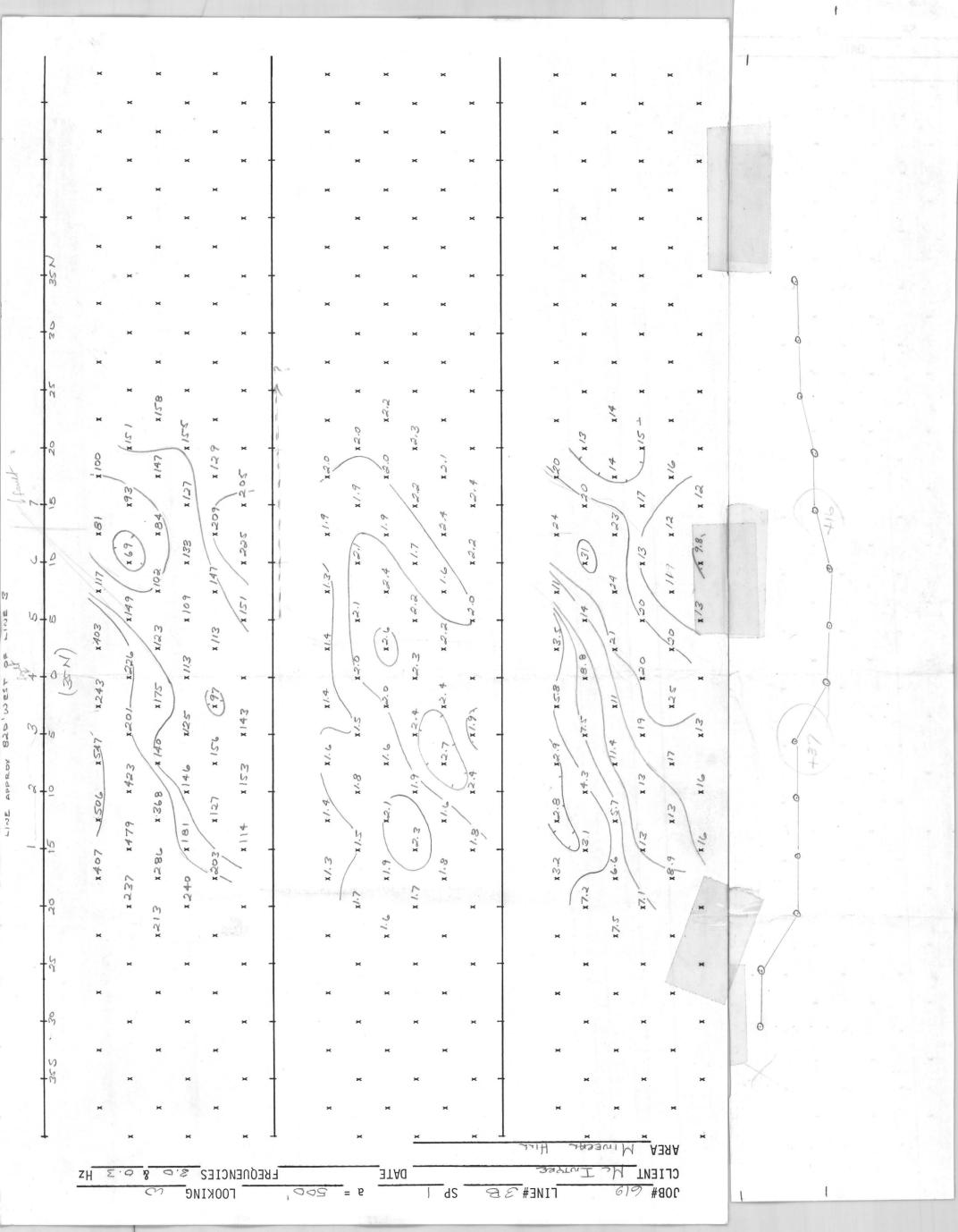


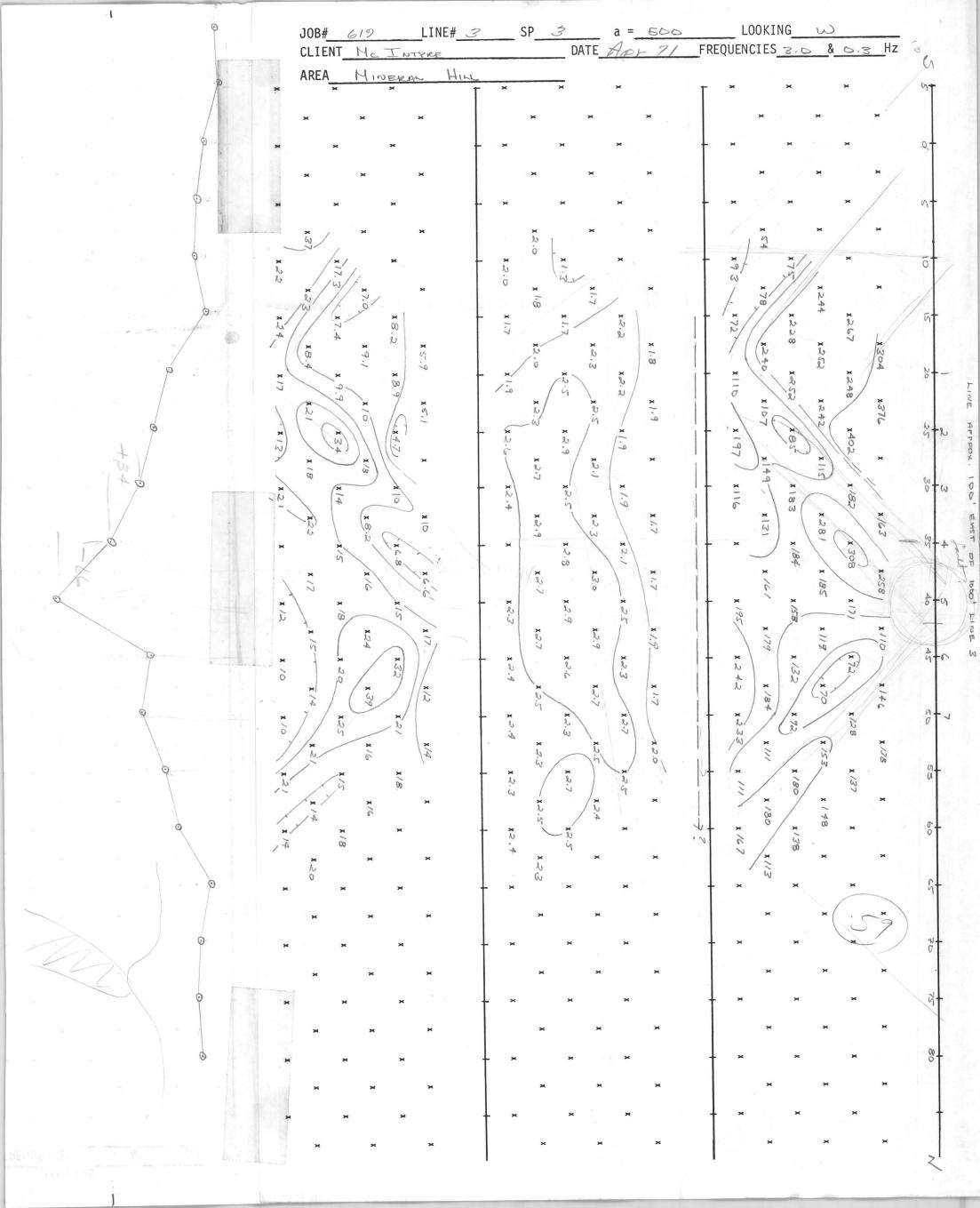
CONTACT INFORMATION
Mining Records Curator
Arizona Geological Survey
3550 N. Central Ave, 2nd floor
Phoenix, AZ, 85012
602-771-1601
http://www.azgs.az.gov
inquiries@azgs.az.gov

The following file is part of the Walter E. Heinrichs, Jr. Mining Collection

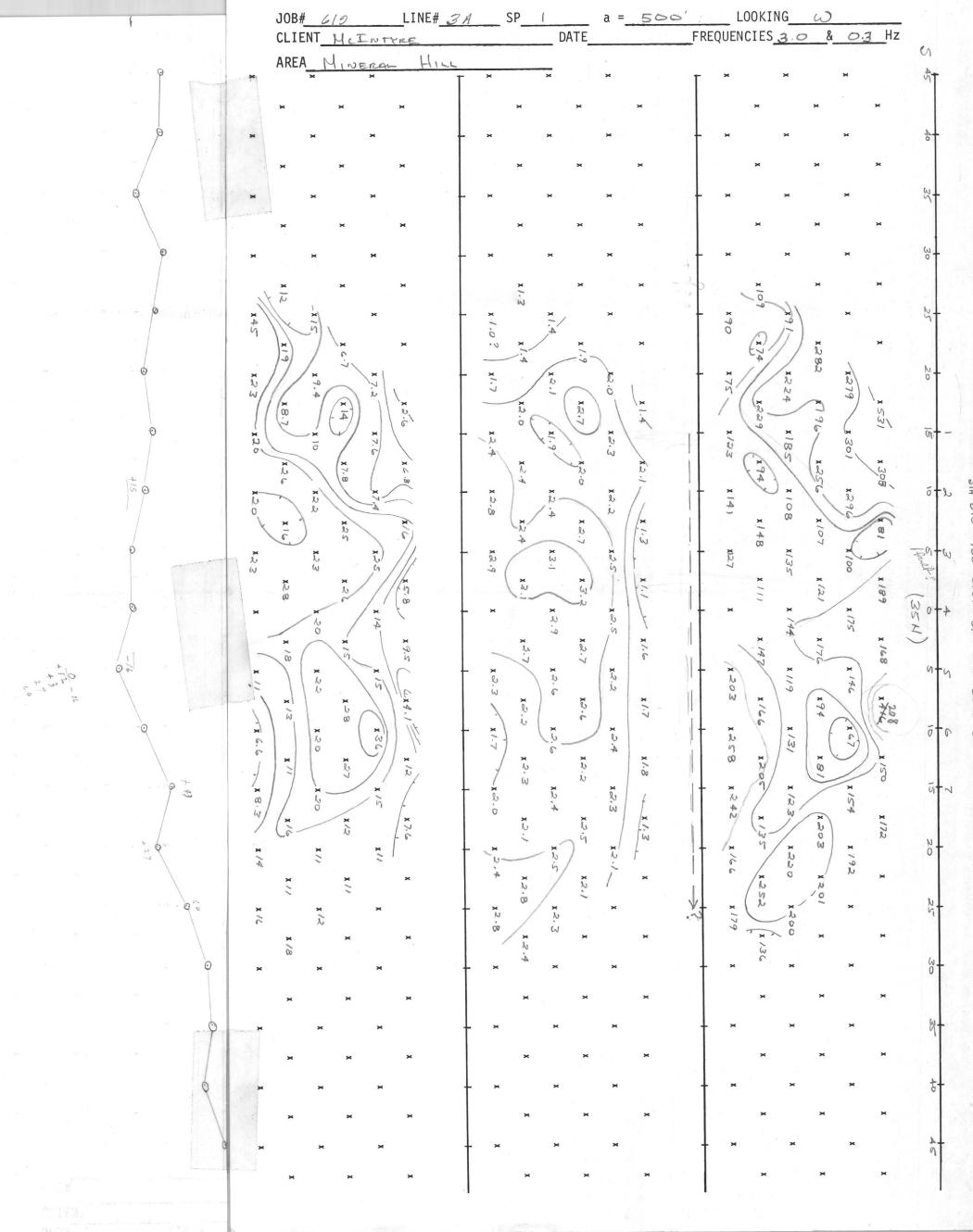
ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

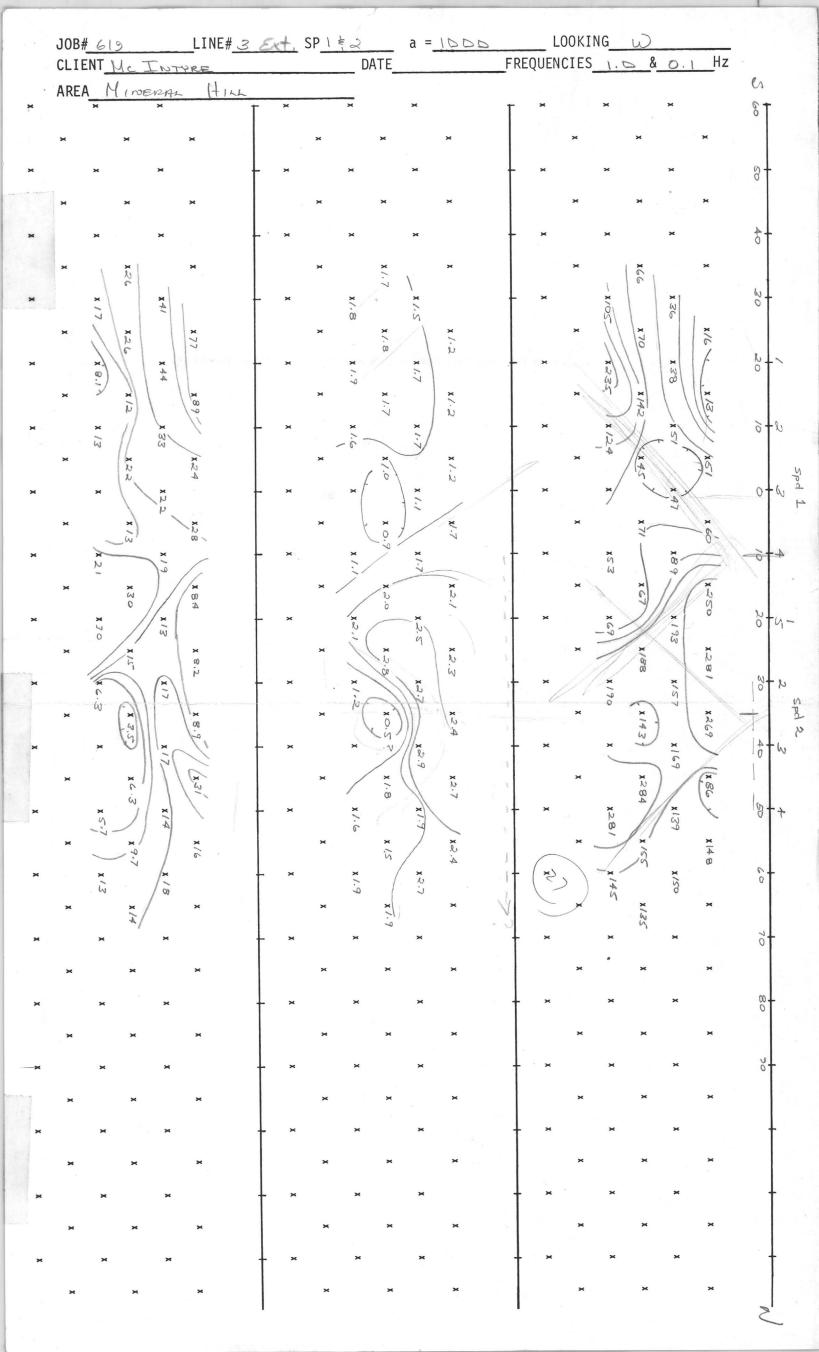

CONSTRAINTS STATEMENT

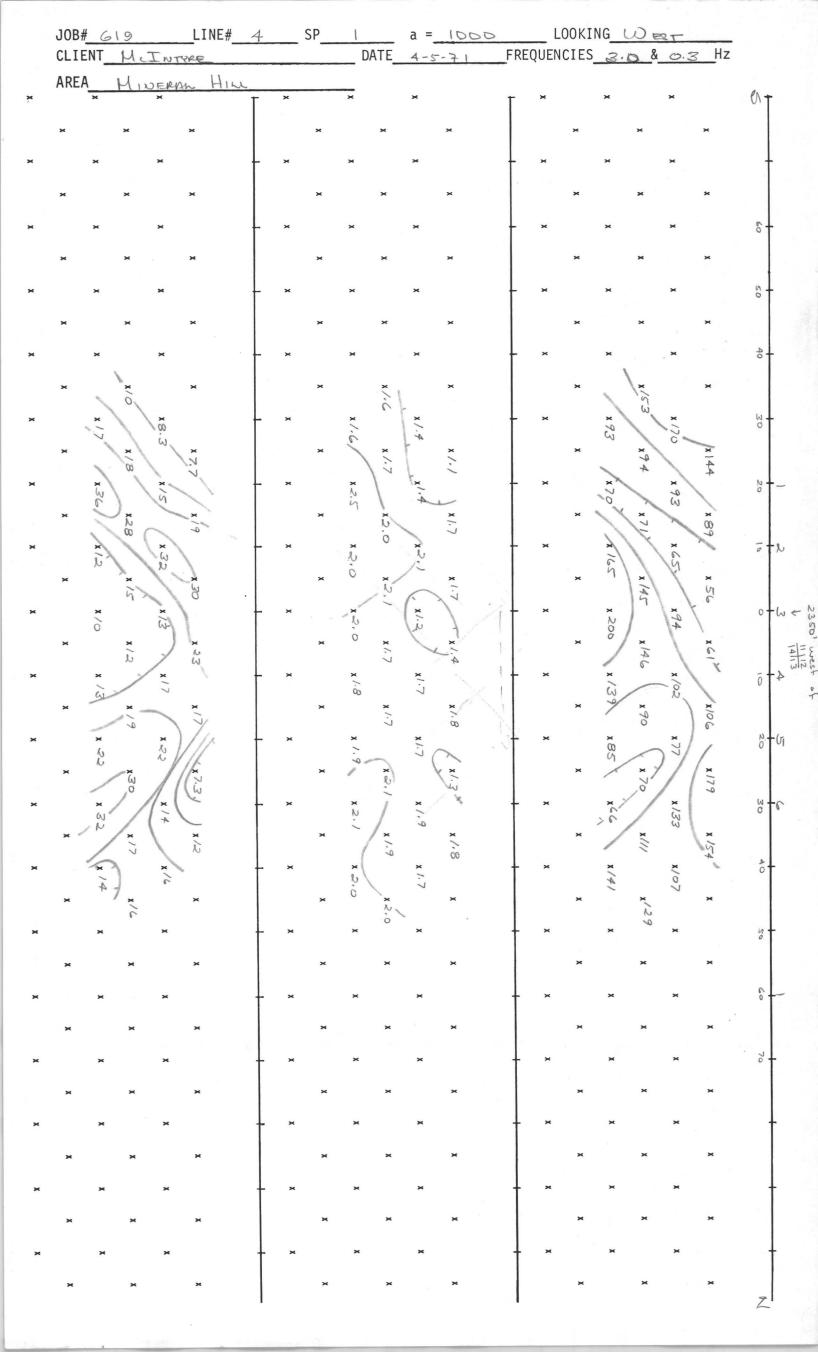

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.


QUALITY STATEMENT

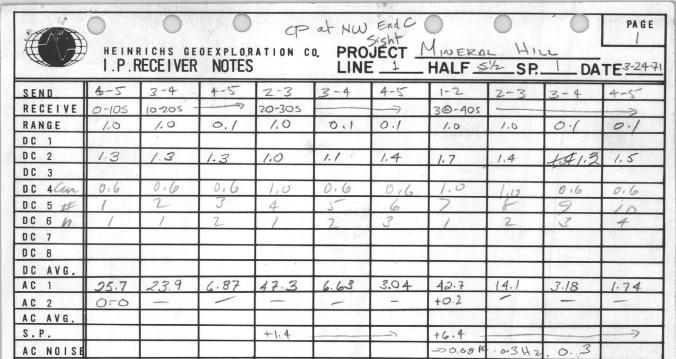
The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.





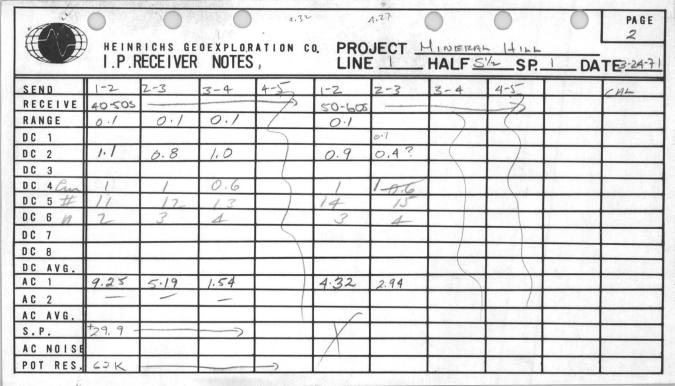
:BEÓNENCIEZ FOOKING

CFIENT TINE#



JOB# 619 LINE# 5 CLIENT M. INTERE		OOKING OO ERT
AREA MINERAL HILL		
* * * *	* * * *	×××
* * *	* * *	× × K
* * *	* * *	* * *
* * * +	* * *	× × 50
* * * *	× × ×	× × ×
× × × × × × × × × × × × × × × × × × ×	× ×	x262 x220
× 9.7	× ×/. C	2 65
× × / × 00.4		× W × v
× × × 7 × 9	* * * * * * * * * * * * * * * * * * * *	b b
× × × × × × × × × × × × × × × × × × ×	- i	2 2 0
× × ×	× × /×	(30)
× × × in /	/in	
× × × 57	× in in in	26/21
× 5 (× 5)	i i	228
× × × × × × × × × × × × × × × × × × ×	× X	175
* * *	× ×	200
× × × ×	×	× (
× × × × × × × × × × × × × × × × × × ×	ž Ž	To Car
× / Vic	× , , , , , , , , , , , , , , , , , , ,	× 122
× × × × × × × × × × × × × × × × × × ×	× × ×	44
× × × 0	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×
× × × × × × × × × × × × × × × × × × ×	* ×	x \ x \ 0
× V × V × V × V × V × V × V × V × V × V	* (*	× A A
* * * * * * * * * * * * * * * * * * * *	x1.6	X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
× × × ×	× × × × × × × × × × × × × × × × × × ×	× × 12 × 8
* * *	×	× × × 0 + v = 0
× X X X X X X X X X X X X X X X X X X X	×	x x 77
× ×, ×27	× × ×	× × × × × × × × × × × × × × × × × × ×
× / × ×	*	* 0000
* * * * * * * * * * * * * * * * * * * *		× 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
×	× × ×	x x x x x x x x x x x x x x x x x x x
× × × × × × × × × × × × × × × × × × ×		2 0
* 100 200		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13		× 15 × 10 × 10 × 10 × 10 × 10 × 10 × 10
× × × ×	2.6	136
F N	N N	× × × × × × × × × ×
700	in in	4 7 2 2 2
8 4.	<u></u>	h 3
× × × × × × × × × × × × × × × × × × ×	100	1
× × × × × × × × × × × × × × × × × × ×	o v	No.
4 7	N N N N N N N N N N N N N N N N N N N	X X X X X X X X X X X X X X X X X X X
× × ×	· ·	-69
× × × × · · · ·	60	× × × × × × × × × × × × × × × × × × ×
× × ×	× × ×	× × ×
* * * *	. × × + ×	× × OOK TG
* * *	и и ж	X X X
× × ×	. × × + ×	× ×
* * *	* * *	× × ×
× × × +		* *
ж ж ж	ж ж ж	× × ×
ж ж ж	* * *	* *
× × ×	ж ж ж	* * *
* * * +	ж ж ж ж	ж ж
* * *	× × ×	ж ж ж
.1		

000 78,000


Job 649, Line 1, Sprend 1, N+5½, 3/25/71 1000.

54 K

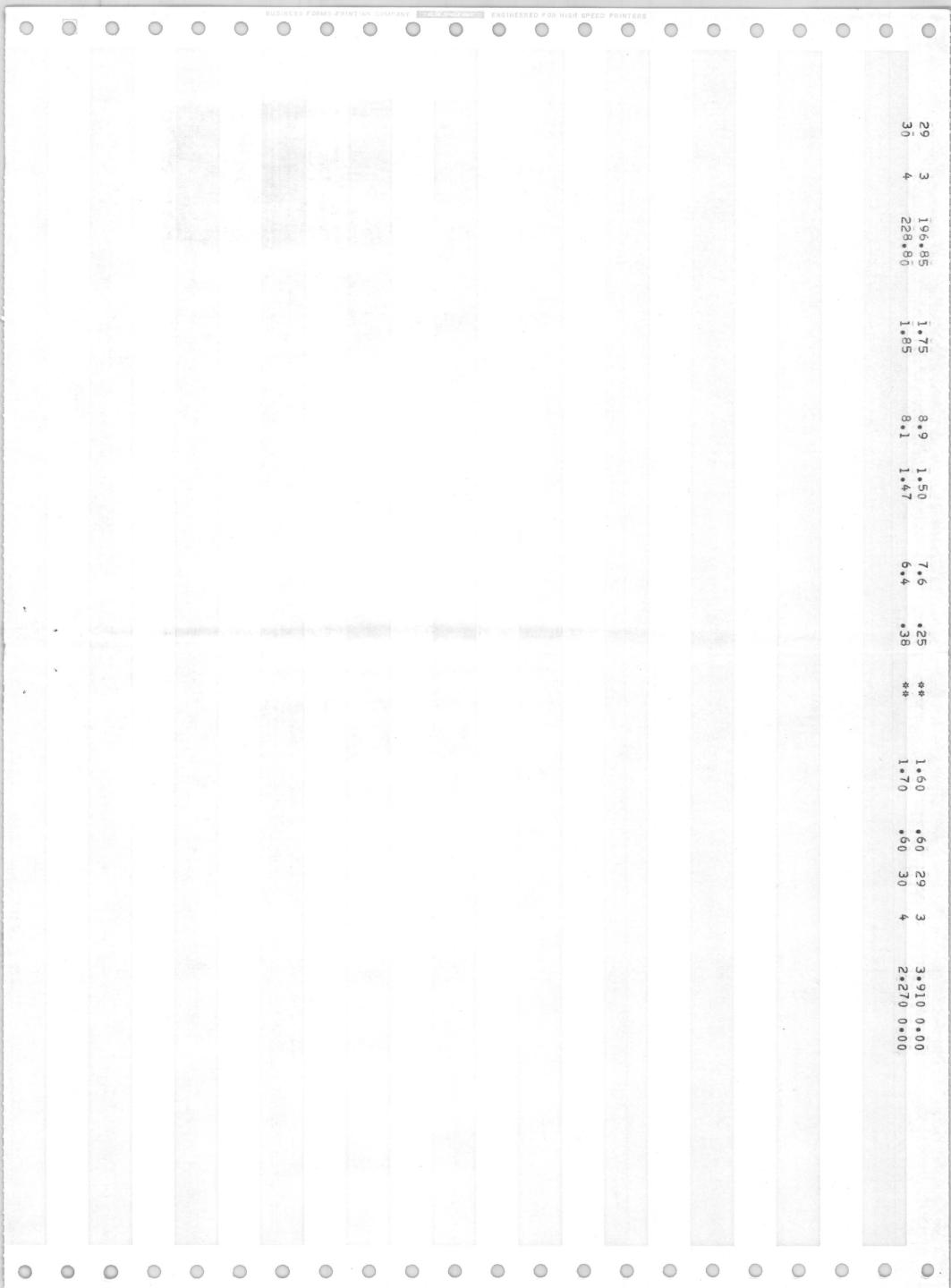
55K

POT RES.

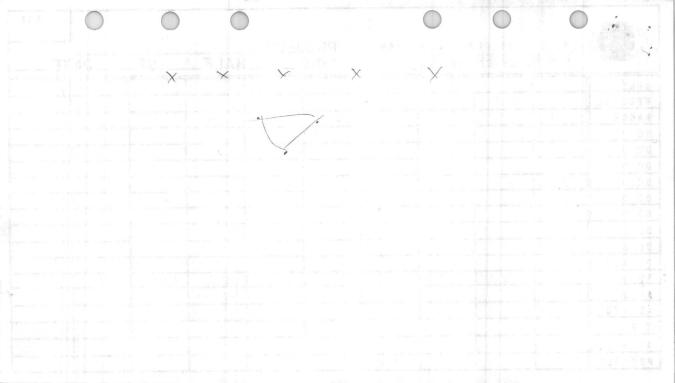
$$\frac{\sqrt{1}}{1} \times \frac{\sqrt{1}}{1} \times \frac{1$$

#IN	0	0	C) CF	5	ND C.	0	0	0	PA GE
		RICHS GE RECEIVER		RATION C S	o. PRO		HALF_		D/	TE3-257
SEND	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2
RECEIVE	0-10N	10-200	-	20-3010		-	30-4010			>
RANGE	1.0	1.0	1.0	1.0	1.0	0.1	1.0	0.1	0.1	0.1
DC 1				1.8	是既建成平					
DC 2	1.4	1.2	1.6	2.0	1.6	1.8	1.9	1.6	1.5	2.4 2.2
DC 3										2.0
DC 4 Cur	1	1.75		0.6	1.75	1	0.6	0.6	1175	1
DC 5 H	16	17	18	19	20	21	22	23	24	25
DC 6 19	/	/	2	/	2	3	1	2	3	4
DC 7										
DC 8										
DC AVG.				47.6						
AC 1	39.6	74.5	11.6	474	27.2	6.32	31.6	7.80	8.46	2.30
AC 2	+0.1	-	_	+0.1	-	-	10.1	-	_	+015 -
AC AVG.	Au	Contract of				1	1			MARKET ST
S.P.				207	70.8	A22.3	1			-
AC NOISE	11.54									
POT RES.				280 K		1260K F			>	

	HEINF I.P.R	RICHS GE RECEIVER	OEXPLOR NOTES	ATION C		JECT	MINERA HALF	N SP.	DA	PAGE 4
SEND	4-5	3-4	2-3	4-5	3-4		CAL			
RECEIVE	40-50N		->	50-60N				1 1000		
RANGE	0.1	0.1	0.1	0.1	0.1					
DC 1	1.2	2.0	2.0	1.6	251.7			Trib. 4.15		
DC 2			100				-0.1			
DC 3	4									
DC 4 Cur	06	0.6	1.75	10:6	016		1			
DC 5 #	26	2)	28	29	30		/			
DC 6 M	2	3	4	3	4					
DC 7										
DC 8										
DC AVG.	7.87									
AC 1	7.83	3.78	5.40	3.91	2.27					
AC 2		+0.2	+0.1	_	/	1	101			MANUAL S
AC AVG.	A VYOR						+0.1			
S.P.	14.1 +	+ >		H4.8 .	\longrightarrow					
AC NOISE							3.0			
POT RES.	60K .		>	78K -		->	0.3	The term		

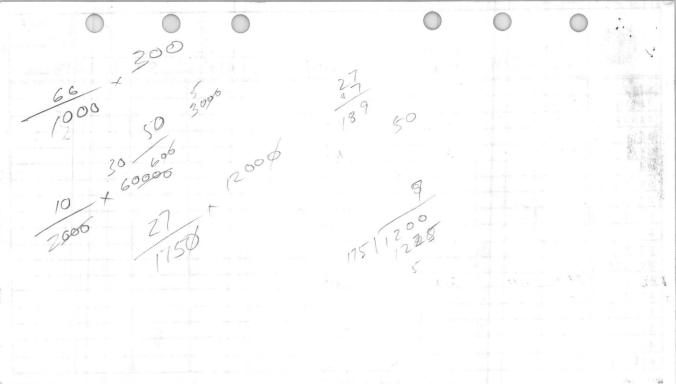

AA							111	1 1/	11	PAGE
	HEINR	CHS GEO	DER NO	TION CO.	LINE	JECT_	Mineral HALF_S	1/2SP.		TE 3/14
SEND	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5
RECEIVE	0-105	10 - 205		20-30		Kell Control	30-40			
RANGE									3. P. W	
VOLTAGE	7.50	430	750	490	630	750	806	490	430	730
CURRENT	0.6	0.6	.6	五1.0	0.6	0.6	1,0	1.0	0.6	0,6
SEND	1-2	2-3	2-4	4-5	1-2	2-7	3-4	4-5		cal
RECEIVE	40-50			-	50-60		5			the ultiple
RANGE			管性。	/			(/		
VOLTAGE	800	480	620		800	490	2			
CURRENT	1.0	1.0	0.6		1.0	1,0)			
FREQUEN	CIES 3.	0 0.3		COMMEN	ITS: N	W END	CENTER	of 5	ITE =	#3 = 0.0
SENDER		7691	The state of			**				
OPERATO	R (898								
RECEIVE	R NO.	a plan								
OPERATO	R	TAUS.	1 Jun 1							
					A STATE OF THE STATE OF		Sales and the			

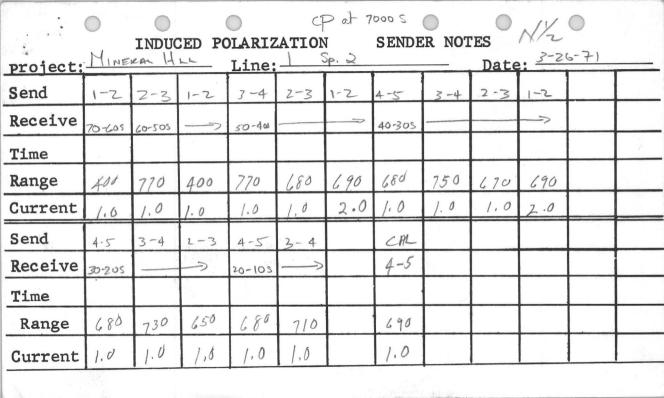
A A										PAGE
		CHS GEO		OTES	PRO LINE	JECT_	HALF_	SP	DA	TE
SEND	ira g		4-5	203	3-4	4-5	1-2	7-3	3-4	4-5
RECEIVE	3 - 25	70 - 200		20-30			70- 40			
RANGE										
VOLTAGE	7.50	(30	750	490	630	750	205	6.40	6.00	180
CURRENT	64	100		£1.0	0.5	0.6	7.72	10		
SEND	1-5	1504	1.4	4-5	1-2	2-3	3-9	2.85		cal
RECEIVE	46 30				32-60	A Charles				
RANGE				7				7		
VOLTAGE	800	三年9年	270		200	490)			
CURRENT	持步	4 4			Part of					
FREQUENC	IES	0-011		COMMEN	TS:				TEX	
SENDER N	10.	7/9/								
OPERATOR		335								
RECEIVER	NO.		8-93-							
OPERATOR	?									11.0

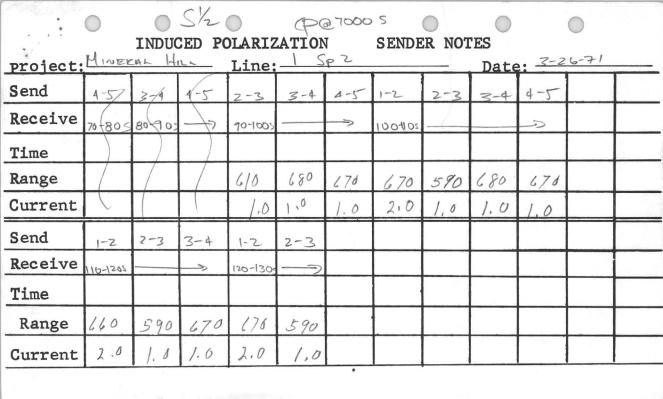

HA							M	1 //	11	PAGE
			DER NO	OTES	LIN	E_L	Minera HALF_	SP.	DA	TE 3/25
SEND	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2
RECEIVE	0-10 DN	10 - ZON		20 - 30N			30 - 40			C. Findowski
RANGE			18.14					0 0 000	1.7.1	
VOLTAGE	740	490	740	620	750	740	730	620	750	740
CURRENT	1.0	1.75	1.0	0.6	1.75	1.0	0.6	0,6	1.75	1.0
SEND	4-5	3-4	2-3	4-5	3-4			25.5		Cal
RECEIVE	40-50			50-10	9.					1-2
RANGE	1			BY LEE						
VOLTAGE	720	620	740	720	420				7 13	740
CURRENT	0.6	0.6	1.75	0.6	0.6					1.0
FREQUEN	CIES			COMMEN	ITS:					allinos de la companya del companya del companya de la companya de
SENDER	NO.									
OPERATO	R									
RECEIVE	R NO.									
OPERATO	R									
								RPs Street		

0	30 .20	3.78	nw4	2270	1.75	NN	* * *	*51	0 4 D	1.79	10.7	NN -	191.06	1 6 4	227	•
0		0))		a .	4)	0	3	7	J		
. 0	000	2.80	4 N W 4	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.750	N I I I	* * * * :	7585	10.2	1.60	1111 1111 1111 1111	211 75	13457	1 M W4	1 W 4 W	•
		5			9	0		0	N))	V	01	5 5	_		0
0	00000	47.60 27.20 6.32	ω r> ⊢	20	1.75 1.00	1.60	* * *	.11	7.9 8.7	1.64	7.9	1.90	240.12 187.81 191.29	ω N ⊢	222	
	0.00	11.60	~ ⊢	700 7	1.00	1.60	* *	.17	11.3	1 · · · · · · · · · · · · · · · · · · ·	N 0	1.75	140.16	2 ⊢	100	
0	,	1			1))	J))	o o	-		0
0	00 .10	39.60	-	16	1.00	1.40	*	0.00	12,6	1.50	12.6	1.50	119.39	front	16	
0	00.00	2.94	ω 4	1 1 4 10	1.00	. 40	* *	• 44	4.7	. 61	8:1	1.05 55	129.60 292.54×1	ω 4	1 1 4 7	
0	0000	1	NWA	1321	1.00	1.10	* * *	665 665 665 665	ωω φ 2 9 H	1.01 .60 .49	11.2 6.1 7.5	1.25	155.	0 w 4	u N H	
0) ()		
		14.10	4 M W 4	_ 	0000	134	* * * *	ហា យ យ d	6 7 8 E	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0000	- U - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	1759.04	เขน	J	
0	2	2.7	_	7	5	7		0		7	,	7	29.1		7	•
	0000	47.30 6.63 3.04	w N H	400	1.00	1.10	* * *	0.00 .18	8.1 8.0 7.8	1.15	8.1	1 . 2 . 1 . 5 . 5 . 5 . 5	132.04	ω N ⊢	400	•
0	0 0.00	23.90	N ⊢	ωN	. 60	1 . 30	* *	0.00	12.1 9.2	1.45	10.5	1.45	137.94	2 1	ωΝ	
	0 0 • 00	25.70	Н	-	• 60	1.30	*	0.00	11.2	1.45	7	1 • 45	129.01	-	 	
	AC2	AC1	Z	P.	CUR	E) F)		CPFE	CCMCF	CCPFE	M CF	PFE	RHO	Z	NO	POI
		40 cm cm cm cm	DATA	IELD		8 8			1		ATA	OM P				1
0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 6 8 8	1 1 1	2 2 8		6 A	RH0 C	PFE CAL	DC FREQ	S-00	AC2 AC		PFE 101.0		L CUR	CA
0			=	LENGT	DIPOLE	00 FEET=	, 10	-	71	2 3/25/	SOUTH 1/	NORTH AND	SPREAD 1	O Z	GROUP N	O CAL
0							\ \(\bar{\chi}\)									•

Joba 619, Line 1, Spread 2, N\$52,3/26/71

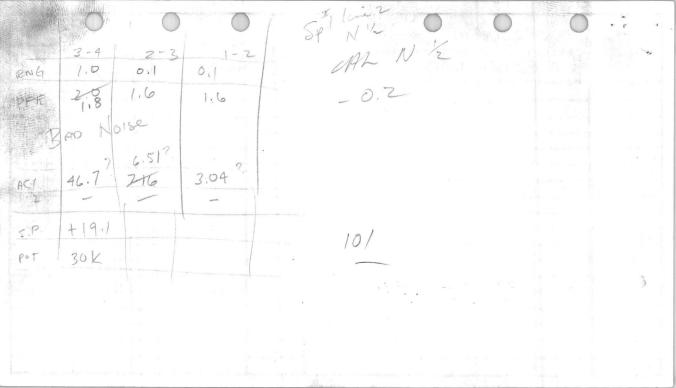

1	0	0		F	0 70	200 5	0	0		PAGE
) HEINI 1.P.F	RICHS GE RECEIVER	OEXPLOR NOTES	ATION C			HALF_			TE <u>3-24-7</u>
SEND	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	11-2
RECEIVE	70-605	60-505	>	50-405	6 50 13	-	40-305		- 1011	->
RANGE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.1	
DC 1	-	1/15				1				
DC 2	1.2	1.2	1.3	1.5	1.2	1.4	1.4	1.8	1.4	1.5
DC 3										
DC 4 Cm	/	1	1	1	1	2	1	1		2
DC 5 #	1	2	3	4	5	6	7	8	9	10
DC 6 M	1	1	2	1	2	3	1	2	3	4
DC 7							BALLER			
DC 8		7 - 1 300			35					
DC AVG.										
AC 1	79.2	40.0	15.9	65.9	15.4	16.7	55.5	19.5	7.02	9.87
AC 2	_	-		_	_		+0.1	+0.1	-	-
AC AVG.		¥1								
S.P.				-14.8 -		-	-5.1 -			->
AC NOISE										
POT RES.				28K		7	17K-			7

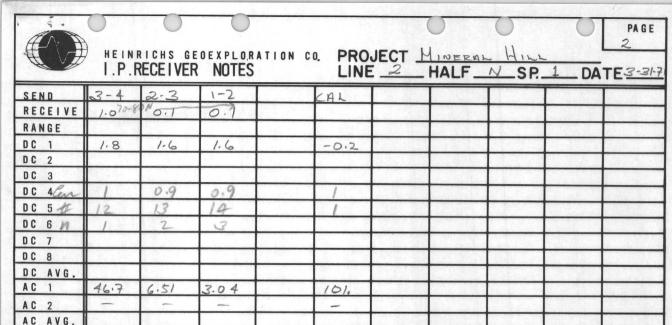



400	0	0					0	0	0	PAGE 2
	I.P.R	ECE I VEF	R NOTES	ATION C	O. PRO	JECT	MINERAL HALF	Y_SP.	2 DA	TE3-26-71
SEND	4-5	3-4	2-3	4-5	3-4		CAL			
RECEIVE	30 2018		-	20-105	-		4-5			
RANGE	1.0	0.1	6.1	0.1	0.1		I AMP.			
DC 1										
DC 2	18						-0.2			
DC 3	1.8	1.5	0.8	1.2	1:3					
DC 4										
DC 5 Cm	/	(1			1			
DC 6 #	11	12	13	14	15		1			
DC 7 9	2	3	4	3	4					
DC 8										
DC AVG.						W				
AC 1	-14.0	8.60	3.88	4.28	4.13		101.5			44.0
AC 2		_	-0.2	-	-					
AC AVG.										
S.P.	+9.6		77	-22,0 -	-7		3.0			
AC NOISE							0.3			1
POT RES.	23K -		7	78K -	->	1				

	0	0	0		. (0	0	PAGE
	I.P.F	RICHS GE RECEIVER	NOTES	ATION C	0. PRO	JECT _				TE3-26-7
SEND	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5
RECEIVE	70-805	80-905		90-1005		-7	100-110			-7
RANGE	7-5			1.0	1.0	0.1	1.0	1.0	0.1	0.1
DC 1										
DC 2		7 7 7 7 7 7		1.0	1,5	1.3	1.2	1.3	1.7	1.8
DC 3										
DC 4 Cm					1	/	2	/	1	1
DC 5 #				16	17	18	19	20	21	22
DC 6 /				1	2	3	1	2	13	4
DC 7								5 mass		
DC 8										
DC AVG.										
AC 1				59.3	23,6	6.90	94.6	13.4	826	2.79
AC 2					-	_	-		-	-
AC AVG.										
S.P.	+,	100		44.5+		7	29.6+			
AC NOISE			4		-					
POT RES.				30K -		->	30K -			->

AN D	0	0	0				0	0	0	PAGE 4
	I.P.F	RICHS G RECEIVE	R NOTES	ATION C	O. PROJE	CT _	HALF_	SP.	2 DA	TE3-26-24
SEND	1-2	2-3	3-4	1-2	2-3		CAN			
RECEIVE	110-126		>	120-1305	>	77.5	7.79			
RANGE	1.0	0.1	0./	1.0	0.1		100			
DC 1	2.5							1000		
DC 2	1.2	1.2	1.3	-1.1	90.8	1				
DC 3										
DC 4Pm	2		1	2	1					
DC 5 #	23	24	25	26	27					
DC 6 4	2	3	4	3	4					
DC 7										
DC 8										
DC AVG.										
AC 1	33.1	7.18	5.24	11.8	2.98					
AC 2		_	_	-						
AC AVG.			10.5							
S.P.	+4.4		->	+7.2 -						
AC NOISE					- F					
POT RES.	12K		-	60K -	7					





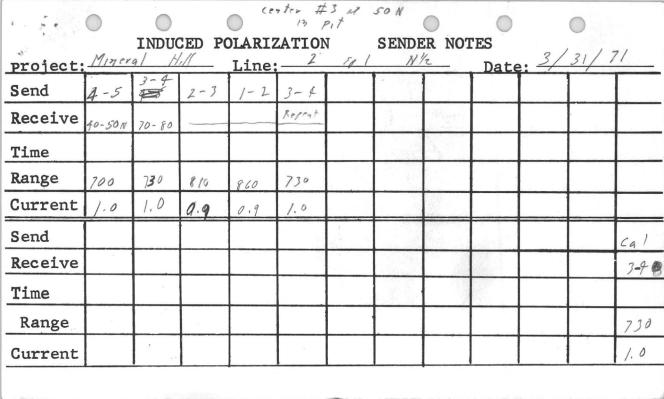
AL CU		*20 101.	00 0	CZ AC	FREQ		PFE CAL	RHO C	NA						
			COMPUTED	DATA	1 1					1	IELD	DATA			
POINT NO.	z	RHO	PFE	M CT	CCPFE	CCMCF	CPFE		PFE	CUR	•14	z	ACI	ACZ	
june j		237.37	1.40	জ •	1.40	5.9	0.00	*	1.20	1.00	1	⊷	79.200	0.00	
ωΝ	2 1	119.88	1.40	11.7	1.40	11.7 7.3	0.00	* *	1.20	1.00	ωΝ	N ⊢	15.900	0.00	
4100	ω N ⊢	198.09 184.62 250.75	1.70	6 7 8 6 6 6	1.70	5.0 5.7	.12	* * *	1.50	1.00	4100	ων⊢	15.400	0000	
1098	~ S & 4	166.67 235.15 210.81 296.68	76055	57.89	1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 7 0 4 W 0 70 80	0.00	* * * *	1.80	21.000	10 98 7	HUNWA	55.500 19.500 7.020 9.870	000	
20 H	N W4	22 1 35 6 1 8 8 6 5 8 5 1	1.70	11.8 6.6 4.7	1.87	11.1 5.9 3.1	•13 •17	* * *	1.80	1.000	122	NWA	14.000 8.600 3.880	100 N00 000	
154	ω 4	128,27	1.40	10.9	1.95	7.4	υ 4 4 5 7	* *	1.20	1.00	4 10	wa	4.280 4.130	000	
H 1 1 6	ωn ⊢	177.37 283.76 207.00	1.70	766 NO 8	1.20	6.8 6.1	0.00	* * *	1.50	1.000	16	wn -	59.300 23.600 6.900	0000	
222219	- NW 4	141.76 160.80 248.78 168.22	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.9 9.3 7.6	1.40 1.72 1.42	0 0 0 0 0 0 0 4	0.00 114 .58	* * * *	1.20 1.30 1.70	1	19 20 21 22	1 SI W 4	94.600 13.400 8.260 2.790	0000	
2243	NW4	198.40 215.19 40	1 40	4.55	1. 3 2. 18 50	4 U O	222	* * *	1.20	2.00	2 5 5 C	NWA	33.100 7.180 5.240	000	
						5.7	.29	*	1.10	2.00	26	ω	11.800	0.00	

Job 619, Line 2, Sprad 1, S+N' partial, 3/30/71

	Par	tid line	only	'	5000	pd 2) 	0	(15)	PAGE
# 1	I.P.R	ECEIVER	NOTES	ATION C			HALF_S			TE 3-30-7
SEND	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5
RECEIVE	1.050-40	N 7.60-30	0.1	1.030-	201.0	0.1	20-40N		0.1	0.1
RANGE										
DC 1	1.4	1.5	1.7	1.2	1.3	1.2 %			1.82.	1.4 7.2
DC 2						Doisy 2?			noisy	
DC 3							1	- 1		
DC 4ten	1	1	1	0.9	0.9	1	CAL AS		1	
DC 5 #	1	2	3	4	5	6			9	10
DC 6 /	/	1	2	1.	2	3	-0.2		3	4
DC 7						The state of the	W		2 1 2	
DC 8					10-10					By Design
DC AVG.			a Lawred							
AC 1	29.4	52.7	7.29	44.2	14.6	3.61	101		6.50	1.89
AC 2	-	_	-	_	-	-	-		+01	-
AC AVG.										
S.P.										
AC NOISE					100	Taylor	1-2-			
POT RES.				9		45.				

3,0

0.3


-

S.P.

POT RES. 30K

+19.1

1 4.	0 8	80										
#619 project:	Miner	INDUC	CED PO	OLARIZ Line:			SENDE	R NOT	res Date	3/	30/71	
Send	4-5	3-8	9-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5		
Receive	50-40	40-30		30-20		2	10-20					
Time												Kay.
Range	730	730	736	840	450	780	5	(710	700		1 4
Current	1,0	1.0	1.0	0.9	0.9	1.0	4	2	1.0	1.0		
Send	200				5	.4		*			d Fatia	
Receive						To Park						
Time		127				30			1.9	*		
Range	of the same								7	1		
Current							,			. 44		
				-				544		1		

CAL CUR 1.000	1 70	PFE 20 10	AC1	AC2 /	AC FREQ	DC FREQ	PFE CAL 2000	RHO CA .9901						
			COMPUTED	DATA			1			-	IELO	DATA		
POINT NO.	z	RHO	939	MCF	CCPFE	CCMCF	CPRE		PFE	CUR	P	z	AC1	AC2
+	j.a.	88.72	1.60	18.0	1.51	17.0	.09	*	1.40	1.00	₽	ь	29.400	0.00
ωN	22 14	159.20 88.26	1.70 1.90	10.7	1.70	10.7 17.8	0.00	* *	1.50	1.00	ωN	22 14	52.700 7.290	0.00
ont	WNH	147.92 195.63 108.73	1.40 1.50	9.5 7.7	1.40	9.5 7.1 7.7	. 111	* * *	1.20 1.30 1.20	1.00	のなも	400	44.200 14.600 3.610	0.00
10	4 3	196.93	1.95	14.0	1.70	το 	. 25	* *	1.80	000	109	+ 3	6.500 1.890	.10
13	W 12 H	141.49 87.49 102.14	2.00 1.80 1.80	14.1 20.6 17.6	2.00 1.47 1.19	14.1 16.8 11.6	0.00 .33	有有有有	1.80	.90	112	404	46.700 6.510 3.040	0.00

0

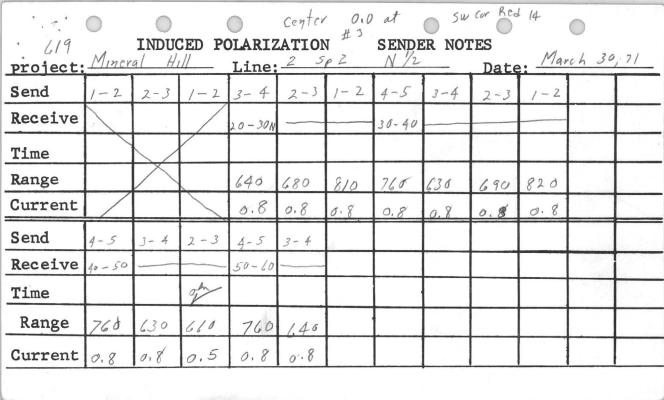
0

Job 619, Line 2, Sprend 2, 5+N/2, 3/29/71 1000.

	0			CP=	SW con	RED 14	0		0	PAGE
	HEIN I.P.	RICHS GI RECEIVER	R NOTES	RATION	O. PRO	DJECT _				TE3:29-71
SEND	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5-
RECEIVE	0-195	10-205 -		20-305			30-405			
RANGE	1.0	1.0	0.1	1.0	1.0	0.1	1.0	1.0	0.1	0.1
DC 1										
DC 2	1.2	0.9	0.9	1.1	1.1	1.3	1.2	1.3	1.3	1.5
DC 3	1									
DC 4 Cen	0.8			THE R. P. LEWIS CO., LANSING, MICH. LANSING, SANSAN, CO., LANSING, CO.,	7	0,5	0.8	-	>	0.5
DC 5 #	. 1	2	3	4	5	6		8	9	10
DC 6 M	/	/	2	1	2	3	1	2	3	4
DC 7										
DC 8										
DC AVG.			1							
AC 1	44.3	29.5	8.66	55.2	11.9	3.65	41.4	19.0	7.25	259
AC 2	-	-		+6.1	-	+0.2	-	-	-	_
AC AVG.						1				
S.P.							+5.7 -			一)
AC NOISE		10				I delica				
POT RES.				12K -			20K -			-7

	HEINI 1.P.F	RICHS GERECEIVER	OEXPLOS	FATION C	PROJE LINE _	CT MINERAL HILL 2 HALF 5	PAGE Z 619 6P. 2 DATE3-2971
SEND	1-2	2-3	3-4	1-2	2-3	CAL	
RECEIVE	40-505 -		->>	50-605	->	1-2	
RANGE	1.0	0.1	0:1	0.1	0.1	800 mik	
DC 1							
DC 2	1.2	0.8	2-6	0.9	1.0	\$0.D	
DC 3			0.8				HA PRODUCE TO SERVICE
DC 4 Cur	0.8	- The second second	MATERIAL PROPERTY AND THE PROPERTY OF THE PARTY.	a disconsent transpopulatet filipe	THE REAL PROPERTY.	0,8	
DC 5#	11	12	13	14	15	1	
DC 6M	2	3	4	3	4		
DC 7							
DC 8							
DC AVG.			4.21				
AC 1	11.5	8.45	4.15	7.71	6.49	80.7	
AC 2	+0.1	_	-	-	-0.1		
AC AVG.							
S.P.	25.1			+10.3 -	7	3.0	
AC NOISE					1	0.3	Par River Land
POT RES.	8K -		-7	14K -	7		

HEINRICHS GEOEXPLORATION CO. I.P.RECEIVER NOTES

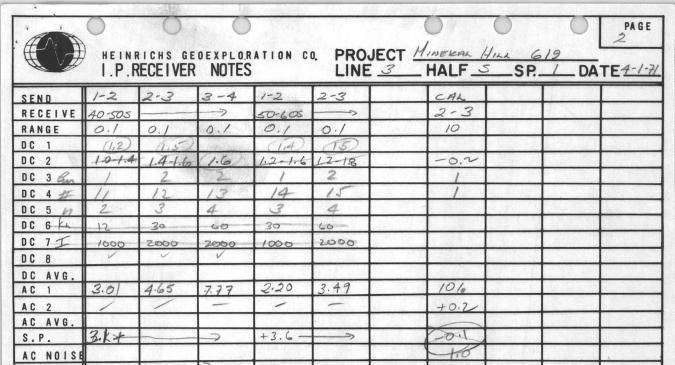

PROJECT MINERAL HILL 619
LINE 2 HALF N SP. 2 DATE 3-30-71

PAGE

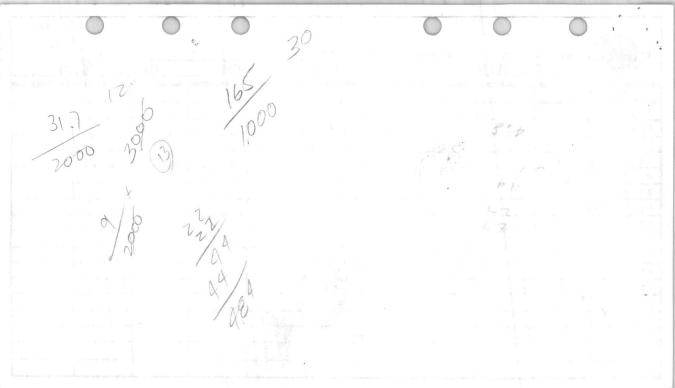
SEND	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2
RECEIVE	0-16M	10-20N		20-300		-> "	30-40N			-5
RANGE	2)			1:0	1.0	0.1	1.0	0.1	0.1	0.1
DC 1	1/						11-11			
DC 2	1			1.3	1.3	1.3	1.5	1.4	1.5	1.7
DC 3		1 / /								
DC 4 Cm				0.8		THE RESIDENCE OF PERSONS AND PROPERTY.	The second of th	N. SERVICE CO. SERVICE CO.	Non-protestion and protested single-	· Commence
DC 5 #				16	17	18	19	20	12/	22
DC 6 M					-	3	1	2	100	4
DC 7										140.05
DC 8									I A.	
DC AVG.		N.							4.1	
AC 1				30.9	13.2	4.54	37.5	9.30	6.03	2.44
AC 2				_	-	_	+0.2	_	-	-
AC AVG.										
S.P.				+1.6 -		>	14.4			>
AC NOISE			, ,	7				17.7	100	
POT RES.			1-74	56K -		-	24K -	1,400		1-2

	O HEINE	0	0.5 V D L O.D.	ATLON C	, DDO	IECT	Marken	O Hun	619	PA G E
	I.P.F	RECEIVER	NOTES	ATTUN C	LINE	2	HALF_	SP.		TE3-30-71
SEND	4-5	3-4	2-3	4-5	3-4					
RECEIVE	40-500		7	50-600	->					
RANGE	1.0	0.1	0.1	0.1	0.1					
DC 1										
D C + 2	1.5	E31.4	t.61.5	1.4	1.5					
DC 3										
DC 4 Can	0.8	0.8	0.5	0.8	0.8					
DC 5 #	23	24	25	26	27					
DC 6 //	2	3	4	3	4					
DC 7	,								2006	
DC 8									124 A	
DC AVG.										
AC 1	10.8	4.84	2.32	5.26	2.98				Table V	1
AC 2	+0.1	_	_	-						
AC AVG.										
S.P.	+23.5 -		~>	+62.4 -	7					
AC NOISE										
POT RES.	24K -		-7	19K-						

THE HARD TO SERVE THE PROPERTY OF THE PROPERTY



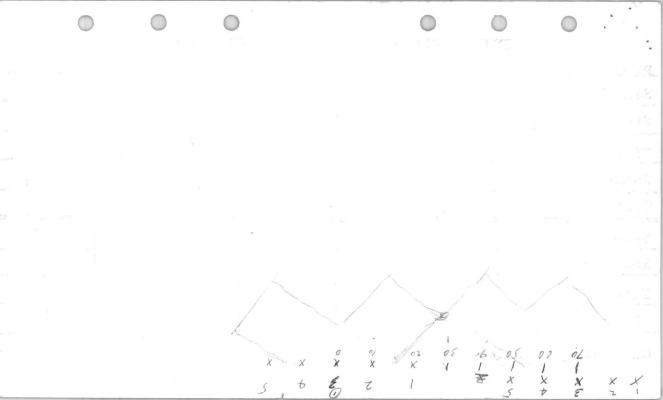
#4/9		INDUC	CED PO	LARIZ	ATION	5p2	SENDE 5/2		ES Date	3/2	29/1	7/
Send	4-5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5		
Receive	0-/05	10-20		20-30			30-40					
Time	3×2466					3x 166.6						
Range	860	720	860	690	690	590	860	670	690	598		
Current	0.8	0.8	0.8	0.8	0.8	0.5	0.8	0.8	0.8	0.5		
Send	1-2	2-3	3-4	1-2	2-3							cal
Receive	40-50			50-	60							2-3
Time												
Range	880	480	680	860	680							
Current	0.8	018	0.8	0.8	0.8							0.8
			-									


00	5 . Z6U U . U	· W	26	• 8 0 0	1.40	拉 拉	200		۵		П	0	:	
							N N	51	1.15	7.1	1.40	198.28	- 23	26
000	10.800 .1 4.840 0.0 2.320 0.0	400	25	• • • 8 • • 8 • • 8 • • 8	1.50 1.40	有我女	.28	8.0 6.2	1.31 1.12 1.21	8. 9 7. 7	1.45	163.00 182.44 280.12	+ 32	23 24 25
0000	37.500 .2 9.300 0.0 6.030 0.0 2.440 0.0	4324	19 20 21 22	8888	1.50 1.40 1.50	* * * *	0.00 .17 .20	4 7 % 9 9 % 9	1.40 1.23 1.30	9.9 6.6 9.2	1.40 1.40 1.70	141.50 140.23 227.53 184.50	4001	19 20 21 22
0 0 0	30.900 0.0 13.200 0.0 4.540 0.0	422	16	880	1.30 1.30 1.30	古 古 在 在 在 在 在 在	0.00	11.2 6.0 5.8	1.30 1.20	11.2 6.5 7.6	1.30	116.36 198.83 170.97	W 2 1	16 17 18
0 0	7.710 0.0 6.4901	F &	14	 	1.00	* *	. 15	1.9	.75	23.21	1.05	289.20	43	14
000	11.500 .1 8.450 0.0 4.210 0.0	CND	4 7 4	8 8 8	1.20 .80	* * *	.13	5. 2. 1. 8	.67	N N O	. 80 . 80	173.06 316.64 315.52	tau.	12
0000	41.400 0.0 19.000 0.0 7.250 0.0 2.590 0.0	4001	10	 51 50 50 50	1.20 1.30 1.30	* * * *	0.00	7.7 4.5 4.0	1.20 1.30 1.14 1.25	4.57	1.20	155.75 286.20 273.02 312.73	4004	7 8 9 9
000	55.200 .1 11.900 0.0 3.650 .2	404	001+	 УП ОО ОО	1.10 1.10 1.30	** ** **	0.00	4 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.05	2 0 1 L	1.05	207.46 178.90 219.93	490	ರ ಬ ಕ
0	29.500 0.0 8.660 0.0	2 14	ω Ν		. 90	* *	.19	57 • 55 57 • 55	.84	5.91	• • • 90	110.65	2 1	W 12
0	44.300 0.0	₽	1-2	. 80	1.20	*	0.00	7.2	1.20	7.2	1.20	166.66	↦	1
	AC1 AC2	z	·T.	CUR P	PFE		SPFE	CCMCF	CCPFE	MCF	Bad	RHO	z	OINT NO.
1		DATA	ELD	FI						TA	OMPUTED	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		1
1					3 AL	.9913	FE CAL	DC FREQ P	• 1	G2 AC	C1 00 0	FE A	00	GAL CUR

Job 819, Line 3, Sprend1, 5+N2, 4/1/71 1000.

				.2 1/	17/11					1 212
AND	0	(8	2 600 K	11/12 /4	5 13/14 55 Not		9	0		PAG
	HEIN	RICHS GE	DEXPLOR	ATION C	PRO	JECT 1	INERAL	HILL	619	
	1.P.	RECEIVER	NOTES		1 HELIN	E 3 Y	HALF S	SP	D/	TE4-1
SEND	4.5	3-4	4-5	2-3	3-4	4-5	1-2	2-3	3-4	4-5
RECEIVE	0-105	10-205	->	20-305		>	30-405			-7
RANGE	1.0	1.0	0.1	0.1	0.1	0,01	0.1	0.1	0.1	0.1
C 1	1.4)	(0.9)	0.8	1.7 (0.9)	3./	(0.7)	Up .			
C 2	. 3			1.2	(1.4)	0-1-4	0.9	1.4	1.4	1.3
1 C 3 Cm	0.6	2	0.6	2	2	0.6	T	2	2	0.6
C 4#	1	2	3	4	5	6	7	8	9	10
C 5 M	142 /	1	2	0.61	2	3	1	2	3	4
C 6 km	3	3	12600	3	12	30	3	12	30	600
C 7 I	600	2000	600	Z000	2000	600	1000	2000	2000	600
C 8 %		- Comme	V	Adding	and the Same		V	and the same of	of separation of the second	THE PROPERTY OF STREET
C AVG.								1144		
C 1	12.0	33.9	2.34	8.93 8.98	8.48	0.910	5.17	6.35	9.40	1.23
C 2		- 4	+011	- " -		-	-	-	-	_
C AVG.			1			The				
S. P.				-32.3 -		->	+48.6 -			>
AC NOISE										
POT RES.				1014 -		>	4K-		-	1

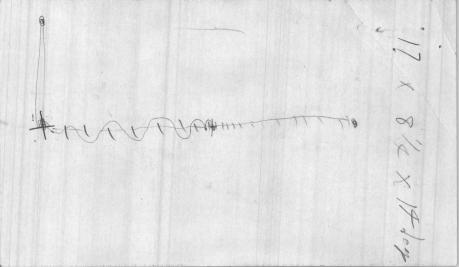
POT RES



	1.5.	NEGETVEN	MOIL)	LIN	<u> </u>	HALF_		UA	15411
SEND	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2
RECEIVE	0-100	10-20N -	>	20-30N		>	30-40 N			->>
RANGE				10	1.0	0.1	1.0	1.0	0,1	0.01
DC 1		. ,	(-			V ENERGY				(0.8)
DC 2				1.8	1.4	0.6	2.0	2.2	1.7	0-1.5
DC 3									7.7.	
DC 4Cm				2	2		0.6	2	n 6/542	1
DC 5AF				16	17	18	19	20	21	22
DC 6 M				1	2	3	1	2	3	4
DC 7			1	2000	2000	1000	600	2000	2.000	1000
DC 8			Ich	3 ^	12	30	or transfering someone	12	30	CO
DC AVG.				/	V	/	1	1	-	
AC 1				165,	14.8	2.38	55.6	31.7	4.43	0.886
AC 2				-	-	-	-	-	-	
AC AVG.										
S.P.							-43 -			
AC NOISE										T. T.
POT RES.				4K -	-		12K -	-	-	-)

2 20.05 1/2 200

HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL HILL I.P.RECEIVER NOTES SEND 4-5 3-4 2-3 4-5 3-4 CML RECEIVE 40-50N SO-60N NOTES	PAGE 4 F4-1-71
Jan 1	
RANGE 0.1 1.0 0.1 0.1 0.1	
DC 1 1/2 0.2-0.5 6 days	
DC 2 24 2.5 16-20 0.2 2 0.9 12 0.7 20 dup 0.1 low	
DC 3 (1.8)	
OC 4 Pm 016 2 2 0.6 2 0.142 0.07 60 days	
DC 5# 23 24 25 26 27 d.c. 0-1mil plan	
DC 6 N 2 3 4 3 4	
DC 7 1 600 2000 2000 600 2000	
DC 8 /ch 126 30 CO 366 CO	
DC AVG.	
AC 1 7.74 12.3 2.29 2.88 6.33	
AC 2	
AC AVG.	
S.P. +40 - 5 35.2 - 7	
AC NOISE	
POT RES. 7K - 36K	

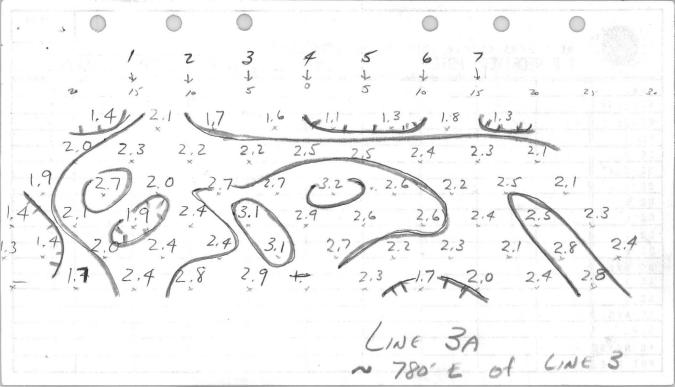

: #2/9 project:	O Miner	INDUC) LARIZ Line:	ATION	T 5p /	SENDE	ER NOT	ES Date	Ar	0	, 192/
Send	3-4	2-3	1-2	4-5	3-4	2-3	1-2	Repx 3-4				
Receive	20-30N	-		30-40				300 po				
Time				\				3.005		9.5		
Range	700	730	640	650	700	730	450	700				
Current	2.0	2,0	1.0	0.6	2.0	2.0	1.0	2,0				
Send	4-5	3-4	2-3	4.5	3-4							
Receive	40-50			50-60		3						
Time												
Range	650	690	730	450	690							
Current	0.6	2.0	2.0	0.6	2.0							
									, –			100

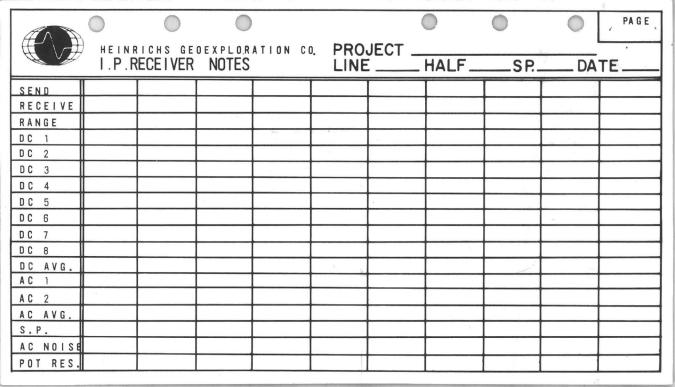
: #619		INDUC	ED PO	LARIZ	ATION	1	SENDE	R NOT	ES	1	1 ,	1671
project:	M, 70	ral /	11/	Line:	3	5p 1	5.5		Date	Apr	11/	1111
Send	2-3	3-4	4-5	1-2	2-3	3-4	4-5	1-2	2-3	3-4	1-2	2-3
Receive	20-305			30-40s	-			40-50			50-60	
Time	3.1-0-3.1	1.0 0.1	\rightarrow		99							
Range	740	700	690	500	740	700	690	440	740	700	640	740
Current	2.0	2.0	0.6	1.0	2.0	2.0	0.6	1.0	2.0	2,0	1.0	2,6
Send	4-5	3-4	4-5									cal
Receive	0-105	10-20										2-3
Time									,			0.1
Range	640	700	640									240
Current	0.6	2.0	0.6									1.0
	-											

CAL CUR		PFE 101.	AC1	AC2 AC	FREQ	DC FREQ	PFE CAL	RHO CA . 9891	_					
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	COMPUTED	DATA			1 1				IELD	DATA		
OINT NO.	z	RHO	PFE	MCF	CCPFE	CCMCF	CPFE		Bad	CUR	PT.	z	AC1 AC	N
1	1	60.36	1.70	28.2	1.70	28.2	0.00	* *	1.40	. 60	1	ь	12.000 0.	0.0
w 12	2 1	50.90	1.20	23.6	1.20	23.6	0.00	女 林	. 90	2.00	W N	2 1	33.900 0.	10
ರ ಬ ಕ	472	13.48	1.20	89.0 33.2 22.0	1.55	69.4 30.3 12.9	· 26	* * *	. 90 1.40	2.00	0 N t	WNH	8.980 0. 8.480 0. .910 0.	000
7 10	4424	15.53 38.33 141.84 123.61	1.20 1.70 1.70	77.3 44.4 12.0 12.9	. 98 1.47 1.62	111. 4453		* * * * *	1.40 1.40 1.30	2.00	· 8 9 10	+ UN H	5.170 0. 6.350 0. 9.400 0. 1.230 0.	0000
11 12 13	9 9 9	36.26 70.23 234.94	1.50 1.80	41.4 25.6 8.1	1.26	34.7 22.4 7.7	. 23	古 古 古	1.20	1.00 2.00 2.00	4 4 H	485	3.010 0. 4.650 0. 7.770 0.	0 0 0
14	F (3)	105.42	1.70	25.6 17.1	1.45	21.9	. 25	* *	1.40	1.00	14	4 3	2.200 0.	0 0
16 17 18	490	249.95 89.33 71.26	2.10 1.70 .90	8.4 19.0 12.6	2.10	19.0	0.00	* * *	1.80	2.00	1 1 6	498	165.000 0. 14.800 0. 2.380 0.	000
19 20 21 22	4321	281.30 192.83 67.04 53.16	2.30 2.50 1.10	8.2 13.0 29.8 20.7	2.30 2.50 1.76	253.0	0.00 0.00 .24	* * * *	2.00 2.20 1.70	2.00	19 20 21 22	4324	55.600 0. 31.700 0. 4.430 0. .886 0.	0000
23 25 25	+ 41 N	157.25 187.60 69.38	2.70 2.80 2.10	17.2 14.9 30.3	2.70 2.80 1.66	17.2 14.9 24.0	0.00	* * *	2.40	2.00	25	4 00 12	7.740 0. 12.300 0. 2.290 0.	000
26	N	11.7 11.	1	1										

J.b 619 EXT, Line 3A, 501 5/2, 5/3/71
500.

I.P. RECEIVER NOTES PAGE HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL HILL
LINE 3 A BEARING N-5 HALF 5 SP HALF 5 SP. SEND 5-105 10-155 MULT PFE 1,4 6 PFE AVQ. 200. 20.8 698, DRIFT +8.0 S.P. 40.0 +15.0 3.0 AC NOISE POT RES.


					CEIVER					PAGE
	HEINE	ICHS GE	OEXPLOR B	ATION CO	PRO	JECT 1	HALF_	S SP.	619 DA	TES-3-11
SEND	2-3	3-4	4.5	5-6	6-7	1-2	2-3	3- 2	4-5	5-6
RECEIVE MULT.	1.0	1.0	1.0	0.1	0.1	25-30	1.0	0.1	0,1	0.1
PFE	2,3	2.0	2,4	2.4	2,9	2,0	2,7	1.9	2.4	2.8
					2 TB T					
COB	1 -		3 -	and the second s	2 -	THE RESERVE OF THE PERSON NAMED IN	1-		3 -	
# n	1	8	9	(2	6	12	13	14	5	16
1	-		4		3		3	4	3	
PFE Avg.										
AC	49.0	16.7	10.5	8.25	2.93	91.1	12,7	6,05	5,23	4,89
DRIFT S.P.	0.0		0	7	9	+8,9		10		>-4.0
AC NOISE						85k	ΔΙΙ	monitor Stations	S.P.	dek
POT RES.					Bearings -	Annahim and a second	1.011	AND SHOULD SELECT	The second second	see sen


I.P. RECEIVER NOTES PAGE LINE 3A BEARING N.S HALF S HALF 5 SP. RECEIVE 30-35 35-40 PFE NOISY NOISY

PFE AVG. AC 6,00 DRIFT -28.7+27.3 NOISY S.P. AC NOISE POT RES. 50 K 70 1c

	Д					OJECT A	1,464		619	PAGE 4		
		RICHS GEO P. SEN	DER N		LIN	E 3A	HALF_	S SP.		TE 5-3-1		
SEND	4-5	1-5	2.3	3-4	1-2	2-3						
RECEIVE	30-35	35-80	3 -		90-45	->						
RANGE												
VOLTAGE	900	840	640	660	840	640						
CURRENT	3A	2 A	IA	1A	2A	10						
SEND												
RECEIVE												
RANGE												
VOLTAGE												
CURRENT												
FREQUEN	FREQUENCIES 3 0.3				COMMENTS:							
SENDER	NO. 23	3706 5										
OPERATO	R Su	1ANSON	1									
RECEIVE	R NO.	206931	9									
OPERATO	R PA	REEM.	AN									

	w							N		PAGE		
	HEINF		DER NO	OTES	. PRO	DJECT/	MALF_	S SP.	619 _L DA	TE5-3-11		
SEND	CAL	2-3	3-4	4.5	5-6	6-7	1-2	2-3	3-4	4-5		
RECEIVE	4.5	15-205				->	20-25			-		
RANGE												
VOLTAGE	680	640	700	920	940	800	840	640	700	920		
CURRENT	2A	IA	IA	3A	3 A	2A	2 A	IA	18	3 A		
SEND	5-6	6-7	1-5	2-3	3-4	45	5-6	1-2	2.3	3-4		
RECEIVE	30.57	->	25-30	and the second				30-35				
RANGE												
VOLTAGE	940	800	840	640	700	920	940	840	640	660		
CURRENT	3 A	2 A	2 A	LA	1A	3 A	3 A	2A	IA	LA		
FREQUEN	FREQUENCIES 3 0.3				COMMENTS:							
SENDER		37065										
OPERATO	R 5	SWANS	ON									
RECEIVE	R NO.	20693	R									
OPERATO)R	FREE	MAN	Taring and the								

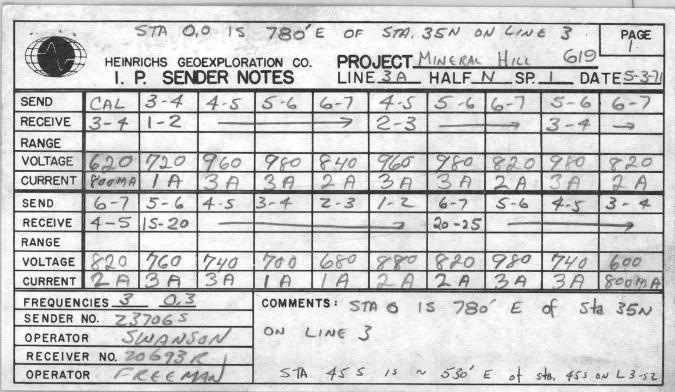
Job 619 EXT, Line 3A, Sel N/2, 5/3/71

I.P. RECEIVER NOTES PAGE HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL LINE 3 A BEARING N - S HALF A HALF N SP. 1 DATES 371 1,0 PFE 2.5 3,2 2,5 PFE AVQ. 334. 86.0 15.8 AC 72,2 34.5 DRIFT S.P. AC NOISE

POT RES.

STA. S N TIED I.P. RECEIVER NOTES PAGE INTO OLD I.P. Station LINE 3A BEARING N-S HALF N HALF N SP. / DATES-3-11 4-5 3- 2 5-6 SEND 0-5N 5-10N 10-15N 15-20N 20-25 MUIT. 0. 0, 0.1 0 0 PFE 2,6 2,6 2.7 107 PFE AVG. AC 296, 33,0 6,17 3,90 5,50 DRIFT -15.5 +33,3 128,4 +31.4 -16,0 S.P. AC NOISE 80 K 45K 90K POT RES. 180K

I.P. RECEIVER NOTES PAGE HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL BEARING NO STATE AL SP_ DATE 5301 SEND RECEIVE 20-25 MULT. 0. 2,2 PFE 2.2 2,3 2.5 2,4 36 21 20 PFE Avg. AC 16.0 3,42 63.0 40,0 3.04 DRIFT +22,9 S.P.

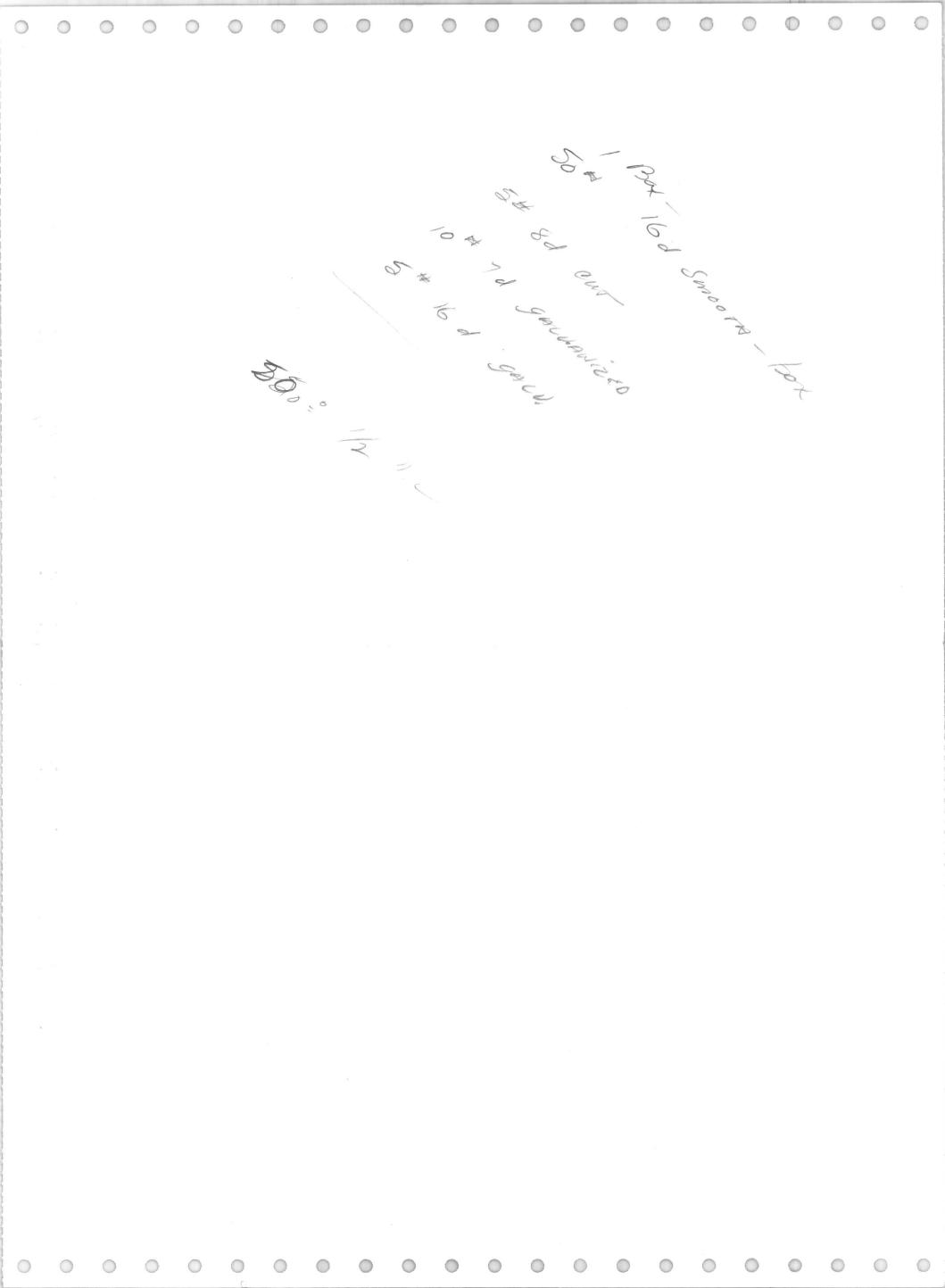

140 K

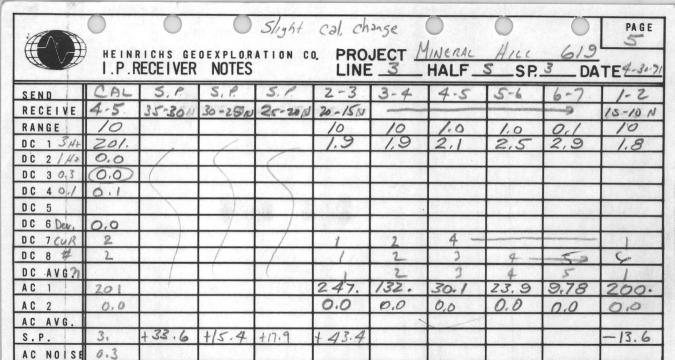
AC NOISE 0,8mV.

STATIOUS Slightly NOISY

POT RES.

I.P. RECEIVER NOTES PAGE HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL BEARING N. 5 LINE 3A HALF_ SEND MULT PFE 24 28 29 200 PFE AVQ. 5.09 AC 2.84 DRIFT -9.3 124.6 AC NOISE POT RES. 60 K 180 K 200 K

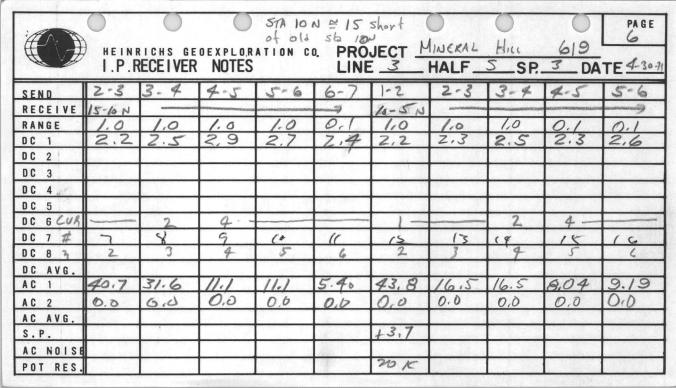


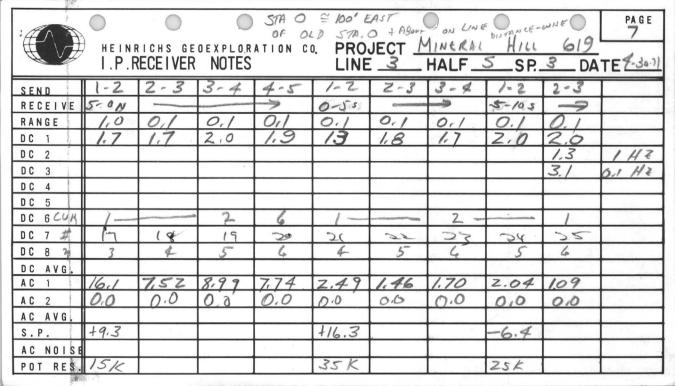

	2	NOUS OF	SEVEL OF	ATION OO	DD()JECT_	Mulcer	, Ll.,	G 10	PAGE 2
		RICHS GEO P. SEN	DER N		LIN		HALF_	N_SP.	DA	TE 5-3-1
SEND	2-3	1.2	6-7	5-6	4.5	3-4	2-3	6-7	5-6	4-5
RECEIVE	20.25	->	25-30		and the second second	and the second second		30-35		>
RANGE										
VOLTAGE	660	860	820	980	940	700	660	820	980	940
CURRENT	IA	2A	2 A	3A	3A	1 A	IA	21	3A	3 A
SEND	3-4	6-7	5-6	4.5	6-7	5-6				
RECEIVE	7	35-40		->	40-45	->			1	
RANGE										
VOLTAGE	700	820	960	940	8-20	960			7.0	
CURRENT	IA	2 A	3/	3 A	2 A	3 A				
FREQUEN	CIES 3	0,3		COMME	NTS:			.//		
SENDER	NO. 23	3706 5								
OPERATO	R 5	WANS O	N							
RECEIVE	R NO.	2069年	2							
OPERATO	R	REEM	AN							

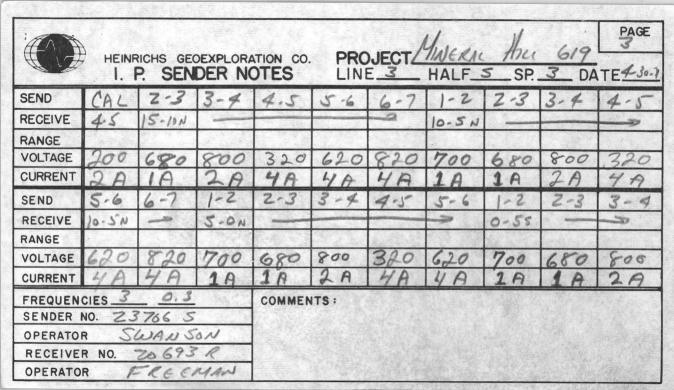
00 1.00 25 6 1.030 0.0	4	U		4	4	0		σ	
30 2.00 24 5 4.100 0.00	**	.26	9 5	1.04	11.9	1.30	109.02	ហ	24
40 1.00 23 6 .876 6	1	0	w	1.0	2	-7	4.6	6	
40 2.00 21 4 6.000 0.00 40 1.00 22 5 1.390 0.00	* * * 1 .	. 20 450	13.1	.95	15.3	1.40	91.26	4 N	21
A COMPANY OF THE OTHER	r	L						(
40 3.00 19 5 4.280 0.0	NN	W O		2.0		0 4	29.1	o 01	
10 1.00 18 4 7.310 0.00	* * * 2.	000	9.4	2.10	9.4	2.10	282.01	ω 4 ι	18
		L. S					1		
80 3.00 15 5 5.230 0.00 80 3.00 16 6 4.890 0.00	22.	• 29 29 3	17.9	2.51	19.9	2.40	140.75	o 01	16 5
90 1.00 14 4 6.050 0.0		00	0 4	1.9	0 4	9-	4.9	4 4	14
00 2.00 12 2 91.100 0.0	N		7.	2.0	7.	10	78.7	N	
20 5.00 11 0 5.5.30 0.0		6	•	6.3		•	0.00	d	
40 3.00 10 5 8.250 0.0	N N	ا سر ل		N N		40	47.8	וטית	10
00 1.00 8 3 16.700 0.0 40 3.00 9 4 10.500 0.0	NN	-0	0 7	N N	27	40	07.5	ω 4	9 00
30 1.00 7 2 49.000 0.00	* * * 2.	0.00	7.6	2.30	7.6	1.40	530.83	2	76
		r						((
10 3.00 4 4 13.100 0.0	w w	V		200			10.9	4 N	4 N
70 3.00 3 3 20.800 0.0		.0	4	2.6	5	. 7	06.8	w	ω
10 1.00 1 1 201.000 0 20 1.00 2 2 48.200 0	* * *	000	7.4	NN	6.8 7.4	2.10	307.83	2 -	N L
E CUR PT. N AC1 AC2	PF	CPFE	CCMCF	CCPFE	MCF	E E	RHO	z	POINT NO.
FIELD DATA			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	IA	COMPUTE	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
6 6 8 8 8 8 8 8	1.0000	0.0000	.30	3.00	0.00 A		.00 200	0.0	2.000

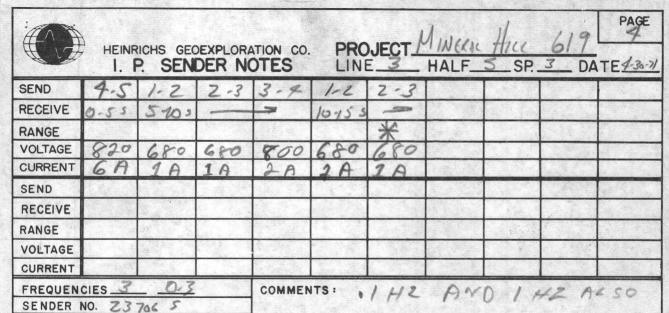
COMPUTED DATA COMPUT	0.00															
NT NO. N RHO PFE NGF CCPFE CONOF CPFE CPFE CPFE CPFE CPFE CPFE CPFE CPF	AL CU		00	0.60	. A		FRE 3.00	C FRE	FE CA	. 99 OH	OD					
NT NO. N RHO PFE NCF CCPFE CCPFE CPFE CPFE CPFE CPFE CPFE				COMPU	ED DAT				1		1	1	IELD	DAT		
\$ 1 168.49 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	INT NO	z	RHO	ם ו		0	CPF	CMC	ם וד		70	70	PT.	z	0	0 1
3 3 1156.46 3 2 126.46 4 4 143.55 5 1 158.41 1 43.55 2 2.70 1 5.0 2 174.99 2 174.99 2 100.41 2 1.50 2 2.50 2 1.50 2 2.50 2 1.50 2 2.50 2 1.50 2 2.50 2 1.50 2 2.50	-	-	208	7		-	7			*	1	luc	-	-	75 00	>
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	00 A	NW 4	46.4	NNN		000	770	900	-000	* * *	0 1N	0000	เกพา	10W4	9.50	0000
1	n								11				1	ij		
0 1 188.65 1.10 5.8 1.10 5.8 1.10 376.000 0.00 4.25 22.90 9 2 32.900 0.00 4.25 2.00 9 2 32.900 0.00 4.25 2.00 9 2 32.900 0.00 4.25 2.00 10 1 107.000 0.00 4.25 2.00 10 1 107.000 0.00 4.25 2.00 10 1 107.000 0.00 4.25 2.00 10 1 107.000 0.00 4.25 2.00 10 1 107.000 0.00 4.25 2.00 11 1 205.000 0.00 4.25 2.00 11 1 205.000 0.00 4.25 2.40 3.00 11 1 205.000 0.00 4.25 2.40 3.00 11 1 205.000 0.00 4.25 2.40 3.00 11 1 205.000 0.00 4.25 2.40 3.00 12 2.40 3.00 0.00 4.20 0.00 0.00 4.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td <td>700</td> <td>ωN⊢</td> <td>74.9</td> <td>ω N +</td> <td></td> <td>0 4 4</td> <td>Non</td> <td>240</td> <td>000</td> <td>* * *</td> <td>กับเอ</td> <td>000</td> <td>760</td> <td>ω N -</td> <td>15.80</td> <td>000</td>	700	ωN⊢	74.9	ω N +		0 4 4	Non	240	000	* * *	กับเอ	000	760	ω N -	15.80	000
9 2 100.41 2.50 24.9 2.50 24.9 0.00 ** 2.50 2.00 9 2 32.900 0.00 1 1 80.69 1.30 16.1 1.30 16.1 1.30 16.1 1.30 16.1 1.30 16.1 1.30 16.1 1.30 16.1 1.30 16.1 1.30 16.1 1.30 16.1 1.30 16.1 1.30 17.000 0.0 17.000 0.0 18.3 2.60 27.6 2.60 27.6 2.60 27.6 2.60 27.6 2.60 27.6 2.60 27.6 2.60 27.6 2.60 27.6 2.60 27.6 2.60 27.6 27.6 2.60	6 0	1	88	1.			0	•	0	*		3	00	-	76.00	0
0 1 80.69 1.30 16.1 1.30 16.1 0.00 ** 1.30 2.00 10 1 107.000 0.00 2 1 149.54 1.80 12.0 15.0 0.00 ** 1.80 3.00 11 1 296.000 0.00 2 2 16.00 2.40 35.8 2.40 35.8 0.00 ** 2.40 3.00 12 2 3.00 0.00 3 3 3 94.25 2.40 27.6 2.50 21.8 2.44 20.7 11.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	vo	N	00.4	N		4	ŝ	4	0	*	บา	0	9	N	32.90	0
1 1 149.54		-	0	:		0	ů	0	0		. ω	0		-	07.00	0
2 2 67.08 2.40 35.8 2.40 25.8 0.00 ** 2.40 3.00 12 2 33.000 0.0 4 4 119.15 2.60 21.8 2.46 20.7 .11 ** 2.60 1.00 13 3 .000 0.0 5 147.17 2.70 18.3 2.45 20.7 .11 ** 2.60 1.00 15 5 5.50 0.0 6 1 171.93 1.30 7.6 1.30 7.6 0.00 ** 2.70 2.00 15 5 5.50 0.0 7 2 154.34 2.30 14.9 2.30 14.9 0.00 ** 2.30 3.00 17 2 76.000 0.0 8 3 18.15 2.20 13.3 2.48 19.0 0.0 ** 2.20 3.00 17 2 76.000 0.0 9 4 130.60 2.20 13.3 2.05 12.4 12.2 2.20 3.00 18 3 16.00 0.0 10 5 165.62 2.20 13.3 2.05 12.4 12.2 2.20 3.00 18 3 16.00 0.0 11 6 203.42 2.30 11.3 2.13 10.5 12.4 2.20 1.00 20 5 3.10 0.0 11 6 203.42 2.30 11.3 2.13 10.5 12.4 2.30 2.00 21 6 4.770 0.0 12 2 191.53 2.10 11.0 2.10 11.0 0.00 ** 2.30 2.00 21 6 4.770 0.0 13 3 203.42 2.30 11.3 2.13 10.5 12.4 2.30 2.00 22 2 63.000 0.0 14 122.98 2.30 11.3 2.50 12.3 0.00 ** 2.30 2.00 23 3 40.000 0.0 15 5 203.47 2.50 12.3 2.50 12.3 0.00 ** 2.40 3.00 23 3 40.000 0.0 16 6 257.77 1.70 6.6 1.58 6.1 31 ** 2.40 3.00 25 5 3.00 0.0 17 3 200.65 2.10 10.5 2.10 10.5 0.00 ** 2.40 3.00 25 6 3.040 0.0 18 4 199.52 2.30 11.5 2.30 11.5 0.00 ** 2.10 2.00 27 3 26.400 0.0 19 5 134.96 2.10 15.6 1.90 14.1 2.20 1.00 26 6 3.040 0.0 10 6 241.52 2.30 11.5 2.30 11.5 2.30 11.5 0.00 ** 2.30 2.00 31 4 21.00 0.0 2 5 257.77 2.80 11.5 2.30 11.5 0.00 ** 2.30 2.00 31 4 21.00 0.0 2 6 241.52 2.30 11.5 2.30 11.5 2.30 11.5 0.00 ** 2.30 2.00 31 4 21.00 0.0 2 6 241.52 2.30 11.5 2.30 11.5 0.00 ** 2.30 2.00 31 4 21.00 0.0 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		_	49.5	1.		N	00	N	0	*	00	0		-	96.00	0
4 4 119.15		ωN	4.0	NN		75	410	0.01	-0	* *	40	00		ωN	33.00	00
6 1 171.93 1.30 7.6 1.30 7.6 0.00 ** 1.30 2.00 16 1 228.00 0.0 7 2 154.34 2.30 14.9 2.30 14.9 0.00 ** 2.30 3.00 17 2 76.000 0.0 8 3 81.15 2.20 27.1 2.08 25.6 1.2 ** 2.20 3.00 18 3 16.000 0.0 18 1 18.00 0.0 18 18.15 2.20 18.3 2.05 12.4 2.20 3.00 18 3 16.000 0.0 18 18.4 2.20 3.00 18 3 16.000 0.0 18.3 2.05 12.4 2.20 18.0 20 5 3.10 0.0 18 18.0 19.5 2.20 18.3 2.05 12.4 2.20 18.0 20 5 3.10 0.0 18 18.0 19.5 2.20 18.3 2.05 12.4 2.20 18.0 20 5 3.10 0.0 18.3 2.00 20 5 3.10 0.0 18.3 2.00 20 5 3.10 0.0 18.3 2.00 20 5 3.10 0.0 18.3 2.00 0.0		4 10	19.1	NN		o -	4 10	70	-	* *	10	00		4 10	500	00
8 3 81.15 2.20 2.41 2.30 14.9 2.48 19.0 17 4 2.30 3.00 18 3 16.00 0.0 19 4 130.60 2.60 19.9 2.48 19.0 12 4* 2.60 3.00 18 3 16.00 0.0 19 4 130.60 2.20 13.3 2.05 12.4 15 4* 2.60 3.00 18 3 16.00 0.0 19 4 3.420 0.0 19 5 165.62 2.20 11.3 2.05 12.4 15 4* 2.60 3.00 20 5 3.10 0.0 19 6 2.20 11.3 2.13 10.55 117 4* 2.30 2.00 21 6 4.770 0.0 11 6 203.42 2.30 11.3 2.13 10.55 117 4* 2.30 2.00 21 6 4.770 0.0 11 6 203.42 2.30 2.00 21 6 4.770 0.0 11 6 203.42 2.30 2.00 21 6 4.770 0.0 11 6 203.42 2.30 2.00 22 2 63.00 0.0 11 6 2.30 11.3 2.50 12.3 0.00 4* 2.50 3.00 23 3 40.00 0.0 11 6 5 2.50 12.3 0.00 4* 2.50 3.00 23 3 40.00 0.0 11 6 6 257.77 1.70 6.6 1.58 6.1 12 4* 1.70 1.00 26 6 3.040 0.0 11 6 2.50 11.4 0.00 4* 2.50 3.00 26 6 3.040 0.0 11 6 2.50 11.4 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.4 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.10 10.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.10 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.4 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11.5 0.00 4* 2.50 3.00 28 4 21.60 0.0 11 6 2.50 11	16	۰.	71.9	v		7	υw	7.		* *	υw	0		ب ر	28.00	00
10 5 165.62 2.20 13.3 2.05 12.4 2.20 .80 19 4 3.420 0.0 11 6 203.42 2.30 11.3 2.13 10.5 .17 ** 2.30 2.00 21 6 4.770 0.0 11 6 203.42 2.30 11.3 2.13 10.5 .17 ** 2.30 2.00 21 6 4.770 0.0 11 6 203.42 2.30 11.3 2.13 10.5 .17 ** 2.30 2.00 21 6 4.770 0.0 11 6 203.42 2.30 11.3 2.13 10.5 .10 0.00 ** 2.00 22 2 63.000 0.0 22 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 23 2 63.000 0.0 24 2 63.000 0.0 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	18	ωr	81.1	200		7.	00	9 4	- 0	* :	NU	00		wn	6.00	00
2 2 191.53 2.10 11.0 2.10 11.0 0.00 ** 2.10 2.00 22 2 63.000 0.00 3 3 203.47 2.50 12.3 2.50 12.3 0.00 ** 2.50 3.00 23 3 40.000 0.00 4 122.98 2.40 19.5 2.27 18.4 .13 ** 2.40 3.00 24 4 12.100 0.0 5 5 204.70 2.30 11.2 2.10 10.7 .11 ** 2.30 1.00 25 5 3.840 0.0 6 6 257.77 1.70 6.6 1.58 6.1 .12 ** 2.30 1.00 26 6 3.040 0.0 7 3 200.65 2.10 10.5 2.10 10.5 0.00 ** 2.10 2.00 27 3 26.40 0.0 8 4 219.75 2.50 11.4 2.50 11.4 0.00 ** 2.10 3.00 28 4 21.60 0.0 9 5 134.96 2.30 13.00 3.00 29 5 <td>220</td> <td>4100</td> <td>030.6</td> <td>NNN</td> <td></td> <td>- w o</td> <td>-04</td> <td>000</td> <td>فسور فسور فسو</td> <td>* * *</td> <td>ย้อง</td> <td>000</td> <td></td> <td>4 N O</td> <td>11.</td> <td>000</td>	220	4100	030.6	NNN		- w o	-04	000	فسور فسور فسو	* * *	ย้อง	000		4 N O	11.	000
3 3 2.30 11.0 2.10 11.0 0.00 ** 2.10 2.00 22 2 63.000 0.00 4 122.98 2.40 19.5 2.27 18.4 .13 ** 2.40 3.00 24 4 0.00 0.00 5 5 204.70 2.30 11.2 2.19 10.7 .11 ** 2.40 3.00 24 4 12.100 0.00 6 6 257.77 1.70 6.6 1.58 6.1 .12 ** 2.30 12.00 25 5 3.840 0.00 6 6 257.77 1.70 6.6 1.58 6.1 .12 ** 1.00 26 6 3.840 0.00 7 3 200.65 2.10 10.5 2.10 10.5 0.00 ** 2.10 2.00 27 3 26.400 0.00 9 5 134.96 2.10 15.6 1.90 14.1 .20 ** 2.10 3.00 29 5 7.610 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Į.</td><td></td></t<>															Į.	
4 4 122.98		ωN	91.5	N N		· ·	· 5 -	2 -	00	* *	in i	00		wN	0.00	00
5 5 204.70 2.30 11.2 2.19 10.7 .11 ** 2.30 1.00 25 5 3.840 0.00 6 6 257.77 1.70 6.6 1.58 6.1 .12 ** 2.30 1.00 26 6 3.040 0.00 7 3 200.65 2.10 10.5 2.10 10.5 0.00 27 3 26.400 0.00 8 4 219.75 2.50 11.4 0.00 ** 2.50 3.00 28 4 21.600 0.0 9 5 134.96 2.10 15.6 1.90 14.1 20 ** 2.10 3.00 29 5 7.610 0.0 0 6 241.52 2.30 11.5 2.30 11.5 0.00 ** 2.30 2.00 31 4 13.100 0.0 1 4 199.52 2.30 11.5 2.30 11.5 0.00 ** 2.80 3.00 32 5 14.100 0.0 2 5 251.77 2.80 11.10 0.00 ** 2.80 3.00 32 5 14.100 <td></td> <td>41</td> <td>22.9</td> <td>2</td> <td></td> <td>9</td> <td>N</td> <td>00</td> <td>-</td> <td>*</td> <td>4</td> <td>0</td> <td></td> <td>4</td> <td>2.10</td> <td>0</td>		41	22.9	2		9	N	00	-	*	4	0		4	2.10	0
7 3 200.65 2.10 10.5 2.10 10.5 0.00 ** 2.10 2.00 27 3 26.400 0.0 8 4 219.75 2.50 11.4 2.50 11.4 0.00 ** 2.50 3.00 28 4 21.600 0.0 9 5 134.96 2.10 15.6 1.90 14.1 .20 ** 2.10 3.00 29 5 7.610 0.0 0 6 241.52 2.00 8.3 1.87 7.7 .13 ** 2.00 1.00 30 6 2.840 0.0 1 4 199.52 2.30 11.5 2.30 11.5 0.00 ** 2.80 3.00 32 5 14.100 0.0		o 0	57.7	12		0 H	ů è	00		* *	~ w	00		ര ഗ	0 8 4	00
9 5 134.96 2.10 15.6 1.90 14.1 .20 ** 2.10 3.00 29 5 7.610 0.00 0 6 241.52 2.00 8.3 1.87 7.7 .13 ** 2.00 1.00 30 6 2.840 0.0 1 4 199.52 2.30 11.5 2.30 11.5 0.00 ** 2.80 3.00 32 5 14.100 0.00 2 5 251.77 2.80 11.1 2.72 10.8 .08 ** 2.80 3.00 32 5 14.100 0.00	27	ω	00.6	N.		.0		.0	0		1			ω	6.40	
0 6 241.52 2.00 8.3 1.87 7.7 .13 ** 2.00 1.00 30 6 2.840 0.0 1 4 199.52 2.30 11.5 2.30 11.5 0.00 ** 2.80 3.00 32 5 14.100 0.0 2 5 251.77 2.80 11.1 2.72 10.8 .08 ** 2.80 3.00 32 5 14.100 0.0	0 00	4 N	19.7	U N		7 -	0 0	•	00		. 5			4 1	1.60	
1 4 199.52 2.30 11.5 2.30 11.5 0.00 ** 2.30 2.00 31 4 13.100 0.0 2 5 251.77 2.80 11.1 2.72 10.8 .08 ** 2.80 3.00 32 5 14.100 0.0	30	σu	41.5	NN		ထပၢ	00 00	46	- N		0 -	00		o 01	000	00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31 32	4 D	199.52	N N	30	11.5	2.30	11.5	0.00	* *	N N 0 0	3.00	32	4 D	13.100	000

0		0	0	0	0	BUSINESS F	FORMS PRIM	ITING COMP	ANY DE	LUE SPACE BAR	ENGIN	EERED FOR	HIGH SP	EED PR	INTERS	0	0	0	0	0	0	0
																						and the second
																					ω 5	34
																					0	ហ
																					178.	135
																					56	80
																					N	N
																					.80	
																					15.7	•
																					2.59	N N
																					9	
																					14.5	16
																					ហំ	N
							Section 1														.21	. 19
																					*	*
																					2.80	2
																					3.00	2.00
																					G G	ω 4
																					0	un -
																					6.	ហ
																					250	090
																					0.00	00
											,											
0	0	0					0	0			0	0	0)		0		0	0	0	0	0

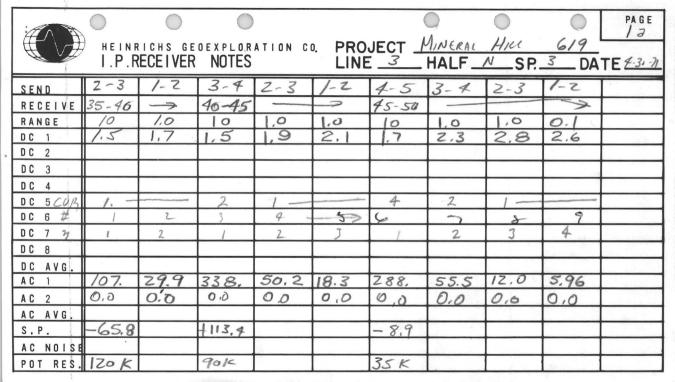





100 K

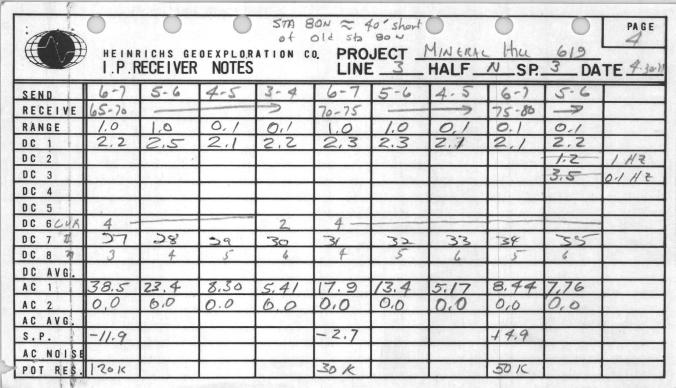

25 K

POT RES.


OPERATOR SWAN SON RECEIVER NO. 20693 R

OPERATOR

FREEMAN


306 619 EXT, Line 3 8 9 3 N/2, 4/30/71 500.

	HEINI	RICHS GE	OEXPLO,R	ATION C		JECT _	O MINERA		619	PAGE
		RECEIVER	1 4 =		1 4	3	T == 1	T .	3_ DA	
SEND	-	3-4	4-5	5-6	6-1	4.9	5-6	6-7	5-6	6-7
RECEIVE	10	1-2	A m	10	1.0	2-3	10	7	3-4	7
RANGE DC 1	-0.2	1,5	19	2.1	2.3	10	19	2,1	1.5	1.6
DC 2	-0.2	1/3	1.1	6.1	2,0	1,6	1,1	1011	1,5	1.6
DC 3									1114	
DC 4										
DC 5				20				-	1	0
DC 6 CUK	2,		-			5	1)	
DC 7 #	1				1	1		1		/
DC 8 29		1	1	1		/	1			
DC AVG.		/		C ilon						
AC 1	200,	868,	196.	75,2	49.2	635.	203.	250.	683.	795.
AC 2	0,0	0,0	0.0	0.0	0,0	6.0	0,0	0,0	0,0	0.0
AC AVG.	2.6							1		Jan San San
S.P.	3.0									
AC NOISE	0.3	-								
POT RES.		Frank Comment			100 Z / 1					



	0		0				0	0		PAGE
	HEINF I.P.R	RICHS GE RECEIVER	OEXPLOR NOTES	ATION C	O. PRO	JECT 1	HALF_	HILL N_SP.	619 3 DA	TE4.3.11
SEND	6-2	S.P.	5.P.	S, P.	5-6	4-5	3-4	2-3	1-2	6-7
RECEIVE	\$-5)	35-40N	40-45N	45-500	50 - 55N	Approximation of the last of t	-			55-60
RANGE	100				10	1.0	1,0	0.1	0.1	10
DC 1	2.0				1,5	2,1	2.7	2.7	2,5	1.8
DC 2				/						
DC 3									I and a	
DC 4									1	- 1000
DC 5					HU-SE!		Contract to		English 1	+
DC 6 CUR	4		/-		4 -		2	- 1-	Mark Mark Strategy St	4
DC 7 #	10				10	12	(3	19	15	16
DC 8 7	15				1	2	3	4	5	
DC AVG.										
AC 1	1280.				382.	47.2	15,4	5.12	2.99	362.
AC 2	0,0				0.0	0,0	0,0	0,0	0.0	0,0
AC AVG.										
S.P.					127,4					+15.
AC NOISE										
POT RES.					23 K					50 K

			OEXPLOR	ATION	wn Fuse	JECT 1	O IMERAL	Hill	619	PAGE 3
		RECEIVER			LIN			N_SP.		TE 4-3-11
SEND	5-6	4-5	3-4	2-3	1-6	6-7	5-6	4-5	3-8	2-3
RECEIVE	1	Assemble Collection and	-	Na distribution representation		60-650			-	
RANGE	1.0	1,0	0,1	01	0.1	1.0	0,0	1,0	0,1	0.1
DC 1	2.5	2,5	2.4	2,5	2.1	2.3	2,3	2,1	2,3	2,2
DC 2										
DC 3										
DC 4			-			and decembers where the community of the				
DC 5 CUR			2	1 -	and the same of th	4 -		-	- 2	1
DC 6 #	17	18	19	20	2(23	22	54	25	26
DC 7 3	2	3	4	5	6	2	3	4	5	4
DC 8			Control of the Contro							
DC AVG.										
AC 1	83.1	18.1	8.55	3.32	2.27	89.1	39.7	12.0	6.85	2.81
AC 2	0.0	0,0	00	0,0	0,0	0.0	0.0	0.0	0,0	0,0
AC AVG.										
S.P.						+36.6				
AC NOISE			1000							
POT RES.	1					120 K	SIDER			

		RICHS GEO		ATION CO		DJECT_1 E_3	MINERAL HALF_		619 3 DA	PAGE
SEND	CAL	3-4	4.5	5-6	6-7	4.5	5-6	6-7	5-6	6-7
RECEIVE	3-4	1-2			->	2-3		7	3-4	->
RANGE				The state of						
VOLTAGE	820	820	760	660	460	760	660	460	640	460
CURRENT	DA	29	4A	4A	44	4A	4A	44	YA	4A
SEND	6-7	5-6	4.5	3-4	2-3	1-2	6-7	5-6	4.5	3-4
RECEIVE	4-5	50.55N				>	55-60	Companyation		OCCUPANTAL (SEA
RANGE										
VOLTAGE	440	640	320	820	700	720	840	640	320	820
CURRENT	44	MA	4A	2A	1 A	1 A	MA	4A	14A	2A
FREQUENCE SENDER I	NO. 23	0.3 706 S IANSON	,	SEND	OUER -	SEE	IRE # RECEIVE SAME I	S = #	TES FO	R
RECEIVE		CEMAI			= 700		1-2			

HEINRICHS GEOEXPLORATION CO.

I. P. SENDER NOTES

PROJECT MWEEN Am 619 Z LINE 3 HALF N SP. 3 DATE 130-11

PAGE

SEND	5-3	1-2	6-7	5-6	4-5	3-4	2-3	6-7	5-6	14-5
RECEIVE	55-60	-	60-65			(min 196,20)	>	65-10		57
RANGE										
VOLTAGE	700	720	840	640	340	820	700	840	640	320
CURRENT	1 A	1A	4A	4A	HA	24	1 A	4A	4A	44
SEND	3-4	6-7	5-6	4-5	6-7	5-6				
RECEIVE	65.70	70-75		7	75-80	->				
RANGE				Lagran Jan St.		*		1		
VOLTAGE	820	840	640	320	840	640				
CURRENT	2 A	4 A	49	40	4A	4A				
FREQUEN	CIES 3	0.3		COMMEN	NTS: *	.1 42	4 1.0	H2		
SENDER	NO. 23	706 5	4-17-12							

PECEIVER NO. FREE POPERATOR 20693 R

SWANSON

OPERATOR

CCMCF CPFE PFE CAL RHO CAL 9950 FIELD DATA FIELD DATA FIELD DATA FIELD DATA FIELD DATA FIELD DATA AC CCMCF CPFE PFE CUR PT. N AC1 AC AC 1.90 1.00 1 1 247.000 0.00 4.7 0.00 *** 1.90 2.00 2 2 132.000 0.00 217.7 0.08 *** 2.10 4.00 3 3 30.100 0.00 217.7 0.08 *** 2.50 4.00 4 4 23.900 0.00 20.5 20 *** 2.90 4.00 5 5 9.780 0.00 8.9 0.00 *** 1.80 1.00 6 1 200.000 0.00 8.9 0.00 *** 2.20 1.00 7 2 40.700 0.00
CPFE CAL RHO CAL 0.0000 *** 1.90 1.00 1 1 247.000 0 0.000 *** 2.10 2.00 2 2 132.000 0 0.00 *** 2.50 4.00 5 5 9.780 0 0.00 *** 2.90 4.00 5 5 9.780 0
PFE CUR PT. N AC1 A 1.90 1.00 1 1 247.000 0 1.90 2.00 2 2 132.000 0 2.10 4.00 3 3 30.100 0 2.50 4.00 5 5 9.780 0 2.20 1.00 6 1 200.000 0 2.20 1.00 7 2 40.700 0
FIELD DATA PFE CUR PT. N AC1 A 1.90 1.00 1 1 247.000 0 1.90 2.00 2 2 132.000 0 2.10 4.00 3 3 30.100 0 2.50 4.00 5 5 9.780 0 2.20 1.00 6 1 200.000 0 2.20 1.00 7 2 40.700 0
FIELD DATA FIELD DATA PT. N AC1 A 00 2 2 132.000 0 2 3 3 30.100 0 4 4 23.900 0 7 2 40.700 0
ELD DATA 1 1 247.000 0 2 2 132.000 0 3 3 30.100 0 4 4 23.900 0 5 5 9.780 0 7 2 40.700 0
AC1 AC1 A AC
70 79100 800000 00 00 00 A
00 00000 N I I

OB 619 EX	07	INE 3 SPRE	AD 3 NORTH	1/2 4	/30/71			S	SOO FEET=	DIPOLE	LENGTH	Ī		
AL C	0 1	FE 200	AC1	0 C C C C C C C C C C C C C C C C C C C	C FREQ	DC FREQ	PFE CAL	1.000	0 4					
			101	DAT		1 1	1 1				FIELD	DATA		
OINT NO.	z	RHO	344		CCPFE	CCMCF	CPFE		Padd	CUR		Z		
2 -	N P	163.23	1.70	10.4	1.70	10.4	0.00	* *	1.50	1.00	2 -	2 -	107.000 0.00	
w 4 rv	ω N	257.81 307.53 280.81	1.70 2.10 2.30	800	2.10	8 5 5 N 8 5	000	* * *	1.50	1.000	ω4π	w N ⊢	338.000 0.00 50.200 0.00 18.300 0.00	
0	-	10.0	.9	7.	• 9	7.	0	*	. 7	•	6	-	8.000 0.0	
10	Nω4 το	170.66 185.40 183.81 17169.60	2.00 2.00 2.00	16.2 15.2 1	N N S N S N O O O	14.6 16.2 15.2	0000	* * * *	NNNN 0683 0000	4112	10987	ผพจะเบ	12.000 0.00 12.000 0.00 5.960 0.00	
11	2 -	45.6	. · ·		3 7		00	* *	- 01	00		2	.200 0.00	
154	4 (U	158.05	2.70	18.3	222	17.8	15	* * :	220	1.000	1 4 12	410	5.120 0.00 S 2.990 0.00 C	
	2 -	0 0	70	-4	. 70	4	00	* *	UT CO	00		2 -	10000.0	
19 20	w 4 m	69.71 131.58 179.01	2.70	38.7 19.8 15.1	2.48	18.8 14.3	.12	* * *	000 000	2.00	200	W 4 D	3.55000000	
	0	95.0	ů		-		-	*	· just	0		o	.270 0.0	
222	νωN	136.99	o un un	18.2	22.50	18.2	000	* * *	300	4 4	222	× ω ν	7000	
	o 01 4	1 - 3		• • •	NWH	900	ωω <	* *	NW	000		0.014	8500000	
	ω	47.8	4	0	4	.0	0	* *	מו	0		ω	.500 0.0	
329	O UT 4	111.44	2.30	20.6	200	18.3	126	* * *	22.00	440	3000	O 01 4	5.410 0.00	
	4.1	37.6	ຳ້ຫ	000	ιů	7	-	* *	υw	0		4 n	9000	
3 2	0· U	111.07	2.30	20.7	1.90	17.1	.40	* *	2.10	4.00	w c	0.0	5.170 0.0	
ω ω Λ 4	N UI	113.32	2.30	20.3	2.05	18.1	V.S	*	2.10	4.00	34	ഗ്വ	8.440 0.00	

Job 619 EXT, Line 3B, SPI 5/2, 5/9/71
500.

~820' W. of LINE 3 I.P. RECEIVER NOTES HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL HOLE 619

LINE 38 BEARING N HAIF S CD 1

359.

3.0

33.0

22.9

0.0

7.39

0.0

0.0

SEND

PFE

RECEIVE MULT.

CUY

PFE Avg.

AC NOISE POT RES.

AC

DRIFT

S.P.

HALF S SP / DATE 5-4-V 2-3 10 ,0 1.0 10 0.1 2,5 2.0 2 16.0 531. 160, 74.0 48.8

PAGE

0.0

I.P. RECEIVER NOTES PAGE HEINRICHS GEOEXPLORATION CO. PROJECT MWERAL HOLL HALF S SP. 1 SEND 5-10: 15-205 MULT PFE 107 16 PFE Avg. 154. AC 333 69 8.12 3.6 DRIFT +36.9 -2.1 S.P. AC NOISE 0.4m 100 K POT RES. FOK 120 K 700 K

I.P. RECEIVER NOTES PAGE LINE 38 BEARING N PROJECT MINERAL SEND 25-30 RECEIVE ZO- 25'S PFE 2,3 CUR 2.5 1.5-23 CC 20 PFE Avg. AC 36, 58.4 DRIFT +2,4 S.P. AC NOISE 50 K POT RES.

				I.P. RE						PAGE
AV B	HEINI	DICUS C	E0EVD1 00	ATLON CO	DDC	LECT	MINER	4 Hece	619	4
H VI	L	INE 3	B B	EARING	N	DECT.	MINER!	S_SP.	DA	TE5-41
SEND	11-2	2-3	3-4	4.5						
RECEIVE	30-35	5 -	and the same of th	2	TANK THE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
MULT.	1.0	1.0	01	011						
PFE	1.5	1.6	117	1.7		Ship all				
				100	100 15	1 180.50	A Det			
				1. 1. 1. 1.		4.55	1		100	
	1 1=		-	- 0		-		-	-	
CUR	1.5		The second secon	6		1 1 1 1	10 10 10 10			
#	29		29	30		-		+		100
7	3	4	3	6				1		
PFE Avg.		T T								
AC	21.0	11.8	5.69	2.68			e die law.			
DRIFT	0	0	0	8	g 15					
S.P.		185.2			a ly					
AC NOISI	8				8					
POT RES.	-			14	1000			S. S.M.		
COLUMN TO A THE STREET	The state of					_				

		RICHS GEO					MINERAL			PAGE /	
SEND	CAL.	P. SEN	DER N	OTES	LIN	F 3B	HALF_	5 SP.	1 DA	TE5-4-	
RECEIVE	3-4	1-2	Total Banks			2-3		3	3-4	->	
RANGE											
VOLTAGE	1720	720	600	800	720	600	200	720	800	720	
CURRENT	IA	IA	10	2A	2 A	IA	20	2 A	2 A	2 A	
SEND	6-7	2-3	3-4	4.5	5-6	6-)	1.2	2-3	3-8	7.5	
RECEIVE	4.5	15-205				->	20-255			->	
RANGE											
VOLTAGE	720	740	680	600	800	720	820	1000	920	800	
CURRENT	2 A	IA	10	IA	2 A	2 A	1/2 A	1/2 A	1/2 19	1/2 A	
FREQUENCIES 3 0.3 SENDER NO. 23706 5 OPERATOR SWANSON				COMMENTS: STA O 15 ~ 830' W OF LINE 3							
RECEIVER NO. 20693R											
OPERATOR FREEMAN				Mary May							

ALA D				**			A 1 . A 4 .	Hici		PAGE	
HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL HILL I. P. SENDER NOTES LINE 3 B HALF S SP DATE											
SEND	5-6	6-7	1-2	2-3	3-4	4-5	5-6	1-2	2-3	3-4	
RECEIVE	20.250	->	25-30				->	30-35	-	\rightarrow	
RANGE											
VOLTAGE	920	840	800	1000	900	1000	920	800	1000	900	
CURRENT	2/2A	2/2A	1/2A	1/2 A	2 A	2 A	2/2A	1/2 A	1/hA	1/2 A	
SEND	4.5	1-10									
RECEIVE	30-35							es Tell		43	
RANGE											
VOLTAGE	980									77.74	
CURRENT	2A										
FREQUENCIES 3 0.3				COMMENTS:							
SENDER NO. 237065											
OPERATOR SWANSON											
RECEIVER NO. 20693R											
OPERATOR FREEMAN							4.5				

JID LIGEXT, LINE 3B, SII N/2, 5/4/71

I.P. RECEIVER NOTES

PAGE

HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL HICE 619

LINE 38 BEARING N HALF N SP / DO

DATE 5-4-11 5-6 SEND 10-15N 15-20N 20-252 RECEIVE MULT .8 2,0 2.3 PFE -0,1 1.5 2.5 PFE Avg. 150. 163. AC 0 DRIFT 0,0 -017 -0.7 417,5 +0,0 117.7 S.P. 3,0 AC NOISE 400 K 50 K 18K fook 100k POT RES.

I.P. RECEIVER NOTES PAGE LINE 3B BEARING N PROJECT MINERAL HILL 619 HALF_N SP. / DATES-4-21 SEND 25-30 0. MULT 2.3 2,5-1,5 CUR

PFE 10 PFE Avg. 5,82 3,94 61.6 AC 0 DRIFT +3.6 S.P. AC NOISE 200 K POT RES.

PFE Avg. +2,7 S.P. AC NOISE POT RES.

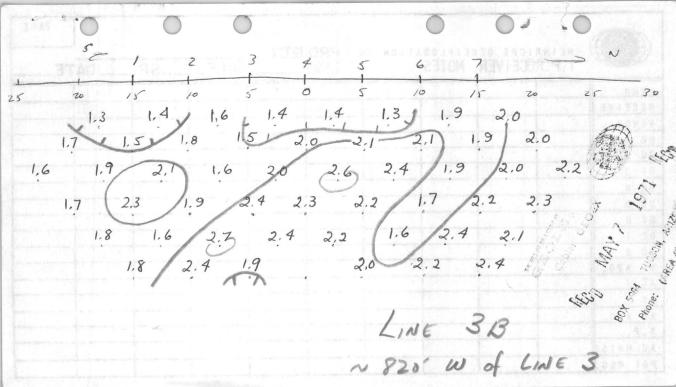
· An							11	1	619	PAGE
	HEINF		DER N	OTES	LIN	DJECT_ E 3 B	HALF_	M SP.	/_ DA	TE 5 #-10
SEND	CAL	5-6	4.5	3-4	2-3	1-2	6-7	5-6	4.5	3-4
RECEIVE	3-4	15-20N			and the state of t	ー >	20-250	-		9
RANGE			Every de la							
VOLTAGE	860	900	940	840	940	780	820	900	920	840
CURRENT	1/2 A	21/2 A	2 A	1/2 A	1/2 A	1/2 A	21/2 A	21/2 A	2 A	1/2 A
SEND	2-3	1-2	6-7	5-6	4-5	3-4	2-3	6-7	5-6	4-5
RECEIVE	20.25	->	25-30	N -	24 (6)		1	30-35	N-	->
RANGE	The last		1600							
VOLTAGE	940	780	840	900	920	820	940	820	880	900
CURRENT	1/2 A	1/2 A	21/2 A	2/2 A	2 A	1/2 A	1/2A	2/2 A	21/2A	2 A
FREQUEN	CIES 3	0.3		COMME	NTS:				17 19 4	
SENDER		37065								
OPERATO	R 50	WANSO	V	Auto-A						
RECEIVE		20693								
OPERATO	R F	- REEM	AN							

SEND

OPERATOR

HEINRICHS GEOEXPLORATION CO.

1. P. SENDER NOTES


PROJECT MINERAL HILL 619 4 LINE 38 HALF N SP. 1 DATES

PAGE

SEND	3-4	6-7	5-6	4-5					
RECEIVE	30-350	35-40		_>					
RANGE									
VOLTAGE	820	1111							
CURRENT	1/2 A								
SEND									
RECEIVE									
RANGE									
VOLTAGE	A Part of the Part						E 1		
CURRENT									
FREQUEN		0.3		COMMEN	ITS:				
SENDER	NO. 23	7065							

OPERATOR PREEMAN

SWAN SON

	HEIND		05701.00	ATION CO	. PROJE	OT.	0	P	AĞE
	I.P.R	ECEIVER	NOTES	ATTUN CL	LINE_	HALF	SP	DATE_	
SEND	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								
RECEIVE							TI I		
RANGE									
DC 1			1				3 14.12		
DC 2									
DC 3									- North
DC 4							1		
DC 5									
DC 6			100						
DC 7			Terral Control						
DC 8									
DC AVG.				7					
AC 1			7						
AC 2									
AC AVG.									
S.P.									
AC NOISE									
POT RES.									

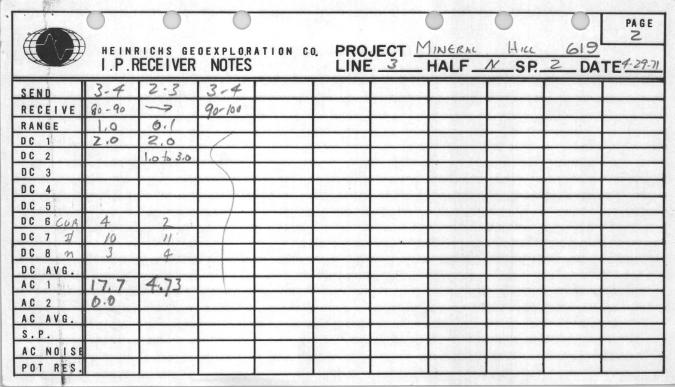
0																		•
0	JOB 619 CAL GRO	UP NO	- LIN	E 38 SPRE	AD 1	SOUTH 1/2 5	5/4/71				500	FEET=	=DIPOLE	LENGTH	Ī			0
0	CAL C	O R	• TD	E 100	0 1	D	C FREQ	DC FREQ	PFE CAL	RH0	9990							0
0	1 1				COMPUTED	DAT	1 1	1 1						H	DATA			0
0								* 8		*	!							0
0								*0	• CUR= Z	* D :		1.60	-0.00	-	-	359.000 .2	20	0
0	POINT	0	z	RHO	E G	MCF	CCPFE	CCMCF	CPFE			Bad	CUR	PT.	z	ACI AC	N	0
RINTERS		o	о —	47.1	16		10		0	* *		0		<u>ب</u> ن	0			0
SH SPEED P		1 w 4	1 2 4	175.01	2.00	20.3	2.00	11.4	0.00	* * :		2.20	222	1 w 4	1 2 4	7.390	000	0
ED FOR HIG		, OI		43.1	4	•	4	•	. 0	*		·w	•	v ui) -	0.000 0.	00	0
ENGINEER		70	ωn	123.00	2.60	21.1	200	21.1	000	* :		2.50	000	70	wn	000		0
E SPACE BAR		vo 00	2 -	149.33	1.40 2.10	3.5	1.40	3.5	0.00	* *		2.00	2.000	900	2 -	48.800 0.0	00	0
PANY DE		10	٢	116.88	1.30	11.1	1.30	11.1	0.00	*		1.20	2.00	10	1	154.000 0.0	00	0
TING COMP			v -	05.9	4 0		4 0		00	* *		ν.ω.	00		ν -	4000		
FORMS PRIN		ω 4 τι	1ω 4 τυ	140.22	2.40	11.4	2.09	11.4	0.00 13	* * *		20000	221	154	ω 4 τυ	3.6100	000	0
BUSINESS			-	06.8	w	•	ω	•		*		N	ໍຫ		—	02.000 0.		0
0		18	0 W 4	478.60 368.21	2.10	ມ ຫ ພ ວ າ າ	2.50	253	000	* * *		2000	J J J	17 18	NW 4	118.000 0.0 36.100 0.0	000	0
0			ு ப	43.3	97		0 5		NH	* *		00 0	ហំហំ		ு ப	190 0.		•
0			n 10	37.3	7	•	2		0	* *		D 0	ກໍກ		N	40000		0
		140	u 4 n	180.89	2.30	12.7	2.30	12.7	0.00	* * :		1000	2000	ח מו ני	4 R	1.800 0.	000	
			0.0	52.	4 0				NO	* :		w	ហាន		0	440 0.		
			ω	13.1			10		0	* *		וט א	יוטיו		· w	0000		
0		90	o. n. 1	202.53	1.80	15.7	1.69	12.4	38	* * :		1.70	000	300	Q (2) 1	2.680 0	000	0
			o	1404	. 0		. 4		L	***					0	. 000 V.		

JUB 619 EXT, EINE 3 SP2 April 29,71 1000.

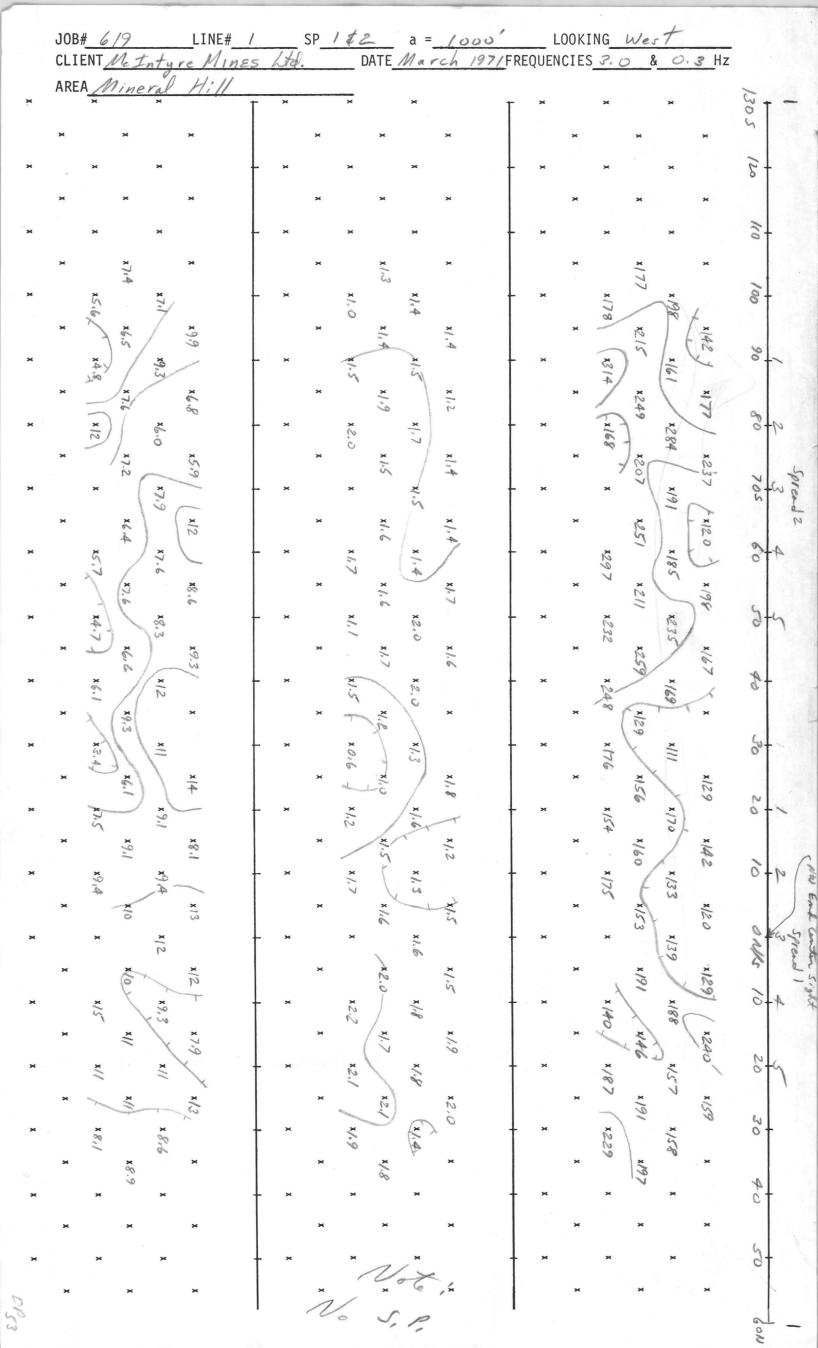
From W. J. Freeman

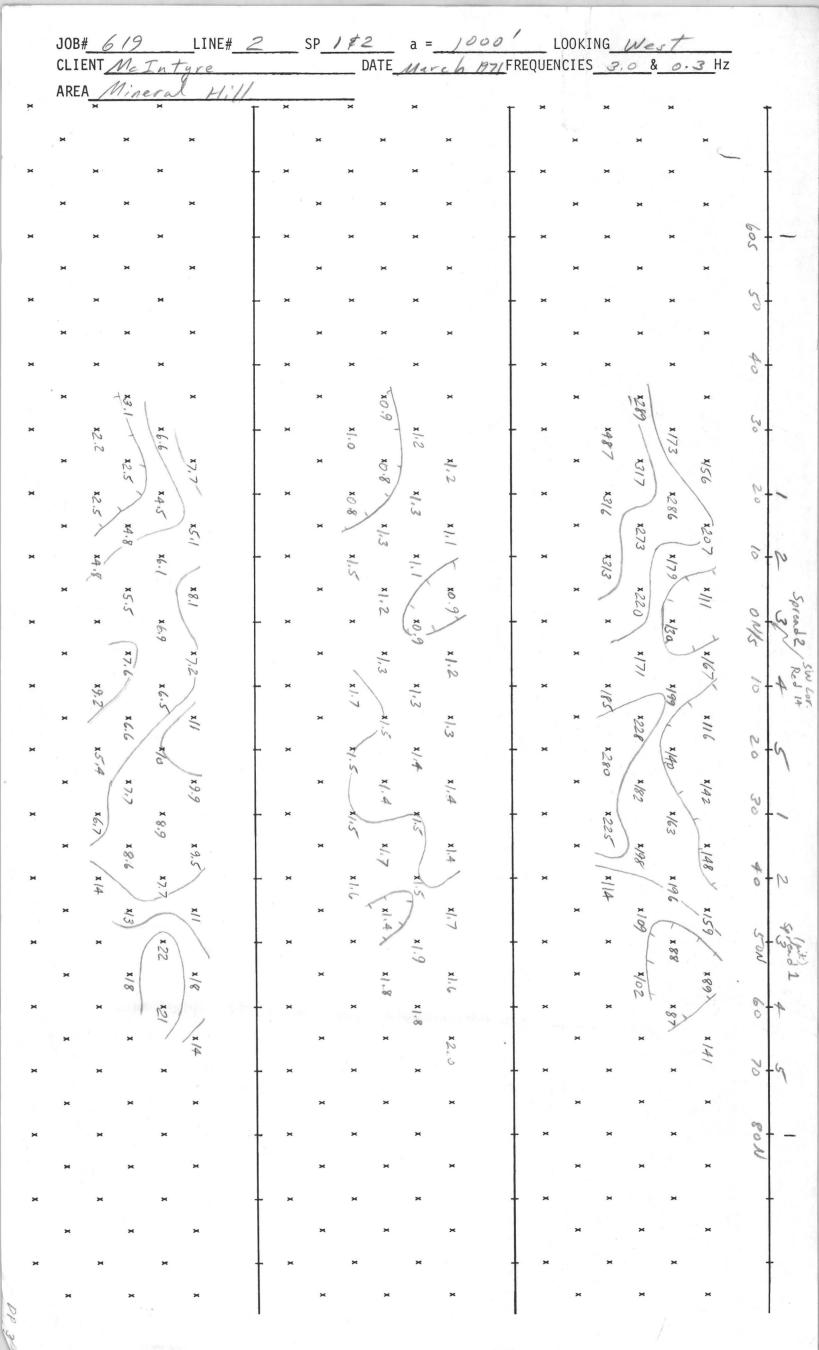
GEOEX

Cable: GEOEX

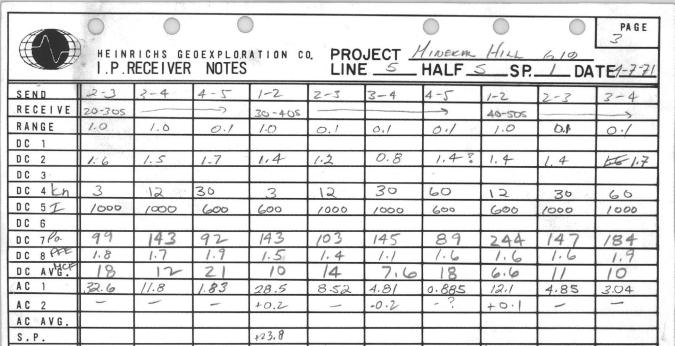


Joh 619


REC'N MAY 4 1971 PEC'D


BOX 5964 TUCSON, ARIZONA 85703 Phone: (GIREA 602) 623-0578

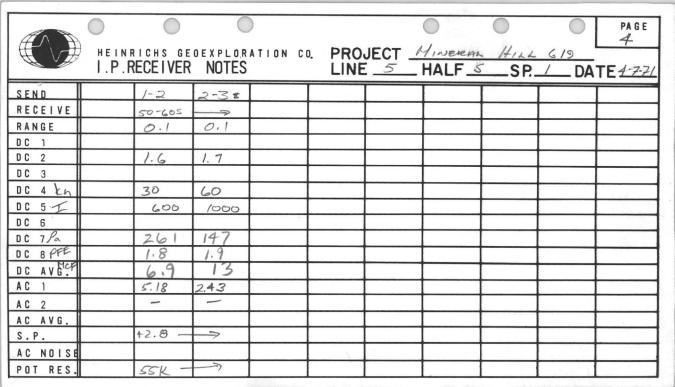
									r.	PAGE
	Marine Toler marking the Children		DER NO		PRO	JECT/	HALF_	HILL N_SP.	619 Z D/	TE4-29-71
SEND	CAL	3-4	2-3	1-2	3-4	2-3	1-2	3-4	2-3	1-2
RECEIVE	2-3	1-2	50-60N	->	60-70N		->	70-80		-
RANGE				*						
VOLTAGE	840	520	840	800	520	840	800	520	840	800
CURRENT	2A	MA	2A	1A	4A	2A	1A	49	2 A	IA
SEND	3-4	2-3	3-4				10 Sept 10 10 10 10 10 10 10 10 10 10 10 10 10			
RECEIVE	80-90	\rightarrow	90-100							
RANGE	14 15					# A				
VOLTAGE	520	840								
CURRENT	4A	2A								
FREQUEN		1 0	1	COMME	NTS: *	3H2	.3H2			
SENDER	NO. 23;	706 5				~				
OPERATO		WANS.								
RECEIVE		0693 K								
OPERATO	R FR	E EMAN	J	Contract of						



A A	0	0) 命等等	soo N of	water	0 2.3	0	0	PAGE
				ATION C			MINERE			
	1.4.1	RECEIVER	NOTES		LINE		HALF_	✓_SP.	DA	TE4-6-71
SEND	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2
RECEIVE	0-100	10-20N -	->	20-30N		->	30-40N			~n
RANGE	1.0	1.0	6.1	1.0	0.1	0.1	1.0	0.1	0./	0.01
DC 1	£**	1								
DC 2	1.3	1.6	1.0	2.2	21.8	2.0	2.3	2.0	1.8	0.8
DC 3										little holsy
DC 4 km	3	.3	12	3'.	12	30	3	12	30	60 Ost.11
DC 5 I	600	900	600	high 900	ise read	n 600	600	900	2000	± 0.2 003
DC 6				100 sen	sitivite					
DC 7 Pa	138	39	87	100	74	77	70	102	110	88
DC 8 PFE	1.5	1.8	1.2	2.4	2.0	2.2	2.5	2.2	2.1	1.0
DC AVEC	11	46	14	24	27	29	36	22	19	11
AC 1	27.4	11.6	4.32	29.5	5.50	152	13.8	7.52	7.22	0.882
AC 2	/	-	+6.1	-	-		-	_	-0,2	-
AC AVG.			,	steel	water	DIDE !	ne cro	ssed at	30 N	onth
S.P.				- at a	inale o	Lappron	20°			
AC NOISE										
POT RES.				35K -	11.0	>				

	HEINE I.P.R	RICHS GE RECEIVER	OEXPLOR NOTES	ATION C			MINERAL HALF M		PAGE 2 TE <u>4-6-7</u>
SEND	4-5	3-4	2-3	4-5	3-4		1-2	CAL1-2	
RECEIVE	40-50N			20-601)-	->		12	1-2	
RANGE	0.1	0.1	0.1	0.1	0.1				
DC 1								-0.2	
DC 2	2.2	2.5	2.6	2.3	2.5				
DC 3		9.0	reading						
DC 4km	12	30	190.160	30	60	T			
DC 5 I	600	900	2000, 4-2,5	600	9900				
DC 6									
DC 78a	100	172	114 5.76	123	229				1554
DC 8 FFE	2,4	2.7	2.8	2,5	2.7				
DC AVG.	24	16	16	20	12				
AC 1	4.89	5.06	5.71	2.42	3.38			101	
AC 2	_	_	_					_	
AC AVG.						V)			
S.P.	41.5		>	+16.0 -	->				
AC NOISE									
POT RES.	75 K -		\rightarrow	32K -	7				

- hich


NOM

24.2

LOK

AC NOISE

RES.

	619	INDU	CED P	OLARIZ	ZATIO	1	SENDE					
project:	Mine	ral	HI	Line:	1138	5 5/	1 5	1/2	Date	. Apr	1/ 7,	7/
Send	2-3	3-4	2-5	1-2	2-3	3-4	4-5	1-2	2-7	3-4	1-2	2-3
Receive	20 - 305			30-40				40-50			54-60	_
Time												
Range	500	815	720	250	510	815	720	720	500	820	750	500
Current	1.0	1.0	0.6	0.6	1.0	1.0	0.6	0.6	1.0	1.0	0.6	1.0
Send												
Receive												
Time												
Range												
Current												

#	119	T	100 0	OT 4 D.T.F.			C TIME	. NO.				
project:	619 Mine	INDUC		OLARIZ Line:	Line		SENDE	K NOT		4/	14/71	
Send	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2	4-5	3-4
Receive	3-4	3-4	4-5	20-30N			30-40				40-50	
Time												
Range	815	470	815	840	470	800	780	815	840	780	780	815
Current	0.6	0.9	0.6	0.9	0.9	0.6	0.6	0.9	2,0	0,6	0.6	0.9
Send	2-3	4-3	3-4									Cal
Receive		50-60		7								1-2
Time	3. 1. 0.3 0.1											
Range	840	770	810									500
Current	2,0	0.6	0.9							j		1.0
			r key 1									

$$S - z - z - 1 \qquad \left(\begin{array}{c} + - E & E - z \\ - z - z - 1 \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E & E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E - z \\ - E - z \end{array} \right) \qquad \left(\begin{array}{c} - E & E - z \\ - E - z \end{array} \right) \qquad$$

2-1 8-2

7000 ft NORTH OF CP Spd 1

MINERIM HILL 619

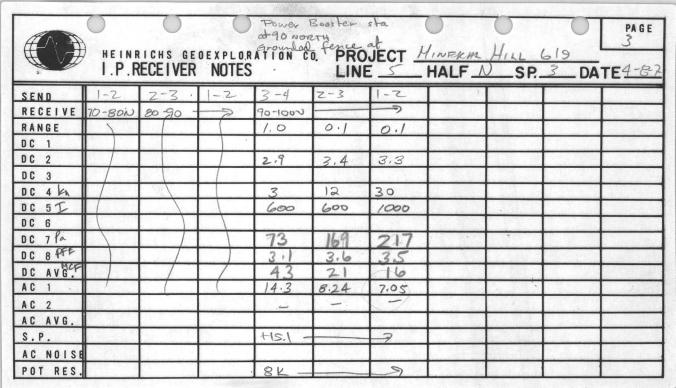
I.P.RECEIVER NOTES

PROJECT

SP. 3 DATE4-8-7

PAGE

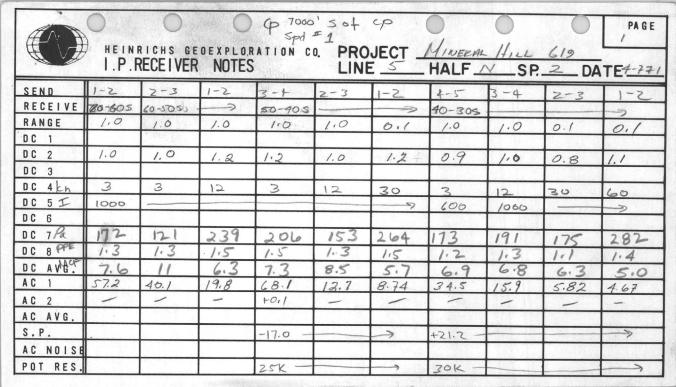
40-300 RECEIVE 50-40N 60-50N 1.0 0.1 1.0 1.0 0. 0.1 RANGE 1.0 1,0 1,0 DC 2.9 2.5 1.9 2.3 1.8 2.6 2.6 2.2 2.3 DC DC 30 60 12 3 12 30 DC 3 3 12 1000 600 1000 1000 600 600 1066 1000 600 600 DC 05 3. 8.90 2.87 5.36 20.8 AC AC AC AVG. 7 +5.5 +7.8 S.P. AC NOISE 33 K POT RES.


HEINRICHS GEOEXPLORATION CO. I.P.RECEIVER NOTES

PROJECT MINERAL HILL 619

LINE S HALF S SP. 3 DATE 187

PAGE


SEND	12	2-3	3-4	1-2	2-3	OPPL
RECEIVE	30-201) ——	->	20-100		1-2
RANGE	0.1	0.1	0./	0.1	0.1	
DÇ 1						-0,2
DC 2	2.0	2.4	2.2 .	2.1	£\$1.6	是 5、据看第二字位于120 1293年至
DC 3						
DC 4 kn	12	30+.10-2	69:12-13	30	60	
DC 5 I	1000	600	600	1000	600	
DC 6					第四周 表示 。	
DC 7Pa	109	136	117	122	152	
DC 8PFE	2,2	.2.6	2.4	2.3	1.9	TO SHOP TO BE THE SECOND
DC AVG	20	19	21	19	13	
AC 1	9.02	2.68	1.18	4.02	1.51	101
AC 2	-		+6.1	-	-0.2	
AC AVG.						
S.P.	0 -		>	+25.5 -	->	
AC NOISE						的名词复数 生态等 计 显示
POT RES.	 12K-		->	36 K	->	

7619												
project:	14,78	INDUC	SED PO	Line:	ZATIO	N 59 3	SENDI	ER NOT	TES Date	£,	18/71	
Send	3-4	2-3	1-2									
Receive	90-100											
Time												
Range	160	640	550									
Current	0.6	0.6	1.0									
Send												
Receive												
Time							: :					
Range												
Current												

#6/9												
project:	11/21	INDUC	CED PO <u>////</u> _	Line:	ZATION 5	5p 3	SENDE	ER NOT	ES Date	. £	18/7	
Send	4-5	3-4	4-5		3-4	4-5	1-2	2-3	3-4	4-5	1-2	2-3
Receive	705-60	60-50		50 - 90			40-30				30-20	
Time												
Range	730	660	730	660	680	630	570	670	680	640	570	690
Current	1,0	0.6	1.0	0.6	0.6	1.0	1.0	0.6	0,6	1.0	1,0	0,6
Send	3-4	1-2	2-3									Cal
Receive		20-10										4-5
Time												
Range	680	580	690					. 3				630
Current	0.6	1,0	0.6									1.0

-

	0	0				IFOT	0			PAGE 2
# 1	I.P.R	ECEIVER	NOTES	ATION C	LINE	JECT.	HALF 1	SP.	2_DA	TE4-7-71
SEND	4-5	3-4	2-3	4-5	3-4			CAL		
RECEIVE	30 705)			20-105				1-2		
RANGE	1.0	1.0	0.1	0.1	0.1			10		
DC 1							100 100			
DC 2	1.8 ±12	1.9	0-2.0	1.6	1.9			-0.3		
DC 3		t.2	(1.4?)	せ・1						
DC 4kn	12	30	60	30	60					
DC 5T	600	1000	->	600	1000		4, 1,			
DC 6										
DC 78a	296	322	251	259	274					
DC 8 PFE	.211	2,2	1.7	1.8	2.2					
DC AVG.	7.1	6.8	6.8	5,1470						
AC 1	14.6	10.6	4.16	8.37	4.52			101		
AC 2	_	_	~ -	+0.~	_			7-73		
AC AVG.	23		Santa.							
S.P.	77.5-	1000	7							
AC NOISE	Base S		7000	1310						
POT RES.	# 10K		> 200 K	9						

HEINRICHS GEOEXPLORATION CO. I.P.RECEIVER NOTES

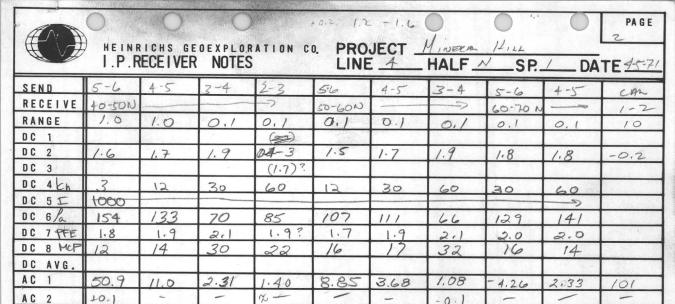
PROJECT MINERAL HILL 619

PAGE

LINE 5 HALF S SP. 2 DATE 4-8

SEND	2-3	3-4	4-5	1-2	2-3	3-4	4-5	1-2	2-3	3-4
RECEIVE	90-1005		7	700-1165			->	110-1205		->
RANGE	1.0	1.0	0./	1.0	1.0	0./	0.1	1.0	0.1	0.1
DC 1										
DC 2	1.3	1.8	1.6	1.3	1.4	1.7	1.4	1,6	1.4	1.6
DC 3										
DC 4 Km	3	12	30	3	12	30	60	12	30	60
DC 5 I	1000 -	->	600	1000 -		-> >	600	1000		→>
DC 6										
DC 7Pa	202	235	308	165	203	236	278	220	233	275
DC 8 PFE	1.6	2.1	1.9	1.6	1.7	2.0	1.7	1.9	1.7	1.9
DC AVG.	7.9	8.9	6.2	9.7	8.4	8.5	6.1	8.7	7.3	6.9
AC 1	66.9	19.4	6.10	54.5	16.8	7.79	2.77	18.2	7.70	4.55
AC 2		10-	_	-	_	_	-	-	_	-
AC AVG.										9
S.P.	-17.4 -		->	115.1			7	+1.7 -		->
AC NOISE		1.1								
POT RES.	22 K -		\rightarrow	45K -			->	挺47 大		->

A Commonweal Commonwea		0).					PA G E
	HEINRICHS GE I.P.RECEIVER	OEXPLOR NOTES	ATION CO.	PROJECT LINE 5	HINEERL HALF_	S SP.	619 2 DA	TE4-8-71
SEND		1-2	2-3					
RECEIVE		120-1305						
RANGE		6.1	0.1					
DC 1								
DC 2		1.6	1.6					
DC 3								
DC 4 kn		30	60					
DC 5I		1600	>					
DC 6								
DC 7 Pa		269	262					
DC 8 PFE		1.9	1.9					
DC AVG.		7.1	7.3					
AC 1		8.87	4.32					9
AC 2		,	-					
AC AVG.								
S.P.		8.4+	->					
AC NOISE								
POT RES.		2016-						

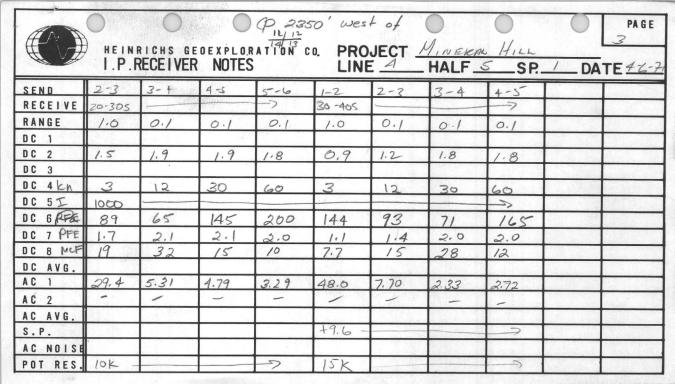

INDUCED POLARIZATION SENDER NOTES project: Minora Line: Date: + Send 3-4 2-3 4-5 2-3 Receive 30-20 40-30 60-50 50-40 Time Range 800 700 800 800 800 660 1.0 Current 0.6 0.6 .0 Send 4-5 C91 Receive 20-10 Time 790 Range 680 800 660 0,6 ~0 Current

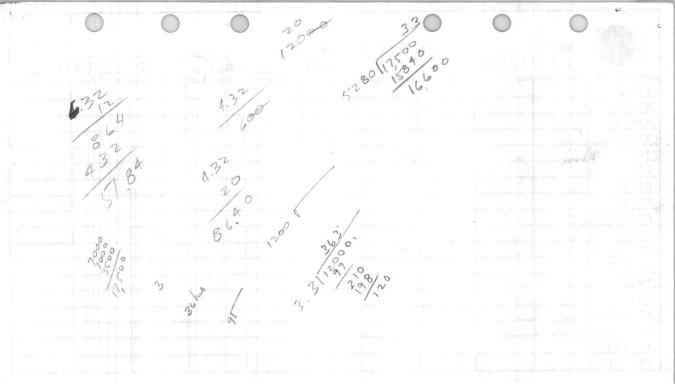
,														
,# (1		INDUC		OLARIZ	ATIO	N	SENDI	ER NOT	ES		10 1-1			
project:	MIDER	9/1/	<u>/</u>	Line:	L170	ne 5 8,2 5/2				Date: 4/8/7/				
Send	2-3	3-4	4-5	1-2	2-3	3-4	4-5	1-2	2-3	3-4	7-2	2-3		
Receive	70-100	100-110		110-120				120-130			130-190			
Time														
Range	420	820	780	600	620	810	780	600	620	800	600	416		
Current	1,0	1,0	0.6	1.0	1.0	1.0	0.6	1.0	1,0	10	1,0	1,0		
Send														
Receive														
Time														
Range														
Current														

HEINRICHS GEOEXPLORATION CO. I.P.RECEIVER NOTES LINE 4 HALF N SP. 1

SP. / DATE 4-5-7/

2-3 1-2 SEND 3-4 5 RECEIVE 10-1010 10-20 N 20-30 N -30-40 1.0 0.1 0.1 0.1 0.1 RANGE 1.0 0. 1.0 1.0 0.1 DC 2 1.5 1.5 1.2 DC 1.5 1,4 1.5 1.6 1.2 1.0 1.6 DC 3 DC 3 3 3 12 12 30 12 30 60 -> DC 5 T 1000 90 139 94 106 102 DC 56 46 61 1.7 1.8 DC 7 PFE 1.4 1.8 3 23 12 22 8 MCF 130 7.3 19 DC 1.3 DC AVG. 6.36 2.96 18.6 7.84 35,2 8.46 4.83 59.4 AC 20.2 2.29 -6.2 +0.2 AC 7 2 AC AVG. +6.2 S.P. AC NOISE 18K POT RES.


80 K


0-

60K

AC AVG.

POT RES.

HEINRICHS GEOEXPLORATION CO. PROJECT MINERAL HILL
I.P. RECEIVER NOTES LINE 4 HALF S SP. /

DATE4-6-7/

PAGE

		ER/CO				וותבו _		UA	C 1 G 11
SEND	1-2	2-3	3-4	1-2	2-3	MI ON DES			
RECEIVE	40-505		->	50-601		1200			
RANGE	1.0	0.1	0.1	0./	0.1			1	
DC 1	E					The Park	101 753		
DC 2	1.2	1.5	2.3	1.4	1.4		100		
DC 3							Alex las		
DC 4 KM	12	30	60	30	60				
DC 5 I	1000				-9		Tames.		
DC 6 Pa	170	94	70	153	93				
DC 7 PEE	1.4	1.7	2.5	1.6	1.6				
DC 8 MCF	8.3	18	36	10	17		F 10 / 5 / 5		
DC AVG.							S. S		
AC 1	14.1	3.10	1.14	5.06	1.54				
AC 2	-	-	-	_	-				
AC AVG.									
S.P.	121.6			+5.5 -	->	7. 74.58			
AC NOISE							10.00		
POT RES.	18K -		->	24K-	->				PER CHIEF

confirs #3 = 0.0 Loc 350: west of road on sec Line Nomen of Annex #6 Project: Mineral Hill Line: F Sp N/2 Date: 4/5/71														
Send	1-2	2-3	1-2	3-4	2-3	1-2	4-5	3-4	2-3	1-2	5-4	4-5		
Receive	0-1GN 3-4	4-5		5-6			30-40				40-50			
Time														
Range	600	740	600	550	760	600	480	540	750	590	670	480		
Current	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	110	1,0	1.0	1.0		
Send	3-4	2-3	5-4	4-5	3-4	5-4	4-5					cal		
Receive			50-60			60-70						1-2		
Time														
Range	530	740	150	470	530	650	960					600		
Current	1.0	1.0	1.0	1.0	1.0	1-0	1.0					1.0		
												100		

#4/9 project:	#2/9 INDUCED POLARIZATION SENDER NOTES project: Mineral Hill Line: 4 Se 5/2 Date: 4/6/71														
	2-3	3-4	4-5	5-6	1-2	2-3	3-4	4-5	1-2	2-3	3-4				
Receive	20-30				30- 40	of the contract of the contrac			40-50						
Time															
Range	690	520	450	630	530	690	510	450	540	696	510				
Current	1.0	1.0	1.0	1.0	1.0	1.0	1,0	1.0	1.0	1.0	1.0				
Send	1-2	2-3													
Receive	50-60								3.7						
Time															
Range	540	690													
Current	1,0	1.0													

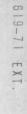
× 1.9 × 135 -+? 70 80 SURFACE STATIONS n = 6 5 4 3 2 - SURFA APPARENT RESISTIVITY (PDC /2m)
IN UNITS OF OHM FEET PERCENT FREQUENCY EFFECT (PFE) $MCF = \frac{PFE \times 1000}{PDC/2\pi}$ CONTOUR INTERVAL CONSTANT CONTOUR INTERVAL LOGARITHMIC CONTOUR INTERVAL LOGARITHMIC SENDER FREQUENCIES: 0.1 & 1.0 Hz SENDER FREQUENCY: 0.1 Hz 619-71 EXT.

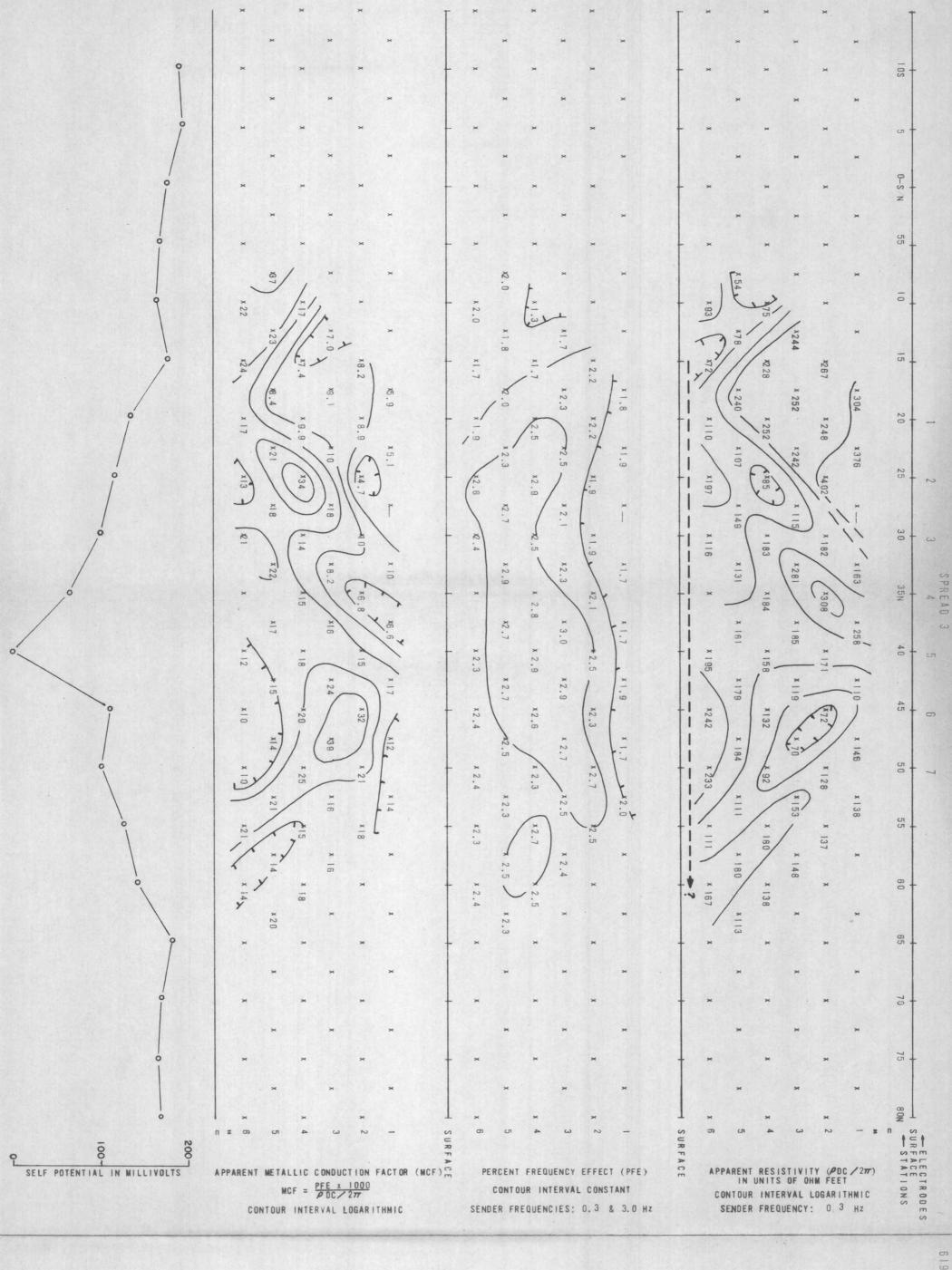
SELF POTENTIAL IN MILLIVOLTS

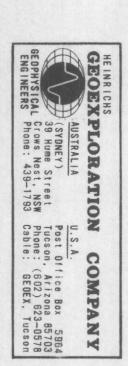
HE INRICHS
GEOGX PLORATION COMPANY

AUSTRALIA

(SYDNEY)
39 Hume Street Tucson, Airzona 85703
GEOPHYSICAL Crows Nest, NSW Phone: (602) 623-0578
ENGINEERS Phone: 439-1793 Cable: GEOEX, Tucson


INDUCED POLARIZATION TRAVERSE SECTIONAL DATA SHEET for MCINTYRE MINES LTD.


RELATIVE ANOMALY STRENGTH


VERY WEAK

WEAK

SPREAD(S)
1 & 2

SURFACE SENDER SENDER SIPOLE SUPPOLE SUPPOLE SUPPOLE SUPPOLE X PLOT POINT

MINERAL HILL

AREA

LOOKING

APRIL 1971

DATE

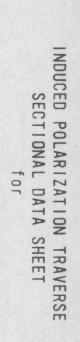
VERY WEAK

WEAK

MODERATE STRONG

RELATIVE ANOMALY STRENGTH

INDUCED POLARIZATION TRAVERSE SECTIONAL DATA SHEET for


MCINTYRE MINES LTD.

SPREAD(S)

40

SURFACE STATIONS

MCINTYRE MINES LTD.

VERY WEAK RELATIVE ANOMALY STRENGTH WEAK MODERATE STRONG

SURFACE

APPARENT RESISTIVITY (PDC /2m)
IN UNITS OF OHM FEET

CONTOUR INTERVAL LOGARITHMIC

SENDER FREQUENCY: 0 3 Hz

DIPOLE DIPOLE ELECTRODE ARRAY **→** 500° * n× 500 * 500 ° RECEIVER 3

SURFACE - SENDER PLOT POINT

PERCENT FREQUENCY EFFECT (PFE)

CONTOUR INTERVAL CONSTANT

SENDER FREQUENCIES: 0.3 & 3.0 Hz

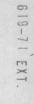
MINERAL HILL APRIL 1971 LOOKING AREA DATE WEST

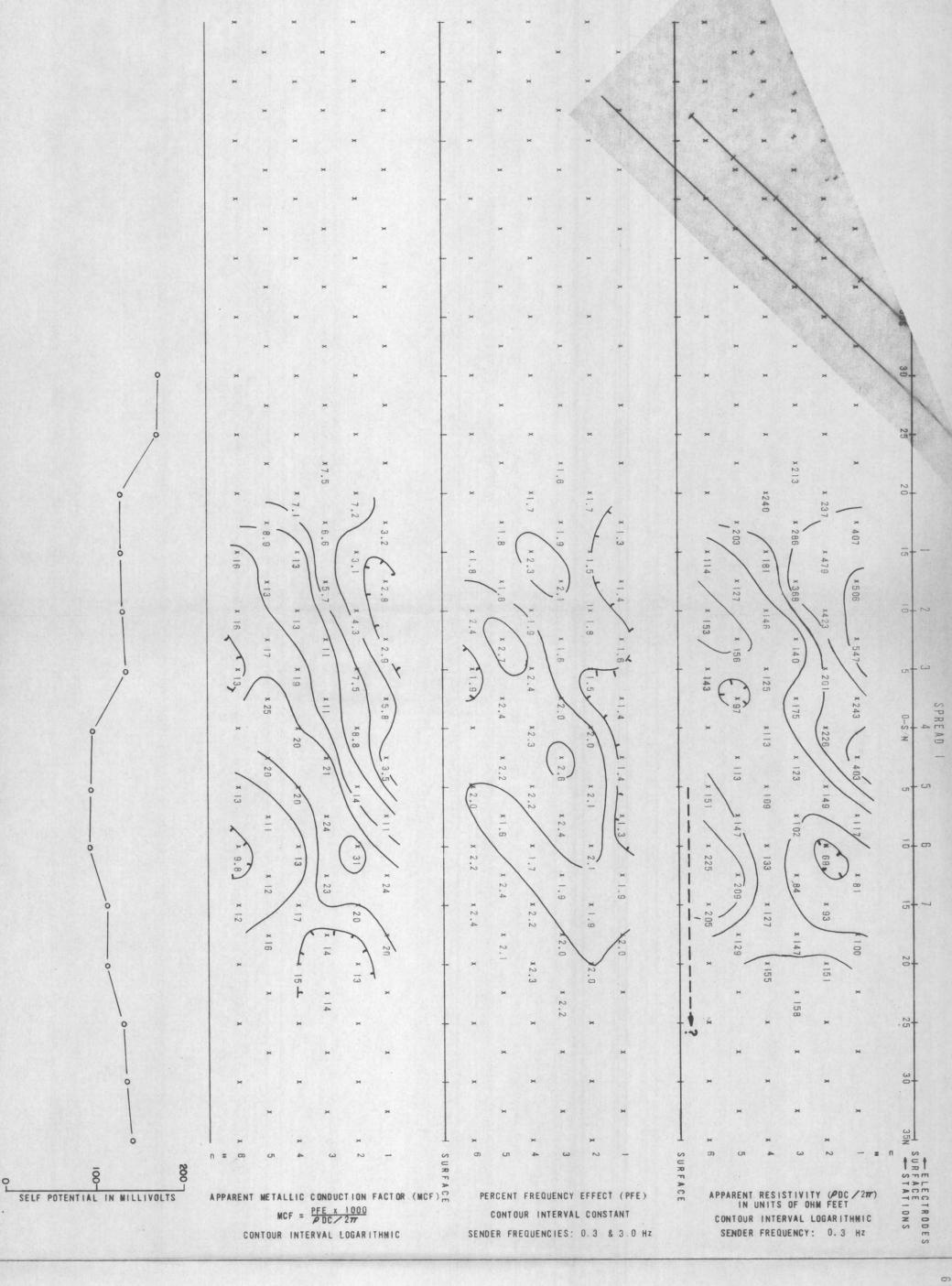
n = 65 σ 4 ω N - SUR R F A A PPARENT METALLIC CONDUCTION FACTOR (MCF) E

PFE x 1000 POC/2m

CONTOUR INTERVAL LOGARITHMIC

AUSTRALIA
(SYDNEY)
(SYDNEY)
39 Hume Street
GEOPHYSICAL Crows Nest, NSW
ENGINEERS Phone: 439-1793 GEOEX PLORATION Post Office Box 5964 Tucson, Arizona 85703 Phone: (602) 623-0578 Cable: GEOEX, Tucson COMPANY


SPREAD(S)


LINE NO.

2007

00-

SELF POTENTIAL IN MILLIVOLTS

SURFACE - SENDER DIPOLE DIPOLE ELECTRODE ARRAY 500 n× 500 PLOT POINT RECEIVER 500

MINERAL HILL

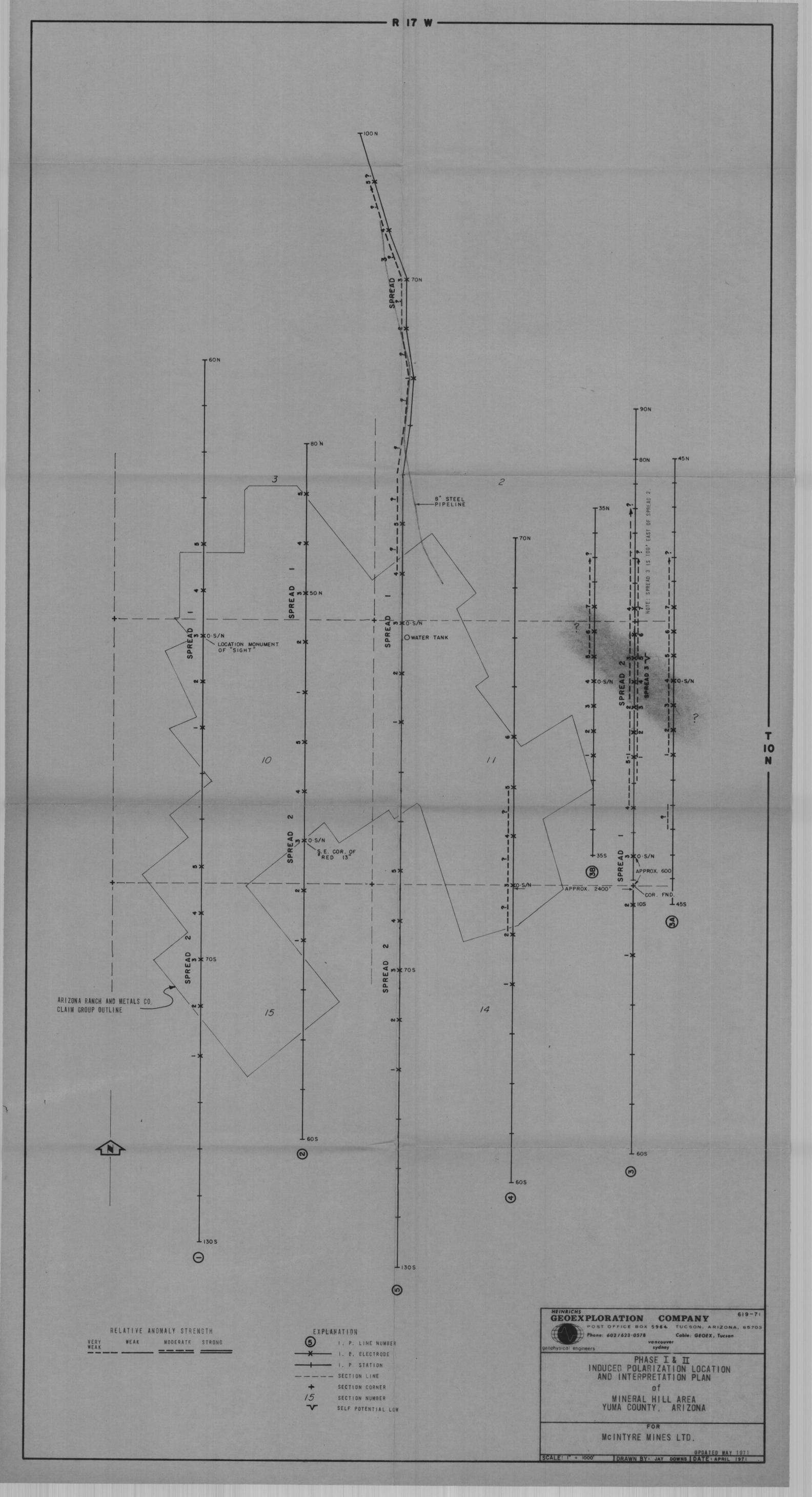
AREA

LOOKING

APRIL 1971

DATE WEST VERY WEAK WEAK

MODERATE STRONG


RELATIVE ANOMALY STRENGTH

INDUCED POLARIZATION TRAVERSE SECTIONAL DATA SHEET for

MCINTYRE MINES LTD.

3B SPREAD(S)

LINE NO

PHASE II

INDUCED POLARIZATION SURVEY

OF

MINERAL HILL AREA

NEAR

PARKER DAN, YUNA COUNTY, ARIZONA

FOR

MCINTYRE MINES LTD.

May 1971

By

HEINRICHS GEOEXPLORATION COMPANY P.O. Box 5964, Tucson, Arizona 85703

GEOEX Job # 619 EXT.

TABLE OF CONTENTS

	Page
Introduction	1
Conclusions and Recommendations	1
Interpretation	2
Sectional Data Sheets	
Line 3 Spreads 1 and 2 a=1,000 feet Line 3 Spread 3 a=500 feet Line 3A Spread 1 a=500 feet Line 3B Spread 1 a=500 feet In map pocket	

Induced Polarization Location and Interpretation Plan (Phase II) Actually (Phase I and II)

INTRODUCTION

During the interim April 28, 1971 and May 4, 1971, Heinrichs GEOExploration Company, at the request of Mr. William Laughlin, Of McIntyre Mines Ltd., completed Phase II of the Induced Polarization Survey in the Mineral Hill Area. This survey was an extension of work previously done in the area by GEOEX. The general job assignment of this additional work was to further define the I.P. effects noted in the Phase I report and if possible, to locate the best available drill target. This report and drawings are intended to be bound into the same binder used for the Phase I Mineral Hill report in order that the entire job be available under one cover.

A total of four spreads on three lines were completed. Line 3 was extended to the north, using 1,000 foot dipoles, in an attempt to close off the anomaly to the north. Following this, the anomalous portion of Line 3 was rerun using 500 foot dipoles. Line 3A was run approximately 780 feet east of station 35.0N on Line 3, using 500 foot dipoles. Line 3B was run approximately 820 feet west of station 35.0N on Line 3, also using 500 foot dipoles. All lines were oriented generally north-south as in the previous survey. Total surface coverage was 28,000 feet, of which 18,500 feet is "subsurface" plotted data.

CONCLUSIONS AND RECOMMENDATIONS

The detail I.P. surveying along and adjacent to Line 3 has confirmed a broad zone of very weak frequency effects. This polarization anomaly appears to be cutoff to the south, but the anomalism has not been completely surrounded on the north, east or west. Line 3A, near 2.5S, shows the strongest frequency effects noted in this survey, however, they are only marginally higher than the rest of the anomalous zone. Other zones are indicated by the metallic conduction factor, but these are caused mainly by anomalously low resistivity zones without significantly greater PFE values. These are likely due to fault zones and to a lesser degree topographic effects. The I.P. anomalism appears to be rather widespread probably indicating small quantities of polarizable material within a particular rock type. The top of this zone may be on the order of 200 feet beneath the surface and also is depth limited somewhere near 500 feet, ± 50%. Total sulfides are probably less than 1 - 2% by volume. A close inspection of the data indicates that there may be some correlation between maximum I.P. values and a poorly defined zone of resistivity contrasts, which are likely caused by steeply dipping rock formations of alternating zones of high and low electrical resistivity. This zone strikes roughly N45°W crossing Line 3A near 5S, Line 3 near 35-40N and Line 3B near 5N. Additionally there is a strong correlating self potential low near 40N on Line 3. All of this suggests the possibility of a fault zone or contact, which may have some associated mineralization.

Drilling, programmed to a minimum depth of 750 feet, will be necessary to test the zone of very weak polarization effects located in the vicinity of Line 3. An initial drill site should be located at or near 2.55 on Line 3A, depending on local conditions of topography and access. Alternative drilling possibilities are located at or near 7.5N on Line 3A and at 40.0N on Line 3.

As the anomalous zone is open on three sides, the total area of mineralization could have considerable areal extent, particularly to the north and east. Therefore, if the initial test drilling indicates the presence of interesting but sub-economic mineralization, we recommend further drilling of the anomalous area for possible zones of ore grade mineralization.

INTERPRETATION

Line 3 500 foot and 1,000 foot dipoles Spreads 1, 2 and 3

Both the 500 foot and the 1,000 foot data indicate a zone of very weak anomalism extending from 15N beyond the northern end of the line. These frequency effects increase slightly and then decrease with depth, probably indicating both a top and bottom to the source. Strong resistivity contrasts are noted near 37.5N and are also accompanied by a strong self potential low near 40N.

Line 3A 500 foot dipoles

Very weak I.P. values continue from 15S beyond the northern end of the line. A slight high appears near 2.5S, which likely represents an interference high resulting from two merging anomalous patterns. The slight increase and subsequent decrease in PFE values with depth indicate a rather definite top and bottom to the polarizable material. The resistivity picture is somewhat complex, probably due to structural and topographic changes. A resistivity interface is probably located near 5S. The self potential profile is essentially flat.

Line 3B 500 foot dipoles

A zone of very weak PFEs extends from 5N beyond the northern end of the line. Although the frequency effects increase initially with depth the later decrease is not as pronounced as on the other two lines. The resistivity plot indicates an interface near 10N with lower values to the north which correspond with the higher PFEs. The self potential profile is essentially flat.

Respectfully submitted, HEINRICHS GEOEXPLORATION COMPANY

John P. Matthews, Jr. Geophysicist

aul 9 Head Paul A. Head Geophysicist

Box 5964 Tucson, Arizona 85703 May 1971

GEOEX Job # 619 EXT

INDUCED POLARIZATION SURVEY

OF

MINERAL HILL AREA

NEAR

PARKER DAM, YUMA COUNTY, ARIZONA

FOR

MC INTYRE MINES LTD.

April 1971

GEOEX Job # 619

April 26, 1971

McIntyre Mines Ltd. 2030 East Speddway Tucson, Arizona 85716

Gentlemen:

Enclosed herewith is an original and two copies of our report "Induced Polarization Survey of Mineral Hill Area near Parker Dam, Yuma County, Arizona". Also included are reproducible sepias of the sectional data sheets.

If you have any questions please feel free to contact us.

Very truly yours, Heinrichs GEOEXploration Company

John P. Matthews, Jr. Geophysicist

JPM:dm

INDUCED POLARIZATION SURVEY

OF

MINERAL HILL AREA

NEAR

PARKER DAM, YUMA COUNTY, ARIZONA

FOR MCINTYRE MINES LTD.

April 1971

Ву

HEINRICHS GEOEXPLORATION COMPANY P.O. Box 5964, Tucson, Arizona 85703

GEOEX Job # 619

GENERAL LOCATION MINERAL HILL AREA MOINTYRE MINES LTB. TABLE OF CONTENTS ARIZONA Page Index Map Introduction----Conclusions and Recommendations----Comments on Drilling I.P. Targets -----Interpretation-----Speculation Basis of Induced Polarization Method Sectional Data Sheets --o HOLBROOK < Spreads 1 and 2 Line 1 Spreads 1 and 2 Spread 1 Line 2 Line 3 Line 4 Spread 1 Line 5 Spreads 1, 2 and 3 In Map Pocket Induced Polarization Location and Interpretation Plan O.C -330 @ SAFFORD e TUCSON O - 320 ISANTA STATUTE MILES COMPANY SECTAPLORATION GESTAVSICAL Phone: 439-1793 Cable: BEOEX, Tucson

HEINRICHS GEOEXPLOR ATION COMPANY

INTRODUCTION

At the request of Mr. William Laughlin, of McIntyre Mines Ltd., Heinrichs GEOEXploration Company completed five induced polarization lines in the Mineral Hill Area near Parker Dam, Yuma County, Arizona. The field work was performed during the interim from March 23, 1971 through April 9, 1971.

The purpose of this survey was to ascertain if subsurface concentrations of sulfide mineralization are associated with the surface, and relatively near surface, copper and iron oxides concentrated near the Norma Fault. and seen over much of the property in general. The recent past production has been confined to mining of the copper oxides associated with the Norma Fault. Abundant specular hematite occurs throughout most of the area, with relatively large concentrations associated with the copper mineralization. There was some concern expressed by McIntyre that this hematite would adversely affect the I.P. data, giving rise to non-sulfide anomalism. As will be noted later in this report, no strong frequency effects due to either sulfides or other minerals were noted. It should also be pointed out that since the oxide copper is apparently intimately related to massive hematite, an I.P. response from hematite in this area might have been quite significant.

A total of nine spreads on five lines were completed, all using a 1000 foot dipole spacing. All lines were oriented north-south and spaced from 1500' to 2400' apart as determined by vehicular access to the different lines. Total surface coverage was 81,000 feet of which 58,000 feet, or approximately 11 miles is "subsurface" plotted data.

The multi-frequency I.P. technique was utilized on all lines using the collinear dipole-dipole electrode array. The effective subsurface volume explored with this configuration is typically within a zone from a minimum depth of one-fourth to a maximum depth of one and one-half times the dipole spacing, which in the case of 1000' dipoles, would be from roughly 250 feet to 1500 feet deep. These depths are only typical and are dependent on such factors as resistivity and degree of homogeneity of the subsurface material. On all lines except Line 3, sending frequencies of 3.0 and 0.3 Hz were utilized. Due to the possibility of very low resistivity material near Line 3, lower frequencies ie; 1.0 and 0.1 Hz. were used to minimize any electromagnetic coupling effects.

The data are presented on sectional data sheets, herewith attached, one for each line, showing apparent resistivity, percent frequency effect (PFD) and metallic conduction

factor (MCF), contoured in pseudo-vertical section. Also included is an "Induced Polarization Location and Interpretation Plan" at a scale of l"=1000' showing the relation of these I.P. lines to existing claims and section corners.

Additional information concerning theory, interpretation and presentation is given in the "Basis of the Induced Polarization Method" in the appendix of this report.

GEOEX personnel who conducted the field work were:
Paul Head and Phil Matthews, geophysicists; Frank Seward,
technical assistant. Report and interpretation are by Phil
Matthews, Geophysicist, assisted by the GEOEX staff in Tucson,
Arizona. The help of Mr. Dallas Davis during the field operations is greatly appreciated.

CONCLUSIONS AND RECOMMENDATIONS

The results of the I.P. Survey do not indicate any strong polarization effects within the area covered. Nor is there any resistivity or I.P. feature that can be traced from line to line. In general, the frequency effects are less than two percent, merely reflecting normal background response due to rocks containing little or no polarizable material.

Very weak polarization effects are noted on Line 5 from approximately 10N to the end of the line, with a definite anomalous increase at the northernmost station. Although a portion of this anomaly is located near an area which was mined in the past, it appears that the probability of encountering large economic concentrations of sulfides at the indicated depth of exploration is rather remote. Furthermore, there is a reasonable possibility that the effects noted are not "real" (due to sulfide mineralization), but instead caused by a variety of interfering artificial effects. These include the presence of a long grounded steel pipeline crossing the I.P. line at about 10 degrees near station 32N. The I.P. line was then carried in a random northerly direction along the east side of Mineral Wash at least 200 feet away from the pipe at all times. The pipe was crossed in such a fashion that there was never any wire actually crossing the pipe by means of using a double station at 30N. In addition, several steel culverts at the Bill Williams River and a grounded metal fence may have contributed to the polarization values noted. Additional I.P. work would be necessary to completely resolve the cause of these polarization effects. Basad upon the very marginal nature of anomalism, and the objectives of the present program, further geophysical work to resolve its cause does not seem warranted at this time.

Line 3 shows a weak I.P. anomaly at the northern end of the line. The values obtained thus far are not very strong, but it does appear that a pattern is developing and that a reasonable drill target might be located with some further work. Inasmuch as the anomaly is open ended to the north, the 1000' dipole I.P. data should be extended to find the center of anomalism, followed by a 500 foot dipole survey in the anomalous center for better definition and ultimate interpretation. The latter work should be carried out to an n=6 separation. Because the possibility exists that the anomaly is due to edge effects from a body lying on either side of Line 3, it is recommended that at least one line be placed on each side, 750 feet away and parallel to Line 3.

If a drill hole must be located based only upon the data to date, it should be placed near 25% on Line 3, realizing that the actual body could lie somewhat to the north or to either side of the present line.

COMMENTS ON DRILLING I.P. TARGETS

To maximize the probability that a recommended drill hole will intersect the source of an induced polarization anomaly, the following points should be considered:

- 1. The anomaly has been caused by some physical property, hopefully a polarizable body containing economically interesting metallic mineralization, and this property should be determined before abandoning the anomaly.
- Location of drill holes should be made relative to the actual sending and receiving electrode positions as they exist on the ground.
- 3. Due to inherent limitations in the I.P. method, depth interpretations are only approximate and the determination of dip is severely limited, particularly for angles greater than 45°. Also, targets can generally be laterally resolved no finer than the station spacing (dipole length). Because of these limitations, targets less than one dipole spacing in width, particularly when steeply dipping or deeper than the dipole length, may be difficult to intersect. In these cases, several drill holes in a fence line should be considered. For the steeply dipping cases, angle drilling may also prove advantageous, mainly where the direction of dip can be geologically inferred and the drill hole oriented such that an optimum intersection of the zone of interest is obtained.

- 4. An observed anomaly can be the effect of a polarizable body laterally offset to the side of a line and therefore if practical, drilling should be confined to those portions of the anomalous zones well defined by several lines. Also, it should be noted that a single line cannot define the strike direction of an elongate anomalous zone another reason for utilizing several parallel lines.
- 5. Logging of the drill core <u>must</u> be done with special care to note the quantity of all possible polarizable material such as pyrite, graphite, magnetite, manganese oxides and clay minerals as well as the polarizable ore minerals. The anomalous source could conceivably be overlooked if the core is not carefully logged.
- 6. Typical sections of core representing the gross physical properties of material encountered in the drilling should be tested in the laboratory for their I.P. parameters, if there is some doubt about confirmation of the anomalous source.

INTERPRETATION

Line 1 The I.P. values along the entire line are restricted to background with a slight increase at the north end of the line. The changes in background value are probably due to slightly different amounts of polarizable material contained in the different rock types.

The resistivities are fairly high along the entire length of the line, although the near surface data is somewhat lower, possibly due to weathering of the upper layer. The resistivity picture in general seems to be somewhat random with little or no definite pattern developed. This is due, at least in part, to the rather complex small scale structure of the area which is not well resolved using the large dipole spacings. The topography in some areas also contributes to the somewhat random appearance of the resistivity data.

- Line 2 Frequency effects are restricted to background as on Line 1, with a slight increase to the north. The resistivity is somewhat lower near surface with values generally increasing with depth.
- Line 3 The I.P. values increase at the northern end of this line suggesting the presence of a possible polarizable body.

If this is a valid anomaly, its pattern seems to suggest a near surface, depth limited body somewhere near or to the north of 25N. Additional I.P. coverage would be needed to the north to better determine the location of the anomaly. Additional parallel lines east and west of Line 3 would help determine if the body is localized on Line 3 or if it lies to one side or the other.

Line 4 The frequency effects on this line, although rather low, appear to be very slightly above the background values abserved elsewhere in the area. This is likely due to minor amounts of sulfide mineralization contained in and along the Norma Fault System which is located on and roughly parallel to this line. The resistivities are mainly dominated by the effects of crossing the canyon containing Mineral Wash, which may be at least related to the Norma Fault System.

Line 5 I.P. effects along this line are in the back-ground range from the southern end of the line to approximately 10N. From 10N the values seem to increase very slightly to about 90N at which point somewhat stronger values are observed. These increased values coincide rather well with the presence of a long grounded steel pipeline, a grounded metal fence line and other artificial interference. These effects are possibly the cause of these somewhat higher I.P. values.

The resistivity is quite high along most of the line with a probable low resistivity zone coming in the north end of the line, coinciding with the Bill Williams River.

SPECULATION

The reported geologic evidence of this region suggests considerable glide or over thrust faulting of the mineralized rocks exposed in the area. Mr. Davis expressed the thought that the roots of these mineralized rocks may lie a considerable distance from Mineral Hill. We concur in this idea and further speculate that a fairly comprehensive program of reconnaissance geologic mapping, coupled with some broad and deep magnetics and I.P., and broad geochemical prospecting, would be in order as a future method of attack to consider for this area.

Respectfully submitted, HEINRICHS GEOEXPLORATION COMPANY

John P. Matthews, Jr. Geophysicist

Paul A. Head Geophysicist

Box 5964 Tucson, Arizona 85703 April 1971

GEOEX Job # 619

MCINTYRE MINES LTD.

VERY WEAK WEAK MODERATE STRONG

SURFACE SENDER TRECEIVER

PLOT POINT

AREA MINERAL HILL

LOOKING
WEST
DATE
MAR 1971

GEODEX PLORATION COMPANY

AUSTRALIA
(SYDNEY)
(SYDNEY)
39 Hume Street Tucson, Arizona 85703
GEOPHYSICAL Crows Nest, NSW Phone: (602) 623-0578
ENGINEERS PHONE: 439-1793 Cable: GEOEX, Tucson

SELF POTENTIAL IN MILLIVOLTS

RODES		CONTOUR INTERVAL LOGARITHMIC SENDER FREQUENCY: 0.3 Hz															MCF = $\frac{PFE \times 1000}{400 \times 200}$ CONTOUR INTERVAL LOGARITHMIC							
LECTR ACE TATIO		(m2/2m)	TY (PC	OF OF	RESI	TNEAR	14 A	ACE	(PFE)							(MCF) E	90 TO A A					TNBRA99A		
SURE	2	z	2	3	4	מו	9	SURF		,	7	9	4	LD.	9	SURF		2	6	4	5	9 = U		
Tå			*		*		ж	Ī			×		×		*	T		×		×		*		
		*		×		*			*			×		×			*		*		×			
+ 25	3		×		*		×	†			×		*		×	+		*		*		×		
		*		×		×			×			×		×			*		*		×			
+ 4	†		×	197	*		×	1			×	8.	×		*	†		×	6.0	×		×		
		*	- 58	*	229	×			×	,	4-1	*	6.	*			×	8.6	×	8	*			
- 6	2	159	×	191	*		×		2.0	1	ت	2.1	*		×	1	-13	1~	= 4	×		×		
27-6		\	157	×	187	×			×			×	2.1	×			1	-	*	=	*			
	4	× 240	(146	×		×		6		×	×	×		*		× 7.9	1	5	*		×		
4+0		1) 88 - ×	1	× 140		×					/	x 2.2		×			x 9.3	1	× 15		×		
		× 129 ×	\	× 191	Y	×			× .5			12.0		*			× 12	1	6		*			
E AD	2		× 139		*		×	+			× 1.0	1	×		×			x 12		×		ж		
S P R	2	×120		×153		×			7.5	-		× 1.6		*			x 13		9		×			
21-0			× 133	+	x 175		×	+			×	}	7.1×		*			×9.4		4. 6×		×		
		x 142	6	x 160	4	×			× 1.2	1	y	\\	2	×			× ×		× 9.	2	×-			
	2 4	129	×	156	× 154		×	+	8		-/	0	*		*		~	× 6.	(17.8		×		
		*	1	× 18	9	×			- ×	1	6	+	7 . 9	×			× + + + + + + + + + + + + + + + + + + +	1	1.00	2	×		-	
+ 0			*	128	x 178		×			/	×	1	x0.		*			= /	1/1	~		*	-	
		× 1	69.1	الرخ	48	×			*		0/	- "	2	*			*	2)×	+	×		-	
+5	1	167	*	259	× ×		×	+	.0		× 2	1.7	_		×	+	9.3	-/	9.8	× e		*	-	
		*/	×235	×	×232	×			. *		0	*	-	*			*	.3	(= {	4.7	*			
5-0	2	* 88	× 2	x 211.	× 2		×	1	1.7		× 2.	9.	×				* 8 . 6	*	9.	ž.		×		
		~	185	×	297	×			*	1	47	×	1.7	×			*	7.6)	5.7	×			
4 7 08		x120	*	x251	*		ж	1	4.		- 1	× 1.6	×		×	1	12	*	6.4	*		*		
EAD 2	0		191	*		×			*		٠٠. ١٥:	*		×		,)	7.9	*		*			
SPREA!		× 237) LOC ×	*	*	×		4.	1	1	m. —	*	×	*		x5.9	٦	1.2	*		*	-	
2		1	x 284	(x 168		×			1	7.1 x		×2.0		*			x 6.0	//	x 12/		×	-	
2	0	771x	1	x2 49		×			x1.2	1		e. 1×		×			× ×	,	N . B .	/	×			
	0	7	x181	(x3 14		×			1	1.5		1.5 1.5	1	×		_	x8.3	1	8.1		*	-	
		× 142		x215	_	*			× .		7	x1.4		*			x 8.9	/	* 6 . 5	4	×			
100		1	× 198	_	x 178		*	-			x 1.4		x1.0		×			/×		×5.6		×		
		*		x 17		×	1		*			× 1.3		×			*		x 7.4		×			
+==	5.		*		×		×	+			×		×		×	+		*		×		×		
		×		×		*			*			×		*			*		×		*		-	
120	071		*		×		*	+			×		×		×	+		*		*		×		
		ж		*		×			*			×		×			*		*		×		-	
100	0		×		×		*	1			*		×		×	1		×		×		×	1	

619

INDUCED POLARIZATION TRAVERSE STRONG DIPOLE DIPOLE ELECTRODE ARRAY SECTIONAL DATA SHEET RELATIVE ANOMALY STRENGTH RECEIVER MCINTYRE MINES LTD PLOT POINT 1000' m×1000' 1000' (2) MODERATE MINERAL HILL LOOKING MAR 1971 AREA DATE WEST WEAK SENDER VERY WEAK SURFACE

GEOEXPLORATION COMPANY

AUSTRALIA
SYDNEY)

(SYDNEY)

(SYDNEY)

SECOPHYSICAL Crows Nest, NSW Phone: (602) 623-0578

ENGINEERS Phone: 439-1793 Cable: GEOEX, Tucson

SELF POTENTIAL IN MILLIVOLTS

A PPRRENT METALLIC CONDUCTION FACTOR (MCF) $\frac{20}{1000}$ MCF = $\frac{PFE}{4} \times 1000$ CONTOUR INTERVAL 1000 - ELECTRODES
SON - STATIONS CONTOUR INTERVAL LOGGRITHMIC SENDER FREQUENCY: 0,3 Hz SENDER FREQUENCIES: 0.3 & 3.0 Hz CONTOUR INTERVAL CONSTANT APPRENT RESISTIVITY (POC /2T) SURFACE PERCENT FREQUENCY EFFECT (PFE) 8 0N 10 x 2.0 60 9 I × SPREAD 3 5 0N x 1.7 1.5 40 4.1.x × 9.5

MCINTYRE MINES LTD.

RELATIVE ANOMALY STRENGTH

AREA MINERAL HILL

PLOT POINT

LOOKING WEST DATE APR 1971 GEOEXPLORATION COMPANY

AUSTRALIA

(SYDNEY)

GEOPHYSICAL Crows Nest, NSW Phone: (602) 623-0578

ENGINEERS Phone: 439-1793 Cable: GEOEX, Tucson

SELF POTENTIAL IN MILLIVOLTS

6 1																			
DES		ENCA:					zH 0 1	8 1.0	IES:	EGNENC	ЕВ FR	SEND		THMIC		J JAVA			100
C T R O	(PDC \2m) FEET ARITHMIC					ш				חא ואד			ш / 10ш х	110 1 0 1 1		PDC X			
FELE	(M2/300)	YIIVII	RESIS	PARENT	4	RFAC	(PFE)	103333	ENCA	EBEON	RCENT	bΕ	URFACE (MCF)	90 TO A 3	NOIT	C OND NC	3177	AT 3M	TNBRA99
L SUR	= - 0		4	C)	9	SUE	-	7	6	4	D.	9	SUR	-	2	9	4	5	0 = 1
T ®			*		*			×		×		*	T		×		×		×
	*	*		×			*		*		×			×		×		×	
20	,		*		*	•.		×		×		*	1		*		×		×
	*	×		×		1	*		*		*			×		×		×	
40		143	,		*	!		* .	0.52	*		*	1		* '	3.52	×		*
	× 751	C'Y	190	×			*	1/1	1/2	- 2.1	×			×	=//	1/8	m.1	*	
30	783	88	1		×	'†	2.3	* /	19/	/		×	+	18.8	~	15	9 ×)		*
	* 0	1	//	*			*	/ ris	* 1	-	×			~ ^	100		30/	*	
5 20 20	250	1/6	/ ~		×	+	2.1	10	2.0	× 2		*	+	4. 9	1-)	30	×		*
		/ (×	53	×			*		-	-:-	×			راد	6 (*	21.	×	
4 10)	*		×	+		-/	0.5	>		*	+	1		(e)	×		*
N N	x (09 x	×		×			*	/_	1-		×			× 28	1	5		×	
PREA 3	(45	×		×	+	.2	×	0	*		*	+	24	x 22	1.	×		*
S	× 1	3	1	*			*	.7		0,	×			× 2	85	(x 22	100	×	
2 10	1/1	1/	x124		×	+	. 2	(-	-	*		*	+	,	× 33	//	×		. ×
	7	x 142	(2)	×			× .	1	-	Ø	×			* \		2 /		*	
20	1 8	1 11	× 235		×	+	7.	\ -	00	× .		×	-		x 44	1/1	× B		*
	*	10/ ×	11	*			*	100			×			11 ×		× 28	1.1	*	
3.0	C				×	+		1		-		*			x 41	/	/~ '		*
	*	× 66		*			×		-		ж			*		x 26	`	×	
40	*		×		×	+		*		×		*	-		×		*		*
	*	*		*			*		×		×			*		*		×	
200			*		×	+		×		*		×	-		×		*		*
	×	*		*			×		*		×			×		*		×	
608	×		×		*	-		*		×		*	-		×		×		×
	×	*		×			×		×		×			×		*		×	
1	×		*		×	+		×		×		*			×		×		*
	×	*		×			*		*		×			*		*		*	
+	*		×		×	-		×		*		×			×		*		*
	ж	*		*			×		×		×			×		*		×	
	*		×		×			*		*		×			×		×		*
	×	*		*			*		*		×			*		*		×	
			*		×			×		×		*			~				
	*	×		*			×		×		*			×				*	
	*		*		*			*		*		*							
	M2			×			*												
									×		×			*		*		*	
								×		*		*			×		×		*
				*			*		×		×			×		*		×	
*			×		×	+		×		×	. ,	*	1		*		×		×

LINE NO. 4 SPREAD(S)

> INDUCED POLARIZATION TRAVERSE SECTIONAL DATA SHEET

for MCINTYRE MINES LTD VERY WEAK WEAK MODERATE STRONG

SURFACE SENDER RECEIVER SURFACE SURFACE TROOLE ARRAY

AREA MINERAL HILL LOOKING WEST DATE APR 1971 GEOEX PLORATION COMPANY

AUSTRALIA
(SYDNEY)
(SYDNEY)
39 Hume Street Tucson, Arizona 85703
GEOPHYSICAL Crows Nest, NSW Phone: (602) 623-0578
ENGINEERS Phone: 439-1793 Cable: GEOEX, Tucson

SELF POTENTIAL IN MILLIVOLTS

619-71 A PPARENT METALLIC CONDUCTION FACTOR (MCF) $\frac{R}{R}$ MCF = $\frac{PFE}{R} \times 1000$ MCF = $\frac{PFE}{R} \times 1000$ CONTOUR INTERVAL LOGARITHMIC SURFACE TONS CONTOUR INTERVAL LOGARITHMIC SENDER FREQUENCY: 0.3 Hz SENDER FREQUENCIES: 0. 3 & 3.0 Hz CONTOUR INTERVAL CONSTANT APPRENT RESISTIVITY (POC /2TT) SURFACE PERCENT FREQUENCY EFFECT (PFE) 09 x 129 x 107 40 x 154 8.1× x 133 × 70 × x 2.1 9 30 871 x SPREAD 3 808

INDUCED POLARIZATION TRAVERSE

SECTIONAL DATA SHEET

MCINTYRE MINES LTD

DIPOLE DIPOLE ELECTRODE ARRAY

10000

n×1000

.1000

 \odot

RECEIVER DIPOLE

SENDER

SURFACE

PLOT POINT

MINERAL HILL

AREA

LOOKING

WEST

APR 197

DATE

STRONG

MODERATE

WEAK

VERY WEAK

RELATIVE ANOMALY STRENGTH

Post Office Box 5964 Tucson, Arizona 85703 Phone: (602) 623-0578 Cable: GEOEX, Tucson COMPANY GEOEXPLORATION SYDNEY)

(SYDNEY)

39 Hume Street

GEOPHYSICAL Crows Nest, NSW
ENGINEERS Phone: 439-1793 C

SELF POTENTIAL IN MILLIVOLTS

5357 EAST PIMA TUCSON ARIZONA 85712

April 4, 1972

GEOEK

Cable: GEOEX

APR 6 1972

BOX 5964 TUCSON, ARIZONA 85703

Phone: (AREA 602) 623-0578

Mr. Walter E. Heinrichs Heinrichs Geoexploration Co. 808 West Grant Road Tucson, Arizona

Dear Mr. Heinrichs:

This letter will serve to grant permission to Mr. Laughlin of McIntyre-Porcupine Mines Ltd. to review all data in your files concerning geophysical work that your organization did for Duval Corporation on the B.S.& K. property near Silverbell, belonging to the Kalaf brothers.

Sincerely yours,

F. H. Howell

Vice President-Exploration

FHH:ap1

Self Intere cover file

PODESTA, MEYERS, ROMINGER AND CLIFT, INC.

Mining and Petroleum Geologists 4747 NORTH 16TH STREET PHOENIX, ARIZONA 85016

> PHONES: (602) 277-7736 (602) 277-7991 CABLE: POMECO

> > PROEX

Cable: GEOEX

APR 12 1971

BOX 5964 TUCSON, ARIZONA 85783
Phone: (AREA 602) 623-0578

April 8, 1971

Henrichs Geoexploration Company 806 W. Grant Road Tucson, Arizona 85703

Gentlemen:

Attached is a reverse line sepia of the Mineral Hill's claim map that Mr. Dallas Davis of McIntyre Porcupine requested I send to you.

Very truly yours,

Donald J. Yodesta, President PODESTA, MEYERS, ROMINGER and CLIFT, INC.

DJP:pp encl. cc. Mr. W. Laughlin

HEINRICHS GEOEXPLORATION COMPANY

806 WEST GRANT ROAD. TUCSON, ARIZONA 85703. P.O. BOX 5964. PHONE: (602) 623-0578

March 22, 1971

McIntyre Mines Ltd. 2030 E. Speedway Tucson, Arizona 85716

Attn: Ms. Laughlin and Davis

Gentlemen:

This letter contract is a confirmation of our phone conversation on Saturday March 21, 1971 concerning your proposed I. P. survey near Parker Dam, Arizona. In order to adequately process the area outlined, the survey will consist of approximately seven parallel I. P. lines spaced 2,000 ft. apart, giving coverage over a four square mile area centered in Section II, R. 17 W., T. 10 N.

The expected target depth is on the order of 1,000 ft. and indicates that 1,000 ft. dipole-dipole electrode arrays are the best for the initial coverage. Based upon past experience in the vicinity, resistivities should generally be relatively high, allowing us to routinely use operating frequencies of 3.0 and 0.3 Hertz, giving maximum speed during the survey. Should actual data indicate the necessity of using lower frequencies to minimize electromagnetic coupling this can be done with a slight increase in operating time.

A mobilization-demobilization fee of \$350.00 will be charged for the round trip from Tucson to Parker Dam and back. This may be somewhat reduced if additional work is obtained in the near vicinity. Our total daily contract rate for this survey will be \$300.00 per field day, which includes all direct job expenses and the final report. A field day is defined as eight hours plus up to two hours travel to and from the field from Parker Dam; the work week is considered to be 40 hours plus up to ten hours travel time (exclusive of mobilization). Overtime beyond this schedule will be charged at \$32.50 per hour only if the client specifically requests the GEDEX crew chief in writing and he agrees to the extra work.

March 22, 1971

McIntyre Mines Ltd.

-2-

Equipment malfunction exceeding one hour per day will be made up or not charged. Standby time requested by the client or as caused by bad weather will be charged at half the daily rates quoted above.

All property permits, brushing and trespass-liability and related costs which are incurred on behalf of the client will be chargeable to the client. Charges for extra equipment and personnel employed, if mutually desired are extra.

GEOEX will save client harmless from all Workmen's Compensation, public liability and property damage liability incurred by GEOEX employees.

Payments are due on presentation. Billings may be submitted periodically with final payment due on presentation of the final report.

Indication of your understanding and approval of the above by executing as provided below on the attached copy of this letter and returning it to us will be most appreciated.

Sincerely yours, Heinrichs GEOEXploration Company

John P. Matthews, Jr/

/Geophysicist - Project Manager

Date:

Accepted by:

JPM: jh

cc: Extra Encl.