh, with drive and motor	1	240 ea	18	1,200 ea	Seneca Falls, NY (Gould)
525	Heat Exchanger, Pregnant Organic Impervious block graphite, steam heated			5	4,069	So. Plainfield, NJ (Kearney Industries)
526	Sampling System, Pregnant Organic Single stage, complete with timer		25	10	1,835	Yorkville, Il. (Bristol)

Client:	MEC
Job:	Anderson Project
Location.	Wickenburg, Arizona

8-30

Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
Flowmeter, Pregnant Organic		85	16	4,614	Rochester, NY (Taylor)
Mixer-Settler Tanks, Stripping Mixer tanks, 5' x 5' x 8' Settler tanks, 8' x 20' x 5-1/2' FRP lined concrete					
Agitators, Stripping Mixers 316 SS, with drives and motors	3	1,250 ea	16-18	4,079 ea	Salt Lake, Ut. (Galigher)
Barren Organic Feed Pumps Vertical centrifugal, 316 SS, 220 gpm, 20' tdh, with drives and motors	5	595 ea	18	5,617 ea	Seneca Falls, NY (Gould)
Sampling System, Barren Organic Single stage, complete with timer		25	10	1,835	Yorkville, Il. (Bristol)
Mixer-Settler Tank, Regeneration Mixer, 5' x 5' x 8' Settler, 3/8' x 20' x 5-1/2' FRP lined concrete					
Agitator, Regeneration Mixer Wetted parts 316 SS, with drive and motor	3	1,250 ea	16-18	4,079 ea	Salt Lake, Ut. (Galigher)
	Description Flowmeter, Pregnant Organic Mixer-Settler Tanks, Stripping Mixer tanks, 5' x 5' x 8' Settler tanks, 8' x 20' x 5-1/2' FRP lined concrete Agitators, Stripping Mixers 316 SS, with drives and motors Barren Organic Feed Pumps Vertical centrifugal, 316 SS, 220 gpm, 20' tdh, with drives and motors Sampling System, Barren Organic Single stage, complete with timer Mixer-Settler Tank, Regeneration Mixer, 5' x 5' x 8' Settler, 3/8' x 20' x 5-1/2' FRP lined concrete Agitator, Regeneration Mixer Wetted parts 316 SS, with drive and motor	DescriptionH P RPMFlowmeter, Pregnant OrganicMixer-Settler Tanks, Stripping Mixer tanks, 5' x 5' x 8' Settler tanks, 8' x 20' x 5-1/2' FRP lined concreteAgitators, Stripping Mixers 316 SS, with drives and motorsBarren Organic Feed Pumps Vertical centrifugal, 316 SS, 220 gpm, 20' tdh, with drives and motorsSampling System, Barren Organic Single stage, complete with timerMixer-Settler Tank, Regeneration Mixer, 5' x 5' x 8' Settler, 3/8' x 20' x 5-1/2' FRP lined concreteAgitator, Regeneration Mixer Wetted parts 316 SS, with drive and motor	DescriptionH P RPMWeight lbsFlowmeter, Pregnant Organic85Mixer-Settler Tanks, Stripping Mixer tanks, 5' x 5' x 8' Settler tanks, 8' x 20' x 5-1/2' FRP lined concrete3Agitators, Stripping Mixers 316 SS, with drives and motors3Barren Organic Feed Pumps Vertical centrifugal, 316 SS, 220 gpm, 20' tdh, with drives and motors5Sampling System, Barren Organic Single stage, complete with timer25Mixer-Settler Tank, Regeneration Mixer, 5' x 5' x 8' Settler, 3/8' x 20' x 5-1/2' FRP lined concrete3Agitator, Regeneration Mixer Wetted parts 316 SS, with drive and motor3	DescriptionH P R PMWeight lbsDelivery WeeksFlowmeter, Pregnant Organic8516Mixer-Settler Tanks, Stripping Mixer tanks, 5' x 5' x 8' Settler tanks, 8' x 20' x 5-1/2' FRP lined concrete31,250 eaAgitators, Stripping Mixers 316 SS, with drives and motors31,250 ea16-18Barren Organic Feed Pumps Vertical centrifugal, 316 SS, 220 gpm, 20' tdh, with drives and motors5595 ea18Sampling System, Barren Organic Single stage, complete with timer251010Mixer-Settler Tank, Regeneration Mixer, 5' x 5' x 8' Settler, 3/8' x 20' x 5-1/2' FRP lined concrete31,250 ea16-18Agitator, Regeneration Mixer Wetted parts 316 SS, with drive and motor31,250 ea16-18	DescriptionH P RPMWeight lbsDelivery WeeksPrice SFlowmeter, Pregnant Organic85164,614Mixer-Settler Tanks, Stripping Mixer tanks, 5' x 5' x 8' Settler tanks, 8' x 20' x 5-1/2' FRP lined concrete31,250 ea16-184,079 eaAgitators, Stripping Mixers 316 SS, with drives and motors31,250 ea16-184,079 eaBarren Organic Feed Pumps Vertical centrifugal, 316 SS, 220 gpm, 20' tdh, with drives and motors5595 ea185,617 eaSampling System, Barren Organic Single stage, complete with timer Mixer, 5' x 5' x 8' Settler, 3/8' x 20' x 5-1/2' FRP lined concrete31,250 ea16-184,079 eaAgitator, Regeneration Mixer, 5' x 5' x 8' Settler, 3/8' x 20' x 5-1/2' FRP lined concrete31,250 ea16-184,079 ea

M-K Job No.:_______

Date:_____

Page 12 of 22

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
542	Regeneration Aqueous Discharge Pump Horizontal centrifugal, 316 SS, 10 gpm, 30' tdh, with drive and motor	1	240	18	1,200	Seneca Falls, NY (Gould)
543	Barren Organic Tank 18'Øx14', FRP lined, mild steel, covered and vented					
544 -5 45	Barren Organic Tank Discharge Pumps Horizontal centrifugal, 316 SS, 220 gpm 35' tdh, with drives and motors	5	500 ea	18	2,180 ea	Seneca Falls, NY (Gould)
546	Barren Organic Tank Bleed-Off Pump Horizontal centrifugal, 316 SS, 20 gpm, 20' tdh, with drive and motor	1	240	18	1,200	Seneca Falls, NY (Gould)
547	Flowmeter, Barren Organic		85	16	4,614	Rochester, NY (Taylor)
548	Organic Sludge Tank 20'Ø x 20', FRP lined mild steel, covered and vented					
549	Agitator, Organic Sludge Tank Wetted parts 316 SS, with drive and motor	40	12,000	16-18	24,000	Salt Lake, Ut. (Galigher)

Client: MEC Job: Anderson Project Location: Wickenburg, Arizona

8-31

M-K Job No.:______ Date:_____ Page 13 of 22

l

Client:	MEC
lob:	Anderson Project
Location:	Wickenburg, Arizona

M-K Job No.:<u>1114</u> Date:_____

Page 14 of 22

Equipment Number	Description	₩.P RPM	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
55 0	Organic Sludge Tank Supernatant Crud Pump; Horizontal centrifugal, 316 SS, 30 gpm, 35' tdh, with drive and motor	1	240	18	1,200	Seneca Falls, NY (Gould)
551	Sampling System, Supernatant Crud and Regeneration Aqueous Discharge Single stage, complete with timer		25	10	1,835	Yorkville, Il. (Bristol)
552	Organic Sludge Tank Discharge Pump Horizontal centrifugal, 316 SS, 30 gpm, 35' tdh, with drive and motor	1	240	18	1,200	Seneca Falls, NY (Gould)
553-554	Pregnant Strip Solution Feed Pumps Vertical centrifugal, 316 SS, 20 gpm, 15' tdh, with drives and motors	1	530 ea	18	4,465 ea	Seneca Falls, NY (Gould)
555	Sampling System, Pregnant Strip Solution Single stage, complete with timer		25	10	1,835	Yorkville, Il. (Bristol)
556	Sump Pump, Extraction Area Vertical centrifugal, 316 SS, 50 gpm, 30' tdh, with drive and motor	2	535	18	4,510	Seneca Falls, NY (Gould)
557	Sump Pump, Stripping Area Vertical centrifugal, 316 SS, 50 gpm, 30' tdh, with drive and motor	2	535	18	4,510	Seneca Falls, NY (Gould)
601	Heat Exchanger, Pregnant Strip Solution Impervious block graphite			5	3,024	So. Plainfield, NJ (Kearney Industries)

Equipm Numbe	ent er	Description	H P R P M	
Client: Job: Location:	ME An Wi	C derson Project ckenburg, Arizona	EQUIF	MEI

8-33

Delivery Price Weight **FOB** Point lbs Weeks S Remarks 602-603 YC Precipitation Tanks 5' \emptyset x 6', FRP lined mild steel 604-605 Agitators, YC Precipitation Tanks 5 1,100 ea 16-18 2,500 ea | Salt Lake, Ut. (Galigher) Wetted parts 316 SS, complete with drives and motors YC Thickener 606 18' \emptyset x 5', mild steel, FRP lined 607 YC Thickener Mechanism 1 - 1/217,000 4,500 40 Colorado Springs, Co. (DECO) Wetted parts 316 SS, complete with drive and motor 608 YC Thickener Underflow Pump Stamford, Ct. (Dorr-Oliver) 300 1,711 20 Air operated diaphragm type, hypalon lined, 1 gpm, 20' tdh, complete with timer and check valves 609 Flowmeter, YC Thickener Underflow 60 4,066 14-16 Rochester, NY (Taylor) Magnetic type, tantalum electrodes, teflon lined, with transmitter and recorder 610 YC Thickener Underflow Tank 8' \emptyset x 8', mild steel, FRP lined, covered 611 Agitator, YC Thickener Underflow Tank 7.5 1,800 16-18 3,800 Salt Lake, Ut. (Galigher) Wetted parts 316 SS, complete with drive and motor

M-K Job No.:________ Date:______

Page 15 of 22

Client: MEC Job: Anderson Project Location: Wickenburg, Arizona

8-34

Equipment Weight Description ΗP Delivery Price FOB Point Number RPM lbs Weeks Remarks 2 612 YC Centrifuge Feed Pump 1 285 16 1,837 San Leandro, Ca. (Moyno) 613 Unclarified Barren Strip Solution Tank 8' Ø x 8', mild steel, FRP lined 614-615 Barren Strip Sand Filter Feed Pumps 5 455 ea 18 1,181 ea Seneca Falls, NY (Gould) Horizontal centrifugal, 316 SS, 30 gpm, 80' tdh, with drives and motors 616 Barren Strip Sand Filter 2,450 16 22,688 Huntington Beach, Ca. 2' Ø, rubber lined mild steel, (Baker Filtration) skid mounted Clarified Barren Strip Solution Tank 617 8' Ø x 8', mild steel, FRP lined 618-619 Barren Strip Feed Pumps 1 240 ea 18 1,200 ea Seneca Falls, NY (Gould) Horizontal centrifugal, 316 SS, 30 gpm, 20' tdh, with drives and motors 620 Flowmeter, Barren Strip Feed Solution 60 14-16 4,066 Rochester, NY (Taylor) Magnetic type, tantalum electrodes, teflon lined, with transmitter and recorder 621 Sampling System, Barren Strip Yorkville, Il. (Bristol) 25 10 1,835 Feed Solution; single stage , complete with timer

M-K Job No.:<u>1114</u> Date:_____

Page 16 of 22

(

.

Client:	MEC
Job:	Anderson Project
Location:	Wickenburg, Arizona

8-35

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
622	Flowmeter, Barren Strip Bleed-off Solution; Magnetic type, tantalum electrodes, teflon lined, with transmitter and recorder		60	14-16	4,066	Rochester, NY (Taylor)
623	Sampling System, Barren Strip Bleed-off Solution Single stage, complete with timer		25	10	1,835	Yorkville, Il. (Bristol)
624	Sand Filter Backwash Pump Horizontal centrifugal, 316 SS, 30 gpm, 135' tdh, with drive and motor	3	245	18	1,225	Seneca Falls, NY (Gould)
625	Backwash Surge Tank 4'Øx4', mild steel, FRP lined					
626	YC Centrifuge Solid bowl type, 316 SS, complete with drive and motor	20	1,200	33	30,000	Stamford, Ct. (Dorr-Oliver)
627	YC Screw Conveyor to Dryer 316 SS screw and housing, complete with drive and motor	1	300	8	2,000	New Jersey (Acrison)
628	YC Dryer Multiple hearth type, to dry 194 lb/hr from 60% to 2% moisture, diesel or LPG fired, complete with motor and drive	20	45,000	40-42	142,000	Deming, NM (Skinner)

M-K Job No.:<u>1114</u> Date:_____

Page 17 of 22

Client:	MEC
lob:	Anderson Project
Location:_	Wickenburg, Arizona

8-36

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
629	YC Roll Crusher To crush lumps to pass 3/8" screen, complete with common base, drives and motors	10	2,000	12-14	9,208	Belleville, Il. (Gundlach)
630	YC Storage Bin 275 cu ft capacity, 7' Ø, conical bottom, M.S. construction					
631	Drum Vibrator Electric type, attach to YC drums to compact YC		106	3	970	Stan Hope, New Jersey (Durapak)
632	YC Platform Scale			14	8,927	Salt Lake, Ut. (Fairbanks)
633	Roller Conveyor 24" x 120', heavy duty, with drive and motor	1	1000	4-6	6,400	Salt Lake, Ut.
634	Wet Scrubber, YC Precip., Thickener and Centrifuge Area 1200 cfm, 316 SS construction, complete with fan, drive and motor	10	1,050	10	6,795	Cleveland, Ohio (Sly Mfg. Co.)
635	Wet Scrubber, YC Dryer 600 cfm, 316 SS construction, complete with fan, drive and motor	5	1,050	10	6,345	Cleveland, Ohio (Sly Mfg. Co.)
636	Wet Scrubber, YC Packaging 600 cfm, 316 SS construction, complete with fan, drive and motor	5	1,050	10	6,345	Cleveland, Ohio (Sly Mfg. Co.)

M-K Job No.:______ Date:_____ Page 18 of 22

Client: MEC Job: Anderson Project Location: Wickenburg, Arizona

8-37

Equipment Description H P Weight Delivery Price **FOB** Point Number RPM Weeks Remarks lbs 2 637 Sump Pump, Precipitation Area 1 530 18 4,465 Seneca Falls, NY (Gould) Vertical centrifugal, 316 SS, 30 gpm, 25' tdh, with drive and motor 638 Sump Pump, Drying and Packaging Area 1 530 18 Seneca Falls, NY (Gould) 4,465 Vertical centrifugal, 316 SS, 30 gpm, 25' tdh, with drive and motor 701-702 Sulfuric Acid Storage Tanks $65' \emptyset \times 30'$, M.S., covered, vented, with inspection manhole 703-704 Acid Transfer Pumps 5 455 18 1,181 Seneca Falls, NY (Gould) Horizontal centrifugal, cast iron, mechanical seals, 70 gpm, 100' tdh, with drives and motors 705 Sodium Chlorate Solution Storage Tank 24' Ø x 16', M.S. construction, covered and vented, phenolic resin lined 706-707 Sodium Chlorate Metering Pumps 2 3,200 Philadelphia, Pa. (Milton Roy) Cast iron, up to 10 gpm, 30' tdh, with drives and motors 708 Reagent Area Sump Pump 2 535 18 4,510 Seneca Falls, NY (Gould) Vertical centrifugal, 316 SS, 50 gpm, 30' tdh, with drive and motor Flocculant Storage Tanks 709-710 20' \emptyset x 16', mild steel, covered, vented

(

M-K Job No.:_____1114 Date:_____ Page 19 of 22

Client:	MEC
Job:	Anderson Project
Location:	Wickenburg, Arizona

8-38

ΗP Deliverv Equipment Description Weight Price **FOB** Point Number RPM lbs Weeks S Remarks 711 Flocculant Vibrating Feeder 25 8 237 Erie, Pa. (Eriez) 250 lb/hr, complete with control 712 Flocculant Transfer Pump 15 2,135 San Leandro, Ca. (Moyno) 5,234 Horizontal centrifugal, cast iron, 150 gpm, 25' tdh, complete with drive and motor 713-714 Flocculant Metering Pumps 1,015 2,796 5 San Leandro, Ca. (Moyno) M.S. rotor, rubber stator, 50 gpm, 40' tdh, with drives and motors 715-716 Glue Preparation Tanks 8'Øx10', mild steel, open tops 717 Glue Solution Transfer Pump 3 895 2,406 San Leandro, Ca. (Moyno) Mild steel, 30 gpm, 15' tdh, with drive and motor 718-719 Glue Solution Metering Pumps 1 380 1,082 San Leandro, Ca. (Moyno) 5 gpm, 30' tdh, with drives and motors 720 Kerosene Tank $6' \emptyset \times 22'$, M.S. construction, covered, vented 721 Kerosene Transfer Pump 2 250 Indianapolis, In. (Peerless) 500 Cast iron, mechanical seal, 50 gpm, 35' tdh, with drive and motor

M-K Job No.:______1114

Page 20 of 22

Date:

Client:	MEC
Job:	Anderson Project
Location:	Wickenburg, Arizona

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
722	Liquid Anhydrous Ammonia Tank 20 ton capacity, mild steel					
723	Ammonia Vaporizer 100 lb/hr rate		500	12	2,000	So. Dartmouth, Ma. (Thermax)
724	Sodium Bicarbonate Solution Tank 5'Øx6', mild steel					
725-726	Sodium Bicarbonate Solution Pumps Cast iron, gland seal, 5 gpm, 15' tdh, with drives and motors	1	200	6	675	Dayton, Ohio (Duriron)
727	Alamine Solution Tank 3'Øx3', mild steel					
728	Isodecanol Tank 3'Øx3', mild steel					
729	Sodium Chlorate Solution Transfer Pump Cast iron, horizontal centrifugal, 300 gpm, 35' tdh, mechanical seals, with drive and motor	7.5	655	18	2,867	Seneca Falls, NY (Gould)
730	Sodium Chlorate Solution Tank 15'Øx16', mild steel, phenolic resin lined					

(

8-39

M-K Job No.:_______ Date:______

Page 21 of 22

Client:	MEC
Job:	Anderson Project
Location:	Wickenburg, Arizona

Equipment Number	Description	H P R P M	Weight Ibs	Delivery Weeks	Price \$	FOB Point Remarks
731	Agitator for 8' Ø x 10' glue preparation tank; mild steel, with drive, motor, propeller assembly and super structure	5	1,800	16-18	3,700	Salt Lake, Ut. (Galigher)
732	Agitator for 20' Ø x 16' flocculant tank mild steel, with drive, motor, propeller assembly and super structure	; 30	7,000	16-18	14,500	Salt Lake, Ut. (Galigher)
733	Agitator for 5' Ø x 6' sodium bicarbonate tank/ rubber covered mild steel wetted parts with drive, motor, propeller assembly and super structure	5	1,500	16-18	3,200	Salt Lake, Ut. (Galigher)
734	Agitator for 15' Ø x 16' sodium chlorate tank; rubber covered mild steel wetted parts with drive, motor, propeller assembly and super structure	30	6,000	16-18	13,300	Salt Lake, Ut. (Galigher)

M-K Job No.:_ 1114

1

Page 22 of 22

8.5 INSTRUMENTATION

The basic instrumentation philosophy used for the Anderson Project conceptual design was to provide modern, fast response instruments in those areas where they can be of effective use to plant operators. A brief description of the instrumentation philosophy, by area, is presented below:

8.5.1 <u>Grinding</u>

The controls for the grinding circuit components will be mounted on a control panel located in the mill control room. The semiautogenous mill and rod mill speed will be remotely controlled from this control panel. The mills, pumps and conveyors that comprise the grinding circuit will be interlocked and sequenced to prevent material spillage and equipment damage. Recording ammeters, start-stop button and equipment status lights will be located in the control panel. Local start-stop and jog stations will be provided at the equipment locations.

An integrating belt scale will be mounted on the semiautogenous mill feed conveyor. It will provide a control signal for the variable speed apron feeder and the feed water control valve.

A mass flow and density control system will be used to monitor the leach circuit feed. This system will control the leach feed density by controlling the water addition at the classifier screen. It will also be used to totalize the flow for metallurgical accounting purposes.

8.5.2 Leaching

The following instrumentation will be provided:

- a. A pH recorder/controller for acid mix tanks Nos. 1 and 2.
- Acid flowmeters and totalizers to the acid mix tanks
 Nos. 1 and 2, and leach tanks Nos. 1 and 2.
- c. A multipoint emf recorder in leach tanks Nos. 2 and 4.
- A totalizing flow indicator for sodium chlorate addition
 to acid mix tanks Nos. 1 and 2, and leach tanks Nos. 1 and 2.
- e. A temperature recorder for leach tanks Nos. 3 and 4.

8.5.3 CCD and Clarification

The following instrumentation will be provided:

- a. Torque recorders and alarms for the thickener mechanisms.
- Gamma gauge density and magnetic flowmeter recorders on each thickener underflow.
- c. A flow recorder/controller for fresh water to CCD.
- d. A flowmeter for flocculant addition to each thickener.
- e. The instrumentation for the sand filters will be provided by the supplier of the filters.
- f. A flow indicator/controller on the clarifying thickener underflow to leach or CCD.

8.5.4 Solvent Extraction

The following instrumentation will be provided:

- a. Flow recorder/controllers on the following process streams:
 - (1) Pregnant solution feed
 - (2) Barren organic to solvent extraction

- (3) Pregnant organic to stripping
- (4) Barren strip solution to stripping
- (5) Soda ash solution feed to regeneration
- A temperature indicator/controller on pregnant organic to stripping.
- c. A pH recorder/controller for automatic addition of ammonia to stripping stages Nos. 1, 2 and 3.
- d. Level indicators on each of the following tanks:
 - (1) Pregnant organic tank
 - (2) Barren organic tank
 - (3) Pregnant solution storage tank
 - (4) Unclarified barren strip solution tank
 - (5) Clarified barren strip solution tank
 - (6) Raffinate tank
 - (7) Organic sludge tank

8.5.5 Precipitation

The following instrumentation will be provided:

- a. A pH recorder/controller for ammonia addition to precipitation tank No. 1. (Manual control of ammonia feed to precipitation tank No. 2 will be provided.)
- A temperature recorder/controller on precipitation tank
 No. 1.

8.5.6 Yellowcake Washing and Drying

The following instrumentation will be provided:

- a. A flowmeter for wash water and scrubber solution to the centrifuge feed.
- b. A flowmeter for water makeup and solution input to dryer scrubber.
- c. The dryer instrumentation, draft control, temperature recorders, fuel oil gauges, etc., will be provided by the supplier of the dryer.
- 8.5.7 Dust Collecting System

All dust collecting systems will be equipped with protective devices, such as alarms in case of lack of power or insufficient flow of water. The instrumentation for the correct operation of the dust collection equipment will be supplied by the manufacturer.

8.6 MILL FACILITIES

8.6.1 Site Description

The mill complex will be located in a generally rectangular area approximately 1000 feet by 1600 feet, and will lay in the area between East 87600 to 88850 and North 1207600 to North 1208870 in Section 10, RIOW, TIIN, in Yavapai County, Arizona. The tailing pond area will lay to the southwest in the area between East 89000 to East 92000 and North 1204000 to North 1207000 as shown on the area Plot Plan.

Grade elevations for the mill building, leach tanks, solvent extraction, CCD thickeners, office, shop and other ancillary facilities will be at 1950 feet. Receiving hopper and feeder will be at 1924 feet.

The general drainage pattern will be to the south and drain trenches will be used to channel rainwater and spillage away from the mill area buildings to a collecting sump and returned to the mill circuit. Road entry to the mill complex will be from the south and east. The south access will carry material deliveries and commuter traffic while the east entry will carry the haulage vehicles and other mine traffic. Employee parking will be provided adjacent to the south entry road outside of the fenced area, and space will be provided for parking company and salaried employees' vehicles on the south side of the office and lab building. All employees will enter the plant through

a security gatehouse where a full-time guard will also control vehicle access to the mill complex. All major roads will be paved with asphalt.

The ore pad covers approximately 620,000 square feet, and will have a total capacity of 550,000 tons. The pad will be constructed mostly on fill. Grade elevation top of receiving hopper will be at 1950 feet.

8.6.2 Steam Generation

Two 22,000-pounds-per-hour 125 psig oil-fired boilers complete with water treatment feed system (packaged units) will supply the process steam for the leaching, solvent extraction, precipitation and sodium chlorate facilities.

8.6.3 Standby Power

Standby power should be provided to operate the following equipment during a failure of the normal electrical power supply.

- a. Leach agitator drive; all to be connected, but only one at a time to be driven
- b. Leach discharge pump
- c. All CCD thickener drives and rake lifting devices
- d. Thickener underflow diaphragm pumps
- e. Slurry advance pump on each thickener
- f. Solvent extraction area sump pumps
- g. Yellowcake thickener drive and underflow pump
- h. Yellowcake dryer drive and cooling fan
- i. Plant lighting
- j. Instrument air
- k. Gland water pump
- 1. Steam boiler

8.6.4 Water Distribution

The major requirements for operation of the mill complex include water for process make-up, fire protection, boiler feed, and potable uses. These systems will be supplied from the 500,000gallon field-erected storage tank located northwest of the mill area. A pump house adjacent to the storage tank will house the pumps for the fire water and mill water systems.

Process Make-up Water

Approximately 776 GPM of make-up water are required to replace losses to tailings. This water will be pumped from the 500,000gallon storage tank to the various points of usage.

Fire Water

Water for fire protection will be supplied from the bottom portion of the 500,000-gallon storage tank.

Three pumps and the necessary cross-connecting piping will be installed. The primary pump is driven electrically and backed up by a diesel driven pump of the same capacity to cover excessive pressure drop or electrical power failure. Constant pressure is maintained in the fire loop by a small jockey type pump which operates only if pressure in the loop falls below a predetermined setting. Outdoor hydrants and hose boxes are located along the fire loop so that adequate protection will be provided around the mill facilities. Wet standpipe and hose reels are provided inside the mill building, shop and warehouse.

Potable Water

Potable water will be pumped from the 500,000-gallon storage tank to a 40,000-gallon storage tank located adjacent to the west side of the grinding area to provide the mill facilities with a threeday supply of potable water at normal usage rates. A pressurizing pump delivers potable water from the storage tank to all points of usage at 50 PSI. Information from MEC indicates that chlorination may be the only treatment required. The pressurizing pump, chlorination and filtering equipment are located in the grinding area.

Boiler Feed Water

Water for boiler feed is provided from the potable water tank by the pressurization pump. Water is treated in a package sodium zeolite, ion exchange unit in the mill building near the boilers. The treatment packages are sized to soften approximately 48 GPM for make-up to the boiler feed water system based on 30 percent of the steam circulating load and be complete with brine tank, automatic backwash and regeneration controls.

8.6.5 Sanitary Sewage System

The sanitary sewage system is designed to serve 336 people for an estimated design flow of 16,800 gpd. Buildings served are the office and lab, shop warehouse and change house, and the mill building. The treatment plant is poured-in-place below grade concrete tanks with equipment to perform "Aerobic digestion". The plant includes screening, aeration, and clarification with chlorine treatment. Sewage plant effluent is diverted into a leach field.

Laboratory wastes are addressed in subsection 11.1.2.

8.7 MILL COSTS

8.7.1 Mill Capital Cost Estimate

This cost estimate includes the facilities specifically defined in the project description, Section 8, Milling, as supplemented by the scope, project criteria, process description, major equipment list, ancillary mill facilities, utilities and general sections. In addition, the estimate is specifically limited by the following conditions:

- a. The estimate reflects current costs as of June 1, 1978.
- b. The estimate is based upon union craft wage rates and operating costs.
- c. Construction costs are based upon the assumption of reimbursible cost-plus-fee type contracts with the owner furnishing all operating capital.
- d. The engineering and construction costs are for a standard one-shift 40-hour week.
- e. Engineering costs were estimated at eight percent of the direct construction cost.
- f. Detailed estimate was made for all indirect costs and a three percent fee on the direct plus indirect cost.
- g. No allowance has been made for housing or camp costs for construction workers.
- h. Spare parts have been estimated at five percent of initial purchase cost of the process equipment.
- i. Initial mill reagent and supplies costs are shown for reference purposes in Table 8.7.2-6.

- j. Electrical power will be supplied to the mill site substation by Arizona Public Service. The electrical was estimated from a power distribution single-line drawing. Material take-off prices were solicited by telephone and labor installation costs were derived from previous man-hour experience with present day union labor rates applied.
- k. The process piping estimate was factored at ten percent of the process equipment costs; this was derived from previous experience on other similar projects.
- A factor of 1.8 percent of the direct cost, less costs for spare parts was used for instrumentation installation. This was derived from the costs on similar projects.
- m. No allowance has been included for owner incurred costs such as land acquisition, right of way purchase, royalties, financing, operating capital and general administration.

The capital cost estimate summary for the 2000 tpd mill is presented in Table 8.7.1-1.

MILL CAPITAL	COST	SUMMAR	١
--------------	------	--------	---

	Direct Cost Item	Labor	<u>Material</u>	Equipment	Subcontract	<u>Total</u>
50282 8	Site Excavation	\$	\$	\$	\$1,030,210	\$ 1,030,210 .
2	Mill Site Road & Fencing	3,310	4,000		159,730	167,040
-ga	Mill Water Storage Tank	29,040	60,590	5,250		94,880
4	Mill Water Distribution	9,470	16,730			26,200
5	Fire Protection System	22,510	45,040	26,450	36,300	130,300
~6%	Potable Water	13,720	20,910	2,500		37,130
7	Sanitary Sewer	16,930	13,920		26,780	57,630
8	Tailings Pipeline	6,//0	22,170		6,720	35,660
.9	Mill Building	392,890	498,620	64,590	204,180	1,160,280
10	Ore Receiving & Grinding	247,700	137,880	1,246,820		1,632,400
11	Leaching	120,380	157,570	329,380	117,150	/24,480
12		/6/,5/0	1,316,550	1,252,390	1,332,260	4,668,770
13	Clarification	81,030	107,170	302,010	74,930	565,/40
14	Solvent Extraction	203,580	215,810	207,970	332,260	959,620
10	TC Precipitation & wasning	41,270	21,180	307,550	15,540	385,540
10	Reagent Hanging	132,020	332,360	/1,380	38,750	5/4,510
10	Process Diping	30,120 601,440	 620_620	371,200		407,320
10	Process riping	091,440	028,030			1,320,070
20	Flootnical	42,090	18,000		1 604 500	1 604 590
21	Instrumentation				1,094,000	1,094,000
22	Communications				25 000	25,000
23	Mill Equipment Spare Parts	12 390		247 120	23,000	25,000
24	Initial Mill Reagents and Supplies	12,550		247,120	396,000	306,000
27	interal arrived genes and suppries					
	TOTAL DIRECT COST	\$2,871,630	\$3,617,130	\$4,434,610	\$5,833,530	\$16,756,900
	INDIRECT COST ITEM					
	Supplies					\$ 143.580
	Construction Equipment					1,396,990
	General Expenses and Overhead					2,231,930
	·					ii
	TOTAL INDIRECT COST					\$ 3,772,500
	TOTAL DIRECT PLUS INDIRECT COSTS					\$20,529,400
	CONSTRUCTION FEE @ 3%					\$ 615,880
	ENGINEERING @ 8% OF DIRECT COST					\$ 1,340,550
	TOTAL ESTIMATED INSTALLED COST					+00 405 000
	IVIAL ESIIMATEU INSTALLED CUST					\$22,485,830

8.7.2 Mill Operating Costs

This estimate of mill operating costs includes the cost of all labor, supplies, supervision, power and fuel for the production of uranium concentrate (yellowcake) from ore processed in accordance with the mill design described in Section 8 of this report. The estimate is specifically limited to the following conditions:

- a. The estimate reflects costs as of June 1, 1978.
- b. Freight and delivery costs for reagents are included.
- c. Labor rates are based on data provided by Minerals Exploration.A burden of 40.2 percent is used in this estimate.
- d. Supervision rates are based on data provided by Minerals Exploration Company. A burden of 23.0 percent is used in this estimate.
- e. Taxes are not included.
- f. General mine and mill administrative operating costs are not included in the mill operating cost estimate, but are shown for reference in Table 8.7.2-8.
- g. The total mine and mill maintenance supervision costs are itemized in Table 8.7.2-7.
- h. Amortization and depreciation costs are not included.

A mill operating cost summary is presented in Table 8.7.2-1 and breakdowns for supervision, labor, and supplies are shown in subsequent Tables 8.7.2-2 through 8.7.2-6.

MILL OPERATING COST ESTIMATE - SUMMARY

ITEM	ANNUAL COST	COST PER TON	\$/LB U308 ¹	\$/LB_U308 ²
Mill Supervision	\$ 374,781	\$ 0.513	\$ 0.417	\$ 0.356
Mill Operations Labor	684,131	0.937	0.760	0.649
Laboratory Labor	115,043	0.157	0.128	0.109
Laboratory Supplies	120,000	0.164	0.133	0.114
Maintenance Supervision ³	94,575	0.130	0.105	0.090
Mill Maintenance Labor	515,869	0.707	0.573	0.490
Mill Maintenance Supplies	773,804	1.060	0.860	0.735
Mill Reagents 🗕	6,748,405	9.244	7.499	6.410
Power (Mill Only) 🕳	1,149,722	1.575	1.278	1.092
Fuel Oil	485,450	0.665	0.540	0.461
Direct Mill Costs	\$11,061,780	\$15.152	\$12.293	\$10.506

NOTES: 730,000 TPY Ore

- 1 899,810 1b U308/yr @ Ore Grade of 0.0696% U308, 88.55% Recovery
 2 1,052,718 1b U308/yr @ Ore Grade of 0.080% U308, 90.13% Recovery
 3 Maintenance Supervision 30% of Total \$315,249 x 0.30 = \$94,575 (From Table 8.7.2-7)

TABLE 8.7.2-2 MILL SUPERVISION ANNUAL COST

POSITION	NUMBER	ANNUAL RATE	ANNUAL COST	COST PER TON	\$/Lb U ₃₀₈ 1	\$/Lb U ₃ 08 ²
Mill Superintendent	1	\$33,000	\$ 33,000	\$0.045	\$0.037	\$0.031
Mill General Foreman	1	28,600	28,600	0.039	0.032	0.027
Mill Foreman	4	24,200	96,800	0.133	0.108	0.092
Chief Metallurgist	1	28,600	28,600	0.039	0.032	0.027
Metallurgist	1	24,200	24,200	0.033	0.027	0.023
Mill Technician	2	16,500	33,000	0.045	0.037	0.031
Chemist	1	24,200	24,200	0.033	0.026	0.023
Analyst	1	19,800	19,800	0.027	0.022	0.019
Mill Clerk	<u> </u>	16,500	16,500	0.023	0.018	0.016
Total Before Burden	13		\$304,700	\$0.417	\$0.339	\$0.289
23% Burden			70,081	0.096	0.078	0.067
Total	13		\$374,781	\$0.513	\$0.417	\$0.356

NOTES: 730,000 TPY Ore 1 - 899,810 Lb U₃08/Yr @ Ore Grade of 0.0696% U₃08, 88.55% Recovery 2 - 1,052,718 Lb U₃08/Yr @ Ore Grade of 0.080% U₃08, 90.13% Recovery

MILL OPERATIONS LABOR COST

POSITION	NUMBER	ANNUAL RATE	ANNUAL COST	COST PER TON	\$/Lb U308	<u>\$/Lb_U308</u> 2
Loader Operator (8.60/hr)	4	\$17,888	\$ 71 , 552	\$0.098	\$0.080	\$0.068
Grinding & Leaching Operator (8.60/hr)	4	17,888	71,552	0.098	0.080	0.068
CCD Circuit Operator (8.60/hr)	4	17,888	71,552	0.098	0.080	0.068
S-X Precip. Operator (8.60/hr)	4	17,888	71,552	0.098	0.079	0.068
YC Drying-Handling (8.60/hr)	4	17,888	71,552	0.098	0.079	0.068
Tailing Pond Operator (8.60/hr)	4	17,888	71,552	0.098	0.079	0.068
Trainee (7.05/hr)	_4	14,664	58,656	0.080	0.065	0.056
Total Before Burden	28		\$487 , 968	\$0.668	\$0.542	\$0.463
40.2% Burden			196.163	0.269	0.218	0.186
Total	28		\$684,131	\$0.937	\$0.760	\$0.649

8-57

NOTES: 730,000 TPY Ore 1 - 899,810 Lb U₃0₈/Yr @ Ore Grade of 0.0696% U₃0₈, 88.55% Recovery 2 - 1,052,718 Lb U₃0₈/Yr @ Ore Grade of 0.080% U₃0₈, 90.13% Recovery

LABORATORY LABOR COST

POSITION	NUMBER	ANNUAL RATE	ANNUAL COST	COST PER TON	\$/Lb U ₃ 08 ¹	\$/Lb U308 ²
Mill Technicians (8.10/hr)	4	\$16,848	\$ 67,392	\$0.092	\$0.075	\$0.064
Janitor (7.05/hr)	1	14,664	14,664	0.020	0.016	0.014
Total Before Burden	5		\$ 82,056	\$0.112	\$0.091	\$0.078
40.2% Burden			32,987	0.045	0.037	0.031
Total	5		\$115,043	\$0.157	\$0.128	\$0.109

NOTES: 730,000 TPY Ore 1 - 899,810 Lb U₃0₈/Yr @ Ore Grade of 0.0696% U₃0₈, 88.55% Recovery 2 - 1,052,718 Lb U₃0₈/Yr @ Ore Grade of 0.080% U₃0₈, 90.13% Recovery

MILL MAINTENANCE LABOR COSTS AND SUPPLIES

POSITION	NUMBER	ANNUAL RATE	ANNUAL COST	COST PER TON	<u>\$/Lb U₃081</u>	<u>\$/Lb U308</u> 2
Electrician (9.15/hr)	4	\$19,032	\$ 76,128	\$0.104	\$0.085	\$0.072
Mechanics (Craftsmen-9.15/hr)	6	19,032	114,192	0.156	0.127	0.108
Mechanic (Journeyman-8.60/hr)	۱	17,888	17,888	0.025	0.020	0.017
Helper (8.10/hr)	6	16,848	101,088	0.139	0.112	0.096
Trainee (7.05/hr)	_4	14,664	58,656	0.080	0.065	0.056
Total Before Burden	21		\$367,952	\$0.504	\$0.409	\$0.349
40.2% Burden			147,917	0.203	0.164	0.141
Total '	21		\$515,869	\$0.707	\$0.573	\$0.490
Mill Maintenance Supplies			\$773,804	\$1.060	\$0.860	\$0.735

NOTES: 730,000 TPY Ore

1 - 899,810 Lb U₃0₈/Yr @ Ore Grade of 0.0696% U₃08, 88.55% Recovery 2 - 1,052,718 Lb U₃0₈/Yr @ Ore Grade of 0.080% U₃0₈, 90.13% Recovery

Mill Maintenance Supplies = Maintenance Labor X 1.50 = \$515,869 X 1.50 = \$773,804

MILL REAGENT COSTS

ITEM	UNIT PRICE	CONSUMPTION PER TON ORE	ANNUAL COST	COST PER TON	\$/Lb U308	\$/Lb U3082
Sulfuric Acid (93%)	\$ 30.00/Ton	446 Lb	\$4,883,700	\$6.690	\$5.427	\$4.639
Sodium Chlorate	0.20/Lb	6 Lb	876,000	1.200	0.974	0.832
Flocculant	1.50/Lb	0.37 Lb	405,150	0.555	0.450	0.385
Glue	1.25/Lb	0.10 Lb	91,250	0.125	0.102	0.087
Ammonia	180.00/Ton	0.75 Lb	49,275	0.068	0.055	0.047
Kerosene	0.45/Gal	0.22 Gal	72,270	0.099	0.080	0.069
Amine	1.00/Lb	0.10 Lb	73,000	0.100	0.081	0.069
Isodecano1	0.36/Lb	0.20 Lb	52,560	0.072	0.058	0.050
Sodium Bicarbonate	0.19/Lb	0.27 Lb	37,450	0.051	0.042	0.035
Sag Mill Balls (3-1/2"∅)	331.00/Ton	0.45 Lb	54,370	0.074	0.060	0.052
Rod Mill Rods (2-1/2" Ø)	350.00/Ton	1.00 Lb	127,750	0.175	0.142	0.121
55-Gallon Drums	22.00 Ea.	1,165/Yr	25,630	0.035	0.028	0.024
Total			\$6,748,405	\$9.244	\$7.499	\$6.410
Fuel Oil Cost	\$ 0.38/Gal	1.75 Gal	\$ 485,450	\$0.665	\$0.540	\$0.461
Power	\$ 0.04/Kwh		\$1,149,722	\$1.575	\$1.278	\$1.092

NOTES: 730,000 TPY Ore 1 - 899,810 Lb U₃0₈ @ 0.0696% U₃0₈ and 88.55% Recovery 2 - 1,052,718 Lb U₃0₈ @ 0.080% U₃0₈ and 90.13% Recovery

TABLE 8.7.2-7 MAINTENANCE SUPERVISION ANNUAL COST

POSITION	NUMBER	ANNUAL RATE	ANNUAL COST	COST PER TON	\$/Lb U308 ¹	\$/Lb U308 ²
Maintenance Superintendent	1	\$33,000	\$ 33,000	\$0.045	\$0.037	\$0.031
General Maintenance Foreman	3	28,600	85,300	0.117	0.095	0.081
Shift Foreman	4	24,200	96,800	0.133	0.108	0.092
Mechanical Engineer	1	24,200	24,200	0.033	0.027	0.023
Maintenance Clerk	<u>1</u>	16,500	16,500	0.023	0.018	0.016
Total Before Burden	9		\$256,300	\$0.351	\$0.285	\$0.243
23% Burden			58,949	0.081	0.066	0.056
Total	10		\$315,249	\$0.432	\$0.351	\$0.299

NOTES: 730,000 TPY Ore

1 - 899,810 Lb U₃08/Yr @ Ore Grade of 0.0696% U₃08, 88.55% Recovery 2 - 1,052,718 Lb U₃08/Yr @ Ore Grade of 0.080% U₃08, 90.13% Recovery

ADMINISTRATIVE COST - MINE AND MILL

POSITION	NUMBER	ANNUAL RATE	ANNUAL COST	COST PER TON	\$/Lb U ₃ 08 ¹	\$/Lb U ₃ 08 ²
General Manager Administrative Manager Chief Accountant Accountant Accounting Clerk Personnel Manager Personnel Representative Personnel Clerk Purchasing Agent Secretary Receptionist Safety & Environmental Admin. Environmental Assistant Safety & Environmental Technician Safety Engineer Warehouse Supervisor Warehouse Attendant	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$38,500 28,600 23,100 19,800 16,500 23,100 19,800 16,500 23,100 13,200 11,000 26,400 19,800 16,500 19,800 19,800 19,800 19,800	\$ 38,500 28,600 23,100 19,800 16,500 23,100 19,800 16,500 23,100 13,200 11,000 26,400 19,800 82,500 19,800 19,800 70,400	\$0.053 0.039 0.027 0.023 0.027 0.023 0.027 0.023 0.027 0.023 0.032 0.015 0.036 0.027 0.113 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.036	\$0.043 0.032 0.026 0.022 0.018 0.026 0.022 0.018 0.026 0.022 0.018 0.026 0.015 0.012 0.029 0.022 0.022 0.092 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022	\$0.037 0.027 0.022 0.019 0.015 0.022 0.019 0.015 0.022 0.019 0.015 0.022 0.013 0.010 0.025 0.019 0.025 0.019 0.078 0.019 0.078 0.019 0.078 0.019 0.078 0.025
Warehouse Driver	1	17,600	17,600	0.024	0.020	0.017
Total Before Burden 23% Burden Total	25 25		\$489,500 <u>112,585</u> \$602,085	\$0.671 <u>0.154</u> \$0.825	\$0.545 0.125 \$0.670	\$0.465 0.107 \$0.572
Environmental Operating Cost Perpetual Care Fund (5¢/Ton Milled)			\$ 20,000 36,500	\$0.027 0	\$0.022 0.041	\$0.019 0.035
Total Environmental Operating (Total Office Operating Supplies	\$ 56,500 91,700	\$0.077 0.126	\$0.063 0.102	\$0.054 0.087		
TOTAL ANNUAL ADMINISTRATIV	\$750 , 285	\$1.028	\$0.835	\$0.713		

NOTES: 730,000 tpy Ore

8-62

1 - 899,810 1b U₃0₈/yr @ Ore Grade of 0.0696% U₃0₈, 88.55% Recovery 2 - 1,052,718 1b U₃0₈/yr @ Ore Grade of 0.080% U₃0₈, 90.13% Recovery

SECTION 9

TAILING DAM

This section summarizes a report submitted to Minerals Exploration Co., by Dames & Moore. Additional information can be obtained from this detailed study titled "Design Report, Proposed Tailings Impoundment, Anderson Uranium Project, Yavapai County, Arizona", dated April 12, 1978.

Although the vast majority of information presented in the report is still valid, revisions to the mine plan and to the metallurgical criteria after April 1978, will require modification of the existing plan. The modifications relate primarily to the volumes and flows presented in sections 9.3.7, Storage Volume and Surface Area, and 9.3.9, Water Balance. At present, the quantities mentioned in these sections represent a conservative approach to the conditions to be expected.

9.1 SITE SELECTION

The site of the tailing disposal area is located in a portion of the mined-out pit. This will require stripping the overburden, mining the ore and stockpiling the ore during mill construction to allow pit space to construct the first stage dam for the disposal area.

The faults in this area have been inactive for a long time period and as a result these fault zones do not present a problem when considering faulting with respect to a tailing disposal location.

The site is located such that there is very little contributing area for surface runoff and a minimum of surface diversion is required. After mining is completed, a fairly thick layer of the non-mineralized lacustrine lake bed remains. Laboratory testing shows these lake beds contain clay and would act as natural liner. This liner would effectively reduce the seepage to near zero. Groundwater in the area is flowing in a northerly direction and the south face of the pit would intercept groundwater flow to make the site dry during use.

The final reclamation of the dam site can be done so that no maintenance or monitoring would be required after a short period of time. In addition, this site has the advantage of incorporating this final reclamation into the partial backfilling of the pit.
9.2 GROUNDWATER

Based on measurements in geotechnical borings and measurements in exploration borings drilled by MEC in which free water was encountered, the groundwater level in the portion of the open pit to be occupied by the planned tailings impoundment is believed to be approximately 1715 feet and within the lacustrine sediment formation.

Mining near the southern limits of the open pit will extend to about elevation 1375 feet, and it is anticipated that some pumping from sumps might be required to maintain a dry working area. Consequently, the water table will be lowered to the bottom of the pit and a flow gradient created toward the southern limits of the pit.

In general, water quality in the area is good. A well and spring inventory and results of water quality analyses conducted on samples collected from several wells in the area are presented in the report by Water Development Corporation.

9.3 DESIGN CONSIDERATIONS

9.3.1 General

Zoned construction will be required for the retention dam in order to utilize overburden wastes from the open pit for construction material. The zones will consist of an upstream shell, a sloping impervious core, a transition zone, and a downstream shell. Recommended configurations of the various zones of the dam are shown in Figure 9.3-1, Typical Dam Section.

9.3.2 Impervious Core

The impervious core will function to minimize seepage losses through the dam. Non-mineralized claystone materials from the lacustrine sediments formation will be used for construction of the impervious core.

A trench will be excavated into the claystone foundation materials along the complete length of the dam. The purpose of the trench is to key the clay core into the impervious dam foundation.

9.3.3 Downstream Shell

The downstream shell will provide structural support for the sloping clay core and overall embankment stability. Sand and gravel material obtained during stripping of both the capping and lower conglomerate will be used in construction of the downstream shell. These granular materials will provide a high ratio of permeability between the downstream shell and the clay core in order to reduce seepage gradients and maintain a very low phreatic surface in the downstream portion of the dam.

FIGURE 9.3-1

9.3.4 Transition Zone

A 10-foot wide transition zone will be placed between the impervious core and the downstream shell. The principal purpose of the transition zone is to provide protection against movement of clay particles from the impervious core into the coarser downstream shell materials.

Materials used for construction of the transition zone will be limited to sand materials stripped from the weakly cemented sandstone stratum of the lower conglomerate.

9.3.5 Upstream Shell

The principal purpose of the upstream shell is to provide protection against erosion of the impervious core. Consequently, the characteristics of materials used for construction of the upstream shell are largely unrestricted and subject only to minimum strength requirements necessary to maintain adequate slope stability. Construction materials for the upstream shell will be obtained from stripping of both the capping and lower conglomerate overburden.

9.3.6 Stability

Stability analyses results indicate that factors of safety will be adequate and within the limits specified by NRS Guideline 3.11 for all cases analyzed (end-of-construction, partial pool with steady seepage, and maximum pool with steady seepage).

9.3.7 Storage Volume and Surface Area

The storage volume and surface area of the impoundment at any time will be dependent on the rate of dam construction which is in turn related to the mining plan. Assuming that construction follows the schedule set forth, the first stage dam will be completed prior to the start of milling operations. Assuming that tailings are produced at an average rate of 2000 dry tons per calendar day, and excess water will be removed from the tailings impoundment, the first stage dam will provide adequate tailing storage capacity for a period of about 33 months. Maximum surface area of the first stage impoundment will be approximately 28 acres.

The second stage impoundment will be available for tailing disposal by the end of the second year of milling. An additional nine months tailing storage will be provided by the second stage dam. Maximum surface area of the second stage impoundment will be about 14 acres.

9.3.8 Radiochemical Contaminant Migration

Analyses to evaluate potential migration of natural uranium, radium, and thorium through seepage from the proposed tailings impoundment were made.

The results of the radiochemical migration analyses indicate that radioactive contaminant movement through seepage will not occur outside the immediate boundaries of the tailings impoundment during the life of the project or in the long-term future.

9.3.9 Water Balance

a. General

Although the proposed tailings impoundment will have sufficient volume to store all of the tailings expected to be produced during the design life of the project, it does not have sufficient capacity to also store all of the waste water to be discharged from the mill. Therefore, provisions must be made for removal of the excess water.

b. Tailings and Water Inputs

Inputs to the impoundment will consist of tailings, waste water discharge from the mill and precipitation. The average tailings production is expected to be 2000 tons per day, and the discharge rate of wastewater is expected to be about 525 gpm. Part of the wastewater will become entrained in the tailings with the remainder forming the "free water" pond.

The rate of mill water accumulating in the "free water" pond is estimated to be about 29.3 million cubic feet per year. Precipitation input will be dependent on the drainage area which is in turn related to the stage construction schedule.

c. Evaporation and Seepage Outputs

Outputs from the tailings impoundment will consist of surface evaporation from the "free water" pond and seepage. Since evaporation and seepage are dependent on the area of the

impoundment, they are, in turn, dependent on the stage construction schedule. The relationship between time and volume of evaporation and seepage outputs is based on the assumption that the stage construction schedule will be followed and that the tailings impoundment will be managed to achieve the maximum possible surface evaporation.

d. Excess Water

It is estimated that a minimum total of about 231 million cubic feet of excess water must be removed from the impoundment during the life of the project.

In order to maintain adequate floodwater surcharge capacity and freeboard, in the earlier stages of the project when the surface area of the pond is smallest and consequently surface evaporation from the pond is least, the excess water must be removed at a faster rate than in later stages when the surface area of the pond is larger.

9.4 CONSTRUCTION CONSIDERATIONS

9.4.1 Pre-construction Investigations

Following stripping of overburden and removal of ore from within the limits of the proposed tailings impoundment for each stage of construction, additional boreholes will be drilled within the foundation limits of the dam and in the reservoir bottom to investigate the continuity and thickness of the relatively impervious claystone layer that will serve as the dam's foundation and as the natural lining for the reservoir.

9.4.2 Preparation of Foundation, Key Trench, and Abutments

The foundation abutments and key trench will be carefully prepared prior to placement of fill materials.

All hard promontories and other abrupt changes in grade that could cause sharp differential settlement of overlying fill material will be removed. Additionally, any zones of softer, highly weathered, fractured or jointed rock will be completely removed by excavation.

Immediately prior to placement of the first layer of fill material, the foundation area to be covered will be moistened. Sheepsfoot equipment will be used to compact the first lift of fill in all zones, thus providing a good bond between the foundation and the fill.

9.4.3 Earthwork Quantities

Estimated earthwork quantities for each major item of dam construction are presented in Table 9.4.3-1.

9.4.4 Inspection During Construction

A qualified engineer familiar with earth dam construction will be present at all times during embankment construction to identify fill materials suitable for placement in each zone and to determine the adequacy of compaction.

Detailed written records will be maintained by the engineer of all activities and observations made during construction. The records will assist in analysis and correction of any unforeseen difficulties that might require design changes during construction or corrective measures after construction.

TABLE 9.4.3-1

EARTHWORK QUANTITIES (In Cubic Yards)

In Place Earthwork Volumes in Cubic Yards

Item	First <u>Stage</u>	Second Stage	Third Stage	Fourth Stage	Fifth Stage	Sixth <u>Stage</u>	Total
Impervious Core	179,000	80,000	104,000	73,000	90,000	77,000	603,000
Transition Zone	55,000	17,000	20,000	30,000	44,000	58,000	224,000
Upstream Shell	365,000	97,000	69,000	65,000	76,000	78,000	750,000
Downstream Shell	576,000	591,000	505,000	746,000	1,124,000	1,649,000	5,191,000
Reservoir Lining	50,000	20,000	920 795 Hand Barry (1999) - 1999 - 1999 - 1999 - 1999 - 1999				70,000
TOTAL	1,225,000	805,000	698,000	914,000	1,334,000	1,862,000	6,838,000

.

9.5 POND OPERATION

9.5.1 Tailings Discharge System

a. <u>General</u>

From a pickup point located near the northwest corner of the impoundment, tailings slurry will be transported by pipeline and discharged into the impoundment by spigoting from the crest of the dam. To control erosion, the tailings will be discharged from the spigot points through feeder lines laid on the inside slope of the embankment. Sufficient elevation differential exists between the pickup point and the crest of the impoundment to transport and discharge the tailings slurry by gravity flow.

b. Pipe Selection

Because of its excellent corrosion and abrasion resistance, and because it is relatively lightweight and easy to move, high density polyethylene pipe will be used for the discharge line.

9.5.2 Evaporation System

a. General

As discussed previously in this report, the volume of excess water expected to be generated over the life of the project will be over 231 million cubic feet. This water must be removed from the tailings impoundment in order that the excess water buildup does not infringe upon the required flood surcharge capacity and freeboard in the impoundment.

b. Evaporation Ponds

Evaporation ponds will be constructed atop one or more of the overburden waste dumps located northeast and west of the tailings impoundment. The area limits and depths of the evaporation ponds will be designed to accommodate the required rate of excess water removal from the tailings impoundment as well as to maintain adequate flood surcharge capacity and freeboard. Since permeability of the overburden wastes are expected to be relatively high, the evaporation ponds will be lined either with a compacted clay liner similar to the material to be used in construction of the impervious core of the dam, or with an appropriate artificial membrane material.

A barge-mounted decanting system will be required in the tailings impoundment for pumping the excess water through a pipeline to the evaporation ponds. Two pumps, each with the capability of pumping approximately 1000 gpm will be required on the decant barge. One of the pumps will act as a backup pump in case of breakdown of the other.

c. Spray Evaporation

Spray evaporation methods are currently being used for disposal of excess water at other uranium projects in the United States. In view of the relatively high evaporation rate at the site, spray evaporation methods are being investigated for this project. A cost savings of \$1,483,000

may be realized by using the spray system in place of evaporation ponds.

The capacity of the spray evaporation system for removal of excess water from the impoundment will be designed to account for periods of cool and wet weather as well as the favorable dry, hot summer conditions.

9.6 INSPECTION AND INSTRUMENTATION

9.6.1 Inspection and Maintenance

Once the tailings impoundment becomes operational, a detailed systematic and regular visual inspection and maintenance program will be established to detect and repair possible damage that might detrimentally affect the integrity of the retention dam. Detailed records will be maintained for each inspection; and if signs of distress to the dam are noted, a qualified engineer will be contacted immediately to evaluate the seriousness of the distress.

9.6.2 Instrumentation

Instrumentation will be installed in the retention dam during its construction to monitor changes that might be critical to dam stability or seepage conditions. The instrumentation will be monitored at regular intervals, and the available records and readings compared with previous monitoring results to detect abnormal performance of the instruments or evidence of unusual performance and distress in the dam.

9.6.3 Groundwater Monitoring

Water quality monitoring wells, located in the downstream slope of the dam, will be used to monitor the phreatic surface in the downstream shell of the dam and the quality of seepage escaping from the dam. When sampling, a sufficient amount of water will be removed from the well prior to sample collection to assure that a representative sample is obtained.

The six monitor wells will be checked quarterly for water level and quality. Complete chemical and radiochemical analysis will be made for the first four sample collections. During pond operation quarterly analyses of the tailings pond liquid will also be performed.

After the first four quarterly analyses, the water quality data will be reviewed and a revised program drawn up for subsequent analyses in the six monitor wells. Levels of contaminants in the tailings pond liquid will be used as a guide in any modifications to the monitor well assay program.

All sampling and analytical work will be done in accordance with the standards of the U.S. Environmental Protection Agency, the U.S. Nuclear Regulatory Commission, or other recognized standards acceptable to the reviewing agencies.

9.7 ABANDONMENT CONSIDERATIONS

9.7.1 General

After project termination, discharge of tailings and water into the impoundment will cease, and standing water will be allowed to evaporate. When a competent surface exists sufficient to allow access by construction equipment, the entire tailings impoundment will be covered with pit overburden and topsoil, and revegetation will follow.

9.7.2 Abandonment Cover

The type and thickness of cover material required over the surface of the tailings are governed principally by radiological and erosional criteria.

The recommended treatment is to cover the surface of the tailings with a 14-foot thick layer of compacted sand similar to that used in construction of the downstream shell of the dam.

In addition to covering the surface of the tailing, additional fill material will be placed against the downstream slope of the retention dam. The fill will serve to control rill erosion. Fill material consists of gravelly silty sand similar to the upper sand layer to be placed over the surface of the impoundment. To further control erosion, a small retention dike will be constructed at the crest of the impoundment to minimize runoff over the slopes. The perimeter dike will create a closed retention system on the upper surface of the abandoned tailings impoundment.

Runoff from the surrounding drainage area and precipitation falling directly on the surface of the impoundment will be retained and eventually lost to evaporation and plant transpiration. The surface area of the abandoned tailings impoundment is sufficiently large that the small perimeter dike creates enough storage capacity to contain runoff from the probable maximum flood series.

9.7.3 Revegetation

In order to promote growth of vegetation after abandonment, top soil removed and stockpiled from the surface of the open pit and mill areas during mining and construction operations will be spread on the surface and slopes of the tailings impoundment. Fertilizer will also be applied.

The surface of the impoundment and its slopes will be scarified and left in a rough condition and seeded to several different vegetative species native to the area.

9.8 CAPITAL AND OPERATING COSTS

Capital and operating cost estimates were developed from information provided by Dames & Moore. These costs are presented in Table 9.8-1. The construction estimates per stage include equipment, labor and supply costs. The equipment cost estimates include new equipment required specifically for the tailings dam construction. The first stage of construction cost and the equipment costs will be capitalized.

The balance of the construction stages, including abandonment, are considered as operating expenses under tailings dam operations. Dames & Moore investigated two methods for evaporating water; evaporation ponds and a spray evaporation system. The pond system was used for the estimate presented in this feasibility study. The spray system will be investigated further during detailed engineering because of a potential savings of \$1,475,000.

Table 9.8-2 shows the operating costs for the tailings dam construction by year.

Table 9.8-3 lists the estimated manpower required for the tailings dam construction operations. It is assumed that these personnel will be reassigned to other Mine department functions when not working on the construction of the tailings dam.

TABLE 9.8-1

TAILINGS DAM CONSTRUCTION COSTS

Construction Cost Estimate Per Stage

Construction Stage	Year Required	Tailings Impoundment	Tailings Discharge System	Evaporation ¹ Ponds	Total With Evap, Ponds
*First	0	\$ 430,000	\$47,268	\$1,640,745	\$2,118,013
Second	2	218,160	10,908	**	229,068
Third	3	200,890	6,360		207,250
Fourth	4	221,800	10,000		231,800
Fifth	6	309,060	5,454		314,514
Sixth	8	399,050	5,454		404,504
Abandonment	12	2,582,000			2,582,000
TOTAL		\$4,360,960	\$85,444	\$1,640,745	\$6,087,149

**Equipment Cost Estimate

l - Dozer, Rubber-tired, Cat. 824 S] - Compactor, Cat Model 825] - Water Truck, 10,000 Gallon	\$ 161,018 144,895 238,939
	\$ 544,852

*First stage construction costs to be capitalized. Balance will be charged to operating expenses for the year when the expenses occurred.

**Balance of equipment required will be provided by the Mine department.

¹Evaporation ponds are being used for this estimate. An alternate spray system may be considered. A possible cost reduction of \$1,483,000 may be realized with the spray system.

TABLE 9.8-2

TAILINGS DAM CONSTRUCTION

OPERATING COST ESTIMATE

Item	Year	Annual <u>Cost</u>	Cost Per Ton	<u>\$/Lb U308</u> 1	\$/Lb U308 ²
Second Construction Stage	1981	\$ 229,068	\$0.314		\$0.218
Third Construction Stage	1983	207,250	0.284	0.230	
Fourth Construction Stage	1984	231,800	0,318	0.258	
Fifth Construction Stage	1986	314,514	0.431	0.350	
Sixth Construction Stage	1988	404,504	0.554	0.450	
Abandonment	1992	2,582,000			

NOTES: 730,000 tpy ore 1 - 899,810 lb U308/yr. Ore grade 0.0696% U308, 88.55% recovery 2 - 1,052,718 lb U308/yr. Ore grade 0.080% U308, 90.13% recovery (first two years of operation)

TABLE 9.8-3

TAILINGS DAM CONSTRUCTION

MANPOWER REQUIREMENTS

Construction Stage	Year	Salaried	Hourly	Total
Second	1981	2	4	6
Third	1983	2	4	6
Fourth	1984	2	4	6
Fifth	1986	2	4	6
Sixth	1988	2	4	6
Abandonment	1992			

(

SECTION 10

ANCILLARY CONSIDERATIONS

10.1 ACCESS ROAD

An access road will be constructed by a contractor from U.S. Highway 93 to the project site (see Figure 10.1-1). The road will be 12.2 miles in length and terminate with a public turnaround near the south end of the east waste dump. The road has been designed using a 26-foot wide paved roadway with four-foot wide safety shoulders on each side for emergency pulloffs. After completion of the road, the route will be turned over to Yavapai County as a County Secondary Highway with the County assuming maintenance responsibility.

The remaining portion of the road to the plant site will be built and maintained by Minerals Exploration Company. Road entry to the mill complex will be from the southeast. The access will carry material deliveries and commuter traffic. Employee parking will be provided west of the administration building outside of the fenced area. Space will be provided for parking company supervisory staff vehicles on the south side of the office and lab building inside the fenced area. All employees will enter the plant through a security gate where a full-time guard will also control vehicle access to the mill complex. All major roadways will be paved with asphalt.

The following cost estimate was developed for Minerals by Western Technologies, who are responsible for the road engineering.

a. Cost from U.S. 93 to Public Turnaround (as of May 1, 1978).

Description	Quantity	Unit	Cost	<u>Total Cost</u>
Clearing & Grubbing	73	acres	\$150.00	\$ 10,950
Roadway Excavation	223,850	cu yd	0.95	212,658
Overhaul	44,800	cu yd	0.16	7,168
Structural Excavation	3,360	cu yd	3.10	10,416
Special Backfill	3,360	cu yd	5.26	17,674
Aggregate Base Course	67,750	Ton	4.95	335,363
Mineral Aggregate for AC Paving	21,526	Ton	8.50	182,971
Asphaltic Material AR-4000	1,374	Ton	112.00	153,888
Subgrade Preparation	213,805	sq yd	0.35	74,832
Ditch Grading	47,500	sq yd	0.35	16,625
36-in. CMP Drainage Structure	1,044	lin ft	23.00	24,012
72-in. CMP Drainage Structure	204	lin ft	50.00	10,200
60-in. CMP Drainage Structure	72	lin ft	40.00	2,880
48-in. CMP Drainage Structure	64	lin ft	35.00	2,240
60-in. Multi Plate Drainage Structure	136	lin ft	120.00	16,320
84-in. Multi Plate Drainage Structure	68	lin ft	130.00	8,840
90-in. Multi Plate Drainage Structure	72	lin ft	135.00	9,720

.

	Description	Quantity	Unit	<u>Cost</u>	To	tal Cost	t
96-in. Mul Drainage S	ti Plate Structure	452	lin ft	\$140.00	\$	63 , 280	
138-in. Mu Drainage S	ilti Plate Structure	92	lin ft	175.00		16,100	
144-in. Mu	ilti Plate	176	lin ft	175.00		30,800	
13-ft x 20 Pipe Arch)-ft Multi Plate	100	lin ft	500.00		50,000	
10-ft x 14 Plate Pipe	-ft 5-in. Multi Arch	76	lin ft	200.00		15,200	
7-ft x ll- Pipe Arch	ft Multi Plate	64	lin ft	130.00		8,320	
6-ft 7 - in. Multi Plat	x 9-ft 9-in. e Pipe Arch	64	lin ft	130.00		8,320	
Rock Excav	ration	25,000	cu yd	5.00		125,000	
	Additive Items						
Prime Coat	:	310	Ton	110.00		34,100	
Miscellane	ous Concrete	150	cu yd	250,00		37,500	
	Subtotal				\$1,	485,377	
	Overhead					225,600	
	Subtotal				\$ 1,3	710,977	
	Taxes					40,000	
	Contractor Profit	Margin				160,000	
	Subtotal				\$ 1,9	910 , 977	
	Engineering & Qual	ity Control				146,640	
	Subtotal				\$2,0	057,617	•
	Inflation @ 1.0% (to 6-1-78)				20,576	
	τοτα	L (12.2 miles	s)		\$ 2,0	078,193	

	<u>Total Cost</u>
Multiplate	\$ 87,000
Excavation	108,100
Subgrade	8,400
Grave1	55,225
Asphalt	16,450
TOTAL (approx. one mile)	\$ 275,175
TOTAL ACCESS ROAD CONSTRUCTION COSTS	\$2,353,368

b. <u>Cost Frame Public Turnaround to Front Gate (by Minerals)</u>

10.2 WATER SUPPLY

The major requirements for operation of the Project include water for process, fire protection, boiler feed, potable uses, and dust control. The quantities required are detailed on Dwg. No. 21-53-0-111.

The Project water supply will come from four wells located in Section 16, TIIN, RIOW. Each well will produce approximately 350 gpm. Three wells will be operated at a given time with the fourth well on standby to supply the required flow to the operation.

The original test well will be utilized as one of the four producers. The hole was rotary drilled 20-inch diameter to bedrock at 1490 feet. A 14-inch pre-perforated casing was installed and then the well was gravel packed. The remaining wells will be 17-1/2-inch diameter drilled to 1800 feet or bedrock if shallower. 12-3/4inch pre-perforated casing will be installed and gravel packed from the total depth to the surface.

The wells will be tied together by a pipeline and the water will be pumped to a primary booster station consisting of a concrete sump and two vertical turbine pumps (one operating and one standby). Control instrumentation is included with the wells to maintain the level of the water in the supply tank.

The water line will be steel and ten inches in diameter. The line will run north from Section 16 and skirt the mine area to the west and north and tie into the mill storage tank. The line will run along the surface for ease of inspection and maintenance and will be approximately four miles in length.

Cost estimates for the water supply of the Anderson Project have been set apart as follows:

a. Water Supplies Capital Costs

b. Water Supplies Operating Costs

A detailed estimate of both costs is shown below.

a. Water Supplies Capital Costs

Water pipeline (steel, 10 in Ø, 21,120 ft)	\$	408,110
Wells (Drilling and casing 3 wells, setting four pumps)		823,040
Construction Supplies and General Expenses	_	240,080
TOTAL	\$1	,471,230

b. <u>Water Supply Operating Costs</u> (800 GPM, 4¢/kwh, mill site operations)*

Annual	Power Cost	Annual			Annua 1
Year**	<u>kwh/yr x 10</u> 6	Power Cost	Year	kwh/yr x 10 ⁶	Power Cost
1	2.72	\$ 108,800	7	3.20	\$ 128,000
2	2.80	112,000	8	3.28	131,200
3	2.88	115,200	9	3.36	134,400
4	2.96	118,400	10	3.44	137,600
5	3.04	121,600	11	3.52	140,800
6	3.12	124,800	12	3.60	144,000

Annual cost of water paid to State of Arizona (\$5/acre foot) = \$6,451

*See Drawing No. 21-53-0-111 for details.

**At start of mill production. Variations in power consumption are due to changes in the water table.

10.3 POWER

Power will be provided to the property by Arizona Public Service (APS) via a new 115 KV 22.5 mile transmission line. (See Figure 10.1-1). This line is supplied by the Willow Lake Substation which is approximately 60 miles away. At Willow Lake a 50/60/83 MVA transformer steps voltage down from 230 KV to 115 KV. One other use is also supplied from this line; Bagdad Copper Co., which has a maximum demand of approximately 50 MW.

APS will provide the main substation for this facility in the southcentral portion of Section 2. They presently plan to provide a 115 KV circuit switcher on the incoming line, and a 10 MVA stepdown transformer lowering the voltage to 12.47 KV for plant dis-Two 12.47 KV feeders will emanate from the substation tribution. controlled by an automatic circuit recloser. The lines will run together on common poles to the process plant (underbuilt). One line is dedicated to feed the mine and water supply system; the other to feed the mill. Single line pole construction will be used from the mill area to the mine and to the water supply wells. The three-phase, symmetrical short circuit level at the secondary of the APS transformer will be approximately 83 MVA. Voltage regulation should not, therefore, be a problem. Steps have been taken to ensure reliable shovel operation by providing capacitors and reduced voltage starters on the shovels.

The mill substation will be located outside the mill building fed by underground 15 KV cable from the pole line located outside the plant perimeter.

The 480 V system has been provided with a synchro-bus tie to enable loads to be transferred to another transformer in the event of loss of one transformer.

All integral horsepower drives below 250 horsepower will be run on the three-phase 480 V system. In the mill areas this will be a high resistance grounded system with ground fault alarm and pulsing ground fault detection. This allows the process to be uninterrupted for a single ground fault, which, when it occurs, can be quickly found and isolated. Additionally, destructive and dangerous arcing ground faults are eliminated.

Emergency power is available from a 1000 KW diesel engine generator, which would start automatically on loss of normal power. Emergency lighting and critical process drives would be served by this via automatic transfer switches to the motor control centers. The reference one line diagram is shown on drawing No. 21-54-0-112, and a summary of power requirements is shown on the following Table 10.3-1.

TABLE 10.3-1

MINERALS EXPLORATION COMPANY

ANDERSON PROJECT

ELECTRICAL LOAD SUMMARY

Equipment Number	No.of Units	Description	Connected HP	Operating HP
		<u></u>		
002	1	Air Compressor, Plant	100	100
003-004	2	Boilers, 22,000#/HR	100	50
008	1	Fire Water Pump, 1000 gpm	100	
010	1	Instrument Air Compressor	7.5	7.5
011	1	Shop Air Compressor	10	10
012	1	H ₂ SO ₄ Unload Compressor	25	25
014	1	Fresh Water Pump, 150 gpm	5	5
015-016	2	Gland Water Pump, 150 gpm	20	10
103	1	Apron Feeder	7.5	7.5
104	1	Belt Conveyor	15	15
106	1	Semiautogenous Grinding Mill	500	500
108-109	2	Rod Mill Feed Pumps	50	25
110	1	Trommel Oversize Belt Conveyor-1	5	5
111	1	Trommel Oversize Belt Conveyor-2	5	5
112	1	Tramp Iron Magnet	3	3
113	1	Rod Mill	600	600
115-116	2	Classifier Screen Feed Pumps	50	25
118	1	Sampling System, Leach Feed	1	1
120-121	2	Leach Feed Pumps	30	15
123	1	Wet Scrubber	10	10
124	1	Sump Pump, Ore Receiving Area	7.5	7.5
125	1	Sump Pump, Grinding Area	7.5	7.5
126	1	Rod Mill Charger	5	5
127	1	Grinding Area Overhead Crane	28.5	28.5
128	1	Sag Mill Liner Handler	15	15
207-212	6	Agitators, Acid-Mix and Leach	900	900
214-215	2	Leach Discharge Pumps	50	25
216	1	Wet Scrubber, Leaching Area	15	15
217	1	Sump Pump, Leaching Area	5	5
306-315	10	Thickener Feed Pumps	1000	500
321-325	5	Agitators, Mix Tanks	37.5	37.5
331-335	5	Thickener Mechanisms	32.5	32.5
336-345	10	Thickener Underflow Pumps	75	75
346-350	5	Thickener Underflow Standby Pumps	100	
357-358	2	Thickener Overflow Sump Pump	40	20
359	1	Sampling System, Tailings	1	1
361	1	Sump Pump, CCD Area	5	5
402	1	Clarifier Mechanism	6.5	6.5

Page 1 of 3

Table 10.3-1 Page 2 of 3

Equipment Number	No.of Units	Description	Connected HP	Operating <u>HP</u>
403	1	Clarifier Underflow Pump	З	З
405-406	2	Sand Filter Feed Pumps	120	60
403-400	2	Sand Filter Backwash Pumps	150	75
411-412	2	Solvent Extraction Food Dumps	60	30
413-414 507-510	2	Agitatons Extraction Mixons	40	40
511-512	4	Paffinato Food Dumps	40 50	25
515-516	2	Daffinate Tank Discharge Dumps	50	25
510-520	2	Progrant Organic Food Dumps	10	5
572-522	2	Progrant Organic Discharge Pumps	10	5
522-525	2	Program Organic Discharge Fullips	10	1
522 525	1	Agitatone Stripping Mixone	12	12
532-555 536 530	4	Ayriators, Stripping Mixers	12	12
530-536	3	Agitaton Degeneration Mixon	10	10
541 542	1	Agriator, Regeneration Mixer	ump 1	3 1
342 547 545	1	Regeneration Aqueous Discharge Pl	1 40	1
544-545 546	2	Barren Organic Discharge Pumps	10	5 1
240 540	1	Barren Urganic Bieea-Oli Pump	1	1
549 550	1	Agitator, organic studge lank	40	40
55U 552	1	Supernalani trua Pump	1	1
552 552 554	I	Organic Studge Discharge Pump	1	1
553-554	2	Pregnant Strip Feed Pumps	2	1
556	1	Sump Pump, Extraction Area	2	2
55/	I	Sump Pump, Stripping Area	2	2
604-605	2	Agitators, it Precipitation		10
607	1	YU INICKENER MECHANISM		1.5
611		Agitator, it inickener underflow	/.5	/.5
612	I	i centrituge Feed Pump		ļ
614-615	2	Sand Filter Feed Pumps	10	5
618-619	2	Barren Strip Feed Pumps	2	I 2
624	1	Sand Filter Backwash Pump	3	3
626	1		20	20
627	1	IL Screw Lonveyor		
628	1	YC Dell Curchen	20	20
629	1	YC ROTT Crusher	10	10
033	1	Koller Conveyor	10	10
034	1	Wet Scrubber it Precipitation		10
035	1	Wet Scrubber YC Drying	5 F	5 F
030	1	Wet Scrubber it Packaying	С 1	Э 1
037	1	Sump Pump, Precipitation Area		1
038	1	Sump Pump, Drying and Packaging A	Area I	
703-704	2	Acia Iranster Pumps	10	5
700-707	2	Sourial chiorate retering Pullips	4	2
700	1	Reayerri Area Sump Pump Elocaulant Amon Thomaton Dump	15	15
712 711		Flocaulant Area Transfer Fump	10	10
713-714	1	Glue Solution Transfer Pump	3	3

Table 10.3-1 Page 3 of 3

Equipment Number	No.of Units	Description	Connected <u>HP</u>	Operating KP
718-719 721 725-726 729 731 732 733 734	2 1 2 1 1 1 1	Glue Solution Metering Pumps Kerosene Transfer Pump Sodium Bicarbonate Pumps Sodium Chlorate Transfer Pump Glue Preparation Agitator Flocculant Tank Agitator Sodium Bicarbonate Agitator Sodium Chlorate Agitator	2 2 15 5 30 5 30	1 2 1 7.5 5 30 5 30
		Subtota1	4803	3574.5
		Shops and Warehouse Administration and Laboratory	150 50	150
		MILL TOTAL	5003	3874.5
		Others:		
		P&H 2100 Shovel (2) Tailings Decant Pumps (2) Booster Pumps Water Supply (2) Well Pumps (4) Lighting and Miscellaneous	1200 400 400 600 235	1200 200 200 450 155
		TOTAL	2835	2205
		GRAND TOTAL	7838	6079.5

.

ELECTRICAL CAPITAL AND OPERATING COSTS

1.	APS Transmission Line		
	115 kv Tap Station	\$	314,000
	115 kv Transmission Line		907,100
	115/12.5 kv XFMR, and Metering		295,000
	Land Right-of-way		26,000
	TOTAL	\$1	, 542 , 100
2.	Mine and Plant Distribution		
	Poles, Wire & Hardware	\$	93 , 436
	4-Well Substations		27,600
	Labor		123,750
	Automatic Well Controls		37,638
	TOTAL	\$	282,424
3.	Power Connections		
	a. Plant Substation 12.5/4.16 kv	\$	78,635
	b. Portable 12.5/4.16 kv Shovel		121,500
	TOTAL	\$	200,135
	GRAND TOTAL	<u>\$2</u>	,024,659

4. Power Rates
4¢ per kwh (June 1, 1978)

10.4 COMMUNICATIONS

A telephone system will be used as the primary communication system. It will be complemented by a paging system installed in the large areas such as the shop, warehouse and mill building. Radios will be used to provide communications between the mobile equipment and a base station located in the maintenance building.

Service will be provided by Mountain Bell. For the purpose of the study it is to be assumed that an underground line connecting the plant to the Yarnell-Congress Exchange will be utilized. A micro-wave evaluation will be done at a later date when Mountain Bell engineers can examine the Project.

The cost of the underground line would be \$204,000 which is used for the Feasibility Study although it has been stated by a Mountain Bell representative that the microwave would be considerably less expensive.

SECTION 11

ENVIRONMENTAL

11.1 WASTE MANAGEMENT

Operations in uranium extraction processes include grinding, leaching, separating the leach liquor from the tailings, and recovering the uranium from the leach liquor. These operations generate gaseous, liquid and solid emissions and effluents.

Waste containment systems have been incorporated in this study to prevent pollution of water, soil and air. Particulate concentrations will be maintained below permissible levels, to safeguard the surrounding environment from radioactive contamination, by using wet scrubbers. Solid and liquid wastes will be impounded in ponds designed to applicable standards.

Mill effluents and waste will be minimized to the extent reasonably achievable. Pollution control equipment will be "state of the art". It will be routinely checked for proper operation. Equipment failure will be monitored by an annunciator system to detect failure.

The location of emissions points and collection points are shown on the following drawings in Exhibit III-A:

21-53-0-113 Ore Receiving and Conveying Emission Control
21-53-0-114 Mill Building Emission Control
21-53-0-115 Mill Building Emission Control
- 21-53-0-116 Leach and Filter Area Emission Control
- 21-53-0-117 CCD Thickener Emission Control
- 21-53-0-118 Mill Site Plan Emission Control
- MEC-002 Tailing Disposal System

11.1.1 Gaseous Emissions

The dust collecting, venting and fume control systems in the plant have been designed to control all possible particulate, gaseous, and mist emissions at acceptable levels when the plant is operating at an average of 2000 tons per day. Wet scrubbing and venting are the primary methods of gaseous emission control.

Gaseous emissions originate in several locations and are controlled by several control systems.

a. Locations

(1) Ore Receiving

There will be small amounts of dust and radon generated by the ore stockpiles and the subsequent transportation to the ore surge hopper. The ore stockpiles will be sprinkled with water to suppress dust. Natural air currents will provide sufficient dispersion and dilution to prevent buildup to hazardous concentrations.

In the ore receiving facility, dust containing radionuclides and radon gas will be generated only at the apron feeder to belt conveyor transfer point. There will be a wet scrubber to control emissions at this critical pick-up point.

(2) Leaching and Solvent Extraction

Radon, chlorine and sulfuric acid mists will be emitted from the top of the mix and leach tanks. All of these tanks will be vented through a wet scrubber in the leach area. Kerosene and ammonia fumes will be present in the solvent extraction area; however, these fumes will be minimal as they are contained by the tank covers. The actual losses will not impose an adverse impact to the environment.

(3) <u>Uranium Concentrate Precipitation, Dewatering, Drying</u> and Packaging

Ammonia fumes, steam and uranium dust will be emitted from the uranium concentrate precipitation tanks, thickener, centrifuge, dryer and packaging areas. These fumes and dust will be collected in three separate wet scrubbers. Each scrubber will be responsible for different pickup points. All three scrubbers will vent through a single stack.

(4) Laboratory

The fume hoods from the laboratories will collect perchloric acid fumes and other miscellaneous chemical fumes. These will be air diluted before venting to the atmosphere.

(5) Boilers

Steam requirements will be filled by the plant's two small commercial boilers fired with No. 2 diesel fuel. The exhaust from these boilers will contain particulates, hydrocarbons, sulfur dioxide, nitrous oxides, and carbon monoxide. The boilers will be equipped with the proper firing controls to prevent undue emissions from the exhaust stack. Natural air currents will further disperse and dilute pollutant concentrations to meet acceptable levels.

(6) Emergency Power Generator

To ensure that the mill receives continuous power in the event of power outage, a diesel powered emergency generating unit rated at approximately 1,000 kilowatts will be installed in the mill complex. Emissions from the diesel engine will be vented to the atmosphere through a stack. Natural air currents will disperse stack emissions sufficiently to meet acceptable levels.

b. Control Systems Description

As mentioned in the above sections, several wet scrubbers are anticipated in the Anderson Project mill. They are described in more detail as follows:

(1)	Ore Receiving		<u>CFM Air Cleane</u>		
	Pickup Points:	Apron Feeder	2000		
	TOTAL		2000		

Control:

Wet scrubber, 99+ percent efficient, sized for 2000 CFM, discharged through Stack No. 1. The scrubber effluent is returned to the circuit (to the ore receiving area sump)

(2) Leaching Area CFM Air Cleaned

Pickup Points:

TOTAL

Includes a total of 6 pickup points, one at the top of each leach tank, and the acid mix tanks.

<u>5000</u> 5000

760 ACFM

Control:

Wet scrubber, 99+ percent efficient, sized for 5000 CFM, discharged through Stack No. 2. The scrubber effluent is returned to the circuit (to leach discharge).

(3)	Uranium Concentrate Precipitation and Dewatering Area	CFM Air Cleaned		
	Pickup Points:			
	Precipitation Tanks Thickener and Centrifuge Areas	600 600		
	TOTAL	1200		
	Control:			
	Wet scrubber, 99+ percent efficient, CFM, discharged through Stack No. 3. effluent is returned to the circuit concentrate thickener).	sized for 1200 The scrubber (to the uranium		
(4)	Drying	CFM Air Cleaned		
	Pickup Points:			
	Hearth Dryer In (800° F) Out (160° F)	760 ACFM 580 ACFM		

TOTAL

Control:

Wet scrubber, 99+ percent efficient, sized for 800 ACFM, discharged through Stack No. 3. The scrubber effluent is returned to the circuit (to the uranium concentrate thickener).

(5) <u>Packaging Area</u> <u>CFM Air Cleaned</u> Pickup Points: Packaging Area <u>500</u> TOTAL 500

Control:

Wet scrubber, 99+ percent efficient, sized for 550 CFM, discharged through Stack No. 3. The scrubber effluent is returned to the circuit (to uranium concentrate thickener).

c. Mill Discharge Stacks

Mill discharge stack information is contained in Tables 11.1-1 and 11.1-2. These tables contain information on stack heights, types and concentration of effluents discharged and any air quality controls used.

11.1.2 Liquids and Solids

a. Tailings Disposal

Tailings slurry at about 38 percent solids, together with other milling wastes, will be gathered into a tailings dilution box. The combined tailings effluent will be sampled. The tailings will consist of waste solids from the ore, water, minor quantities of unrecovered uranium values and small amounts of chemicals used in the milling process. The solid portion of the tailings will be

TABLE 11.1-1

MILL STACK EMISSIONS AND DESIGN SPECIFICATIONS

		STACK LOCATION	EMISSION CONTROL EQ.	COLLECTION EFFICIENCY (%)	EXIT FLOW RATE CFM	EXIT T°°F	EXIT DIAM. (IN.)	RELEASE HEIGHT	POLLUTANT	STACK CONCENTRATION OR EMISSION DATE
	1.	Ore Receiving Facility	Wet Scrubber	99+	2,000	Ambient	12	70	Ore Dust	9x10 ² mg/cu ft (3.18 mg/M ³ assuming a dust load of 516/hr)
	2.	Leach Tank Area	Wet Scrubber	99+	5,000	70° F	18	70	H ₂ SO ₄ Mist	40x10 ² mg/M ³ (EPA 40 CFR 50.5 and 50.11)
	3.	Uranium Concentrate Area	Wet Scrubber	99+	2,550	120° F	12	70	Ammonia	< 50 ppm
_									Yellowcake	0.9x10 ³ mg/M ³ (assuming a loading of 2.7x10 ⁵ lb/sec)
1-7	4.	Laboratory Hood Manifold	None		2,000	70° F	12	40	Acid Vapors	< 30 mg/M ³
	5.	Emergency Power	None				8	35	Misc.	Intermittent
	6.	Boiler	None		7,500	450° F	22	70	See Table 11.1-2	

1

TABLE 11.1-2

ESTIMATED BOILER STACK EMISSIONS

Emission Rate^a [lb/hr (g/sec)]

Pollutant	<u>Maximum</u> b	Annual Average ^C
Particulates	0.4 (0.06)	0.3 (0.04)
Sulfur dioxide ^d	16.5 (2.0)	12.0 (1.5)
Carbon monoxide	1.2 (0.14)	0.9 (0.10)
Hydrocarbons	0.3 (0.03)	0.2 (0.02)
Nitrogen oxides (as NO ₂)	4.9 (0.62)	3.8 (0.46)

^a Emission estimates based on EPA (1973) emission factors.

- ^b Maximum emissions based on a distillate fuel oil consumption rate of 224.2 gal/hr.
- ^C Annual average emissions based on a distillate fuel oil consumption rate of 168.1 gal/hr.

 $^{\rm d}$ Sulfur content of fuel assumed to be 0.5 percent.

composed of sand and silt sized particles with approximately 89 percent of the tailings expected to pass the 35 mesh screen and 41 percent to pass the 200 mesh screen.

The tailings will be transported to the tailing pond via a ten-inch diameter, high density polyethylene pipeline. A system of ten multiple drop boxes will be used to break the hydrostatic pressure generated between the mill site elevation and the tailings disposal area (approximately 200-foot difference). The total length of pipe required is estimated at 1800 feet.

The pipeline slope will be 1.5 percent. A berm will be placed along the pipeline such that if a pipeline break occurs, the tailings slurry will flow into the tailing impoundment. A system of multiple discharge points will be used at the tailings impoundment. This manifold system can be operated in such a manner that a damp sand beach can be maintained around the periphery of the pond.

The storage capacity of the impoundment is sufficient to retain all of the tailings expected to be generated during the design life of the project. However, sufficient capacity is not available to also store all of the waste water to be discharged from the mill. Excess water will be pumped from the tailing impoundment area to an evaporation pond which will have no effluent.

Monitor wells will be installed on the perimeter of the tailing pond to detect possible seepage of mill tailings solutions. The estimated rates of slurry discharge to the tailings impoundment are shown in Table 11.1-3.

A tailings impoundment area covering approximately 81 acres in previously mined out portions of the pit has been used for this study. The dam construction will be in segments and stages to coincide with pit mining schedule. The natural clay in the non-mineralized zones of the lacustrine sediments will be used in the dam core and impoundment bottom to reduce seepage to a negligible value. The dam design uses the downstream method using non-tailings materials for construction to maintain structural integrity. Also, the dam has been designed to meet all safety factor requirements in accordance with accepted methods of analysis.

The tailings distribution system will keep fugitive dust and contaminants below allowable limits. Due to the method of tailings distribution, the perimeter of the impoundment will be wet at all times. A daily inspection program will include inspection of the dam, pond and other surface areas used for the evaporation system. Records will be kept and any deficiencies will be corrected immediately.

b. Other Wastes

Various industrial wastes will be discharged either to the tailings pond, to a leach field, or returned to the

TABLE 11.1-3

TAILINGS POND OPERATING CONDITIONS

Production and General Criteria

Operating schedule, 2000 tpd, 365 days per year	
Total tailings deposited per year, tons solids (dry weigh	t) 730,000
Total tailings deposited (9.8 years), tons (dry weight)	7,181,950
Total volume of tailings in the impoundment (wet, cu ft)	128.25 x 10 ⁶
Mill drainage area, acres	35
Surface area of tailing ponds (final)	81
Precipitation (inches per year)	7.47
Evaporation (inches per year)	78
Solution Inflow to Tailings Ponds	GPM
No. 5 thickener underflow solution	605.7
Precipitation (7.47 inches of water per year)	44.8
Total Solution to Tailings Ponds	650.5
Solution Outflow from Tailings Ponds	GPM
Seepage losses (estimated from D&M report, page 33)	7.0
Lake evaporation	326.5
Water entrained in tailings particles	<u>121.1</u>
Subtotal	454.6
Net Amount to be Evaporated (Average)	*195.9

*This figure will change in accordance with the rate of tailings input, available storage volume and rate of evaporation.

mill circuit. The mill area drainage system will return any precipitation or spillage of industrial wastes back to the mill circuit. A description of the industrial wastes follows:

(1) Laboratory Waste

This waste will include liquids from laboratory testing such as water diluted acids, bases and solvents. An average of 3 GPM is estimated for this inflow. The laboratory waste will be collected and pumped to the mill circuit.

(2) Boiler Blowdown and Bleed Line Waste

This waste will include water from regular maintenance of the boiler and bleed lines. Approximately 5 GPM will be returned to the mill circuit.

(3) <u>Treated Sewage</u>

This waste will generate from the office building, mill building, shop, and laboratory. The sewage will be treated and the effluent will discharge into a leach field. Approximately 10 GPM of solution will be generated.

(4) Dust Suppression

The active areas of the mine, including haul roads, will be wetted down via water trucks or sprays to reduce fugitive dust. Ore will be trucked from the

mine pits and temporarily stored in stockpiles. The fresh ore will be wet, with a moisture content of approximately 10 percent. Consequently, fugitive dust from the stockpiles is not expected to be significant. Additional wetting may be necessary and will be provided as needed.

The exterior plant areas will be subject to rigorous housekeeping with all accumulations of dirt, spillage, dust piles and debris promptly removed. Water washdown will be used where applicable.

11.2 NUCLEAR INSTRUMENTS SOURCES

There will be a total of six commercially available nuclear density gauges, five on the thickener underflow lines and one on the leach. slurry feed line.

All source heads will be doubly encapsulated in stainless steel and be sealed and mounted in rugged, shielded housings. The source heads will be provided with key securable, manually operated threeposition source shutters for measurement, calibration, and complete closure. The housings will be clearly marked with radiation warning notices as required by the NRC, and all gauges will be installed away from frequently used operator walkways. All gauges will be leak tested initially and once every three years thereafter, providing the beta and gamma surveys do not show an unusual radiation increase.

11.3 ENVIRONMENTAL CONSIDERATIONS

Consideration has been given to environmental constraints for both existing laws and perceivable future law changes. Baseline studies with field data have been completed by various consultants: Wildlife and vegetation by Dames & Moore; archaeology and cultural resources by the Museum of Northern Arizona; surface and groundwater hydrology by Water Development Corporation; socioeconomic and geology by Minerals Exploration Company, seismology, meteorology, air quality and radiological considerations by Woodward-Clyde Consultants. In addition, Minerals Exploration supported these studies with a water quality collection and analysis program and operation of a meteorological station and high volume air sample programs. Woodward-Clyde Consultants then took each individual study and prepared a comprehensive baseline environmental report for this project. It should be further noted that additional pump testing is to be completed in the pit areas to gain better understanding of local groundwater hydrology.

Design completed to date on the mill, mine and tailing impoundment reflect consideration given to environmental requirements. The tailing impoundment site was selected in a portion of the mined-out pit to meet current federal regulatory position requirements while taking advantage of a natural clay base to effectively control seepage.

Dames & Moore has completed a document entitled "Final Design Report of the Tailings Impoundment". This report addresses indepth items such as design, construction, seepage, operations management, including monitoring for seepage and dam stability, decommissioning and stabilization. Wet scrubbers have been employed on the mill to reduce air emissions to as low as practically achievable. Dust suppression techniques primarily using water have been included in the active mine areas and haul roads to reduce particulate emissions. Radiation safety and environmental monitoring programs are planned to comply with federal and state regulations. Also, water quality monitoring wells with a sampling and analysis program, a site boundary air quality monitoring program and other monitoring programs will be instituted to provide data for environmental consideration with the project that is ongoing.

The State of Arizona is an Agreement State with the U.S. Nuclear Regulatory Commission. The Arizona Atomic Energy Commission has the power to issue a Radioactive Materials license to operate the mill and tailing disposal facility under this agreement by complying with certain NRC guidelines. To support this application, the Dames & Moore "Final Design Report of the Tailings Impoundment" was submitted in its entirety.

Arizona does not currently require a formal EIS (Environmental Impact Statement) in its permitting procedure, but Woodward-Clyde Consultants is currently preparing an environmental impact report.

Since current trends are toward requiring an EIS, it is felt that this document may be required in the future. Recently, Arizona has passed legislation addressing uranium milling and tailing disposal facilities. One point in this bill is the requirement for the AAEC to review applications with respect to tailing disposal facility siting alternatives, tailing operations management, and groundwater hydrological impacts using other state agencies. This was anticipated, but required extracting these sections from the Woodward-Clyde report. Also, a radiological impact section has been included, as requested by the AAEC.

The Air Quality Installation Permit application to the Arizona State Bureau of Air Quality Control has been completed and submitted. The air impact section from the Environmental Impact Statement is now required for the Environmental Protection Agency PSD (Prevention of Significant Deterioration) Air Quality Permit, as a result of the 1977 Amendments to the 1970 Clean Air Act. The EPA PSD permit will be applied for as soon as the EPA publishes final rules and regulations on the 1977 Amendments.

At the present time there are no laws in Arizona which require mine reclamation. Legislation does exist for coal mines, and the Federal Land Policy and Management Act of 1976 provides for reclamation of lands disturbed by any exploration or mining activity. However, regulations were issued in draft form in December 1976, but have never been promulgated.

In anticipation that reclamation will be required before the project is completed, the mine planning has made allowance to partially backfill exhausted pit areas with the exception of the final pit area. This final pit area will fill with water and create a water source for wildlife and livestock in the area. This backfilling will greatly facilitate any future reclamation requirements. Also, Union Oil Research is working with Minerals Exploration Company to develop a suitable reclamation plan complete with recommended plant species for revegetation.

Since most of the necessary environmental background information has been compiled, the operating and capital costs directly related to the radiation safety and environmental monitoring programs can be tabulated for this feasibility study as follows:

(1) OPERATING COSTS

a. <u>Manpower</u>

	Environmental & Safety Administrator	\$ 26,400
	Safety Engineer	19,800
	Environmental Assistant	19,800
	Environmental & Safety Technician (5 required @ \$16,500)	82,500
	Subtotal	\$148,500/yr
b.	<u>Supplies and Outside Lab Work</u> (to maintain quality control)	\$ 20,000
c.	<u>Perpetual Care Fund</u> - Tailing Pond (5¢ per ton milled)	\$ 36,500
		\$ 56,500
	TOTAL OPERATING COST	\$205,000/yr

(2) <u>CAPITAL COSTS</u>

a.	Environmental Laboratory Instrumentation with lab space and some major equipment carried by the mill	\$ 50,000
b.	<u>Monitoring Equipment</u> Includes Alpha-Beta Instrument, Hi-Vol samples, personnel monitors, etc.	\$100,000
	TOTAL ENVIRONMENTAL CAPITAL COST	\$150,000

EXHIBIT III-A DRAWINGS

.

											#1	
		APPROVALS		INTE	SCALE NON	E		DATE				
CLIENT			DRAWPH BY Ben			30 MAY 78	MORRISON-KNUDSEN					
					DESIGNED BY				((TKQ)	COMPANY INC.	.	
				CRECKED BY J. LUZ ILIK			7/11/78					
PROJECT HOUSIGER Rymula 7-18-78			APPROVED Rollyamo			71/8/78	TWO MORRISON-KNUDSEN PLAZA/P.O. BOX 7808/BOISE, IDAHO 83729					
			APPROVED	also	n	7/18/78	DRE RECENTIN	C CONTOULC & LEDI	111110			
								DEC ECCEIVING	5,6EINDING & LEAC	AIN 6		
									F	LOW SHEET		
DEFT.	JIRCH.	STRUCT.	MECH	H. ELEC	T. P.M.	PIPING	SAF. DEPT.	P.E.				
DITION									108 NO.	DRAWING NO.	REMISION	
DATE					1				1114	21-23-0-101		

12	PROVALS	SATE	SCALE NONE	EMITE				
CUERT			DRAWN BY MA Aunt	62278	MUKKISUN-KNUDSEN			
			DESIGNED BY JOHR	6-24-78	1(TKQ	COMPANY INC.	ANY INC.	
			CHECKED BY M. VAN DUSER	6.26.78		FFAS CONTRACTORS BETELOP	185	
PROHECT MANAGER	mille	7-18-78	APPROVED Kerl H. J. Cale	6-26.78	TWO MORRISON-KNUDSE	N PLAZA/P.O. BOX 7608/BOISE, IDA	HO 83729	
			APPROVED Tava lion	7/18/70			_	
					PLAN	T ELECTRICAL		
					DUE-LILLE DIOCEDIL			
					UNE-L	INE DIAGRAM		
SEPT. ARCH.	STRUCT. MECH	L ELEC	TT. P.AL. PIPING SAF.DEFT.	PE				
INITIAL					308 300.	DRAWING NO.	REATISTON	
DATE					1114	21-54-0-112		

EXHIBIT III-B PULP AND WATER BALANCE

EXHIBIT III-B PAGE 1 OF 7

MINERALS EXPLORATION COMPANY - ANDERSON PROJECT

PULP AND WATER BALANCE

• .

Item	Tons Solids	Per Hour Solution	Solids T.P.D.	% <u>Solids</u>	Tons Pe Pulp	r <u>Day</u> <u>Water</u>	Solids	<u>G.P.M.</u> Water	<u>Pulp</u>	Specific Solids	<u>Gravity</u> <u>Pulp</u>	<u>Observations</u>
Sag Mill Feed												
New Ore	91.7	10.1	2,200.8	90	2,443.2	242.4	154.4	40.4	194.8	2.38		
Grinding Water		64.9			1,557.6	1,557.6		259.6	259.6		1.0	
Sag Mill Discharge	91.7	75.0		55	4,000.8	1,799.0	154.4	300.0	454.4	2.38	1.47	
Trommel Water	~-	3.0				72		12.0			1.00	
Trommel Undersize	82.5	77.0	1,980.0	51.7	3,828	1,848	138.9	308	446.9	2.38	1.43	
Trommel Oversize	9.2	1.0	220.8	90.0	244.8	24	15.5	4.0	19.5	2.38		
Rod Mill Feed												
Trommel Discharge	91.7	78.0	2,200.8	54.0	4,072.8	1,872.0	154.4	312.0	466.4	2.38	1.46	
Classifier Screen O'Size	18.3	3.2	439.2	85.0	516.0	76.8	30.9	12.8	43.7	2.38	1.97	
Grinding Water		8.8			211.2	211.2		35.2	35.2		1.00	
TOTAL	110.0	90.0	2,640.0	55.0	4,800.0	2,160.0	185.3	360.0	545.3	2.38	1.47	
Classifier Screen			•									
Rod Mill Discharge	110.0	90.0	2,640.0	55.0	4,800.0	2,160.0	185.3	360.0	545.3	2.38	1.47	
Classifier Screen Water		4.9			117.6	117.6		19.6	19.6		1.00	
Classifier Screen O'Size	18.3	3.2	439.2	85.0	516.0	76.8	30.9	12.8	43.7	2.38	1.97	
Classifier Screen U'Size	91.7	91.7	2,200.8	50.0	4,401.6	2,200.8	154.4	366.8	521.2	2.38	1.41	

MINERALS EXPLORATION COMPANY - ANDERSON PROJECT

PULP AND WATER BALANCE

Total % Tons Per Hour Solids Tons Per Day G.P.M. Specific Gravity ltem Solids Solution T.P.D. Solids Pulp Water Solids. Water Pulp Solids Pulp Observations Leaching Circuit 1.41 *% Concentration 4,401.6 2,200.8 154.4 366.8 521.2 2.38 91.7 91.7 2,200.8 50.0 Feed in Solution 1.83 *% Concentration Sulfuric Acid* 20.4 (7.8) 93.0* 187.2 187.2 17.0 17.0 -----------~ in Solution 2.0 1.38 16.8 2.0 Sodium Chlorate Sol.* 0.7 -----40.0* 16.8 --------**11.9 Tons of 1.00 CaCO3 are con-9.8 235.2 235.2 --39.2 39.2 Steam Condensate _ _ ---verted into 20.5 1.04 Tons of CaSO₄ · Clarifier U'Flow 2.0 5.0 48.0 48.0 --8.0 8.0 **-** ------2H₂O - Total Tons of Solids in-81.6 +28.8(Net)-52.8 5.4 -8.8 -3.4 2.30 1.34 Calcium Sulfate** 3.4 -2.2 --crease by 3.4 TPH 8.8 GPM of 25.6 25.6 Dilution Water 6.4 153.6 153.6 - ~ ------ -5,071.2 116.2*** 2,282.4 45.0 2,788.8 159.8 449.8 609.6 2.38 1.35 water are 95.1 attached to the CCD Circuit gypsum and subtracted from No. 1 Thickener the water. 5,071.2 2,788.8 159.8 449.8 609.6 2.38 1.35 Leach Discharge 95.1 116.2 2,282.4 45.0 ***Specific gravity of solution 1.03 22.6 22.6 1.00 Flocculant Neglig. 5.6 0.3 134.4 134.4 --------_ _ 50.0 1.00 Sand Filter B'Wash 12.5 300.0 300.0 50.0 -- --Neglig. ----------10,192.8 1,698.8 1,698.8 1.00 No. 2 Thick. 0'Flow 424.7 10,192.8 -----~ ~ ------95.1 2,282.4 159.8 2,221.2 2,381.0 2.38 1.09 No. 1 Thickener Feed 559.0 15.0 15,698.4 13,416.0 Products No. 1 Thickener Underflow 95.1 155.1 2,282.4 38.0 6,004.8 3,722.4 159.8 605.7 765.5 2.38 1.28 1.00 No. 1 Thickener Overflow 9,693.6 9,693.6 1,615.5 1,615.5 403.9 ---- ----TOTAL 2,282.4 159.8 95.1 559.0 15.0 15,698.4 13,416.0 2,221.2 2,381.0 2.38 1.09

EXHIBIT IJI-B PAGE 2 OF 7

MINERALS EXPLORATION COMPANY - ANDERSON PROJECT

PULP AND WATER BALANCE

Item	<u>Tons</u> Solids	Per Hour Solution	Total Solids T.P.D.	% Solids	Tons Per Pulp	<u>Day</u> Water	Solids	<u>G.P.M.</u> Water	Pulp	Specific Gravity Solids Pulp	Observations
Clarification											
Feed to Clarifier											
No. 1 Thickener Overflow		403.9						1,615.5			*Glue = 0.11 TPD
Glue*	Neglig	$\frac{0.6}{404}$						2.5			
Products		404.5						1,618.0			
Clarifier Underflow		2.0						8.0			
Clarifier Overflow		402.5						1,610.0			
Sand Filters Feed		404.5						1,018.0			
Clarifier Overflow		402.5						1,610.0			
Backwash Solution		12.5						50.0			
TOTAL		415.0						1,660.0			
Products											
Backwash Solution		12.5									
Clarified Preg. Sol.		402.5									
a de la constante de		415.0									
Pregnant Sol. Tank Feed		402.5						1,610.0			
B'Wash To Sand Filters		12.5						50.0			
Feed to S-X		390.0						1,560.0			

•

٠.

EXHIBIT III-B PAGE 3 OF 7

MINERALS EXPLORATION COMPANY ~ ANDERSON PROJECT

PULP AND WATER BALANCE

Item	<u>Tons</u> Solids	Per Hour Solution	Solids T.P.D.	% Solids	Tons Pe Pulp	<u>r Day</u> <u>Water</u>	<u>Solids</u>	G.P.M. Water	<u>Pulp</u>	Specific Solids	Gravity Pulp	Observations
No. 2 Thickener												
Feed												
Nq. 1 Thickener U'Flow	95.1	155.1	2,282.4	38.0	6,004.8	3,722.4	159.8	605.7	765.5	2.38	1.28	
No. 3 Thickener O'Flow		424.7			10,192.8	10,192.8		1,698.8	1,698.8		1.00	*Volume Change Due
TOTAL	95.1	579.8	2,282.4	14.1	16,197.6	13,915.2	159.8	2,304.5	2,464.3		1.09	to Chemical Reactions
Products												
Underflow	95.1	155.1	2,282.4	38.0	6,004.8	3,722.4	159.8	605.7	765.5	2.38	1.28	
Overflow		424.7			10,192.8	10,192.8		1,698.8	1,698.8		1.00	
TOTAL	95.1	579.8	2,282.4	14.1	16,197.6	13,915.2	159,8	2,304.5	2,464.3	2.38	1.09	
No. 3 Thickener												
Feed												
No. 2 Thickener U'Flow	95 .1	155.1	2,282.4	38	6,004.8	3,722.4	159.8	605.7	765.5	2.38	1.28	
No. 4 Thickener O'Flow		424.7			10,192.8	10,192.8		1,698.8	1,698.8		1.00	
TOTAL	95.1	579.8	2,282.4	14.1	16,197.6	13,915.2	159.8	2,304.5	2,464.3	2.38	1.09	
Products												
No. 3 Thickener U'Flow	95.1	155.1	2,282.4	38.0	6,004.8	3,722.4	159.8	605.7	765.5	2.38	1.28	
No. 3 Thickener O'Elow		424.7	~~		10,192.8	10,192.8		1,698.8	1,698.8	~-	1 00	

EXHIBIT III-B PAGE 4 OF 7

EXHIBIT 111-B PAGE 5 OF 7

MINERALS EXPLORATION COMPANY - ANDERSON PROJECT

PULP AND WATER BALANCE

Item	<u>Tons</u> Solids	Per Hour Solution	Total Solids <u>T.P.D.</u>	% So <u>lids</u>	Tons Pe Pulp	water	<u>Solids</u>	<u>G.P.M.</u> Water	<u>Pulp</u>	<u>Specific</u> Solids	<u>Gravity</u> Pulp	Observations
No. 4 Thickener												
Feed												
No. 3 Thickener U'Flow	95.1	155.1	2,282.4	38.0	6,004.8	3,722.4	159.8	605.7	765,5	2.38	1.28	
No. 5 Thickener O'Flow		424.7	<u> </u>		<u>10,192.8</u>	10,192.8		1,698.8	1,698.8		1.00	
TOTAL	95.1	579.8	2,282.4	14.1	16,197.6	13,915.2	159.8	2,304.5	2,464.3	2.38	1.09	
Products												
No. 4 Thickener U'Flow	95.1	155.1	2,282.4	38.0	6,004.8	3,722.4	159.8	605.7	765.5	2.38	1.28	
No. 4 Thickener O'Flow		424.7			10,192.8	10,192.8		1,698.8	1,698.8		1.00	
No. 5 Thickener												
Feed												
No. 4 Thickener U'Flow	95.1	155.1	2,282.4	38.0	6,004.8	3,722.4	159.8	605.7	765.5	2.38	1.28	
Make Up Water												
Raffinate*		390.0			9,360.0	9,360.0		1,560.0	1,560.0	1.00	1.00	*No Bleed-off of Raffinate
Fresh Water		34.7			832.8	832.8		138.8	138.8			Solution
TOTAL	95.1	579.8	2,282.4		10,192.8	10,192.8	159.8	2,304.5	2,464.3	2.38		

(

1921 (B)

MINERALS EXPLORATION COMPANY ~ ANDERSON PROJECT

PULP AND WATER BALANCE

Item	<u>Tons</u> Solids	Per Hour Solution	Total Solids <u>T.P.D.</u>	% Solids	Tons Pe Pulp	<u>r Day</u> Water	Solids	<u>G.P.M.</u> Water	Pulp	Specific Solids	<u>Gravity</u> <u>Pulp</u>	<u>Observations</u>
Products												
No. 5 Thickener U'Flow (Tailings)	95.1	155.1	2,282.4	38.0	6,004.8	3,722.4	159.8	605.7	765.5	2.38	1.28	
No. 5 Thickener O'Flow		424.7			10,192.8	10,192.8		1,698.8	1,698.8		1.00	
	95.1	579.8	2,282.4		16,197.6	13,915.2	159.8	2,304.5	2,464.3	2.38	1.09	

S-X, PRECIPITATION - DEWATERING - DRYING (3,960 Lb/Day) (Design Basis)

• ••

S-X Circuit Extraction											U Solution (gpl)	308 Solids (Lb/Day)
Feed		390			9,360.0	9,360.0	1,560	1,560		1.03	0.21	3960
Preg. Organic (Advance)		33.0			792.0	792.0	165	165		0.80	1.99	3960
Preg. Organic (Recycle)		416.0					2,080	2,080				
Preg. Strip Solution		3.7		2.2			13.2	13.2		1.14	25.0	3960
Aqueous (Recycle)		15.4					55.0	55.0				
Barren Organic		33.0					165	165		0.80		
Barren Strip Sol.		3.7					13.2	13.2		1.12		
YC Thickener Feed	.083	4.79	1.98	1.7			17.9	17.9	5.70	1.10		3960

EXHIBIT III-B PAGE 6 OF 7

(

MINERALS EXPLORATION COMPANY - ANDERSON PROJECT

EXHIBIT III-B PAGE 7 OF 7

PULP AND WATER BALANCE

S-X, PRECIPITATION - DEWATERING - DRYING (3,960 Lb/Day)

Item	<u>Tons</u> So <u>lids</u>	Per Hour Solution	Solids T.P.D.	% Solids	Tons Per Pulp	<u>Day</u> Water	Solids	<u>G.P.M.</u> - Water	Pulp	Specific Solids	Gravity Pulp	Observations
YC Thickener O'Flow		4.62						17.25	17.25		1.07	
YC Thickener U'Flow	.083	0.17	1.98	33.0				0.65	0.65	5.70	1.37	
Centrifuge Feed												
YC Thickener U'Flow	.083	0.17	1.98	33.0				0.65	0.65	5.70	1,37	
Wash Water		1.04						4.16	4.16		1.00	
Products												
Centrate		1.09			26.16	26.16		4.15	4.15		1.05	
Bleed-Off		.92			3.7	3.7		3.4	3.4		1.07	
Dryer Feed	.083	.124	1.98	40%*				0.5	0.5	5.70	1.65	*Design
Dryer Discharge	.083	.002	1.98	98.0								3,960 lb/day U ₃ 0 ₈ (100%)

3,960 lb/day $U_{3}O_{8}$ (100%) Equivalent to 4,659 lb/day $U_{3}O_{8}$ (85%)

1

EXHIBIT III-C MILL EQUIPMENT PERFORMANCE SPECIFICATIONS

AIR COMPRESSOR

EQUIPMENT NO. 002

LOCATION

Inside Mill Building

CAPACITY

450 scfm @ 125 psig (max)

DUTY

This rotary screw air compressor will supply the compressed air needs of the process, specifically in the stripping phase of solvent extraction and the yellowcake precipitation.

The compressor will be complete with drive, guard, TEFC motor and air drying equipment suitable for the capacity.

BOILERS

EQUIPMENT NO. 003-004

LOCATION

Adjacent to Mill Building

CAPACITY

22,000 lb/hr ea @ 125 psig

FUEL TYPE

Fuel Oil (Diesel)

SPECIAL FEATURES

Water Treatment and Feed System

Deareator

DUTY

These boilers will supply steam to the leach tanks and the heat exchangers primarily. The two boilers will be served by a single water treatment, feed, and deareator sized to service only one boiler at a time.

The boilers will be complete with combustion system, controls, pumps, integral piping and wiring, TEFC motors for pumps and fans. Water treatment equipment and deaerator will also be included.

TANK

EQUIPMENT NO. 005

LOCATION

500 ft North of Mill Building

MATERIAL DESCRIPTION

Potable Water

Solution: Temp. <u>40-60° F</u> pH <u>approx 7.0</u> Sp. Gr. <u>1.00</u>

VOLUME

40,000 gal

RETENTION

2.0-2.5 days

DUTY

This tank will serve as the reservoir of fresh water for domestic needs within the mill area.

This mild steel tank will be covered but will have an inspector manhole.

FORKLIFT TRUCK

EQUIPMENT NO. 006

LOCATION

Packaging Area

MATERIAL HANDLED

55 gal drums of yellowcake (primarily)

CAPACITY

2000 1b

FUEL TYPE

Gasoline

DUTY

This forklift will be utilized primarily for storing and loading 55 gal drums of yellowcake in the packaging area. It will, however, be available for duty in other plant areas much of the time.

TANK

EQUIPMENT NO. 007

LOCATION

500 ft North of Mill Building

MATERIAL DESCRIPTION

Process Water

Solution: Temp. 40-60° F pH approx 7.0 Sp. Gr. 1.0

VOLUME

500,000 gal (250,000 gal for fire protection)

RETENTION

Approx 8 hr (excluding fire protection water)

DUTY

This tank will serve as the reservoir for process water needed throughout the phases of the milling operation. It serves additionally as the source of fire protection water.

This tank will be constructed of mild steel and have no cover.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 008-009

LOCATION

500 ft North of Mill Building in Pump House

MATERIAL HANDLED

Water

Solution: Temp. 40-60° F pH approx. 7.0 Sp. Gr. 1.00

CAPACITY

1000 gpm @ 100 psig (Diesel) or 125 psi (Electric)

,

DUTY

These two water pumps will boost water pressure for fire protection within the mill site. The primary pump will be electric. In case of power failure, a diesel unit of equal capacity will be available as a backup.

The pumps will be cast iron and will be complete with drives, guards and motors. The electrically driven pump will have a TEFC motor.

AIR COMPRESSOR

EQUIPMENT NO. 010

LOCATION

Inside Mill Building

CAPACITY

45 scfm 0 60 psig

DUTY

This small compressor will supply the air necessary to maintain operating pressure within the mill's instrumentation circuits which are air actuated.

This compressor's function is backed up by an inter-tie with the mill's main air compressor (Equipment No. 002).

The compressor will be complete with drive, guard, TEFC motor, air drying equipment, and an 80 gal air receiver.

AIR COMPRESSOR

EQUIPMENT NO. 011

LOCATION

Beside Sulfuric Acid Tanks, 100 ft West of S-X Pad

CAPACITY

100 scfm @ 100 psig

DUTY

This compressor will be in intermittent service supplying pressure necessary to unload the approximately 14 sulfuric acid trucks per day, 5 days per week.

The compressor will be complete with drive, guard and TEFC motor.

EMERGENCY POWER GENERATOR

EQUIPMENT NO. 012

LOCATION

Inside Mill Building

CAPACITY

1000 kw, 480 v, 3 phase, 60 hz

FUEL TYPE

Fuel Oil (Diesel)

DUTY

This emergency generator will supply power to certain critical equipment in case of interruption of the primary source of electricity.

The generator will be a complete skid-mounted unit.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 013

LOCATION

At pump house adjacent to water storage tanks

CAPACITY

150 gpm at 75 ft tdh

DUTY

٠

For domestic water distribution within plant area.

The pump will be complete with drive, guard, and TEFC motor.

HORIZONTAL CENTRIFUGAL

EQUIPMENT NO. 014

LOCATION

CCD thickener area

CAPACITY

150 gpm at 100 ft tdh

DUTY

To provide gland seal water for plant area pumps. The pump will be complete with drive, guard and TEFC motor.

FRONT END LOADER

EQUIPMENT NO. 101

LOCATION

Ore Receiving Area

MATERIAL HANDLED

Shale and Siltstone Ore

Bulk Density: 100 lb/cu ft (Dry Basis) Moisture: 10%

Size Analysis: Run-of-mine ore

CAPACITY OR SIZE

3.5 cu yd

FUEL TYPE

Gasoline

DUTY

The front end loader will have broken ore from run-of-mine stockpiles to a 100-ton capacity hopper. The loader and bucket must be of heavy duty construction for continuous service.

During plant operation, the loader must be capable of handling an average of 100 tph ore. Average one-way distance traveled from ore storage to hopper will be 200 ft. Loader emissions must comply with state and federal environmental regulations.

ORE FEED HOPPER

EQUIPMENT NO. 102

LOCATION

Ore Receiving Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore

Bulk Density: 100 1b/cu ft (Dry Basis)

Sp. Gr.: 2.38

% Moisture: <u>10%</u>

Size: 18 in. max

RETENTION

Approx. 1 hr

DUTY

This hopper will receive run-of-mine ore from a front end loader and will discharge to an apron feeder. The bin will be constructed of concrete and lined with A-R plate. It will have a stationary grizzly on top with $18" \times 18"$ openings.

APRON FEEDER

EQUIPMENT NO. 103

LOCATION

Ore Receiving Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore

Bulk Density: <u>100 lb/cu ft</u> (Dry Basis)

Sp. Gr.: 2.38

% Moisture: 10%

Size: <u>18 in. max</u>

FEED RATE

91.7 tph average

SPEED

Variable, up to 300 tph max.

DUTY

The apron feeder will deliver ore from the 100 ton surge hopper to the SAG mill belt conveyor. It will be designed for heavy duty ore handling. The feeder will be 16' long by 48" wide and will be complete with drive, guards, and TEFC motor.

BELT CONVEYOR

EQUIPMENT NO. 104

LOCATION

Ore Receiving Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore

Bulk Density: 100 lb/cu ft (Dry Basis)

Sp. Gr.: 2.38

% Moisture: <u>10%</u>

Size: 18 in. max.

FEED RATE

91.7 tph average; 300 tph max.

SPEED

Constant

DUTY

This belt conveyor will transfer ore from the apron feeder to the SAG mill. The conveyor will be 48" wide and 266' long with a 50' lift. Conveyor drive, components and structure must be designed to handle a maximum of 300 tph.

The conveyor will be provided with hoods over the belt and will have a single walkway with continuous handrail. It will have a vertical gravity take-up and will be designed with 35° troughing idlers. The belt conveyor will be furnished complete with idlers, pulleys, drive, guards, TEFC motor, backstop, and belt wiper.

BELT SCALE

EQUIPMENT NO. 105

LOCATION

Ore Receiving Area

RANGE

0-300 tph; average rate 91.7 tph

MATERIAL DESCRIPTION

Shale and Siltstone Ore
Bulk Density: 100 lb/cu ft (Dry Basis)
Sp. Gr.: 2.38
% Moisture: 10%
Temperature: 28 - 112° F
Size: 18 in. max. lumps

DUTY

The belt scale will weigh ore on the 48" wide SAG mill feed belt conveyor. The belt conveyor will have 35° troughing idlers and will operate at a speed of 100 fpm.

The belt scale will be electronic with $\pm 0.5\%$ accuracy. It will be furnished with integrator and recorder.

SEMIAUTOGENOUS GRINDING MILL

EQUIPMENT NO. 106

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore

bulk bensity: Too ib/cu it (bry basis) sp. ur	2.30	ar.: 2.) sp.u	y Basis)	Ury	16)/CU		Density:	BUIK
---	------	---------	--------	----------	-----	----	------	--	----------	------

% Moisture: 10% Temperature: 28-112⁰ F

Word Index: <u>12.8</u> Feed Size: <u>18 in. max</u>

OPERATING CONDITIONS

Feed Rate: 91.7 tph (average) Pulp Density: 55% Solids

PRODUCT REQUIREMENTS

Size: 80% will pass 3/8 inch Screen; Max. 3/4 inch

TYPE OF DISCHARGE

Grate (3/4 inch)

DUTY

The SAG mill will reduce 80% of the run-of-mine ore to less than 3/8 inch. Material of $3/4 \times 3/8$ inch will be separated by a trommel screen at the SAG mill discharge and report to the rod mill. The -3/8 inch material which passes the trommel will flow to a discharge sump.

The SAG mill will be 16' \emptyset x 5'. The mill will be furnished with one set of liners, a 500 HP motor and variable speed drive. The mill will carry a ball load of up to 8% of mill volume. An automatic lubricating system and all necessary guards will be provided.

SUMP

EQUIPMENT NO. 107

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore SlurrySlurry: Sp. Gr. 1.43% Solids by Weight 52%Solution: Temp. 40-70° FpH 6.5-7.0Solids: Sp. Gr. 2.38

Size Analysis: -3/8 inch to -325 mesh

VOLUME

900 gal

RETENTION

Approx. <u>2 min</u>

DUTY

This sump will receive underflow from the SAG mill trommel screen and from a grinding area scrubber.

The sump will be rubber-lined mild steel. It will be provided with a clean-out and will be designed for discharge by horizontal pumps.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 108-109

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

Slurry: Sp. Gr. <u>1.43</u>	% Solids by	Weight <u>52%</u>
Solution: Temp. <u>40-700</u>	рн <u>6.5-7.0</u>	Sp. Gr. <u>1.00</u>
Solids: Sp. Gr. <u>2.38</u>		

Size Analysis -3/8 inch to -325 mesh

CAPACITY

500 gpm at 25 ft tdh

DUTY

Two pumps will deliver trommel screen undersize from the SAG mill discharge sump to the rod mill feed box. Standard operation will be one operating and one stand-by. The pumps will be rubber lined furnished with 316 SS trim, mechanical seals, drives, guards and TEFC motors.

.

BELT CONVEYOR

EQUIPMENT NO. 110

LOCATION

Grinding Area, Mill Building

MATERIAL DESCRIPTION

Shale and Siltstone Ore

Bulk Density: 100 lb/cu ft (Dry Basis)

Sp. Gr.: <u>2.38</u> % Moisture Approx. <u>10%</u>

Temperature: <u>40-700 F</u>

Size Analysis: -3/4 x 3/8 inch

FEED RATE

Approx. 20 tph

SPEED

Constant

DUTY

This belt conveyor is the first of a two-belt system to deliver SAG mill trommel screen oversize to the rod mill feed box. This conveyor will be horizontal, 18" wide and 18' long and will have 20° idlers.
BELT CONVEYOR

EQUIPMENT NO. 111

LOCATION

Grinding Area, Mill Building

MATERIAL DESCRIPTION

Shale and Siltstone Ore

Bulk Density: <u>100 lb/cu ft</u> (Dry Basis)

Sp. Gr.: <u>2.38</u> % Moisture Approx. <u>10%</u>

Temperature: <u>40-70⁰ F</u>

Size Analysis: -3/4 x 3/8 inch

FEED RATE

Approx. 20 tph

SPEED

Constant

DUTY

This belt conveyor is the second of a two-belt system to deliver SAG mill trommel screen oversize to the rod mill feed box. This conveyor will be 18" wide and 64' long with a 17' lift. It will have 20⁰ idlers and will be provided with a single walkway.

TRAMP IRON MAGNET

EQUIPMENT NO. 112

LOCATION

Grinding Area, Mill Building

OPERATING CONDITIONS

The conveyor serviced by the self-cleaning electromagnet will be 18" wide, with 20° idlers. Approximately 20 tph of $-3/4 \times 3/8$ inch ore will be conveyed at 100 fpm. The ore will have a bulk density of 100 lb/cu ft and will contain approximately 10% moisture.

DUTY

This electromagnet will remove tramp iron from the 18" x 64' trommel oversize belt conveyor. It will be self-cleaning and will be furnished complete with drive, guard, TEFC, motor, belt scraper, and control. The magnet will be in an across-the-belt configuration.

ROD MILL

EQUIPMENT NO. 113

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore

Bulk Density: <u>100 lb/cu ft</u> (Dry Basis) Sp. Gr.: <u>2.35</u> % Solids <u>42%</u> Temperature: <u>50-80⁰ F</u> Bond Work Index <u>12</u> Size Analysis: 10% -3/4 x 3/8 inch 90% -3/8 inch

OPERATING CONDITIONS

Feed Rate: 110 tph (Design)

Pulp Density: 55% Solids

PRODUCT REQUIREMENTS

85% will pass 28 mesh screen

TYPE OF DISCHARGE

Overflow

TYPE OF CIRCUIT

Closed with DSM Screen

DUTY

The rod mill will reduce the SAG mill discharge and DSM screen oversize to -28 mesh with less than 20% recycle. Rod mill discharge will flow to the DSM-type classifier screen with screen undersize (-28 mesh) reporting to the leach feed sump.

The rod mill will be 9'6" $\emptyset \times 16'$. It will be furnished with one set of liners, a 600 HP motor and variable-speed drive. An automatic lubricating system and all necessary guards will be provided.

SUMP

EQUIPMENT NO. 114

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

 Slurry: Sp. Gr. 1.47
 % Solids by Weight 55%

 Solution: Temp. 40-70° F
 pH 6.5-7.0
 Sp. Gr. 1.00

 Solids: Sp. Gr. 2.38

Size Analysis: <u>-3/4 inch to -325 mesh</u>

VOLUME

1200 gal

RETENTION

Approx. 2 min

DUTY

This sump will receive rod mill discharge. The sump will be rubber lined mild steel. It will be provided with a clean-out and will be designed for discharge by horizontal pumps.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 115-116

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

Slurry: Sp. Gr.	1.47	% Solids by	Weight <u></u>	55%
Solution: Temp.	40-70 ⁰ F	рН <u>6.5-7.0</u>	Sp. (Gr. <u>1.00</u>
Solids: Sp. Gr.	2.38			

Size Analysis: <u>-3/4 inch to -325 mesh</u>

CAPACITY

600 gpm at 35 ft tdh

DUTY

Two pumps will deliver rod mill discharge to the feed box of a DSM-type screen. Standard operation will be one pump operating and one stand-by.

The pumps will be rubber lined, will have 316 SS trim and will be complete with drives, guards, and TEFC motors.

SCREEN

EQUIPMENT NO. 117

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

 Slurry: Sp. Gr. <u>1.47</u>
 % Solids by Weight <u>55%</u>

 Solution: Temp. <u>40-70° F</u>
 pH <u>6.5-7.0</u>
 Sp. Gr. <u>1.00</u>

 Solids: Sp. Gr. <u>2.38</u>

Size Analysis: <u>-3/4 inch to -325 mesh</u>

FEED RATE

600 gpm slurry

OPENING SIZE

28 mesh

TYPE OF SCREEN

Sieve bend or DSM type

DUTY

This screen will receive slurry from the rod mill discharge sump and separate it into a +28 mesh fraction which will be returned to the rod mill and a -28 mesh fraction which will report to the leach feed sump.

Design of this sieve bend or DSM-type screen will allow ease of reversing the screen surface to maximize screen life.

SAMPLING SYSTEM

EQUIPMENT NO. 118

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

Slurry: Sp. Gr. <u>1.41</u>	% Solids by Weight 50%
Solution: Temp. <u>40-70⁰ F</u>	pH <u>6.5-7.0</u> Sp. Gr. <u>1.00</u>
Solids: Sp. Gr. <u>2.38</u>	
Size Analysis: Approx. Approx.	98% -28 mesh 50% -200 mesh 35% -325 mesh

OPERATING CONDITIONS

Feed Rate: <u>600 gpm</u> Feed Sample Required: <u>3.4%</u> of Total Final Sample Size: 2.5 gal/shift

DUTY

This sampling system will sample leach feed slurry. The system will be three-stage with a sample storage tank between the second and third stages. The first two stages will be continuous and the third stage will operate only at the end of each operating shift. The samplers will be designed for variable adjustment of cutter speed and sample size. The system will be furnished complete with all drives, guards, TEFC motors, sample containers and controls.

SUMP

EQUIPMENT NO. 119

LOCATION

.

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

 Slurry: Sp. Gr. 1.41
 % Solids by Weight 50%

 Solution: Temp. 40-70° F
 pH 6.5-7.0
 Sp. Gr. 1.00

 Solids: Sp. Gr. 2.38
 Size Analyzia:
 00%
 28 mash

Sizo Apalvei	c ·	0.0%	29 mach
SIZE ANALYSI	5.	90%	-zo mesn
	Approx.	50%	-200 mesh
	Approx.	35%	-325 mesh

VOLUME

<u>1200 gal</u>

RETENTION

Approx. 2 min

DUTY

This sump will receive underflow from the DSM-type screen. It will be rubber lined mild steel, furnished with clean-out, and designed for discharge by horizontal pumps.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 120-121

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

Slurry: Sp. Gr. <u>1.41</u>	% Solids by Weight <u>50%</u>
Solution: Temp. <u>40-70⁰ F</u>	pH <u>6.5-7.0</u> Sp. Gr. <u>1.00</u>
Solids: Sp. Gr. <u>2.38</u>	
Size Analysis: Approx. Approx.	98% -28 mesh 50% -200 mesh 36% -325 mesh

CAPACITY

600 gpm at 35 ft tdh

DUTY

Two pumps will deliver leach feed slurry from the leach feed sump to the first acid mix tank. Standard operation will be one pump operating and one stand-by.

The pumps will be rubber lined, will have 316 SS trim, and will be furnished with mechanical seals, drives, guards, and TEFC motors.

MASS FLOWMETER

EQUIPMENT NO. 122

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

 Slurry: Sp. Gr. 1.41
 % Solids by Weight 50%

 Solution: Temp. 40-700 F
 pH 6.5-7.0
 Sp. Gr. 1.00

 Solids: Sp. Gr. 2.38
 Size Analysis:
 98% -28 mesh

 Approx. 50% -200 mesh
 Approx. 35% -325 mesh

FEED RATE

600 gpm

DUTY

The mass flowmeter will monitor and record flow rate and percent solids of feed to the leaching circuit. It will be located between the leach feed pumps and the first acid mix tank.

The mass flowmeter will include a nuclear density guage, magnetic flowmeter, transmitters and integrator-recorder. The density gauge will have $\pm 2.0\%$ accuracy and the flowmeter will have $\pm 1.0\%$ accuracy. The flowmeter will have stainless steel electrodes and will be neoprene lined.

SCRUBBER

EQUIPMENT NO. 123

LOCATION

Ore Receiving Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Dust

Radon Gas

Size Analysis: 100% -325 mesh

Properties: Not Soluble in Water

Not Corrosive

Abrasive

Not Difficult to Wet

FLOW RATE

<u>3000 scfm</u>

EFFICIENCY

99.5%

DUTY

The wet scrubber in the ore receiving area will control emissions from the apron feeder-belt conveyor transfer point. The system will be designed to keep the work area in compliance with current hygiene regulations and yield stack emission compatible with current environmental specifications. The scrubber liquid effluent will report to the ore receiving area sump.

The scrubber will be mild steel construction. It will be furnished complete with fan, drive, guard, TEFC motor, and scrubber controls as required.

VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 124

LOCATION

Ore Receiving Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

 Slurry:
 Sp. Gr. <u>1.0-1.4</u>
 % Solids by Weight <u>0-50%</u>

 Solution:
 Temp. <u>40-700 F</u>
 pH <u>6.5-7.0</u>
 Sp. Gr. <u>1.0</u>

 Solids:
 Sp. Gr. <u>2.38</u>

Size Analysis: <u>-3/4 inch to -325 mesh</u> (est)

CAPACITY

50 gpm at 30 ft tdh

DUTY

This pump will deliver slurry from the ore receiving area sump to the SAG mill feed box. The particle size and percent solids to be pumped will vary over a wide range. The pump will be selected to handle the extreme condition.

The pump will be rubber lined with 316 SS trim. It will be furnished complete with level control, drive, guard, and TEFC motor.

VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 125

LOCATION

Grinding Area

MATERIAL DESCRIPTION

Shale and Siltstone Ore Slurry

 Slurry: Sp. Gr. 1.0-1.42
 % Solids by Weight 0-50%

 Solution; Temp. 40-70° F
 pH 6.5-7.0
 Sp. Gr. 1.0

 Solids: Sp. Gr. 2.38

Size Analysis <u>-3/4 inch to -325 mesh</u> (est)

CAPACITY

50 gpm at 20 ft tdh

DUTY

This pump will deliver slurry from the grinding area sump to the SAG mill feed box. The particle size and percent solids to be pumped will vary over a wide range. The pump will be selected to handle the extreme conditions.

The pump will be rubber lined with 316 SS trim. It will be furnished complete with level control, drive, guard, and TEFC motor.

ROD CHARGING MACHINE

EQUIPMENT NO. 126

LOCATION

Grinding Area

DUTY

This electric or air-operated machine will facilitate handling and charging of rods into the rod mill.

The machine will be complete with all drives, TEFC motors, guards, and controls.

OVERHEAD BRIDGE CRANE

EQUIPMENT NO. 127

LOCATION

Grinding Area

CAPACITY

15 ton main hoist with 5 ton auxiliary hoist

DUTY

This crane will provide service to the entire grinding area. The crane will be designed for Class C service. It will be furnished with bridge, trolley, hoists and all electrical control and hardware integral to the crane, but not including crane rail, crane beams and runway electrification.

LINER HANDLER

EQUIPMENT NO. 128

LOCATION

Grinding Area

DUTY

The liner handler will be used to facilitate removal and replacement of liners for a 16' \emptyset x 5' semiautogenous grinding mill. It will be furnished complete with drives, TEFC motors, guards and control.

TANKS

EQUIPMENT NO. 201-202

LOCATION

Leaching Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry

Slurry: Sp. Gr. <u>1.39</u>	% Solids	by Weight <u>45%</u>
Solution: Temp. <u>75⁰ C</u> p	H <u><1.5</u>	Sp. Gr. <u>1.04</u>
Solids: Sp. Gr. <u>2.38</u>		
Size Analysis: (est)	98% -28 m 50% -200 r 36% -325 r	esh nesh nesh

VOLUME

47,000 gal ea (Usable)

RETENTION

75 min ea

DUTY

This two-tank series will be the initial reactor tanks of the leaching circuit. They will receive the ore slurry from the leach feed sump as well as the bulk of the 93% sulfuric acid and a portion of the sodium chlorate and steam for leaching the uranium. The tanks will be $20' \ 0 \times 26'$ deep with 20' utilized for reacting, and the top 6 feet available to contain froth from the chemical reaction. The mild steel tanks will be rubber lined and will be designed to support agitator mechanisms.

TANKS

EQUIPMENT NO. 203-206

LOCATION

Leaching Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Sl	urry				
Slurry: Sp. Gr. <u>1.39</u>	%	Solids	by We	eight	. <u>45%</u>
Solution: Temp. <u>75⁰ C</u>	рН <u><</u>	1.5	Sp.	Gr.	1.04
Solids: Sp. Gr. <u>2.38</u>					
Size Analysis: (est)	98% 50% 35%	-28 m -200 r -325 r	esh nesh nesh		

VOLUME

47,000 gal ea (Usable)

RETENTION

75 min ea

DUTY

This four-tank series of tanks will complete the uranium extraction started in the acid mix tanks. The first tank of the series will receive a continuous flow of slurry from the second acid mix tank. The first two leach tanks will be fitted for acid, sodium chlorate, and steam additions. The final leach tank will discharge continuously into the leach discharge sump. The leach tanks will be 20' \emptyset x 22' deep. two feet of freeboard are allowed to accommodate foaming. The tanks will be rubber-lined mild steel and will be designed to support agitator mechanisms.

AGITATORS

EQUIPMENT NO. 207-212

LOCATION

Leaching Area

MATERIAL DESCRIPTION

Shale, Siltstone and Gypsum Slurry

Slurry: Sp. Gr. <u>1.45</u> % Solids by Weight <u>50%</u> (Design) Solution: Temp. <u>75° C</u> pH \leq 1.5 Sp. Gr. <u>1.04</u> Solids: Sp. Gr. <u>2.38</u> Size Analysis: (est) 98% -28 mech

			35%	-325 mesh
			50%	-200 mesh
ıze	Analysis:	(est)	98%	-28 mesn

TANK DESCRIPTION

Diameter: <u>20</u>	<u>) ft</u>	Depth:	<u>20-26 ft</u>	Volume:	47,000 gal
---------------------	-------------	--------	-----------------	---------	------------

DUTY

These agitators will suspend the solids contained in the ore slurry and mix the reactants sufficiently to maintain the uniform acid concentration required for optimum leaching.

The agitator shafts and impellers will be rubber covered mild steel. The agitators will be furnished complete with drives, guards, TEFC motors, and support structure with walkway and handrail.

SUMP

EQUIPMENT NO. 213

LOCATION

Leaching Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry Slurry: Sp. Gr. 1.39 % Solids by Weight 45% Solution: Temp. 75° C pH ≤ 1.5 Sp. Gr. 1.04 Solids: Sp. Gr. 2.38 Size Analysis: (est) 98% -28 mesh 50% -200 mesh 35% -325 mesh

VOLUME

1500 gal

RETENTION

Approx. 2 min

DUTY

This sump will receive the discharge from the final leach tank. The 6' \emptyset x 10' deep mild steel sump will be rubber lined.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 214-215

LOCATION

Leaching Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry

Slurry: Sp. Gr. <u>1.39</u>	% Solids by Weight <u>45%</u>
Solution: Temp. <u>76⁰ C</u>	pH <1.5 Sp. Gr. <u>1.04</u>
Solids: Sp. Gr. <u>2.38</u>	
Size Analysis: (est)	98% -28 mesh 50% -200 mesh 35% -325 mesh

CAPACITY

700 gpm at 30 ft tdh

DUTY

Two pumps will deliver leach discharge slurry from the leach discharge sump to the No. 1 CCD thickener. Standard operation will be one pump operating and one stand-by. The pumps will be rubber lined with mechanical seals and 316 SS trim. The pumps will be furnished complete with drives, guards, and TEFC motors.

SCRUBBER

EQUIPMENT NO. 216

LOCATION

Leaching Area

MATERIAL DESCRIPTION

Carbon Dioxide

Sulfuric Acid Fumes

Steam

Radon Gas

PROPERTIES

Corrosive

moist

FLOW RATE

5000 cfm

EFFICIENCY

99.5%

DUTY

The wet scrubber in the leach area will control emissions from the acid mix tanks, the leach tanks, and the leach discharge sump. The system will be designed to keep the work area in compliance with current hygiene regulations and yield stack emissions compatible with current environmental specifications. The scrubber liquid effluent will report to the leach discharge sump.

The scrubber will be mild steel construction. It will be furnished complete with fan, drive, guard, TEFC motor, and scrubber controls as required.

VERTICAL CENTRIFUGAL PUMP

EQUPMENT NO. 217

LOCATION

Leaching Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry

Slurry: Sp. Gr. <u>1.00-1.45</u>	% Solids by Weight <u>0-50%</u>
Solution: Temp. <u>40-150⁰ F</u>	pH <u><1.5</u> Sp. Gr. <u>1.04</u>
Solids: Sp. Gr. <u>2.38</u>	
Size Analysis: (est)	98% -28 mesh 50% -200 mesh 35% -325 mesh

CAPACITY

50 gpm of 25 ft tdh

DUTY

This sump pump will deliver all slurry from the leaching area sump to the first acid mix tank. The percent solids will vary over a wide range. The solution can contain up to 20-30 gpl of free acid. The pump will be selected to handle the extreme conditions.

The pump will be rubber lined, will have 316 SS trim, and will be furnished complete with level control, drive, guard, and TEFC motor. The tanks will be designed to support agitators.

SUMPS

EQUIPMENT NO. 301-305

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry

Slurry: Sp. Gr. 1.14 % Solids by Weight 15%
Solution: Temp. 40-70⁰ C pH<1.5 Sp. Gr. 1.04
Solids: Sp. Gr. 2.38
 Size Analysis: (est) 98% -28 mesh
 50% -200 mesh
 35% -325 mesh</pre>

VOLUME

Approx. 2500 gal

RETENTION

60 sec

DUTY

These five sumps will receive and thoroughly mix elements of each CCD thickener feed.

These 8' x 8' mild steel tanks will be rubber lined and will be designed to support agitators.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 306-315

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale Siltstone, and Gypsum Slurry

Slurry:	Sp. Gr.	1.14		% Solids	by W	eight	: 15%
Solution	: Temp.	40 - 70 ⁰	С	рН <1. 5	Sp.	Gr.	1.04
Solids:	Sp. Gr.	2.38					
	Size Ana	alysis:	(est)	98% -28 mesh 50% -200 mesh 35% -325 mesh			

CAPACITY

2700 gpm at 25 ft tdh

DUTY

These ten pumps will deliver mixed slurry from the thickener feed tanks to the feed well of the CCD thickeners. Each feed tank will be fitted with two pumps, one operating and one stand-by. The pumps will be rubber lined, will have 316 SS trim and will be furnished complete with drives, guards and TEFC motors.

TANKS

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry Slurry: Sp. Gr. 1.14 % Solids by Weight 15% Solution: Temp. 40-70^OC pH<1.5 Sp. Gr. 1.04 Solids: Sp. Gr. 2.38 Size Analysis (est) 90% -28 mesh 50% -200 mesh 35% -325 mesh

VOLUME

Approx. 2500 gal

RETENTION

60 sec

DUTY

These five agitated tanks receive the discharge of the five thickener feed pumps and also receive the flocculants. The tanks overflow continually into launders running to the thickner feed wells.

The 8' \emptyset X 8" mild steel tanks will be rubber lined due to the low pH and abrasiveness of the thickener feed elements.

,

AGITATORS

EQUIPMENT NO. 321-325

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry
Slurry: Sp. Gr. 1.14 % Solids by Weight 15%
Solution: Temp. 40-70⁰ C pH<1.5 Sp. Gr. 1.04
Solids: Sp. Gr. 2.38
Size Analysis: (est) 98% -28 mesh
50% -200 mesh
35% -325 mesh</pre>

TANK DESCRIPTION

Diameter: 8 ft Depth: 8 ft Volume: 3000 gal

DUTY

These agitators will suspend and mix all solids and wash liquors flowing into the five thickener feed tanks.

These agitator shafts and impellers will be rubber covered mild steel. The agitators will be furnished complete with drives, guards, TEFC motors and support structure.

THICKENERS

EQUIPMENT NO. 326-330

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry
Slurry: Sp. Gr. 1.14 (Avg) % Solids by Weight 15% (Avg)
Solution: Temp. 40-70⁰ C pH<1.5 Sp. Gr. 1.04
Solids: Sp. Gr. 2.38
Size Analysis: (est) 98% -28 mesh
50% -200 mesh
35% -325 mesh</pre>

OPERATING CONDITIONS

Feed Rate: 2381 gpm
Underflow: 765 gpm at 38% solids
Overflow: 1616-1668 gpm at 150-250 ppm Solids
Diameter: 140 ft Sidewall 10 ft
Settling Area: 7.0 sq ft/ton/24 hr
Retention: 7.9 hr
WASH RATIO*: 2.67 (Thickener Nos. 2-5)
*Wash Water Divided by Slurry Liquor

DUTY

These five thickener tanks will receive the leached pulp and countercurrent flowing wash water and provide the time necessary for settling and thickening of pulp.

These thickeners will be constructed of mild steel with rubber lining on walls and bottom.

THICKENER MECHANISMS

EQUIPMENT NO. 331-335

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry

Slurry: Sp. Gr. 1.33	% Solids by Weight 38%
Solution: Temp. 40-70oC	pH < 1.5 Sp. Gr. 1.04
Solids: Sp. Gr. 2.38	Size Analysis: (est) 98% -28 mesh 50% -200 mesh 35% -325 mesh

OPERATING CONDITIONS

Feed Rate:	2381 gpm	Underflow:	765	gpm	at	3 8%	solids
Overflow:	1616 gpm at	150-250 ppm Solids					

THICKENER DESCRIPTION

Diameter: 140 ft Sidewall 10 ft Settling Area: 7.0 sq ft/ton/24 hr Retention: 7.9 hr Wash Ratio*: 2.67 (Thickener Nos. 2-5) *Wash Water Divided by Slurry Liquor

DUTY

These thickener mechanisms, one for each of the five CCD thickeners, will rake the settled pulp in the thickeners to the discharge cone. These mechanisms will have no stub arms but will be equipped with motorized rake lifting mechanisms and remote torque indicators. They will be the center pier type.

The mechanisms will be constructed to perform satisfactorily in a low pH environment with the arms, blades and cones fabricated of 316 SS.

The thickener mechanisms will be furnished complete with drives, guards and motors, motorized rake lifting device, feed wells, bridge structure with walkway and handrail and feed launder or pipe.

DIAPHRAGM PUMPS

EQUIPMENT NO. 336-345

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry

Slurry: Sp. Gr. 1.30 % Solids by Weight 35% Solution: Temp. 40-70⁰C pH<1.5 Sp. Gr. 1.04 Solids: Sp. Gr. 2.38 Size Analysis: (est) 98% -28 mesh 50% -200 mesh

35% -325 mesh

CAPACITY

Approx. 900 gpm at 25 ft tdh

DUTY

These ten pumps will be used in pairs to convey the underflow pulp of each of the five CCD thickeners to its next thickener feed tank except that the final thickener underflow will report to a sump tank from which the pulp will flow to the tailing area.

These duplex diaphragm pumps will be rubber lined, will have 316 SS trim, and will be furnished complete with drives, guards and TEFC motors.

HORIZONTAL CENTRIFUGAL

EQUIPMENT NO. 346-350

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry

 Slurry: Sp. Gr. 1.30
 % Solids by Weight 35%

 Solution: Temp. 40-70°C
 pH<1.5</td>

 Solids: Sp. Gr. 2.38

Size Analysis: (est) 98% -28 mesh 50% -200 mesh 35% -325 mesh

CAPACITY

Approx. 910 gpm at 35 ft tdh

DUTY

These five centrifugal pumps will be back-up pumps to the primary thickener underflow pumps. They will advance underflow pulp to the next thickener feed tank with the final flow going to a sump tank. These pumps will be piped to recycle underflow to the same thickener or advance it to the thickener feed tank beyond its normal discharge.

These pumps will be rubber lined, will have 316 SS trim and will be furnished complete with drives, guards and TEFC motors.

.

DENSITY/FLOWMETERS

EQUIPMENT NO. 351-355

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry Slurry: Sp. Gr. 1.33 % Solids by Weight 38% Solution: Temp. 40-70⁰C pH<1.5 Sp. Gr. 1.04 Solids: Sp. Gr. 2.38 Size Analysis: (est) 98% -28 mesh 50% -200 mesh 35% -325 mesh

FEED RATE

900 gpm

CHARACTERISTICS

+ 1.0% Accuracy (Flow) + 2.0% Accuracy (Density) Indicator-recorders

DUTY

These gamma gauge density meters and magnetic flowmeters on the five thickener underflow streams will continually measure and record the density and flow of the underflow slurry. These meters will not be monitoring the stand-by pumps' outputs.

This equipment will be complete with nuclear density gauge, transmitters, recorder/controller and teflon lined magnetic flowmeter with tantalum electrodes.

LOCATION

CCD Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution Slurry: Sp. Gr. 1.04 % Solids 150-250 ppm Solution: Temp. 40-60⁰ C pH<1.5 Sp. Gr. 1.04 Solids: Sp. Gr. 2.38 Size Analysis: 100% -325 mesh

VOLUME

2500 gal

RETENTION

1.5 min

DUTY

This sump receives the overflow from the No. 1 thickener.

This 8' Ø X 8' deep tank will be constructed of mild steel with rubber lining.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 357-358

LOCATION

CCD Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Slurry: Sp. Gr.	1.05	% Solids	s 150-250 ppm
Solution: Temp.	40-60 ⁰ C	рН < 1.5	Sp. Gr. 1.05
Solids: Sp. Gr.	2.38		

Size Analysis: 100% -325 mesh

CAPACITY

1800 gpm at 20 ft tdh

DUTY

These pumps will deliver the No. 1 thickener overflow solution from the thickener overflow sump to the clarifier. Normal operation will be one pump operating and one stand-by.

These pumps will be constructed with rubber linings and will have 316 SS trim. They will be complete with drives, guards, and TEFC motors.

SAMPLING SYSTEM

EQUIPMENT NO. 359

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone, and Gypsum Slurry Slurry: Sp. Gr. 1.33 % Solids by Weight 38% Solution: Temp. 40-60^OC pH<1.5 Sp. Gr. <u>1.04</u> Solids: Sp. Gr. <u>2.38</u> Size Analysis: (est) 98% -28 mesh 50% -200 mesh 35% -325 mesh

OPERATING CONDITIONS

Feed Rate: 900 gpm

Final Sample Size: 2.5 gal/shift

DUTY

This two stage sampling system will sample the CCD circuit tailing slurry at a point downstream from the No. 5 thickener underflow pump.

The system will be furnished complete with drives, guards, TEFC motors, sample containers, controls, and variable adjustment for speed and sample quantity. Wetted parts must be constructed of 316 SS.

SUMP

EQUIPMENT NO. 360

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone and Gypsum Slurry
Slurry: Sp. Gr. 1.33 % Solids by Weight 38%
Solution: Temp. 40-60⁰C pH<1.5 Sp. Gr. 1.04
Solids: Sp. Gr. <u>2.38</u>
Size Analysis: (est) 98% -28 mesh
50% -200 mesh
35% -325 mesh

VOLUME

2500 gal

RETENTION

3.0 min

DUTY

This sump will receive the discharge from the No. 5 thickener underflow pump. This slurry, the main mill tailing, flows from the sump by gravity to the tailing impoundment area.

This 8' \emptyset X 8' deep tank will be constructed of mild steel with rubber lining.
VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 361

LOCATION

CCD Area

MATERIAL DESCRIPTION

Shale, Siltstone and Gypsum Slurry

 Slurry: Sp. Gr. 1.00-1.33
 % Solids by Weight 0-38%

 Solution: Temp. 40-100⁰F
 pH<1.5</td>
 Sp. Gr. 1.00-1.04

 Solids: Sp. Gr. 2.38
 Size Analysis: (est) 98% -28 mesh 50% -200 mesh 35% -325 mesh

CAPACITY

100 gpm at 25 ft tdh

DUTY

This sump pump will deliver slurry collected in the CCD area sump to the No. 3 thickener feed tank. The percent solids to be pumped by this pump will vary over a wide range. This pump will be selected to handle the extreme conditions.

The pump will be rubber lined, will have 316 SS trim and will be furnished complete with drive, guard, TEFC motor and level control.

CLARIFIER

EQUIPMENT NO. 401

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Slurry:	Sp.	Gr. 1.05	%	Solids	150-250	ppm
						- the second second

Solution: Temp. 40-70⁰C pH<1.5 Sp. Gr. 1.05

Solids: Sp. Gr. 2.38

Size Analysis: 100% -325 mesh

OPERATING CONDITIONS

Feed Rate:	1618 gpm	
Underflow:	<u>8 gpm</u> at <u>5%</u> so	lids (Max)
Overflow:	1610 gpm at <u>35-</u>	80 ppm solids
Diameter:	<u>70 ft</u>	Sidewall <u>18 ft</u>
Settling An	rea: <u>2.77 sq ft</u>	/1b/24 hr
Retention:	5.3 hr	

DUTY

This clarifier will receive the No. 1 CCD thickener overflow and provide the flocculant and retention to substantially reduce the very fine suspended solids. Underflow slurry from this vessel is pumped to the No. 1 acid mix tank. The overflow feeds the sand filter feed pumps.

The clarifier will be constructed of rubber lined mild steel.

CLARIFIER MECHANISM

EQUIPMENT NO. 402

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution Slurry: Sp. Gr. 1.05

% Solids <u>150-250 ppm</u>

Solution: Temp. <u>40-70^oC</u> pH<<u>1.5</u> Sp. Gr. <u>1.05</u>

Solids: Sp. Gr. 2.38

Size Analysis: 100% -325 mesh

OPERATING CONDITIONS

Feed Rate:	1618 gpm
Underflow:	8 gpm at <u>5%</u> solids (Max)
Overflow:	1610 gpm at 35-80 ppm solids

THICKENER DESCRIPTION

Diameter: 70 ft Sidewall <u>18 ft</u> Settling Area: <u>2.77 sq ft</u>/lb/24 hr Retention: <u>5.3 hr</u>

DUTY

This clarifier mechanism will rake the flocculated and settled fines in the clarifier to the discharge cone.

This mechanism will be constructed of 316 SS in exposed areas such as rake arms and blades because of the low pH of the solution. It will be furnished complete with feedwell, support structure with walkway and handrail, drive, guard and TEFC motor.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 403

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Shale, Siltstone and Gypsum Slurry
Slurry: Sp. Gr. <u>1.08</u> % Solids by Weight <u>5%</u> (Max)
Solution: Temp. <u>40-60⁰C</u> pH<<u>1.5</u> Sp. Gr. <u>1.05</u>
Solids: Sp. Gr. <u>2.38</u>
Size Analysis: <u>100% -325 mesh</u>

CAPACITY

20 gpm at 30 ft tdh

DUTY

This underflow pump will deliver the clarifier underflow to the No. 1 acid mix tank.

This pump will be rubber lined with 316 SS trim. It will be furnished complete with drive, guard and TEFC motor.

FLOWMETER

EQUIPMENT NO. 404

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Shale, Siltstone and Gypsum Slurry
Slurry: Sp. Gr. <u>1.08</u> % Solids by Weight <u>5%</u> (Max)
Solution: Temp. <u>40-60⁰C</u> pH<<u>1.5</u> Sp. Gr. <u>1.05</u>
Solids: Sp. Gr. <u>2.38</u>
Size Analysis: 100% -325 mesh

FEED RATE

20 gpm

CHARACTERISTICS

+ 1.0% Accuracy

Indicator-controller

DUTY

This magnetic flowmeter will continuously measure and record the flow of clarifier underflow slurry between the clarifier thickener and the leaching or CCD circuit. The flowmeter will be an indicatorcontroller type and will be complete with transmitter, tantalum electrodes and the flowmeter will be hypalon lined.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 405-406

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Solution: Temp. <u>40-60[°]C</u> pH<<u>1.5</u> Sp. Gr. <u>1.05</u>

CAPACITY

1800 gpm at 80 ft tdh

DUTY

These two horizontal centrifugal pumps will pump the clarifier overflow through the sand filters and into the pregnant solution storage tank. One pump will operate while the other will be on stand-by.

These pumps will be rubber lined with 316 SS trim. The pumps will be furnished complete with drives, guards and TEFC motors.

SAND FILTERS

EQUIPMENT NO. 407-409

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Solution	: Temp.	40-60 ⁰ C	pH<1.5	Sp. Gr.	1.05
Solids:	Sp. Gr.	2.38	% Solids	35-80 ppm	

Size Analysis: 100% -325 mesh

OPERATING CONDITIONS

Feed Rate:	1800) gpn	<u>1</u>			
Filtrate:	1800	gpm	at	10	ppm	solids

DUTY

These three sand filters will be operated in parallel and will further reduce the suspended solids in the clarifier overflow solution. The filter discharge will go to the pregnant solution storage tank. Filter cleaning and rejuvenation will be accomplished by periodic backwashing with pregnant solution.

These filters will be approximately ll' \emptyset x 6' high. They will be rubber lined mild steel, skid mounted, with anthracite filter media.

TANK

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Solution: Temp. <u>30-45⁰C</u> pH<<u>1.5</u> Sp. Gr. <u>1.05</u>

VOLUME

375,000 gal

RETENTION

5.3 hr

DUTY

This 50' Ø x 28' deep tank will receive the discharge of the sand filters and serve as a surge tank between the clarifier and the S-X circuit.

This tank will be rubber lined mild steel.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 411-412

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Solution: Temp. <u>40-70⁰F</u> pH<<u>1.5</u> Sp. Gr. <u>1.05</u>

CAPACITY

1000 gpm at 135 ft tdh

DUTY

This pump will provide the solution flow to purge the sand filters of built up fines. The pump will receive its feed from the pregnant solution storage tank. The backwash will flow to No. 1 CCD thickener feed tank. Operation will be intermittent.

A spare pump will be on stand-by.

The pumps will be rubber lined with 316 SS trim. They will be furnished complete with drives, guards and TEFC motors.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 413-414

LOCATION

Clarification Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Solution: Temp. 30-45⁰C pH<1.5 Sp. Gr. <u>1.05</u>

CAPACITY

1800 gpm at 30 ft tdh

DUTY

These two pumps will draw solution from the pregnant solution storage tank and pump it into the No. 1 extraction mixer tank. Normal operation will be for one pump to be operating and the other to be on stand-by.

These pumps will be rubber lined with 316 SS trim. They will be furnished complete with drives, guards and TEFC motors.

SAMPLER

EQUIPMENT NO. 501

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 1.05

OPERATING CONDITIONS

Feed Rate: 1800 gpm

Final Sample Size: 0.5 gal/shift

DUTY

This single stage sampler will sample the solvent extraction feed solution at a point just ahead of the first solvent extraction tank.

Wetted parts of the sampler will be 316 SS. It will be furnished complete with controls.

FLOWMETER

EQUIPMENT NO. 502

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Uranium Bearing Aqueous Solution

Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 1.05

FEED RATE

1800 gpm

CHARACTERISTICS

+ 1.0% Accuracy

Recording Chart

DUTY

This magnetic flowmeter will continuously measure and record the flow of pregnant solution between the solvent extraction feed pump and the No. 1 extraction mixer tank. It will be furnished complete with transmitter and recorder. The meter will have tantalum electrodes and will be teflon lined.

MIXER-SETTLER TANKS

EQUIPMENT NO. 503-506

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqeous and Organic Solution Mixture

- Aqueous Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 1.05
- Organic Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 0.8

VOLUME

Mixer Tank 3100 gal, (1.5 gal/daily ton)

Settler Tank 86,400 gal

DIMENSIONS

Mixer Tank 8 ft x 8 ft x 8 ft deep

Settler Tank <u>30 ft x 70 ft x 5¹/₂ ft deep</u>

RETENTION

Mixer Tanks 1.8 min ea

Settler Tanks 50 min ea

DUTY

The four mixer-settler tanks will provide for the necessary countercurrent contact between the pregnant solution and the kerosene-based organic solution which will extract the uranium. The pregnant solution will be fed to mixer No. 1 by the solvent extraction feed pump. The organic will be delivered to mixer No. 4 by the barren organic tank pump. The mixer-settlers will be constructed to accommodate internal recycling from the settlers to the mixers.

The tanks will be constructed of FRP line concrete.

AGITATORS

EQUIPMENT NO. 507-510

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous and organic solution mixture

Aqueous Solution	: Temp. <u>40-70⁰F</u>	рН <<u>1.5</u>	Sp. Gr.]	.05
Organic Solution	: Temp. <u>40-70⁰F</u>	рН <<u>1.5</u>	Sp. Gr. <u>(</u>	0.80
	Composition 95 2.5 2.5	Vol % Keros Vol % Alami Vol % İsode	ene 1e 336 or E canol or Ti	Equivalent ridecanol

TANK DESCRIPTION

Dimensions 8 ft x 8 ft x 8 ft deep

Volume 3100 gal

DUTY

These four pumping agitators will blend the aqueous and organic solutions in the four stages of extraction. They will produce sufficient solution to solution contact, with the aid of a 2080 gpm recycle flow from the settler tanks, to allow for the transfer of the uranium from the aqueous to the organic solution.

These agitators will be constructed of 316 SS. They will be furnished complete with drives, guards and TEFC motors.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 511-512

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous Solution

Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 1.05

CAPACITY

1800 gpm at 30 ft tdh

DUTY

These two horizontal centrifugal pumps will remove aqueous solution from the No. 4 extraction settler and deliver it to the raffinate tank. Normal operation will be one pump operating and one stand-by. These pumps will be constructed of 316 SS. They will be furnished complete with drives, guards and TEFC motors.

SAMPLER

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous Solution

Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 1.05

OPERATING CONDITIONS

Feed Rate: 1800 gpm

Final Sample Size: 0.5 gal/shift

DUTY

This single state sampler will sample the extraction circuit aqueous discharge, raffinate, from the solution line just before it enters the raffinate tank.

Wetted parts of the sampler will be 316 SS. The sampler will be furnished complete with controls.

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous Solution

Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 1.05

VOLUME

300,000 gal

RETENTION

3.2 hr

DUTY

This 65' \emptyset x 12' deep tank will store the raffinate pumped out of the No. 4 extraction settler and feed the raffinate tank discharge pumps delivering solution to the CCD circuit. The tank's retention serves to absorb surge between the S-X and CCD circuits.

The tank will be constructed of FRP lined mild steel.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 515-516

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous Solution

Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 1.05

CAPACITY

1800 gpm at 30 ft tdh

DUTY

These two horizontal centrifugal pumps will pump solution of very low uranium content from the raffinate tank back to the No. 5 CCD thickener. Under normal operating conditions, one pump will be operating and one will be on stand-by.

These pumps will be constructed of 316 SS. They will be furnished complete with drives, guards and TEFC motors.

FLOWMETERS

EQUIPMENT NO. 517-518

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous Solution

Solution: Temp. 40-70⁰F pH<1.5 Sp. Gr. 1.05

FEED RATE

1800 gpm

CHARACTERISTICS

+ 1.0% Accuracy

Recording Chart

DUTY

One flowmeter will measure, record and control the flow of raffinate between the raffinate tank and the No. 5 CCD thickener. The other flowmeter will measure and totalize the flow of raffinate to tailing when such a bleed-off is required. These magnetic flowmeters will be furnished complete with transmitters and recorders. One of the meters will also be provided with a controller. The meters will have tantalum electrodes and will be teflon lined.

VERTICAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 519-520

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. <u>40-70^oF</u> pH<<u>1.5</u> Sp. Gr. <u>0.80</u> Composition: 95 Vol % Kerosene 2.5 Vol % Alamine or Equivalent 2.5 Vol % Isodecanol or Tridecanol

CAPACITY

220 gpm at 20 ft tdh

DUTY

These two vertical centrifugal pumps will pump organic solution from the No. 1 extraction settler to the pregnant organic tank. Under normal operating conditions, one of these pumps will be operating and one will be on stand-by.

These pumps will be constructed of 316 SS. They will be furnished complete with drives, guards and TEFC motors.

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene) Solution: Temp. <u>40-70⁰F</u> pH<<u>1.5</u> Sp. Gr. <u>0.80</u> Composition: 95 Vol % Kerosene 2.5 Vol % Alamine or Equivalent 2.5 Vol % Isodecanol or Tridecanol

VOLUME

23,500 gal

RETENTION

2.4 hr

DUTY

This 18' \emptyset x 14' deep tank will store the uranium bearing organic solution pumped from the No. 1 extraction settler. The tank will serve as a surge vessel between the extraction and stripping phases of the S-X circuit.

The tank will be FRP lined steel, covered and vented to atmosphere.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 522-523

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. <u>40-70⁰F</u> pH<<u>1.5</u> Sp. Gr. <u>0.80</u>

Composition: 95 Vol % Kerosene 2.5 Vol % Alamine or Equivalent 2.5 Vol % Isodecanol or Tridecanol

CAPACITY

220 gpm at 30 ft tdh

DUTY

These two horizontal centrifugal pumps will deliver pregnant organic solution from the pregnant organic tank through a heat exchanger to the No. 1 stripping mixer tank. Normal operation will be one pump operating and one stand-by.

The pumps will be 316 SS. Mechanical seals will be used to avoid water contamination of the organic. The pumps will be furnished complete with drives, guards and TEFC motors.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 524

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous Solution

Solution: Temp. 40-70⁰F pH**<**1.5 Sp. Gr. 1.05

CAPACITY

20 gpm at 20 ft tdhk

DUTY

This horizontal centrifugal pump will return to the No. 2 extraction mixer small amounts of aqueous solution which separates from the organic in the pregnant organic tank. The pump will run continuously or intermittently depending on the amount of aqueous entrained in the organic.

The pump will be constructed of 316 SS. It will be furnished with drive, guard and TEFC motor.

HEAT EXCHANGER

EQUIPMENT NO. 525

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution 995 Vol % Kerosene)

Solution: Temp. <u>65-104⁰F</u> pH<<u>1.5</u> Sp. Gr. <u>0.80</u>

OPERATING CONDITIONS

Feed Rate: 220 gpm

Temperature: Inlet <u>65^oF</u> Outlet <u>104^oF</u>

DUTY

This heat exchanger will heat the pregnant organic solution flowing between the pregnant organic tank discharge pump and the No. 1 stripping mixer tank.

The heat source for this impervious block graphite exchanger will be steam.

SAMPLER

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. 104⁰F pH<1.5 Sp. Gr. 0.80

OPERATING CONDITIONS

Feed Rate: 220 gpm

Final Sample Size: 0.5 gal/shift

DUTY

This single stage sampler will sample the pregnant organic solution at a point just before the pregnant organic tank.

Wetted parts of the sampler will be 316 SS. The sampler will be furnished complete with controls.

FLOWMETER

EQUIPMENT NO. 527

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. <u>104⁰F</u> pH 1.5 Sp. Gr. 0.80

FEED RATE

220 gpm

CHARACTERISTICS

+ 1.0% Accuracy

Recording Chart

DUTY

This flowmeter will continuously measure and record the flow of pregnant organic between the pregnant organic tank discharge pumps and the No. 1 stripping mixer tank.

It will be furnished complete with transmitter and recorder.

MIXER-SETTLER TANKS

EQUIPMENT NO. 528-531

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous and Organic Solution Mixture

Aqueous Solution:	Temp. <u>104⁰F</u>	pH <u>4.0-4.3</u>	Sp. Gr. <u>1.10</u>
Organic Solution:	Temp. 104 ⁰ F	pH 4.0-4.3	Sp. Gr. <u>0.80</u>

VOLUME

Mixer Tank <u>930 gal</u> (0.5 gal/daily ton)

Settler Tank 6580 gal

DIMENSIONS

Mixer Tank 5 ft x 5 ft x 8 ft deep

Settler Tank 8 ft x 20 ft x 5¹/₂ ft deep

RETENTION

Mixer Tank 5.2 min

Settler Tank 27.7 min

DUTY

Thes four mixer-settler tanks will provide the necessary contact and mixing between the pregnant organic solution, containing the uranium, and the aqueous stripping solution. The pregnant organic will flow into No. 1 mixer tank and barren organic will be pumped from No. 4 settler tank. Barren strip solution will flow to No. 4 mixer tank a and pregnant strip solution will be pumped from No. 1 settler tank. The mixer-settlers will be constructed to accommondate internal recycling from the settlers to the mixers.

The tanks will be constructed of FRP lined concrete.

AGITATORS

EQUIPMENT NO. 532-535

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous and Organic Solution Mixture

Aqueous :	Solution:	Temp. <u>104⁰F</u>	рН <u>4.0-7.0</u>	Sp. Gr. <u>1.08</u>
Organic	Solution:	Temp. <u>104⁰F</u>	pH <u>4.0-7.0</u>	Sp. Gr. <u>0.80</u>
		Composition:	95 Vol % Kerosen 2.5 Vol % Alamine 2.5 Vol % Isodeca	e or Equivalent nol or Tridecanol

TANK DESCRIPTION

Dimensions 5 ft x 5 ft x 8 ft deep

Volume 930 gal

DUTY

These four agitators will blend the aqueous and organic solutions in the four stages of stripping. They will produce sufficient solution to solution contact, with the aid of 55 gpm recycle flow from the settler tanks, to allow for the transfer of the uranium from the organic to the aqueous solution.

Wetted parts of these agitators will be constructed of 316 SS. They will be furnished complete with drives, guards and TEFC motors.

VERTICAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 536-538

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. <u>104^oF</u> pH <u>4.0-4.3</u> Sp. Gr. <u>0.80</u>

CAPACITY

220 gpm at 20 ft tdh

DUTY

These three pumps will pump barren organic solution from the No. 4 stripping settler tank and the regeneration settler tank. The barren organic from No. 4 settler will go to the barren organic holding tank. The organic from the regeneration settler will also go to the barren organic holding tank. One pump will be used on the regeneration tank. The other two will be used one at a time on the No. 4 settler.

All three pumps will be constructed of 316 SS. They will be furnished complete with drives, guards and TEFC motors.

SAMPLER

EQUIPMENT NO. 539

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. <u>104^oF</u> pH <u>4.0-4.3</u> Sp. Gr. <u>0.80</u>

OPERATING CONDITIONS

Feed Rate: 220 gpm

Final Sample Size: 0.5 gal/shift

DUTY

This single stage sampler will sample the barren organic solution at a point just before the barren organic tank.

Wetted parts of the sampler will be 316 SS. The sampler will be furnished complete with controls.

MIXER-SETTLER TANK

EQUIPMENT NO. 540

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous and Organic Solution Mixture

Aqueous Solution:	Temp. <u>80-100</u>) ^O F pH <u>4.0-7.0</u>	Sp. Gr.	1.08
Organic Solution:	Temp. <u>80-100</u>) ⁰ F рН <u>4.0-7.0</u>	Sp. Gr.	0.80

VOLUME

Mixer Tank: 930 gal

Settler Tank: 4900 gal

DIMENSIONS

Mixer Tank: 5 ft x 5 ft x 8 ft deep

Settler Tank: 8 ft x 20 ft x $5\frac{1}{2}$ ft deep

DUTY

This mixer-settler tank will be employed as required with an input of 5% NaHCO₃ solution to rejuvenate organic solution which has become contaminated. Organic discharge of this tank will be to the barren organic tank. Aqueous discharge will report to the tailing stream or the organic sludge tank.

The tank will be constructed of FRP lined concrete.

AGITATOR

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous and Organic Solution Mixture

Aqueous Solution:	Temp. <u>80-100⁰F</u>	рН <u>4</u>	.0-7.0	Sp. G	ir. <u>1.08</u>
Organic Solution:	Temp. <u>80-100⁰F</u>	рН <u>4</u>	.0-7.0	Sp. G	ir. <u>1.08</u>
	Composition:	95 Vol % 2.5 Vol % 2.5 Vol %	Kerosene Alamine or Isodecanol	Equi or T	valent ridecanol

TANK DESCRIPTION

Dimensions 5 ft x 5 ft x 8 ft deep

Volume 930 gal

DUTY

This agitator will blend the barren organic solution with a sodium bicarbonate solution for the purpose of regenerating contaminated organic solution. Recycling of solutions from the settler back to the mixer will be provided to aid in this regeneration process.

Wetted parts of the agitator will be constructed of 316 SS. The agitator will be furnished complete with drive, guards, TEFC motor and support structure.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 542

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous Solution (5% NaHCO3)

Solution: Temp. 80-100⁰F pH 4.0-7.0 Sp. Gr. 1.04

CAPACITY

10 gpm at 30 ft tdh

DUTY

This pump will deliver spent sodium bicarbonate solution from the regeneration settler to either the CCD circuit tailing sump or the organic sludge tank.

This pump will be constructed of 316 SS. It will be furnished complete with drive, guard and TEFC motor.

TANK

EQUIPMENT NO. 543

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. 100⁰F pH <u>4.0-4.3</u> Sp. Gr. 0.80

VOLUME

23,500 gal

RETENTION

2.4 hr

DUTY

This 18' \emptyset X 14' deep tank will store the barren organic solution pumped from the No. 4 stripping settler or regeneration settler and serve as the source of feed for the barren organic tank discharge pumps delivering organic solution back to the extraction circuit.

The tank will be constructed of FRP lined mild steel and covered. Fumes will be vented to atmosphere.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 544-545

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. 90-100⁰F pH 4.0-4.3 Sp. Gr. 0.80

CAPACITY

220 gpm at 30 ft tdh

DUTY

These horizontal centrifugal pumps will deliver barren organic solution from the barren organic tank to the No. 4 extraction mixer tank. Normal operating procedures will call for one pump to be operating and one to be on stand-by.

Due to the nature of the material being handled, the pumps will be 316 SS. Mechanical seals will be used to avoid water contamination of the organic solution. The pumps will be furnished with drives, guards, and TEFC motors.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 546

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous Solution

Solution: Temp. 70-100⁰F pH 4.0-4.3 Sp. Gr. 1.08

CAPACITY

20 gpm at 20 ft tdh

DUTY

This pump will return to the No. 2 stripping mixer small amounts of aqueous solution which separate from the organic in the barren organic tank. The pump will run continuously or intermittently depending on the amount of aqueous entrained in the organic.

The pump will be constructed of 316 SS. It will be furnished with drive, guard and TEFC motor.
FLOWMETER

EQUIPMENT NO. 547

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic Solution (95 Vol % Kerosene)

Solution: Temp. 104⁰F pH 4.0-4.3 Sp. Gr. 0.80

FEED RATE

220 gpm

CHARACTERISTICS

+ 1.0% Accuracy

Recording Chart

DUTY

This flowmeter will continuously measure and record the flow of barren organic between the barren organic tank discharge pumps and the No. 4 extraction mixer tank. The meter will be complete with transmitter and recorder.

TANK

EQUIPMENT NO. 548

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic, Aqueous, Crud Mixture

Aqueous Solution:	Temp. <u>60-80⁰F</u>	pH <u>1.5-7.0</u>	Sp. Gr. <u>1.00</u>
Organic Solution:	Temp. <u>60-80⁰F</u>	pH <u>1.5-7.0</u>	Sp. Gr. <u>0.80</u>

Crud: Emulsion of organic, water and impurities

VOLUME

40,000 gal

RETENTION

Variable

DUTY

This 20' \emptyset x 20' deep tank will store crud material bled from all settler tanks. Periodically this crud will be treated with ammonia and sulfuric acid to regenerate as much organic as possible and recover values from the aqueous released.

This tank will be constructed of FRP lined mild steel and covered. It will be vented to atmosphere.

AGITATOR

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic, Aqueous, Crud Mixture

Aqueous Solution:	Temp. <u>60-80⁰F</u>	рН <u>1.5-7.0</u>	Sp. Gr. <u>1.00</u>
Organic Solution:	Temp. <u>60-80⁰F</u>	рН <u>1.5-7.0</u>	Sp. Gr. <u>0.80</u>

Crud: Emulsion of Organic, Water and Impurities

TANK DESCRIPTION

Diameter 20ft Depth 20 ft Volume 40,000 gal

DUTY

This agitator will mix and suspend the ingredient in the organic sludge tank.

The agitator wetted parts will be constructed of 316 SS. It will be furnished with drive, guard, TEFC motor and support structure with walkway and handrail.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 550

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous-Organic Emulsion (Crud)

Temp. <u>50-80⁰F</u> pH <u><1.5-7.0</u> Sp. Gr. <u>Variable</u>

CAPACITY

30 gpm at 35 ft tdh

DUTY

This horizontal centrifugal pump will remove from a small sump all supernatant crud overflowing the organic sludge tank and will deliver this emulsion to the CCD circuit tailing sump. The operation of this pump will be intermittent.

This pump will be constructed of 316 SS. It will be complete with drive, guard and TEFC motor.

SAMPLER

EQUIPMENT NO. 551

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous-Organic Emulsion (Crud)

Temp. 60-80⁰F pH 1.5-7.0 Sp. Gr. Variable

OPERATING CONDITIONS

Feed Rate: 30 gpm

Final Sample Size: 0.5 gal/shift

DUTY

This single stage sampler will sample the supernatant crud and/or regeneration aqueous discharge solution at a point after they are flowing in a common line and before the CCD tailing sump.

Wetted parts of the sampler will be 316 SS.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 552

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Organic or Aqueous Solution

Aqueous Solution:	Temp. <u>60-80⁰F</u>	рН <mark><1.5</mark>	Sp. Gr.	1.05
Organic Solution:	Temp. <u>60-80⁰F</u>	рН <u><1.5</u>	Sp. Gr.	0.80
	Composition:	95 Vol % Ke 2.5 Vol % A 2.5 Vol % Is	erosene lamine or sodecanol	Equivalent or Tridecanol

CAPACITY

30 gpm at 35 ft tdh

DUTY

This horizontal centrifugal pump will pump either aqueous or organic solution from the organic sludge tank. The aqueous will be delivered to the leaching or precipitation circuit. The organic solution will flow to the barren organic tank. This pump will operate intermittently.

This pump will be constructed of 316 SS. It will be complete with drive, guard and TEFC motor.

VERTICAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 553-554

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Uranium Bearing Ammonium Sulfate Solution

Solution: Temp. 104⁰F pH 4.0-4.3 Sp. Gr. 1.10

CAPACITY

<u>20 gpm</u> at <u>15 ft tdh</u>

DUTY

These two vertical pumps will remove pregnant strip solution of 150 gpl ammonium sulfate and about 20 gpl U_3O_8 from the No. 1 stripping settler tank and pump it through a heat exchanger to the No. 1 yellow-cake precipitation tank. Under normal circumstances, one pump will be operating and one will be on stand-by.

The pumps will be constructed of 316 SS. They will be complete with drives, guards and TEFC motors.

SAMPLER

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Uranium Bearing Ammonium Sulfate Solution

Solution: Temp. 104⁰F pH 4.0-4.3 Sp. Gr. 1.10

OPERATING CONDITIONS

Feed Rate: 20 gpm

Final Sample Size: 0.5 gal/shift

DUTY

This single stage sampler will sample pregnant strip solution at a point just after the pregnant strip solution feed pumps and before the No. 1 yellowcake precipitation tanks.

Wetted parts of the sampler will be 316 SS. The sampler will be furnished complete with controls.

VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 556

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous and/or Organic Solution

Aqueous Solution:	Temp. <u>40-70⁰F</u>	pH <u>1.5-7.0</u>	Sp. Gr. <u>1.00-1.05</u>
Organic Solution:	Temp. <u>40~70⁰F</u>	рН <u>1.5</u>	Sp. Gr. <u>0.80</u>
	Composition:	95 Vol % Kerc 2.5 Vol % Alam 2.5 Vol % Isod	osene nine or Equivalent lecanol or Tridecanol

CAPACITY

50 gpm at 30 ft tdh

DUTY

This sump pump will deliver all solutions collected in the extraction area sump to the No. 1 extraction mixer. The solution will vary from water to aqueous solution to organic solution. The pump will be selected to handle all conditions.

Pump construction will be 316 SS. It will be complete with drive, guard and TEFC motor.

VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 557

LOCATION

Solvent Extraction Area

MATERIAL DESCRIPTION

Aqueous and/or Organic Solution

Aqueous Solution:	Temp. <u>70-100⁰F</u>	рН <u>4.0-7.0</u> S	p. Gr. <u>1.00-1.05</u>
Organic Solution:	Temp. <u>70-100⁰F</u>	рН <u>4.0-4.3</u> S	p. Gr. <u>0.80</u>
	Composition: 95 2.5 2.5	Vol % Kerosene Vol % Alamine Vol % Isodecan	or Equivalent ol or Tridecanol

CAPACITY

50 gpm at 30 ft tdh

DUTY

This sump pump will deliver all solutions collected in the stripping area sump to the No. 1 stripping mixer. The solution will vary from water to ammonium sulfate solution to organic solution. The pump will be selected to handle all conditions.

Pump construction will be 316 SS. It will be complete with drive, guard and TEFC motor.

HEAT EXCHANGER

EQUIPMENT NO. 601

LOCATION

Precipitation Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Solution: Temp. 80-160⁰F pH 4.0-4.3 Sp. Gr. 1.08

OPERATING CONDITIONS

Feed Rate: <u>20 gpm</u> Temperature: Inlet <u>80⁰ F</u> Outlet <u>160⁰ F</u>

DUTY

This heat exchanger will heat the pregnant strip solution flowing between the pregnant strip solution feed pumps in the No. 1 stripping settler and the No. 1 yellowcake precipitation tank.

The heat source of this impervious block graphite exchanger will be steam.

TANKS

LOCATION

Precipitation Area

MATERIAL DESCRIPTION

Ammonium Sulfate Slurry

Slurry: Sp. Gr. <u>1.10</u>	% Solids by Weight <u>2.5%</u>
Solution: Temp. <u>140-160⁰F</u>	pH <u>4.5-7.5</u> Sp. Gr. <u>1.08</u>
Solids: Sp. Gr. <u>5.7</u>	
Size Analysis: 100)% -325 mesh

VOLUME

600 gal ea

RETENTION

45 min ea

DUTY

These 5' \emptyset x 6' deep tanks in series are the reaction vessels for precipitating the uranium from the ammonium sulfate solution. This is accomplished with the aid of agitation and an ammonia gas/air mixture and steam being sparged in.

These tanks will be constructed of FRP lined mild steel and covered.

AGITATORS

EQUIPMENT NO. 604-605_

LOCAT ION

Precipitation Area

MATERIAL DESCRIPTION

Ammonium Sulfate Slurry

Slurry: Sp. Gr. <u>1.10</u>	% Solids by Weight	: <u>2.5%</u>
Solution: Temp. <u>140-160° F</u>	рН <u>4.5-7.5</u>	Sp. Gr. <u>1.08</u>
Solids: Sp. Gr. <u>5.7</u>		
Size Analysis 100%	-325 mesh	

TANK DESCRIPTION

Diameter:	5 ft	Depth:	6	ft	Volume:	750	gal	l
			_					۰.

DUTY

These two agitators in the two series yellowcake precipitation tanks will suspend and mix precipitated yellowcake with a uranium bearing sulfate solution at a high pH to facilitate precipitation of the uranium.

Wetted parts of these agitators will be constructed of 316 SS. They will be complete with drives, guards, TEFC motors and support structure.

THICKENER

EQUIPMENT NO. 606

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Yellowcake/Ammonium Sulfate Slurry

Slurry:	Sp. Gr.	1.08-1.45	5 %	Solids	Ьy	Weight	<u>0-33</u>	3%
Solution	: Temp.	1400 F	p⊦	1 7.0-7	.5	Sp.	Gr.	1.08
Solids:	Sp. Gr.	<u>5.7</u>						
Size	e Analysi	is 100%	-325 n	lesh				

OPERATING CONDITIONS

Feed Rate:	18 gpm
Underflow:	<u>l gpm</u> at <u>33%</u> solids
Overflow:	17 gpm at 200 ppm
Diameter:	<u>18 ft</u> Sidewall <u>5 ft</u>
Settling Area:	<u>109 sq ft</u> /ton/24 day
Retention:	8.8 hr

DUTY

This thickener tank will receive the yellowcake slurry from the second precipitation tank and provide the time necessary for the yellowcake precipitate to settle to the thickener bottom where the rake mechanism will move the material to the center discharge cone. The thickener overflow will flow to the unclarified barren strip solution tank.

This tank will be constructed of FRP lined mild steel.

THICKENER MECHANISM

EQUIPMENT NO. 607

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Slurry

Slurry: Sp. Gr. <u>1.08-1.45</u> % Solids by Weight <u>0-33%</u> Solution: Temp. <u>140⁰ F</u> pH <u>7.0-7.5</u> Sp. Gr. <u>1.08</u> Solids: Sp. Gr. <u>5.7</u> Size Analysis 100% <u>-325 mesh</u>

OPERATING CONDITIONS

Feed Rate:	<u>18 gpm</u>
Underflow:	<u>1.0 gpm</u> at <u>33%</u> solids
Overflow:	17 gpm at 200 ppm solids

THICKENER DESCRIPTION

Diameter: <u>18 ft</u> Sidewall <u>5 ft</u> Settling Area: <u>109 sq ft</u>/ton YC/24 hr Retention: <u>8.8 hr</u>

DUTY

This thickener mechanism will rake the settled yellowcake to the thickener discharge cone.

All wetted parts of the mechanism will be constructed of 316 SS. It will be complete with drive, guards, TEFC motor, motorized rake lifting device and support structure with walkway and handrail.

DIAPHRAGM PUMP

EQUIPMENT NO. 608

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Yellowcake/Ammonium Sulfate Slurry

 Slurry: Sp. Gr. 1.27
 % Solids by Weight 20%

 Solution: Temp. 100° F
 pH 7.0-7.5
 Sp. Gr. 1.08

 Solids: Sp. Gr. 5.7
 Sp. Gr. 5.7

Size Analysis 100% -325 mesh

CAPACITY

1.0 gpm at 20 ft tdh

DUTY

This air operated diaphragm pump will move the yellowcake thickener underflow slurry from the thickener discharge to the thickener underflow tank.

This pump will be hypalon lined. The pump will be complete with necessary check valves, power package, muffler and timer.

FLOWMETER

EQUIPMENT NO. 609

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Yellowcake/Ammonium Sulfate Slurry

Slurry: Sp. Gr. <u>1.45</u>	% Solids by Weight <u>33%</u>
Solution: Temp. <u>140°</u> F	pH <u>7.0-7.5</u> Sp. Gr. <u>1.08</u>
Solids: Sp. Gr. <u>5.7</u>	
Size Analysis 100%	-325 mesh

FEED RATE

1.0 gpm

CHARACTERISTICS

+ 1.0% Accuracy

Recording Chart

DUTY

This magnetic flowmeter will continually measure and record the flow of yellowcake slurry being pumped from the discharge cone of the yellowcake thickener. The meter will be complete with transmitter and recorder. It will have 316 SS electrodes and will be teflon lined.

TANK

EQUIPMENT NO. 610

LOCATION

Washing and Dewatering

MATERIAL DESCRIPTION

Yellowcake/Ammonium Sulfate Slurry

Slurry: Sp. Gr.	1.45	% Solids	by Weight <u>33%</u>
Solution: Temp.	<u>100° F</u>	рН <u>7.0-7.5</u>	Sp. Gr. <u>1.08</u>
Solids: Sp. Gr.	5.7		

Size Analysis 100% -325 mesh

VOLUME

<u>2500 gal</u>

RETENTION

42 hr

DUTY

This tank will be used primarily as a surge vessel between the yellowcake thickener and the yellowcake centrifuge. It will receive the yellowcake thickener underflow slurry and deliver it on a steady basis to the centrifuge through the underflow tank discharge pump.

This tank will be constructed of FRP lined mild steel and will have a cover.

AGITATOR

EQUIPMENT NO. 611

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Slurry

Slurry: Sp. Gr. <u>1.45</u>	% Solids by	Weight <u>33%</u>
Solution: Temp. <u>100⁰ F</u>	рН <u>7.0-7.5</u>	Sp. Gr. <u>1.08</u>
Solids: Sp. Gr. <u>5.7</u>		
Size Analysis <u>100</u>	<u>% -325 mesh</u>	

TANK DESCRIPTION

Diameter: <u>8 ft</u> Depth: <u>8 ft</u>	vo rume:	2500 gal
--	----------	----------

DUTY

This agitator will keep precipitated yellowcake in suspension in the surge tank located between the yellowcake thickener and the centrifuge.

Wetted parts of the agitator will be constructed of 316 SS. It will be complete with drive, guard, TEFC motor and support structure.

POSITIVE DISPLACEMENT

EQUIPMENT NO. 612

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Yellowcake/Ammonium Sulfate Slurry

 Slurry: Sp. Gr. 1.27
 % Solids by Weight 20%

 Solution: Temp. 100° F
 pH 7.0-7.5
 Sp. Gr. 1.08

 Solids: Sp. Gr. 5.7

Size Analysis: 100% -325 mesh

CAPACITY

1.0 gpm Against 30 ft tdh

DUTY

This pump will transfer yellowcake slurry from the thickener underflow tank to the centrifuge inlet. The pump should be a Moyno or approved equal complete with drive, guard and TEFC motor.

TANK

EQUIPMENT NO. 613

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Slurry: Sp. Gr.	1.08	% Solids <u>20</u>	0 ppm
Solution: Temp.	90 ⁰ F	pH <u>7.0-7.5</u>	Sp. Gr. <u>1.08</u>
Solids: Sp. Gr.	5.7		

Size Analysis 100% -325 mesh

VOLUME

2500 gal

RETENTION

2.5 hr

DUTY

This 8' \emptyset x 8' deep tank will receive the yellowcake thickener overflow and serve as a surge tank as well as the source of feed for the pump delivering unclarified barren strip solution to the sand filter.

This tank will be constructed of FRP lined mild steel.

HORIZONTAL CENTRIFUGAL

EQUIPMENT NO. 614-615

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Slurry: Sp. Gr. <u>1.08</u>	% Solids <u>200 ppm</u>
Solution: Temp. <u>90⁰ F</u>	pH <u>7.0-7.5</u> Sp. Gr. <u>1.08</u>
Solids: Sp. Gr. <u>5.7</u>	

Size Analysis 100% -325 mesh

CAPACITY

30 gpm at 80 ft tdh

DUTY

These horizontal centrifugal pumps will provide the feed for the barren strip sand filters. They will pump from the unclarified barren strip solution tank. Normal operation will be for one pump to be operating and the other to be on stand-by.

These pumps will be constructed of 316 SS. They will be complete with drives, guards, and TEFC motors.

SAND FILTER

EQUIPMENT NO. 616

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Slurry: Sp. Gr. <u>1.08</u>	% Solids <u>200 ppm</u>
Solution: Temp. <u>90⁰ F</u>	pH <u>7.0-7.5</u> Sp. Gr. <u>1.08</u>
Solids: Sp. Gr. <u>5.7</u>	
Size Analysis <u>100%</u>	-325 mesh

OPERATING CONDITIONS

Feed Rate: <u>30 gpm</u> Filtrate: 30 gpm at 10 ppm solids

DUTY

This sand filter will be operated to reduce the solids in the unclarified barren strip solution. The filter discharge, clarified barren strip solution, flows to a tank to be reused in the stripping phase of the S-X circuit. Filter cleaning and rejuvenation will be accomplished by backwashing the filter intermittently with clarified barren strip solution.

This filter, which will be approximately 3' \emptyset , will be rubber lined mild steel, skid mounted.

TANK

EQUIPMENT NO. 617

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Solution: Temp. 800 F pH 7.0-7.5 Sp. Gr. 1.08

VOLUME

2500 gal

RETENTION

2.5 hr

DUTY

This 8' \emptyset x 8' deep tank will receive the barren strip sand filter discharge solution and serve as the source of feed for the pump feeding clarified barren strip solution back to the No. 4 stripping mixer in the S-X circuit.

This tank will be constructed of FRP lined mild steel.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 618-619

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Solution: Temp. 70⁰ F pH 7.0-7.5 Sp. Gr. 1.08

CAPACITY

30 gpm at 20 ft tdh

DUTY

These pumps will pump clarified barren strip solution from the tank to the No. 4 stripping mixer in the S-X circuit. Normal operation will be for one of these pumps to be operating and one to be on stand-by.

These pumps will be constructed of 316 SS. They will be complete with drive, guard and TEFC motor.

FLOWMETER

EQUIPMENT NO. 620

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Solution: Temp. 70° F pH 7.0-7.5 Sp. Gr. 1.08

FEED RATE

13.2 gpm

CHARACTERISTICS

+ 1.0% Accuracy

Recording Chart

DUTY

This magnetic flowmeter will continually measure and record the flow of clarified barren strip solution between the barren strip feed pumps and the No. 4 stripping mixer tank.

The flowmeter will be complete with transmitter and recorder. It will have stainless steel electrodes and will be teflon lined.

SAMPLER

EQUIPMENT NO. 621

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Solution: Temp. <u>70⁰ F</u> pH <u>7.0-7.5</u> Sp. Gr. <u>1.08</u>

OPERATING CONDITIONS

Feed Rate: 13.2 gpm

Final Sample Size: 0.5 gal/shift

DUTY

This single stage sampler will sample the barren strip feed solution at a point after the barren strip feed pumps and before the stripping circuit.

Wetted parts of the sampler will be constructed of 316 SS. The sampler will be furnished complete with controls.

FLOWMETER

EQUIPMENT NO. 622

LOCATION

Washing and Dewatering

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Solution: Temp. <u>70^o F</u> pH <u>7.0-7.5</u> Sp. Gr. <u>1.08</u>

FEED RATE

20 gpm

CHARACTERISTICS

+ 1.0% Accuracy

Recording Chart

DUTY

This magnetic flowmeter will continually measure and record the flow of clarified barren strip solution being bled from the barren strip feed pump discharge to the leaching circuit or tailing sump.

The flowmeter will include transmitter and recorder. It will have stainless steel electrodes and will be teflon lined.

SAMPLER

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Solution: Temp. 70⁰F pH <u>7.0-7.5</u> Sp. Gr. <u>1.08</u>

OPERATING CONDITIONS

Feed Rate: 20 gpm

Final Sample Size: 0.5 gal/shift

DUTY

This single stage sampler will sample the barren strip bleed-off solution at a point after the barren strip feed pumps and before the tailing sump.

Wetted parts of the sampler will be constructed at 316 SS. The sampler will be furnished complete with controls.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 624

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Solution: Temp. <u>80⁰F</u> pH <u>7.0-7.5</u> Sp. Gr. <u>1.08</u>

CAPACITY

30 gpm at 135 ft tdh

DUTY

This pump will provide the solution flow to purge the barren strip sand filters of accumulated fines. The pump will receive its feed from the clarified barren strip solution tank. The backwash will flow to a small filter backwash surge tank to be fed into the No. l yellowcake precipitation tank. The pump will operate intermittently.

The pump will be constructed of 316 SS. It will be complete with drive, guards and TEFC motor.

TANK

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Ammonium Sulfate Solution

Slurry:	Sp. Gr. <u>1.08</u>	% Solids <u><5%</u>	
Solution	: Temp. <u>70⁰F</u>	рН <u>7.0-7.5</u>	Sp. Gr. <u>1.08</u>
Solids:	Sp. Gr. <u>5.7</u>		
	Size Analysis	100% -325 mesh	

VOLUME

250 gal

DUTY

This 4' \emptyset x 4' deep tank will serve as a surge tank between the sand filter backwash pump and the precipitation circuit. This small tank will even the flow of backwash slurry intermittently produced by the backwash pump.

•

This tank will be made of FRP lined mild steel.

CENTRIFUGE

EQUIPMENT NO. 626

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Yellowcake/Ammonium Sulfate Slurry

Slurry: Sp. Gr. <u>1.07</u>	% Solids by We	ight <u>6.2%</u>
Solution: Temp. <u>80⁰F</u>	рН <u>6.5-7.0</u>	Sp. Gr. <u>1.05</u>
Solids: Sp. Gr. <u>5.7</u>		
Size Analysis:	<u>100% -325 mesh</u>	
Wash Water: Temp. 40-70	⁰ F рН <u>7.0</u>	Sp. Gr. <u>1.00</u>

OPERATING CONDITIONS

Feed Rate: <u>5 gpm</u> Including Wash Water Underflow: <u>0.5 gpm</u> at <u>60%</u> solids Centrate: <u>4.5 gpm</u> at <u>< 2%</u> solids

DUTY

This centrifuge will dewater the yellowcake slurry from the thickener underflow tank after it has been diluted with wash water. The discharge slurry will be conveyed by screw feeder to the yellowcake dryer. The centrate will flow to the yellowcake thickener.

Wetted parts of this solid bowl type centrifuge will be constructed of 316 SS. It will be complete with drive, guards and TEFC motor.

SCREW CONVEYOR

EQUIPMENT NO. 627

LOCATION

Washing and Dewatering Area

MATERIAL DESCRIPTION

Yellowcake Slurry

Slurry: Sp. Gr.	1.98	% Solids	by Weight <u>60%</u>
Solution: Temp.	<u>50-70⁰F</u> pH	7.0	Sp. Gr. <u>1.00</u>
Solids: Sp. Gr.	5.7		

Size Analysis 100% -325 mesh

FEED RATE

1.0 gpm (317 lb/hr wet wt)

SPEED

Constant

DUTY

This screw conveyor will deliver the centrifuge discharge yellow-cake to the yellowcake dryer.

This conveyor will be constructed of 316 SS. It will be complete with drive, guard and TEFC motor.

DRYER

LOCATION

Drying and Packaging Area

MATERIAL DESCRIPTION

Yellowcake

Slurry:	Sp. Gr.	1.49	% Solids by We	eight <u>40%</u> (Design)
Solution	: Temp.	<u>50-70⁰F</u>	рН <u>7.0</u>	Sp. Gr. <u>1.00</u>
Solids:	Sp. Gr.	5.7	Bulk Density	80 lb/cu ft (loose)
	Size Ana	alvsis 10	0% - 325 mesh	

OPERATING CONDITIONS

Feed Rate: <u>194 Dry lb/hr</u> at <u>60%</u> moisture Discharge: <u>194 Dry lb/hr</u> at <u>2%</u> moisture (Max) Max Temp. (Solids): 400⁰C Max Temp. (Gas): 570⁰ C (Design)(Hottest Hearth) Max Temp. (Capability): 650oC Dust To Scrubber: 2% (Max) Product Size: 0.25 inch (Max) Fuel Type: Diesel or LPG

DUTY

This multiple-hearth Herreschoff-type dryer will dry and calcine the yellowcake from the centrifuge and discharge it into a roll crusher. Dryer emissions must comply with state and federal environmental regulations.

This 6' $\emptyset \ge 8\frac{1}{2}$ high dryer will have three hearths. The dryer will be complete with rake arms, blades, drive, guards, TEFC motors, burners with complete combustion system for safe operation, forced draft fan, air dampers, and draft and temperature sensing, recording and control instrumentation.

ROLL CRUSHER

EQUIPMENT NO. 629

LOCATION

Drying and Packaging Area

MATERIAL DESCRIPTION

Dried Yellowcake

Bulk Density: 80 lb/cu ft (Dry Basis)

Sp. Gr.: 5.7

% Moisture: 2% (Max)

Temperature: <u>350-450⁰C</u>

OPERATING CONDITIONS

Feed Rate: 194 lb/hr (Dry Weight)

Product Requirement: 100% will pass 3/8 inch Screen

DUTY

This roll crusher will receive the yellowcake dryer discharge product and reduce lumps to suitable size for storing in the yellowcake storage bin and for subsequent packaging in drums.

This crusher will be constructed of hardened, abrasion resistant steel. It will be complete with drives, guards and TEFC motors.

STORAGE BIN

EQUIPMENT NO. 630

LOCATION

Drying and Packaging Area

MATERIAL DESCRIPTION

Yellowcake

- Bulk Density: 80 lb/cu ft (Dry Basis)
- Sp. Gr.: <u>5.7</u>
- % Moisture: <u>2%</u> (Max)
- Temperature: 150-450⁰C
- Size Analysis: 100% -3/8 inch

VOLUME

275 cu ft

RETENTION

Approx. 4 days

DUTY

This bin will store the yellowcake discharging from the roll crusher and feed it into the 55 gal shipping drums.

This 7' \emptyset bin with a conical bottom will be constructed of mild steel.
DRUM VIBRATOR

EQUIPMENT NO. 631

LOCATION

Drying and Packaging Area

CHARACTERISTICS

Handle 55 gal Drums

DUTY

This drum vibrator will assist in settling the bulk yellowcake as it is packaged into 55 gallon drums. The bulk density of the yellowcake should approach 100 lb/cu ft after vibrating.

PLATFORM SCALE

EQUIPMENT NO. 632

LOCATION

Drying and Packaging Area

MATERIAL DESCRIPTION

Yellowcake in 55 Gal Drums

Bulk Density: 80-100 lb/cu ft

Sp. Gr.: 5.7

CAPACITY

0-1500 lb

CHARACTERISTICS

+ 1.5 1b Accuracy

Load Cell Type

Digital Readout

Tape Printer

DUTY

This platform scale will weigh the 55 gallon drums of yellowcake product for invoicing purposes.

ROLLER CONVEYOR

EQUIPMENT NO. 633

LOCATION

Drying and Packaging Area

CHARACTERISTICS

Handle 55 gal Drums Weighing up to 1000 lb

DUTY

This 120' x 30" roller conveyor will transport and store up to 30 drums of yellowcake. The heavy duty conveyor will move up to 6 drums per day through the entire loading and weighing cycle.

SCRUBBER

EQUIPMENT NO. 634

LOCATION

Precipitation Area

MATERIAL DESCRIPTION

Yellowcake Dust: 100% -325 mesh

Ammonia Fumes

PROPERTIES

Not soluble in Water

Corrosive

FLOW RATE

Gas Volume: 1200 ACFM

Efficiency: 99.5%

DUTY

The wet scrubber in the precipitation, thickener and centrifuge areas will control emissions from the two precipitation tanks, the yellowcake thickener, the yellowcake thickener underflow tank, and the centrifuge. The system will be designed to keep the work areas in compliance with current hygiene regulations and yield a stack emission compatible with current environmental specifications. The scrubber liquid effluent will flow to the yellowcake thickener.

Wetted parts of the scrubber, including the fan, will be constructed from 316 SS. The scrubber will include any required control, fan, drive, guard and TEFC motor.

SCRUBBER

LOCATION

Drying and Packaging Area

MATERIAL DESCRIPTION

Yellowcake Dust: 100% -325 mesh

Ammonia Fumes

PROPERTIES

Not soluble in Water

Corrosive

Abrasive

FLOW RATE

Gas Volume: 760 ACFM

Efficiency: 99.5%

DUTY

The wet scrubber in the drying area will control emissions from the yellowcake screw feeder and the yellowcake dryer. The system will be designed to keep the work areas in compliance with current hygiene regulations and yield a stack emission compatible with current environmental specifications. The liquid effluent will flow to the yellowcake thickener.

Wetted parts of the scrubber, including the fan, will be constructed from 316 SS. The scrubber will include any required control, fan, drive, guard and TEFC motor.

SCRUBBER

LOCATION

Drying and Packaging Area

MATERIAL DESCRIPTION

Yellowcake Dust: 100% 3/8 inch

Radon Gas

PROPERTIES

Not Soluble in Water

Corrosive

Abrasive

FLOW RATE

Gas Volume: 500 CFM

Efficiency: <u>99.5%</u>

DUTY

The yellowcake scrubber in the packaging area will control emissions from the roll crusher, the yellowcake storage bin and the packaging area. The system will be designed to keep the work areas in compliance with current hygiene regulations and yield a stack emission compatible with current environmental specifications. The liquid effluent will flow to the yellowcake thickener.

Wetted parts of the scrubber, including the fan, will be constructed from 316 SS. The scrubber will include any required control, fan, drive, guard and TEFC motor.

VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 637

LOCATION

Precipitation Area

MATERIAL DESCRIPTION

Yellowcake/Ammonium Sulfate Slurry

Slurry:	Sp. Gr. <u>1.00-1.78</u>	% Solids by	y Weight <u>0-50%</u>
Solution	: Temp. <u>40-100⁰F</u>	рН <u>7.0-7.5</u>	Sp. Gr. <u>1.00-1.78</u>
Solids:	Sp. Gr. <u>5.7</u>		
	Size Analysis <u>100%</u>	-325 mesh	

CAPACITY

30 gpm at 25 ft tdh

DUTY

This sump pump will deliver all materials collected in the precipitation area sump to the yellowcake thickener. The percent solids to be pumped will vary over a wide range. The pump will be selected to handle the extreme conditions.

The pump will be 316 SS. It will be complete with drive, guard and TEFC motor.

VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 638

LOCATION

Drying and Packaging Area

MATERIAL DESCRIPTION

Yellowcake Slurry

Slurry: Sp. Gr. <u>1.0-7.0</u>	% Solids by Weight <u>0-50%</u>
Solution: Temp. <u>40-70⁰F</u>	pH <u>7.0</u> Sp. Gr. <u>1.00</u>
Solids: Sp. Gr. <u>5.7</u>	
Size Analysis 100%	6 -3/8 inch

CAPACITY

30 gpm at 25 ft tdh

DUTY

This sump pump will deliver all materials collected in the drying and packaging area sump to the yellowcake thickener. The particle size and percent solids to be pumped will vary over a wide range. The pump will be selected to handle the extreme conditions.

The pump will be 316 SS. It will be complete with drive, guard and TEFC motor.

TANKS

EQUIPMENT NO. 701-702

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Concentrated Sulfuric Acid

Solution: Temp. 80° F Sp. Gr. 1.83 Concentration 93%

VOLUME

705,600 gal ea tank

RETENTION

7 days storage total

.

DUTY

These 65' \emptyset x 30' high tanks will serve as storage vessels for purchased concentrated sulfuric acid delivered by tank truck. Acid will be transferred by pump from these tanks to the acid mix tanks in the leaching circuit. The tanks will be constructed of mild steel. They will be covered, vented, and provided with an inspection manhole.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 703-704

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Concentrated Sulfuric Acid

Solution: Temp. 80⁰ F Sp. Gr. 1.83

Concentration 93%

CAPACITY

70 gpm at 100 ft tdh

DUTY

These pumps will transfer concentrated sulfuric acid from storage to the acid mix tanks and to the clarifier. One operating and one standby pump will be provided.

The pumps will be horizontal centrifugal, cast iron construction, with mechanical seals. They will be furnished with drives, guards, and TEFC motors.

TANK

EQUIPMENT NO. 705

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Sodium Chlorate

Solution: Temp. <u>90-100^o F</u> Sp. Gr. <u>1.38</u> Concentration <u>40%</u>

VOLUME

50,000 gal.

RETENTION

7 days storage

DUTY

This 24' \emptyset x 16' tank will serve as a storage vessel for sodium chlorate solution transferred by pump from the sodium chlorate solution preparation tank.

The tank will be constructed of mild steel, covered, vented, lined with FRP and the exterior will be insulated. It will be provided with a steam sparging line to maintain solution temperature.

METERING PUMPS

EQUIPMENT NO. 706-707

3

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Sodium Chlorate

Solution: Temp. <u>90-100⁰ F</u> Sp. Gr. <u>1.38</u> Concentration <u>40%</u>

CAPACITY

Up to 10 gpm, 30 ft tdh

DUTY

These pumps will meter sodium chlorate solution to the acid mix and leach tanks.

These pumps will be cast iron construction and will be provided with variable flow adjustment. They will be furnished with drives, guards, and TEFC motors.

VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 708

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Spills ranging from 93% sulfuric acid and 40% sodium chlorate to solutions of glue, flocculant, sodium bicarbonate, alamine and isodecanol.

CAPACITY

50 gpm at 30 ft tdh

DUTY

This pump will be for recovery of miscellaneous spills and washdown water in the reagent area. The pump will be vertical centrifugal, constructed from 316 SS. It will be furnished complete with drive, guard, TEFC motor and level control.

TANKS

EQUIPMENT NO. 709-710

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Flocculant: Dow MG-200

Solution: Temp. <u>80⁰ F</u> pH <u>7.0-7.5</u> Sp. Gr. <u>1.01</u>

VOLUME

37,600 each tank

RETENTION

24 hours each tank

DUTY

Two 20' \emptyset x 16' tanks required; one for flocculant mixing, the second for flocculant storage. The tanks will be fabricated from mild steel. They will be covered and vented. The mixing tank will be designed to support an agitator.

VIBRATING FEEDER

EQUIPMENT NO. 711

LOCATION

.

Reagent Area

MATERIAL DESCRIPTION

Flocculant: Dow MG-200, dry, granular

CAPACITY

250 lb/hr feed rate

DUTY

This electromagnetic type vibrating feeder will feed granular flocculant from a hopper into the flocculant preparation tank for mixing.

The feeder will be complete with variable rate control. It will be constructed from mild steel.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 712

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Flocculant: Dow MG-200

Solution: Temp. <u>80⁰ F</u> pH <u>7.0-7.5</u> Sp. Gr. <u>1.01</u>

CAPACITY

150 gpm at 25 ft tdh

DUTY

This pump will transfer flocculant solution from the flocculant mixing tank to the flocculant storage tank. The pump will be horizontal centrifugal, cast iron. It will be furnished complete with drive, guard, and TEFC motor.

METERING PUMPS

EQUIPMENT NO. 713-714

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Flocculant: Dow MG-200

Solution: Temp. <u>80⁰ F</u> pH <u>7.0-7.5</u> Sp. Gr. <u>1.01</u>

CAPACITY

50 gpm at 40 ft tdh

DUTY

These pumps will meter flocculant solution from the flocculant storage tank to the CCD thickener launders and overflow sumps. The pumps will have mild steel rotors and rubber stators. They will be furnished with drives, guards and TEFC motors.

TANKS

EQUIPMENT NO. 715-716

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Glue

Solution: Temp. 80° F pH 7.0-7.5 Concentration 7.2 g/1

VOLUME

3760 gal each tank

RETENTION

1 day each tank

DUTY

Two 8' \emptyset 10' tanks required; one for glue solution preparation, the second for glue solution storage. The glue preparation tank will be designed to support an agitator. Both tanks will be fabricated from mild steel.

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 717

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Glue

Solution: Temp. <u>80⁰ F</u> pH <u>7.0-7.5</u> Concentration <u>7.2 g/1</u>

CAPACITY

30 gpm at 15 ft tdh

DUTY

This pump will be used to transfer glue solution from the glue preparation tank to the glue storage tank. The pump will be horizontal centrifugal, cast iron. It will be furnished with drive, guard and TEFC motor.

METERING PUMPS

EQUIPMENT NO. 718-719

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Glue

Solution: Temp. 80° F pH 7.0-7.5 Concentration 7.2 g/1

CAPACITY

5 gpm at 30 ft tdh

DUTY

These pumps will meter glue solution from the glue storage tank to the clarifier. The pumps will be cast iron construction and will be furnished complete with drives, guards, and TEFC motors.

TANK

EQUIPMENT NO. 720

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Kerosene

VOLUME

4600 gal

RETENTION

7 days

DUTY

This tank will be for storage of kerosene delivered by tank truck. The tank will be fabricated from mild steel, vented, completely enclosed, and coated for underground installation.

VERTICAL CENTRIFUGAL PUMP

EQUIPMENT NO. 721

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Kerosene

CAPACITY

50 gpm at 35 ft tdh

DUTY

This pump will transfer kerosene from the underground kerosene tank to the barren organic and organic sludge tanks. The pump will be vertical centrifugal, cast iron construction with mechanical seals, drive, guard, and TEFC motor.

PRESSURIZED TANK

EQUIPMENT NO. 722

LOCAT ION

Reagent Area

MATERIAL DESCRIPTION

Anhydrous Ammonia

VOLUME

20 ton capacity tank

RETENTION

15 days

CONSTRUCTION

This tank will be a pressurized vessel, constructed from mild steel.

VAPORIZER

EQUIPMENT NO. 723

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Liquid Anhydrous Ammonia

CAPACITY

Vaporization rate of 100 lb/hr

DUTY

This vaporizer will vaporize liquid anhydrous ammonia to allow feeding a gaseous ammonia/air mixture into the yellowcake precipitation tanks.

,

TANK

EQUIPMENT NO. 724

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Sodium Bicarbonate Solution

Temp. 80° F Concentration 10%

VOLUME

750 gal

RETENTION

Intermittent use

CONSTRUCTION

This 5' \emptyset x 6' tank will be constructed from mild steel.

HORIZONTAL CENTRIFUGAL PUMPS

EQUIPMENT NO. 725-726

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Sodium Bicarbonate Solution

Temp. 80^o F Concentration 80%

CAPACITY

5 gpm at 15 ft tdh

DUTY

These pumps will transfer sodium bicarbonate solution from the storage tank to the regeneration mixer-settler tank. The pumps will be horizontal centrifugal cast iron construction. They will be complete with drives, guards, and TEFC motors.

TANK

EQUIPMENT NO. 727

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Amine Solution: Alamine 336

VOLUME

150 gal

RETENTION

Intermittent use

CONSTRUCTION

Mild Steel

TANK

EQUIPMENT NO. 728

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Isodecanol Solution

Density: 6.9 1b/gal

VOLUME

150 gal

RETENTION

Intermittent use

CONSTRUCTION

Mild steel

HORIZONTAL CENTRIFUGAL PUMP

EQUIPMENT NO. 729

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Sodium Chlorate

Solution: Temp. <u>90-100^o F</u> Sp. Gr. <u>1.38</u> Concentration <u>40%</u>

CAPACITY

300 gpm at 35 ft tdh

DUTY

This pump will transfer sodium chlorate solution from the sodium chlorate preparation tank to the sodium chlorate storage tank.

The pump will be horizontal centrifugal, cast iron construction with mechanical seals. It will be complete with drive, guard, and TEFC motor.

TANK

EQUIPMENT NO. 730

LOCATION

Reagent Area

MATERIAL DESCRIPTION

Sodium Chlorate

Solution: Temp. 90-100° F Sp. Gr. 1.38 Concentration 40%

VOLUME

20,000 gal

RETENTION

1 day storage

DUTY

This 15' \emptyset x 16' tank will receive sodium chlorate solution from trucks. Concentration of the solution will be adjusted in this tank.

The tank will be constructed of mild steel, covered, vented, lined with phenolic resin and the exterior will be insulated. It will be provided with a steam sparging line to maintain solution temperature.

EXHIBIT III-D GENERAL SPECIFICATIONS

•

EXHIBIT III-D

GENERAL SPECIFICATIONS

A. General Construction Specifications

1. <u>General</u>

The general philosophy followed in the present design was to set all major facilities on cut (solid ground) with the exception of the ore storage pad which is almost entirely on fill. The CCD thickener area and roadways will also be on fill.

2. Primary Receiving Hopper

The primary receiving building area is approximately 740 square feet. It will be an engineered structural steel and concrete structure with roof. This building will house the receiving hopper, apron feeder, and dust collector.

3. Conveyor

Conveyor will be open with a canopy covering the belt and a walkway on one side.

4. Mill Building

The mill building area is approximately 13,440 square feet. It will be an engineered structural steel and concrete open-type structure. This building will house the following facilities: grinding, yellowcake precipitation and thickening, yellowcake drying and packaging, product and drum storage, electrical MCC room, air compressors, emergency generator, foreman's office and control room, and sanitary facilities.

5. Leaching Area

The leach area is approximately 8600 square feet adjacent to the west side of the mill building. It is not enclosed in a building. The tanks are covered, and steel walkways are provided on top of the tanks. The tanks will be supported on concrete piers with laminated timber sills. The concrete slab shall be treated with an acid resistant compound. Sand filters and boilers are sitting on concrete pad adjacent to the north side of the leach area. Boilers will be enclosed with 10-foot high concrete block wall.

6. CCD Thickener Area

The thickener area is approximately 158,000 square feet and is located to the west of the mill and leach area. This area will include five thickeners with space for one future thickener. Steel and concrete open-type structures are used with the exception of the control room and the flocculant building which will be enclosed. There will be a roof over the drive mechanism and center well of the thickeners.

7. Solvent Extraction

The S-X area is approximately 16,600 square feet. It is located 50 feet to the north of the mill building and will be in the open. This area includes the stripping tanks, solvent extraction tanks, pregnant organic tank, barren organic tank and organic sludge tank. The concrete slab shall be treated with an acid resistant epoxy resin.

B. Materials of Construction

1. General

The selection of construction materials is governed primarily by the leaching temperature of 175° F and the addition of process chemicals, such as 12 pounds of sodium chlorate to the leaching circuit and kerosene in the solvent extraction. All lining contracts should specify that the lining contractor accept the responsibility for the condition of the surface to be covered.

2. Grinding

Pump tanks and launders in the grinding and neutral thickening areas will be of steel construction, lined with linatex. Because of the relative ease in building up worn areas, linatex is widely used for wet abrasive applications.

3. Leach Tanks

Tanks and agitators will be mild steel and rubber lined. The rubber will be laminated as follows, because the 175° F temperature will blister and harden soft natural rubber:

1/16-inch shore hardness 45 natural rubber (to metal)

1/8-inch shore hardness 90 natural rubber

*5/32-inch shore hardness 60 chlorobutyl (to the slurry)

*Goodyear LS-582, Blair 9261 P.E.

Leach tank covers will be of the same material. Each tank will be provided with a fiberglass or polyethylene vent. Steam injection pipes will be alloy 20 or carbon steel covered and lined with hard rubber. The outside of the leach tanks will be painted with a priming coat and two coats of acid resistant paint.

4. Thickeners

Thickeners in the acid circuit will be mild steel rubber-lined. The vertical shafts, rake arms and rake blades will be 316 stainless steel.

5. Clarification and Solution Storage

The pressure sand filters will be mild steel rubber-lined and the internal distribution piping will be 316 stainless steel.

Solution holding tanks will be mild steel-FRP-lined. The raffinate tank will be mild steel FRP-lined.

6. Solvent Extraction

Mixer settler tanks for the stripping and extraction circuits will be free standing concrete FRP-lined tanks with covers. 316 stainless steel will be used for the wetted parts on the pumper mixers. Storage tank for the mixer settlers will be mild steel FRP-lined. Pregnant organic heat exchanger will be of impervious graphite.

7. Precipitation, Washing and Drying

Precipitation tanks will be mild steel FRP-lined and covered. Agitators will be 316 stainless steel. Yellowcake thickener is mild steel FRPlined. Mechanism will be all 316 stainless steel. Pregnant liquor heat exchanger will be of impervious graphite. The wetted parts of the yellowcake centrifuge will be stainless steel. Screw feeder to the dryer is of 316 stainless steel and the wet scrubber will also be 316 stainless steel.

8. Chlorate Storage

Sodium chlorate tanks are mild steel, lined with phenolic resin and covered.

9. Pumps

Pumps for acid slurry service will be rubber-lined with 316 stainless steel trim. Acid solution pumps will be 316 stainless steel, or may be rubber-lined with stainless steel trim where there is no possibility of contact with organic solvent.

Solvent extraction circuit pumps for both aqueous and organic are 316 stainless steel.

In the precipitation circuit, the yellowcake slurry pumps in an air operated O.D.S. hypalon-lined pump. Sodium chlorate solution pumps will be cast iron, self-priming and glandless. There is to be no hydrocarbon-based oil or grease lubrication.

Sulphuric acid pump will be mild steel construction with mechanical seals.

10. Piping

Carbon steel (unlined) is used for neutral pulps and soft rubber liner is used for acid pulps. Victaulic couplings will be used except in thickener underflow lines where flanged connections are to be used.

Material conducting hose will be used in limited areas, such as: Where abrasion is severe; to obtain long radius bends; to decrease pipe vibration; and to facilitate maintenance on pipe connections.

High density polyethylene will be used for slurry lines where abrasion is not expected to be severe. Acid solution lines will be PVC or FRP except in the case of manifolds around the sand filters where water hammer occurs; here rubber-lined pipe will be used.
Organic solvent lines will be PVC or FRP. Buna-N rubber is used for gaskets, sleeves, etc.

Yellowcake precipitation thickening area will be PVC or FRP piping except for the thickener underflow which will be rubber-lined steel. The tailings line is high density polyethylene with lined concrete drop boxes to maintain a reasonable velocity. For concentrated sulphuric acid schedule 80 carbon steel pipe is used with welded fittings and flanged connections. No pipe smaller than one inch will be used.

EXHIBIT III-E MILL CAPITAL COST ESTIMATE DETAILS

AREA PREPARED BY G. Hinos FIRST ISSUE 1/12/12 CLIENT MINERALS EXPLORATION CORP. APPROVED BY SHEET		A			an a standard a sa			J			Sector Confidence	net Nd.) י
AREA	PROJE	T <u>MINERALS EXPLO</u>	7N/C	H T10N	, <u> </u>	2 O.R.	F <u>P</u> A	PREPAI	RED BY	<i>G</i> . <i>H</i>	Linos		REV. DAT FIRST ISS SHEET	E <u>7/12</u> UE <u>11/3</u> / of 6	<u> 78</u>
AC JUNTARAY WT. Quantify UNIT TOTAL RATE LABOR MATERIAL Pumantit SUB_ CONTR. TOTAL FACILITY			<u> </u>		[N	ANHOUR	RS	COST	r/unit	(COSTS ()
FACHITY	A/C NO.	SUMTATRY	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR MA	SUB.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
Тогян Digecr Cost 153901 2971/630 3617,130 4,134610 5833530 14756900 11101 дест Cost 112580 Вильная 11396970 Сонят. Единелент 1111 Цест. Ене с Онно Тотян Digecr plus Inorgect 1111 Сонятя. Free @ 3% 115680 Енеда @ 0% от Digect 115680 Блада @ 0% от Digect 115680 Сонятя. Free @ 3% 115680 Сонята. Сонята. Совт 115680 Совт 115680 Сонята. Сонята. Совт 115680 Совт 115680 Со		FACILITY							1						han tha ha ha na an
Imorger Cost Imorger Cost Imorger Cost Imorger Cost Imorger Cost Imorger Cost Const. Equinanter Imorger Cost Imorger Cost Imorger Cost Imorger Cost Imorger Cost Imorger Fee @ 3% Imorger Cost Imorger Cost Imorger Cost Imorger Cost Imorger Cost Imorger Fee @ 3% Imorger Cost Imorger Cost Imorger Compart Fee @ 3% Imorger Cost Imorger Cost Imorger Compart Fee @ 1% Imorger Cost Imorger Cost Imorger Compart Fee @ 1% Imorger Cost Imorger Cost Imorger Compart Fee @ 1% Imorger Cost Imorger Cost Imorger Compart Fee @ 1% Imorger Cost Imorger Cost Imorger Compart Fee @ 1% Imorger Cost Imorger Cost Imorger Cost Imorger Cost Imorger Cost		TOTAL DIGECT COST					153901				287/630	3617,130	4434610	5,833,530	16756900
Impliger Cost Implies Implies Implies Implies Const. Equipment int Implies Implies Implies Implies Gen. Exercition Implies Implies Implies Implies Junction Implies Implies Implies Implies Gen. Exercition Implies Implies Implies Implies Implies Implies Implies Implies Implies									 - -		ļ				
Сонят. Единентент Сонят. Единентент Gen. Exp : Orno Ливтотас (ногдестя) Тотас Digect plus (ногдест Сонята. Fee @ 3% Енда. @ 5% от Digect Тотас Estimateo (натасса) Тотас Соласта (натасса) Тотас (на		INDIRECT COST													113580
Gen. Exp & Olivio E221,930 Juaronal Inorgeors 31772500 Torne Digeor plus Inorgeor 2052940 Constra. Fee @ 3% 415880 Exoga @ 8% or Digeor 1340550 Torne Estimate 2248583 Torne Estimate Cost Torne Estimate Cost Torne Longeor 1340550 Exoga @ 8% or Digeor 1340550 Torne Estimate Cost Torne Estimate Cost Torne Estimate Cost		Course Foundation		 					<u> </u>		1				1391,990
Justoral Indigeers 3772500 TOTAL DIRECT plus Indigect 2058940 Constra Fee @ 3% 615880 Engg. @ 6% of Direct 1340550 TOTAL Estimated Cost 72485830		GEN. EXP & OVHO		1					{		:		+		2,231,930
TOTAL DIRECT plus Mongeot 2052940. Constra. Fee @ 3% 615880. Enga. @ 0% of Direct 1380550. TOTAL Estimateo (cost 72208583.		<u> Гиетот</u>	ØL.	INDIGE	c 75										<u>3,112,500</u>
Constra. Fee @ 3% 615881 Engr. @ 8% of Digect 1340550 Total Estimated Cost 72485830		TOTAL DIRECT plus 1	~01	gect											20529400
ENGR. @ 8% OF DIRECT 1300550 TOTAL ÉSTINTATED MISTALLED COST 722085830		Constra. FEE @ 3%													615,880
		ENGR. @ 8% OF DIGEC	7												1300550
		TOTAL ESTIMATE	0	WSTRLL	ED	Cos	r							\$	22485830
												PROJECT	NUMBER		1/4

					i i i i i i i i i i i i i i i i i i i)			Same y (n. 2003). 1			an a	*) 7
PROJ	ect <u>ANDERSON RA</u>	7N/C	H	<i>.</i>		F	REPA	RED BY		?. H	Linos		REV. DAT FIRST ISS	e <u>7/12</u> ue <u>11/3</u>	<u> 78</u> [] 0 [7]
CLIE	NT NTINERALS EXPLO	ORA	TION	<u> </u>	DR.	<u>P.</u> A	PPROV	ED BY					SHEET_2	of 6	9
	AREA				N	ANHOU	RS	С	OST/UN	TIV	I	costs (· · · · · · · · · · · · · · · · · · ·)
A/C NO.	DIRECT COST-	₩Т.	Quantity Sar. No.	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	SITE EXCENATION		5											1030210	1030210
	MILL SITE ROAD & FENCING		6			210					3310	4000		159730	167,04
	Muc INATER STORAGE TANK		7			1442					29040	60590	5250		94880
	Muc INATER DISTRIBUTION	 	8			532					9470	16730			26200
	FIRE PROTECTION SYSTERT		9-10			1269					22510	450 40	26450	36300	130,300
	POTABLE INATER		11-12			740					13720	20910	2500		37,130
	JANIFARY JEINER		13			991					16930	13920		26780	57630
	TAILINGS PIPELINE		14			387					6770	22170		6720	35660
••••••••••••••••••••••••••••••••••••••	Muc Burcoing		15-18			20978					392890	498620	64590	204180	1160280
100	OPE RECEIVING & GRINDING		19-26		/	13386	~				247700	137880	1246820		1,632,000
	Sheet Total					39935					742340	819,860	1,345,610	1463920	4371730
								(()			PROJECT	NUMBER	///	14

	(A))							* *) 7
PROJE	ECT <u>ANDERSON RA</u>	71/0	H	. /	V D.R.	F	PREPAR			<u> </u>	inos		REV. DAT	e <u>7/12</u> ue <u>11/3</u>	, <u> 78</u> [] 30/71 19
CLIEN	I THINERALS ZXPLC					<u> </u>		I I I I I I I I I I I I I I I I I I I			r				
A/C NO.	AREA JUNTNTARY DIRECT COST	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	C(LABOR	MAT'L	NIT SUB. .CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.) TOTAL
			<i>D.M.</i> 7.776.			}	<u> </u>	<u>.</u>	<u>I</u>	1			<u> </u>	I	1
200	LERCHING		27-30			6519					120380	157570	329380	117150	124,480
300	С.С. D.		31-36			41648			· · ·		767570	1316550	1252390	/332260	4668,770
400	CLARIFICATION		37-40			4490					81630	107170	302010	74930	565 740
500	SOLVENT EXTRACTION		41-49			11441					203580	215810	207970	332260	959,620
600	Y.C. PRECIPITATION & INASH		<u>50-57</u>			2245		 			41270	21180	307550	15540	385590
700	REAGENT HANDLING		58-64			6510					/32020	332360	71380	38750	574510
001	Misc. Equipatent		65-67			1973					36120		371200		407,320
	PROCESS PIPING		68			36050					691440	628630			1,320,070
	PRINTING		68			2400					42890	18000			60,890
	ELECTRICAL		69.											1694580	1694,580
	Sheet Total					113276					2/16900	2,797,270	2,841,880	3605470	11361520
							<u>L</u>			<u> </u>	<u> </u>	PROJECT	NUMBER	1/1/	114

PROJE	t <u>Minerals Explo</u>	7N/C	H	,	VOR,	F <u>Р</u> А	PREPAF	RED BY		?. H	Linos		REV. DAT FIRST ISS SHEET	e <u>7/12</u> ue <u>11/3</u> 4 or 6	78 À 0/77 7
		1	1		N	ANHOUR	25				r	COSTS (-
A/C NO.	DIRECT COST -	wт.	Quantity	UNIT	PER	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LAEOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
						L	L			J			1	<u></u>	ner en en statistisk en en <u>en en e</u>
11/10/2	INSTRUMTENTATION		68											343140	343140
	CONTATUNICATIONS		68											25000	25000
	MILL EQUIPT. SPARE PARTS		68			690	1795				12390		247120		259510
	INITIAL MILL REAGENTS & SUPPL	165	68								· · ·			396000	396000
	Sheet Total					690					12390		247120	764100	1023650
	T				~	162901	/			-	207/1 20	21.00.000	0,120,110	6.022526	1/ AEL 0-

						(() -
PROJI	ect <u>Anderson Ra</u> nt <u>Minerals Explo</u>	7.N.C. O.R.F.		, (2 O.R.		PREPAF	ED BY_	<i>G. H</i>	- 		REV. DATI FIRST ISS SHEET	E <u>7/</u> UE <u>11/3</u> 5. cf 6	/78 🛆 0/77 :9
	AREA SITE EXCAVATION		1		N	IANHOU	۲S	co	ST/UNIT		COSTS ()
A/C NO.	MILL SITE BOUNDARIES	wт.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	SUB.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			L			• • • • • • • • • • • • • • • • • • •						4 <u></u>	f	
	CLEARING É GRUBBING		66	Ħс					160-				10560	10560
	EXCAVATION		72006	C.Y			-		. 140				101370	101370
×	EMBANKATENT	 	3027581	C.Y.					030				908280	908280
	DRAINAGE SYSTERT													
	& CONTAINATENT SUMPS		ALLOW	1									10000	10000
*	MATERIAL TO BE FUR	WIS I	VED											
	FRONT NTINE STRIPPIN	4 C 7 0	PERAT	TON	-									
	AREA TOTAL												10302/0	1030210
		The Dense of	tight the role is not a	. No 46 - 55		r I i pinsta					PROJECT	NUMBER	111	14

		n desta latera fila			(<u> </u>	****					Description Description	(<u> </u>) -
PROJE	ct <u>Anderson Ra</u> it <u>Minerals Explo</u>	RRTIO		n .or	 	PREPAI	RED BY	,	<i>?. 1</i> 1	INDS		REV. DAT FIRST ISS SHEET_6	e <u>7/7</u> ue <u>11/3</u> ci 6	<u> 78</u> [] 0 <u> 7</u> 7 9
	ADEA MILL CITE				MANHOU	RS	С	OST/U	NIT	Ĩ	COSTS (_	<u></u>)
A/C NO.	RACEA FENCING	WT. Quanti	ty UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L	SUB. CONTR	LABOR	MATERIAL	Permanent Equipment	SUB, CONTR.	TOTAL
		~*************************************						<u></u>		1	and an		<u></u>	berrysnessen and a service of the se
	PLANT SITE ROADS													
				<u>h_</u>			<u> </u>			[
	12" GRAVEL BASE	162,	18 CY		Penu	hen.	Ru	M	FC					
	6" GRAVEL BASE			1/	70				1					
	E SURFACING	1200	7 CY							<u>.</u>				
				1			<u> </u>	<u> </u>	1	،]	
	4" ASPH. JURFACING	479	O Tom	1	<u> </u>				25-				119750	119750
	PLANT SITE FENCING						[Í				
	6-0" HIGN CNAIN						ļ			ļ		ļ		
	LINK W/3 STRAND	382	0 <u>LF</u>				 		910	1			30760	34760
	DARBED MIRE DUTRIGE	<u>- ergs</u>			·		<u> </u>	<u> </u>		{				
	BARBED INIGE FENCE	207	0 LF	1	<u> </u>				080	! 			1560	1560
	MANE DRIVE GATES	607	-						3660				3660	3660
	CONCRETE SIDEWALKS	100	, cy	2-	210	1575	33-	40-		3310	4000			7310
	AREA TOTAL				210	<u> </u>				3310	2000		159730	167040
	/	l		1		<u> </u>]		<u> </u>				

-)	2	STREET BACK OF T				an a	19.1 0.1011.001	(); ;
PROJE	ct <u>ANDERSON RA</u> t <u>Minerals Expli</u>	DRA	н Н Т10Л	,	nor,	I	PREPAR	RED BY		?. H	inos		REV. DAT FIRST ISS SHEET	E <u>7/7</u> UE <u>11/3</u> 7, at 6	<u> 78</u> 🛆 0/77 9
	AREA MTILL INLATER				L V	IANHOU	RS	С	OST/UI	VIT		COSTS (_)
A/C NO.	STORAGE TANK	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY						L	.		<u> </u>				J	A
007	500000 GAL - 50'x 34'														
	Struct Excar		52	CY	0-	52	1515	152			80				80
	Irquer ByEL		40	сY	05	8	1515	303			120				120
	CONCETE		12	c٧	115	138	1575	181-	57 -		2170	690			2860
	REINE		1400	10	001	140	21-18	021	021		300	300			600
	STEEL TANK		473	Ton	20	946	2118	420	1260		20040	59600			79640
	PUNTA HOUSE & Equipt		LOT			330	19-18				6330		5250		11580
	AREA TOTAL					1112	-				29010	10690	6260		91800
						1440					21040	60510	52.50		14000
			1 & 1 / 11 1 M 1 - 1 M 1 - 1 M 1 / 1 M 1 / 1 M 1 / 1 M 1 / 1 M 1 / 1 M 1 / 1 M 1 / 1 M 1 / 1 M 1 / 1 M 1 / 1 M	19199 BR 20411	2. 0. 77. 3 12 11 10	e in the second seco	•	and the state of the Rock				PROJECT	NUMBER	11	14

PROJE	CT ANDERSON RA	7110	H				PREPAR	RED BY	Ģ	?. 11	INDS		REV. DATE FIRST ISSU	= <u>7/7</u> ue <u>11/3</u>	<u> 78</u> [1 0 [7 7
CLIEN	IT MINERALS EXPL	ORF	TION	1 (POR.	<u> </u>	VPPROV	ED BY			en e		SHEET_S	<u>, of 6</u>	. 9
A/C NO.	AREA MILL INFORER DISTRIBUTION	ωт.	Quantity	UNIT	N PER UNIT	TOTAL	RS	C LABOR	OST/UN	NIT SUB. CONTR.	LABOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTA
	FACILITY		<u> </u>	<u> </u>											
	STRUCT EXCAN		587	CY.	0-	.59	15.15	152			890				890
	Stquer ByFL		550	CY	0?	110	1515	303			1670				167
	E"\$ PERMASTRAN W/ Frg		1515	25	010	1515	19_18	192	770		2910	11670			1458
	6"\$ d. Ho		335	LF	010	£35	19-18	192	550		600	1840			248
	4"\$ d.H.		110	2/-	008	85	19'8	153	310		170	340			510
	2"\$ d, Ho		1060	LF	008	84 -	19-18	153	110		1630	1170			2800
	JERVICE CONNECTIONS		8	ĒA	8	60	19-8	150-	15750		1230	1860			269
	TNGUST BLOCKS		10	сү	2	20	1670	33-	45-		<i>330</i>	450			780
	73-7-201				~~	(22)									

				********)	2				and the second statements) -
PROJE	ict <u>Anderson Ra</u> It <u>Minerals Expli</u>	DRG	H TION	, (2 OR,	I	PREPAF	RED BY	 	2. 44	- 		REV. DATE FIRST ISSI SHEET	$= \frac{7/7}{11/3}$	<u> 78</u> 2/77 9
A/C NO.	AREA FIRE PROFECTION SUSTENT	WT.	Quantity	UNIT	N PER UNIT	TOTAL	RS	C LABOR	OST/UN	VIT SUB. CONTR.	LAEOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
, , , , , , , , , , , , , , , , , , ,	FACILITY					192	Y	(<u></u>	1					
	Strauer Exerv.		1372	CY.	01	1372	1515	152			2080				2080
	Stquer ByFL		1300	сү	02	260	1515	فيقصط			3940				3940
	8" & PERMASTRAN IN/Figs		4220	LF	010	<i>422</i>	19 ¹ 8	192	770		8090	32990			40580
	6"\$ d.Ho		1010	LF	010	101		192	550		1940	5560			7500
	2"\$ d.Ho		60	LF	008	48		153	12		90	70			160
	HYDRANTS		14	ĒR	10	140		192-	300-		2690	4760			7450
	SERVICE CONNECTIONS		2	ÉA	8	16	1918	153-	15750	•	310	320			630
	TNEUST BLOCKS		20	CY	2	40	1670	33 -	45		670	900			1570
	PUNTA HOUSE		400	SÆ						1575				6300	6300
	Fige Monitor		4	ĒA	7	28	1918	134-	235	-	540	910	~~~~~~	~~~~~	1480
	Sheet Total					1149					20350	45040		6300	71690
												PROJECT	NUMBER	1/1/	14

•)		Gao-molesce		-		and and a state of the state of)	\ 7
PROJE	ct <u>FNDERSON</u> RA t <u>Minerals Explo</u>	7NC ORA	Н 2710Л	, (2 ORI	F	PREPAF PPROV	RED BY	4	?. //	inos		REV. DAT FIRST ISS SHEET_/(e <u>7/7</u> UE <u>11/3</u> 0. at 6	/78 A 0/77 9
	AREA FIRE PROFECTION				M	ANHOU	RS	C	ost/ur	VIT		costs (_)
A/C NO.	JUSTENT	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L	SUB, CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			L	·						L					
008	Fige PUMP ~ ELECTRIC 1000 gpm ~ 125 psi IN / 100 HP Moron	15	/	ĒA		40	1795				720		8170		8890
009	FIGE PUTTP - DIESEL 1000 gpm - 125 psi IN/ drive & motor	25	1	ÉN		80	17 95				1400		18280		19720
	S-X-CO2 Fige SYSTENT 13 TON TANY E INSTALLATI	0~	Lor											30000	30000
	Sheet Total					120.	2				2160		26450	30000	58610
	AREA TOTAL					1269					22510	45040	26150	36300	130300
	and and an approximation of the second of	TPE Plus						1996-1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1				PROJECT	NUMBER	1/1/	14

				10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		(<u></u>				nikov tranki mentanensi s		10 Kalandar (10 Kalandar)	(``````````````````````````````````````) 7
PROJI	ect <u>Anderson Ra</u> nt <u>Minerals Explo</u>	7N/C	24 27101	, (208,	 	PREPAF	RED BY		?. #	inos	angustad statistik Berneyer si	REV. DATI FIRST ISSI SHEET	E <u>7/7</u> UE <u>11/3</u> / cf 6	<u> 78</u>
A/C	AREA POTNBLE INATER	WT	Quantity			IANHOU	rs I	· C	ost/ur			COSTS (Permangent	SUB)
NO.			Guantity		UNIT	TOTAL	RATE	LABOR	MAT'L.	CONTR.	LAEOR	MATERIAL	Equipment	CONTR.	TOTAL
	FACILITY					Appender gesen									
005	Dougestic INGTER TANK														
	40000 GAL CAP - MT.S.														
	Seguer Excar.		21	су	0-	21	15 15	152	· · ·		30				30
	STRUCT BYEL		16	CY	02	32	1515	303			50				50
,	ConcgETE		5	CY	115	575	1575	181-	5775		910	290			1200
	REINE		600	18	001	6.0	21 -8	021	021		130	130			260
	STEEL TANK		96	Ton	20	192	2118	429	1260	 	<i>a</i> 070	12100			16170
	Sequer Excan		542	сY	01	54?	15 -5	152			820				820
	Struct ByFL		520	CY	02	104	1515	303			1580	-			1580
	4" & PERMASTRAN IN/FIGS		2060	LF	008	165	1918	153	310		3160	6390			9550
	3" d d. Ho		40	LF	008	35	19'8	153	210		60	80			140
	Sheet Total					587	<u></u>				10810	18990			29800
	and the second section of the second second second and the second second and the second second second second se						its family the					PROJECT	NUMBER		4

				10-1 00-1 Tool 10-1 10-1	:		Ù	*******	l Druman Merena and M	(cash and the Callers of	1112 1017 102 10 10 10 10 10 10 10 10 10 10 10 10 10	and the first state of the second second	(
PRO	iect <u>Anderson Ra</u> Int <u>Minerals Expl</u>	ANC ORF	- 	, (v O.R.P	I	PREPAF	RED BY		?. ++	inos	999 (1999 (1997 (1999) (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (REV. DATI FIRST ISSI SHEET_/2	E <u>7 / 7</u> UE <u>11 / 3</u> 2, at 4	<u> 78</u>
A/C NO.	AREA POTABLE INATER	WT.	Quantity	UNIT	PER UNIT	ANHOU	RS	COLABOR	OST/UN	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.) TOTAL
						,	<u>. </u>	ι · γ	<u>ι</u>	I		I	I	·····	
	C" PERMASTRAN IN/FIGS		100	LF	008	112	1918	153	10		210	150			360
	1"\$ d.H.	1	550	LF	008	44.	1918	153	060		840	330			1170
	SERVICE CONNECTIONS		5	ĒN	8	20	19 -8	153-	15750		770	790			1560
	TNgust BLOCKS		5	CY	2	10	1670	33 -	45-		170	230			100
	CNLOGINATOR		1	ĒA	8	8	1918	/53 -	420-		150	420			570
	INATER PUMPS		60-		20	4.0	1918				770		2500		3270
		 													
	Sheet Total					153					2910	1920	2500		7330
	AREA TOTAL					740					13720	20910	2500		37130
										termore and		PROJECT	NUMBER	111	14

.

PROJ	ect <u>Anderson Ra</u> nt <u>Minerals Explo</u>	7NC ORA	H TION	1 (POR.	<u>P.</u>	PREPAR	RED BY		<i>. 4</i>	TINDS		REV. DAT	E - 7 / 7 UE - 11 / 3 3 - 61 - 6	<u> 78</u> [] o/77 9
	ADEA PANITARY				N	ANHOU	RS	С	OST/UI	NIT	(COSTS (
A/C NO.	JEWER	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			<u> </u>	L		L	<u></u>	I	<u>L</u>			L	I		5
	STQUET EXCAN		620	C1	0-	62	1515	152			940			[940
	STRUCT BRFL		600	CY	02	124	1515	303			1880				1880
	6"\$ ABS PIPE & FTGS		1025	15	02	205	1918	389	590		3930	6050			9980
	4" d.Ho		485	LF	02	97	1918	38 <u>4</u>	450		1860	2180			1010
	4" PERF. ABS P.PE		580	LF	03	116	1918	389	500	1	2220	3130			5350
	MANNOLES		حق	ĒA	32	96	1670	534	575		1600	1580			3180
	CLEANOUTS		3	EA	8	24	19.18	153 -	75-		460	230			690
	EXCAVATION		890	cy	0-	89	15'5	152			1350				1350
	BACKFILL		740	cy	02	11.8	15 15	303			2240				2240
	GRAVEL		150	CY	03	30	150	303	500		450	750			1200
	PACKAGE TGENTAJENT		6-							 				26780	2678
	ARFA TOTAL				-	991	F				16920	13970		26780	576.31

PROJI	ict <u>Anderson Ra</u> it <u>Minerals Expl</u>	9NC ORE	TION	, (POR.	<u> </u>	PREPAI	RED BY		?. <u> </u>	inos	· · · · · · · · · · · · · · · · · · ·	REV. DAT FIRST ISS SHEET	E <u>7/7</u> UE <u>11/3</u> 4 ar 6	<u> 78</u> 0 <u> 7</u> 7 9
A/C NO.	AREA PIDELINE	₩Т.	Quantity	UNIT	N PER UNIT	TOTAL	RS	C	OST/UN	SUB.	LABOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTAL
			I	<u> </u>]		I	L	<u> </u>			1		Į
	PIRELINE BERNT		2800	CY						240				6720	6720
	10" DEISCOPIPE M/FITTINGS		1800	LF	05	180	1918	192	1090		3150	19620			23070
	Drop Boxes 4' × 12'	 	10	Ēx	8	80	1575	126-	175-		1260	1750			3010
	Concrete Fig		10	сү	115	115	1575	181	55-		1810	550			2360
	REINE		1200	<u>L8</u>	001	12	2118	02'	021		250	250			500
							-							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

-						(Ĵ		1					(, , , , , , , , , , , , , , , , , , ,
PROJE	T MINESELS EXPL	7 <u>1/C</u>	H	, (V OR		PREPAR	RED BY		? +1	1.005		REV. DAT FIRST ISS	E <u>7/7</u> UE <u>11/3</u>	$\frac{778}{20/77}$
A/C NO.	AREA MILL BUILDING	wт.	Quantity	UNIT	N PER UNIT	TOTAL	RS	LABOR	OST/UI	NIT SUB. CONTR	LABOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTAL
				L		I	ι γ -	۲	I	I		I	1	·	I
	Struct. Excav		1320	су	0!	132	15 -5	152			2000				2000
	STRUCT. BYFL		1090	CY	03.	327	15-15	455	,		4950				4950
	CONCRETE														
	FLOOR JUNE		685	СУ	4-	3151	15-75	72-	52-	4	49630	35620			85250
	<u>Reinf</u>		82200	L.B	0012	1233	210	032	021		26110	17260			43370
	JUSPENDED JUNE		180	CY	122	2300	1575	197-	92-		36230	16930			53160
	Jeine L		55200	<u>LB</u>	12	828	275	035	06		17540	1/590			29130
	MILLS E EQUIPT. FNDS		438	<u> </u>	6=	2715=	15-	98	51		42770	23650			66420
	Treuce Tree	·`	263	10	22	1051= 551A	2118	0-=	0 0		22260	11040			33300
	Street Total		6.46	10100	~	172818		461	750		318910	350450			669360
												PROJECT	NUMBER	1/1/	14

Martine		and a subscription of			;))	(1) 27. 280 (1 MT)					Tarkatolicity of the second second	(7
PROJ	ect <u>Anderson Ri</u> nt <u>Minerals Expl</u>	ANC ORF	H 710A	, (V. ORI	F A	PREPAR PPROV	RED BY		?. 4			REV. DAT FIRST ISS SHEET	E <u>7/7</u> UE <u>11/3</u> 6, cf 6	<u> 78</u>
A/C NO.	AREA MILL BUILDING	ωт.	Quantity	UNIT	N PER UNIT	TOTAL	RATE	C	OST/UN MAT'L.	JIT SUB, CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.) TOTAL
			<u> </u>	1			<u> </u>		L	[<u> </u>	<u> </u>	<u> </u>
	Suoing		8855	SF	0035	309_9	2113	074	D 95		6560	8410			14970
	ROOFING		14112	SF	0025	352 ª	2/13	053	0 95		7470	13410			20880
	GERTING E JUPPOGTS		608	Ton	20	1216	2118	424	1110		25750	67490			93240
	Steps		113	Ton	24	268 8	2118	509-	1200	÷	5690	15680			21370
	HANDBAILS		820	LE	048	3936	2118	10 -	1370		8340	11230			19570
¥4	BLOCK INFALLS		15915	SF	003	4775	1670	055	050		7970	12730			20700
	17 Jan Doors		28	EA	8	224	1836	147-	350-		4110	9800			13910
	In Dows		3	EA	8	24	1836	147-	75		440	230			670
	Fige Doors S'x S'			EN	12	36	1836	220-	1200-		660	3600			4260
	Plumbing		11	Init	5	55	1918	90	250	~	1050	2750			3800
	Street Total					33574					68040	145330			213370
						i a nanganangan	Sterio de Carto					PROJECT	NUMBER	11	14

	(<u></u> ¹)			100 100 TT 100000 1000	: •)	Ĵ		1			an a the second second second			3
PROJE	ect <u>Anderson Ra</u> It <u>Minerals Expla</u>	DRF	H		v ori	F A	PREPAF	ED BY		?. #	1		REV. DAT FIRST ISS SHEET	E <u>7/7</u> UE <u>11/3</u> 7 of 6	<u>/78</u> 2/77 9
A/C NO.	AREA MILL BLILDING	ωт.	Quantity	UNIT	N PER UNIT	TOTAL	RATE	C LABOR	OST/UN	NT SUB. CONTR.	(LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			<u> </u>	L				,]				<u> </u>	1	
127	OVERNERO CRENE 15/5 TON 80' JANN			ĒN		200	1795				<u>3590</u>		61590		68180
	PAINTING		ALLOW						i					1550	7550
	HVAC'E DUST COLL. DUCT		Auon											70560	70560
	Piping		ALLOW							· · · · · · · · · · · · · · · · · · ·				20160	20160
	ELECTRICAL BOILER PAD		41.0v1 13440	SF										105910	105910
	STRUCT EXCAN		85	сY	0-	85	1515	152			130				130
	CONCRETE		8	c٢	44	36 =	15 75	72-	55-		580	440			1020
	Reinz		960	LB	001	96	2118	021	021		200	200			400
	STRUCT BYFL		53	cγ	02	106	15 5	303			160				160
	Sheet Total					2655					4660	600 PROJECT	64590 NUMBER	204 180	274070

					:)	Ĵ.		, 27 Anit - 11 Anit			and film and a second)
PROJE	ι τ <u>Minerals Expl</u>	QNC ORF	2 2 7 7 10 A	r_(VORI	P A	PREPAF	ED BY		?. ++	///////////////////////////////////////		REV. DAT FIRST ISS SHEET	e <u>7/7</u> UE <u>11/3</u> 8. at 6	<u> 78</u> 0/17 9
1	ADEN MUL BULLING	1	T T		M	IANHOUF	RS	C	DST/UN	TIV	(COSTS ()
A/C NO.		₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L,	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	τοτα
	FACILITY		. <u></u>					, ,					<u></u>		
	BLOCK INALLS		1380	5,5	003	410	16 70	050	080		690	1100			/790
	Doogs Double q'x10'		2	EN	16	32	1836	<u>588</u>	550		590	1100			1690
										1					
											· · · ·				
								1							
	Theat TI I					7724				~~					
		1				13-					1280	2200			3480
	HKER TOTAL	<u> </u>	L		<u> </u>	20978			l		372890	498620	64590	204180	1602

		111 (A) (A) (A) (A) (A)	and the second secon)	2	2019-1-19-16-0-77		a a star a s				C,) -
PROJE	ict <u>Anderson Ra</u> It <u>Minerals Explo</u>	7.1.C D.R.A	H	, (2 O.R.	F A	PREPAR	RED BY		?. ++			REV. DAT FIRST ISS SHEET	E <u>7/7</u> UE <u>11/3</u> 19 of G	<u>/78</u> 0/27 9
A/C NO.	AREA 100 ORE RECEIVING É GRINDING	₩Т.	Quantity	זואט	PER UNIT		RATE	C	OST/UN	NIT SUB. CONTR.	LABOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTAL
	FACILITY			<u> </u>		1	1		1	1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	1	1
	ORE RECEIVING HOP	ER	210				1515	152							6.50
	STRUCT. BYFL.		2398	CY CY	0=	480	15'5	303	·····		7270				7270
	Concrete														
	INALLS		34	CY CY	4 <u>6</u> 9 <u></u> 2	156 -	15 75 15 75	12 - 185 -	48" 85"		2460	1630			2090
	REINE		18600	18	001	186	2118	021	021		3940	3910			7850
	GRATING & SUPPORTS		149	Ton	20	298	2118	024	1110		6310	16500			22850
	STRUCT STEEL		3 800	JON	1035	70 28 :	2118	074	730 0.95		590	4650			6560
	Street Total					1974 -	}				31320	37780			72100
	an a francé contactor de la constante con constant de Alle a contactória. L'Alle a contactória de la constante				3. 					1900-Patrice		PROJECT	NUMBER	111	14

))	unc-10-11-07						(.	2
PROJE	ect <u>Anderson Ra</u> it <u>Minerals Explo</u>	ZNC ORA	2 H DT10A	, (2 OR,	F	PREPAR	RED BY	<u> </u>	° <i>H</i> .	, NDS		REV. DATE FIRST ISSE SHEET_2	= <u>7/7</u> JE <u>11/3</u> O of G	<u> 78</u>
A/C NO.	AREA 100 <u>ORE RECEIVING</u> <u>E GRINDING</u>	w r .	Quantity	UNIT	PER UNIT	TOTAL	RS	C	OST/UNI	T SUB. ONTR.	LABOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTAL
							ſ	1							
	BOOFING		400	5,7	0025	10	2118	053	095		210	380			590
	STEPS		<u>_8</u>	Ton	24	432	2118	508	1000		910	2520			3430
	HANDGAILS		30	LF	048	124	2118	10'-	1370		300	410			710
101	FRONT END LOADER						12				•	hais	er 250	,000	U S
101 A	31/2 C.Y. ~ KUBBER TIGED		2	ĔA	30	60	19 50				1180		158100		159280
102	SURGE HOPPER- 100 TON														
	GRIZZLY		109	Ton	30	327	21 18	6.35	930-		6930	10100			17070
	HOPPER & SUPPORT		7-9	Ton	45	3555	2118	953-	1260		7530	9950			17180
	AR LINIER PLATE		75	Ton	20	150	2118	424	1260		3180	9150			12630
103	HARON FEEDER														
	48"x 16" HEAVY DUTY IN 1712 HP MOTOR	123	1.	EA		195	1795				3500		36400		39900
							<u> </u>	ļ		Ē	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u>			
	S'heet lotal					1155-]		Ż	23740	32850	194500		251090
		States in the	Fag F410 1915 Sarra			e de la constante de la		-				PROJECT	NUMBER		4

J REV. DATE 7/7/78 PROJECT ANDERSON RANCH PREPARED BY G. HINOS FIRST ISSUE 11/30/77 CLIENT MINERALS EXPLORATION CORP. APPROVED BY ______ SHEET 21 of 69 AREA 100 <u>ORE RECEIVING</u> E GRINDING COSTS (MANHOURS COST/UNIT A/C WT. Quantity UNIT PER SUB. Permanent SUB. NO. MATERIAL Equipment TOTAL UNIT TOTAL RATE LABOR MAT'L. CONTR. LABOR CONTR. FACILITY 104 ВЕСТ Сомченоя (48") IN/15 IP 170 то R УТЛИСТ Ехсян. 304 سجر CY 0- 20 1515 152 200 300 300 STRUCT BREL 2308 CY 02 469 - 1515 303 7110 7110 CONCRETE 400 15 15 126 55 CY 8 55 6930 9960 3030 REINE 18 00' 392 2118 021 021 3916 830 820 1650 STRUCT STEEL Ton 20 548 2119 424 930 274 11610 25480 37090 CNUTE INORK 13 TON 45 50 21-8 953 1260 1510 2650 1120 GRNTING TON 20 27 50 2113 420 1060 1140 2860 1000 Siding 1415 SF 0025 354 2118 053 095 750 1300 2090 8\$ TUNNEL 150 LF 5 750 2118 106 109" 15890 16350 32240 CONV. COMPONENTS 145 LOT 3LF 912 1795 55440 16370 71810 Sheet Total 33222 62070 51390 55440 168900 PROJECT NUMBER

PROJECT ANDERSON RANCH PREPARED BY G. HINDS FIRST ISSUE 11/30/77 CLIENT MINERALS EXPLORATION CORP. APPROVED BY ______ SHEET 22 of 69 MANHOURS COSTS (COST/UNIT AREA__________ ORE RECEIVING A/C WT. SUB. Permanent Quantity UNIT PER SUB. NO. UNIT | TOTAL | RATE LABOR MAT'L.CONTR. MATERIAL TOTAL LABOR Equipment CONTR. É GRINDING FACILITY 105 BELT SCALE (48") 1795 018 ĒN 298 5350 10770 5920 106 SENTIAUTOGENOUS GRINDING MTILL 16 \$x5' 1325 En 22 2915 17 25 1 NI/500 HP Moror 52320 577120 529800 107 SAG DISCHARGE SUNTA • 18 900 Gal. CAP TON 45 36 21 953 1260 760 1010 1770 108 ROD NTILL FEED PUNTP 109 HORIZ CENTRI-R.L. SS TRINT ~ TOO 9PM IN/25 HP MOTOR EA 16 1795 EA 20 2 10 6680 7400 720 TROMMEL OVERSIZE BELT 110 CONVEYOR No. 1 (18") LF 18 IN/ 5 HP Moror STRUCT. STEEL 095 TON 18 17- 2118 381 930 360 880 1200 Sheet Total 3306-59510 1890 536900 598300 PROJECT NUMBER

-) (<u>ر</u>					and the second second second		Ç	5
PROJE	ict <u>Aniderson Ra</u> It <u>Minerals Explo</u>	DRA	H TION	, (POR,	ғ д	PREPAR	RED BY		?. #	- Linos		REV. DAT FIRST ISS SHEET	E <u>7/7</u> UE <u>11/3</u> 23 at 6	<u> 78</u> 0 77 19
	100	<u> </u>			N	IANHOU	35	<u> </u>	OST/UM	TIV		COSTS ()
A/C NO.	AREA 100 ORE RECEIVING E GRINDING	₩Т.	Quantity	UNIT	PER	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY					*********									
	CNUTE INORK		09	Ton	45	405	21-8	508	1260		860	1130			1990
	CONVEYOR COMPONENTS	16	607	 	5 LF	90	1795				1620		4580		6200
111	TRONTITEL OVERSIZE BELT CONVEYOR NO.2 (18")		64	LF											
	STRUCT, STEEL		96	TON	18	1728	2118	381-	930		3660	8930			12590
	CHUTE INORK		09	Ton	45	405	21-18	858	1260		860	1130			1990
	CONVEYOR CONTPONENTS	27	107		51F	320	17 - 95				5740		6460		12200
112	TANNA IRON MAGNET	14				15	1795				1170		6180		(850
	IN/3 HP Moror	/ <i>-</i>											5680		2050
113	ROD MILL 95 \$ × 16'	97 <u>5</u>	/	ĒA	22	2145	1795				38500		336570		375070
	Sheet Total					2873 =	~~				52410	11190	353290		416890
												PROJECT	NUMBER	1/1/	14

-			and the second secon			(ر	(1117-11-11-11-11-11-11-11-11-11-11-11-11	n Natura Singarana yang		Sectorizado	Gen Jan Arrigen	and the second state	(<u>(</u>	<u>`</u> ر
PROJE	ict <u>Anderson Ra</u> It <u>Minerals Explo</u>	7N/C	Н ОТТОЛ	, (2 OR,	/	PREPAR	RED BY		?. 11	- 		REV. DAT FIRST ISS SHEET_2	E <u>7/7</u> UE <u>11/3</u> 4. of 69	<u> 78</u> [] 0 <u> 7</u> 7 7
	100]	T	<u></u>	N	IANHOU	RS	С	OST/UI	NIT	<u> </u>	COSTS ()
A/C NO.	AREA Dre Receiving é Grinding	WT.	Quantity	UNIT	PER	TOTAL	RATE	LABOR	MAT'L	SUB. CONTR	LAEOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			r			r	·····	·		r		······	1	T	
114	ROD MILL DISCHARGE				15	195	21/8	913	1310		1050	(380			2110
115	August and			TON	45	4/-		/33	1260		7050	1370			2000
113	CLASSIFIER SCREEN FEED	}		+				<u>}</u>		1	! 				
116	B.L SS TEIM TODgpri N/25 H Moror En	16	2	Eq	20	40	17 <u>95</u>				<i>720</i>		6680		7400
117	CLASSIFIER SCREEN														
	SENE BEND TYPE-6 WIDE	08	1	ENT		19	1795				340		5610		5950
118	SAMPLING SYSTEM							[
	CONTRLETE 3 STAGE IN/I AP MOTOR	04		EA		12	17 95		 		1890		7950		9200
119	LEACH FEED JUNTA														
	1200 GAL CAP.		1-	TON	45	495	2118	953	1260	-	1050	1390			2400
	Sheet Total					230					4450	2780	20200		27470
												PROJECT	NUMBER		1/12

-							<u></u>) 7 7
PROJE	ct <u>Anderson Ra</u> t <u>Minerals Explo</u>	ZNIC ORA	2 H 9 T 1 O M	, (V OR,		PREPAR	ED BY	Ç	?. ++			REV. DAT FIRST ISS SHEET_2	E <u>7/7</u> UE <u>11/3</u> 5. cf C	<u>78</u> [] 0 <u>7</u> 7 : 9
	AREA			1	N	IANHOU	RS	С	OST/UI	TIV		COSTS ()
A/C NO.	ORE RECEIVING É GRINDING	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB, CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY					an a					• <u> </u>			A	
		†		T	Ì										
120	LEACH FEED PUNTPS														
121	HORIZ. CENTRI- R.L.	16	2	EA	17	34	1795				610		6260		6870
	SS tRIM - TOO GPM	1	ĺ	Ì			ŀ								
*	w/15 HP Moron En	Ì		1											
			1						1					i i i i i i i i i i i i i i i i i i i	
122	DENSITY FLOWATETER	009	1	EA		190	1795				3410	[8020		11430
	LEACH FEED										4				
123	INET SCRUBBER														
	DRE RECEIVING AREA	03		EA		47	1795				840		9250		10090
	6000 CENT - MT.S. CONST.														
	IN/15 HD MOTOR										· · · · · · · · · · · · · · · · · · ·				
124	JUNTO PUMP - DAE										··				
125	RECEIVING & GRINDING														
	VERT. CENTRI ~ R.L.	05	2	EA	40	80	1795				1110		3140		4580
	15 TRIAN - 50 9PM										2				
	IN 75 IP IN TOTOR EA														
									<u> </u>	4	~~~~~				
	Steet Total					351			<i>,</i>		6300		26670		32970
	n						L	والمتعلقات والمتحد	1	<u> </u>		PROJECT		1/1/	

						(ز.				1000 and 1000 and 1000 and			(, , ;
PROJE	ict <u>Anderson Ra</u> It <u>Minerals Explo</u>	7N/C	H DTION	,	V ORI	F A	PREPAR	ED BY		?. H	inos	Alexand Californi, B. Japanese Cal	REV. DATE FIRST ISSI SHEET_2	$= \frac{7/7}{11/3}$	<u> 78</u>
	AREA				N	IANHOU	RS	с		VIT		COSTS ()
A/C NO.	ORE RECEIVING	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB, CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			· · · · · · · · · · · · · · · · · · ·	<u></u>		f	****	·	•	4- <u></u>					
		 			 		ļ	ļ	 			 			
126	KOD MILL ROD CHARGER NTRENINE	32	1	ĒR		93	17.95				1670		9150		10820
127	OVERNERD CRANE	(]~	CL IN	17	7,66	BLO	9)								
127	SAG MTILL LINER										<u> </u>				
	HANDLER IN/15 IP Moror	43	/	ÉR		180	1795				3230		50630		53860
	, , , , , , , , , , , , , , , , , , , ,														
							4								
	Sheet Total					273 :					4900		59780		64680
	AREA TOTAL					/33855			<u>_</u>		247700	137880	7 13 1246820		1632400
	an a											PROJECT	NUMBER		14

	$\left(\begin{array}{c} 1 \\ \end{array} \right)$		100 100 100 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 1			(<u> </u>		1					(() " /
PROJE	ict <u>Anderson Ra</u> It <u>Minerals Expli</u>	7 N/ C 0 R L	- 	, (VOR.	F А	PREPAR	RED BY		? 4	inos		REV. DATI FIRST ISSI SHEET_2	E <u>7/7</u> UE <u>11/3</u> 27 at 4	/78 0/77 9
A/C NO.	AREA 200 LEACNING	ωт.	Quantity	UNIT	PER UNIT	TOTAL	RATE	C LABOR	OST/UN	JIT SUB. CONTR.	LABOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTAL
	FACILITY		L	L	 		J		I	l				I	l
	LEACNING AGEA PAD														
	Stever Excar		1377	CY	0'-	137.7	1515	151	,		2090			·	2090
	STRUCT BYFL		535	CY	02	107º	15-5	303	60		1620				1620
	CONCRETE PAO REINF		211	CY La	4°,	2037	2118	72	48- 021	, i	19630	13140			32770
	CONCRETE TANK BEANS		55	CY	75	a125	1575	118-	85-		6500	4680			///80
	REINE		6600	1.8	0015	99	2118	032	021		2100	1390			30.90
	Concrete RETAINING Hau		47	CY	10	470	1575	/58	85-		7400	4000			11400
	REINE		9000	13	0015	101	2118	032	021		2990	1970			1960
	SUMP GRATING Sheet Total		49	5'75		28597	2/2		000		40	30450		~~~~~	77990
				1116 pr 1110								PROJECT	NUMBER	11	14

• 			and the second states and a		:	(-			n y haan filo fan yn de groef wat yn de groef w			\ 2
PROJ	ect <u>Anderson Re</u> nt <u>Minerals Explo</u>	7NC ORG	- H 	, (V OR,	F A	PREPAF	RED BY	4	? ++			REV. DAT FIRST ISS SHEET_	E <u>7/7</u> UE <u>11/3</u> 28 ct 6	<u> 78</u> 0/77 9
A/C NO.	AREA 200 LENCHING	ωт.	Quantity	UNIT	N PER UNIT	TOTAL	RATE	C	DST/UN	NIT SUB. CONTR.	LABOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTAL
	FACILITY		l	L			<u> </u>		L	<u> </u>]	<u> </u>	<u>I</u>	
;	12"x 12" IN000 BERMS		5180	BF	002	80	1778	0.34	065		1420	3370			4790
	STEPS		3	Ton	24	12	2118	508-	1400		1520	4200			5720
	GENTING & SUPPOSTS		174	Ton	20	348	21-18	124	1110		1370	19310			26680
	HANDGAILS		409	LF	048	196-	2118	10 ! 7	1370		4160	5600			9760
<u>201 -</u> 202	ACIO MTIX TANKS 22'\$ × 26' MTILO STEEL		278	Ton	20	556	2118	424-	1260		11180	35030			46810
	RUBBER LINED		4355	- ترمی						900				39200	39200
203-	LEACH TANKS		124	Tu	20	RAR	2118	121-	121.0		17960	53,120			71380
	AUBBER LINED		6786	SF				924		1120		55420		76000	76000
	Sheet Total					21003-					44210	120930		115200	280340
					l							PROJECT	NUMBER		14

					:		2			ana an an an an an)	2
ROJE	ect <u>Aniderson Ra</u> It <u>Minerals Expl</u>	7N/C		, (V OR,	I	PREPAF	ED BY	4	?. +1	Linos		REV. DATI FIRST ISSI SHEET	E <u>7/1</u> UE <u>11/3</u> 29 of 6	<u> 78</u> 0/71 9
	200	1	[1	N	IANHOU	RS			JIT	1	COSTS ()
/C 10.	LERCHING	wт.	Quantity	UNIT	PER	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY		<u></u>	<u></u>		<u> </u>	I		L]]			· 	
_		\													
Z- 2	LERCH TANKS 316 SS	69	6	Ēn		1035	1795				18580		312480		33106
	IN/ 150 IP Moros EA								· · · · ·						
3	LEACH DISCHARGE JUMP 6 \$ x 10' MILD STEEL		12	Ton	20	22 .	2/18	424	1260		470	1390			1860
	RUBBER LINED		217	SF						900-				1950	1950
1	LEACH DISCH AFGE PUNTAS														
5	HORIZ CENTRIFUGAL R.L. SS TRIFT 750000	16	2	ĒA	20	10	1795				120		6260		6980
	IN /25 AP ATOTOR EA														
6	INET Scausser	18		ب تم		187	1918				2190		201.		(2000
	IN / 15 12 A TOTOR	<i>U</i> -				106	//				3470		1060		12330
	Duct Inlogic		ALLOW			260:	1918				4990	4800			9790
	Sheet Total				•	1539					28250	6190	327800	1950	360190
			1				L				<u> </u>	PROJECT			

						(Ĵ.		, Ricentel KRC	, 		a ta Sang Jan Bangang Jan Jan Banan Sang Jan		() ÷
PROJE	ect <u>Anderson R</u> nt <u>Minerpls Expl</u>	ORE	24 2710 A	, (2 0.R.1	F A	PREPAR	RED BY	{	?. ++	inos		REV. DAT FIRST ISS SHEET_3	E <u>7/7</u> UE <u>11/3</u> 0, at 6	<u> 78</u> 0/77 9
A/C NO.	AREA 200 LERENING		Quantity	UNIT	PER UNIT	TOTAL	RATE	C	OST/UI	SUB.	LAEOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTAL
	FACILITY	-				<u></u>	<u> </u>		<u>[</u>				<u>.</u>	<u> </u>	
217	JUNTA PUNTA VERT. CENTRIEUGNI B.L J.S. TRIM W/5 HP NTOTOR	023		ĒΛ	20	20	1918				380		1580		1960
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·					:	· · · · · · · · · · · · · · · · · · ·				
	Street Total					20 :					380		1580		1960
	AREA TOTAL					6519					120380	157570	329380	117150	724480
2												PROJECT	NUMBER	1//	1/4

		an an an an an an an	ior			()		,					() -
PROJE	CT <u>ANDERSON RA</u>	71/2			2	F	REPAF	RED BY		?. #	inos		REV. DATI FIRST ISS	E <u>7/7</u> UE <u>11/3</u>	<u> 78</u> 🛆 0/77
CLIEN	T TYTINERALS EXPLO	DRA	TION	<u> </u>	ORI	<u> </u>		ED BY					SHEET_		
A/C NO,	AREA <u>300</u> <u>C. C. D.</u>	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	C LABOR	MAT'L	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.) TOTAL
	FACILITY			<u> </u>			l	1		L		J		L	
	C.C.D. THICKENERS-1	70 Z	2,0-5	Ea											
	STRUCT EXCAN		11910	cy					· · · ·	140				16670	16670
	CONTRACTED BREL.		8548	CY						330				28210	28210
	SEALER		78510	SE	0005	3926	1367	001	020		5370	15700			21070
	CONCRETE														
	TANK RING		646	CY	93	5943 ²	1575	145-	54-		93610	34880			128490
	BeINF STEEL		77520	18	001	775-	2118	021	02!		16420	16280			32700
	PAOS		90	сү	46	414	1575	72-	48-		6520	4320			10800
	ReINF STEEL		10800	10	001	108	2118	02!	0 ^{2!}		2290	2270			4560
	ACCESS ROOM		167	CY	92	15364	1575	145	85-		20200	10190			38390
	REINE STEEL		20040	18	00'	200 4	21-18	02!	021		4240	1210			8450
	Sheet lotal					73679			L	I	152650	PROJECT	NUMBER	44890	14

(1997)		<u>Caration (Securit</u>							an a		naradini internationali ana ana	áranya a partiti di Janima Prain		- 1-	170
PROJE	CT ANDERSON RA	71/0	Р. <u>H</u>			F	REPAF	REDBY		?. ++	INDS		REV. DAT FIRST ISS	e <u>///</u> ue <u>///</u> 3	<u> 18</u> [] 0 [7]
CLIEN	T MINERALS EXPLO	ORF	TION	<u>, </u>	VOR.	<u>Р.</u> А	PPROV	'ED BY					SHEET_ <u>Ĵ</u>	2 of 6	7
	AREA 300		1		Γ	ANHOU	RS	С	OST/UN	JIT	(costs ()
A/C NO.	<i>C. C. D.</i>	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY		Å			<u>1</u>		L	4 <u>4</u>	<u></u>		1	L	<u></u>	
			7 02		5	0072	15		05-		127150	COLO-			181020
	IUNNELS		1902	<u><i>CY</i></u>	//=	8013	15 =	181	89		127130	39670			186820
	REINE STEEL		84240	LB	00'	842 4	2118	021	021		17840	17690			35530
	GRATING & SUPPORTS		75 5	TON	18	1359	21 -8	381 -	1060-		28780	80030			108810
	Stratiges		65	Ton	24	156	2118	508	1400		3300	9100			12400
	Hanogails		2170	LF	048	10415	21-8	1017	13 70		22060	29730			51790
(Preel TANKS		791	Ton	16	12656	2118	340-	1260		268050	996660			1264710
26	1/2" RUBBER LINED BOTTONT		16970	35						1325				1019850	1019850
30	14" RUBBER LINED SIDES		26390	SF						900				2375/0	237510
	FLOC. STOTAGE BLOG														
	STRUCT ExCAN.		24.	CY	0-	24.	15 15	152			40				40
	Sheet Total					241304			·		467220	/192880		1257360	2917460

	$\left(\begin{array}{c} \\ \end{array} \right)$			a constant a)	<u></u>	1			and the full day of the		alah kawang katalang kan	(ج \ - (
PROJE	it <u>Minerals Expl</u>	ANC ORF	° н оттол	, (2 OR,	β β	PREPAF	ED BY		?. #			REV. DATI FIRST ISSI SHEET_ <u>J:</u>	E <u>7/7</u> UE <u>11/3</u> 3. ct 6	<u> 78</u>
	ADEA 300	1		}	N	IANHOUI	RS	С	OST/UN	JIT		COSTS ()
A/C NO.	C. C. D.	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			l <u></u>			1				L			<u> </u>		
	CONCRETE		50	CY	45	230	15 75	73-	48-		3620	2000			6020
	REINE		6000	68	001	60	21-18	021	02!		1270	1260		-	2530
	STRUCT STEEL		5\$	Ton	22	1276	2118	466	930-		2700	53.90			8090
	ROOFING		1085	SÆ	0025	27-	2118	053	095		570	1030			1600
	Siding		2060	57	0035	86-	21.18	074	095		1820	2340			4160
	LIGISTING		957	SÆ						300				2870	2870
01 105	TNICKENER FEED JUNTA B'\$ x B' M.S.		64	Ton	20	128	21-8	424-	1260-		2710	8060			10770
	RUBBER LINED		1257	SF						900				11310	11310
06	THICKENER FEED PUMP														
15	Hogiz Centres. R.L. SS TRITT ~ 2700 9PM	253	10,	EN	31	3/0:	17 <u>9</u> 5				5560		87600		93160
	IN/100 AP MOTOR ER				F	arp?			· · · ·						
	JITEET 10TS1										10130	PROJECT	NUMBER	14180	140310

		Decemental Managina de com	n an a' star an a' star a' san an a' san an a			(2:					(
PROJI	ect <u>ANDERSON RA</u>	71/0	Н				PREPAR	RED BY		<i>?. H</i>	INDS		REV. DATI FIRST ISSI	E <u>7/7</u> JE <u>11/3</u>	<u> [78</u> []^ <u>] 7</u> 7
CLIEN	IT MINERALS EXPL	ORE	TION	1. (ORI	<u>р.</u> А	PPROV	ED BY	<u></u>				SHEET <u>34</u>	1 of 6	9
	AREA 300		[<u> </u>	Iv	IANHOU	RS	С	OST/U	NIT	(COSTS ()
A/C NO.	C. C. D.	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY		I			I	1	1	<u>.</u>			I	L		
116	Млх Танк 8'ф×8' М.S.		64	Ton	20	128	2118	424	1260		2710	8060			10770
20	RUBBER LINED		1257	SF						900			 	.11310	11310
821	AGITATOR MIX TANKS														
	NUBBER COVERED NT.S. W/ The HP Morog En	42	5	EN		90	1745						19250		20870
3/	THICKENER MECHANISMS														
35	CENTER PIER TYPE 316 SS RAKE ARMS	216-	5	EN		5316	173			<u> </u>	95420		872050		967470
	1N/5 c/1/2 AP Morog EA						 								
36 15	THICKENER L'FLOW PUMP DIAPNRAGN - R.L.		10	ĒA	385	385	1795				6910		214/00		221010
	910 gpm ~ IN/ T'/2 14 1 Jorog Ex									 			 		
216	TNICKENER U'FLOW STANDEY														
350	PUNTPS - HORIZ. CENTRI- R.L SS TRINT 910 9PAT		5.	ÊA	20	100	17.95				1800		20700		22500
	INT 20 H Moroas EN					1019					IDRAID	en i n	1121 100	1/2/0	126292
	Jijee1 10731	L		L		6011	L	L]	1	100460	0000	1166100	11310	1233/30
						(<u> </u>	an a					1	(ح ب
------------	--	------	-------------------------------	------	-------------	---	----------	--	--------	----------------	-------	----------	--	--	------------
PROJE	ict <u>Anderson Re</u> it <u>Minerals Explo</u>	7N/C	- 	, (2 O.R.	F	PREPAR	RED BY		?. H	- 		REV. DAT FIRST ISS SHEET <u> ズ</u>	e <u>7/7</u> ue <u>11/3</u> 5. ct 67	<u> 78</u>
	APEA 300]		N	ANHOU	RS	С	OST/UI	NIT		COSTS ()
A/C NO.	C. C. D.	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY		L			1	I	1	1	1		J	L	1	
351	DENSITY FLOWMETER														
355	GANTA GAUGE TYPE	28	5	EA	190	950	/7 95				17050		22800		39850
	W/ MAGNETIC FLOW METCR								·						
356	No I THICKENER O'FLOW		13	7	20	2(2118	121	1210-		660	11.00			2190
			/=	TON	20	240	61	424	1260		,	76.00			21/0
	RUBBER LINED		251	تىرى						900				2260	226.0
357	No. 1 TNICKENER O'FLOW														
358	JUNTA PUNTA - R.L. J.S. TRINI- HORIZ. CENTRI	18	2	ĒN	20	40	1795				720		8940		9660
	1800 9pm 1/20 HP Morog En														······
359	SAMPLING SYSTEM														
	Two STRGE ~ TAILINGS	02		EA		78	1795				1400		5430		6830
	Mar d T. d - 1				~	1001	<u></u>				1972-				
	JAPet Ictal					1074			· ·		14160	1640	37170	2260	60790
			a a de sea monte en a seguere			anite a state of the state of the state						PROJECT	NUMBER	11	14

-					572-196 B 37 - 18 - 19))		1944 : Santa arres d'		san para yana kata s	ann a tha a tha an an an	an gan sana an sana an sana ang	(<i>ل</i> ار (
PROJE	ect <u>Anderson Ra</u> It <u>Minerals Explo</u>	71/C ORF	2 H 2 T 1 O N	,	2 OR,	F	PREPAR	RED BY		?. ++	1		REV. DAT FIRST ISS SHEET_ ت	E <u>7/7</u> UE <u>11/3</u> 6 cf 6	<u> 78</u> 0 <u> 7</u> 7 9
	200	<u> </u>			N	IANHOUI	RS	С	OST/UI	TIV	(COSTS ()
A/C NO.	AREA <u>300</u> <u>C. C. D.</u>	ωт.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY	<u> </u>	1			L	1	2	1	1			<u>.</u>	1	L
360	TRILINGS JUNTP														
	8'\$ x 8' 17.5.		13	Ton	20	26	21-18	424	1260		550	1600			2190
	BUBBER LINED		251	52						900				2260	2260
361	JUNTE PUNTE C.C.D. HEER														
	J.S. TEINT 50 9PAT IN/ 5 AP 170TOR	03	/	En		40	1795				720		1520		2240
	Sheet Total					66	~				1270	1640	1520	2260	6690
	AREA TOTAL					41648					767570	1316550	1252390	1332260	4668,770
												 PROJECT	I NUMBER	1///	14

		and the second	an a	1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	:)	2	1. S. W. S. W. S. W. S. W.	1		1997-1997-1997-1997-1997-1997-1997-1997	and the second		(
PROJE	ect <u>ANDERSON RA</u>	71/0	H				PREPAR	RED BY		?. #	INDS_		REV. DATI FIRST ISS	= <u>7/</u>) JE <u>//</u> /	<u>7 78</u> [] 30 77
CLIEN	TT MINERALS EXPLO	ORA	TION	<u>, </u>	ORI	<i>D</i> . A	PPROV	ED BY					SHEET_ <u>J</u>	7 01 4	;9
A/C NO.	AREA 400 CLARIFICNTION	ωт.	Quantity	UNIT	PER UNIT	TOTAL	RS	C(MAT'L.	SUB.	LABOR	COSTS (Permanent Equipment	SUB. CONTR	_)
	FACILITY			<u> </u>]	<u> </u>	!					<u> </u>	l	1
101	CLARIFIER TANK 100	× 18	s '												
	STRUCT EXCAN.		70_	СУ	02	7	15-15	152			110				110
	ConcrETE FNOS		60_	CY	46	276	1575	73-	48-		<i>4350</i>	2880			7230
	CONCRETE STRUCT.		21	сү	92	193-	15 - 5	105	85 -		3040	1790			4830
	Reinf		9720	13	00!	972	2118	021	021		2060	2040			4100
	CONPRETED BEFL		720	СҮ	03	216	1515	455			3270				3270
	SEALER		3849	5F	0004	14	1367	005	020		190	770			960
	Stever Steel		6-	Ton	18	109-8	21-8	381-	930-		2330	5670			8000
	GRATING & SUPPORTS		132	TON	20	276	2118	424	1110		5850	15320			21170
	STAIRS		23	TON	24	552	2118	508-	1000		1170	3220			4390
	HANDRAILS		502	LF	048	241	2118	10!7	1370		5100	6880			11980
	Jyeet lotal				I	1625	1	L	l		27470	1 <i>38570</i> PROJECT	L NUMBER	1/1	66040

					:	(<u></u>		,	1					2
		X 2000 000											REV. DAT	e 7/7	178
PROJE	CT ANDERSON RA	71/0	H			F	REPAF	RED BY		?. #	INDS		FIRST ISS	UE 11/3	0/77
CLIEN	T MINERALS EXPLO	ORA	TION	1 (ORI	<u>р.</u> А	PPROV	ED BY					SHEET 30	9 of 6	9
	AREA 400				N	IANHOUF	RS	C	OST/UN	IIT		COSTS ()
A/C NO.	(LAIRFICATION	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB, CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			* <u></u>						A				•	.	··
102															
407	31655 W/6ª TOTAL H	175		ĒR		769	1795				13720		69880		83600
403	CLARIFIER U'FLOW POTP				·				·					·	
	A.L. ~ SS TRIM ~ 20 9PAT IN / 3 H ATOFOR	015	/	ĒA		20	1795				360		1860		2220
AAA										1					
405	Hogiz. CENTRI - R.L.	23	2	EA	28	56	1795				1010		11300		12350
	NS +RITT ~ 1800 9PAT 141/60 HITOTOR ER										······				
406	JANO FILTERS 110 x 6														
108	M.S RUBBER COVERED SAID MOUNTED	80°	/	Ĕя		560	1795				10050		194110		209160
	FILTER FOUNDATION			 											······
	Stquer Exc.		78	CY	0-	78.	15 15	152			120				120
	Sheet Total					14078					25260		277190		302450
										1		PROJECT	NUMBER	1//	14

-			174 ¹¹ 1944 1976 1 4492 1 4715 1	er us ti Termingi)	J		1				VERSI DE STATES	(, '	3
PROJE	et <u>Anderson Re</u> It <u>Minerals Explo</u>	DRF	H 710N	, (2 ORI	F A	PREPAF	ED BY	4	?. #			REV. DAT FIRST ISS SHEET <u></u> ص	e <u>7/7</u> ue <u>11/3</u> 9. ct 6	<u> 78</u>
A/C NO.	AREA 400 CLARIFICATION	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	C	DST/UN	SUB.	LAEOR	COSTS (Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY			<u> </u>]		L	ļ			L		
	CONSTETE		9	CY	46	419	1575	73-	42-		650	380			1030
	Beine		1080	1.3	00!	10 =	2118	021	024	·	230	230			460
	STRUCT BREL		49	сÝ	03	<u>98</u>	1515	303			150				150
409	PREGNANT SOLUTION TANK 50\$ x 28' MT.S.									1	4°				
	STRUCT EXCAN.		35	CY	0'	3.5	15 15	152			50				50
	CONCRETE		12	CY	92	110 4	1575	145-	65-		1740	780			2520
	Reine Steel		1110	1.0	00'	144	2118	021	021		300	300			600
	Strquer Byel		73	<u>C</u> Y	02	115	15-5	303			220				220
	STEEL TANK		53-	Ton	18	955 ⁸	2118	381-	1260		20200	66910			87150
	KUBBER LINED		8325	<i>سير</i> ع						900				74930	74930
	JHeet lotal					1160-					23580	<i>68600</i> PROJECT	NUMBER	74930	167110

ŧ

		En LU/S: Transfer & A	11/2 12/2 12/2 12/2 12/2 12/2 12/2 12/2	a anang tang bara		(Ĵ) Refer da glassie sinne a state bie		sanja se si kata kata kata kata kata kata kata kat	and a state of the state of the state	LEVEL DATA LEVEL AND	(, , , , , , , , , , , , , , , , , , ,
PROJI	ect <u>Finderson Re</u> it <u>Minerals Explo</u>	7 N/C	• H	, (V ORI	Р А	REPAF	RED BY		? #	I INDS		REV. DATI FIRST ISSI SHEET_4	E <u>7/7</u> UE <u>11/3</u> O at G	<u> 78</u> 0 77 19
A/C NO.	AREA 40.0 CLARIFICATION	ωт.	Quantity	UNIT	N PER UNIT	TOTAL	RATE	C LABOR	OST/UN	UIT SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.) TOTAL
	FACILITY					<u> </u>	y-m					J	1	L	ļ
<i>410</i> <i>411</i>	POND FILTER BACKWASH PUNTR - HORIZ. CENTRI R.L SS TRINT - 1000 9PM IN 175 H MTOTOR ER	23	2	<u>L</u> A	30	60.	1795				1080		11340		12020
412 413	SX EXTERCTION FEED PURID HOGIZ. CENTRI-R.L. SS TRITT - 1800 9pm IN/ 30 HP MOTOR ER	23	Ê	E.R.	23	46	1795			•	: 630.		88.40		9670
<u>403 A</u>	FLOWATETER			ĒN		190	17.95				3010		4640		8050
	Placet T 4 1					201									
	AREA TOTAL					4490					<u>5320</u> 81630	107170	302010	74930	565740
Communication of the local data	an a						24-1-1-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1					PROJECT	NUMBER	11	14

-				and and the second states	:	()	assive_mp 1s.m/~m/3abs	t Series cine and shakes	، محمد (مجمع من الجامع الم	State Balta an Managara da Managara da Asia			(
PROJE	ct <u>Anderson Ra</u> t <u>Minerals Expli</u>	7 N/ C	• H	, (v OR,	F	PREPAF PPROV	ED BY		?. H	1	54469-2-04-08-02-04-05 	REV. DAT FIRST ISS SHEET_4	e <u>7/7</u> ue <u>11/3</u> /, ct 6	<u> 78</u>
1	AREA 500				N	IANHOU	35	С	OST/UN	JIT	(COSTS ()
A/C NO.	JOLVENT EXTERCTION	₩т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			A			· · · · · ·	•	,				1,	.	<u> </u>	
	Servent Extense	on	AREA.	PAD											}
	STRUCT EXCAN.		1293	CY	0-	1293	15 15	152			1960				1960
	Strauer Bigsel.		857	CY	02	1714	1515	303			2600				2600
	CONCRETE											·			
	JUNE		560	CY	15	2576	1575	73-	48 50	4	40570	27160			67730
	Kein-		67200	13	001	672	2118	021	02!		14230	10110		}	28340
503-6	S-X Tongs		294	сү	10	2940	15 75	158	85-		46310	24990	· · · · · · · · · · · · · · · · · · ·		71300
527-30	REINF		35780	18	0015	5292	2118	032	021		11210	7410			18620
	INOOD CONERING		9200	SF	002	184	1836	037	002		3380	3860			7240
	INOOD INALGINAYS		2063	SF	002	413	1836	037	042		760	870			1630
	MALKWAY STEEL FRANING		107	TON	20	214:	21-18	424	1110-		4530	11880			16210
	Meet Total					74572					125550	90280			215830
			<u> </u>		Į				<u> </u>		<u> </u>	PROJECT	NUMBER		14

x

2011-010-02	()		101	an an former land		(ر	owarde Salve			saara tiya baasa) -
PROJE	ct <u>ANDERSON RA</u> T <u>MINERALS EXPLO</u>	7 N/C	2 11 2770 N	. (v OR,	F	PREPAF	RED BY		?. ++	I INDS		REV. DAT FIRST ISS SHEET	E <u>7/7</u> UE <u>11/3</u> 2 at 6	<u> 78</u> 0/77 9
	ADEA 500]		N	1ANHOUI	RS	С	DST/UN	VIT	(COSTS ()
A/C NO,	JOLVENT EXTRACTION	ωт.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY			<u>L</u>			<u> </u>		1	L		1	L	I	
	STRIRS		3-	TON	24	74.4	21-18	508	1100		1580	4310			5920
	HANDRAILS		1027	LF	018	493	2118	1017	13 70		10440	10070	 		24510
03-06 27-30	S-X TANK LINING		15680	S.E						1350				211680	211680
501	SAMPLING SYSTEM S-X FEED SINGLE STAGE	001	1	ĒA		39	1795			+	700		1850		2550
502	FLOWATETER- J-X FEED MAGNETIC TYPE	0.07		ĒQ		190	1795				3410		6410		9820
507- 510-	AGITATORS EXTRACTION MIXERS 316 S.S.	52	4	ĒR	20	80	17 95				1440		3/800		33240
	IN / 10 HP MOTOR EN				 										
512	HOGIZ CENTRIFLIGEL	24	2	ĒA	20	40	1795				720		12560		13280
	w/25 AP MOTOR EN										~~~~~				~~~~~
	Stheet Total				<u> </u>	916-	<u> </u>				18290	18010 PROJECT	52620 NUMBER	211680	301000

					:		2		, 1/2:1/2:1/2:1/2:1/2:1/2:1/2:1/2:1/2:1/2:				in an in Colorador is	CALLER OF CONTRACT	, 7
PROJE	TT MINERPLS EXPL	RNC	2 <u>H</u> 2770A	, (2 O.R.	F	PREPAR	ED BY		?. ++	11105	999944 - 14747 - 54 André (* 14	REV. DAT FIRST ISS SHEET <u>4</u>	E <u>7/7</u> UE <u>11/3</u> 13 of 6	<u> 78 [</u> 0 <u> 7</u> 7 9
		1	ſ		N	ANHOU	RS	<mark>Г</mark> с	OST/UI	TIN	(COSTS (مان الفراقي عامر	· · · · · · · · · · · · · · · · · · ·)
A/C NO,	AREA 300 JOLNENT EXTRACTION	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	τοτα
	FACILITY		<u> </u>				<u> </u>	<u>.</u>	<u>L</u>	1		<u></u>	<u>.</u>	L	Landerson
	p /							[
13	PRIFEINATE SINGLE STAGE	001		ĒR		39	17 95				700		1850		255
	IN TH MOTOR				<u> </u>	<u> </u> i			1					·	
11	RAFFINATE TANK 165 d'x 12' M.S.														
	Prquet Exerv		42	сY	0!	42	15 - 5	152		1	60				60
	Сонсте		14	су	92	128-8	1575	145	85-		2030	1190			3770
	Reinf		1680	10	00!	168	2118	021	021		360	350			710
	Struct Byru		105	CY	02	21	15-15	303			320				320
	STEEL TANK		579	Ton	18	1002=	21'8	38/-	1260		22070	12950			9500
	FRP LINED		9087	5,5-						800				72700	7270
	Street Total					1252					25540	74490	1850	72700	17458
	·							[

)	2			,				(\ 4) -
PROJE	ect <u>Anderson Ra</u> It <u>Minerals Expl</u>	DNC DRL	H TION	, (2 ORI	I	PREPAR	RED BY		?. ++	/ /////////////////////////////////////	1994 (1997) - 1997 (1997) - 1997 (1997) 1997 - 1997 (1997) - 1997 (1997) - 1997 (1997) 1997 - 1997 (1997) - 1997 (1997) - 1997 (1997) - 1997 (1997) - 1997	REV. DAT FIRST ISS SHEET_4	e <u>7/7</u> ue <u>11/30</u> 14. at 6	<u> 78</u>
A/C NO.	AREA 500 JOLVENT EXTRACTION	wт.	Quantity	UNIT	N PER		RS		OST/UN	IIT SUB.		COSTS (Permanent	SUB,	TOTAL
	FACILITY		[<u> </u>				,						CONTR.	
515	RAFFINATE TANK														·····
516	DISCNARGE PURTE-31655 1800 gpm w/25 18 Moror	24	2	ĒA	20	40	1795		i		720		12560		13280
517 517 A	FLOWATETER-RAFFINIATE NJAGNETIC TYPE	007	2	ĒR	190	<u>380</u>	1795				6820		12680		19500
518 519	PREGNANT ORGANIC FEED PUMPS 31655	04		EN	10	20	1795				360		11320		11680
	VERT CENTRIFUGAL 220 gpm in 15 H Morag ER														
520	PREGNANT ORGANIC TANK 18 \$ × 14' MTS		67	Tor	20	134	21_8	424	1260		2840	8110			11280
	FRP LINED		1300	SÆ						10 50				13650	13650
521 5 <u>22</u>	PREG. ORGANNIC TANK DISCNARGE PUMP HORIZ. CENTREN 311.55	05	2	ĒR	10	20 :	1795				360		3140		3500
	220 gpm IN/5H NTOTOR EN					594					11100	8190	39700	13650	72890
201000000	an a	1920,750 - 10° 4		Statute and a state			a the second second		at of a base of a bas			PROJECT	NUMBER	///	14

						(i 197 <u>1 - National Maria</u> n					(
PROJE	tt <u>Minerpls</u> Expl	71/0 0 R E	- 	, (2 0	F	PREPAF	ED BY	4	? #	1		REV. DATI FIRST ISS SHEET	E <u>7/7</u> UE <u>11/3</u> 5 ct 6	<u> 78</u>
	ARFA 500]		1	N	IANHOU	RS	С	DST/UN	IIT		COSTS ()
A/C NO.	JOLVENT EXTENSION	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY		<u></u>	<u> </u>		1	ł		L 1				1	I <u></u>	<u></u>
523	PZEq. Organic BLEED			<u> </u>			ļ								<u>}</u>
	HORIZ. CENTRI - 20gpm	012	/	EN	10	10	1795				180		1220		1400
	W/ I HP Moror						· ` 		·					ļ	
524	HEAT EXCHANGER														
	INTRERVIOUS block			Ēø	12	12	17 - 5				220		4250		4470
	graphite a Sterring														l
525	PREG. DRGANIC SURGLE	001-		ĒA	39	39	1795				700		1050		1750
	Irwge-														
526	FLOININTETER						195								
	MAEG. DRGANIC MAGNETIC TYPE	00-		EA		790	1112				3410		4650		8060
53/	HairAroas STRIPPING	25	4	ĒA	20	80	1795				1440		16400		17840
534	MIXERS 316 SS		· · · · · · · · · · · · · · · · · · ·							~	~~~~~				
	Street Total					331					5950		27570		33520
		<u> </u>			L				!l			PROJECT	NUMBER	1/1/	14

-)	<u>`</u>		,					(ji i i ji
PROJE	ict <u>Finderson Ra</u> It <u>Minerals Explo</u>	7 N. I C	H	, (v ORI	I A	PREPAF	RED BY		? 11	11005		REV. DATI FIRST ISS SHEET_4	E <u>7/7</u> UE <u>11/3</u> 6 ai 0	<u> 78</u>
A/C	AREA 500	WT.	Quantity		N PEB	IANHOUI	R S	С	OST/UN	ม⊤ รมช	(COSTS (Permanent	SUP)
NO.					UNIT	TOTAL	RATE	LABOR	MAT'L.	CONTR.	LABOR	MATERIAL	Equipment	CONTR.	TOTAL
	FACILITY														
535	Bagger Dar and Firs														
537	PUNTR - VERT. CENTRI-	09	3	ĒA	20	60	1795				1080		16980		18060
	IN 5 H MOTOR EA														
538	SAMPLING SYSTEMT														
	BARGEN ORGANIC JINGLE STAGE	001	/	ĒA		39	1795			1	700		1850		2550
539	SEE CONGRETE TANKS		~												
510	Acitato & Reconcection														
<u> </u>	MIXER 316 SS W/3 AP MOTOR	04		ĒA	20	20	17 25				360		<i>4110</i>		4470
541	REGENERATION AQUEOUS														
	DISCNARGE PUNTA -	03					.795								
	10 gpm in/ 1 HP Moror	0=		EA		10	//2				180		<i>4510</i>		4690
	Street Total				~	129					2320		27950		29770
									I]		PROJECT	NUMBER	1/1/	14

•			1721 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 20	a an an N Satur I and	-))		1					') ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~) 7
								an a				internet and the statement of			
PROJI	ECT <u>ANDERSON RA</u>	71/C	- 1-1		2	1	PREPAR	REDBY		?. H	INDS		REV. DAT FIRST ISS	e <u>7/7</u> ue <u>11/3</u>	<u> 78</u>
CLIEN	IT TIMER QUE EXPLO		<u>, , , 0 V</u>		0.71		APPROV	/ED BY			·····		SHEET 4	/ of 6	
A/C NO.	AREA 500 JOINENT EXTRACTION	wt.	Quantity	UNIT	PER UNIT	TOTAL	RS	LABOR	OST/UP		LABOR	MATERIAL	Permanent Equipment	SUB.) TOTAL
	FACILITY		<u> </u>										1		
542	BARZEN ORGANIC TANK					[·							
	18'\$ × 14' M.S.		67	TON	20	134	21-18	424	1260		2840	8440			11880
	FRP LINED		1300	سيرى						10 50				13650	13650
503	BARGEN ORGANIC														
944	PUNTR- 31655 - 220gpm IN/5 HATOTOR EN	05	2	ĒA	10	20	1795			,	360		4440		<i>1800</i>
545	BARREN ORGANIC TANK			6			17.95	 			(20		1220		(200
	HORIZ-CENTRI ~ 316 SS 20 gpn w/1 H Moror	0-									700		1220		7000
546	FLOWATETER														
	BARREN ORGANIC	009	/	EN		190	1795				3810		4630		8040
547	BARREN ORGANIC SLUDGE		125	Ton	18	225	2118	381	1260		<u>4770</u>	15750			20520
	TANK 64 9 X CU MS					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	Sillect lotal	L	<u> </u>		L	579	L		<u> </u>		11560	PROJECT	10290 NUMBER	13650	59690

-					:		2		l Carlos Printerna al second			a sanad ka baran ya san da maajar		()) -
PROJE	ct <u>ANDERSON RA</u> t <u>Minerels Explo</u>	7 N/ C 7 R F	- H DTION	, (V ORI	 	PREPAF	ED BY		?. H	, inde		REV. DAT FIRST ISS SHEET 4	E <u>7/7</u> UE <u>11/3</u> 78 at 6	<u> 78</u> 🛆 o
A/C NO.	AREA 500 JOLNENT EXTERCTION	wт.	Quantity	UNIT	N PER UNIT	TOTAL	RS	C LABOR	OST/UN	NIT SUB. CONTR.	LABOR	COSTS (Permanent Equipment	SUB, CONTR.) TOTAL
	FACILITY		l	L			<u> </u>	,	<u> </u>				<u> </u>	1	
	FRP LINED		1960	SF						1050				20580	20580
548	AGITATOR ORGANIC SLUDGE TANK	60		Ē.A		24	1795				430		24310		24740
519	316 SS IN/40 H Moror										: 				
	SUPERNATANT CRUD PUMP HORIE. CENTRI ~ 316 SS 30 9007 W/ 1 H Maroe	06		Ēa		10	1795				180		1220		1200
550	JAMPLING SYSTEM														
	REGENERATION AQUEOUS DISCNARGE - JINGLE STAGE	001		ĒN		39	1795				700		1850		2550
551	DRGANIC LUDGE TANK DISCNARGE FUMP														
	Hogie, CENTRI - 316 S.S. 30 gport in / 1 HD NTOTOR	06	/	ĒN		10 :	17 95				180		1220		1400
	Sheet Total					83					1990	PROJECT	<i>28600</i> NUMBER	20580	50670

					Þ		Ĵ		ı	ı			* #443 (% 10 71) 740 251 1	<u> </u>) 7
			•							, ,					
PROJE	CT ANDERSON RA	7N/C	H			P	REPAR	REDBY		?. H	INDS		REV. DAT FIRST ISS	e <u>7/7</u> ue <u>11/3</u>	<u> 78</u> [/\ 0/77
CLIEN	IT MINERALS EXPLO	<u>PRE</u>	TION	<u>, (</u>	ORI	<u>р.</u> А	PPROV	ED BY					sheet_ <u>4</u>	9 at 6	9
	AREA 500				IV.	IANHOUF	RS .	С	OST/UN	JIT	(COSTS (-)
A/C NO.	JOLVENT EXTRACTION	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LACOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY		1			4 ·						A	A	<u> </u>	
			[Ţ			<u> </u>						1		
552	PREGNANT STRIP JOL.														
553	FEED PUNTR- 316 SS	05	2	EN	10	20	1795				360		8980		9300
	VERT. CENTRI- 30 9PAT						-								
	IN / I HP AJOTOG EN														
554	JANTPLING SYSTERT										:		<u> </u>		
	PREq. STRIP SOLUTION	001		ĒR		39	1795				700		1850		2550
	JINGLE STRGE													}	
555	JUATO PULTO -										·				
556	STRIPPING E EXTRACTION								1			1			
	AREA - VERT. CENTRIN	05	2	ER	20	10	1795				720		9060		9780
	316 55 - 50 gprt														
	IN/2 H Morog EN														
									<u> </u>						
	<i>n</i> / , = , ,						~								~~~~~
	Street lotsl					99					1780		19890		21670
	AREA TOTAL		· · · · ·			1111					203580	215810	207970	332260	959.620
			I			l	<u> </u>					PROJECT	NUMBER	1/1/	14

51215 - 18-55		E DE BRIGE			1		<u> </u>		r Branken son van					(
PROJE	CT <u>ANDERSON RA</u> T <i>MINERALS EXPL</i>	ORF	2 H 2710A	, (V OR,	I	PREPAR	RED BY		?. H	inos		REV. DAT FIRST ISS	E <u>7/7</u> UE <u>11/3</u> O ct 6	<u> 78</u> 0/77 9
	AREA 600				N	IANHOU	RS	С	OST/UI	VIT	ļ	COSTS (1)
NO.	E INASHING	wт.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L	CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
					,	·····	~	, Variation	*****	••••••	ļ	,	-		ý zaminina na czych czesky przedzi zamini zamini
601	HEAT EXCNANGER						-								
	PREG. STRIP SOLUTION		/	ĒR	12	12	17 93				220		3050		3270
:02 :03	Y.C. PRECEIPITATION TANK .5'\$x6' M.S.		12	Ton	10	12	2118	212	1260		250	1510			1760
	FRP LINED		228	3 F						1050				2390	2390
01	AGITATORS YC. PRECIP.						- 95							 	
05	1 1 15 H Mora	/-			20	40	17-				720		5060		5780
06	Y.C. TNICKENER 18'\$ x 5' M.S.		4!	TON	20	82	7/18	420	1260		1740	5/70			1910
	STRUCT STEEL		2-	Tox	40	41	2118	847	930-		870	1950			2820
	FRP LINED		538	SZ						1050				5650	5650
	Phrad T. L. I				~		-								
	STREFT DFGT					187					3800	8630	8110	8000	28580
				A					41, 27 21 mills here ser 1, 11 2 2 4			PROJECT	NUMBER	1/1/	4

•		the contractor	uny automatic to de Manau			()		,		n na 12 an stain an stain ta stain t		11 and 8+ 44 Minter 41,	(, \
PROJI	ECT <u>FANDERSON RA</u>	71/0	•			F	PREPAF	ED BY		2. H	I TINDS		REV. DAT FIRST ISS	e <u>7/7</u> ue <u>11/3</u>	<u>/78</u>
CLIEN	IT <u></u>		<u>, 770</u> X		ORI N		APPROV	ED BY		<u></u>		COSTS (SHEET_J	af a	, 7
A/C NO.	AREA GOU Y.C. PRECIPITATION & INASINING	ωт.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L	SUB.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY		J	<u> </u>		I			d	L		<u></u>		4	-Lasman terrargementer
07	Y.C. TNICHENER														
	MECHANISAT - 31655 IN/11/2 Moroe	23	/	ER	41	.9.4	1795				1690		17240		18930
18	Y.C. TNICKENER UTION PUMP														
	HYPALON LINED I gpri	0=				<u> </u>	///-			1	140.		1740		/880
9	FLOWMETER-Y.C. UFLOW MAGNETIC TYPE	003		EA		190	1.7 95				3010		4090		7500
	TANTALUNT ELECTRODES IN TRANS & MECORDER														
0	Y.C. TNICKENER U'FLOW TANK R' & R' M.S		13	Try	10	13	2/18	212-	121.0		280	11.00			1920
	FRP LINED		251	J.F					7260	1050	200	/200		380	380
						!									
	Steet Total					305					5520	1600	23070	380	30610
												PROJECT	NUMBER	1/1/	14

					:)	Ĵ		l Selang selang pengang pengang	, 		a sunstate for the second second second		(_'	بى \ ت (
PROJE	ct ANDERSON RA	71/0	2 H			F	REPAF	EDBY		?. #	INDS		REV. DATE FIRST ISSI	= <u>7/7</u> UE <u>11/3</u>	78 A 0/7.7
CLIEN	IT MINERPLS EXPLO	ORA	TION		ORI	<u>р.</u> А	PPROV	ED BY					SHEET 5	2 of 6	9
A/C NO.	AREA 600 <u>Y.C. PRECIPITATION</u> É INFONING	wт.	Quantity	UNIT	PER UNIT	TOTAL	RATE	C(LABOR	MAT'L	NIT SUB. CONTR.	LABOR	COSTS (Permanent Equipment	SUB. CONTR.	TOTAL
			P* 420	·		L	۱	· ·	L			¥		۲ <u>ــــــــــــــــــــــــــــــــــــ</u>	
611	HairATOR YC U FLOW TANK 316 SS - W/75 HP Moror	09		ĒR		20	1795				360		3850		4210
512	Y.C. CENTRIFUGE FEED PUNTO W/IHMOTOR	014		ĒR		10	17 95		· · · · ·		180		1860		2020
613	UNCLARIFIED BAGGEN STRIP SOLUTION TANK B'\$ X B' 17.5.		15		10	15	2118	772	1260	1	320	1890			2210
	FRP LINED		302	S.E.						1050				3170	3170
14	BARREN JARIA JANO FILTER FEED PUMP HORIZ. CENTRI ~ 316 SS 30 9PM IN/ 5 HP NTOTOR EA	05	2	En	20	40	/795				720		1210		1930
.16	BARGEN STRIP SAND FILTER E'& M.S. RUBBER LINEDW SRID	12	/	ER		16 :	1795				290		22750		23040
	Sheet Total					101					1870	<i>1890</i> PROJECT	<i>2,9670</i> NUMBER	3170	36600

•						(ı	,					
				4		ne navn citika oʻrina qilari Virent (Districtini vilani vilani	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		1999 ay 1999 away 20 and 1999 ay 1999 ay						
PROJE	CT ANDERSON RA	7 <i>1/C</i>	1-1		2		PREPAF	RED BY		?. H	TINDS		REV. DAT FIRST ISS	e <u>7/7</u> UE <u>11/3</u>	<u> 78</u> [] 0/77
CLIEN	T <u>IVIINERALS EXPLO</u>	ORA	TION	<u> </u>	ORI	<u> </u>	APPROV	ED BY					SHEET 5	3 of 6	9
A/C NO.	AREA 600 <u>Y.C. PRECIPITATION</u> É INNONING	wт.	Quantity	UNIT	PER UNIT	TOTAL	RS	LABOR	OST/UN	SUB.	LABOR	COSTS (Permanent Equipment	SUB. CONTR.) TOTAL
				1			<u></u>		<u>I</u>	!		I		L	l
617	CLARIFIED BARGEN STRIP						1								
	5' \$ x 5' M.S.		/ <u>5</u>	Ton	10	15	2118	222-	1260		320	1890			2210
	FRP LINED		302	57						1050				3170	3170
618 619	BARREN STRIP FEED PUNTP Hogiz-CENTRI SIGSS 30 gpnt w/ 1 H Moror	012	Z	ĒR	10	20	1795			1	360		2460		2820
620	FLOWATETER - BARREN STRIP FEED JOLUTION MAGNETIC TYPE W/ TRANS & FECORDER	003		ÉR		190	1.7.95				3410		4090		7500
621	SAFTIFLING SYSTENT BARREN STRIP FEED JOLUTION - SINGLE STRGE	001	/	ĒN		39	1795				700		1860		2560
	Sheet Total				~	264					4790	1890	8110	3170	18260
												PROJECT	NUMBER	1/1/	14

			ana (year Colores	1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	MAN TO A	()	1.111-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	a dalagi a ma a ma a ma					(ء بر
PROJE	ect <u>Anderson Ra</u> it <u>Minerals Expl</u>	ANC ORA	- H TION	, (noR,	P. ,	PREPAI	RED BY	, 	<i>д. н</i>	inos		REV. DAT FIRST ISS SHEET <u>5</u>	E <u>7/7</u> UE <u>11/3</u> 4 of 6	<u> 78</u>
	APEA 600	1			N	IANHOU	RS	С	OST/U	NIT		COSTS (_)
A/C NO.	Y.C. PRECIPITATION E INREMING	WT.	Quantity	דואט	PER	TOTAL	RATE	LABOR	MAT'L	SUB. CONTR	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			L	_!		J	1	L		1			J	1	
622	FLOWATETER BARREN														
	STRIP BLEED DEE			1											
	POLUTION - MAGNETIC	103	/	FR		190	1795				3910		1090		7500
	TYPE- IN/ FRENSE			1	Î	1/2-			i			1			
	recorder									1				<u>+</u>	
											:				
623	SAMPLING SYSTEM														
	BARGEN STRIP BLEED DEF	001	/	EA		39	1795				700		1860		2560
	SOLUTION - SINGLE STAGE														
624	JAND FILTER BACKWASH														
	PUMP - Hogiz CENTRI														
	316 55 - 30 gp-7	012	/	ĒN		10	17 25				180		1250		1430
	IN J A MOTOR														
625	BACKINASN SURGE TANK														
	4'\$ x 4' 17.5.		04	TONI	10	4	2119	222	1260		80	500			580
	FRP LINED		75	تعرك						1050				780	780
	Sheet Total					243					4370	500	1200	180	12850
				l					l			PROJECT	NUMBER		1/4

		1510 S 110 4 4	ing a second	a anati tang basa	: 		Ĵ		1	n New No a New York		nymine for the training of the statement	Ve a wax ta managera a s	(
PROJE	t <u>ANDERSON RE</u> MINERALS EXPLO	7NC ORF	H TION	, (VORF	F	PREPAF	ED BY		? #	inos		REV. DAT FIRST ISS SHEET_5.	E <u>7/7</u> UE <u>11/3</u> 5 of 6	<u> 78</u> [] 20 <u> 7</u> 7 9
A/C NO.	AREA 600 <u>Y.C. PRECIPITATION</u>	₩Т.	Quantity	UNIT	M PER UNIT	ANHOUI	RATE	C	DST/UN	UT SUB. CONTR.	LAEOR	MATERIAL	Permanent Equipment	SUB. CONTR.) TOTAL
			<u> </u>	1			J	l						<u> </u>	
626	Y.C. CENTRIEUGE 31655 IN/20 HP MOTOR	04		ĒN		54	1795				970		30090		31060
627	Y.C. JEREW CONVEYOR to DRYER 316 S.S. W/ I H MOTOR	015		ĒN		16	1795				290		2030	. 	2320
628	Y.C. DRYER MULTIPLE HEARTH TYPE	225		ĒA	21	473	1795			1	8190		/44420		152910
629	Y.C. ROLL CRUSNER	12		Ēa		48	17.95				860		9320		10180
630	Y.C. STORAGE BIN 275 C.F 7 & CONICAL		05	Ton	45	23	2118	548 ⁻	1260		490	630			1120
631	BOTTONT - NT.S. CONST DRUNT VIERATOR			ĒN		8 :	1795				140		970		///0
	Sheet Total					622					11240	630	186830		198700

						(<u> </u>	the set of the					(7
PROJE	ct <u>Anderson Ra</u> t <u>Minerals Expli</u>	RA RA	H	, (2081	F	PREPAF	ED BY_	G. H	inos		REV. DAT FIRST ISS SHEET <u>56</u>	E <u>7/7</u> UE <u>11/3</u> 5 of 6	<u> 78</u> 0/77 9
	ARFA 600				M	ANHOU	RS	со	ST/UNIT		COSTS ()
A/C NO.	Y.C. PRECIPITATION E INASNING	WT.	Quantity	דואט	PER UNIT	TOTAL	RATE	LABOR	SUB.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
							·····					• • • • • • • • • • • • • • • • • • •		
632	Y.C. PLATFORM SCALES			ĒA		32	17 - 5			570		8970		9540
633	ROLLER CONVEYOR 20" x 120' HERVY DUTY	015	/	Ē.R.		240	1795			1310		6560		10870
	NI/ 1 H Moror											 		
634	HER SCRUBBER Y.C. PRECIP THICKENER	n53		Err		12	1795					(870		
	3000 CFAT 31655 Const IN /10 HP ATOTOR	0				4 6				730		60/0		7660
635	INET SCENEER-1200 CFM	- 63					- 95							
	Y.C. DRYING - 31655 CONST IN/ 5 HP Moror	055		EA		37	1712			660		6420		7080
636	WET SCAUBBER- 1200 CFN7 Y.C. PACKING - 316 SS CONST.	153		ي. بر م		37	1795			660		6420		7080
	1N/ 5 HP NTO TOR	~								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<i><i>w+cv</i></i>		
	Sheet Total					388				6950		35240		42190
l	an an an an an ann ann an an Ann an Anna ann an Anna ann an Anna an Anna an Anna an Anna an Anna an Anna an Ann	1	a go i falang dalam (ta siya yi yi)			an a		and the second second		36000000000	PROJECT	NUMBER	1/1/	14

						(<u>ر</u>							(<i>چ</i> بر
PROJE	ct <u>Anderson Ra</u> T <i>Minerals Explo</i>	ZNIC DRA	H TION	, (2 ORI	F F	PREPAF	RED BY		?. ++	/ 		REV. DAT FIRST ISS SHEET 5	E <u>7/7</u> UE <u>11/3</u> 7. of 6	<u> 78</u>
	(20)	y		· · · · · ·	M	ANHOU	35	C C				COSTS (_			<u>}</u>
A/C NO.	AREA 600 Y.C. PRECIPITATION E INASNING	WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			J	L				I		L		·	L	<u>المحمد المحمد المحم</u>	<u>.</u>
	LequeBER Duct INLOGK		HLLOW			95	2/18				2010	6000			6010
637 638	SUNTA PUNTA ~ 316 S.S. WERT. CENTRI ~ 30 9pm	054	2	ĒA	20	40	1795				720		9020	·	9740
	. IN/ I HP Moror ER		· · · · · · · · · · · · · · · · · · ·								·				
	······································														
											~~~~				
	Sheet Total					135					2730	6000	9020		17750
	AREA TOTAL					2245					41270	21180	307550	15540	385540
									5		1 1 1 1 1 1 1 1 1 1 1 1	PROJECT	NUMBER	111	14

-		• • • • • • • •			Anton saylo da defanada, et	(	J		1				10 y ya 10 ya 10 ya 10 ya 10 ya 10 ya	(	, `, `, ,
PROJE	T MINERSON RE	7 N/C 2 R F	H 2710A	, (	v OR,	I p	PREPAR	RED BY	·4	?. H	inos		REV. DAT FIRST ISS SHEET <u>S</u>	e <u>7/7</u> ue <u>11/3</u> 8. ct 6	<u> 78</u> 0/77 9
A/C NO.	AREA 700 REAGENT HANDLING	ωт.	Quantity	UNIT	PER UNIT	TOTAL	RS RATE	C LABOR	OST/UI	SUB.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	) TOTAL
			I				L						1	1	I
701 702	JULFURIC ACIO TANKS 65 \$ × 30' M.S.		2	ĒR											
	BERNT ENBRNKATENT		2053	CY	 			 		200				4930	4930
	BERNY KINING		24000	52	0004	96.	1367	005	030		1310	7200			8510
	CONCRETE		30	сү	115	345	1575	181	58-		5430	1740			7170
	REINE		3600	18	00!	36	2118	021	02!		760	760			1520
	Strauer Byre		245	CY	0 ²	49	1515	303	1210-		740	246700			740
703	ACIO TRANSFER PUNTA			TON		5700	42	424	1260		02600	243/00			328300
704	HORIZ. CENTRIN C.I. 70 9pm IN/ 5H MoragEn	05	2	ĒR	20	40	17 - 5				120		2010		3160
	Street Total					4475					91700	255400 PROJECT	200 NUMBER	1930	354470

•					1		J			t				Ľ	
			•			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1			an station and an and a second special of a				
PROJE	CT ANDERSON RA	71/0			2	F	REPAF	ED BY	4	?. H	INDS	<u> </u>	REV. DAT	e <u>7/7</u> ue <u>11/3</u>	<u> 78</u> 🛆 2/77
CLIEN	T <u>NINERALS EXPLU</u>	<u>PRE</u>	TION	/ (	ORI	<u>e</u> . A	PPROV	ED BY			·····		SHEET 3	9 <u>at 6</u>	٢
A/C	AREA 700	MIT	Overstitu			IANHOU	RS	C	OST/UN	TIL		COSTS (	Permanent		
NO.	TENGENT MANDLING		Cluantity		UNIT	TOTAL	RATE	LABOR	MAT'L.	CONTR.	LABOR	MATERIAL	Equipment	CONTR.	TOTAL
	FACILITY			- <b>1</b>		4	1		L				<b>.</b>		
ļ				1	ļ	· · · · · · · · · · · · · · · · · · ·	( <b>-</b>	· 				[			
705	SODIUM CNLOGATE TANK										·····				
	24'\$ x 16" M.S.														
	Strauer Exers		20	c1	0-	2	15 15	152	· · · ·		30				30
	CONCRETE		6	CY	115	23.	1575	181-	58-		360	350			710
	REINE STEEL		720	L.B	00!	72	2118	021	021	1	150	150			300
	Irquer BREL.		20	CY	02	4	1.5 -5	303			60				60
	STEEL TANK		135	Ton	20	270	2118	424	1260		5720	17010			22730
101	PHENOLIC LINING		2111	سر ک		· · · · · · · · · · · · · · · · · · ·				1050	. <u></u>			22170	22170
706	METERING PUMP		2	ĒR	10	20	1795				360		6560		6920
	O.I. 10 gpm w/2HPN Jorog														
708	REAGENT AREA JUMP PUMP	03													
	VERT CENTEL - 316 SS		/	ĒA	20	20'	1795				360		4560		4920
	DU gpri - 24 Moror				-						~~~~~	 			
	Sheet Total					346?					7040	17510	11120	22170	57800
	an a	-	a a a fa fa tha tha ta a fa that a fa fa			an a frig Carney fur				nandy first the Based first		PROJECT	NUMBER	///	4

						(	J		l May denganna ye air		n Gala Igan ar san a line basa a s	and the barry of the former		(	ى \
PROJE	ect <u>Aniderson Ra</u> It <u>Minerals Expl</u>	TNC DRE	H 2710A	, (	V ORI		PREPAF	RED BY		?. ++	1,005		REV. DATI FIRST ISS SHEET <u>60</u>	e <u>7/7</u> ue <u>11/3</u> 2 of 6	<u> 78</u>
A/C NO.	AREA 100 REAGENT HANOLING	wт.	Quantity	UNIT	N PER UNIT	TOTAL	RS	C LABOR	DST/UN	JIT SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	) TOTAL
			I	<u>ــــــ</u>	 	<u>.</u>		l '	l				<u>.</u>	l	·
109 710	FLOCCULIANT Prograge TANK 24'\$ × 16' MTS		2	ĒR											
	Concrete		40	сү сү	0- 1/5	4	15 15	13 <u>2</u> 181 ⁻	58-		60 2170	700			60 2870
	REINE		1440	10	001	144	21/8	021	021	· · · · · · · · · · · · · · · · · · ·	300	300			600
	STRUCT BYFL.		<i>40</i>	CY	0=	8	15 ¹⁵	303			120				120
711	FLOCCULANT VIERATING FEEDER 250#/AR	001		ER	8	8	21-2	<i><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></i>			///////////////////////////////////////	34020	250		390
712	FLOGGULANT TAANSFER PURTE - HORIZ CENTRI	12		ĒR	20	20	17 95				360		5290		5650
	C. I. 150 9PAT IN/ 15 H 170TOR				<u> </u>		~ -				~~~~			, have a start of the start of	
	Steet Total			6.5.9 er 60.64		7324			ĺ	ĺ	14590	<i>35020</i> PROJECT	<i>5540</i> NUMBER	11	55150

			alana bilana situs bilanda bilang sa	16 18 1951 1 Carpel 10		(	Ĵ		1 1940 al 2003 anns 71 an		-		ne y kerén si kanénasiya k	C	4
PROJI	ect <u>Anderson Ra</u> it <u>Minerals Expl</u>	TNC ORE	• H	, (	2 OR,	<i>P. 1</i>	PREPAI	RED BY /ED BY		?. #	1		REV. DAT FIRST ISS SHEET 6	E <u>7/7</u> UE <u>11/3</u> 1. of 6	<u> 78</u> 0/77 9
A/C	AREA 700	WT.	Quantity		N PER	IANHOU	RS	С	ost/uk			costs (	Permanent		)
NO.					UNIT	TOTAL	RATE	LABOR	MAT'L.	CONTR.	LABOR	MATERIAL	Equipment	CONTR.	TOTAL
	FACILITY														•
1112	E														
714	PUNTRS-MS- 50 9PM	12	2	EN	12	20	1795				430		5660		6090
	IN 5 H MOTOR ER							ļ							
715	GUIE PREPARATION TANKS														
716	B'\$x 10' NTS OPEN TOP	1	2	ĒA					<u> </u>						
	CONCRETE		7	CY	115	60 ⁵	15 25	181-	58-	· ·	1270	410			1680
	2				.01	1	I.A.	- 21	- 21					ļ	
	DEINE		840	18	0=	84	210	05	00-		180	180		}	360
	STEEL TANKS		<u>ھے</u> سق	Ton	30	114	2118	635	1260		2910	1790			7200
717	GLUE JOLUTION PUMP														
	M75-309PM7	05	1	ĒN	15	15	17 -5				270		2130		2700
	IN 3 A MOTOR					·····					· · · · · · · · · · · · · · · · · · ·				
718	GLUE SOLUTION METERING														
719	PUNTE 59PAT	04	ê	ĒR	10	20 :	1795				360		2200		2560
	in first i for or				-						~~~~~				
	Sheet Total					2619				ĺ	4920	5380	10290		20590
<b>b</b>	an a sa s		a ging as taken we are in a court of a f	- PE SPE av attains								PROJECT	NUMBER	1/1/	4

•		6 U.S. 544 474				)	j		1					C	); 5
PROJE	ct <u>ANDERSON RA</u> T <u>MINERALS EXPLO</u>	DRE	H 2710N	, (	VORI	F <u>⊃</u> _ А	PREPAF PPROV	ED BY		?. ++	/ iNDS		REV. DAT FIRST ISS SHEET_6	E <u>7/7</u> UE <u>11/3</u> 2. at 6	<u> 78</u> 0 77 9
A/C NO.	AREA 700 MERGENT HENOLING	ωт.	Quantity	UNIT	PER UNIT	ANHOUF	RATE	C( LABOR	DST/UN	IIT SUB. CONTR.	LAEOR	COSTS (	Permanent Equipment	SUB. CONTR.	) TOTAL
			I	L		,	() [	·				T	I	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
720	Керозене Тянк 6'\$ x 22' NJ.S.	·	24	Ton	30	72	21-8	635	1260		1520	3020			4540
721	KERDSENE TRANSFER PUMP C.I. ~ 50 gpm IN/ 2 AP MOTOR	013	1	ĒA	15	15	/795				270		500		770
722	LIQUID ANNYDROUS ANTONIA TANK									1					
	20 TON CAR ~ 10'x 15' CONGRETE		<u>4</u> <u>8</u> <u>3</u> <u>7</u>	TON	30 11 <u>5</u>	144 426	2/-8	635 ⁻ 181 ⁻	1320 ⁻ 85		3050 670	6340			9390 980
	Reinf		444	18	002	8-9	2/18	042	021		190	90			280
723	HAMMONIA VAPORIZER 100 #/hr	02	/	ER		12	1715				220		2000		2260
720	JODIUM BICARBONATE TANK 5'\$ × 6' MS		05	Tor	20	20:	21-18	424	1260		420	1010			////
	Street Total					3145					6340	10770 PROJECT	<i>2540</i> NUMBER		19650

PROJECT   FINDERSON   RENOAR   PREPARED BY   G. Hinds   FIRST ISSUE 11/30/79     CLIENT   MINERALS   FXPLORATION   CORP.   APPROVED BY   G. Hinds   FIRST ISSUE 11/30/79     AC   MARLAUS   FXPLORATION   CORP.   APPROVED BY   SHEET 63. at 69     AC   AREA   100   MANHOURS   COSTUNIT   COSTS (					en an anti-transmission	) 97749773747	(	)		1 Riz <u>- Kantan</u> M	,		a seconda de la contra anticadore	स्ट क प्रावस्थित विद्यालय स्टाइ		\ 6 ) ;
AREA     100     MANHOURS     COST/UNIT     COSTS ()       ANC     AREA     100     Quantity     WIT.     Quantity     TOTAL     RATE     LABOR     MATERIAL     Permanent     SUB.     TO       FACILITY	PROJE	ect <u>Anderson Ra</u> it <u>Minerals Explo</u>	7NIC ORA	• H 7710A	, (	v ORI	 	PREPAR	RED BY		?. #	I TINDS		REV. DAT FIRST ISS SHEET_6.	E <u>7/7</u> UE <u>11/3</u> 3 of 6	<u> 78</u> [] 2/71 9
FACILITY	A/C NO.	AREA 100 BERGENT HANDLING	wt.	Quantity	UNIT	N PER UNIT	TOTAL	RS	C	OST/UN	UT SUB, CONTR.	LABOR	COSTS (	Permanent Equipment	SUB. CONTR.	TOTAL
725 Вагия Висадонните 726 Вагия Висадонните 726 10 20 173 360 1800 170   5 дрига и // И Поток 728 Вагиан Панк 03 Тон 4 216 60 360 20   728 Изореские Танк 03 Тон 4 216 60 360 20   728 Изореские Танк 03 Тон 4 216 80 360 20   728 Изореские Танк 03 Тон 4 216 80 360 20   728 Изореские Танк 03 Тон 4 216 80 360 20   729 Изореские Танк 03 Тон 4 216 80 360 20   729 Изореские Слодин 03 1 4 216 360 2920 32   189 Улогон Слодин 02 175 360 2920 32   Нонис Сигодит 03 1 176 20 175 360 2920 32   180 Гоно 0 170 1 10 10 10 10 10   19 Гоно 10		FACILITY		]	<u> </u>			<u> </u>	<b>]</b>				}	<u> </u>	<u> </u>	
121   Алатный Гоштон Танк   03   Тон   4   21.12   80   360   44     319   x 31   NTS   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1<	725 726	SOLUTION PUNTE C.I. Surion PUNTE C.I. Supra N/1 H Mora	02	2	E3	10	20	1795				360		1400		1760
728   1500ECRNEL TANK   0 ³ Ton   4   21 ⁸ 80   360   04     3'\$\$ x 3'   713   1   1   1   1   1   1   14     7129   Joordan Chroghters   1   1   1   1   1   1   1   14     7129   Joordan Chroghters   1   1   1   1   1   1   1   1     7129   Joordan Chroghters   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1<	127	ALAMINE POLUTION TANK 3'\$ x'3' NTS		03	Ton			2118				80	360			<i>a</i> 40
129   SOLUME (NLORNETE   1   1   1   1   1   1     TRANSFER PUMP C.E.   0 ³ 1   Ex   20   20   17 ³⁵ 360   2920   32     HORIE. CENTRI   300 9pm   1   1   1   1   1   1   1   1     IN/ 75   40 70 70 R   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 <td>728</td> <td>SODECRNEL TANK 3'\$ X3' MS</td> <td></td> <td>03</td> <td>Ton</td> <td></td> <td>4</td> <td>21-18</td> <td></td> <td></td> <td>*</td> <td>80.</td> <td>360</td> <td></td> <td></td> <td>440</td>	728	SODECRNEL TANK 3'\$ X3' MS		03	Ton		4	21-18			*	80.	360			440
130 Jodium CNLOGRAFE TANK 6 Ton 30 180 21/8 635 180 3810 7560 113   15'\$\$ x 16' NTS 6 Ton 30 180 21/8 635 180 3810 7560 113   PRENOLIC RESIN LINED 1110 SF 1 1050 11650 11650 11650   Meet Total 228 4690 8280 4320 11650 289	729	JODIUNT CNLORITTE TRANSFER PUNTP C.I. HORIZ. CENTRI 300 9PM IN/ 75 IP MOTOR	D ³		ER	.20	20	17.95				360		2920		3280
PNENOLIC RESIN LINED     1110     SF     1050     11650     116       Meet Total     128     4690     8280     4320     11650     289	730	JODIUM CHLOGATE TANK 15'\$ × 16' NIS		6	Tom	30	180	21/8	635	1260		3810	7560			//370
Meet Total 228 4690 8280 4320 11650 289		PNENOLIC RESIN LINED		1110	SF			<u>├</u>			10 50				11650	11650
		Sheet Total					228					4690	8280	4320	11650	28940

<i>Annexe</i> en			nin al al anna gun an An Rain S					125-30-02-03	: 22.169.5109.5	1 		Rest Contract of Contracts			\ 7 ) 7
PROJE	ect <u>Anderson Re</u> it <u>Minerals Expli</u>	DRA	• H	, (	2 ORI	F <u></u> A	PREPAF	ED BY		?. #	- inos		REV. DAT FIRST ISS SHEET_6	E <u>7/7</u> UE <u>11/3</u> 4. at 6	/ <u>78</u> 0/77 9
A/C NO.	AREA 700 REAGENT HANDLING	wт.	Quantity	UNIT	PER UNIT	TOTAL	RATE	C	OST/UN	SUB.	LABOR	COSTS (	Permanent	SUB. CONTR.	TOTAL
	FACILITY			<u> </u>			1	1		[			<u> </u>	l	
731	AGITATOR FOR B'\$ X 10' GLUE PREP, TANK	09		ĔA		16	17 95				290		3750		<i>a</i> 040
732	HGITATOR FOR 20'\$X 16' FLOCCULANT TANK	<u>35</u>	1	EN		60	1795				1080		14680		15760
733	HGITATOR FOR 5'4 X 6' BOULDAT BICARBONATE TANK	08		ĒA		16	1795				290		3240		3530
734	HGITATOR FOR 15 ØX 16 BOUNT CHLOGATE TANK			ĒA		60	1795				1080		13460		14540
	IN / 30 14 NJOTOR														
	Sheet Total					152:	~				2710		35130		37870
	AREA TOTAL					6510					132020	332360 PROJECT	71380 NUMBER	38750	574510

		in a constant		****			)	6.11.00 (11.00 <b>(</b> 1.00	,	tanin da - saan sa - s			and a state of the		
PROJ	ect <u>Anderson Ra</u> at <u>Minerals Expl</u>	ZNIC ORA	H A TION	, (	VOR,	F	PREPAF	ED BY		? ++	1		REV. DATH FIRST ISSI SHEET_6-	= <u>7/1/</u> UE <u>11/3</u> 5 ct	<u> 78</u>
A/C NO.	AREA 001 MISC. EQUIPATENT	₩Т.	Quantity	UNIT	PER UNIT	TOTAL	RATE	C LABOR	OST/UN	NT SUB, CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	) TOTAL
			L	.l		1	I	l				J	l	L	· .
002	HIR CONTRESSOR ROTARY SCREW TYPE 125 DSIG MAX - 100 HP	11		Ea		60	17 75				1080		15530		16610
003 004	BOILERS W/ 50 H EAT 22000 LE/HR 125 psig IN/WATER TREATMENT	125 \$	2	ĒN		1383	2126				29680		229580		259260
006	FORKLIEF TRUCK	2-	/	ĒN		16	1962				310		11910		18220
	Street Total					115.9					31070		257010		288090
											VINCE AND AND A	PROJECT	NUMBER	11	14

·			11. jul. 1990				)		1		Nelson de la management de		a state a state a state a state	(	
PROJE	it <u>Minerals Explo</u>	DRA	H	1_C	2 OR,		PREPAF	RED BY	G	?. ++	- 		REV. DAT FIRST ISS SHEET_6	e <u>7/17</u> UE <u>11/3</u> 6 of 0	/ <u>78</u> 20/77
	AREA 001				N	IANHOU	RS	C	OST/UN	IJТ		COSTS (_			)
A/C NO.	ATISC. EqUIPATENT	WT.	Quantity	UNIT	PER	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
			1	<u> </u>		1	1		<u>.</u>			J	I	L	I
010	INSTRUMENT AIR														
	45 cf kt ~ 60 psig	04	1	ĒA		16	17 25		·		310		1970		2280
	IN THE A MOTOR														
012	SULFURIC ACID UNLOADING														
	Contregessor 100 cfri 100 psig in /25 H NJoror	05	/	Ĕ <i>Α</i>		32	1795				570		4570		5140
013	ENTERGENCY POWER														
	GENERATOR 1000 KW 080 V - 3 PHASE - 60 hz	113		Ēa	17	192	1795				3 <b>4</b> 50		103130		106580
	Suco Mounteo														
	Sheet Total					200					4330		109670		114000
										ł		PROJECT	NUMBER	1/1/	14

•					<b></b>		)		1.115 - 14 ANN - 14			ana ang ang ang ang ang ang ang ang ang		`	
PROJE	ECT ANDERSON R.	ANC	Р.Н.		2		PREPAR	RED BY	' <u> </u>	?. <i>H</i>	INDS		REV. DAT	E_ <u>7///</u> UE_ <u>11/3</u>	<u>/78</u> [] 0/77
CLIEN	IT <u>MINERALS EXPL</u>	ORA	TION	1 (	ORA	<u>P.</u> A	APPRON	/ED BY				····	SHEET 6	7 <u> of 4</u>	7
•/0	AREA	-			M	ANHOU	RS	c	OST/UN	UIT		<u>соѕтѕ ( _</u>			)
NO.	Misc. EquiPATENT	-   WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L.	SUB. CONTR.	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
		- -	L				<u></u>	4		I			I	L	ł
014	FRESN INATER PUMP														
	150 gpr7- 10/5 H 170F0R	0=		ĒN	10	10	17 - 25	1	· · ·		180		900		1080
A15	Alandare Pine														
016	150 gpm	04	2	ĒN	15	30	17 95				540		3620	,	4160
	Sheet Total					40					720		4520		5240
	AREA TOTAL					1739					36120		371200		407320
		AR-1917-01-13							an d' Maharat de			PROJECT	NUMBER	11	14

							¥							(	
PROJE	CT <u>ANDERSON RA</u>	TNC	H			F	REPAR	RED BY		<i>.</i> . 4	Linos		REV. DAT	e <u>7/7</u> ue <u>11/3</u>	<u> 78</u>
CLIEN	MINERALS EXPLO	RA	TION	, (	ORI	<u>р.</u> д	PPROV	ED BY					SHEET 6	<u>8. 016</u>	2.
	AREA				N	IANHOUP	RS	С	DST/UI	VIT	[	созтя (_			)
A/C NO.		WT.	Quantity	UNIT	PER UNIT	TOTAL	RATE	LABOR	MAT'L	SUB. CONTR	LABOR	MATERIAL	Permanent Equipment	SUB. CONTR.	TOTAL
	FACILITY		L	L			L	I	<u> </u>	1		I	1	J	
	72 17		7			1000		10/8							
}	PROCESS FIFING		LLOWAN	CE		36090		19:0			691400	628630			/320070
	PRINTING (4 MEN C	15	wys)			2400	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1787			42890	18000			60,890
	ELECTRICAL													1694580	1694580
	INSTRUMTENTATION		TLLOWAN	CE							•			343140	343140
	CONTRONS	A	PLLOINAN	c <i>e</i> -										25000	25000
	MILL EQUIPT SPAGE PAGTS (5% OF PERAT. EQUIPT COS	-)				690	1795				12390		247120		259510
	INITING MILL RENGENTS & JUPP	165												396000	396000
												PROJECT	NUMBER	///	14

(	7	MORRISON-KNUDS	EN COMPANY, INC.		(
OPERATION &	LECTRIC LET	MATE	ITEM NO.	SHEET	OF AGE
MINERALS	EXPLORATION	)	JOB 1114		
QUANTITY		EST. LEVALLE	CK'D BY	DATE 6 - :	<u>\$0-78</u>

SAT 69 OF 69

	Man Hours	LOFOR FATE	EPUIPMENT UGE	MATERIAL	POTAL DIRECT OFF	> Lin	E JOJAL	
al s - s - s - s''' l'altre de la companya de la compan Intervente de la companya	- Carrenar anna an Anna an Anna an Anna an Anna An							
MILLSITE:								<u> </u>
ARFS LIGHTING	1754	36132	252	2 2622	5 64866	12973	77839	╶╢┽╢╫┾╋
								─╂┼┼┼┼┿╇╸
PAUSFORMERS \$ 75RVICE EQUIPMENT	1310	6986		1 47096	1	199967		──╢ <b>╶</b> ┼╴╢╶╀╶┼╶╂╀╴
MOTOR WIRING + CONTROLS	18630	3, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 2, 3, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	2686	1 42041	3 831055	14211	997266	
OVERNEAD LINE TO PUMP HOUSE	во	1648		2 160	0	673	4036	
OVERHEAD LINE TO SUBSTATION	208	4285	30	844	4 113029	2424	15485	
				┉┈┈╽╴┝┎┥┥┤╷				
						<b>₩</b>		<u>─</u> ┨ ┽ ╅┤┽ ┽┼╸
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		┥━━━━╽╺──┾╾╅╼┟╼╄╍┦╺╁╌			╶┼───┲╶┼╍╎╍╎╼╎╼╎╌	╏╌┼╍┞┦┽╌┞╶┠╶╬╼╼╼╸	-7674200	<u>──╫</u> ┼┼┽┾┿┼╴
			╅───┟┼┼╂┼╆┼	╫──╫─┼╀┽┼╁┦		╉╼┿╸┧┝╎╌┟╌┨╴╢╌╌╌╴		──╂┼┼┼┾╆┾╴
		╎╴━━━━╋	╫╍╍╍╌┠╼╌┼╌┠╍┞╾╀╴┦	╢┈┈╴╏╴┝╪┽┽┠╢		╟┼┦┦┼┼┼┼╢		
		┟╵╾╍╼╴╢╴╴┝╼┞╼╂╺┞╶╂╶┦	╢╴╴║╺┼┼┼┼┼╀┼	╫──┠╌┝╁┼┼┤	┊╴╴╴╢╶╶┼╶┦╌┤╼┦╼┦╶╢┈╼╌╸╌╴			
			┼────	╶╫───╸║╍╼┽╍╿╍╿┽╌┽╴┥	╶┋╴╴╸┛╌╴┝╶╿╶╎╌┩┅╢╌╌╌╴	┠╍┝┨┤┾┽╊╎		━╢┼┼┼┼┼
		╽───┠─┼┥╀┿╡┽╸	╫───╟─┽┼┽┼┼	┈╫╌╌╴╴╟╌╌┝╍┟╍┟╴╎╴┤	<u> </u>	╟┝┦┨╎┤╡╬╌╌╸		<u>──┨┽┽┽┽╃</u> ╊╸
		┟┅───┼	╫───╂┶┾┅┠┠┽╉╉	-╫╾╍╌ <b>╫</b> ╾╍┽┽╉┊╁┨	-+	╽╌┝╋╊┼╍┝╃╬┅╌╌	╶╊╍┿╂╢┿╂┥╂	╼╀┼╁┼┿╅┼
			╫──┠─┼┠┼┼┾┤	<del>}</del>		╏╶╎┦╏╎┼┦╢		<del></del>
				+		┫╌╎┥┟╅┥┽┾		
								┈╫┼┽┽┼┼
		┟━━━━┼━╎╴╽╺┥╾┆╴╎╺╸	<b>╷</b>			┫┉╡╸┨╶┧╶┟╴┥╴	╢╶┷┥╢┼┽┦┼┿╼━	
		ļ <b>  _            </b>	┟──┟─┼┼┼┽┥		╶╫──╏╎┼┟╿╢╢───	┟╌┼╌┟╌╿╌╿╌╿╌╿		
		<mark>┊╶──┤╴</mark> ┝┽╏┿╋┿	┿╍╍╍┨╺╌┝┅┤╂┾╅╢	╶╁╴╺╾╸┫╴┊╌┨╾┥╶┥╶┥	╶╢───╢─┼┽╁┽┥╢┈───	┫╶┼┽╃┿┿╉┼		
			<u> </u>	╢╌╍┉╏╴┼┞┧┼╁┦	╶╫╌──╏─┼╁╄┼┼╂╟╌──	╏╎╏╏╎╎	╾╫╶┊┞╀╅╉╊╫──	
			╫──┨╶┤┤╄┼┞┤	╢╶╢╌┼┼┼┼	╶╫┈╾╌╢╴┟╍┟╶┧┼┥┟╶╢╌───			<b>──┼┼┼┼┼┼</b>
		┼────╷╶╶┼╷╎╎╼┤╴╎╴	╫────┠╼╍┽╌╎╌╎╼┾╼┥╴┝	╶╫╼╼╾╴║╼╾┽╌┠╌┠╌┥╼┥	╺╋╼╾┾╢╍╢┥┥┥	╏╼┽┨╶┨╪╴┟╾┼╌╬╼╾╾╸	━╢╌┼╫┼┼╢╂╢╌╸	╾╢┯┼┼┼┿╀
			╫───╂╼┽┼┽┼┼	╺╫╼╼╾┫╼╾┼┽╂┿╂┥	┝╢╶╼╌╢╶┠╍╂╂┾╌┠╌┟╼┿╼╼╼╌		╾╫╾┽┠┟┼┠┼┼	

## EXHIBIT III-F MILLING COMMENTS

1
## EXHIBIT III-F

# MILLING COMMENTS

#### a. ORE RECEIVING AND GRINDING

- It may be possible to re-arrange the SAG mill-rod mill setup to obtain a more compact plant layout.
- (2) The turntable under the SAG mill feed chute could be eliminated by purchasing a re-liner machine mounted on solid rubber wheels.
- (3) Both the SAG mill and the rod mill will be equipped with variable speed drives. Although this is an expensive solution (it costs approximately three times as much as a standard motor), it provides protection against the extreme ore hardness variability.

#### b. LEACHING

To obtain the required 45 percent solids in the leaching circuit, dilution water will be added. However, it may be possible to reach the same solids concentration by using clarifier underflow solution. This would reduce the fresh water consumption.

### c. CCD CIRCUIT

(1) As specified in the A.H. Ross report, the thickeners in the CCD circuit will be equipped with diaphragm pumps to handle the thickener underflow product. The maximum design flow will be about 900 gpm with 35 percent solids. There is no diaphragm pump on the market that can handle this volume of pulp. The largest flow that can be handled is 600 gpm with a Dorr-Oliver W8 diaphragm pump. The only alternative considered at this time was to install two W8 pumps for handling the required volume. The cost of this alternative is high. Each pump is priced at \$21,000, consequently, each thickener underflow pumping system will cost \$42,000.

A more economic alternative is to install a centrifugal pump instead. Deco offered a SRL pump of ample capacity to handle this flow for \$6,785. Two of these pumps would be required, one in operation and one standby for a total cost of \$13,570.

It is recommended that the use of centrifugal pumps, instead of diaphragm pumps, be investigated for the thickener underflow.

(2) The thickener tanks (140' Ø) will be installed on engineered fill. This may create future foundation problems due to subsidence. Smaller diameter thickeners such as Enviroclear thickeners should be investigated.