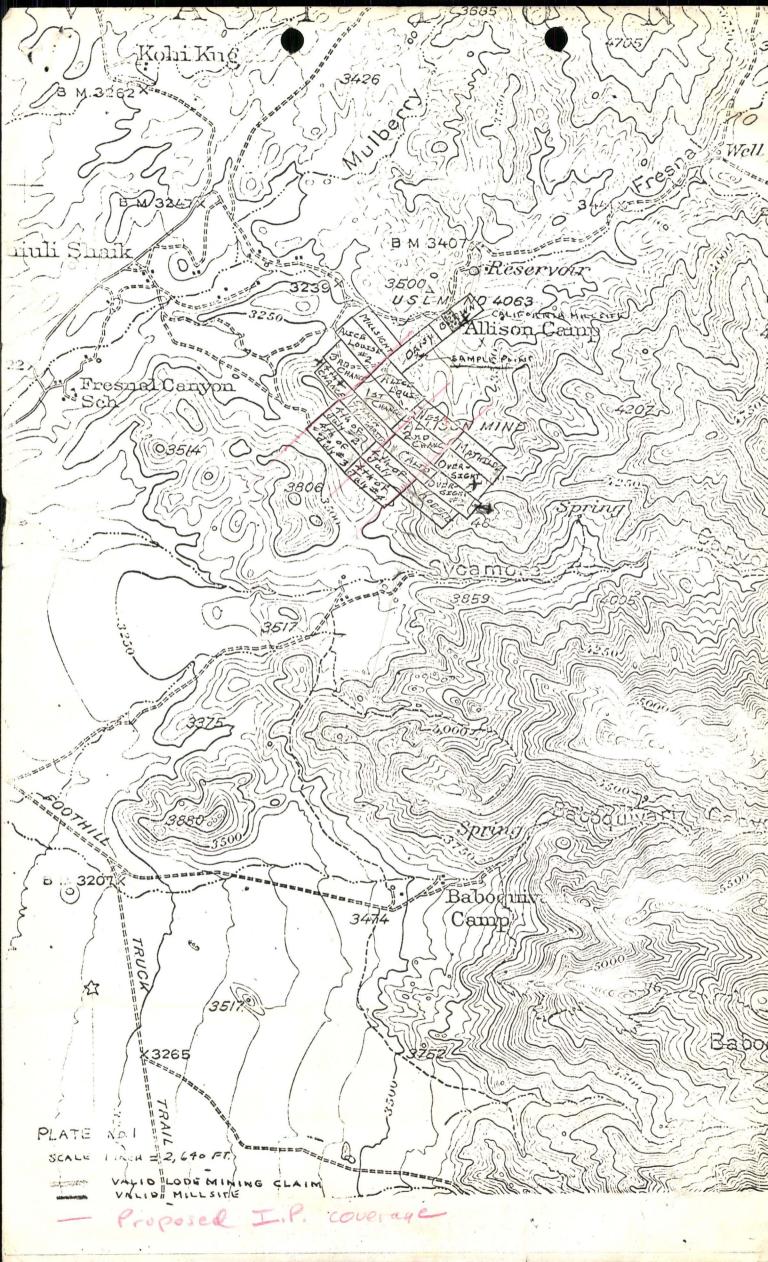


CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 3550 N. Central Ave, 2nd floor Phoenix, AZ, 85012 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the Walter E. Heinrichs, Jr. Mining Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.


CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

INDUC Proje				- RE Line	CEIVE	ER NOT	ES	PAGE Int.Cal_	Date:	
Send Rec.	2	2-3	3-4	4-5	1-2 25-30 30	2-3	3-4	4-5	cal. 0-5	
DC-L,	20,7 19.1	466 350 466 350	410 398 462 368 402 380 452 482	215 290	9.2 10.1 9.2	2.45 2.78 2.65 7.78	406 395 295 308 402 348 300 340		100 100 100 100	
ک DC-3	20.6	466 354 466	410 37C 454490 404 360	222 322 226 125 228 350	10.1	2:65 2:78 2:65	400 352 298 330 384 352	102150		
Dc-4		354 8.17	464 490	214 698 .45Z	9.2 19.3	2.78 5.43	.696	.377	200	
AC-1 AC-2	20.05 20.05 40.1	4.10 4.10 8.2	,432 ,434 .866	,226 .228 .454	9.7 9.7 19.4	2.70 2.70 5.40	.346 .346 .692	.186 .186 .372	/01 /01 202	
S.P. AC-N	-10,0	8. 2			-11.3					

INDU	CED PO	DIARI	ZATI	N - RI	ECEIV	ER NOI	tes 🎽]	PAGE_	*		
Proje	ect: <u>A</u>	1/1150	N	_Line	2: 2	SpZ	5/2	Int.C	Cal	D	ate:_	
Send	4.5	3-4	4-5	2.3	3-4	4-5	1-2	2.3	3-4	4-5		
<u>Send</u> Rec.	0-5	5-10.	->	10-15		>	15-20			->		
Time	300	100	10	1000	30	10	300	30	3	1		
DC-1	175 174	436 41,4	462 448	370 375	18.1 15.7	208222	139 142	21.5 19.0	178 168 135 145	470 505		
DC-2	175	43.8 41.0	450	370 375	18.2	218 238 268 222		21.C 18.9	178171 136142	500 530		
E DC-3	175	44.0	446 478	370 375	18.3	210 Z36 276 Z60		21.6	176 170	500 495		
Dc-4	175 174	44.4	425 482		18:3	210 216 270 268	140	21.6	164 173	518.480		3
ž												
DC-AV	349	84.9	9.07	645	33.8	4.79	281	40.5	3.14	1.166		
AC-1	173	42.8	4.58	365-	16.9	2:43	139	21.0	1.56	.578		
AC-2	173	42.8	4.58	365	16.9	243	139	20.1	1.56	.1576		
Σ	346	85.6	9.16	730	33.8	4.86	278	40.2	3.12	1.154		
S. P.	-5.6	+37.8		+38.9			-8.9					
AC-N	.06	,03		. 08			.04					1
t.Res.				per la								- Marine
					1	12:12	Sec. Sec. Sec.	in the second	and the second	1144	in the	-

• •		INDUC	CED PC		ATION		SENDE		es es	20		
project:	Allisa	a Min	e	Line:	5-1	1/2	2-502		Date	. 29	pul 6	6
Send	1-2	2-3		3-4	2-3	1-2	4-5	3-4	2-3	1-2		
Receive	0-5	5-10		10-15		~>	15-20					
Time												
Range	2100	2901	2100	350 v	290	2101	3601	350V	290	2.2.0 V		
Current	2A	2A	2A	11/24	24	2.A	11/2A	11/2A	2A	20A		
Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2		Cal 2-3		
Receive	20-25			~>	25-30			~>				
Time												
Range	2800	350V	290	2100	270 V	3501	2900	2101		150 V		
Current	11/2A	11/21	24	2 A	11/20	11/2A	2A	2A		1A.		
												100

-

project:	Allis	INDUC			ATION			R NOT	SES Date	29	Tal 61	•
Send	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5		
Receive	0-6	5-10		10-15		~>	15-20			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Time												
Range	3600	3400	2704	2901	3401	2701	2100	300 V	340 v	270v		8
Current	21	11/2A	11/2A	24		1%at		ZA	11/2A			
Send	1-2	2-3	3-4	4-5	1-2	2-3	3-4	4-5		Cal 2-3		
Receive	20-25			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25-30							
Time												3
Range	2104	2.90V	340 V	270V	2100	290	3400	2701		150v		
Current	2A	2A	11/2A	11/2A	24	àA	1/2/4	11/2/		IA		
												a

INDUC Proje	ED PO	×	~	- RE Line				P Int.C	AG	D	ate:	
Send Rec.	1-2											
Time	11	13	17		- California - Cal	34		100				
DC1	61,661.4	175	S. Co	160			I O R	382				
DC-2	67.661.2				135				no.	and the second s		
2 S	OLI I GIT								i z .	AND SUPPORT		
DC-3	59.0 GIS 63.8 6.0								١r.	81		
Dc-4	594 42.2			2 - 5 5								
É				4						- 1 1		
DC-AV		349	13.1	180	135	31.3	101	35.2	55.6	21.1	1838107	
AC-1	61.2	1 700	Conto	89		13.6	495	11.5	19 4	#約50	1. 17540 m.	
AC-2	61.0											
Σ	122.2	352	13.Z	178	132.8	31.2	99.0	35.0	55.6	21.0		
S. P.	+1.1	***		金 保二			- 12.34	2 2				
AC-N	.08											

INDU	ED PC		ZATIO	N - RI	CEIV	ER NO	res		GE	
Proje	ect: <u>//</u>	MISON		_Line	25	p2 N	12	_Int.Ca	1Date:	
Send	4-5	3.4	2.3	1-2	4-5	3-4	2-3	1-2	cal	
Rec.	20-25			->	25-30			->	car	
Time		1	49900	13	9 per	10°2	1. 17	12		
DC-1									100	
DC-2	-Ste		ä				in the second se		100 100	
_\$	30	1 miles	S	d _{NC}	1 ¹⁰ 1	· 1		100)		
DC-3	the second				\$		12	and and a second se		
Dc-4	N.J	appendent.		i y soci	era el Transie	1	1.7.4	States.		
ž										
DC-AV	27.5	13.9	27.5	12.12	11.50	7.00	15.0	7.45		
AC-1	13.6	&.33	17.5	598	5.64	7		73 L &	. 100	
AC-2					3.2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	-
Σ	27.2	13.7	27.0	11.96	11.3	6.8	14.6	7,30.		-
S. P.	4-62	2			· 2012.	An E				-
AC-N						- E - I				-
t.Res.										-

INDUCED POLARIZATION	HEINRICHS
ATION SURVEY CO	GEOEXPLORATION
SURVEY COMPUTATION SHEET	COMPANY

*

1

Page

1 - - -

INDUCED	IH
POLARIZA.	HEINRICHS (
ZATION SURVEY	GEOEXPLORATIO
	N CO
COMPUTATION S	MPANY
HEET	

.

Page

			INDUCED FULARIZATION	LATION	SURVEY	COMPUT	COMPUTATION SHEET	HEET			1 age
Project Allison - LYNCH L	Line 2 Sp2	51/2	Field d	date <u>7-29-6</u> 5	Da	ta page		_ Comp.	date 7-	30-60	Comp by R.R.
(A) Send	4-5-	2-4	4-5-	2.3	2-4	4-5-	1-2	2-3	2-4	4.5	
(B) Receive	0.5	5-10-	V	10-15		V	15-20			V	
(C) n separation	_		۲	-	2	5	/	2	<i>ي</i> ر	L	
н	2	1.5	1.01	N	1.5	1.5	N	2	1.5	1.5	
(E) Vdc (avg)	349	84.9	9.07	745	33.8	4.79	182	40.5	3.14	1.166	
(F) DCcal	005'										
(G) Kn x 10 ⁻³	1.5	1.5	6	1.5	6	15	1.5	6	3	25	
	131	42	81	279	89	24	105	61	16	12	
(I) Vac X											
ise x 2											
(K)Vac(corr) = $\sqrt{I^2 - J^2}$	346	8516	9.16	730	33.8	4.86	315	40.2	3.12	1.154	
(L)AC-DC cal.	1.010										
$(M) \mathbf{Q} dc / \mathbf{Q} ac = ExL/\mathbf{R}$	1.019	1.002	1.000	1.031	1.010	.995	1.021	1.018	1.016	1.021	
(N) $PFE=(M-1)(10^2)$	1.9	0.2	0	3,1	1.0	10.01	2.1	1.8	1.6	2.1	
(0) MCF=(M-1) $(10^{5})/H$	15	4.8	0	11	15	- 21	20	30	100	175-	
SIP.	-5.6	437.8		+38.9			6.3-				
ProjectI	Line		Field d	date	Da	ta page		Comp.	date		Comp by
(A) Send	1-2	2-3	3-4	4-5-	1-2	2-3	3-4	4.5		cal	
(B) Receive	20-25			V	25.30			V		0-27	
(C) n separation	2	w	L	5	2	ŕ	5.	6			
(D) I	2	2	1.01	1.5	N	N	1.5	1.5		-	
(E) Vdc (avg)	39.8	8.17	643	.452	19.3	5.43	1696	.377		200	
(F) DCca1											
K	6	5	30	5-2.5	5	30	52.5	178			
(H) Q dc=ExFxGx103/D	60	31	8.57	7.9	72	41	12	11			
AC noise x 2										1	
2	40.1	23	.866	,454	19.4	5.40	. 692	,372		202	
cal.											
(M)Qdc/Qac = ExL/K	1002	1.006	836'	1.006	1.005	1.016	1.016	1024			
-1)(0.2	0.6	-1.2	0,6	0.5	1.6	1.6	2.4			
(0) MCF= $(M-1)(105)/H$	3.3	2	-141	76	6.9	39	133	218			
SiP,	-/0.0				- 11.3		100				

Project <u>Allson (Lyncu)</u>) Send) Receive	Line 2 5	1/2- 3-4 5-10-		POLARIZATION Leld date 7-/5- 4-5 2-3	SURVEY Contact		0 1	Comp.	date7-15-66	. Р	Page Comp by R.P.
(D) I	1	/	/	.75	- 1	/	.75	-	1	-	
avg)	146	2345	66.2	217.5	85:0	36,0	267.8	77.2	5.8.3	20.2	
(F) DCcal 4 (G) Kn x 10-3 (G) Kn x 10-3 (G)	1.500	1.51	6	- vi	6	0	1.01	6	- v1	30	
Ĭ	110	176	199	219	255	270	278	232	280	20 W	
) AC noise x 2		1								2	
)Vac(co	138	226	62.0	209.0	81.0	33. ST	1258	74.4	36.2	19.8	
(L)AC-DC cal. (M) Q dc/Qac=ExL/R	1.047	1.027	1.057	1.029	1.036	1.062	1.066	1.027	8401	1-904	
) $PFE=(M-1)$ (4.7	2.7	2.2	2.9	3.6	6.2	6.6	2.7	4.8	6.4	
(0) MCF=(M-1)(10 ⁵)/H	43	15	28	13	14	23	24	12	17	21	
	- 22	16		-19			-11				
ProjectL	Line		Field d	date	Da	ta page		Comp.	date		Comp by
(A) Send	1-2	2 - 3	7-E	4:50	1-2	2-3	3-4	4.0		cal	
) Receive	20-25			V	25-30 .			V		0-5	
\sim	2	3	4	5	ω Ι	4	5	5		ì	
Μ	.75	-	1 14	in Real	172	3	3 13	1 21		i	
Μ	4510	21.8	14.28	2.14	4,17	3,00	N-10	1.54		100	
DCcal		-	2	10.4	14	N C C	N 2 2 1	24			
5	000	112	214	0 0 1 1	10 200			56			
	101	101	1	102	1.05 1000	Ţ	11				
(J) AC noise x 2											
) Vac	3.24	21.1	1316	2.2	4.62.	2.76	2.02	1.30		99	
cal.							3				
(M)Qdc/Qac = ExL/K	1.017	1.021	1.039	1.061 .	1.022	1.074	1	1.021			
	1.7	2.1	5.9	6.1	2.2	7.4	4.3	2.1			
) $MCF = (M \cdot$	9	13	18	26	A CL	164	61	38			
	E-33				+ 24						

		INDUCED		POLARIZATION	SURVEY	COMPUTATION		SHEET		Pa	Page
Project Allisad (Lynch) 1	Line 2	N 1/2	o hand	date 7-/5		ta page		_ Comp.	date 7-15-66	•	Comp by R.P.
(A) Send	- 2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2	Jos J
\sim	0-5	5-10 -	V	10-15		V	15-20			V	-
(C) n separation			2		2	6	-	Ν	w	4	
(D) I			_	-		-					
(E) Vdc (avg)	220	149	66.0	No 63 00	62.2	351.85	661	56.8	20.9	14.1	
) DCcal	. 5000										
\sim	1.5.	/. v1	6	- 5	6	\overline{v}_1	ī.	6	σı	30	
) Q do	172	113	204	180	190	270	150	173	158	215	
		*									
\sim											
X	208	144	63.6	2100	52100	32.9	184	55,0	20.2	13.7	
(L)AC-DC cal.	1.009										
$(M) \mathbf{Q} dc / \mathbf{Q} ac = ExL / \mathbf{K}$	1.103	1.043	1.047	1.101	1.103	1.099	1.092	1.022	1.044	1.037	
(N) $PFE=(M-1)(10^2)$	10.3	4.3	4.7	10.1	10.3	6.9	9.2	2.2	4.4	3.7	
(0) MCF= $(M-1)(10^{5})/H$		38	23	56	45	37	61	13	29	1.7	
	-39	-21		~A)			-/6				
Project]	Line		Field d	date/	Da	ita page		_ Comp.	date		Comp by
(A) Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2		dal	
~	20-25			V	25-30			V		0.0	
	N	60	A	U ₁	w		σį	5		1	
н		-		.75		-		1		-5	
	36,4	14.6	6.18	30.8	18.4	9.28	4.44	3,03		98.4	
(F) DCcal							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
_	6	Ū,	30	52.5	15	30	51.0	α +			
-	111	110	44	137	139	141	811	170			
\sim						2		5		000	
(K) Vac (corr) = $\sqrt{I^2 - J^2}$	34.9	14,4	6.12	18.8	17.45	8.16	4.50	240		44.6	
) AC-DC cal.								1. 3			
Pdc/Pac	1.052	1.022	1.017	1.018	1.063	1.043	1.040	1.053			
(N) $PFE = (M-1)(10^2)$	5.2	22	1.7	1.8	6.3	4:3	4.0	5.5			
) MCF=(M-	4-17	20	81	13	45	W	34	31			
	1				135						
	-										

1

J	ect:	HIII	Son	Lin	e: 2	N 1/2		Int.C	al	D	ate:745
Send	4-5	3-4	2-3	1-2	4-5	3-4	2.3	1-2		cal	
Rec.	20-25			\rightarrow	25-30	>		>		3-4	
Time	30	30	10	PD 3	30	10	10	3		100	
DC-1	18.3	6.2 8.4	3.06	1,93	9.2	440	240	1.44		49.2	
DC-2	18.1 18.3	6,1 8,5	3.26 2.90	2.03 1.82	9.2 9.2	436 492	240	143		49.2	
£ DC-3	17.8	519 Fi7	3.45	2,13	9,3	434	240	148			
De /	1716		2.72	1,72 2,26	9,3	4.94	2.06	155			
Dc-4	18.8	5.8	2.64	1.62	9.3	4.32 496	2,38 2.06	151			
Z DC-AV	36.4	14.6	6.18	3.86	18.4	9.28	1.11			0.0.7	
AC-1	17.4	7.2	3.06	1.9)	-		4.44	3,03		98.4	
AC-2	17.5	7.2	3.06		8.7	4.48	2.15	1.45		49.6	
Σ	34.9	14.4	6.12	3.82	8:15	4.48	2.15	1.45		49.6	
5. P.	+7:0	6 F F F	9112	2102	-3.6.1	8.96	4.30	2.90		99.2	
AC-N	.08										

	CED	1			ECEIV	er noj N1/2	TES D	Int.	AGE_ Lal	Da	ate:7	-15-66
Send	1-2	2-3	1-2	3-4	2 - 3	1-2	4-5	3-4	2-3	1-2		-11
Rec.	0-5	5-10		10-15		>	15-20			\rightarrow		
Time	300	300	100	300	100	30	300	100	30	30		
DC-1	115 113	74 75	135 32,5	120 118	29.0 33.2	17.7 18.2	99.5 99.5	29.2 27.5	10.2	7.0 7.1		
DC-2	115 113	74.5	37,5° 32.5	120 118	28.6 33.6	17.6 18.3	995 995	29.4 27.4	10.7	7.1 7.0		
Z												
DC-3	115 113	74.5 74.5	33.8	120 118	28.4	17.5	99.5 99.5	29.6	10.8	7.1		
Dc-4	115	74.5	34.0	1200	28.4 33.8	17.5 18.3	99.5 99.5	29.6	10.1	7.0		
ž											1	
DC-AV	228	149	66.0	238	62.2	35.85	199	56.8	20.9	14.1	2	
AC-1	103	72	31.8	109	28.4	16.45	92	27.5	10.1	6.85		
AC-2	105	72	31.8	109	28.4	16.45	92	27.5	10.1	6.85		
Σ	208	144	63,6	218	56.8	32.90	184	55.0	20.2	13.70		
S. P.	-38.5	-21.4		-45,4			-16.4					
AC-N	,04	.03		.05			.06				3	
ot.Res.										3.00		C'An

Send	1-2	2-3.	3-4	4-5	1-2	2-3	3-4	4.5	dal.
Rec.	20-25			~~~	25-30		1	>	3-4
Time	100	30	30	10	10	3	3		
DC-1	22.5 22.5	11.1 10.8	7.2 7.1		236 194 258 286		109 167	58 82 75 49	50.0
DC-2	22.6 22.4	16.9	7.2	4.38 458 4.20 420		107 192	126 123	11 74 60 56	50.0
DC-3	22. C 22. Y	11.05 10.95	7.3 7.0	4.56 462 4.24 420	276	155 146	040 41	85 90 50 44	
Dc-4	22.6	11,0 110	7.3 7.0	4,18 416	198 280	135 164	052.049	70 79 63 55	
ž									
DC-AV	45.0	21.9	14.28	8.79	4.77	3.00	2.13	1.34	100
AC-1	21.9	10.55	6.8	4.10	2.30	1.38	1.01	0.65	49.5
AC-2	21,9	10.55	6.8	4.10	2.32	1.38	1.01	0.65	49.5
Σ	43.8	21.1	13.6	8.Z	4.62	2.76	2.02	1:30	99
S. P.	-32.8				+25.7				
AC-N	.09		1		.08				

			T			51/2		_Int.			Date:	
Send	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5		Т
Rec.	0-5	5-10		1013		->	15-20			->		+
Time	300	300	100	300	100	30	300	100	30	30		+
DC-1	75	118 114.5	31.4 34.8	108.5	43.0	17.4	133 135	40.6	19-19.4	9,5	1	+
DC-2	75	116.5	31.2 35.0	108.5	43.0	17:4	137 135.5	40.6	19 193	10.7 9.4 10.8		+
ξ			T	1	10.10			36.6	193	1018		╇
DC-3	7571	118.5	31.0	108.5 109	43.0	17.4 18.6	132.5 1355	40.6	18.8	9.4		┝
Dc-4	75 71	119	30.8 35.4	108.5	43.0	17.4 18.6	132	36.6	19.4	10.8		┝
ξ					700	1.01.00	136	36.6	19.5	10.9		\vdash
DC-AV	146	234.5	46.2	217.5	85,0	36.0	267.8	77.2	38.3	20,2	-	┝
AC-1	.69	113	31.0	104.5	40.5	16.75	129	37.2	-	9.4		-
AC-2	.69	113	31,0	104.5	40.5	16.75	-	-	18.1			
Σ	138	226	62.0	209.0			129	37.2	18.1	9.4		
S. P.	-21.6	-5.5	10 CI U		81.0	33.5	258	74.4	36.2	18.8		
AC-N				-19.0			-10.6					
the second s	,10	,10		,15		Same H	.10		2			
.Res.						10.5	1	. 17	gr.			

			(
project:	Alliso	INDUC Min	and the second se	LARIZ	ATION	N 1/2	SENDE	CR NOT	TES <u>Date</u>	15	Jul	66
Send	1-2	2-3	1-2	3-4	23	1-2	4-5	3-4	2-3	1-2		
Receive	0-5	5-10	~~>	10-15		~~>	15-20			>		
Time												
Range	350y	290v	35/1V	320V	290v	350V	350v	320	290v	3504		
Current	1 A	1A	IA	1A	14	1Am	/A	14	1A	1A		
Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2		Cal 7-4		
Receive	20-25	Angestal Conception and Approx		~~>	25-30							and the second
Time						e.						
Range	350v	320	290,	2701	350 V	320V	290v	2601	-	150V		
Current	14	14	tA	3/4 A	1A	1A	IA	3/4A	sheers	1/2A		
	12.	-1, <u>5</u> 4	the	and the					ani P			

			(1				<i>Julbb</i>	
	A17.	INDUC	CED PC		ATION		SENDE	R NOT	ES	1-	T 1 1 1	
project:	A/1150	n Mine	2	Line:	2-5	12			Date	100	u166	2
Send	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2.3	3-4	4-5		
Receive	0-5	5-10	Reserves and the second second	10-15		>	15-20			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Time												
Range	290	3100	34°04	RIDV	310V	2.900	2.50V	290	310 v	290v		
Current	1A	IA	1A	3/44	IA	JA.	3/4 A	1A	14	1A		
Send	1-2	2-3	3-4	4-5	1-2	2-3	3-4	4-5		Cal 3-4		
Receive	20-25			~>	25-30			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Time										- 2 ⁰		
Range	2601	2901	3101	290V	2600	2801	3100	3401		160 V		
Current	3/4 A	1A	1A -	1A	3/4A	IA.	IA	IA		1/2A		

	È.	INDUC	ס תקי		ATION	r	SENDE	R NOT	TES			\vee
project:	Allise			Line:	1 11	E/2	DHIDL		Date	12.	Ju/ 60	2
Send	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2	14.	
Receive	0-5	5-10	~~~	10-15		~>	15-20					
Time												
Range	270V	310V	RTOV	290V	320V	270v	2.90v	290v	320V	270v		
Current	2A	2A	2A	1 1/2 A	2 A	24	ZA	11/2A	RA	2A		
Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2		Cal 2-3		
Receive	20-25	·		~>	25-30			~>				
Time												
Range	290V	BODV	320v	270V	29Dv	2901	3100	2.60V		3000		1 1985
Current	2 A	11/2A	2A	24	21-	11/2A	24	2A		1 A		
							and the second se	A.	in the second			e antes e 15 de

.

· · ·								•		2		
project:	Allisn	INDUC	ED PC		ZATION	W 1/2	SENDE	ER NOT	ES	12	Jul 6	6
project:		11 . 11115		Line:		1.4		1	Date			
Send	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5		
Receive	0-5	5 - 10	>	10-15		~~~>	15-20					
Time											7	
Range	2.80 v	2900	2800	230v	290,	220v	2001	23DV	290v	220V	N	
Current	2A -	1/2 A	2A	1/2A	11/2A	11/2A	1%A	11/2A	1 1/2 A	11/2A		
Send	1-2	2-3	3-4	4-5	1-2	2-3	3-4	4-5		Ca1 2-3		
Receive	20-25			~~>	-26-30						0	
Time												
Range	200 V	2.40V	290v	220	2000	2400	2901	220		2.901		
Current	1 1/2A	1/24	1/2A	11/2A	11/24	11/2A	11/2 A	11/24		1A		
1			Customer and a second								<i>3</i> 4	

	CED P					ER NO' 510 1/2		Int	PAGE		Date:_	Que de sed
Send	4-5	3-4	4/-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5	1	Γ
Rec.	0-5	5-10	>	10-15		->	15-20			->		
Time	300	300	100	300	100	30	100	30	30	10	1	
DC-1	223 221	206 210	44.8	117 116	36.2 358	9.1	48,6 50.4	18.9 20.1	89 7.3			
DC-2	223 221	206	44.8	117 116	362 35.9	9.1 10.8	43.6 432	18.5 19.8	7109.5	2.58040 3.62480		
2	207	206	44.6	117	36.2			121				
DC-3	223 221	210	50.4	116	35.8	9.0	42.4 42.2	19.620,5	9.6 1.8	260 260		
Dc-4			44.4			8.9	41.64.2	20:721.2	6,3 7.0	270 220		
ž					ļ							
DC-AV	444	416	94.91	233	72.0	19.9	93.03	36,53	14.5	5,55		
AC-1	212	200	46.2	114	34.6	9.65	45.8	18.0	7.15	2.40		1
AC-2	213	200	46.2	114	34.6	9.65	45.8	18.0	7.15	2.40		
Σ	425	400	92.4	228	69.2	19.3	91.6	36.0	14.3	4.8		
S. P.	-14.8	+25.5		-28.3.			-13.4					
AC-N	.05	.04		,03			.09					
.Res.												

	CED PO							PAGE Int.Cal		e:7-11-66
Froje	ect:	171115	ON		: <u>//</u>				Date	- · · · · · · · · · · · · · · · · · · ·
Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2	cal.	
Rec.	20-25	V		>	25-30	all some some some some some some some some		~	2-3	
Time	100	30	30	30	100	30	30	10	300	
DC-1	54.0	19.6 20.8	15:0	6.5	3510	13.5 15.2	13.7 11.8	5,66 548 5,96 628	100	
DC-2	54.0	19.5 20.9	15.0	6.4 8.5	3512 30.6	13.5 15.2	13.7	5,58 518	100	
2		14.5				13.5	13.6	582 548		
DC-3	54,0	21.0	14.9	635	35,4	15.2	11.9	618 622		1
Dc-4		21,0	14,9	6,4	354		13.6	540 550 628 642		
Ś										
DC-AV	107.6	40,4	31.85	14.9	65.9	28.7	25.56	11.76	200	
AC-1	51.8	18.9	14.8	7.0	30.6	13.0	11.65	5,40	99.5	
AC-2	51.8	18.9	14.8	7.0	30.6	13.0	11.65	5.40	99.5	
Σ	103.6	37.8	29.6	14.0	61.2	26.0	23.3	10.8	199	
S. P.	-26.0				+5.6					
AC-N	.15				,07					
.Res.										

'0

INDU	CED P	LARI	ZANIO	J - RI	ECEIV	ER NO	TE ²		AGE_			1º
	ect:					IE /2		Int.	a1	D	ate:2	-12-60
Send	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2.3	1-2		
Rec.	0-5	5-10	>	10-15		->	15-20	Ren'inpurry general sciences and		>		
Time	1000	1000	100	300	300	100	300	100	100	30		
DC-1	278 264	225 225	47,8 47.5	207.5	85 83	25.4 27.8		35,635.6	21.6	10.1 8.9		X
DC-2	2578.	225	47.8 47.6	208 207	83	25.2		33.2 3516	21.8	10.0 9.0		
Σ									N			1.3
DC-3	278 264	225	47.8 47.6	208.5 207.	85	25.2	15/153		21.8	10.0 9.0	1.25	
Dc-4			·				15/ 153	33.4 35.6				
Ž												
DC-AV	542	450	95.4	415.1	168	53.2	301.2	68.89	44.6	19.0		
AC-1	260	215	46.4	201	81	25.8	146,5	33.4	21.4	9.1		
AC-2	260	215	46.4	203	81	25,8	151.0	33.6	21.6	9.1		
Σ	520	430	92.8	404	162	51.6	297.5	67.0	43.0	18.2		
S. P.	0	-8.8		+8.2			+9.0		(
AC-N	,03	.07		,06			,11		1.		1	1
ot.Res.	1				₩~~						1	
											P.C.	1.1.1

Proj		Allis		N - RE		SA/2		Int	PAGE Cal	Da	te:
Send	1-2	2-3	3-4	4-5	1-2	2-3	3-4	4-5		Cal	
Rec.	20-25			->	25-30			->		2-3	
Time	100	30	30	10	10	10	10	3		300	
DC-1	24.8 25.2	169 16.0	6.7	208242		440520	230290	130		99.5 99.5	
DC-2	25.0	16.215.8	<i>c</i> ,	440360			250,90 270305			99.5 99.5	
2											
DC-3	25,4 24.9	16.1 158	517	312175	608440		1F0 - 3 870				
Dc-4	25.4	15,915,5 16,717,7	10.6	350 4.95	444 550		150 310		1. V.		
ž											
DC-AV	50.14	32.97	16.33	6.37	10.87	9.01	4.99	-		199	
AC-1	24.6	16.1	7.8	3.12	5.28	4.30	2.36	1.03	<	99.0	
AC-2	24.6	16.1	7.8	3,12	5.28	4.30	2.36	1.03		99.0	
Σ	49,2	32.2	15.6	6.24	10.56	8.6		2.06		198	
S. P.	43.8				-14.0-						
AC-N	105				,10						T
.Res.											

/	INDUCED	HE
	POLARIZA	HEINRICHS
,	TION	GEOEX
	SURVEY	GEOEXPLORATION (
	POLARIZATION SURVEY COMPUTATION S	LON COMPANY
1	SHEET	

Data page

2/N

ŗ

i.

ş

Page

ଚିତ୍ର (B) (A) E (H) (\mathbf{F}) E (M) Q dc/Qac=ExL/R E G (K)Vac(corr) AC-DC cal. Project Allison (LYNCH) Line / Send ♥ dc=ExFxGx10³ Vac **S** AC noise x Kn x 10-3 Vdc n separation **DC**cal Receive (avg) -N 1² D/D 1 JN 0.5 520 203 1.2 500 442 566 ī N 5-10 430 450 2 - 3 169 in N Field date 7-13-66 4.50 143 92.8 1-2 NM 6 10 - 15 201 404 415.1 3-4 1.5 ī 1.032 N- 5 252 162 N N 68 0 200 V 1.026 51.6 1-2 3.2 V, N W 4-5 301.2 U 297.5 Sec. 007 i. No Ν 68.89 3-4 1.023 Comp. date 7-16-66 . Comp by R.P. 138 7.0 is N 2-3 1.032 44.6 43.0 167 5 N V1 1.039 1-2 18:2 0 19.0 143 1 N N .

(0)

MCF = (M-1)PFE = (M-1)

(N)

(10²)H/(c01)

2.2

24

6

120

1.041

1.02

Niw

2.2 022

w

N

N

N

w

J

a

27

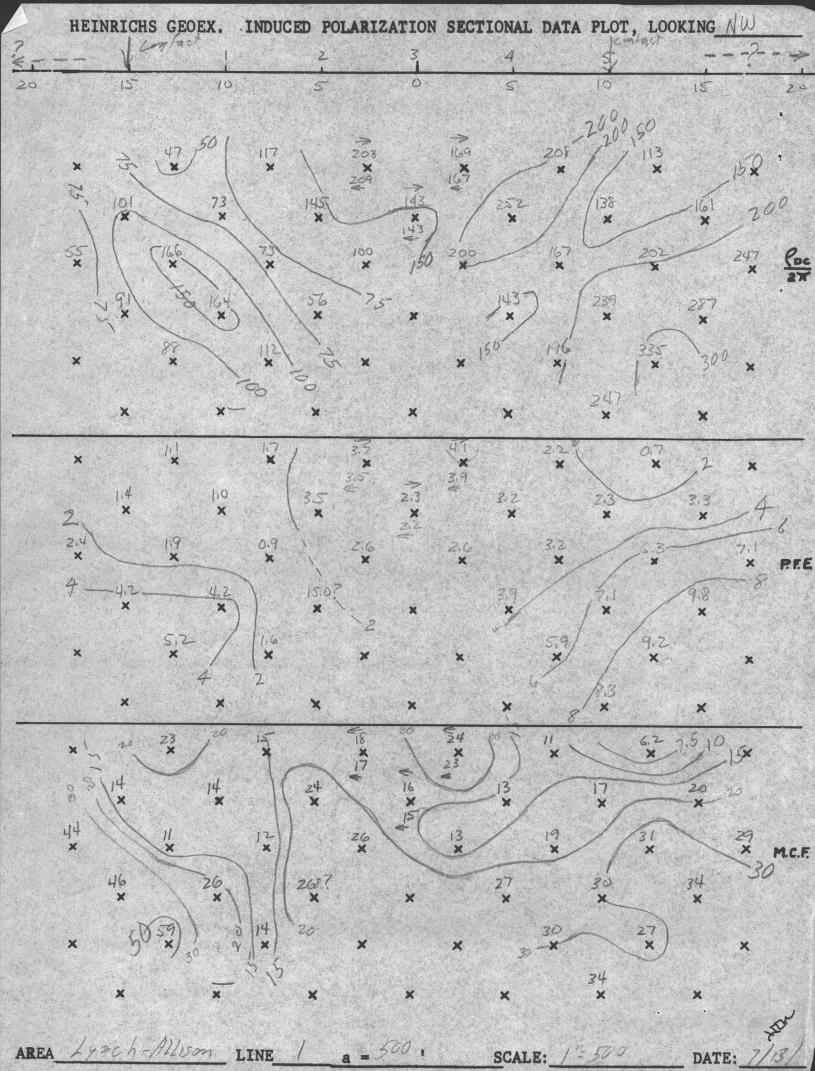
O LO

w N

6 6

5

Project]	Line		Field date	late	Da	ta page		Comp. date	date		Comp by
(A) Send	4-5	3-4	2-3	1~2	4-5	2.4	2:3	1-2		cal.	
	20-25			V	25-30	Repaired in the second system of the second system is set of the		V		0:4	
(C) n separation	2	3	4	0	3	7	5	0			
(D) I	М	~ ~	Ν	٢	N	1:57	2	N		-	
(E) Vdc (avg)	107.6	40.4	53.12	14.9	65.9	29.7	25,56	11.76		200	
(F) DCcal											
(G) Kn x 10 ⁻³	6	- V1	60 0	52.5	15	54 C	51214	24			
(H) Q dc=ExFxGx10 ³ /D	161	202	239	196	247	287	200	247			
(I) Vac 2											
(J) AC noise x 2)			
(K) Vac (corr) = $\sqrt{I^2 - J^2}$	103.6	37.8	29,6	14,0	61.2	26.0	23.3	10.8		144	
(L) AC-DC cal.							2				
(M)Qdc/Qac = ExL/K	1.033	1.063	1.071	1.059	1.071	1.098	1.042	1.085			
$(N) PFE = (M-1)(10^2)$	ŝ	6.3	7.1	5.9	7,1	6.8	9.2	5.2			
(0) MCF= $(M-1)(105)/H$	20	31	30	30	29	34	27	24			


勳

Page_

Project All, sonl (LYNCH) Line JW1/2 INDUCED POLARIZATION SURVEY COMPUTATION SHEET 1 3 U J Comp. date 7-16-66. Comp by R.P. V 1 101 1

(A) Send	4-5	3-4	4-5	2:3	3-4	5-2	1-2	2-3	5-4	5-2	
(B) Receive	0-5	5-10 -	V	10-15		V	15-20			V	
(C) n separation	/	1	2		2	S	_	2	S	4	
(D) I	2	1.5	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
(E) Vdc (avg)	444	914	16.46	233	72.0	19.9	93.03	36.53 14.5	14.5	5,55	
(F) DCcal	,503										
(G) Kn x 10-3 <u>`</u>	1.5	1.5	6	1.5	6	15	1.5	6	15	30	
(H) Q dc=ExFxGx10 ⁵ /D	167	602	143	117	1.45	100	47	73	73	56	
(I) Vac 2											
(J) AC noise x 2											
(K)Vac(corr) = $\sqrt{I^2 - J^2}$	425	400	92.4	228	69.2	19:3	91.6	36.0	14.3	4.8	
(L)AC-DC cal.	:995										
(M) Q dc/Qac=ExL/R	1.039	1.035	1.022	1.017	1.035	1.026	1.011	1.010	1.009	1.150	
(N) PFE= $(M-1)(10^2)$	2.9	3.5	2.2	1.7	3.5	2.6	1.1	1.0	0.9	15.0	
(0) MCF=(M-1)(10 ⁵)/H	23	17	15	151	24	26	23	14	12	268	

Project I	Line		Field date	late	Da	ta page		Comp. date	date		Comp by
(A) Send	1-2	2-3	2-4	4-5-	1-2	2-3	3-4	4-5		cal.	
	20-25			V	25-30			2ml		0-57	
(C) n separation	2	3	L	ц	Ś	4	5	6			
	1.5	1.5	1.51	1.5-	1.5	1.5	1.5	1.5		-	
(E) Vdc (avg)	50.14	22.97	16.33	6.37	10.87	9.01	4.99)		199	
(F) DCcal											
(G) Kn x 10 ⁻³	6	-vi	30	52.5	5	30	52.5	48			
(H) Q dc=ExFxGx10 ³ /D	101	166	164	112	55	91	28				
(I) Vac 2											
(J) AC noise 🗴 2 🔥										2	
(K) Vac (corr) = $\sqrt{I^2 - J^2}$	49.2	32.2	15,6	6.24	10.56	5.0	4.72			148	
(L) AC-DC cal.											
(M) Qdc/Qac = ExL/K	1.014	1.019	1.042	1.016	1.024	1.042	1.052				
(N) $PFE=(M-1)(10^2)$	1.4	1.9	4.2	1.6	2.4	4.2	2.2				
(0) MCF= $(M-1)(10^5)/H$	14	.//	26	14	44	46	59				

	CED				CEIVE	er not s		Int.C	AGE	D	ate: 7	-193
Send	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5		-
Rec.	0-5	5-10	\longrightarrow	10-15		->	15-20			->		-
Time	300	300	100	300	100	30	300	100	100	30		-
DC-1	126.5	152	27.2	167	52.4 53.8	15,0 12.7	166	58.458.0	246	6.95 7.7 9.40 8.8		
	129.5	152	295	162	57.8	15.1	165	59.857.8	24.6	6.7 7.1		
DC-2	129.5	151	29.8	163	54.0	12.6	165	57.0 59.4	26.8	9.5 9.2		┢
S												-
DC-3	126	153	26.6	167	51.8 53,8	15.1	167	59.8 57.8	24.6	6.7 7.1		
	130	153	29.8 26.6	163	51.8	15.1	167	58.6	24.6	7.3 8.8		T
Dc-4	130	151	30.0	165	53.8	12.5	165	58.4	26.8	8.9.8.4		\vdash
ž							0.7.7	11/0.9	E-11	16.31		+
DC-AV	256	304	56.5	329.5	105.8	27.68	332	110011	51.4	1		┢
AC-1	122	145	27.2	156	50.5	13.45	160	55,5	24.6	7.8		┢
AC-2	122	145	27.2	156	50.5	13.45	160	55.5	24.6	7.8		\vdash
Σ	244	290	54.4	312	101	26.9	320	///.0	49.2	15.6		┢
S. P.	-18.6	-23.7		-29.7			-15.3				-	+
AC-N	:11	,04		.05			,04				10 h	11
.Res.	111	1		10 J. De					1.	1.1	Jan	

INDUC	CED P	LARIZ	ATIO			3	TES	PAGE	and a second sec	
* Proje	ct:	Alliso	N	_Line	: 3	51/2		Int.Cal_	Date:	
Send	1-2	2-3	3-4	4-5	1-Z	2-3	3-4	4-5	cal.	
Rec.	20-25			->	25-30	Personal and a constraint of the last		->	0-5	<u> </u>
Time	100	30	30	10	100	30	30	10	300	
DC-1	41.0	22.0	11.8 11.0	4.20	25.5	17.9 16.5	9.6 11.2	3,90 4,40	99 99	
DC-2	41.5 38.2	22.1 20.9	11.6 11.2	3,95 4,30	25.5 24.5	17.9 16.5	9.6 11.2	3.94 4.36	99 99	
ξ					Ph 1	175	9,6	3,95		
DC-3	41.5 38.0	22.1	11.6 11.2	3.82 438	25.5	17.8 16.6	$ _{i}$)	4.34		
Dc-4	4/1.8	22.0	11.4	3.82 4.45		17.8 16.6	9,7	3.95 4.34		
ž										-
DC-AV	79.5	43.05	22,8	8.24	50.0	34.4	20.8	8.295	198	L
AC-1	38.4	20.6	10.95	3.95	24,0	16.2	9.85	3.95	99.5	
AC-2	38.4	20.6	10.95	3.95	24.0	16.2	9.85	3.95	99.5	
2	76.8	41.2	21.9	7.9	48.0	32,4	19.7	7.90	199	
S. P.	-36.5				-23.1 .					
AC-N	,05				,06					
t.Res.										

INDUC Proje	ED C					/		Int.C		Date	-
						1-2	4-5	3-4	2-3	1-2	
Send	1-2	2-3	1-2	3-4	2-3	->	15-20	3	20	>	
Acc.	300	5-10 -	100	300	100	30	300	100	30	30	
Time DC-1	155	120	26.4	226 211	57.0	16.5	86.0 86.0	42.6	21.2	9.8	
DC-2	155	121	26.4	228 210	56.4	16.4 19.6	860 86.0	42,6 45,4	21.6	9.9 10.0	
E DC-3	155	121	26.4	227	56,0	16,5	87.0 85.0	45.4	21.6	9.9	
Dc-4	155	128	28.0	210 226 210	60.2 56:0 60.2	16.6	87.0 85.0	42.6	21.6 21.3	9.9 10.0	
ž				1/77		36.0	172	88.0	42.8	19.9	
DC-AV	310	248.25	54.4	437	116.35		80.0	41.4	20.0	9.45	
AC-1	144	117	26.0	206	55.0	17.0				9.45	
AC-2	144	118	26.0	206	55.0	17.0	80.0	41.4	20.0	18.9	
Σ	288	235	52.0	412	110	34.0	160	8210	40.0	1111	
S. P.	+3.3	-22.4		+32.2			-37.7				
AC-N	.12	,14		.07			,1]				
ot.Res.											

Proje	ect:	Allise	>//	_Line	e: <u>3/</u>	V/2		Int.Cal	Date:
Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2	cal
Rec.	20-25				25-30		1	\rightarrow	0-5
Time	100	100	30	30	30	30	30	10	
DC-1	30.8	23.6	13.5 14.6	7.7	12.6	12.5	8.4	392 4.82	100
DC-2	30.9 30.8	23.6 24.4	13.5 14.6	7.8 6.1	12.4	12.5.	8.3 7.6	392 480	100
E DC-3	30.9	236	13.4 14.7	7.9	12.7	12.5	8.3	3.92 4.80	
Dc-4	30.9	24,4 23.6 24.4	13.4	9.9 6.1	12.7	12.5	1.3 8.3 7.5	4180 3.94 418	
Ś		11000		17 11-0	000	alle	1500	077	2.00
DC-AV	61.6	47.95	28.1	13.95	25.0	24.2	15.88	8.72	200
AC-1	29.0	22.4	12.9	6.5	12,0	11.45	7.4	4.08	98.5
AC-2	29.0	22.4	12.9	6.5	12.0	11.45	7.4	4.08	98.5
Σ	58.0	44.8	25.8	13.0	24.0	22.9	14.8	8.16	197
S. P.	-18.2				+12.9				
AC-N	6/1				6/1				
.Res.	1 A 1		1	1					

		INDUC	FD PC		LATION	г	SENDE	R NOT	ES			
project:	Alliso	n Mine		Line:	-	5 1/2	ULINDI		Date	/9	Tu/ 66	2
Send	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5		
Receive	0-5	5-10	~~>	10-15		~>	15-20			>		
Time								к. 1				
Range	1800	320	180V	310V	320v	180 v	250v	310V	32.0	180V		
Current	24	2A	2A	24	RA	2A	24	2A	2 A	2A		
Send	1-2	2-3	3-4	4-5	1-2	2-3	3-4	4-5		Ca/ 3-4		
Receive	20-25	ц.) 			25-30							
Time												2.
Range	250V	310V	3201	180V	250V	310V	32.00	1801		2.60%		
Current	RA	24	2A	2A	RA	24	2.A	2A		14		

!	۲						CENDE			(•	
project:	Alliso	n Mini					SENDE	R NOT	Date		54166	>
Send	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2		
Receive	0-5	5-10	>	10-15		->	15-20			~>		
Time												
Range	250V	310v	250V	32.0V	3/0v	250	150	320	310	2,50		
Current	24	24	2A	2A	2.A	24	2A	24	2A	2A		
Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2		02-3		
Receive	20-25			>	25-30	i na		~>				
Time							part of					
Range	150 V	3100	300V	250V	1504	3001	360 V	250	-	250V	·	
Current	2A	2A	24	24	RA	RA	RA	2A .		1A		

		INDUCED		IZATION	POLARIZATION SURVEY		COMPUTATION SHEET	HEET		Page	
Project <u>Allison(LYNCH)</u> I	Line 3	N/2	Field d	date 7-19.	19-66 Da	ta page	_	_ Comp.	date 7-19-66	'.	Comp by R.A.
(A) Send	1-2	2-3	1 - 2	3-4	2-3	1-2	4-5	3-4	2-3	1-2	·
\sim	0-5	5-10-	V	10-15		V	15-20			V	
(C) n separation	. /	-	2	-	2	~		2	53	7	
) Т	2									V	
\sim	310	248,25	7.45	437	116.35	36.0	172	0:83	4/2,8	19.9	
) DCcal	,500										
\sim	1.5	1.5	6	1.5	6	151	1.5	6	15	30	
Q dc=Ex	116	44	28	164	175-	135	65	131	160	149	
\sim											
)Vac(288	235	52.0	412	110	340	160	82.8	40.0	18.9	
(L)AC-DC cal.	.986										
(M) dc/Cac=ExL/K	1.062	1.041	1.032	1.047	1.042	1.045	1.054	1.048	1.058	1.058	
(N) $PFE=(M-1)(10^2)$	6.2	4,1	3.2	4.7	4.2	4.3	5.9	4.8	5.8	30 00	
(0) MCF= $(M-1)(10^{5})/H$	53	44	98	29	24	32	10	37	36	25	
SiR	+ 3,3	-22.4		432.2			-37.7				
ProjectI	Line		Field d	date	Da	ata page		_ Comp.	date	0	Comp by
(A) Send	4-5	3-4	2-3	1-2	4-5-	3-4.	2-3	1-2		cal.	
) Receive	20-25			V	25-30			V			
	N	EN IN	4	y.	3	Ŧ	5	0			
	2)	V		1.	
(E) Vdc (avg)	61.6	47.95	28.1	13.95	25.0	242	12:88	8.72		200	
) DCcal	,500							2.1			
	6	151	20	52.5	15	30	52.5	48			
) R do	93	081	210	183	46	182	208	183			
(J) AC noise x 2)	5		1011	
\sim	58.0	8.44	25.8	13.0	24.0	22.9	14.8	0118		197.	
AC-DC cal.	986										
~ 1	1.032	1.054	1.074	1.059	1.031	1.073	1.057	1.054			
1	3.2	5.4	4.4	5.9	in W	7.3	5.7	57.4			
) $MCF = (M - 1)$	34	30	35	44	w w	40	27	29			
C 2	-18.2				412,9						

S.P. -18,2

+12.9

A Standard Land

		INDUCED		POLARIZATION	SURVEY	COMPUT	COMPUTATION SHEET	HEET		Pa	Page
Project Allison (LYNCH) I	Line 3	51/2	۲.	date 7-19-	0	C†		Comp.	date 7-19-66	•	Comp by R.P.
										l	
(A) Send	エーシー	3-4	4-5	2:3	3-4	4.5	1-2	2-3	3-4	4-5-	
B	0-5	5-10 -	2	10-15		V	15-20			4	
\sim			2		P	W	-	3	5	Ŧ	
) I	2									V	
(E) Vdc (avg)	256	304	56.5	329.5	105.8	27.68	332	116.9	51.4	16.31	
al	.505										
K	1.5	1.5	6	1.5	6	15	1.5	6	15	30	
01	97	112	93	125	161	105	126	177	195	124	
(J) AC noise x 2											
$(K)Vac(corr) = \sqrt{I^2 - J^2}$	244	290	54.4	312	101	26.9	320	111.0	49.2	1516	
)AC-D	1.004										
(M) Q dc/Qac=ExL/K	1.053	1.053	1.024	1.060	1.052	1.032	1.043	1.055	1.048	1.049	
(N) PFE= $(M-1)(10^2)$	513	5.3	2.4	6.0	5.2	3:2	4.3	5757	3.77	4.9	
) MCF=	55	46	29	8/2	32	80	34	31	25	40	
d'S	-18.6	-23.7		-29.7			-15.3				
1	Line		Field d	date	Da	ita page		_ Comp.	date		Comp by
(A) Send	1-2	2-3	3-4	4-5-	1-2	2-3	3-4	4-5-		Cal	
	20-25-			V	25-30			V		0:3	
	2	6	4	Cr1	ω	K	5	6			
Ч	2							V		.20	
(E) Vdc (avg)	79.5	43.05	22.8	8:24	0.00	34.4	20,8	8.245		178	
) DCcal											
	6	15	30	52.5	15	50	52.5	43			
\mathbf{R} dc=E	0121	163	173	109	681	261	272	176			
(J) AC noise x 2											
(K) Vac (corr) = $\sqrt{I^2 - J^2}$	76.8	41.2	21.9	7.90	48.0	32.4	19.7	7.40		144	
•											
$Qdc/Qac = E_2$	1.041	1.051	1.047	1.047	1.046	1.064	1.061	1,056			
(N) $PFE=(M-1)(10^2)$	4.1	5.1	4.7	4.7	4.6	6.4	6.1	5.6			
) MCF= $(M-1)$	75	12	27	43	24	24	22	32			
	-36.5				- 23. 1						

vieo 📩 👘	INDUCED POLARIZATION						SENDER NOTES					
project: Allison Mine Line: 4- N/2 Date: 22 Jul 66												
Send	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2		
Receive	6-5	5-10	~>	10-15		~>	15.20			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Time												
Range	150v	165V	150V	230x	160x	150V	230V	230V	160 V	150V		
Current	2A	2A	2A	RA	2A	2.A	2A	2A	2A	2A		
Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2		Cal 2-3		
Receive	20-25			~	25-30			~~>			2	3.7
Time												
Range	230v	2.30v	160V	150v	230v	230V	160x	150V		IION		
Current	ZA.	2.A	2A	RA	2A	24	24	24		14		4 5

· · · ·		INDUC	CED PC	DLARIZ	ATION	1	SENDE	er not	TES			,
project:	All.361	1 Mine		Line:	4-3	12		1	Date	22	Ju 1 64	2
Send	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5		
Receive	0-5	5-10	~~>	10-15		\rightarrow	15-20					
Time												
Range	230v	230v	230v	16DV	230v	23.0v	150v	160V	2.301	230,		
Current	2.A	2A	2A	2.A	ZA	RA	2.A	2A	2.A	24		
Send	1-2	2-3	3-4	4-5	1-2	2-3	3-4	4-5		Ca/ 3-4		
Receive	20-25				25-30			>			-	
Time											1927	
Range	1504	160V	230V	230 v					1	140v		
Current	2.A	24	24	2A						IA		
land the second se												

								FAC	the second se		
Proje	ect: A	1/150	√	Line	2: 24 3	5/2		_Int.Cal	I	Date:_	
Send	1-2	2-3	3-4	4.5	1-2	2.3	3-4	4.5	Cal		
Rec.	20-25	and a state of the		>	52-30			->	0-5-		-
Time	100	30	30	10					300		
DC-1	41,4 42,2	13.9	7.0 7.1	4.28 3.68					101		
DC-2	41, © 42,4	11.9 14.0	7.0 7.1	4.34 3.64					101		
E DC-3	L						× .				
DC-3	41,0 42.4	11.9 14,0	7.0 7.1	4.32 3.66							
Dc-4	40.8 42.6	11.8 14.1	6,9 7.2	4.32 3.66							
ž											
DC-AV	83.45	25.9	14.1	7.975					202		
AC-1	40.0	12.2	6.8	3.80					99.5		
AC-2	40.0	12.2	6.8	3.82					99,5	1	
Σ	80.0	24.4	13.6	7.62					199	1 A.	
S. P.	-12.2				-2,4						
AC-N	,12				,15			1.00			
Pot Res											

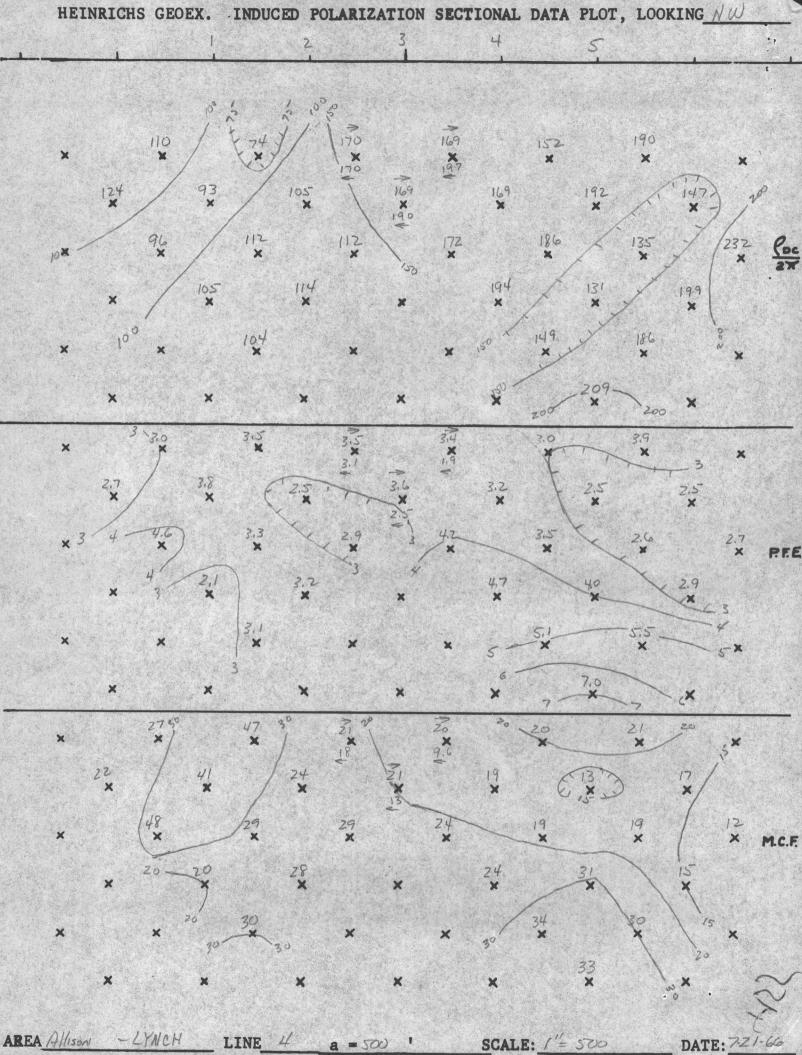
INLU											designation and	
. Proje	ect: <u>/</u>	<u> </u>	γ	_Line	e: <u>4</u>	51/2		Int.C	la1	D	ate:_	
Send	4-5	3-4	4-5	2.3	3-4	4-5	1-2	2-3	3-4	4-5		
Rec.	0-5	5-10 -	>	10-15 -			15.20			>		
Time	1000	300	300	300	100	30	300	100	30	30		
DC-1	266	230 230	65	98.	33.5 37.0	15.5 14.6	148	31.6	14.3	7.8		
DC-2	266 266	230 230	65 63	98 100.5	33.5 37.2	15.5 14.6	148 149	31.9 30.6	14.3 15.9	7.8		
E DC-3	266 266	230	45 63	98	33.3	1516	148 149	318	14.2	7.9		
Dc-4	266	230	65 63	100.5 98 100.5	37,2 33.2 37.4	14.5 15.6 14.5	149 N8 149	30.6 31.8 30.6	16.0 14.1 16.1	7.4 80 7.3		
٤										-	а.	
DC-AV	532	460	128	198.5	70.58	30.1	297	62.4	30.2	15.3		3
AC-1	257	219.5	61.5	94.5	33,9	14,4	142	29.6	14.4	7.3		
AC-2	257	220.0	61.5	94.5	33.9	14.4	142	29.6	14.4	7.3	di se	
Σ	514	439.5	123.0	189.0	67.8	28.8	284	59.2	28.8	14.6		
S. P.	-14,3	-8.7		-1.2			-124			1.1		
AC-N	.14	14		,13			,15					
Pot Res												

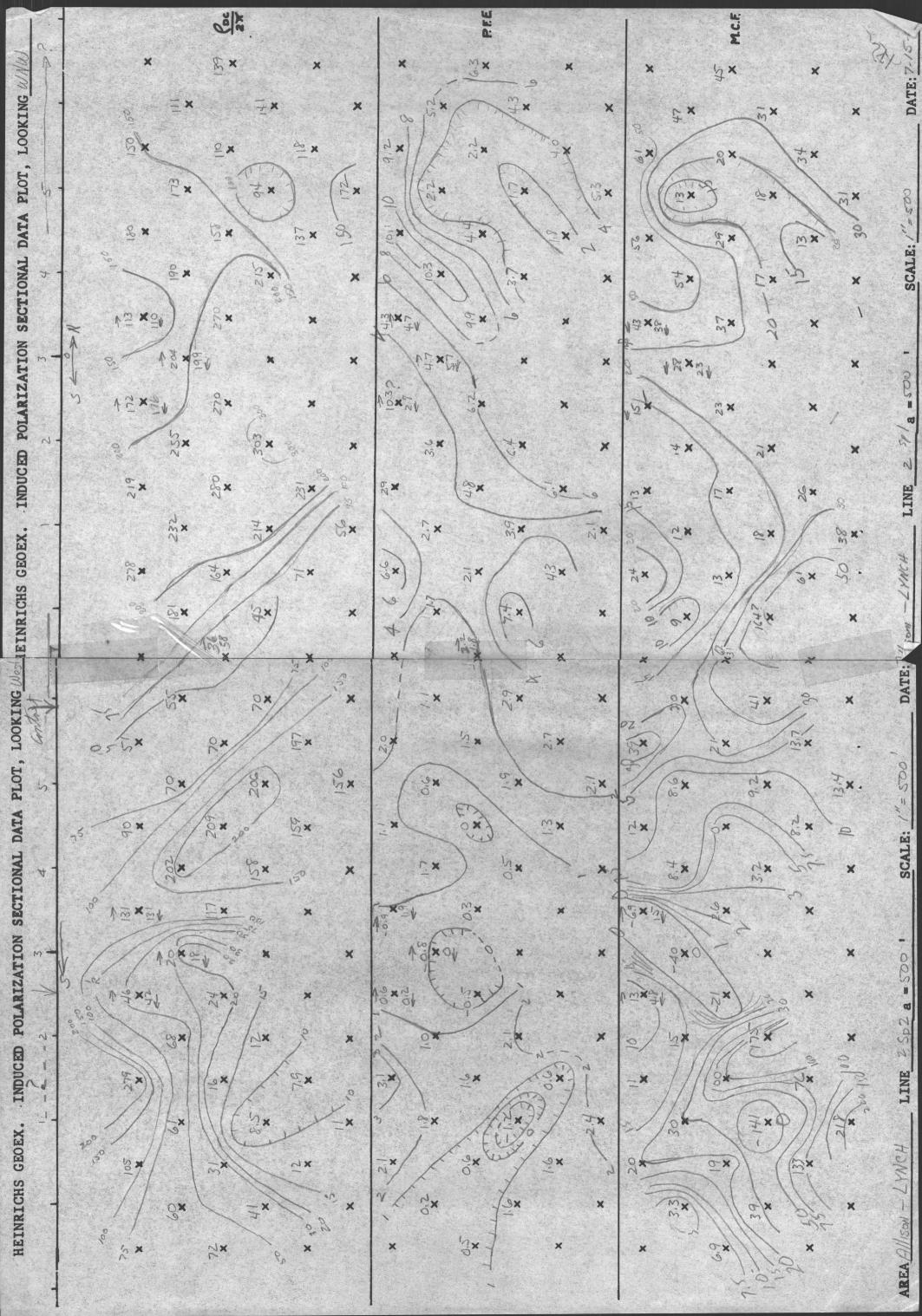
INDU						ER NO			PAGE		ate:	
	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4.	2.3	1-2		
Send Rec.	0-5	5-10	>	10-15			15-20		. E . d			
Time	300	300	100	300	100	100	1000	100	100	30		
DC-1	226 228	224.5 225.0	57.4	202	57.0	22.2	252 254	63.0	2579 23.8	13.6		
DC-2	226 228	224.5 225.0	57.4 55.4	203 201	57.0 55.4	22.2 23.6	252 234	63.2	23.8 23.8 23.8	13.8 12:0		
E DC-3	226	224.5 225.0	57.6	203 201	57.0 55.4	22.2 23.C	252 254	63.0 64.8	258	13.8		
Dc-4	226	224.5	57.6 55.2	203 201	57,00	22.2 23.5	252 254	63.0	25.5	13.7		
E DC AV	11-11	449,5	112.8	404	i m d	45.8	F.J.		101			
DC-AV AC-1	454	220	55.0	198	112.4		506	127.8	49.6	25.81		
AC-2	221.5	219	55.0	198	55.0	22.2		62.8	24.2	12.45	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	and the second second
S	443	43.9	1/0.0	396	//0	44.4	246 492	125.6	24.2 48.4	12.45		
S. P.	+17.6	+0.4	- 3.1	-3.1		1	+4,1	10010	70.7	27.1		
AC-N	,05	,04	10	0.4			,03		1997			
Pot Res												and the second s

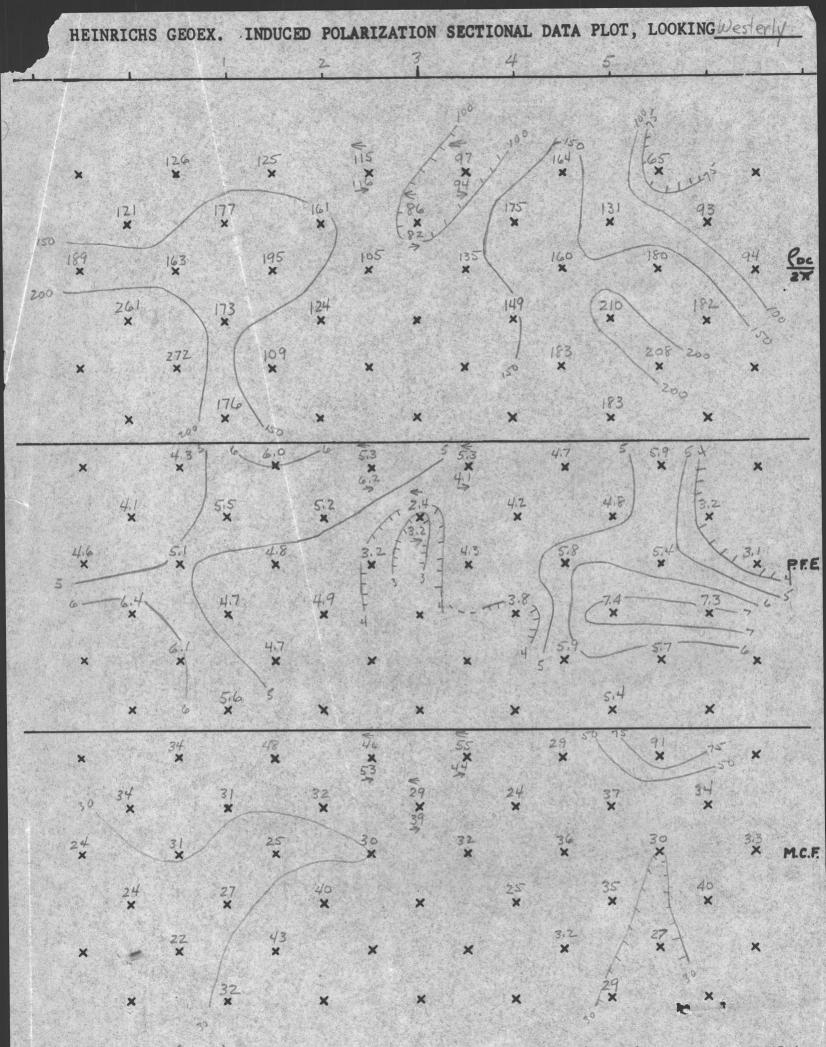
.

Proj	ect: <u>/</u>	21/1se	>n/	Lin	e: <u>4</u> /	1/2		_Int.Cal	Date:
Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2	cal
Rec.	20-25			>	25.30			->-	0-5
Time	100	30	30	10	100	30	30	10	300
DC-1	48,8 49,4	17.4 18.5	8,0 9,5	5,62	31,4 30.2	12.8 13.8	6.3 7.9	5,00	100
DC-2	48.6 49,4	18.6	8.0 9.5	5.64 5.72	31.6 30.2	12.6 13.8	6.3 7.9	5.00 4.95	100 100
ξ	I	Ι							
DC-3	48,6 49,4	17.3 18.6	7.9 9.6	5.15	31.8 30.0	12.55 13.95	62 8:0	5.02 4.92	
Dc-4	48,6	17.3 18.6	7.9 9.6	5161 5.75	5210 3010	12.5 14.0	6.2 8:0	5.05 4.88	
ک DC-AV	98.0	35.95	17.5	11.36	61.8	26.5	14.2	9.94	200
AC-1	48.3	17.7	8,5	5.41	30,4	13.0	6.8	4.68	101
AC-2	48.3	17.7	8.5	5.41	30.4	13.0	6.8	4.70	101
Σ	96.6	35,4	17.0	10.8Z	60.8	26.0	13.6	9.38	202
S. P.	-19.6				+14.8		1		
AC-N	. 61			1	.03		1		+

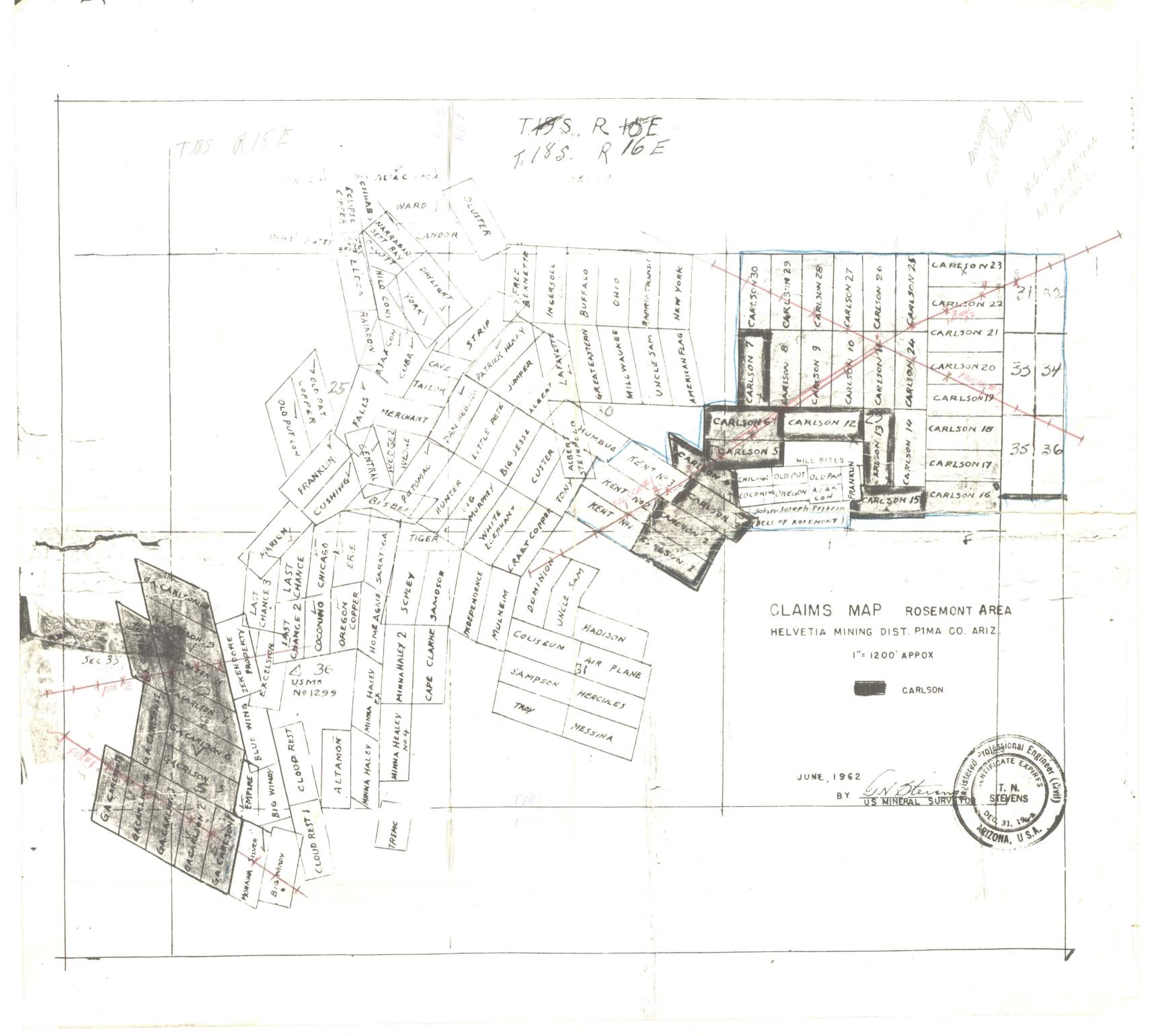
		TNINITOE	D DOT A D T 7/			COMPTERINT		1 E E T		Pa	Page
All VALAI		TNDOCE	D TULAK		DUNVEI	COMPUTATION		SUPET	1 1		Comp hur ? ? D
Froject Allison - Linch I	Line 7 30	r	riera a	date / cr	CC Da	ra page		- comp.	dare		Comp by the
(A) Send	4-5-	3-4	4-5-	2.3	7-5	425	1-2	2-3	3-4	やし	
Ý	015	5-10 -	<	10-15		V	12-20			V	
(C) n separation	1	_	2	-	2	3	-	2	6	£	
н	2						and the second se			V	
	532	460	128	198.5	70.58	30.1	297	62.4	30.2	15.3	
(F) DCcal	564'										
	1.5	1.5	6	15	6	15	1.5	6	15	30	
Q dc = E	197	170	100	74	105	112	110	93	112	114	
) AC noise x 2											
)Vac	415	439.5	123.0	189.0	67.8	28.8	284	59.2	2 P. P	14,6	
(L)AC-DC cal.	586										
$(M) \mathbf{Q} dc / \mathbf{Q} ac = ExL / \mathbf{K}$	1.019	1.031	1.025	1.035	1.025	1.029	1.030	1.038	1.033	1.032	
$(N) PFE=(M-1)(10^2)$	1.9	3.1	2.5	3:5	12:52	2.9	3,0	3.8	3.3	2.2	
(0) MCF=(M-1) $(10^{5})/H$	9.6	31	13	47	24	29	27	41	29	28	
SiP	-14.3	1.3-		-1.2			4.21-				
ProjectI	Line		Field d	date	Da	ta page		_ Comp.	date		Comp by
(A) Send	1-2	2-3	3-4	4-5-						cal.	
	20-25			V						0-5	
\sim	4	2	L	5							
	2			V							
(E) Vdc (avg)	83.45	25.9	14.1	7.975						201	
(F) DCcal											
(G) Kn x 10 ⁻³	6	101	30	52.5							
(H) Q dc=ExFxGx10 ³ /D	124	96	105	104							
(J) AC noise 🗴 2 👝										178	
(K) Vac (corr) = $\sqrt{I^2 - J^2}$	0.8	24.4	13,6	7.62						441	
(L) AC-DC cal.	-										
(M)Qdc/Qac =ExL/K	1.027	1.046	1.021	1:031							
(N) $PFE=(M-1)(10^2)$	2.7	4.6	2.1	3.1							
	22	48	20	30							
Q. N.	-12,2										

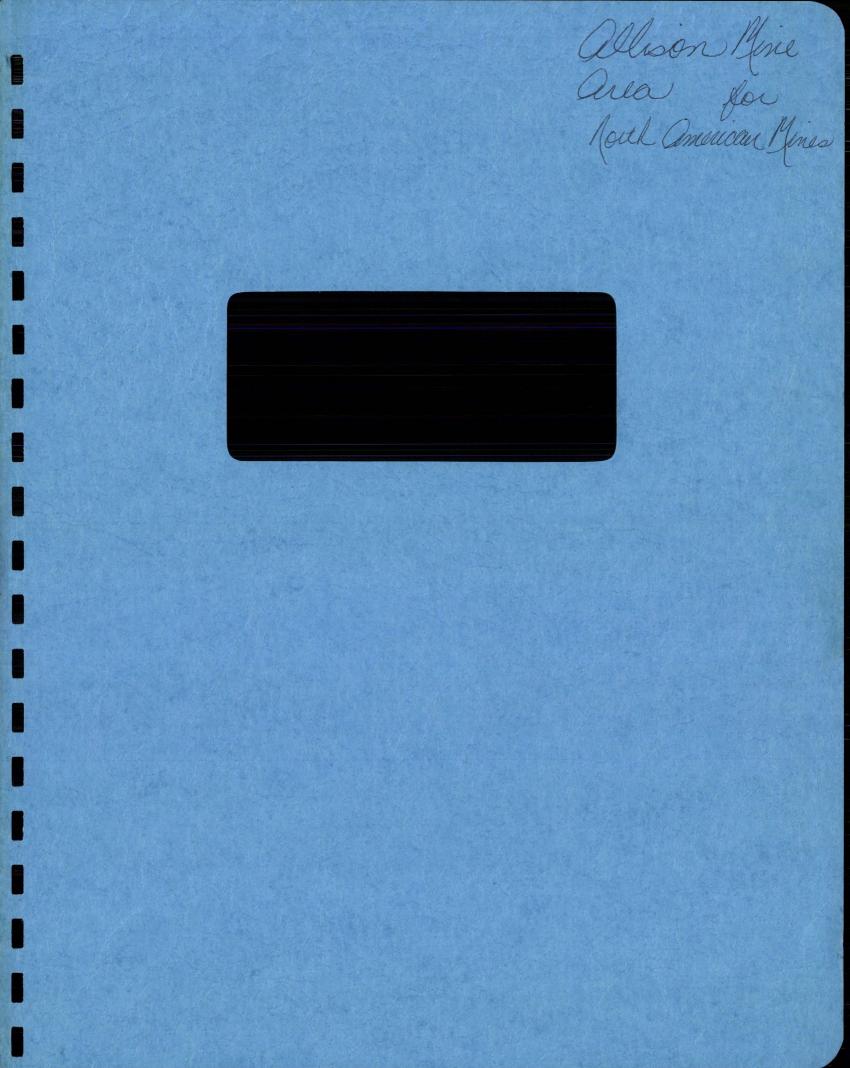

٠,


HEINRICHS GEOEXPLORATION COMPANY


S.P. -12.2

1 = 1 = 1


			HEINRICHS		GEOEXPLORATION COMPANY	ION COM	PANY				
Project Allson - LYNCH L	Line 4 M	TT.	D POLAR Field d	date 7-21-66	RVEY	COMPUTATION ta page		SHEET Comp.	date	Page • Comp by	N. D
(A) Sand II	1-7	2 , L	1-2	W I L		1-2	11-5	215	212	1-2	
	0 1 1 1	5-10 -	V	10-15		V	15-20			V	
	~		٢	-	2	2	~	4	S	t	
н	2									V	
(E) Vdc (avg)	454	449.5	8.211	404	112.4	45.8	305	127.8	49.0	25.81	
) DCcal	1500				-						
(G) Kn x 10^{-3} ,	1.5	1.5	6	1.51	6	15	1.5	6	15	30	
Q dc = E	170	169	169	152	169	172	190	192	931	194	
V											
(J) AC noise x 2											
)Vac(corr)	575	439	011	396	110	44.4	492	125.6	48.4	24.9	
AC-DC	1.010										
$Q dc/Qac=E_{2}$	1.035	1.034	1.036	1.030	1.032	1.042	1.039	1.025	1.035	1.047	
(N) $PFE=(M-1)(10^2)$	3.5	3.4	3.6	3,0	3.2	4.2	3.9	2:5	w Vi	4.7	
(0) MCF= $(M-1)(10^{5})/H$	15	20	2	20	19	24	21	13	19	24	
Si Pi	+17.6	+0.4		1 10 1			+ +				
ProjectI	Line		Field d	date	Da	ta page		_ Comp.	date	Comp by	
(A) Send	4-5	3-4	2-3	1-2	4-5	3-4	2-3	1-2		cal.	
) Receive	20-25			V	25-30			V		e S	
	Ч	3	4	5	G.	K	5	6			
(D) I	NI							V			
(E) Vdc (avg)	36	35,95	17.5	11.36	61.8	26.5	14.2	9,94		200	
) DCcal											
(G) Kn x 10^{-3}	6	15	WO	52.5	15	w0	52.5	43			
\mathbf{R} dc=E	147	135	131	149	232	199	186	209			
) AC r											
) Vac	96.6	35.4	17.0	10.82	60.8	26,0	13.6	9.38		202	
AC-DC cal											
)Rdc/Rac	1.025	1.026	1,040	1.051	1.027	1.029	1:055	1.070			
-1)	2:5	2.6	4.0	115	2.7	2.9	5.5	7.0			
) MCF= $(M-1)$	77	19	31	34	12	15	30	3			
S.	+19.6				8.171+						



AREA Allison Mine (LYNCH) LINE 3 a = 500 ' SCALE: 1'= 500' DATE: 7-19-66

INDUCED POLARIZATION SURVEY ALLISON MINE AREA Pima County, Arizona

59. LATTOM RED.

for

NORTH AMERICAN MINES, INC.

July 1966

By

HEINRICHS GEOEXPLORATION COMPANY P. O. Box 5671 Tucson, Ariz.

an an ar and a s

HEINRICHS GEOEXPLORATION COMPANY

TABLE OF CONTENTS

INTRODUCTION	
CONCLUSION AND RECOMMENDATIONS	2
INTERPRETATION	2

Attachments

"The Basis of Induced Polarization-----la One plan map--in map pocket

HEINRICHS GEOEXPLORATION COMPANY

4 sectional data sheets of lines #1, 2, 3, and 4.--in map pocket.

2696 CLETON FIB

INTRODUCTION

At the request of Mr. Graton Lynch, Heinrichs Geoexploration Company conducted and completed an induced polarization survey over a portion of the Allison Mine area, for North American Mines, Incorporated. The field work for this survey was carried out during the interim July 13 to July 29, 1966.

A total of five 500 ft. spreads, making up four lines, using the dipole-dipole electrode configuration and the dual frequency technique were used. The data obtained is presented on sectional data sheets, one for each line. Each sheet has apparent resistivity, percent frequency, effect, metallic conductors factor, and self-potential plotted as described in "The Basis of Induced Polarization" bound with this report. In the following discussion these four types of data will be abbreviated

a, PFE, MCF, and S.P. A plan map is also included showing the relative position of the lines in relation to USMM #4063 and the Allison Mind. Electrode numbers are written above the lines and line stationing is below the line.

The GEOEX personnel working in this area were: Mr. Ron Palmer, party chief: Mr. Michael Critchley, sender operator; and Mr. William Hood, technical assistant. Mr. Paul Head, geophysist in charge, is responsible for interpretation of the data.

-1-

CONCLUSION AND RECOMMENDATION

Initially lines #1 and #2 developed moderate interest at their north ends due to some rather weak anomalism which seems continuous between lines. Lines #3 and #4 were then done, off-setting their centers north to correspond with the assumed strike of anomalism. Line #3 did not detect anomalism, and that on line #4 was exceedingly weak. We conclude that mineralization is best between lines #1 and #2 and probably does not extend much farther north than has been indicated on the plan map.

This area merits additional work and it was recommended to Mr. Lynch that prior to additional geophysics some detailed geology be undertaken to localize the anomalous material at surface and to determine the possible relation of copper showings to the observed I.P. effects.

Line #2 was extended to the south in an unsuccessful attempt to expand the weak anomaly detected on line #2, spread #1. However, additional work is recommended farther south of the Allison Mine because certain aspects of the data are strange and unusually anamalous.

INTERPRETATION

Line #1.

Two moderately sharp resistivity contacts are shown, at 1.5 SW and at 1.0 NE. The southerly one apparently is associ-

-2-

HEINRICHS GEOEXPLORATION COMPANY

ated with a very weak PFE anomaly just beginning at the end of the line. Another very weak anomaly at the north end of the line has a very good pattern beginning to develop and may become much stronger if the line is extended. No self potential correlation is noted.

Line #2.

This line was surveyed with two 500 ft. dipole arrays. At the north end of this line and continuing beyond the survey a weak, well-patterned anomaly has been detected. The disturbing body seems to be narrow and very near surface. There is also possible S.P. correlation, at least a broad low is present on the north end. Spread #1 revealed a weak anomaly at its south end which is closely related to an interpreted contact at about station 2.0 south. Spread #2 was run in hope that the PFE-MCF anomaly might be traced to a more intensly mineralized zone. Instead a completely unrelated anomaly associated with a very a was detected at 4.8 south. Although the polarization low effects are almost negligible in this area, the moderately high resistivity values overlying the exceptionally low resistivity values must indicate something of interest, perhaps only academically but conceivably economic and possibly sulfide related. This represents a highly unusual area. The contact indicated at about 3.8 south could be 500 feet farther south and does fall in this zone of interest. It is possible that exceedingly bad topographic conditions on this line have made resistivity calcula-

-3-

tions erroneous and account for the results, but further work is required to be more certain either way. One or two more short lines probably would do the job.

Line #3.

This has shown nothing of interest except that the S.P. shows a very rapid decrease and a vague increase of PFE to the south. A "pod" of slightly high PFE values was found to the north. This line was run to extend or cut off the anomalism on the north end of line #2. It was cut off. The low S.P. zone may be accounted for by topography.

Line #4.

This line was also run to extend or cut-off anomalism of a parallel line. Only a very weak anomaly was detected that we do not associate with the anomaly seen on line #1.

> Respectfully submitted, HEINRICHS GEOEXPLORATION COMPANY

Paul A. Head Research Geophysicist

August 11, 1966

Approved:

Walter E. Heinrichs, Jr. President

-4-

HEINRICHS GEOEXPLORATION CO.

BOX 5671 TUCSON, ARIZONA 85703 Phone: (AREA 602) 623-0578

BASIS OF THE INDUCED POLARIZATION METHOD

The induced polarization method is based on the electrical properties exhibited by electronic or metallic conductors imbedded in an ionic or electrolytic conducting matrix. These properties are noticed in that the potential across a block of this dual conduction mode material will increase with time, approaching a constant value, when a constant current is made to flow through the block. This phenomenon occurs because at the boundaries between the two conductor types, electrolytic ions have to give up or take on electrons thereby requiring an additional force (overvoltage) over that which would be needed with only one mode of conduction; showing up as a building of potential across the block with time as more ions are backed up. This potential approaches a constant value when an equilibrium is established between the ions backed up at the boundaries and the flow across the boundaries. Therefore from the preceeding discussion, it is seen that the gross effect is quite similar to the charging of a leaky capacitor and for most applications, it is proper to use this mode as a guide. These capacitive-like properties are normally measured by three different techniques.

In the time domain (pulse) method, a steady direct current is imposed across the block for a few seconds and abruptly terminated so that the capacitive-like decay (discharge) curve can be measured or recorded. Usually, the voltage decay curve is integrated with respect to time to give the area under the decay curve in units of volt-seconds. The more area determined, the more capacitance or polarization the block exhibits.

In the frequency domain method, the percentage difference between the impedance (AC resistance) offered to a lower and a higher frequency is measured. A capacitor offers a lower impedance to a higher frequency than it does to a lower frequency, therefore the percentage difference between the impedances will increase with increased polarization.

A third technique is to measure the phase angle or delay between an introduced current wave-form and the received voltage wave across the block. This phase delay also increases as polarization increases.

Almost all metallic lustered sulfides such as for example; pyrite, chalcopyrite, chalcocite, bornite and molybdenite are electronic conductors and the rocks and ground water, with which they permeate or are permeated, are ionic conductors, therefore if an electric current is made to flow through a sulfide deposit, it will polarize and can be detected by the three methods described above.

This induced polarization property is not entirely unique with sulfides since magnetite, graphite and some clays will exhibit it; however, with sufficient geological and geophysical data, effects due to sulfides can generally be interpreted apart from non-sulfide anomalism. The type of sulfide however, say pyrite, as distinct from chalcopyrite, cannot yet be distinguished with present induced polarization techniques since all types give quite similar types of problems.

The I. P. technique was developed primarily for porphyry type deposits and is perhaps the only reliable means of detecting hidden disseminated sulfides. However, the I. P. method works just as well or perhaps better on semi-massive to massive sulfides, contrary to some of the earlier thinking, for it gives increased response with increased volume percentage of sulfide.

FIELD TECHNIQUES AND INTERPRETATION

For routine exploration, we prefer and use the dual frequency system because of its greater simplicity of instrumentation, operation and greater accuracy as well as simplicity of interpretation. However, all three methods give basically the same results and the choice is either a matter of opinion or highly technical reasons and therefore should be left to the individual application and the geophysicist's discretion.

The two frequencies we most commonly use are 0.05 and 3.0 cycles per second, respectively or so called "D.C." and "A.C." modes. Other frequencies are available with our equipment and are occasionally used when desired. The usual frequency range used is from about 0.01 cps. to 10 cps. The lower frequency limit is due to naturally existing time varying Telluric (earth) currents and

- 2a -

electrode polarization. The upper limit is determined by electro-magnetic coupling effects which increase rapidly with increasing frequency.

In our standard reconnaissance field practice, five equally spaced co-linear current electrodes are placed in the ground by burying aluminum foil in pits wetted with brine. Observations are made in accordance with a symmetrical dipole-dipole configuration where the distance between the receiver or potential electrodes is kept equal to the distance between adjacent electrode pairs. Generally the receiving dipole is separated by one to six dipole units ("n" separation) from the sending dipole. Figures 1 and 2 indicate this configuration and resulting data plotting positions. A precisely controlled square wave current is sent through a sending dipole at 0.05 and 3.0 cycles per second from which, at the receiving dipole, a "D.C." and an "A.C." voltage are measured, respectively. By knowing the geometry involved (the dipole length or spacing and the separation distance between the two receivingsending dipole pairs), along with the two voltages, an apparent "D.C." and an "A.C." resistivity can be calculated. From these apparent resistivities, their percentage difference is determined, thus giving the Percent Frequency Effect (PFE). A third quantity proportional to PFE and inversely proportional to "D.C." resistivity, called Metallic Conduction Factor (MCF) is computed in order to somewhat normalize PFE for variations in ground conductivity purely as a technical interpretational aid. Formulas for these various quantities are given on Figure 3.

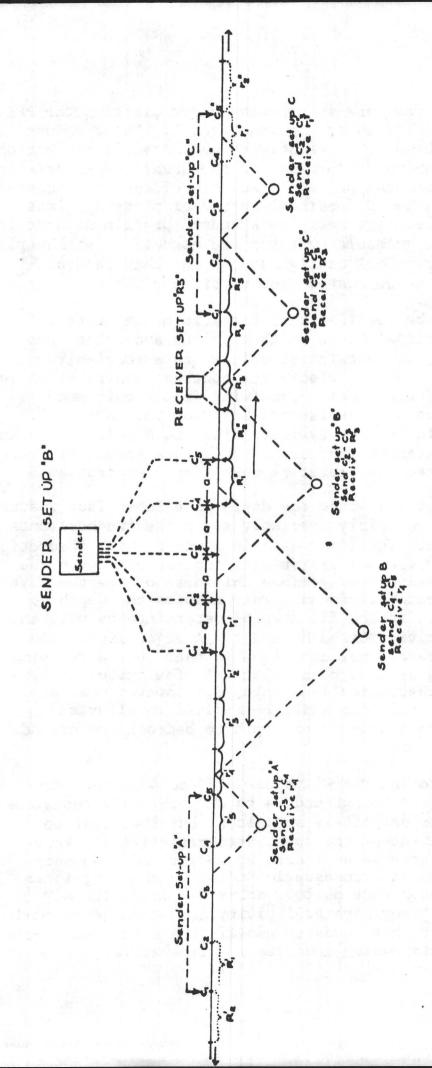
Selection of electrode spacings is determined by the objectives to be reached in a given survey. This spacing will range from very small (50 feet or less) for very detailed and shallow surveys, up to 1,000 feet, or occasionally more, for broad and deep reconnaissance work. Other factors involved in the selection of spacing are concerned with the anticipated physical geometry of any possibly existing mineral occurrence. This includes consideration of such size, shape and position factors as expected depth of burial to the top of the deposit, the dimensions of the deposit itself, its orientation, strike and dip, etc., as well as its expected electrical properties.

In general, the greater the dipole spacing and "n" separation, the greater the depth penetration and the less

the resolution. A rule of thumb used in practice is that, with a good contrast of electrical properties, using the symmetrical - co-linear dipole-dipole system, and having data from 1 through 6 in "n" separations, two times the dipole length is the maximum depth of detectable penetration. and 0.2 times the dipole length is about the minimum depth of detectable penetration for a body having two or three of its dimensions large in relation to the dipole spacing. However, a body having two or three of its dimensions less than the dipole spacing, and buried more than one spacing probably will not be detectable. A zone, regardless of orientation, having a dimension less than 0.1 the dipole spacing will not likely be detectable. Also, zones differing by less than about 30% in electrical conductivity will not be very easily resolved by resistivity measurements, but may still be detected if a polarization contrast exists.

To illustrate the above in more concrete terms, consider a dipole spacing of 1,000 feet for the following: An overburden of more than 2,000 feet would likely not allow enough current penetration into bedrock to detect even a large and highly mineralized zone in the bedrock. Also, a sulfide zone lying completely within 200 feet of the surface generally would not be detected. A spherical or elongated cylindrical body whose top is more than about 1,000 feet below surface and whose diameter is much less than 1,000 feet would be just out of the range of detectability. A Dike-like or sill-like zone whose width is less than 100 feet probably would not be detected regardless of how it lies relative to the spread.

So far, only the maximum and minimum limits of detection and resolution relative to the various geological and geometrical configurations have been discussed, thus omitting optimum conditions. Generally, we attempt to make the dipole spacing one to two times the expected depth to the target in order to obtain a good electrical response. Of course, where it is suspected that the zone has a good depth extent, say two or more dipole spacings, as is typical of most porphyry type copper deposits, a spacing considerably more than two times the expected depth to sub-outcrop can be used to obtain broader and more rapid coverage, as long as we do not exceed the zone's width. Because of these factors, we usually use 500 to 1,000 foot dipole spacings in prospecting for porphyry-type deposits.


- 4a -

The field data are interpreted after plotting the PFE, MCF and resistivity as in Figures 1 and 2. These values are then contoured, the resistivity and metallic conduction factor logarithmically (because of the usual large variations in magnitude) and the percent frequency effect on a constant interval. This two dimensional method of plotting gives an additional leverage over the standard profile methods in that easily recognizable patterns are associated with various subsurface geometrical configurations and that lateral variations can be separated from vertical effects.

It should be realized that there is no definite relation between the vertical scale on these plots and actual subsurface depth. The data point values are a complexly weighted average of the electrical contrast distribution in the vicinity of the sending-receiving dipole pair and contain depth as well as lateral information. About all that can be said is that by increasing the dipole length and the dipole separation ("n" separation) more volume of ground is being affected and therefore more depth penetration.

There are cases where the depth to a subsurface feature can be determined fairly precisely as in the two horizontal layer situation. The field data is compared with theoretical type curves for various resistivity contrasts between the top and bottom layer and various thickness of the top layer until a close match is found. This enables the depth to the bottom layer in the field to be determined as well as the true resistivity of both layers. A major limitation to this interpretational technique is that only a few simple geometric cases related to a relatively few number of layers have been theoretically developed. However, extremely valuable information can still be derived in alluvial and lake bed applications for depth to bedrock and ground water purposes, etc.

In interpreting PFE's, values of 0 to 4 percent are usually considered background, 4 to 8% marginally anomalous and 8 to 40 plus definitely anomalous, but they must be considered in light of the associated resistivity. Very low resistivities give an increased background frequency effect due to an electromagnetic inductive coupling interference phenomenon that must be corrected for. The MCF tends to correct any high resistivity increased background frequency effects but tends to amplify the electro-magnetic frequency effects making a correction imperative. Figure 1

Current procedure, there are three dipole separations between current electrode spreads. The receiver at R_5 ; $C_5^{1} - C_4^{1}$, $C_4^{1} - C_3^{1}$, C_2^{1} , and $C_1^{1} - C_2^{1}$ are sent and data is obtained for 3, 4, 5 and 6 dipole separations respectively. Each sender setup provides 33 data points. Schematic diagram illustrating the method of obtaining and plotting Dipole-Dipole I. P. data. setups are moved outwards from the ends of each current electrode spread usually until three Sender setup "B" when the receiver is receiving at R_1 only $C_3^1 - C_2^1$ and $C_2^1 - C_1^1$ can be "sent" so that data at 1 and 2 dipole separations is obtained respectively. When the receiver is is "sent" to each possible pair of electrodes for each receiver setup. For instance, in In normal d ipole spacings separate the potential electrode setup from the near end of the spread. Diagram shows three separate current electrode spreads along a traverse line.

(Data obtained from the three setups of Figure 1)

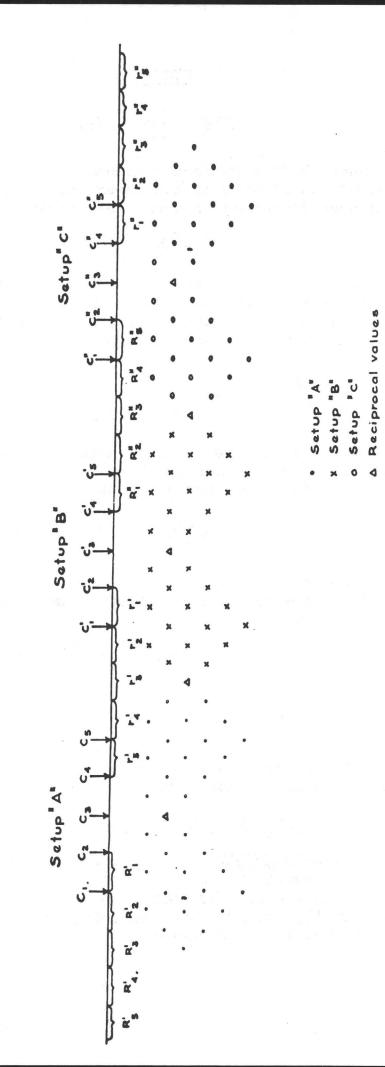


Figure 2

FIGURE 3

$$\mathsf{PFE} = \left(\frac{\rho_{\rm dc}}{\rho_{\rm ac}} - 1\right) 100$$

Where PFE is Percent Frequency Effect, ρ dc is the apparent resistivity at the lower frequency and ρ dc is the higher frequency apparent resistivity.

$$\rho = \frac{2\pi V}{I}$$
 Kn

Where ρ is either ρ dc or ρ oc depending on frequency of the current I which is measured in amperes. The potential V, arising from I, is measured in volts. K_n is the geometric factor given by:

$$Kn = \frac{an(n+1)(n+2)}{2}$$

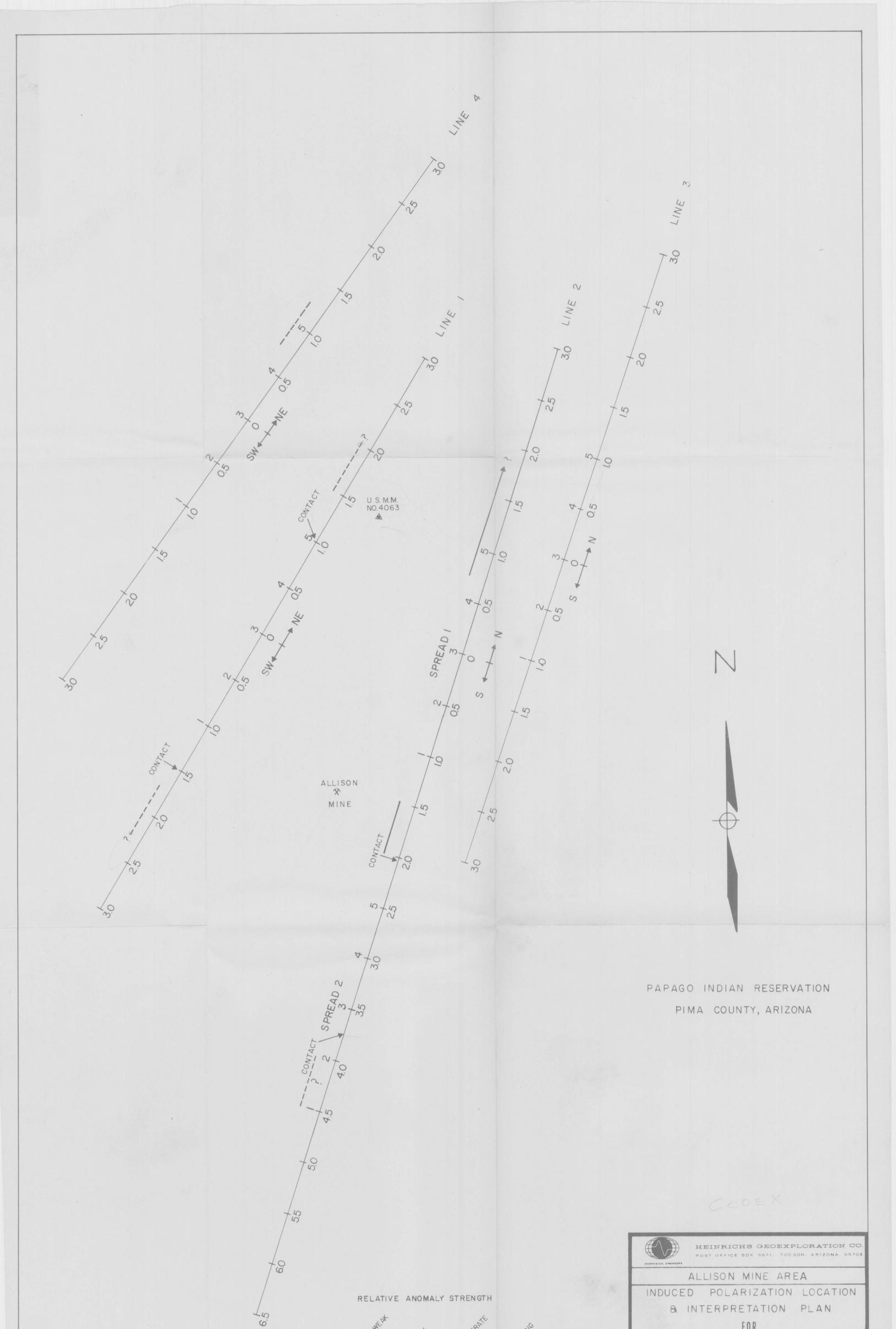
(Only for dipole-dipole arrays)

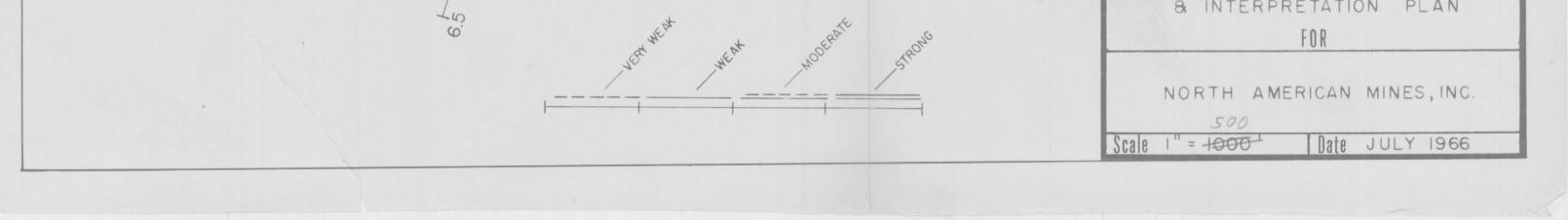
Where a is the dipole spacing in feet and n is the number of dipoles separating the sending and receiving dipoles, this gives, for apparent resistivity:

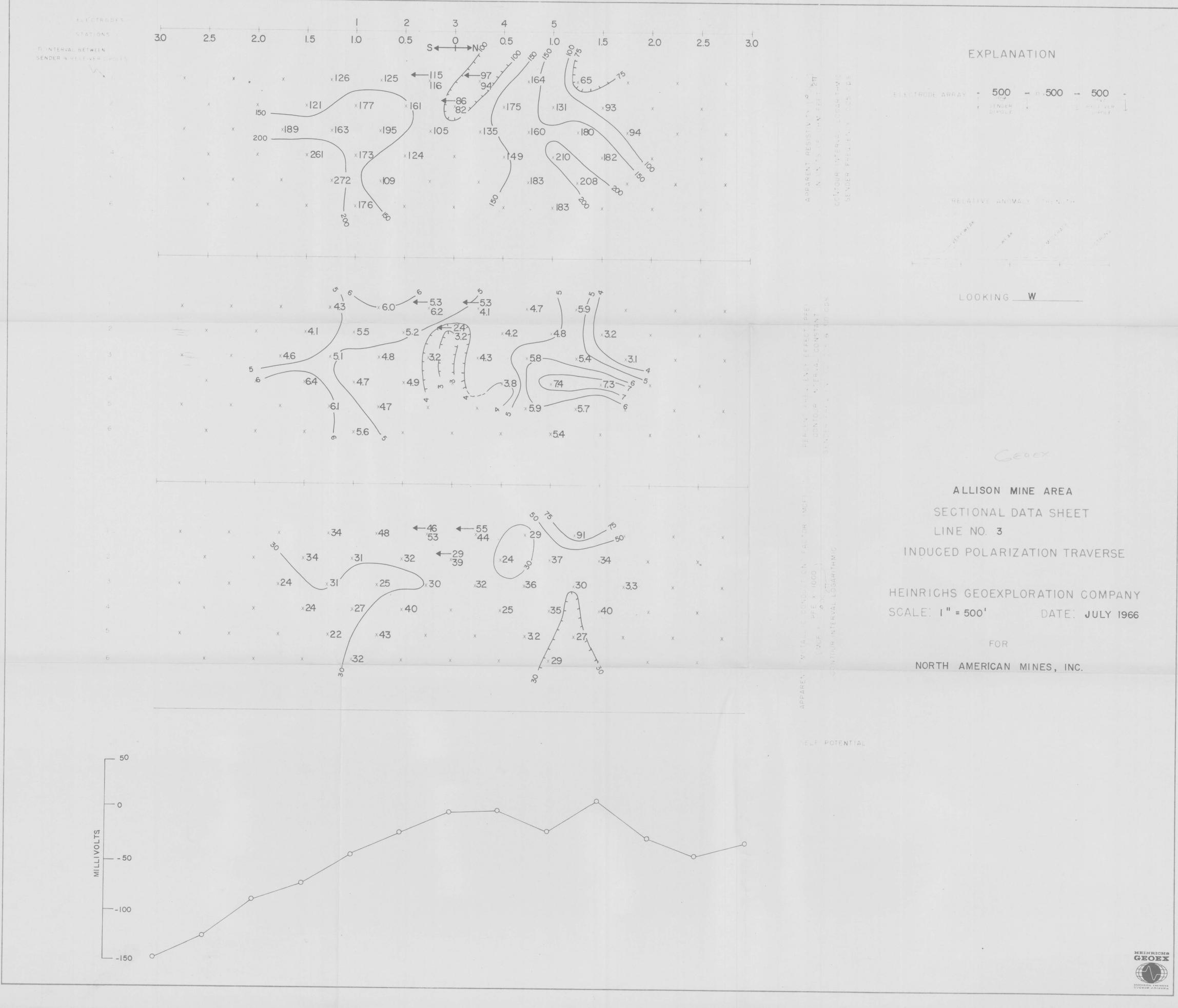
$$\rho = \frac{2\pi V}{I} \left(\frac{an(n+1)(n+2)}{2}\right)$$

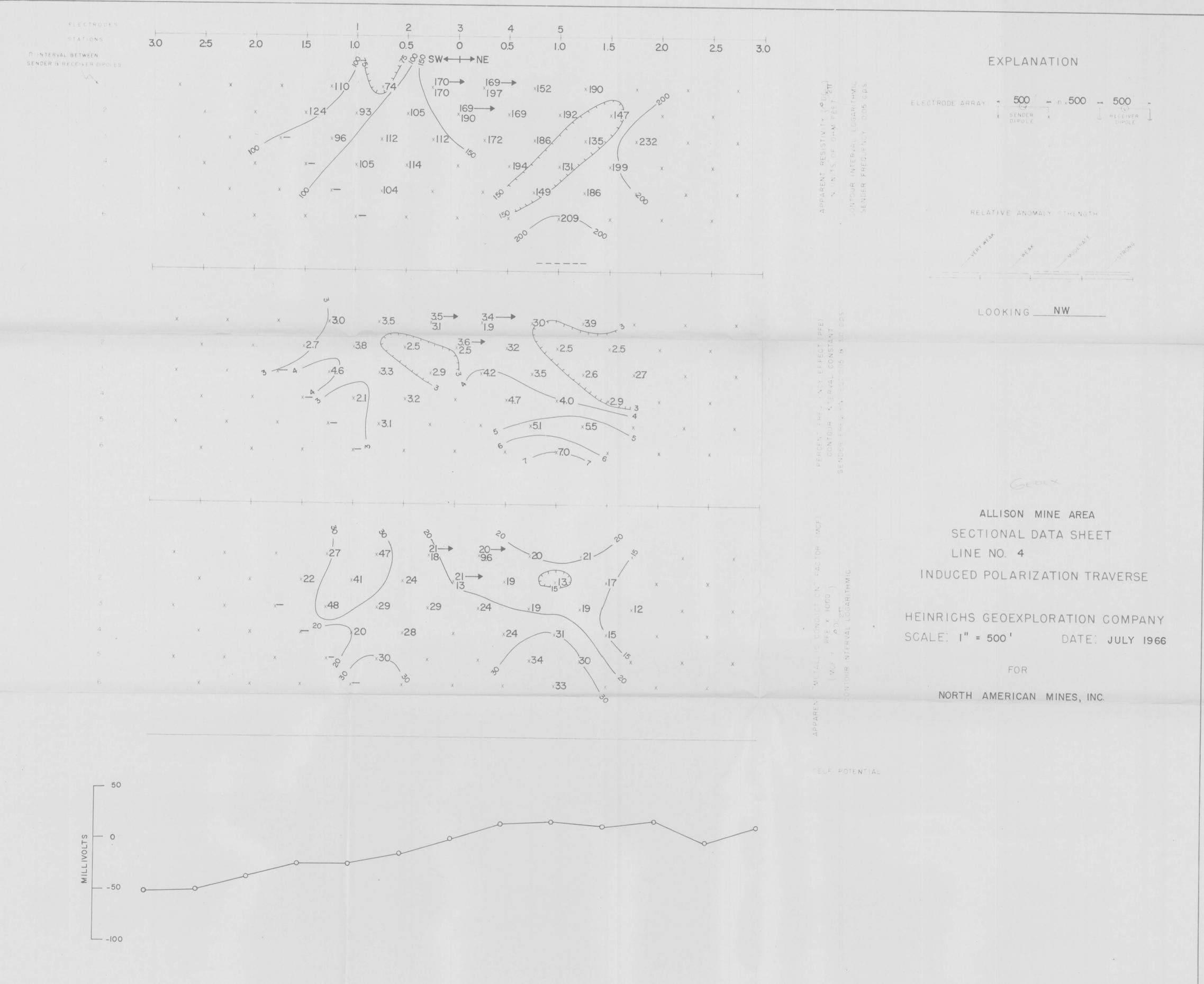
from which we see that ρ is in units of ohm-feet. However, the apparent resistivity usually plotted is

$$\frac{\rho}{2\pi} = \frac{V}{I} \operatorname{Kn} = \frac{V}{I} \left(\frac{\operatorname{an}(n+1)(n+2)}{2} \right)$$

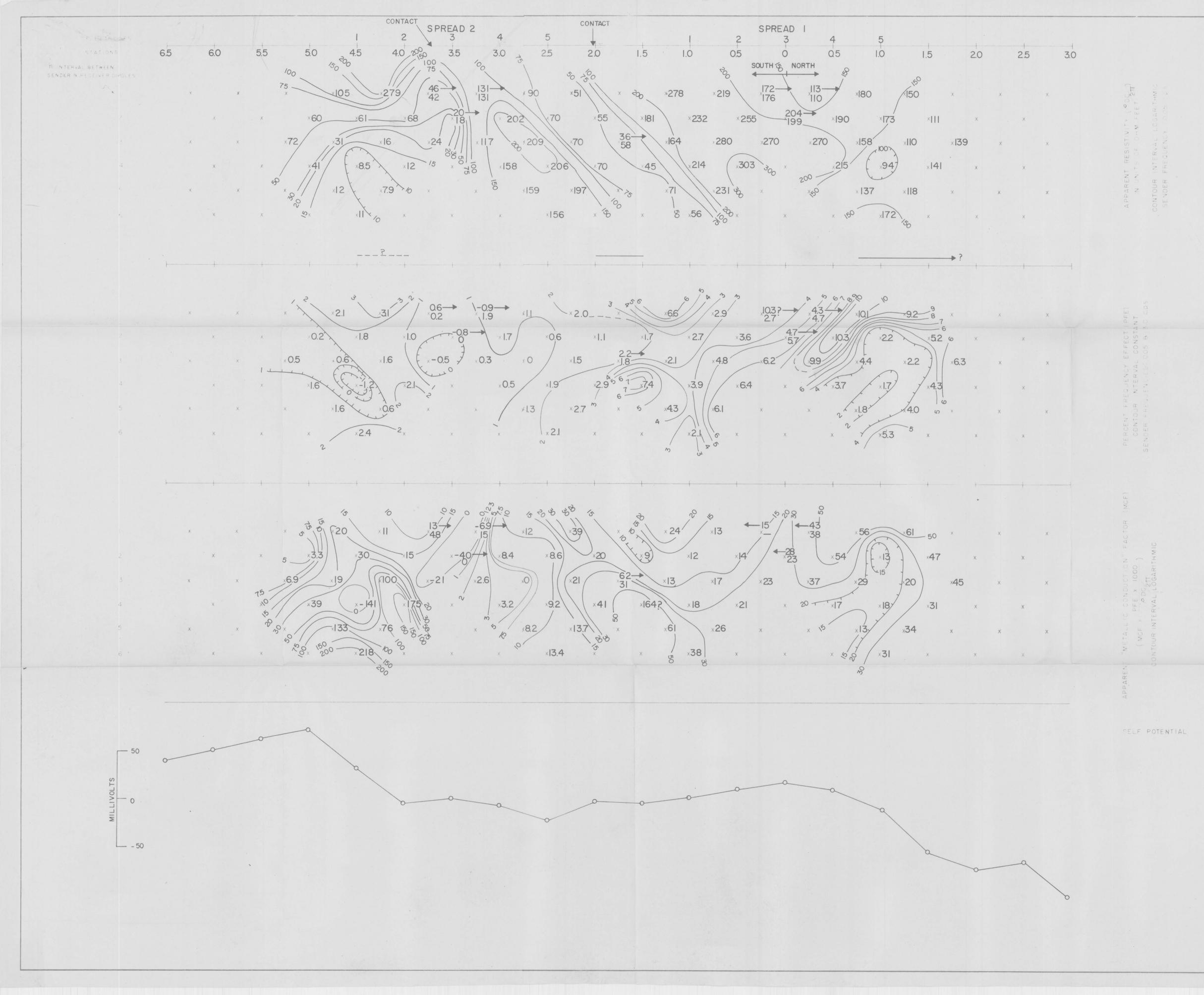


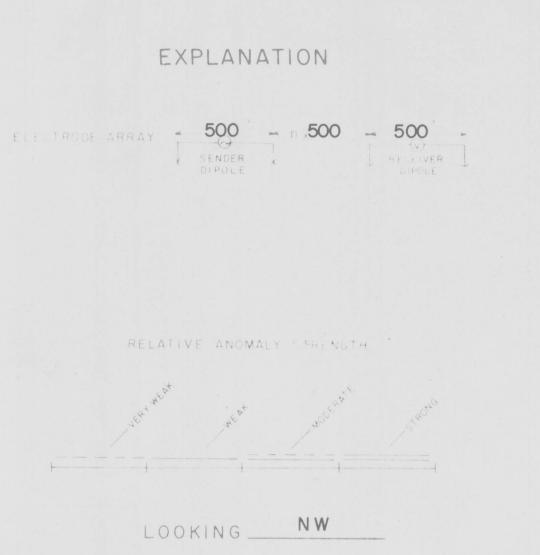

$$MCF = \frac{PFE}{\rho dc/2\pi} \times 1000$$


Where MCF is the Metallic Conduction Factor and $P_{dc}/2\pi$ is apparent "D.C." resistivity.


INDUCTIVE COUPLING INTERFERENCE

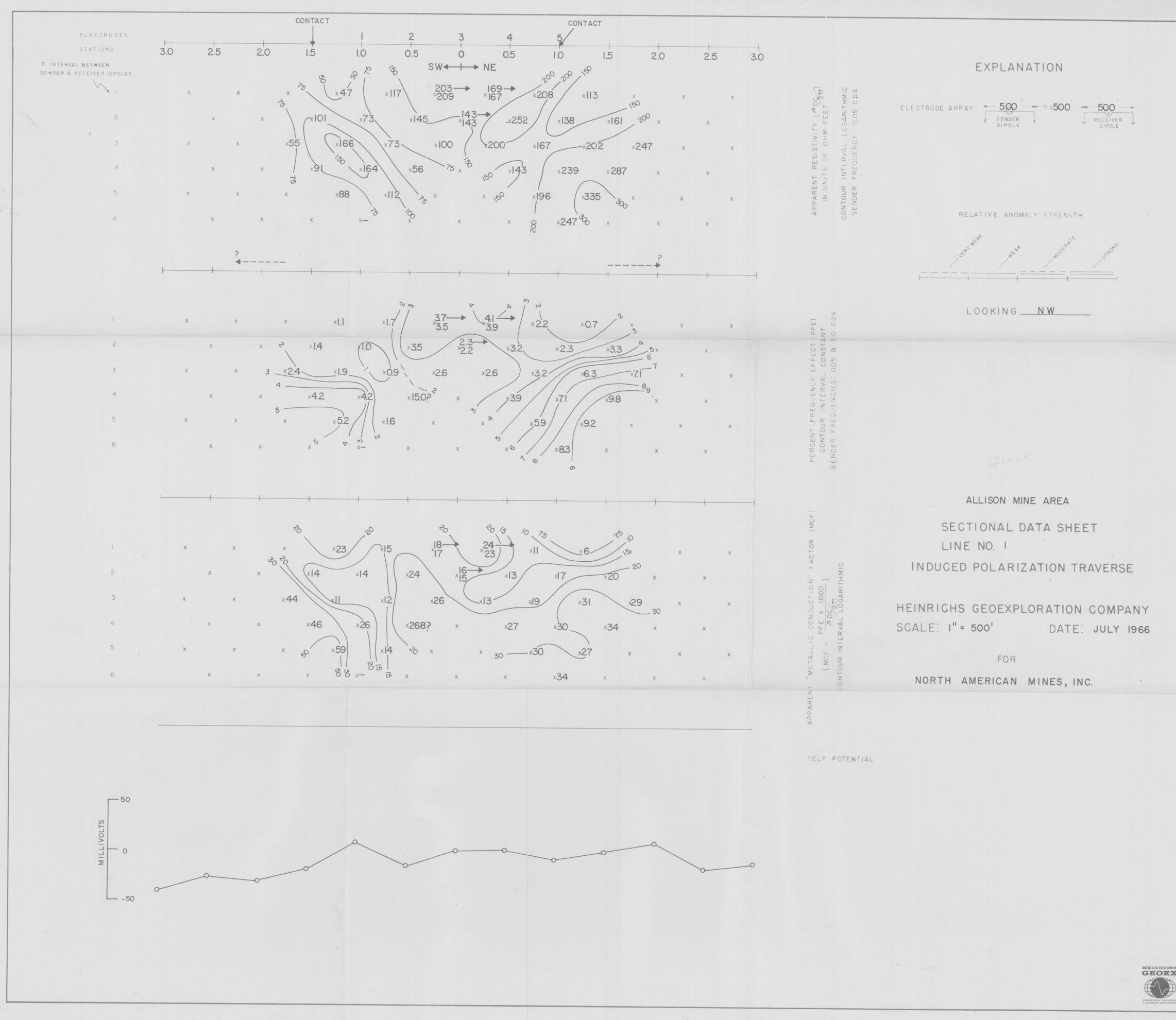
If $a(n+1)\sqrt{\frac{1}{\rho/2\pi}}$ is less than 1000 then the inductive coupling false frequency effect will be less than 2.5%. Likewise if less than 1500 the false effect will be less than 5%, and if less than 2000, the false effect will be less than 10%. Frequency f is in cycles per second.





HEINRICHS GEOEX

ALLISON MINE AREA


SECTIONAL DATA SHEET LINE NO. 2 INDUCED POLARIZATION TRAVERSE

HEINRICHS GEOEXPLORATION COMPANY SCALE: I" = 500' DATE: JULY 1966

FOR

NORTH AMERICAN MINES, INC.

HEINRICHS GEOEX