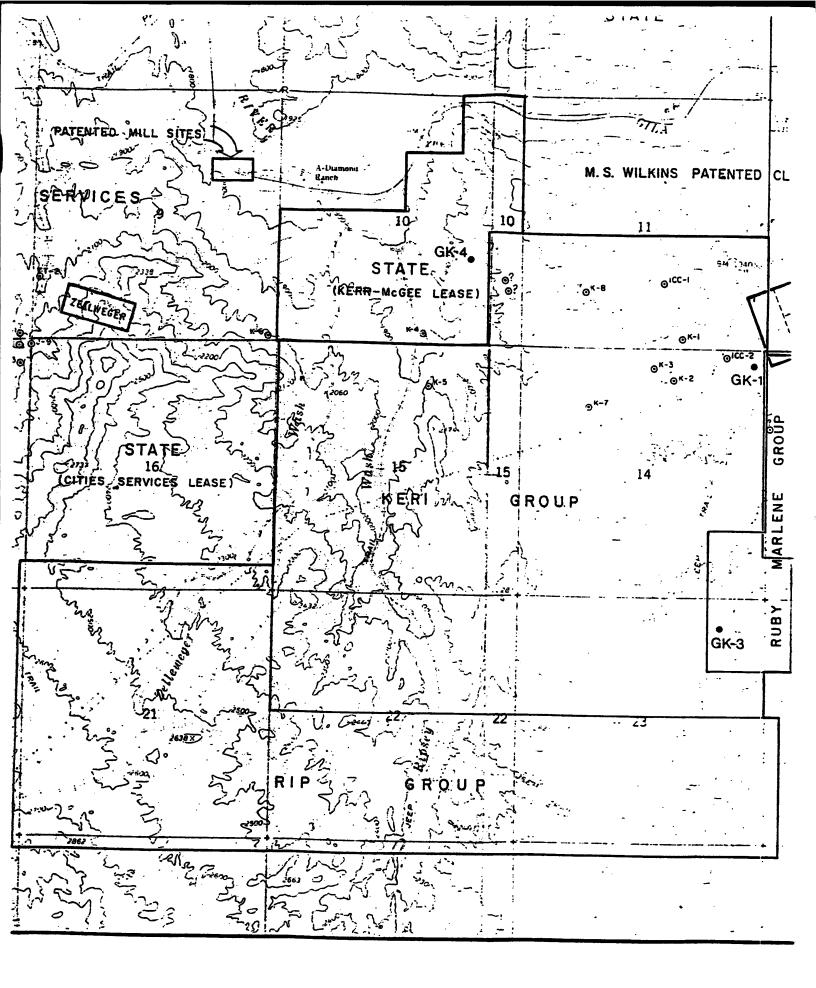


CONTACT INFORMATION
Mining Records Curator
Arizona Geological Survey
3550 N. Central Ave, 2nd floor
Phoenix, AZ, 85012
602-771-1601
http://www.azgs.az.gov
inquiries@azgs.az.gov

The following file is part of the Cambior Exploration USA Inc. records

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.


CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

KERR- MeGEE CORPORATION

District Riverside-Kelvin
Hole Number K-2
Spudded 2/24//3
Completed 3/28/73
Total Depth 13/7!
Driller Joy Mfg.
Logged By D. A. Wolfe

County Pinal State Arizona Claim 18-19 Sec 14 T.4 S R.13 f Elevation 2160

Hole Size NX
Hole Angle Vertical Collar Coords. 640 ff FNL N.

1980 ff FNL N.

		The state of gorde 1								
	1/8"_veinlet	3	Fault				-)	179
	175'-major calcite on				-	_	-		4	
					4	.0010	23206	1	5 25	175
	12				+		1	+	十	.
	162.5'- 1/8 - 1/16" frac-				-		+	\dagger	+	1
		plagioclase faces.					+	\dagger	+	1
	fractures.	fresh K-spar and			_				+	
	160'-minor coricito on	Below 160'-locally						H		ē
						.001	23205		25	į
		ן שו				1			Ļ	
		Rock is less brecciat-				.001	23204		25	671
									L	1
		140						_	L	
		120'						_	-	2
		oround material to						\vdash	_	-
	•	intensely showed				.001	23203		25	-
		Pervasive clav-chlorita	Fault						1	Ţ.,
	carbonate	HEAT.				i £				
	propylitic; weak, pervasive	Tresu v-spar pneno-				.002	23202	5	75 25	
	Alteration_remains_weak	Less broken occasiona				1	+	+	4	T
		broken_material				.002	0262	<u> </u>	76	T
	no quartz voinlets	chlorite: gravelly				₹	31	35	1	T
	original fresh biotito	weathered_to_clay-				\dagger		+	+	T
	altered to chlorito: some		Monzonite_		I	$\frac{1}{1}$	1	+	+	T
- until de la	clay-chlorite all mafice	ic near	Quartz		1	\dagger	+	+	+	T
	Weak propylitic: strong	Coarse grained, some-	Precambrian				+	+	٥	T
						\dagger	<u> </u>	+	3 -	T
							Coring at 20	1	Stanted	Т
					7	 	10	и :		\blacksquare
Mineralization	Alteration	Rock Description	коск Туре	ув	MSS.	<u>.</u>	RCVV IIO	Int.		•
	Alteration	Rock Description	Rock Type	ує	Assays	-1		8		

350 375	_33L5	325	315	300	291		275	260	067	300			225		224	T	200	3		181	Depth
2,2		25		25			25		3	2			25				2	3		$\cdot $	Int.
																					% Core Rcvy
23213		23212		23211			23210		50757				23208				7/1/2/27	3			Samp.
.0047		B13		2			0011				1		8				0000	3			C _L
					+	11					+	-		+		+				-	Assays Mo
						11					1										ű
	Diabase		Quartz monzoni-		Fault							Dire	Quartz Monzo-		Fault				nite		Rock Type
	Black, aphanitic, slightly-to-moderately.	JU .;	Sheared, granulated;	sheared, granulated	Dip2, fractured,	to 290's tracturing		260-264 - extremely		throughout rock to 240.		Extreme local frac-	As above	material granulated	Dip_at_35°_intensely_			fresh biotite.	porphyritic, some	1 don't amountable	Rock Description
	Chlorite strong; calcite on all fractures; chlorite clay-talcalteration is				Strong.chlorite=clay					The Little Control of the Control of	Peryasiye_carbonate	fractures.	221-229' - Manganese on		and chlorite	lets rals	fresh_appearance,_no	lets; very_weak, original	occasional quartz vein-	102 105 1	Alteration
binocular miscroscope; very minor very fine grained chalcopyrite with pyrite along chlorite veinlet.	-Very_minor, very_fine_grained, dissemi nated_and_veined_pyrite; almost invisable_at_less_than_2X_on																		TWO SHILLINGS	11	Mineralization

590 600	550 575	525 530	508	490.5 491	475	450	425	400	Depth 380
25	25	12		16	25	25	25	25	Int.
									% Core
23223	23221	23220_		23219	23218	23217	232]6	23215	Samp.
0009	.0007	2100		.0062	.006	.0079	.0060	0092	Cu
									Assays Mo
									· ·
				Precambrianquartz monzonite				нимале	Rock Type
to 590; Tracturing	-5	Ittle_to_no brecciation Strong_brecciation below_530'	Noderately brecclated below 508'	Rough-course_grained_ fractured, granulated_ near_contact; contact_ at_30°_cut_by_calcite_ veinlets				_tur_grained-appanitic_ _black_with_minor_ _fracturing_with_chlori	Rock Description
tures after oxidized magnetite to 620,	g ch	Strong chlorite-clay	Argillic-chlorite	Very little chlorite near contact, weak propylitic; medium strong clay caused by shearing; chlorite, little to no magnetite.	475-abundant calcite on fractures.	winor relict magnetite grains; moderate montmorillonite,		chlorites.minor.calcite chlorites.minor.calcite te.veinlets.calcite varies.proportionately with amount of fracturing	
	No sulfides	No_sulfides		Little to no sulfides		As above - very minor sulfides		Pyrite_and_chalcop	Mineralization

District Riverside-Kelvin

Page Number

										<u> </u>	[danova
Hineralization	No. sulfides		chalcopyrite. No sulfidas	My and filter	- Callet of the contract of th	ed disseminated pyrito in chlorite	137-quartz-sericite-chlorite zone -rith minor hematite after very fine grain oxidized chalcopyrite	713 - quartz-sericite along fracture—with homatite after weak chalcocite.	-7751-quartz_voinlet_at_5° with -occasional_speck_of_chalcopyrite	782-787 - Fracture system filled with magnetite, quartz, chlorite, locally veinlets.	285,5 moderately abundant blebs of chalcopyrite in fracture system.
Alteration	627-634 - fault hreccia Propylitic-clay-chlorite	Chlorite-montmorillorite,	epidote_on_some_fractures and_locally_disseminated. Elay-chlocite	Clay-chiprite calcite		702 - chlorite-cpidote veinlet; local areas of	fresh biolite (secondary) accasional quartz veinlet faint increase in mag-	Rock is still oxidized 60-20%.	750'-Moderately.strong magnetite; locally.fresh. k-spar.	Magnetite-quartz-chlorite K-spar (pink)_very_fresh_ looking	Note - below 700' rock is beginning to change from weak-propolitic_to_weak_
Rock Description	627-634 - fault brecci	Contact at 50°; fine	appears like breccia dike As above some contin-	Med Drecciation.	hreccia						
Rock Type	Precambrian Quartz Monzonite	Diabase	Precambrian	Honzoni te							
Assays Cu No	100		0800	0013	0018	.0220				/080	
Samp. No.	23224		23225	23226	23227	11,			23229.	23230	
& Core Rcvy											
Int.	25		25	25	25	25			25	25	
Depth	625 627	940	650 653	-979	700	702	131	743	750	175	

potassic-first effects of potassic alteration are apparent.
Alteration is still quite some distance from strong c. but changing

Page Member 5

	Mineralization	920-21' - 1/8-1/4" quartz-sericito- magnetite.veinlet.vith.pyrite.and moderate.MoS ₂ 921-5' - quartz-magnetite.veinlet.vith abundant.chalcopyrite	925.51/8. quartz.sericite.pyrite veinlet.at.30° 926.5. disseminated chalcopyrite.in.	1758 Digitte Chister 959'1/8" quartz-chlorite-chalco- pyrite veinlet at 30°- 931-33'	copyrite. 936 mear-vertical quartz-magnetite. sericia yeinlets with moderate very. fine grain chalcopyrite.	Sheared granile_Spatly, minne_Nose_ to 951. 951.5!1/8=1/4" quartz.magnetite= sericite_veinlet_at_85° with abundant_	Cualcoperite. 955-56'1/4".bear-vertical.quartz. Sericite-magnetile-chlorite.vein.vith abundant.pyrite, moderate.chalcopyrite.	Overall total sulfides approximately— 1=2%.bith, 2-4:1 pyrite:chalcopyrite ratio	962-361.5'1/8=1/4".near_vertical quartz-sericite-magnetite veinlet.vith abundant_pyrite.nioor_chalcopyrite . 966.5'near_vertical, 1/8" quartz- magnetite-chlorite veinlet vith abundan
	Alteration	Meak potassic with quartz- sericite-magnetite veilels; little to no secondary biolite, mil- ginal biolite_altered to chlorite and unquetite;	local zones of veined quartz-K-spar-chlorite with pyrite, chalcopyrite	Quartz-K-spar voiniets are ownerous.	Intense clay-seriette.			759 - minor-possible alunite alteration of plagioclase: pervasive quartz-sericite-magnetite and K-spar veinlets	Strong-clouding of plagio- clase and chiefte on fractures persists. Below 964 - rock becomes fresher with less chloriteminor secondary biolite.
	Rock Description	Coarse grained, pink viih large pink K-spar. phenos, Mith sowe introduced quartz- magnetite, and K-spar.			940-950 - brecciated, granulated, sheared.				
	Rock Type	Precambrian Quartz Honzonite							
···	Assays								
	n,	0946		98	0043	0235		.0206	
- {		23243		23244	23245.	23246	1.	23247	
9	Revy								
	Int.	9		9	10	10		of	
	Depth	920		930	940	950		960	

Hineralization	1036	9 1 1 ; 1 +	Also at 995-96' . 1999' - 178" quartz-nyrite veinlet at 60° with minor chalconyrite.	J005-1007' - pervasive sericite- ragnetite-pyrite with minor chalco- pyrite.	1009-1010' - near-vertical 1/8-1/4" .quartz:magnetile-chalcopyrite veinlet		1037'- abundant chalcopyrite on quariz- biotite magnetite veinlet at 30°	1041.5'.= 1/4" quartz-magnetite. chalcoprite veinlet at 60°	veinlet at 50°.	1955-58 - near-vertical quartz- nagnetite-pyrite-chalcopyrite veinlets, 1064-65 - 1/2" quartz-magnetite-sericiti veinlet at 0° with moderate chalcopyrite
Alteration	As above with locally—intense.shearing-associae.ted_with_quartz-sericitechlorite-material_become	Ing-pervasive_clay_scrict chlorite_alteration_below gan. Sericite_is_pervasive; -fresh K-spar_phenos	Jotal_rock_alteration_is_ weak_potassic_with_quartz_ sericite_added		s. 1015!sharp_decrease_to	sericite-magnetite; quartz-sericite-magnetite continues_as_veinlets, quartz-k-spar-pyrite		Quartz-K-spar-epidote	abundant pyrite, little	
Rock Description		extensively sheared broken, with alteration weaker but pervasive;			Relow 1015'-rock appears					
Rock Type	Precambrian Quartz Manzonite									
Assays Cu Ho	023 0284	0372	0417	0218			.0052	30208	0122	0277
Samp.	23298 .0	23250 .0	23251 0	23252 0		1 1 1 1 1	232540	232550;	232560	232570
& Core Rcvy									1	
Int.	0 1 0	멸	0	19			e	10	ol.	10
Depth	980	66	1000	1010		1020	20 10 10 10	1040	1050	1060

Hineralization	Very weak pyrite and chalcopyrite in 3-5:1 ratio. Iotal sulphides have decreased over the last 100' to less	. than 1%. 1078' quartz-magnetite-chalcopyrite. weinlet.	1085-93 pervasive sericite mogne-	Ting 1106 Course 18 18 18 18 18 18 18 18 18 18 18 18 18	quartz-magnetile-sericile, veinlets voith abundant chalcouxrile	1109 - guartz-magnetite-sericite	1122' - near-vertical 1/16-1/8" quartz	magnetite-chlorite-chalcopyrite veinlet 1123 and 1125' - quartz-magnetite-	chlorite veiglets at 40-50° vith moderate chalcopyrite	1139 5 chalcapyrite on pyrite yein- let 1/8" thick at 80°	chlorite veinlet with minor pyrite.	1142.43.5. Sericite magnetite.	Dyrite-chalcopyrite veinlet 1160' - avartz-sericite-pyrite veinlet	at 20°.
Alteration	Weak potassic with abun- dant sericite, dissemina. ted and along quariz-	magnetite veinlets.		Sericite and quartz- K-snar voinlots			Sulfides decrease with	.quartz=scricitc=magnetile alteration						
Rock Description	Bejoy 1070 rock loses its original texture and appearance due to	Increased tracturing and shearing with corresponding increase	In sericite										1130-501. Some possi- ble grayback.	
Rock Type	Precambrian Quartz Monzcnite													
Assays														
	0383	0149	0324	.020		0156	0182	.0057		0048		0130	.013/	+ +
Samp. No.	23258	23259	23260_	23261		23262	23263	23264_		23265		23266	23267	
& Core Rcvy														
Int.	0	g	10	Jo		10	9	10		00		9	9	
Depth	1070	1080	1090	1100	Щ	118	1120	F		1140		1150	1160	

2	ì	1
3	_	

Hole Number

District Riverside-Kelvin

Depth	Int.	& Core Rcvy	Samp.	n Ca	Assays No	Rock Type	Rock Description	Alteration	Mineralization	
1160						Precambrian Quartz	Rock is vari-colored due to differing in-	1160-70 - argillization of plagloclase: strong	1163.5' - 1/8" quartz-K-spar-biotile- pyrite veinlet at 75° with local	
1170	9		23268	990		TIMIK DILL LE	ing and shearing	shears; quartz veinlets.	DIEDS, Chalcopyrille.	
				\dagger				ite.	1129' - vertical, 1/16" chlprite-	
									chal capyrite	
1180	0		23269	002				Sulfides: numerous quartz		
1130	10		23270	.013				no sulfides, magnetite	1187' - 1/4" quartz-pyrite reinlet at	
				1			1193-97'-Intense	15_very_abundant.	80° with trace chalcopyrite.	
							sericite-chlorite- clay.associated.with		thing disseminated and valued excited	
1200	10		23211	7620.			fault (2) brecesa.	Strong sericite-clay alone	pyrite: chalcopyrite ratio	
								fractures and pervasive	Chalconvelle in 2-4 1 ratio total	
1210	9		23272_	.0196					sulfide content of	
									value at 86.	
1220	루		23273	0520					12131 disseminated pyrite and chalco pyrite in 1:1 ratio	
1230	12		23274	01/1			Possibly inclusion of	1222-32'Strong-K	1219.22. Inmercus fractures (1/16	
							grayback granodiorite.	alteration with fresh biotite, K-spar_veinlets.	-minor-chalcopyrite- -1227-32 occasional hairline-yeinlet	. 93
									of_chalcopyrite_cutting_all_rockminerals	imi
.1240	2		23275_	1610.					1231-32" near-vertical, 174", quartz- magnetite-sericite, veinlet, with	၁၃ မ
				+					minor, chalcepyrite	ieus
	11	Ti		1.					minor chalcopyrite on all fractures- partially exidized, 1239-1/6" quirtz-	•
	7	T			-				chalcopyrite, Note: 7233-37 and 12:3-495	
	İ							:	reddish-brown stain clue to oxidizing,	ı.A.

Page Munber 11

Hineralization	1251-54' - Dear-vertical quartz- Scrictte-magnetite-chalcopyrite veinlet Chalcopyrite-atundant.	chalcopyrite veinlet at 45° cutting chalcopyrite chlorite magnetite	1290' - 1/4" magnetite-chalcopyritor	Numerous flat-lying-pyrillic fracluns.	1304' - flat pyrite fracture with	1312' pyrite-chalcopyrite-epidote- bleb in rock 1318-20' pervasive_manetite=	quartz.scricite_with_local_disseminated chalcopyriteveinlets_aud_sulfide .Bolow-1320'veinlets_aud_sulfide .content_drops_considorablo	1330-5-1331-5 breccia with disseminated partite, minor chalcopyrite	1341.5 near-horizontal 1/4-12 pyrite-chalcopyrite veinlet with massive chalcopyrite.	cut by quartz-K-spar-epidote-pyrite- chalcopyrite veinlet at 85%
Alteration	Meak potassic 1262' - numerous near- verifical magnetite	veinlets.	of-plagioclase below 1270; quartz-and quartz- K-spar-veinlets are abundant		Veak angillization of	Pragruciase continues.				
Rock Description	Course grain, light—gray, porphyritic—granite to quartz—monzonite		1277-1283' - vertical 1/4". pebble_dikelet	cutting core						
Rock Type	Precambrian Quartz Monzonite									
Assays Cu Ko	0257	0069	9710	7670	0115	0308		0054	0087	0056:
1		1 1 1	23280.	1	23282 0	232830		232840	23285 0	232860
Int. Ro	10,	30	01 01	Δ.	10	06		07	9	10
Depth	1250	1270	1290		1310	1320		1330	1340	1350

	RCVy	No.	g C	ASS Fo	Assays No	ck Ty	Rock Description	Alteration	Hineralization
10	-7	23287_	.0040			Precambrian		Weak potassic with	1358 - 1/8" quartz - K-spar-pvrite
	Ħ				+ !	Monzon fte		abundant_introduced	-veinlet at 85°
	$\dagger\dagger$				+				1259.62". numerous near-vertical quartz yeitlets with pyrite, minor
									chalcopyrite.
	Ì								1367' - near-vertical, l'vein
Ę		22200	01.0	İ	-				Intercept quaritz-magnetile-sericile with moderately abundant chalcopyrite.
		26.00	7		-				1372 and 73! - 1/2 11 guards could
1	1	23289	0047			TOTAL DEPTH			- pyrite velulets - little to no chalconvrite
1	\dagger			1					
				İ	-				
	1				H				
	\dagger		T	1	1				
	-			1	+				
				Ì					
1	+		1		1				
					1				
	1								
1	+	T	İ	$\frac{1}{ }$	+				
1	1		i		-				
			!					The state of the s	
	1								
	+	İ	1	i					
-	i		•				_		

Kerr-nage corporation

District Riverside - Kelvin
Hole Number K-3
Spudded 3/30/73
Completed 5/3/73
Total Depth 1386
Driller Joy Mfg,
Logged By D. A. Wolfe

i zona	R. 13 E					=	ei
State	Sec 14 T.45 R.17 1	: 				KO'FNL	80' FEL
Pinal		Ę	ن	_	Vertical	3	13
County	Claim	Elevation	Hole Size	Core Stre HC	Hole Angle	Collar Coords.	

Minerolization	Very_minor_blebs_limonite_after_sparse		Continued exteation of very sparse pyrite.		Bo sulfides.	
Alteration	Propylitic; all original mafics altered to chlorite Plagioclase and most k-spa	attered to clay, sericite; minor disseminated hicks, o epidote; minor hastain, on fractures.	100' Extensive hairline fractures vith chlorite continue, Reck is only faintly magnetic. Strong clay-chlorite.	165' fresh K-spar, plagio- clase with secondary magnetite.	. 180-2001. Intense_clay_= chlorite_and_fracturing	Alteration similar below
Rock Description	grained, apparently granulated, well-frac-	colorite-henetite- covered fractures. 76-77: Fault gouge-	131-155' Pervasive fracturing, shearing,		198-230' 3' core re- covered from fault zone(?) ore extensively sheared, granulated	20116.
Rock Type	Precambrian Quartz Monzonite					
Assnye u Mo	NG AT 21'.	29				
core Samp. Revy Ro. Cu	STARTED CORING	24101 .0024		24102 .0014		
Depth 50	S	75 25		150 to		

Page Burber 3

430	Int. Kcvy	. o.	ខ	Assays Mo	en en	Rock Type	Rock Description	Alteration	Mineralization
		24114	. E.		<u> </u> 6	Quartz Monzonit	Medium to coarse-grain porphyritic rock; shear-	d Weak Lotassic with local abundant chloritized frac	
			+				ing minor but still	tures plagioclase i	
								12	- (110) I to 10 I to 17 of 10
9.								7,7,7	chalcoveria in 1st ratio
2		24115	.034	1	1		4.11-444 6 448 -475	Relow 441 Chalcopyrite	
-				-	1		Mock 15 extensively	is totally oxidized.	444, 5 Hicks of 1682 4 chalcory, ite
							rusty colored rock due		.on. minor_shear_thang Best and
							to oxidation.	de dominant grost chilentin	Chierite are engined
1	-							to 475'	chlorite ariefold and and and are
1				-	!				choare or winder of the
1		-		-	1				for minor
1			j	1					447' 1/2-1" quartz vointet at 10º
+	1			1	+				with abundant chalcopyrite, poss
450 10		24116	135.0	-	+				
i				-	-				450! Birth manife winter with Land
<u> </u>			İ	-					. blebs 1xchechaleaviticin 1:1-2
					1				ratio
				-	-				-452 Minor disseminated resite and
				-	-				oxidized chalconyrite in Lat. ratio 1:)
		! !	-		-				. 458 Chal convite grains in Jourceta ;
460 10		24117	100		-		- designation of Column		med by bornite on chalever to with on.
									outer harder of earting licenite
					1				.moderately_atrong_chalcocite_capping,
1			-	1					465-468 Chalconneits discussion
-			Ì	1	-				On annual was falled a self-th allowed and
-				-					bomite replacing chalcayetter view
1	-		-	1					with existing limenite
Ť	-		i	- <u> </u>	1				467-472' Blue contact contact
4/0		24118	.0483	-					fractures after existingly, the terminal
-			-	1	-			Clay-sericite restricted	
-			-	1	-		tively unshattered.	to guartz veinlets, plagic-	
480		÷		1	-	-	. :	clase is relatively fresh.	
÷		7.77			İ			•	

Page Runber

Denth	Int.	& Core	Samp.	g G	Ass	Assays		Rock Type	Book Description	Alternation	
			!		?				local research	Alcelacion	Mueralization
4 80		1						Quartz Monzonite			481' 1/2" anget " consistent of the
						1					de la contraction de la contra
				1		,	-				ble be chalcoantie.
				<u> </u>		1	İ				ARE ANG County or section of the sec
					_						and the second of the second o
				<u> </u>			İ				Liverite in 1-1-2 , the
						<u> </u> 	İ			Eask not seed with local	1/2"
										TO TO THE STREET OF THE STREET	-:) to the least of the world with the second of the seco
		-					\dagger			on Tombreile of Course 21 Tombre	The state of the s
				1	-	Ť	1			Volume 18	IN abmelin pyrite, chalcopyrite in
9	10	-	24130	15	1	1	+				1:1-2 ratio.
	} }	-	-2.17	2	1		+				490 . Quartamenticitementite veint :
				!	i	1	+				oxidized, abundant chaleed grife leine
				!		1	1				replaced by chalcovite, bornite; ch. 1-
	-	1	-	Ī			 				cocite and bounite are exidiring to
					-	-	1				limite.
	i			j	1		 			Below 495' Sericite be-	495-500 Unicrous martz-seciettes es
						-	1			comes more predominate.	Retito veinlets with miner chalcage;
200	2		24121	.062	أ	1	1				bornite, chalcocite - exidicing.
						1	-				502-503 Shear, sericitized at 25° to
				1			-				Core axis with abundant, fine-grain d
				1	Ī						chal copyrite,
OTC	3		74177	5	+	-	+				- Hundreys guartz-sericity-shakes grite
			-			1	1				- veinlets to 510.
565			1	10		İ	+			518' Rusty color due to	Below 518" - numerous veinlets with
32	27		24123	610	Ī	1	i			-	.chalcornite_50-1001_oxidired.
			-			1	Ť			526 Pervasive guartze	526-527 Cearge Dressia with obmetant
			j	-		1	+			sericity alleration, no.	.19xite.and.chalcocites.chalcocite
633	10		24124	15	i	1	$\frac{1}{1}$			mignetiff outside of anax	Z_careing_as_barture_fillings
	2		2010.2	Si	7:1:	-	1			- veinlets, Some, possible	Overall total autifilia content much by
				I	İ	1	+			. secondary Kespar .dissene.	than 12 with pyrite-chalcopyrite ratio
	-			1	:	+	1			Inated thoughout rock	at 1:1.
1.51	101		27.135	720	1	-	i				539 Bear-vertical 128" gunta-hiorite
7	1	1	- 2311.2			-	-				sey frite-chalengy, ite veinlet.
3	3		07157	ر د د د د	-	1	1				550 Fork is predominantly exidined
	İ			1		1	1				with chalcecite-bornite carring and
	İ				İ	<u> </u>	1				little chalcopyrite.
						+	-!				550-551 1-2" quartz veinlet vith le 11
	,			1			-				blebs chalcopyrite being replacitly
			-		-	-	-				chalcocite and showing abundant act a
_		-			- <u> </u>	- - 	-				selvage to veinfet.

Page Number

veinlets with associated perveited country
veinlets with associated perveive
guntz-serrelle-meanetite alteration
containing abundant chalco write and
minor bornite - both replaced by chalcocite which is 20-40, exidend,
563-569 Humerous quarte-register,
magnet to veinlets with piner chalcopyrite, chalcocite carping. - 552-561. Anumant return and discrete. Overall pyriterchalcopyrite ratio 1:1-Occasional quartz-sericite veinlets to 577 with chalcopyrite, fornite, oxidizing chalcecite. legally conted sittle existing conting S99. Lervasive guntz-sericite-semeti-Rederately abundant chalcory; ite hagnetite vehicles with more abunded by ite chalcopyrite and chalcocite persists. magnetite-sericite fractues. chalcocite, very minor exidition. chaltopyrite in diabage. Sericite-chalcopyrite-chalcecite of, dadget teaming the game Hineralization Rock appears relatively strongly brecciated with playloclase altered to clay and sericite, magnetite is abundant in vein-557-561 Pervasive guartz -sericite-magnetite_alter--magnetite locally dissemd Weak Jotassic (?), calcit Weak Potassic, plagioclas is clouded to sericitized Alteration lets only. : veinlets. _ation___ Inated. Appairtic to fine-grain mixture of magnetic. Relow 593' drill hole dike, occasionally inte secting nearly-vertical slices of dialiase in sections 595 596' and Minor diabase intersericite, chlorite. Rock Description 598.5-599 Quartz Monzonit Quartz Monzoni Rock Type Presambrian. Diabase Assays No 1413 034 .034 S 24120 24127 Samp ٠ ٩ 24129 24130 1 & Core Revy Int. Ξ, 12 2 10 Depth 5.695 500 557 570 290 580 593

£		Core	Samp. No.	3	Assays No		Rock Type	Rock Description	Alteration	Hineralization
009	0	:	24131	120			Precamby fan Wartz Mynzonite		In quartamonzonitas plag- fectose is locally cloude	Total sulfides S(1. with 1. riggerhater
				+1	11	11		ning intersections of	don't locally strong geri-	drained disseminer declaration in
$\dagger \dagger$		11		1		<u> </u>		allel to drill hole.	work potassic alteration.	
	<u> </u>			$\frac{1}{1}$! !	11		504-506 , 608.5-610.	The provision	Along grants represented the contract with about that every to.
	<u> </u>				!!	1		513.5-616.5	caleite.	Yeinlet at 0 to core.
610 10			24.175	1 19	<u> </u>	1!				volumen, at 20°.
Ti		:!	1 1	3	1 1	11				Glo Wittied 124 grant z winder
				-	<u> </u>	-				district leadly has miner from the
				 						610.5-613' Perveive sericity armeti
				Ï						alteration with aboutout dissentanced
\dagger	-	<u> </u>	-	Ť	1	-				615-616. Bent-Yerlical quarta-k-elar
		! ! 								veinlet with abundant Jose es rin gett
620 10	1	7.1	24133	030	-	1				6172621. Umercus Ahin quarts mapperin
			1 1	$\dot{\parallel}$						Sericite vehilets with parite and
	<u> </u>	+		Ť		!	Diabase		Chlorite-manetile, abun-	523 Contact near vertical with atom
<u> </u>				:		}			dant secondary calcite.	dant chalcopyrite in pervasive quartz-
- -	<u> </u>	1	İ	1				hlorite on fractures,		logal quertz-epidote veinlets contain
2		24)		0.00	<u> </u>	1				ninge chalegyrite.
631							wartz Nonzonite	Le As_above	otassic vith quartz- te-magnetite veinlet ng most of chalco-	631 1/4-1/2" guartz-chej cepyrite i veinlet at 25° with mussive chal- coryrite.
				+					pyrite:	
		<u> </u>		4 :						
_		_	-	-	-	_			•	

_feld_feld. Bear-vertisal, 1/2", quartre. Pyrite: chalcopyrite ratio decreases to 7 11 11 11 11 11 690-6821 Minidant, disseminated_Errite diorite frament with discentialed chalcopyrite. and chalcountite in 1,1-2 ratio.
600 Quartz winlet with several 1.
diameter blobs of chalcourite.
Doundant chalcountite centinues to Er medichelsen yndte wednich rotth647.51... Menudent ... Gradect yn i Lauten... . yethlets, chalcervite, and 1952, 676, Bassive chalcervrite and Boss. .670-679 ... Locally admirint guarte coal tradament Post... Mineralization on quitt veinlet 069 Listrong chlorites, magnetit is less abundant in quart _class_and_part_of_K-spara Clay alteration of plagic seriette-magnetite altertite than in rock belows Strong, beryastye quartz ation with disceminated months illenite below sharply with correspondingroup in sulfidus. less discentiated magnet. py. ite relies beaxily on GRB! Local alleration is quartz-chlorite-clay. quartz-sericite-chloritemagnetite alteration drop atterntion of plagingland . 669 '1. grade_of_chalco_ Pyrite and molyhdentier. Per low 710' S119ht, clay very pervestve green Below 690' Amount of. inimper of veinlets. Alteration mongonite. Shattered, sheared quartz monzoulte with local thin intersection of vertical disbase dir Clow 710' Rock is broken, wall fractured.... Rock Description Quartz Monzoni Rock Type Assays 50 060. .270 8 0.30 į 930 070. 100 ວັ 24136 24142 24137 % 24138 24139 24140 24141 24143 Core Revy Īt. 10 10 2 2 2 2 2 Depth 720 535 650 99 2 710 670 283 89

Page Member 7

Page Bence

274-775' Disseminated and voined quates 806.5 1 1-2" quartz velulet with abon-dant 1952, and moderate chalcopyrite in adlacent quartz-sericite atteration. Abundant chalcetrifte and less on chalcorzite and minor thesa, no pyrite. resite ratio at J.t. r.t. adjusting sulfides an ellerite serieite fracture.

20 k 701 L/A" quarte cericite.

199 ffeed objective winter cericite. 739, 5' 1/4" quintemanicite chiles 821', 1/2" quartz-3052-cpidote v-inlet 780. 11/2" quartz veinlet at 30° vith abundant Hoss, Serielte halo 1' vide contains abundunt chalcu vilte. 790-799' Hajor zone of discending ted with ries of fless. Total sulfides A said raiter bar fractures, vehilete to fin', 812" 6" quitz-ceifele alteration with 2-3; disseminated thaleagrite. Prile chalcagrite ratio 1-3:1. **Mineralization** diund int chalcowrite. sericite with changing -Milynogarran notiteration Locally, extensive, seriette Appreximately, 1=2 guartz-sericite-magnetity vein-lets, per foot with locally alumdant chalcopyrite. sericite-magnetite alter-Weak Potaggie in quartzclay, chloxity, alteration, to, abjudance of grantz Areas of weak potassic Alteration ation of core. .veinlets... alteration 10_775. Fractured, broken, with quartz-sericite magnetite interspersed with zones of fresh pink Rock Description K-spar. wartz Monzonite Rock Type Assays Mo : ţ 330 090 180 320 160 300 070 200 150 060 చె Samp. 24145 24150 € 24144 24146 24141 24147 24153 24149 24151 24152 Corc Revy 70 0 18 Int. 의 10 10 10 19 읙 의 Depth 730 770 250 740 760 780 S 80 910 820

District Riverside-Kelvin

Hole Number K-3

			by chalcacite.	3	Boderately abundant yeined chalcage it.	840-840 Hinor duntz-F-ren - conicor	DYELE-Chalengelle weinlet: with	PYELLCHAICHAIGE ratio of 1:1-2.	851.5' 1" quartz-enidate seintet	30° with Born and cholcopyrite in	serfeite halo.	2007-101 Ourtz-gericite-manetite	DVI to mine flees	863' Abing int Hoss on martz-sericite	lyrite winter.	Very miner digeminated 127 ite, chalee.	pyrite in 1:1-1 ratio.	865-890 History	volucia partito and challenged by	1.2-3 ratio					891-894 Bear-vertical 1/4" quartz-	chalegyrite winlet with miner Hoga					
Alteration	Wak potassic with minor	chlorite, minor magnetite		836-440 Pervesive clay-	sericite-mannetite along												related with cartain and	grees of quartz-sericite-	_	ŝ	Vehilet _ continues_to	1	885-886 K-spy-chlorite-	fluorite alteration.							
Rock Description	As above, but with most	argillized.																		-											
Rock Type	Quartz Monzonito																														7
Assays No					<u> </u>			0								1															<u> </u>
Samp.			24154	i i	Op() - CC 52	-	1 1	24156 .020	1	<u> </u> 		Ť	050.	<u>i</u> 	<u>!</u>			1	0 PO	<u> </u>		99 .060	1	050	-	-	<u> </u>	1	-		1
& Core S Rcvy			24		5		<u>! </u> 	24.	1	1	<u> </u>		-	-		<u> </u>			BC 147	<u> </u>		24159	-	24160					1		<u>;</u>
Int.	11		2	5	<u> </u>	-		의	+	<u> </u>			1	<u> </u>					1	_		10	-	101				<u> </u>	-	_	
Depth	823		05.0	C V H				820				930						- 10 0/2				880		930			-	<u> </u>			

"Mal soffie & With or tercheter Mith mederate to abundant chilicogrift. 985-995' Pervasive quartz-ranetito-sericite with parite and chalcogrite in 1-2:1 actio, powerate Not with local quartz withlets. and local tine-grained native court is ropy, the ratio at 2-41. Be low 245' share increase in Egrife 921-923 124-172" quart greet (citte-. in quartz-gericite-mignetite-chaleg-Associated Mosa on fracture planes. cutting 1/11" quarte veinlet at 30" 1996-904 Heat-vertigal aboars with content with correctending decrease Page Number 10 imoderate chalcepyrite, miner Hess. 941 . 1/8" Mos2 weinlet at 200. Mineralfzation prite winlet at 600 JErite Latin of 113 Mag 2 weinlet. Minor Mas 2. 1013 • Weak Jotnesic to quartz-sericity, copper mineralcontrolled by quartz-seri continued argillization minor magnetite except in of plugiclass with only 1985-1032 Original rock texture gone, rock 60-80: replaced by chiorite-10-60% oxidation of chal-Extensive chlorite-clay. fait ion continues to be quartz-magnetite assem-1019 K-spar-chlorite-Alteration copyrite to 975'. veinletis blage. rock. 932-936' Shear zone. THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAM Rock Desertption Quartz Monzonite Rock Type Assays • 210 170 140 0.30 060 040 030 020 010 170 040 2 S 24164 24161 24162 24163 24167_ 24170 Samp 24165 24166 24171 2416A 24169 24172 Core Revy = Int. 읙 2 10 9 ទ 10 2 Depth 900 910 920 930 960 500 9.40 970 950 9 1000 1010 980 !!!!

•

Hineralization	Ninor disseminated and veined pyrite and chalcopyrite in 1:1-2 ratio.	Jo35 Quirlz=K-spor-chol. grite weinlet at 40°. 10401 Quirlz-chlorite-chalcagorite	veinlet at 35° with hale fontond re- placement of rock) of K-spar, local native copper.	1964-1965' Chlorite-E-spar-fluorite with abundant disseminated chalcapyrit- to 100° oxidized, relict grains with chalcocite rims.	1075'-1076' Extensive disseminated chalcopyrite, minor pyrite, moderate to abundant chalcocite. 1079-1081' Augens of pyrite in shear zone with minor chalcopyrite exidizing to hematite.	local discontinged and wined chalco- twite with chalcocite rine exidicing, to hematite.	124 Chleritic shear with slumbed pyrite. lyrite-chelgopyrite actio le leg 1125 18 131. 1139 & 1140 Sericite-chlorite-prite
Alteration	Oxidation of sulfides, . 60-801.	Rumerous chierite-magneti	# 1050'-more abundant	Jets.	Clay-chlorite-sericite-	of rect	
Rock Description	As described in rock alteration at 985-1032	Delow 1032' Medium to Contro-grained, grey quartz-mongani te.			at 20°.	below 1086'.	
Rock Type	Quartz Monzonite				ed from guantitative		
Assays No					Chanled		
Cu	020.00	030	010	020	.140	0492	0.035
	24173	24175	24176	24178	24179	24180	
Int. Revy	10	0	01 0		10	9 9 9	
Depth In	1020	10:10	1050	1111	1080	1100 10	

Depth Int	& Core	Samp.	S	Assays No		Rock Type	Rock Description	Alteration	Hineralization
и	110		1	- vakana					IDTO BOTTO BOTTO
i i	-		-	1	7	Juartz Monzonite		1148-1163' Pervarive	lower pyrite scholeopyrite ratio
, 5	• 0	24186	- 720.		1			magnetite with minor	increase in chalco yrite content;
				1				amounts of secondary K-sps	
15	-	24107	100	$\frac{1}{1}$	Ţ				1158.5-1159' Locally about at chalen-
3		/01.7		-					Parite replaced 10-50° by beinite and
i				-	1		Shallering of rock is	Oxidation of chalcocite-	chillengiter oxidicing to red-breen
15		34100	1000	<u> </u>			more intensive.	chalcopyrite is 70-100s	herest tre.
ol .		00767	5:	-	İ			complete below 1166 to 118)
ic	1	97176	12	<u> </u>					1176. 124" chalcocite veinfer at 300,
2 9	-	24109	S.	1	Ţ				
>	1	24190	.020	<u> </u>				Below 1190' Rock texture	
1			-		-			is more pronounced due to	Total sulfide content (): with 1:1-2
i	+				İ			absence of sericite-magne-	Pyrite-chalcopyrite content.
-			-	-				tite alteration, plagio-	1198' 1" quartz veinlet at 30° zith
- 1				1				class is altered to clay,	miner K-spar epidote, chalcocite and
- 1				1	-	****		sericite.	chalcocite capping after chilcopyrite.
de			-						1199-1200' Bear-vertical quartz-servicit
잌		24191	046	-					magnetite weinlet with mederate to
ļ		200		1		***************************************			abundant chalcopyrite, partially oxi-
۱ د	1	761177	270	-			Į		dizel, and minor hosp,
i	1		-	1			1215' Shear zone at	Pervasive chlorite-sericit	The second secon
- 1				!	1		continues to	magnetite.	
의	1	24193	.0052					Alteration below fault or	Sulfides below shear are predeminantly
		1000	in the second	-				shear is weak potassic to	Pyrite. Jotal sulfide content (1:.
۱ د	-	PET 192	ŝ	1	1			quartz-sericite with abun-	
-1			-	1	1			dant chloritized fractures	1734 1/4" quay tr-saricite vein le at
Ě	-	*3486	1	1					30° with minor parite.
51	-	24195	-	-	1				
- (-	- !	1			with secondary K-spar.	1246-1247' Quartz-certeite-k-spar intro-
15		1	j	<u> </u>	-				duced.
۱.	-	96167	<u>.:</u>	<u> </u> 	1	***************************************			Pyriteschal, opyrite ratio a 5:1 with
- 1			-	<u> </u>	İ				(11 total suffides.
9	-	2000		-	1		1259' Alteration has	Weak potassic to quartz,	1259-126) Guartz-sericite-K-spar epi-
5!	-	761197	2/20	1	j		clouded most of original	sericite.	dote replacement of rock with miner
le	-						rock texture.		discentinated chalcopyrite oxidired
3 │		861767	201	1	1				and rote abundant pyrite.
1	1		+	-					
1			Ť	+	i				
!		7	-	-	-				

Page Number 13

Lets_with_chalcocite_on_chalcocyrite_ - sericite-egrite alteration, very miner 1284-1286 | Medr-vertical 1/2" quarter 1313-1315. Zone of hervasive anatta-Principal Cy Reschalen Stills, Soin . NoSz. disseminated and along quarte... flourite with disseminated rarite. 1280.5-1203.51 Perxasive averte-And March Language Language Language Mingr chalcopyrite, 10-508 replaced -sericite alleration with abundant veinler with local blobs, of parite chalcocite-loxidizing_to_hematite_. 1325' 6" section K-spar-chloriteexeltenatio dropa to 1:1, with chalcopyrite.19-607_replaced_by at 60° with abundant Beshie by existing that cocite. **Mineralization** on weinlet at 1296'. veinleta, 1110 Pervasive quartz veinlets contain little to no sul-To T. D. Quartz veinlets fide material, usually fresh, locally secondary. fresh K-spar, magnetite-Meak potagote to quinta-Pyrite, quartz veinlets and chlorite-magnetite sericite with shundant are abundant, K-spar Alteration sericite-quartz. INI. DEPTH-Rock Description 17. Quartz Monzoni -1386 FEEF 1S Rock Type Assays Mo .005 .002 .005 .007 .012 .002 000 903 ខ 24006 24200 Samp. 24199 24001 24002 24004 24005 š. 24003 & Core Revy ! Int. 10 2 23 12 1280 Depth 1290 1310 1325 1375 1350 1386 1300

Riverside Minns Aist.
144 claims
8 m. W.s. s. w. of Ray
4 x target?

CORN and AHERN
2705 W. Lambert Lane
TUCSON ARIZONA 85741
Ph. (602) 297 3858

August 21, 1992

Randy Moore CAMBIOR Exploration USA, Inc 230 S. Rock Blvd. Suite # 23 Reno, Nevada 89502

RE: Kelvin Porphyry Copper Prospect, Pinal County, Arizona

Dear Randy,

Enclosed is a brief summary of our copper prospect at Kelvin. The significant features of this target are:

- 1. The tartget lies within one of the major copper producing districts in Arizona
- 2. A mappable Porphyry Copper alteration system is exposed and was encountered in drill holes nearby.
- 3. Projection of the axis of the rotated porphyry alteration system into a down faulted block overlain by listric faulted blocks of granite and rotated blocks of Tertiary age conglomerate.
- 4. Drill hole evidence that overlying, listric faulted horizons can be as thin as 200 feet.
- 5. No drill holes test the target although there are a number of holes in the general area.
- 6. The entire target is held by claims in our name, without any underlying interest.

We have copies of additional data from prior work, and look forward to showing you this structurally complex area on the ground.

Sincerely yours,

RICHARD AHERN

REC - CAMBIOR USA AUG 2 7 1992

CORN & AHERN

CONSULTING GEOLOGISTS 8425 Desert Steppes Dr. Tucson, Arizona 85710 (602) 298-1770

KELVIN PROSPECT

General Terms

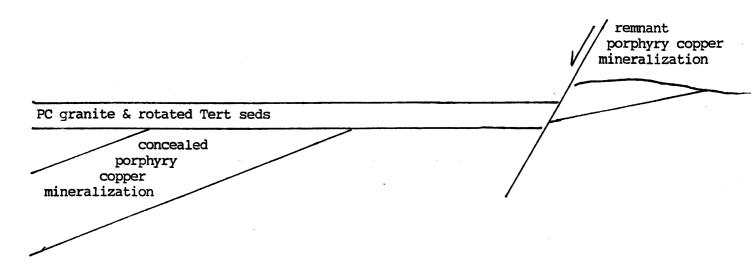
- 1. Advance Royalty payments -\$15,000 on execution,\$15,000 on the 1st anniversary, escalating to \$20,000 on the second, \$30,000 on the 3rd, \$40,000 on the 4th, \$50,000 on the 5th and thereafter.
- 2. 5% NSR production royalty with advance royalty recoverable from production.
- 3. Payments indexed to CPI or similar index.
- 4. Assessment & Filing obligations.
- 5. Notification of termination six months prior to Sept. 1st or complete assessment requirements.
- 6. Supply geologic and drilling data upon termination.

Kelvin Porphyry Copper Prospect Pinal County, Arizona

Exploration Potential:

The Kelvin prospect is a structurally-rotated porphyry copper alteration/mineralization system cut and displaced by low-angle faults similar to San Manuel-Kalamazoo with the majority of the system faulted down to the west and concealed beneath a relatively thin, structurally displaced cover consisting of shattered Precambrian granite and rotated Tertiary sedimentary rocks. Geologic data indicates that the displaced upper part of the porphyry copper system should be preserved beneath the structural cover and that there would be potential for higher-grade copper mineralization in reactive diabase and perhaps Paleozoic limestones. Geologic maps and the exposed breccia pipe at the Wooley Mine, indicate that the structural cover on the west side of Ripsey Wash may be relatively thin. Remnant, fault-bounded segments of the alteration system that are exposed near Kelvin and Riverside exhibit supergene chalcocite mineralization and a sharp zoning pattern in disseminated chalcopyrite mineralization to values that exceed .20 percent copper. Extensive oxidation and oxide copper mineralization characterize the brecciated granite at Ripsey Wash indicating the probability that oxide copper and/or chalcocite mineralization occur in the concealed alter ation system at depth. The Riverside and Wooley breccia pipes have been structurally ro tated to a sub-horizontal attitude and although exterior to the main alteration system, they do indicate that mineralized breccia pipes of interest should occur in the area. Exposures near Ripsey Wash represent an exterior segment of the alteration system that contains veins with interesting gold values and could have potential for a gold-bearing, structurally-rotated, sub-horizontal breccia pipe.

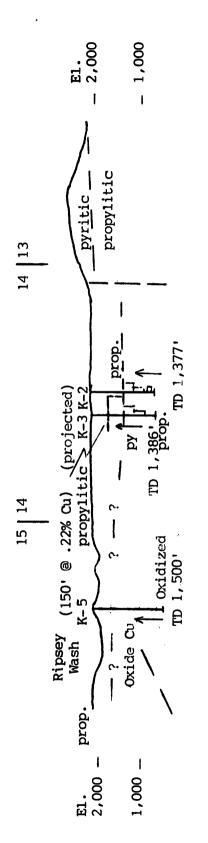
Land:

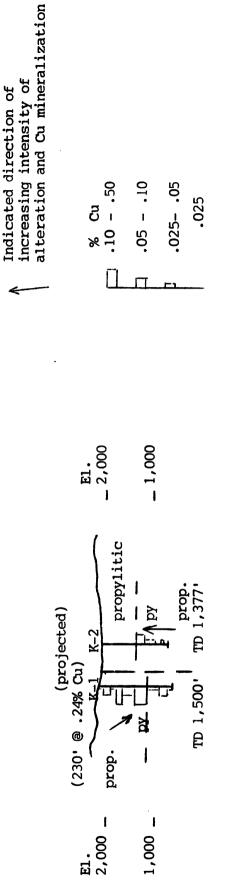

144 unpatented lode claims owned by Richard Ahern and Russell M. Corn in Secs 15, 21, 22, 27 & 28, T4S, R13E in the Riverside Mining District approximately 8 miles southwest of Ray.

Geologic Setting:

The Kelvin porphyry copper prospect is located at the north end of the Tortilla Mountains in the structurally rotated belt along the west side of the San Pedro Valley that is characterized by near-vertical Paleozoic sedimentary rocks and associated diabas sills. The repeated near-vertical diabase sills on the west side of Ripsey Wash south of the prospect indicate displacement of the porphyry copper alteration system along low-angle faults two to three miles west of the exposures near Riverside.

Previous Exploration:

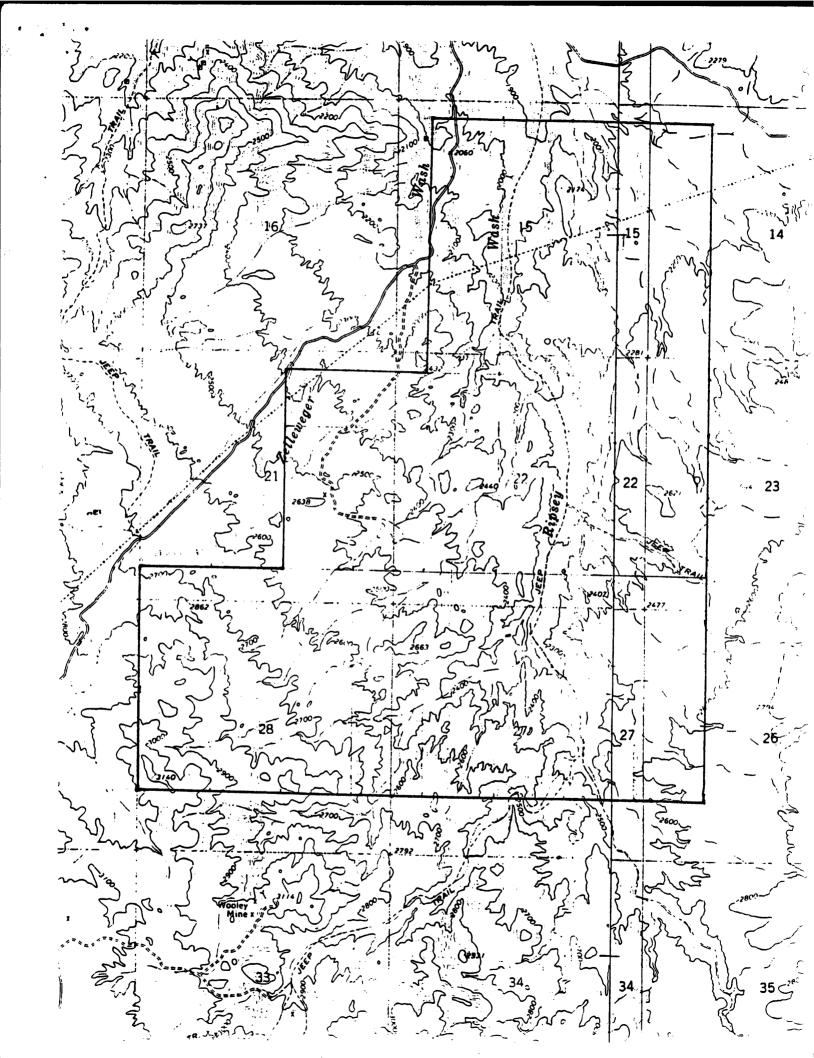

The chalcocite mineralization near Riverside was explored initially during the 1940's or earlier and since 1960 was drilled by Kennecott and Occidental. In the 1970's Kerr-McGee drilled several holes to the west on down-faulted segments of the alteration system and encountered significant primary copper values beneath unmineralized propylitical altered granite. Gulf Minerals also drilled several holes east of Ripsey Wash and encountered low-angle faults and sheared granite. In 1980 Exxon staked claims and carried out geophysical surveys near the Wooley Breccia Pipe and further south along Ripsey Wash but there is no indication of drilling on the west side of Ripsey Wash except at the Wooley Breccia Pipe.


SCHEMATIC DIAGRAM

ILLUSTRATING

THE DISPLACED AND CONCEALED KELVIN PORPHYRY COPPER SYSTEM

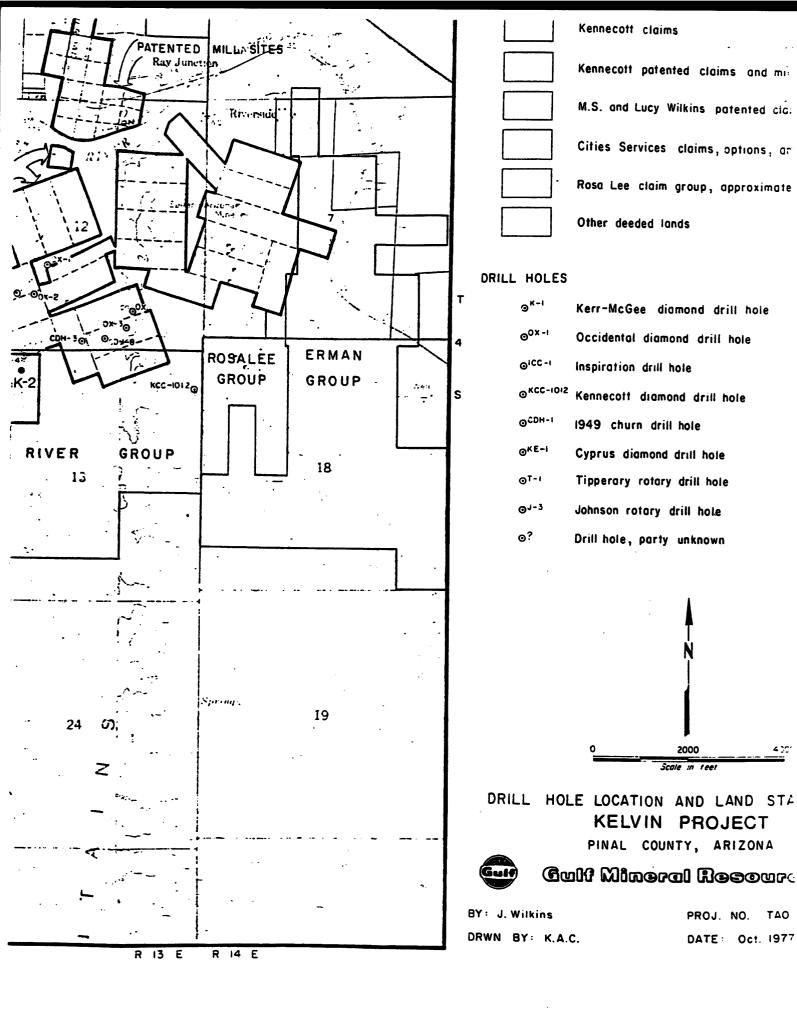
EAST - WEST SECTION THROUGH DRILL HOLES K-2 & K-5

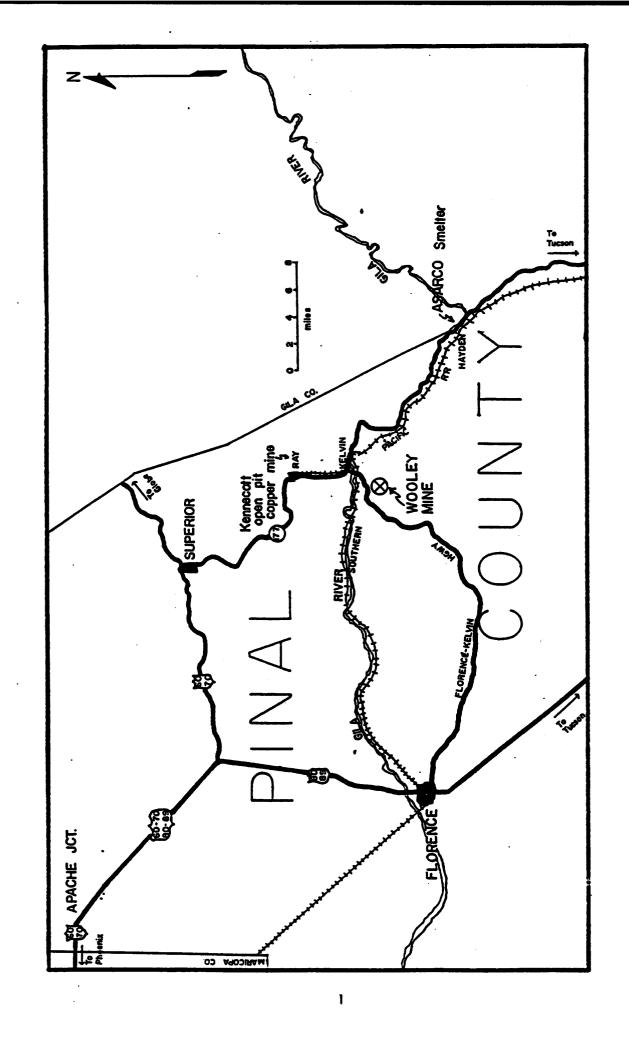


NORTH - SOUTH SECTION THROUGH DRILL HOLES K-1 & K-2

Scale: 1 inch = 2,000 feet H = V

SECTIONS THROUGH DRILL HOLES AT KELVIN PROSPECT, PINAL COUNTY, ARIZONA


ILLUSTRATING ALTERATION AND COPPER MINERALIZATION


RESULTS OF DIAMOND DRILLING PROGRAM ON THE WOOLEY MINE, PINAL COUNTY, ARIZONA.

By: John Dyer'

August-September 1974

DAT

INTRODUCTION

After a thorough economic evaluation of the San Antonio breccia pipe in Mexico, several things became apparent to the Phoenix staff. Most important of these was the relatively low cost of in situ blasting and leaching as opposed to any conventional mining and milling method. Also of interest was that a relatively small orebody (3-6 million tons) and low grade (0.5-0.8% Cu) could, under certain circumstances, become economic. These conditions were location in the U.S., availability of low cost acid, nearness to railroad and smelter, ore which would leach easily, ore at or near surface, favorable hydrologic conditions, and a low cost option agreement for exploration.

The property meeting most of these conditions was the Wooley property east of Florence, Arizona. T.45S., R.13E., Sec. 33. (See location map, pagel). This property is located 26 miles east of Florence on a good country road. It is within ten miles of the Southern Pacific railroad at Kelvin. Both the Kennecott Ray Mine and the ASARCO smelter at Hayden are close to the property and both are sources of low-cost acid. Chrysocolla is the dominant copper mineral and is readily leachable. The ore is near surface and has been shown to average around 0.5% Cu by surface and underground sampling (See Haynes Report. Appendix, pagel9). Hydrologic conditions appeared to be favorable. A positive recommendation for drilling was given by Mr. Charles Elliot, geophysist, in a report based on Alcoa's previous geophysical work on the property in 1969. (See Elliot Report. Appendix, page9).

;

Therefore, only two conditions were needed to test the property completely. One was the negotiation of a low-cost agreement with the owner, Mr. M.V. Deen, et al, and the diamond drilling of three exploration holes to prove both the tonnage and the type and grade of copper minerals present. The first of these was solved by Mr. C. Haynes who negotiated a contract (See option agreement, Appendix, pagel) which required no money except for the 1973 assessment work which would be fulfilled by preliminary dozer work in preparation for drilling. The other condition was fulfilled by contract with E.J. Longyear Company for a diamond drill to be used in the drilling program.

In view of the favorable conditions present at the Wooley, an active exploration program was undertaken to make a complete economic evaluation.

WORK PERFORMED

Preliminary work consisted of improvement of the 1 mile access road from the Florence-Kelvin county road to the property. Five drill pads were prepared and all existing roads over the property were graded and repaired.

On August 13, 1974, a Longyear diamond drill rig arrived at the drill site. Drilling began shortly thereafter and was completed September 11th. A total of 696 feet of diamond coring was done in a series of three holes, (A discussion of each hole will be presented later in the report). Core recovery was excellent considering the broken nature of the breccia and was considered to average around 98%. Circulation was maintained throughout the drilling as the highly fractured rock had been resealed or healed by the abundant quartz.

A general re-mapping and sampling was carried on prior to, and during the drilling. A new geologic map was prepared with information gained from more detailed work than that previously performed. (See Benedict Report. Appendix, pagell) all new roads and drill hole locations were added to the revised map.

Two covers were constructed to place over both the 500 foot shaft and the 62 foot shaft on the western end of thebreccia. These were deemed necessary to prevent injury to both human and animal life in the area; also for liability reasons which are obvious.

DISCUSSION OF DRILL HOLES

As noted previously, a general discussion of the geology and mineralology of the individual holes will be presented here.

HOLE DDH WM-1

The first hole was drilled more or less in the central portion of the breccia. The hole was located to determine the dip of the breccia, depth to the bottom of the breccia, and the type and grade of copper mineralization as correlated with the sampling results from the main adit to the northeast.

Mineralization in hole DDH WM-1 consisted of Chrysocolla with very minor malachite and both black and red copper oxides after what is beleived to have formerly been Chalcopyrite. Weathering and alteration were variable from strong to relatively mild. Much of the rock was broken down to clay. Nearly all copper values were found within the quartz veins which had originally been the solutions by which the copper was introduced. into the breccia.

The average grade of the 222 feet was 0.21% copper. A section from 105-170, (65 feet), produced an average grade of 0.39% Cu. As the bottom of the breccia was encountered at 166 feet, the copper values were found to decrease sharply. (See Assays, Appendix, page 24). All samples were taken in 5 foot intervals. Siderite is an accessory mineral.

HOLE DDH WM-2

This hole was drilled in the western portion of the breccia near the angle hole previously drilled by Anaconda. Although Anaconda had drilled nearby, there were several reasons for the location of the hole. One was no information from Anaconda's hole, but rumored to run .02-.03. Two, Anaconda's hole was an angle hole (60°) across the structure with no depth information; and Three, having been drilled in the mid '50's when copper was much less valuable than now, would have been understandably been "walked-away" from. Hole DDH WM-2 was drilled to a depth of 338 feet. This was the most continuously mineralized hole drilled. The main mineral was Chrysocolla with minor malachite. Of importance was the extreme abundance of red and black oxides which are the end result of leached Chalcopyrite. Siderite is common. There was excellent quartz veining with crystals lining the open vugs. Most mineralization was limited to the quartz veins, but minor amounts were found in fractures in the surrounding granite.

The average grade for hole DDH WM-2 was 0.20% Cu. Although there were good zones of mineralization, the barren or weakly mineralized zones produced a poor average grade. All sampling was on 5 foot intervals and it should be noted that there was a decrease in Cu values as the contact between the breccia and underlying granite was reached. The breccia bottomed at an irregular contact at 326 feet. As copper mineralization was nil no assaying form 332-336 was necessary.

-

HOLE DDH WM-3

The final hole was drilled to determine the thickness and amount of Cu mineralization present on the southerly dipping breccia structure. The hole was located near the SW boundary of the breccia as appears on surface. The hills to the south have the breccia covered in that direction. Due to poor mineralization and futility of more drilling, hole DDH WM-3 was stopped in breccia at 138 feet.

Although the breccia in the hole contained more fracturing, quartz, and siderite than either of the other two holes, the amount of Cu mineralization was much lower. There was an apparent lack of leached former sulfides and little to no Chrysocolla presnt in the abundant quartz veins present. The

average grade for the hole was .095% Cu. Perhaps with depth this could have improved, but not likely. All samples were in 10 foot intervals.

DISCUSSION OF DRILLING RESULTS

Even though a minimum amount of drilling was done, several facts concerning the nature of the breccia and it's economic possibilities became apparent. It is believed that due to the following findings and interpretations, that the Wolley breccia can be eliminated from the list of "hopefuls" for an economic copper orebody, They are:

- (1) Limited lateral and vertical extent of breccia. As previously shown by surface mapping by Alcoa geologist and geophysical mapping by C. Elliot, the boundaries of the breccia were more or less predicted. Drilling has proven this prediction correct. The breccia ends at a depth of near 300 feet. (Hole DDH WM-2). Therefore tonnage is restricted and there is no deep target.
- (2) Distribution of copper mineralization. From a rather thorough study of the core the following hypothesis are made.

Ì

- A. Copper mineralization decreases south of breccia outcrop. In other words in the direction the breccia dips.
- B. The copper occurs predominately within the quartz veins and therefore would have to be blasted to a point of pulverization to allow the acid access to the copper for leaching.
- C. The Precambrian granite underlying the breccia shows no copper mineralization and is highly fractured and jointed. Any attempt to recover pregnant copper solutions below the breccia would be impossible.
- D. The increase in siderite, unmineralized quartz veins, and decrease in previous sulfides, all in a down dip or southerly direction suggest that the initial high grade portion of the orebody was in the northern 1/2 of the breccia zone which even if the Chalcopyrite still remained, the tonnage would be so low as to make mining impossible.

 Note: If all previous sulfides were Chalcopyrite the initial grade was probably around 2% Cu before leaching.

CONCLUSIONS

As a result of the drilling on the Wooley, it can be said that there is not an economic orebody presnt. There is little or no chance for any increase in tonnage or grade and only a "fantistic" jump in the price of copper could make the property of any interest to Alcoa in the foreseeable future

Thus, no future work is planned for the Wooley property and the claims have been returned to Mr. M.V. Deen.

All core, assays, reports, drill logs, cross-sections, and related work concerning the Wooley property will be presented to Mr. M.V. Deen in the form of a copy of this report. Mr. Deen's assistance and cooperation throughout the project is greatly appreciated by the author. Also appreciated is drafting assistance by Alcoa's tance by Alcoa geologist D. Soper and field assistance by Alcoa's C. Haynes and M. Hollingsworth.

APPENDIX

APPENDIX

	Page
Alcoa's Exploration & Option Agreement	1
Geophysists Report - Elliot Geophysical	9
Benedict Report - Newmont	11
Haynes Report - Alcoa	19
Maps - Geologic	Rear pocket
Drill Logs & Cross-Sections	Rear pocket
Copper Analyses	24 .
Exploration Cost	27
Underground Workings	Rear pocket

EXPLORATION AND OPTION AGREEMENT

THIS AGREEMENT is made by and between M. V. DEEN and his wife, ROSA LEA WYVONNE DEEN, RONALD R. DEEN and his wife, RUBY MARLENE DEEN, and TOMMY E. DEEN ("Deens"), and ALUMINUM COMPANY OF AMERICA, a Pennsylvania corporation qualified to do business in Arizona ("Alcoa").

1. Deens represent and warrant to Alcoa that except for paramount title of the United States, Deens own twelve (12) unpatented lode mining claims situated in Riverside Mining District, County of Pinal, State of Arizona, named and recorded as follows:

Wooley Mine Lode, Location Certificate recorded in the records of said County, Book 56, Page 8

Wooley No. 1 Lode, Location Certificate recorded in the records of said County, Book 56, Page 8

Wooley No. 2 Lode, Location Certificate recorded in the records of said County, Book 5, Page 430

Wooley No. 3 Lode, Location Certificate recorded in the records of said County, Book 56, Page 40

Wooley No. 4 Lode, Location Certificate recorded in the records of said County, Book 57, Page 401

Wooley No. 5 Lode, Location Certificate recorded in the records of said County, Book 57, Page 401

Wooley No. 6 Lode, Location Certificate recorded in the records of said County, Book 57, Page 402

Wooley No. 7 Lode, Location Certificate recorded in the records of said County, Book 57, Page 402

Wooley No. 8 Lode, Location Certificate recorded in the records of said County, Book 57, Page 403

Wooley No. 9 Lode, Location Certificate recorded in the records of said County, Book 57, Page 403

Wooley No. 10 Lode, Location Certificate recorded in the records of said County, Book 57, Page 404

Wooley No. 11 Lode, Location Certificate recorded in the

records of said County, Book 57, Page 404;

that Deens' title to the claims is free and clear of liens and
encumbrances; that the locations of the claims have been completed
in compliance with the laws of the State of Arizona and of the
United States; that Deens have performed or caused to be performed
all assessment work required by law to maintain title to the claims
and that sufficient affidavits of performance thereof have been
properly recorded through the annual assessment year ending
September 1, 1973; and that Deens have the full right, power and
capacity to enter this Agreement on the terms set forth herein.

2. Alcoa agrees to do the annual assessment work on the above claims for the annual assessment years ending September 1, 1974, and September 1, 1975, in the event that Alcoa exercises the option herein granted, Alcoa agrees to perform annual assessment work required to maintain the above-mentioned claims and to record or furnish to Deens affidavits of such performance for any assessment year in which this Agreement has not expired or been terminated prior to three (3) months before the end of such assessment year. Alcoa shall not be liable on account of holdings of any court or governmental agency that the work elected and performed by Alcoa does not constitute the required annual assessment

work for purpose of preserving title to such claims, provided that the work so done is of the kind generally accepted as assessment work and that Alcoa has expended a total amount sufficient to meet the minimum requirements with respect to all of the claims.

Deens hereby grant to Alcoa the sole and exclusive right for a term of eighteen (18) months from the effective date hereof ("the Exploration Period") to enter upon and take possession of the claims, with the right to drill and excavate such holes, pits, shafts and other excavations and to conduct such surveys, explorations, sampling, investigations, and other operations in such manner and to such extent as Alcoa in its sole judgment and discretion may deem advisable, for the purpose of ascertaining any and all facts relating to the occurrence of ores and minerals in and under the property and to the mining, milling and treatment thereof. Except as to such ores as may be shipped for metallurgical testing, bulk assaying, or for other purposes of testing the feasibility of the mining, milling and treatment thereof, Alcoa shall not sell or ship any ore from the property prior to exercise of its option to purchase as hereinafter set forth.

ì

4. During the Exploration Period, Alcoa shall cause not less than five hundred (500) feet of core drilling to be done.

- have the exclusive right to purchase the above-mentioned classing together with such right as Deens may have to use, manage and control the water on and in the above-mentioned claims, and the water rights appurtenant to said claims, and together with all and singular, the mines and minerals within the lines of said claim, their dips, spurs and extralateral rights, and all dumples severed ore, fixtures, improvements, rights and appurtenances.
- the event that Alcoa shall exercise the option hereinabove granted, shall be the sum of One Million Dollars (\$1,000,000), which purchase price shall be paid only from ore produced from the above-described claims, Alcoa paying to the Deens five per cent (5%) of the net smelter returns, as hereinafter defined, from said ore; provided, that the minimum monthly payment shall be Four Hundred Dollars (\$400), beginning with the month after the month in which Alcoa shall exercise the option hereinabove granted, and ending when all of the sums paid by Alcoa to the Deens on account of the purchase price shall aggregate One Million Dollars (\$1,000,000), or when Alcoa at its sole option shall reconvey the claims to the Deens, whichever shall be earlier.
- 7. Net smelter return, as used in this Agreement, means the amount of payments received by Alcoa from the smelter or other buyer to which any ore or concentrates produced from the

premises are delivered for treatment and sale, after deduction has been made of all smelter and treatment charges, and actual freight and cost of transportation and haulage from the premises to the smelter or other buyer, less taxes, if any, levied and paid upon the production thereof, not including Federal income In the event Alcoa shall process the ore and use it, without selling it, net smelter return shall mean the market value of the copper recovered by Alcoa from the ore, computed by multiplying the number of pounds of copper recovered by Alcoa times the average price per pound of domestic producers' electrolytic wirebar copper as reported in the American Metal Market for the period in which the ore is processed by Alcoa, less all smelter and treatment charges and expenses, freight and cost of transportation and haulage from the premises to the smelter or other processing location as limited above, less taxes, if any, levied and paid upon the production thereof, not including Federal income tax.

8. If this Agreement is terminated, Alcoa, upon request given by Deens within thirty (30) days of said termination shall furnish Deens within a reasonable time thereafter copies of all factual maps, drill logs, and any other factual data pertaining to the claims prepared by Alcoa. Alcoa agrees that, as to any core from the claims retained by Alcoa after termination of this Agreement, said core shall be delivered to Deens within thirty (30)

days. In no event shall Alcoa be liable to Deens for the loss or destruction of core from the claims.

;

- 9. If, in the opinion of counsel for Alcoa, Deens' title to any f the claims is defective or less than as warranted in paragraph 1 hereof, Alcoa may deliver to Deens written notice stating its objections to the title and if Deens are unable or unwilling to promptly correct the defects in title, Alcoa may attempt, with all reasonable dispatch, to perfect the title. In that event, Deens shall execute all documents and shall take such other actions as are reasonably requested by Alcoa to assist Alcoa in its effort to correct the defects in title. All costs and expenses of perfecting title, including, may not limited to, amounts paid at Alcoa's discretion in settlement of dispute of claims, the costs of attorneys' fees, and the cost of releasing or satisfying mortgages, liens and encumbrances shall be a credit against payments thereafter to be made under this Agreement.
- 10. Alcoa shall have the right, but shall not be obligated in any way, to amend or relocate any of the above-mentioned claims which Alcoa, in its sole discretion deems advisable to so amend or relocate. Such amendments or relocations shall be made in the name of Deens and the location notices may be signed by Alcoa or its agent as agent for Deens. It is understood and agreed that the work performed by Alcoa or its agents in connection with the amendment or relocation shall be done in a good and miner-like

fashion and at the sole cost and expense of Alcoa. Upon request by Alcoa, Deens shall apply for a patent to any of the unpatented lode mining claims so designated by Alcoa and shall execute all the necessary applications and documents in connection therewith, and shall cooperate fully with Alcoa in securing such patents. All expenses incurred or authorized by Alcoa in connection with such patent proceedings shall be borne by Alcoa. Such expenses shall be deducted from the purchase price to be paid under this Agreement. The rights of Alcoa under this Agreement shall extend to any of the amended, relocated or patented mining claims.

- 11. Any new claims staked by Alcoa, any portions of which lie within two (2) miles from any point in the above-described claims, whether located in the name of Deens or in the name of Alcoa, shall become subject to the terms and conditions of this Agreement, and upon termination of this Agreement, Alcoa agrees to quitclaim any such claims to Deens. If Deens own or hereafter acquire any land or mineral rights, any part of which lies within two (2) miles of any point in the above-described claims, such lands or mineral interests shall become subject to the terms and conditions of this Agreement, and the parties agree to execute whatever documents are reasonably necessary to evidence the inclusion of such lands or mineral interests.
- 12. The parties to this Agreement shall execute and record a memorandum of this Agreement in the form attached hereto as Exhibit A.

13. Any notice required to be given to Deens hereunder shall be given by certified or registered mail, return receipt requested, addressed as follows:

Mr. Ronald H. Deen State Route Box 128 Riverside, Arizona 85237

}

;

and any notice given to Alcoa shall be given by certified or registered mail, return receipt requested, addressed as follows:

Aluminum Company of America Alcoa Building Pittsburgh, Pennsylvania 15219

Attention: Raw Materials Division

Any notice so given shall be deemed to have been validly given upon mailing. The above addresses may be changed by the respective parties by notice given as herein provided.

IN WITNESS WHEREOF, this Exploration and Option Agreement has been executed to be effective as of the 15th day of August, 1974.

M. V. Deen	Rosa Lea Wyvonna Deen
Ronald R. Deen	Ruby Marlene Deen
Jonney & Deen Tommy E. Doen	V
	ALUMINUM COMPANY OF AMERICA
•	ByVice President

OI DECLUISIONE COMEN

Mixing Geophysical Engineers

4653 EAST PIMA STREET

TUCSON, ARIZONA 85712

April 23, 1974

TEL. (602) 793-2421

Ref: AL4E ...

Mr. W.J. Colegrove Aluminum Company of America Western Exploration Office P.O. Box 10456 Phoenix, Arizona 85016

Re: Wooley Mine Project, Pinal County, Arizona

Dear Cougar:

As requested by you, I have reviewed all of the available data in my files pertaining to this project including my own report on the ground magnetic, induced polarization, and resistivity results, dated June 13, 1969. This review, as requested by you, is based on the premise that the breccia pipe, even though it may be of only moderate dimensions, could conceivably contain sufficient oxide copper mineralization to make an in situ leaching ore body. This premise differs grossly from previously in that the geophysical programs were basically performed in the search for deep, larged disseminated sulfide bodies that might have been in association with the small breccia pipe located at the Wooley Mine.

All of the induced polarization-resistivity data by Geoscience, Inc. and Canadian Aero Mineral Surveys with the exception of two special lines, Lines C-7 and C-8 by Canadian Aero Mineral Surveys, were for the purpose of deep exploration for large porphyry copper type deposits. On the other hand, Lines C-7 and C-8 with a short dipole length (200 feet) were surveyed for the purpose of mapping in detail the Wooley Mine breccia pipe. In addition, the staff of ALCOA performed ground magnetic lines again as a means of possibly mapping the lateral extent of the breccia pipe. The ground magnetic data in no way reflects the depth of the pipe, but did indicate a subtle expression of the contacts of the breccia pipe with the host rock.

In addition, Canadian Aero Mineral Surveys Lines C-7 and C-8 indicated that the breccia pipe may have a subtle electrical signature consisting of a slight increase in induced polarization response and a slight decrease in resistivity. Both of these subtle electrical indications, suggest that the main breccia pipe has an indicated bottom depth less than 300 feet. More properly, as was originally stated in my report of June 13, 1969 the controlling mineralization that may be effecting the electrical physical properties of the pipe, changing form or intensity at or above 300 feet. Thereby, the breccia structure itself may possibly extend to a greater depth.

CHARLES L. ELLIOT

REGISTERED PROFESSIONAL ENGINEER

There was no major sulfide deposit in association with the breccia pipe as interpreted in the original data, but that the breccia pipe was roughly delineated horizontally and vertically. The original conclusion that the pipe needed drill testing still stands and is basically the prime conclusion today even in view of the new premise.

I totally agree with my previous general conclusions. I would like to emphasize at this time that the interest is now the extent of the breccia with depth that the magnetic and electrical effects noted in association with the breccia pipe are very subtle features and therefore the interpretation of them could be severely inaccurate or grossly misleading. Thereby, reliance on the existing geophysical work is possibly not without some degree of uncertainty. In view of the subtleness of the geophysical responses, no additional geophysical work is warranted or recommended.

My original recommendation to drill the pipe still stands and is emphasized in view of the current economic premise. This property and particularly the oxide mineralized breccia pipe cannot be written off nor emphasized on the basis of the geophysical work alone. Drill testing is necessary and strongly recommended.

Respectfully submitted,

ELLIOT GEOPHYSICAL COM

Charles L. Elliot

CLE:nd

WOOLEY MINE, RIPSEY DISTRICT

PINAL COUNT, ARIZONA

ABOUT 5 MILES, AIRLINE, S.W. OF KELVIN, ARIZONA

BY

P.C. BENEDICT

APRIL 23, 1953

(New typed copy)

CONTENTS

FORESTATEMENT	Pa	9 9	2
RECOMMENDATIONS		1	
GEOLOGY		1	
MINERALIZATIONS	2	-	3
THE. 500' SHAFT	3	-	4
SECONDARY ENRICHMENT		4	
OWNERSHIP		4	

APPENDECIES

)

Excerpts from Henry W. Nichols Undated Report on Wooly Mine, probably written in the late 1948's

Hugh Steele's report (probable late '40's or early '50's) on the Wooley Mine.

MAPS HEREWITH

W-1 Plan of Wooley Claims by Henry W. Nichols 1" + 1,000'

W-2 Plan of Wooley Mineralized Zone 1" = 200' with insert assay plan of Tunnels Nos. 182 1" = 100

April 23, 1953

Mr. Fred Searls, Jr.
Newmont Exploration Limited
Room 1501, 14 Wall Street
New York, New York

Dear Fred:

١

Re: Wooley Mine, Ripsey Dist. Pinal Co., Arizona. About 5 miles airline S.W. of Kelvin, Arizona

FORESTATEMENT

Ken McGriffin and R.J. Searls briefly inspected this property and recommended I take a look which I did, spending about 3/4 day on it, in company with Mr. Leo Wall the owner, on March 27th.

Attached hereto are exerpts from the undated report of Henry W. Nichols, an engineer who formerly worked in the Magma assay office and was one the Vendors of San Manuel. Hugh Steels tells me that his sampling, as shown on accompanying Plate W-2, can be accepted 100%.

I accept Nichols' report except insofar as the following statements may differ from same.

RECOMMENDATIONS

I recommend that we do no work on this property. However, Mr. Leo Wall, the owner, contemplates doing some diamond drilling and I have indicated to him in reply to his querry, that I should be interested in reviewing the results therefrom and that, should they be favorable, we might well be interested in optioning the property and prosecuting a vigorous development campaign.

GEOLOGY

The outcropping rock is fine grained pre-Cambrian granite. It is the type classified as 4 in R.B. Hargraves report on the Tortilla Mts., South of Kelvin. To the N.W. of the big wash shown on W-2 is coarse grained granite (Hargraves type 1.)

The "felsite" dikes shown by Nichols are fine grained diabase and premineral. If, as seems probable, the diabase is Laramide in age, the mineralization may also be so classified.

Mr. Fred Searls, Jr. April 23, 1953 page 2

)

MINERALIZATION

The area shown on W-2 as "orebody is a breccia pipe. I get the impression that solutions entering along fractures and cracks have dissolved irregular eliptical holes and irregular tabular cavities in the granite; that the limited amount of brecciation is due to slumping into such holes. These holes have subsequently been lined with radiating, Euhedal quartz crystals and between the crystal terminations black (manganiferous?) calcite has been deposited and, in some of the, coarse blebs of sulphide.

All exposures are completely oxidized. On surface the calcite is completely dissolved out but the limonite, where present, remains as discrete blebs. Transportation of iron has been negligible and there is no general discoloration of the rocks. Limonite is usually accompanied by chrysacolla staining which has travelled a maximum of a few inches from the limonite source. No disseminated sulphide was deposited in the rock between the "geodes".

In the two tunnels, the black to brownish calcite remains in a few places. Where leached the quartz crystals are frequently covered with a little black dust which I interpret as being residual manganees oxide relicit after the black calcite.

Some of the residual limonite masses suggest pseudomorphs after coarse pyrite cubes, and their preservation, with so little transportation, is probably largely due to the calcite that once surrounded them. However, some copper sulphide was certainly present.

The size of the mineralized area is shown reasonably correctly on W-2 though it contains:

- (1) Substantial areas in which the quartz pockets are sparce or lacking.
- (2) Substantial areas in which the quartz pockets and stringers show no limonite and/or copper stain.

By and large the better mineralized areas have a tendency to outcrop strongly, sometimes as pinnacles, Quartz pockets and very sparce limonite blebs can be found in areas of poor outcrop but the best mineralization is undoubtedly in some of the pinnecles shown, particularly in that at the collar of the 500 foot shaft.

In this latter locality there is sufficient limonite that, iit if represented chalcopyrite principally, it might account for about 2% Cu for a small area. On the other hand it is my belief that, according

Mr. Fred Seals, Jr. April 23, 1953 Page 3

)

MINERALIZATION - continued

to the surface showings, if the limonite represented mostly chalcopyrite, not more than 1/3 of the area shown as "orebody" on W-2 would average 0.4% copper and another third would average something like 0.2% and the remainder substantially less.

It may be that, but little copper has been transported away and that the sampling of the completely oxidized tunnels gives a fairly representative notion of the amount of copper originally present at that elevation.

There is, of course, the optimistic possibility that primary grade might increase repidly with depth.

THE 500' SHAFT

The shaft dump shows no sulphide and almost none of the quartz "breccia" mineralization. Where the adit level intersects the shaft it may be seen:

- (a) The irregular, more or less gradational, north boundary of the "breccia" is about 50' north of the shaft.
- (b) At the shaft there are three faults cutting one another and together making up a broken zone about 15' wide which represents bad ground and, for some reason which I do not understand, shows very little of the quartz "breccia" mineralization. One of these faults is approximately vertical and is doubtlessly the same one that forms the north boundary of the "breccia" in Tunnel #2, 600' to the west. See W-2 The other two faults dip 75° to 80° southerly.

The barrenness of the dump may be due to any of the three following reasone:

- (1) The shaft stayed in this crushed fault zone which, where exposed in Tunnel #1, is barren. The fineness of the material in the dump supports this possibility.
- (2) The breccia zone dips southerly and the shaft went into its footwall.
- (3) The breccia pipe bottomed above the bottom of the shaft.

Accepting either (1) or (2) carries with it the corallory that no appreciable crosscutting was done from the bottom of the shaft. You

Mr. Fred Searls, Jr. April 23, 1953 Page 4

į

THE 500' SHAFT - continued

will note from Nochols' report that even hearsay information about this shaft is scanty. Such as is available suggests the possibility that the shaft caved before any crosscutting off its bottom was possible.

The government township plat shows both the Wolley Mine and Mill. The township was surveyed in 1922 and I would suppose there must have been some relic of the mill building at that date. There is no trace of any buildings on the property today and I say no tailings though they could, of course, have been washed wasy. Many a mill had been built without any ore. Nevertheless the fact that there was a mill suggests that some sulphide may have exposed somethwer. Nochol's history is very vague, but can be read to mean that there was crosscutting from the shaft either at the 200' level or somewhere between there and the bottom at 500'. If so, such crosscutting may have shown the "abundance of low grade lre" (which seems to be attributed to Matt Davis) and this may have been sulphide, may have been treated in the mill and this may explain the complete absence of sulphide on the shaft dump.

SECONDARY ENRICHMENT

Between 1/2 and 3/4 miles to the east and at a considerably lower elevation is the west boundary of the Gila conglomerate dipping easterly somewhat more steeply that the intervening topography. It is conveivable that the abse of the Gila may have once been not many hundreds of feet above the Wooley outcrop. I so there is a possibility that enrichment related to the base of the Gila could be preserved.

On the other hand calcite appears to have been more abundant than sulphide, Kaolinization of the granite is not discernible, and there probably never has been any very important secondary enrichment.

OWNERSHIP

Mr. Leo Wall, Box 144, Ray, Arizona. Mr. Wall lives just east of the Kelvin highway and south of the golf course about 1 mile or so southerly from Ray.

Yours very truly,

P. C. Benedict

PCB:mr

cc: A.A. Brant

CODV SMIT I-EMERY COMP. NY

BUTABLISHED IN

METALLURGICAL AND TESTING ENGINEERS
THE EAST WASHINGTON SOULSYARD

LOS ANGRLER 31 CALIFORNIA

.. ABORATORY

No. 422527

Date July 21, 1966

Sample Palp

Received 7-19-56

Marked "R.S-C Sample No. 1351"

Submitted by

Ì

Arizona Assay Office, P. O. Box 1148, Pho enix, Arizona.

REPORT OF QUALITATIVE SPECTROGRAPHIC EXAMINATION

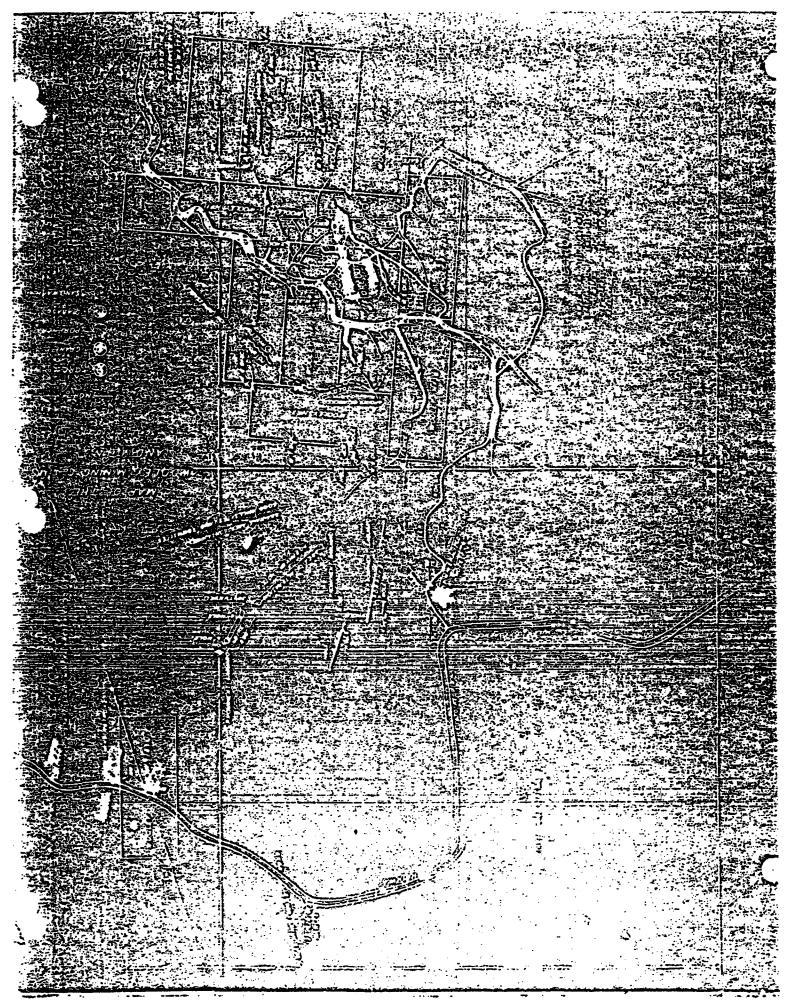
Element

Approximate Quantity

Silicon, Aluminum, Calcium ----- Major Constituents.

Iron, Magnesium, Sodium,

Intermediate Constituents.


Minor Constituents 1\$ mitenium -WENCENSES ----Barium -----Stront ium ----Copper ----Vanadium -----Zirconium -----(2)] im -----Chromium -----0.005 Mickel ------0.0019 Cobalt -----0.001 Home found Impte ----Hone found Bare Barths -----

Respectfully submitted,

CHRMISTS AND REGISTRES

All reports are submitted as the confidential property of clients. Authorization for publication of our reports, conclusions, or extracts from or regarding them is reserved pending our written approval as a mutual protection to clients, the public and ourselves.

(See statements on reverse side regarding qualitative spectrographic examination)

Phoenix Office

Pittsburgh Office

June 26, 1974

RE: THE WOOLEY MINE COPPER PROSPECT, PINAL COUNTY, ARIZONA

SUMMARY

The Wooley Mine is a copper prospect in a breccia structure. It may make a profitable operation if expenditures are kept to a minimum and copper can be extracted by in situ blasting, leaching and iron precipitation. Anticipated reserves are three million tons at 0.5% Cu. Its geology, location in Arizona. closeness to smelters, acid supply and rail transportation are very favorable factors. Also the cost of obtaining the land is very favorable. Diamond drilling three holes would cost about \$25,000 and will give an indicated tonnage and grade. Metallurgical testing of the core will indicate if the copper is recoverable in sufficient quantities. A feasibility study would show if the program should be dropped or continued. If continued, additional funds would be requested to complete the evaluation. Although the property might be marginal, its location in the United States may be more important than economic factors.

HISTORY OF EXPLORATION

Old diggings abound in the region, some dating back to the late 1800's. Copper was the main ore sought, due mainly to the operations at Ray. The main mine openings are: the East Shaft, reportedly 500 feet deep, but caved just below the Adit Level; the East Adit, driven in a \$ 30 E direction, exposes the brecciation for its entire width at that location; the West Shaft, approximately 50 feet deep; and the West Adit, which was driven on a S 10 W bearing, but not completed to the southern boundary of the brecciation. Both shafts were sunk on post-mineral faults that bound the breccia structure on the northern side. Anaconda is reported to have drilled two diamond drill holes in the mid to late 1950's that averaged two or three-tenths copper. Freeport Sulfur did surface and underground sampling and mapping and ran an I.P. survey. Alcoa did underground sampling and surface magnetic and I.P. surveys. Recently Kennecott is reported to have conducted successful leaching studies. All the work to date indicates a low-grade, small tonnage copper deposit assocaited with a small breccia structure. No underlying sulfide body or zone was detected, either within or away from the breccia.

G. C. McBride June 26, 1974 page 2

LAND SITUATION

Twelve unpatented claims, Wooley and Wooley No. 'through No. 11 cover the area of interest. Another claim, Wooley No. 14, lies about 3/4 of a mile west northwesterly and is separate from the main group. Two other claims, Hidden Tresure No. 1 and No. 2, may be included if we want them. At this time only the twelve listed first are of interest. They lie mainly in the northern half of section 33, T45, R13E. They are 26 miles east of the Arizona State Prison at Florence, Arizona. The claims are owned by M. V. Deen and sons Tommy and Ronald. Mr. Deen receives mail at P. O. Box 879, Winkleman, Arizona, 85292. His phone number is (602) 356-6742. Copies of ownership, claim location notices and affidavits of labor for annual assessment work will be sent to Walt Howarth with a copy of this report.

Alcoa can obtain an option from Mr. Deen by (1) drilling two or three exploration holes and allowing the work to be used for this year's assessment work (due August 31, 1974). We would then be allowed three to six months to actively conduct metallurgical leach studies and preliminary feasibility studies to see if the deposit could be made commerical by solution mining techniques. If these studies are negative Alcoa drops the properties with no cost outlay, but giving Mr. Deen the results of our work. If the studies are affirmative then (2) Alcoa pays Mr. Deen, et al, a negotiable amount of money per month, probably in the \$400 to \$600 range. These monies are paid until the property is put into production. At that time (3) Alcoa pays 10% of the net smelter return, less transportation, on the copper and any other values recovered. No end price was set and is presumably negotiable. A contract should be drawn up and presented to Mr. Deen at this time.

GENERAL GEOLOGY

The basement rock in the area is Precambrian Oracle granite. It is cut by Younger Precambrain diabase. Paleozoic sediments are absent in this part of the Florence-Ray district. Laramide activity began with the intrusion of quartz diorite which occurs mainly as east-northeasterly trending dikes. This was followed by the Grayback granodiorite. The Granite Mountain porphyry intrusion preceded the ore fluids that formed the porphyry copper deposit at Ray. Therefore, we completed the intrusive activity.

G. C. McBride June 26, 1974 page 3

All the Laramide intrusives show some measure of copper mineralization, usually along their contacts. Notice interly trending faults, with or without quartz, locally interin copper mineralization. The widespread mineralization oupled with known favorable structures, line ments, rock types etc., have made the general area popular for exploration during the last few years.

THE WOOLEY MINE AREA

The old adits and shafts previously described are located within or near a small breccia structure. The structure is within Precambrian Oracle granite, cuts Younger Precambrian diabase and may be cut by Laramide diorite dikes. The physical appearance of the diabase, diorite and andesite are very similar on surface and underground. Thin-section work would define this problem and probably give a good age range for the structure. The shape of the breccia is roughly "meat cleaver". The northern boundary is sharp along strong post-mineral faulting, although there is an apparent crackle zone present also. This boundary shows a steep northerly dip on the faults, but the breccia may actually dip southerly overall. The remaining boundaries are generally gradational, but can usually be pin-pointed within several feet. I.P. and ground magnetic surveys conducted by Alcoa in 1969 indicate the breccia could dip steeply to the south.

The fracturing within the breccia is usually healed with quartz. Pyrite and chalcopyrite followed the quartz. No evidence of other primary minerals has been found to date. Leaching and oxidation have produced a range of non-sulfide iron and copper minerals. Chrysocolla seems to be the most prevalent copper mineral. Sampling of surface and underground indicates an average grade of 0.5% Cu for near surface mineralization. With depth the grade could decrease if there has been surface enrichment. It could increase if there has been supergene enrichment. There is some evidence for both cases, but nothing definative. The breccia is very similar to San Antonio in appearance, but much weaker in mineralization. Tonnages could be similar.

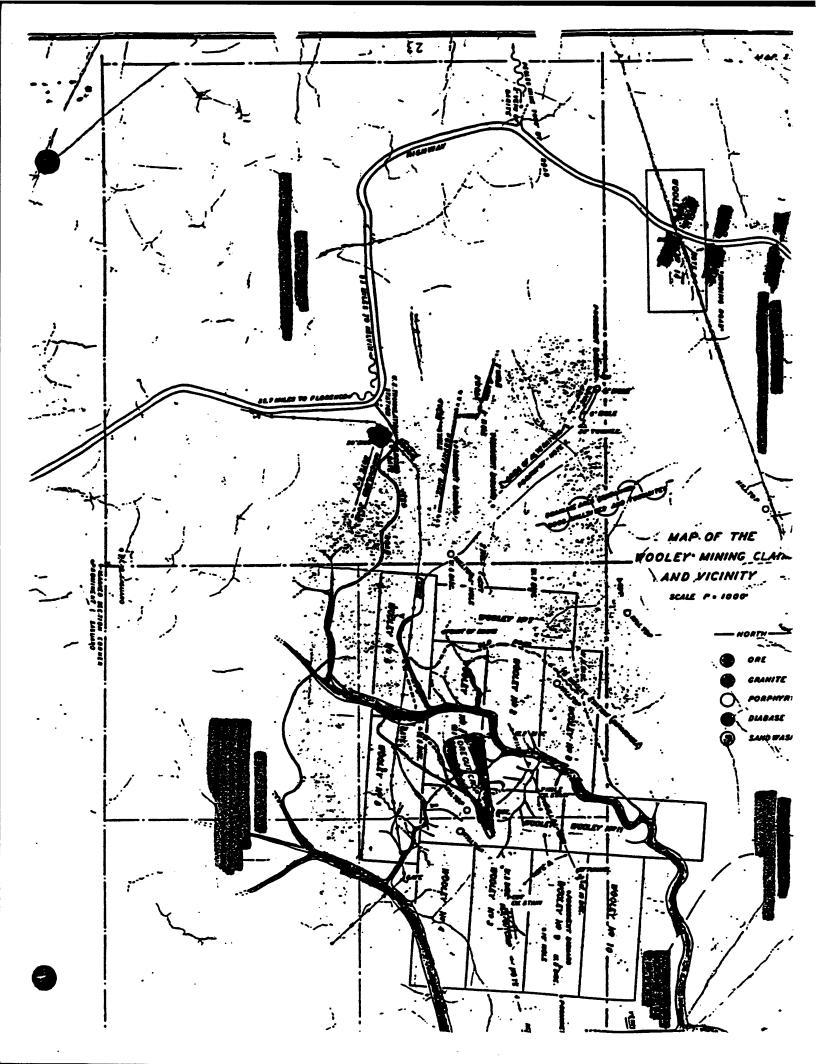
TARGET AND RECOMMENDATIONS

The target is three million tons of 0.5% copper that would be exploited by in situ leaching (blasting and solution mining) followed by iron precipitation. During the feasibility studies made on the San Antonio project Hackman and Carwile noted that a deposit of this type might be commercial in the United States under the right conditions. The Wooley deposit meets some of these conditions. Drilling three holes would give an indication of tonnage, grade and shape of the deposit. Hydrometallurgical

G. C. McBride June 26, 1974 page 4

testing would indicate if recovery of copper is sufficient. DuPont would provide the explosive technique and Harshbarger the hydrogeological control. Additional drilling would give the needed reserve data plus additional material for more hydrometallurgical tests. A final feasibility study would show if the deposit is commercial.

At this time I recommend obtaining a contract with Mr. Deen et al., for the land, have Longyear drill three diamond drill holes and have Alcoa do hydrometallurgical testing. A preliminary feasibility study would then be made to indicate if further work is indicated. This study is recommended at the end rather than the beginning of the program, because of the large number of variables. At the beginning the variables are so numerous as to negate a study. Following the study we would drop the property or pick up the option.


Due to the anticipated low grade the chances are low for a commercial deposit, perhaps 1 in 10. However, we can get an option for the land for no cash outlay. The drilling will probably cost less the \$25,000 and be completed in two to three months. The costs for metallurgical and feasibility studies are unknown, but would be done by Alcoa personnel, if available. Therefore, we have a chance for a partial evaluation for \$25,700 outlay, which is quite low at today's prices. If this first part is successful then we would be asking for additional funds for drilling, consultants, metallurgical tests, land acquisition etc.

C. W. Haynes

CWH: vg

cc: W. J. Colegrove, Phoenix Office

W. O. Howarth, Pittsburgh Office, (with legal attachments)

COPPER ANALYSES OF DDH WM-1 CORE

Sample No.	Interval	Copper
1	10-15	0.25% -
2	15-20	0.16-
3	20-25	0.12
4	25-30	0.30-
5	30-35	0.11
2 3 4 5 6 7 8	35-40	0.07
7	40-45	0.14
8	45-50	0.24
9	50-55	0.17~
10	55-60	0.16-
11	60-65	0.13-
12	65-70	0.16-
13	70-75	0.14-
14	75-80	0.16-
15	80-85	0.20
16	85-90	0.21
17	90-95	0.19-
18	95-100	0.10-
19	100-105	0.07-
20	105-110	0.21-
21	110-115	0.17-
22	115-120	0.39-
23	120-125	1.50 -
24	125-130	0.18
25	130-135	0.12-
26	135-140	0.11
27	140-145	0.49-
28	145-150	0.31
29	150-155	0.63 -
30	155-160	0.70 -
31	160-165	0.15
32	165-170	0.11
33	170-175	0.08
34	175-180	0.06-
35	180-185	0.06-
36	185-190	0.09
37	190-195	0.10
37 38	195-200	0.10
39	200-205	0.08
40	205-210	0.00
41	1 210-215	0.07 -
42	210-215	0.07
74	213-220	0.06

COPPER ANALYSES OF DDH WM-2 CORE

Sample No.	Interval	Copper	Sample No.	Interval	Copper
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	11-16 16-21 21-26 26-31 31-36 36-41 41-46 46-51 51-56 56-62 62-67 67-72 72-77 77-82 82-87 87-92 92-97 97-102 102-107 107-112 112-117 117-122 122-127	0.12%	33 33 33 33 33 33 33 41 42 43 44 45 44 45 55 55 55 55 55	167-172 172-177 177-182 182-187 187-192 192-197 197-202 202-207 207-212 212-217 217-222 222-227 227-232 232-237 237-242 242-247 247-252 252-257 257-262 262-267 267-272 272-277	0.27 0.27 0.27 0.17 0.15 0.15 0.22 0.21 0.18 0.26 0.16 0.26 0.16 0.33 0.16 0.33 0.16 0.33 0.17 0.18 0.26 0.19
24 25 26 27 28	132-137 137-142 142-147	0.34 - 0.19 - 0.15 -	56 57 58	287-292 292-297 297-302	0.10 - 0.05 - 0.07 -
29 30 31	147-152 152-157 157-162 162-167	0.11- 0.11- 0.21- 0.21-	59 60 61 62	302-307 307-312 312-317 317-322	0.36 - 0.15 - 0.08 - 0.05
		5.72			7.19 5.23

25

COPPER ANALYSES OF DDH WM-3 CORE

Sample No.	Interval	Copper
1	5-15	0.09%
2	15-25	0.13
3	25-35	0.11
4	35-45	0.14
5	45-55	0.10
6	55-65	0.06
7	65-75	0.02
8	75-85	0.03
9	85-95	0.04
10	85-105	0.09
11	105-115	0.10
12	115-125	0.22
13	125-135	0.10
		$t \sim \infty$

EXPLORATION COST

Longyear Diamond Drilling		\$10,859.63
Assays & Laboratory		377.60
Drill Pads & Roads		1,700.00
Materials for Core Shed & Miscella	neous	213.02
Geologist Expenses & Transportation Miscellaneous Labor	n and	1,195.20
Rent on Core Shed	TOTAL	\$14,370.45

Pages 28-33 WERE NOT PROVIDED

Randolph

430. Eberly, L. D., and Stanley, T. B., Jr., 1978, Cenezoic stratigraphy and geologic history of southwestern Arizona: Geological Society of America Bulletin, v. 89, no. 6, p. 921-940.

Red Hills

- Arizona Bureau of Mines, 1962, Folio of geologic and mineral maps of Arizona: Tucson, Arizona, University of Arizona, Arizona Bureau of Mines.
- 430. Eberly, L. D., and Stanley, T. B., Jr., 1978, Cenezoic stratigraphy and geologic history of southwestern Arizona: Geological Society of America Bulletin, v. 89, no. 6, p. 921-940.
- Ci7 436. Elsing, M. J., and Heineman, R. E. S., 1936, Arizona Metal Production:
 Arizona Bureau of Mines Bulletin 140, Economic Series 19, 112 p.

Ripsey

- 45. Anthony, J. W., Williams, S. A., and Bideaux, R. A., 1977, Mineralogy of Arizona: Tucson, Arizona, University of Arizona Press, 255 p.
- Arizona Bureau of Geology and Mineral Technology File data: Tucson,
 Arizona, Arizona Bureau of Geology and Mineral Technology, 85719.
 - 301. Cornwall, H. R., and Krieger, M. H., 1975, Geologic map of the Kearny Quadrangle, Pinal County, Arizona: U.S. Geological Survey Geologic Quadrangle Map GQ-1188, scale 1:24,000.
- Reconnaissance geologic map of parts of the San Pedro and Aravaipa valleys, south-central Arizona: U.S. Geological Survey Miscellaneous Field Studies Map MF-238, scale 1:125,000.
 - 430. Eberly, L. D., and Stanley, T. B., Jr., 1978, Cenezoic stratigraphy and geologic history of southwestern Arizona: Geological Society of America Bulletin, v. 89, no. 6, p. 921-940.
 - 526. Granger, H. C., and Raup, R. B., 1962, Reconnaissance study of uranium deposits in Arizona: U.S. Geological Survey Bulletin 1147-A, p. Al-A54.
 - 739. Krieger, M. H., 1974 [1975], Geologic map of the Crozier Peak Quadrangle, Pinal County, Arizona: U.S. Geological Survey Geologic Quadrangle Map GQ-1107, scale 1:24,000.
 - 741. Krieger, M. H., 1977, Large landslides, composed of megabreccia, interbedded in Miocene basin deposits, southeastern Arizona: U.S. Geological Survey Professional Paper 1008, 25 p.
 - 1050. Ransome, F. L., 1923, Description of the Ray Quadrangle: U.S. Geological Survey Folio 217, 24 p., maps.
 - 1125. Schmidt, E. A., 1971, A structural investigation of the northern
 Tortilla Mountains, Pinal County, Arizona: University of Arizona,
 PhD thesis, 248 p.
 - 1286. U.S. Bureau of Mines Files: U.S. Bureau of Mines, Denver, Colorado, 80225.
 - 1298. U.S. Geological Survey, 1969, Mineral and water resources of Arizona: 90th Congress, 2nd Session, Comittee Print, Washington, U.S.

Government Printing Office, 638 p. Prepared by the U.S. Geological Survey, Arizona Bureau of Mines and the U.S Bureau of Reclamation. 1420. Yeend, W., Keith, W. J., and Blacet, P. M., 1977, Reconnaissance geologic map of the Ninetysix Hills NW, NE, SE, and SW Quadrangles, Pinal County, Arizona: U.S. Geological Survey Miscellaneous Field Studies Map MF-909, scale 1:62,500.

Riverside (Kelvin, MD; sa Wooley)

- 4%. Anthony, J. W., Williams, S. A., and Bideaux, R. A., 1977, Mineralogy of Arizona: Tucson, Arizona, University of Arizona Press, 255 p.
- Arizona Bureau of Geology and Mineral Technology File data: Tucson,
 Arizona, Arizona Bureau of Geology and Mineral Technology, 85719.
 - Banks, N. G., 1982, Sulfur and copper in magma and rocks, Ray deposit, Pinal County, Arizona, in Titley, S. R., ed., Advances in geology of the porphyry copper deposits, southwestern North America: Tucson, Arizona, University of Arizona Press, p. 227-257.
 - 182. Bradfish, L. J., 1979, Petrogenesis of the Tea Cup granodiorite, Pinal County, Arizona: University of Arizona, MS thesis, 160 p.
 - 298. Cornwall, H. R., 1982, Petrology and chemistry of igneous rocks, Ray porphyry copper district, Pinal County, Arizona, in Titley, S. R., ed., Advances in geology of the porphyry copper deposits, southwestern North America: Tucson, Arizona, University of Arizona Press, p. 259-273.
 - 300. Cornwall, H. R., Banks, N. G., and Phillips, C. H., 1971 (1972), Geologic map of the Sonora Quadrangle, Pinal and Gila Counties, Arizona: U.S. Geological Survey Geologic Quadrangle Map GQ-1021, scale 1:24,000.
 - 301. Cornwall, H. R., and Krieger, H. H., 1975, Geologic map of the Kearny Quadrangle, Pinal County, Arizona: U.S. Geological Survey Geologic Quadrangle Map GQ-1188, scale 1:24,000.
 - 302. Cornwall, H. R., and Krieger, M. H., 1975, Geologic map of the Grayback Quadrangle, Pinal County, Arizona: U.S. Geological Survey Geologic Quadrangle Map GQ-1206, scale 1:24,000.
 - 318. Creasey, S. C., Gambell, N. A., and Peterson, D. W., 1975, Preliminary geologic map of the Teapot Mountain Quadrangle, Pinal County, Arizona: U.S. Geological Survey Open-File Report 75-314, scale 1:24,000.
 - Jamon, P. E., 1970, Correlation and chronolgy of ore deposits and volcanic rocks: U.S. Atomic Energy Commission Annual Progress Report COO-689-130, 192 p.
 - 351. Darton, N. H., 1925, A resume of Arizona Geology: Arizona Bureau of Mines Bulletin 119, 298 p.
 - 430. Eberly, L. D., and Stanley, T. B., Jr., 1978, Cenezoic stratigraphy and geologic history of southwestern Arizona: Geological Society of America Bulletin, v. 89, no. 6, p. 921-940.
 - Arizona Bureau of Mines Bulletin 140, Economic Series 19, 112 p.
 - 455. Evensen, J., 1961, Geology of the Copper Hill area, Winkelman, Arizona: University of Arizona, MS thesis, 45 p.

5:> 200 .005.56 SULFO- PRECIOUS SALTS METALS .cof 6.7 PAGE L OF B 27/5 ca 0.3 de3 3.5 88 5.1. 0.0 04/40 Au Ag 024 6. As Sb Pb Zn BASE METALS 3 W Acatsol Total F HQ PATHFINDER ELEMENTS U308 eu eTh RADIOACTIVE ELEMENTS Cse gr gramitog por, grawik Daflico grantic al Bratau Milway ap guld, Amite, arguific potte Sheared Wabose? choup 912-magnetite vom zome Vot 4816-13 50 ft shear zone, Kalt gr. with wit sila, by a GOS Dump - West shark Scilegt Sample or 2.3 it willing the Leg Mine winn, Bright Slive after Spyraga WK pprite att grants ut LITHOLOGY AND MINERALIZATION Kap Apple Ame 1615512 altowa granst dinois penetio quit diath no is thoused gite grant Goneral Dump Sample grant Guartied merola DESCRIPTION 42 near guild FX Mouth of gulled Gras Shuth Med Grilsto west and whis Tradua vidage STATE cut odi To Dump - Horte GEOGRAPHIC } Wesh > LOCATION 145 P136 114/114 See 31 55/5E 6@11 745 19/3E 56/56 500 B 30/54 SOC 9 Kelum LEGAL 1 ? ` 1 PROSPECT COUNTY 4824 1873-S 48840 SAMPLE *4871-1*5 4884-B 4884-4 4884C 1870-487.4 2850 4884 4871

I VALUES IN PPM EXCEPT "TOTAL BARIUM" WHICH IS IN %

PROSPECT COUNTY __

282 105 0.8 5.2 5.5 07.38.7 016 47.7 045/48 の子へい 185 116 PAGE 2 OF B Sb Au A0 100 800 8 1003 SULFO-SALTS ě Pb Zn BASE METALS £. £ ELEMENTS AcidSof Totol PATHFINDER ` U30g eu eth Soleatet minstal gtz, Imank HATESSIC OIT, PP, ChA Stavel distass - chlurk Lank Timburg Chan William to 32 of the 3ft Sample of Sheard pyral chlorite of the sheared Water z Et 1"10h° E.W shar in Ex giante Yetz word-zwi 50 To 100 Ft 4190, Edger zong Week Leynto 4. Silver Houton 5 t't Samme of Steer C.S. W. St. - Supile - Suberto - Subuta Whonk Ages Web Charle Sporon Silverite D. LITHOLOGY AND MINERALIZATION Fine-gr gran to - Chlorita DESCRIPTION Shart Adit East Book How Wash was a few Wash was was West Cut Wooley Bx App Adap NAE at Val. Out mear gate en raed to l'abaley Start Base GEOGRAPHIC 10001 ; 1/2/01/01 1 LOCATION 115/11 SQ 23 56/11/2 SOL 32 145 1935 SWINE SA 32 TAS 1913E 15 A 8 13 E 145 A3E 115/510 SM 15 45/1111 54 15 745 P13E LEGAL ` 1 1 1 4885-4 4909.4 5.486 1885 SAMPLE ABBS-15 4910-4 7-6164 A10-B 4889-1 4909 4910C 000 4910

I VALUES IN PPM EXCEPT "TOTAL BARIUM" WHICH IS IN %

PROSPECT	T Kelum -	Ripsey					•	SAMPLE	Ä	907						
COUNTY	lins	STATE	12										PAG	PAGE G	9.	00
SAMPLE		LOCATION	DESCRIPTION	RADIOACTIVE ELEMENTS	PAT	PATHFINDER	1	ELEMENTS		8	BASE ME	METALS	SS	SULFO- SALTS	PRECIOUS	Sno
	Щ.		LITHOLOGY AND MINERALIZATION	U30g eU eTh	\vdash	₹,	Acresor Total	10 m	£.	3	% %	Pb Zn	 	S	₹,	A Q
3-0165	54/54 Sea 23	Exide y Jegoran	Statested & Bx Gobes or Onto	7	-	5	-	-		1		-		_		7.5
					-							-		_		
4-016-6	//	,	chourte att 1947 green Char	<i>S</i> .	-			L					_		900,	6.2
4910-6	,,	*	the forest of the species of the spe												200	67
•			COLUTE & SAUX COLUTE		_						-	_	_	_		
4-064	1		Stattered Clabase - gordots				_	-				-	_		ò	3
			with united tast?		_			-			-	_	_			
		Ripsey Avan.			-		\vdash	Ļ			┢	┢	<u> </u>	<u></u>		
1104	114/5E 5ea 10	605-445 F) das	weak pyrine althe payling		-		-	<u> </u> -			\vdash	\vdash	-		7	20
	1				-		\vdash	-				┞	_			
4/104	×	The deliagent se	Breen and the				\vdash	_			\vdash	-	<u> </u>		Ŕ	12
			Į		-		-	_			-	-	_			
4911.8	1455 CM 11	Ent Pose WASA	WK Pyrite alta									\vdash			85	4.2
2-1164	55/11/2 See 11 155, 1935	SAVF ESTE WAS	For loss AVITA- argilla alta populy												200	0.2
	`											-	_			
0-1164	"	, ,	Shakered syrthe althe Dusana Soo Stale												, 0	0.5
			0.1.													
3-116H	56/56 54211 7.55 19.36	Mil foundation	These zar of had at cut Weste 4 percet												200	42
7-116H	,	"	Heaved aubose - chloris									-			600'	4.2
											\dashv					
9-1164	ì	Sal all Mill	Arrite 4/toral excellents		\dashv		\dashv					\dashv			(8)	25

I VALUES IN PPM EXCEPT "TOTAL BARIUM" WHICH IS IN %.

PROSPECT	Kellum	- Pasey					SA	SAMPLE	90						
COUNTY	final	STATE	Arizona									PAGE	PAGE A OF	å	al
SAMPLE		LOCATION	DESCRIPTION	RADIOACTIVE ELEMENTS	PATHFINDER	1	ELEMENTS	VTS	BASE		METALS	SULFO- SALTS		PRECIOUS METALS	SS
	LEGAL	GEOGRAPHIC	LOGY AND MINERALIZATION	U ₃ O _B eU eTh		N AcidS	AcidSol Totel	Ŧ,	3,	Mo Pb	uZ ^s	, Ae		Au Ag	•
4918	115/50 Sec 15	Mait - E. Bank	Z.S. F 100 Hang vel - B. grans	Q)/									- 1	262 0.4	4
		5 state Aur Line													
49/84	//	`	1.5 ft NW Francing Vein DE Shok Homatite & Macox										<i>E</i> 3	3.03 2	25/
														-	
8-8165	71	,,	2.5 FT ON S SI de OF UNIA		·								3	5.00 /	8.
_		. v.	minor Mematite Ilmonth										ᅱ		
1000	ì	1	3 ft - from 21570 515 ft on										~	0630	0.2
			minor starte 0												
000	"	×	50 for sample and with aft			_							_\%	> (00>	4.2
7.01			Same Comments								_			-	
7-80	*	30 It could	564 clay-510, 011, 100 4											700	×.2
											\dashv		ᅦ	\dashv	
49/9	UNJUN SER 13	Sharp ridge W	WA PYTITA Grante Lut by	3412							\dashv		7	0//0	07
		┡													
100	56/36 Sed 9	FIRST Shart I	Solutor 3tt Sille. Bx										7	252 6	25
<i>b</i> =77727		Frout Ges. Cor.	9 110					•							
4919.8	//	"	Sifter Pred dike - nemetiti										7	040	0.7
										-				-	
1000	WE/WE 642 15	First wash to											- 1	384//	12.2
	a)		granite por aike												
4919.5	55/11 501 15 +4. P/7 F	ZNE Wash East	25ft sample - NW Trend -										7	450	3
			1								_			_	
4010.F	,	Ott "mesant ())	- 34 - 50mple - Jun Tray & Stray											144 8	86
			a			\dashv				-	-		1	+	
1-616t	,	under Parer ling	The all granie att. To wan					-		\dashv	-		Ť	176	27.0
	ייי אָרָבָ יִין רפּאָן E ‹CEPT "TOTAL BAPILM" אאוכא וא ייי	BAPILM" MHICH IS IN %	٠.												

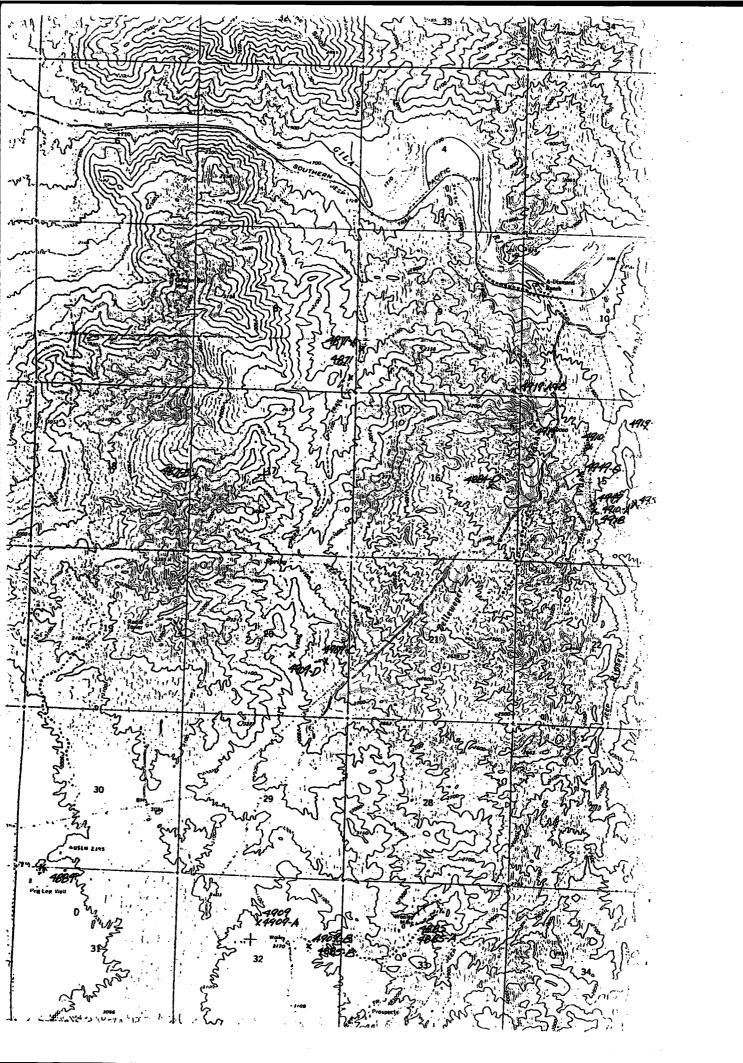
STATE

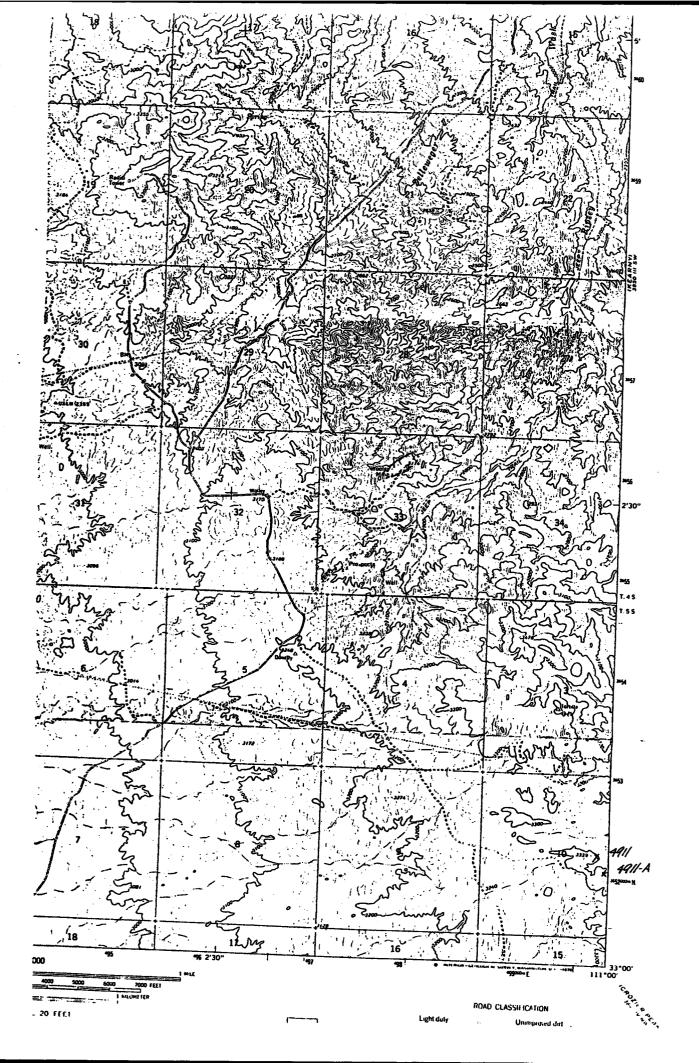
16/11/11

PROSPECT_COUNTY

ACHO. 303 4.2 005 0.3 SULFO- PRECIOUS SALTS METALS 111 3.3 PAGE SOF SO 0000 .01/3.2 2.3 Au Ag 86/12 Ñ 11/20 02d 0.7 04/23 B 333 84 25 As Sb Pb Zn BASE METALS ŝ 3 £. PATHFINDER ELEMENTS W Acresol Totel F RADIOACTIVE ELEMENTS U₃O₈ eU eTh Let in the steered Dy of The grant 19 (ut 1-2 H bow low Su gum 35 ft sample at Dressula grant salest of 3mch to 1ft giz-py 1mm above hw. Leha 10 ft sample Ox grant ago. 2.58/25 on 1910 ftg. Wall broaded, Anox - Ando Imonit water on Hou 6 neh chear - chage Anox Wast-Bout 14. 30 ft sange of Sx grants Excelle Lint E-W. Sheaving & Mr. Dx LITHOLOGY AND MINERALIZATION 2H Stear With 2-3 GTE Sellector steins Solut of 6 inch glz-p you retried on the wall 1 ft magy giz-py ven 18th 5-414 8TZ VAM GAG 1.5 ft sheor W/ z wek ate - carbonato vivis 4- 6100h gtz. Vern DESCRIPTION and Shaffacult Hay Sof Party 11 - 4 FF NOTA 65 FT Not All + Gast Book 35 ft Not Hilt 3014 Not 441 400 Ft Mot Het GEOGRAPHIC Sulleyn UPIN ` 1200 At ` > ; LOCATION NE/54 54215 T45. P/3E SF/NE SOR 15 TAS, PLISE 5E/110 50215 T45 P13 E LEGAL ` > ; > • 1 \$ > > 4949.4 9-49-6 1947-E 4949 SAMPLE 4942.8 405 49496 1949.0 49.D.C 4950-4 4850-13 4950

PROSPECT


SAMPLE		1004101		240,000	Į.												
UMBER		•		ELEMENTS	u .	PATH	PATHFINDER		ELEMENTS	Z.	8	BASE M	METALS		SULFO- SALTS	PRE	PRECIOUS METALS
	רבפ	GEOGRAPHI	LOGY AND MINERALIZATION	U ₃ O _B eU eTh	E	_	*	AcidSol 1	200 200 7	Ĩ.	3	ş	PB 22	+-	8	₹	8
7000	56/1/E 542.15 745 19/3E	and chart 3nd auth E at Aga	Golast Sample et yark hengatie		-	-			╁	+	_	_	_	7-		1	
			Madely the 3tt by 1/2 She						-	-			\vdash	\vdash	_		
													\vdash	\vdash	L		
1980-F	/	*	10-15 foot wide funts grante		_									-		2/0	1/4
	*	Val Cut on Exal	Does well as they					H							_		
73.80 \$			alla par		\dashv	_		\dashv	\dashv							010	01833
1001	"	Ridge above Cat	20 - 30 ft, zone of showed	+	_			\dashv	+	4		+	\dashv				
		_	An Statute of their bather with		+	\bot	I	\dagger	+	_		+	+	-		ġ	22
4-1504	1	South Vin	13	+	+	$oxed{\Box}$		\dagger	╬	_			+	-			T
			fat will be sill garde on	-	+	$oldsymbol{\mathbb{L}}$		+	+	_		\dagger	+	-		ġ	4.7
8-150	"	Hill about	1 S/1/69	+	┨-	$oxed{\Box}$		+	+	\bot	I	\dagger	+	\bot		1	
				+	\downarrow	\prod	T	\dagger	+	\downarrow		\dagger	+	1		3	<u>{</u>
7-1584	. "	,	2 ft pynha alta Bx						-	_		\dagger	+	_		8	5
\dagger			ì							_			_	ļ			
4821-0	*	Westal State	5 KT - EWS has red					_	_	_		-	\vdash	L	·	8	12/2
		-					H		\vdash				\vdash	_			
#152	*	Farte at wash	Jung - State or received										_	_		19	9
1		Cut men Tap	1 44 Bx 012 4 hom In atthem					\dashv	$ \cdot $				$\left \cdot \right $				
47254		of ridge above adit	HANN 35 NE		\bot		\forall	\dashv	4			\dashv	-			954.09	99
4952.0	"	"	Aft ykpy eso grants	+			+	+	+			-	-			7	
			The state of the s	-			+	+	\bot			+	+	1	Ì	8	0.7
495ZC	"	, , , , , , , , , , , , , , , , , , ,	3ft "souted" clay - chlorid				$\dagger \dagger$	$\ \cdot\ $	\sqcup						— `	8	72,7
				-	_	_					-	-	L			l	Γ


PROSPECT

W	11/35 11/35				34100000	PATHFINDER	FIFMENTS	Į.	BACE		METALE	SUL		RECIO
The state of the state of contact of the state of the sta	35	LEGAL	GEOGRAPHIC	LOGY AND MINERALIZATION	U308 eU eth	3	185	-	3		2 2	SAL		ETAL
The first of the search of the	2.2.5	. V	Hair & cur at Wash Lock.	or brush giz-py				7						-
" " " " " " " " " " " " " " " " " " "	52.E		Cump at add					+		+	-			<u> </u>
" " " " " " " " " " " " " " " " " " "		//		t showed nout				+		╀	+		\dagger	100
" " " " " " " " " " " " " " " " " " "				57ring erst				+		+	-		+	<u>}</u>
" " " Could be to the time of the time of the time of the time of the time of the time of the time of the time of the time of			ie	Kt Sample By			+	+	1	+			t	+
" " " " " " " " " " " " " " " " " " "			R	Clift or VE		+	+	+		+	-		1	
"" " " " " " " " " " " " " " " " " " "			"	tr sample			+	+-	1	+	-		+	
" " " " " " " " " " " " " " " " " " "				50 2000			+	+	1	╀	1		9	
"" SA OF SA WARE WELL OF FORE SALE SAME. "" SA OF SALE WARE SALE SAME. "" SA OF SALE WARE SALE SALE SAME. "" TO SALE WARE SALE WARE SALE SALE SALE SALE SALE SALE SALE SAL	53.8		West	the at subhar			+	+		+	I		+	
" STATE TO STATE THE TO STATE							-	ig		+	1		+	
Sold of Englands Wood - grow Sail growth Sold Wood - grow Sail growth Sold Wood Sold Wood Sold Brown Sold	101	"" See"	Topok Video	- 812-Spec				+		+			+	1
"" STORE STORE WHILE STORE STO								-		+			3	3
Sel alt west Escrit 25 Miston manifes of Exgraph " Hossay for The Same of Exgraph " Hossay for 35 Miston manifes of Exgraph " Same from Imonite " Same f				- Juga	Ø.			\downarrow	ŀ	+	1	1	+	
Set all the start 25 th sample at Sx graph "" thought lit 3 th of Sylvered Sife graph "" thought lite in 3 th of Sylvered Sife graph "" the start was to a same a start with the time and the sylvered Sife graph "" " " 3 th of your shart with the sylvery was a start from a sample - solvery from a sample at silvery sample - solvery from a sample at the material from a sample was sample and sample at the material from a sample was sample and sample at the material from a sample was sample and sample at the material from a sample was sample and sample at the material from a sample was sample and sample at the material from a sample was sample and sample at the material from a sample was sample and sample and sample and sample and sample at the material from a sample was sample and s								-		\vdash	1	T	1	
11	1000	2 Saph	1.0 E bank	25 H sample at Br gray		_		-		F		\dagger	+	1
Salle Salle Salle Salle Stated Sille Frank. Salle Sal				hat sale was a sale			+	\bot		+	brack	\dagger	<u>,</u>	2
34/11 92/4 Cut add to a sold the ten timenite 1				of Sheared Silly gam	*/·		+	1	İ	+		+	19	_
34 11				gue um aradeu		+	+	1		+	I	\dagger	d	
16 Star West Start Law - Warte alth 15 Start Law - Warte alth 15 Start West side was Composed and Start 15 Start West side was Composed by Start high 15 Start West side was Composed by Start high 16 Start West side was Composed by Start high 17 Start West side was Composed by Start high 18 Start West side was Composed by Start high 19 Start West side was Composed by Start high 19 Start West side was Composed by Start high 19 Start West side was Composed by Start high 19 Start West side was Composed by Start high 19 Start West side was Composed by Start high 19 Start West side was Composed by Start high 19 Start West side was Composed by Start high 19 Start West side was Composed by Start high	3/2	13/18	+-	12			+	\bot		╀		\dagger	+	- '
16 SE SOLL West side was Count and Select high			E side wash.				+	1		-		\dagger	2	Ŏ V
VEST SEL West side was sample - select high		`		day - delonto			_	1	T	+	I	\dagger	+	
15/55 5061 West 510 West 2000 Sample - Salvet high				10			-			+	I	\dagger	3	
	16		5100 Wash 1940	Sample			-	_		-		+	+3	, N
										-		\vdash	-	
										-		\vdash	\vdash	igert

PROSPECT

01/ 5% PAGE & OF & SULFO- PRECIOUS SALTS METALS 030.2 02 0.3 003 0.7 38/ 2.5 9.0 20 31/16 02 4.2 Au Ag 1.6/ 22/20 009 6.6 100/ As BASE METALS Pb Z 30 £ PATHFINDER ELEMENTS Acadsol Totol F <u>`</u> U308 eU eTh Bx ground - I'm outed May BK granite, minor gtz uts AT Granto @ Sent saylle 414 Br. Gs. Sevials year Hylle others grand 4ft on Hwall at upin Clay all grante up then lim seams Arife of the Corpus Bx Wadded Seriate west odge phythe a th. Bx ab estilles ells edges from the at to a cossen ay vite LITHOLOGY AND MINERALIZATION 114/11/11 Self Swart of East 2 ft Bx grants of Males wit pyrine afta diabase 4ft Bx gravite - Imanipa 1.5ft NW Trend gtz-Py 1111 - de 25-30 W. DESCRIPTION 42 STATE ___ 145 5 20215 500 HT 5 OF 174181 745 1736 4mp - 151 Guildh E OF. 171865 NE/WW SEE/4 SFK at Eist Paget 11a pit -5 51000 Hill an E 5.00 ord Hagaret battom at week Wash Eost 10/01/2 cm Howthor adil I VALUES IN PEW EXCEPT "TOTAL BARIUM" WHICH IS IN % Prospect on GEOGRAPHIC Na gbow þ LOCATION 114/11/10 See 14 NG/NGA GOB 15 FAS 1813E LEGAL ŧ 1 > ; 1 COUNTY _ 4956-4 4950 SAMPLE 4266B 4956F 4857 48574 1856 A86-C 4956-1 1956-4 495/2 4958

Date: September 25, 1983

Professional Report Describing the Kelvin Property-Johnson Holdings Mineral Creek Mining District, Pinal County Arizona

by Richard J. Lundin , Mineral Exploration Consultant

WALLABY ENTERPRISES

Mining District Data Base Program

1. Mine or Property Name:	3a. Quadrangles or Map N
Kelvin Property-Johnson Holdings	Grayback 7½' USGS Top

- Mining District, County & State: Mineral Creek Dist., Pinal County AZ
- 4. Any Former Names: Zelleweger Mine, Black Copper Claims
- 5. Owner: John M. Johnson, Century Copper & Molybdenum Co. & the Estate of A.H. Johnson
- 7. Operator: Leased to Wombat Mining Co.
- 9. Principal Metals: Cu, Mo, Au, Ag
- 10. Mining & Milling Operations: Kinds & Capacities

- ames: ographic Map
- 3b. Location: T4S R 13E S 8,9,17 (see Figure 1)
- 3c. Lat. _____ Long.
- 6. Address (Owner): 1201 Overstreet, Prescott
- Arizona 86301 Address (Operator): 3425 W. Bardot St. Tucson AZ 85741 (602) 744-2700

1555 Iron Springs Rd, Ste 39 Prescatt AZ 86301 (602) 4-45 - 9354

Present:

Past: Small pilot plant on property during the 1950's to concentrate Molybdenum ores. Approximately 1000 tons of past production of Au-Cu-Ag-Mo ores from the Zelleweger Mine.

- Number of Claims, Title, etc. (Please include a sketch map or plat showing 11. location, T. R. & Sec., and the general outline of each group) 57 unpatented federal lode claims, registered with the BLM. (see figure 1 for the location of the holdings)
- 12. Previous Published or Unpublished Reports: E. Schmidt (1971a, 1971b), ADMR File Data, Numerous unpublished company reports by Cities Service, Cyprus, Hanna-Getty, Minbanco, Tipperary Resources, Kerr-McGee, Inspiration and Wombat Mining Co.
- 13. Names of Mining Companies or Governmental Agencies that have worked, or are now working on this property. (see list above) and the Arizona Department of Mineral Resources, U.S.B.M. and U.S.G.S.
- 14. Ore & Ganque Minerals: chalcopyrite, molybdenite, chalcopyrite, cuprite, tenorite, azurite, chrysocola, malachite, sphalerite, pyrite, galena, native gold and minor argentite, uraninite and scheelite.

LUYU Z UL J

15.	Geo 1	ogy:
		~ 53 .

(please include any Geologic Maps, Sketches or Cross Sections)
Precambrian Oracle Granite intruded by later Precambrian diabase sills and dikes. The entire Precambrian section is intruded by dike swarms of Laramide age that trend east-northeasterly and range in composition from quartz monzonite to quartz latite and rhyolite. The dikes may be related to the 62.9 mybp. Grayback granodiorite stock. (see figures 2-5 for further information)

Cu-Mo mineralize that range from chalcopyrite-mo in veins and st a strongly ftra and Precambrian molybdenum mine striking altere striking silici and stockwork m	ralization-Metallurgic appropriate box or lation associated with phyllic-potassic. Py lybdenite mineralization ockwork mineralization ctured and altered made intrusive rocks. Lateralization is associated and silicified zone fied shear zones. Most ineralization is deep ith the E-W striking	coxes) a alteration assemble rite cion occurs on throughout ass of Laramide are gold and ated with NW as and E-W at disseminated oly buried (1000-15)	lages Vein or Lode Stratiform Disseminated Placer Oxide Sulfide Other
17. Ore Reserves:	Dumps	tons @	grade
average .60% Cu	Tailings eserves from CSMC dri with Mo and Au credi uipment & Flow Sheet:	ts.	grade 0,000 tons of material that would

- 19. Road Conditions, Route: Good roads to property from Kearney and Florence and good access throughout the property due to past drilling activity.
- 20. Water & Power Supply: Water available from the adjacent Gila, 1000 KVA powerline cuts through the property, active railroad main line cuts through the property.
- 21. Extent of Development: (Please include any maps, plans, sketches, longitudinal or cross sections of underground or surface workings)

 Partially delineated porphyry Cu-Mo deposit with numerous small pits and shallow workings on high grade Cu, Mo, Au fissure veins and oxide copper gossans. (see figures 2,3 & 6)

1 - 0

22. Brief History: Prospecting in the Kelvin area was probably initiated in the period 1910-1920. The Zelleweger claim was patented in 1924 and it is reported that \$40,000 in gold, copper and zinc was shipped from the claim in the period 1920-1930. In 1933 Mr. A. H. Johnson located several "Black Copper claims" and prospected surficial outcrops of gold-copper-molybdenum mineralization. He constructed a mill on the property in the 1950's and shipped several carloads of Cu-Mo-Au concentrates. Johnson and his sons continued prospecting the area until the property was leased to a series of several companies. (1967-1978) Leased to Wombat Mng. Co in 1980.

23. Previous Sampling, Drilling & Other Studies on Dumps or Tailings: 13 core or rotary holes have been drilled to depths of 2500'. Six of which have encountered ore grade material over intervals greater than 50 feet. (see figure 5)

Reports, results and core available for inspection.

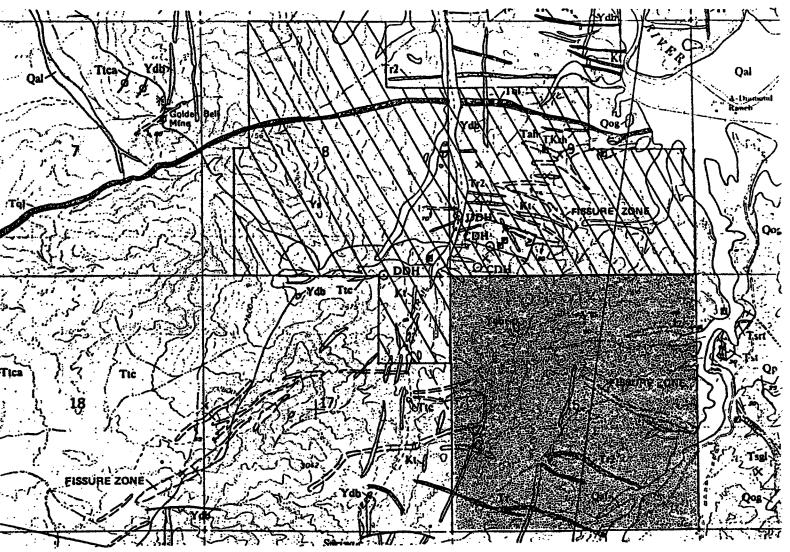
24. Environmental-Social-Political Conditions & Considerations:

The area is one of extensive past mining and exploration activities. It is adjacent to a proposed resevoir withdrawl area and is adjacent to the Gila River and Southern Pacific main line from Kearney, 1000 KVA line transects the property and the property is 3 miles away from the Ray Mines Division of Kennecott Corp. open pit mine & smelter.

25. Sampling:

Extensive sampling done by many companies. Reports and results available. Sample Nos:

Sample Types or Types:


- 26. Assaying: Numerous assays available from surface work and drilling operations.
- 27. Financial Terms, Conditions & Considerations: Property currently under lease to Wombat Mining Co. Sublease with option to purchase available.
- 28. Remarks: Geologic mapping and geochemical sampling of areas with outcropping Cu-Fe mineralization delineated an area with strong alteration and anomalous Au values. Further drilling needs to be done to test these areas as potential bulk tonnage gold targets with accessory copper values.

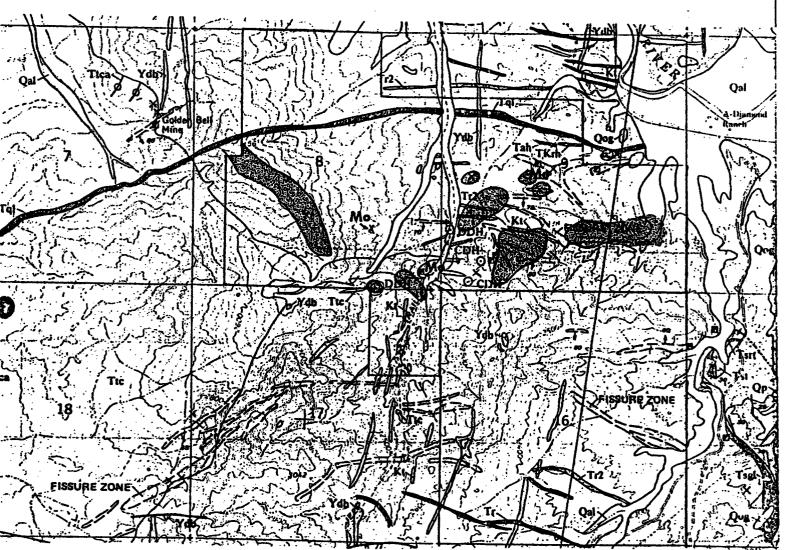
29. Date: <u>September 25, 1983</u>

Richard J. Lundin, Mineral Exploration Consultant and President of Wallaby Enterprises Inc. has a BA degree in Anthropology and Geology from Beloit College Wisconsin and 10 years experience in the evaluation of base and precious metal deposits in the United States and abroad.

WOMBAT MINING COMPANY 3425 W. Bardot St. Tucson, Arizona 85741

LEGEND-Figure 1

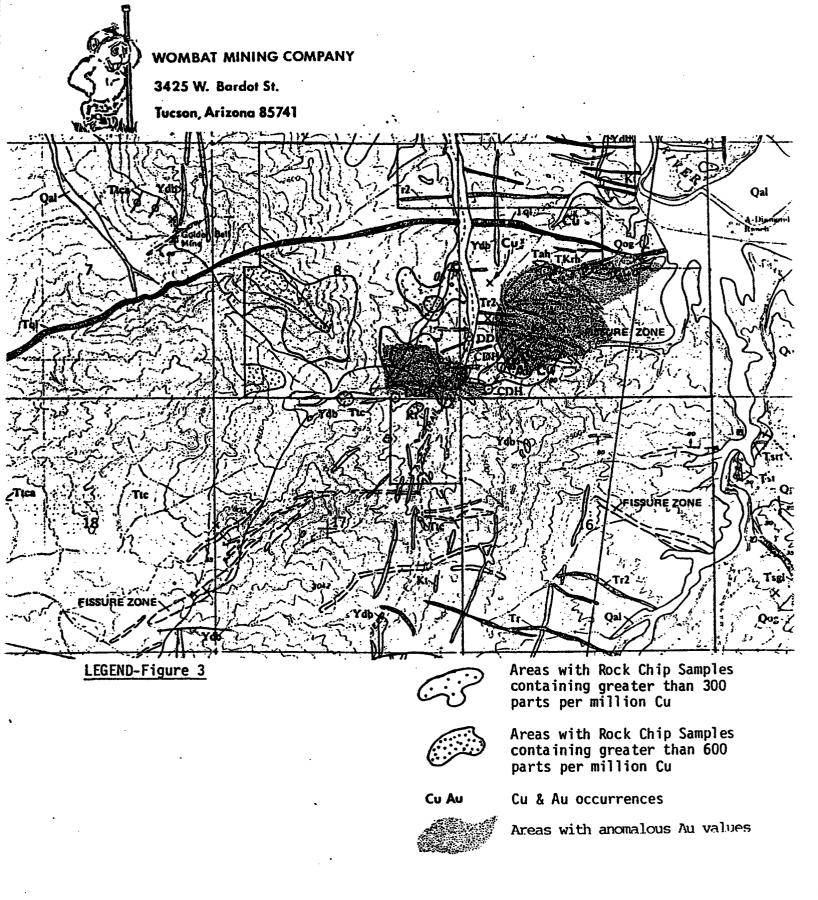
Claims leased by Wombat from J. Johnson et al


Arizona State Prospecting Permit held by Wombat

Patented Claim owned by Tipperary Resources Corp.

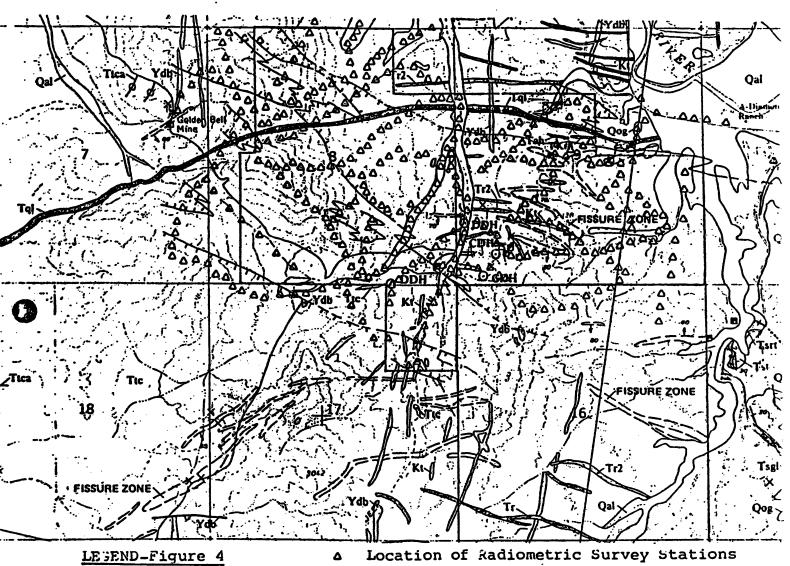
WOMBAT MINING COMPANY

3425 W. Bardot St. Tucson, Arizona 85741

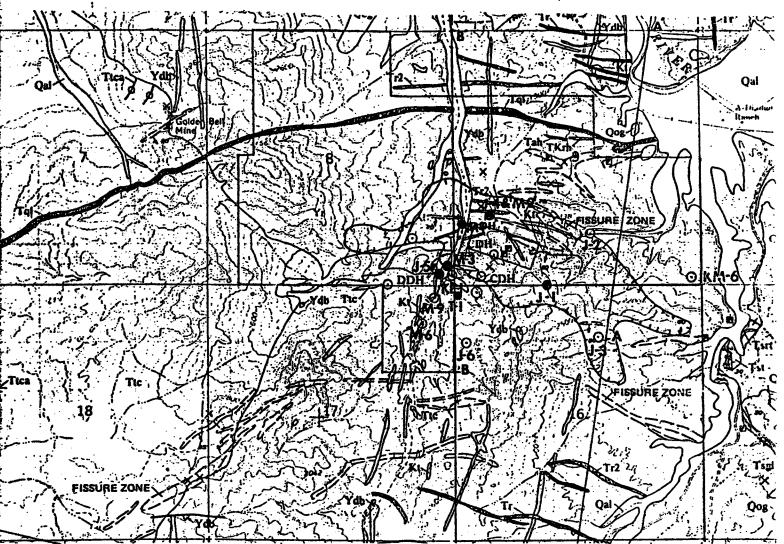

LEGEND-Figure 2

Areas with Rock Chip Samples containing greater than 10 parts per million Mo

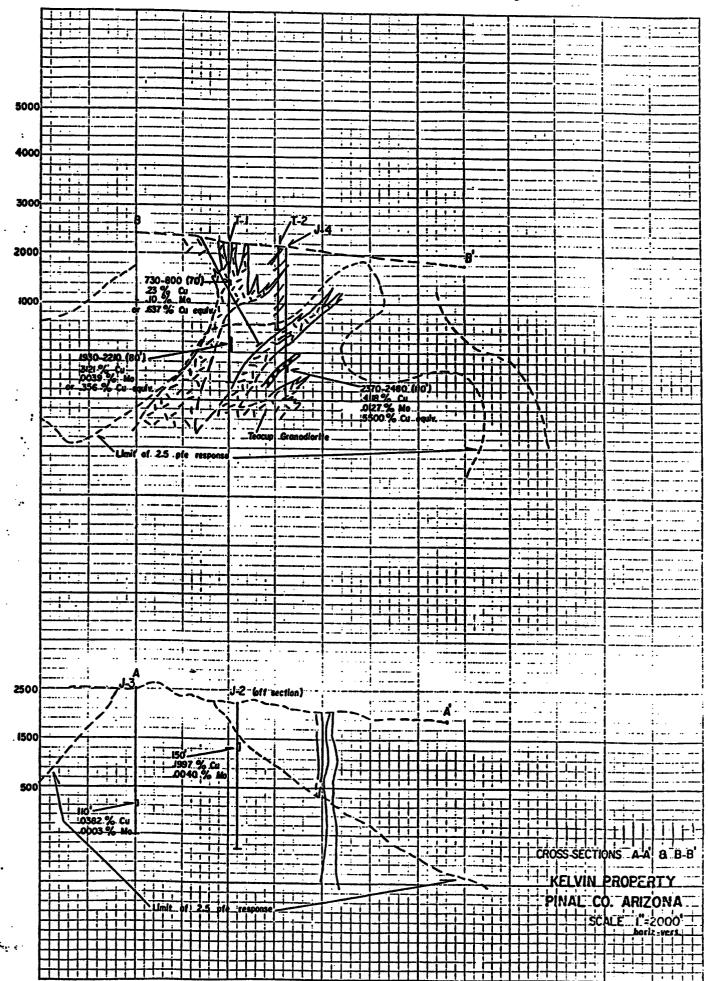
X Mo


Molybdenum occurrences

WOMBAT MINING COMPANY


3425 W. Bardot St. Tucson, Arizona 85741

Limit of Radiometric Anomalism



WOMBAT MINING COMPANY 3425 W. Bardot St. Tucson, Arizona 85741

LEGEND-Figure 5

- Drill holes with ore grade intercepts greater than 50 feet
- O Drill holes with ore grade intercepts less than 50 feet
- Limit of 2.5% PFE anomaly at n=1
- Location of Cross-Sections A-A' & B-3'

ATTACHMENT NO. 1

The following unpatented mining claims situated in Sections 8,9 & 17, Township 4 s., Range 13 E. GSRB & M of Mineral Creek Mining District, Pinal County, Arizona, location notices of which are of record in the Pinal County Court House, are the subject claims to that certain Option Agreement and are attached thereto and made a part thereof and more fully described below:

Name of Claims	Federal Serial Nos.	Reco	rded
		Book	Page
Rare Metals No. 1	A MC 63542 A MC 63543	51	
Rare Metals No. 2	A MC 63543	51	229
		Docket	
Rare Metals No 3	A MC 63544	. 77	117
Rare Metals No. 4	A MC 63545	77	118
Rare Metals No. 5	A MC 63546	77	119
Rare Hetals No. 6	A 4.C 63547	77	120
Rare Metals No. 7	À F.C 63548	186	127
Rare Metals No. 8	A MC 63549	186	128
Rare Metals No. 9 Rare Metals No. 10	A MC 63550	186	
Rare Metals No. 10	A MC 63551	186	130
Rare Metals No. 11	A MC 63552	186	
Rare Metals No. 12	A MC 63553	186	132
Gray Copper No. 1	A MC 63535	17	431
Gray Copper No. 2	A MC 63536	129	581
Gray Copper No. 2 Gray Copper No. 3	A MC 63537	129	260
Gray Copper No. 4	A MC: 63538 A MC 63539	129	582
Gray Copper No. 5	A MC 63539	129	583
Gray Copper No. 6	A MC 63540	129	584
Gray Copper No. 7	A MC 63541	129	585
Hidden Treasure #1		592	
Hidden Treasure #2	A MC 63555	592	
Hidden Treasure #3		592	197
Hidden Treasure #4	A MC 63557	592	198

Page 1 of 2 Pages

••			
Name of Claim	Federal Serial Nos.	Rec	corded
		Docket	Page(s)
Reinstated #1	A MC 63528	618	631 ₋₆₃₂
Reinstated #2	A MC 63529	618	
Reinstated #3	A MC 63530	61 8	633-634
Reinstated #4	A MC 63531		635-636
Reinstated #5	A MC 63532	618	645_646
Reinstated #6	A MC 63533	618	647-648
Reinstated #7	A MC 63534	618	649-650
	A MC 03534	61 8	651-652
Reinstated Fraction	A MC COESE	45.5	
Reinstated Fraction # 1	A MC 63525	618	637-638
Reinstated Fraction # 2	A MC 63526	61 8	639-640
reambedeed reaction # 2	A MC 6352/	61 8	641-642
Tipperary #1		•	
Tipperary #2	A MC 63512	618	653-654
Tipperary #3	A MC 63513	618	655-656
Tipperary #3	A MC 63514	618	657-658
Tipperary #4	A MC 63515 ·-	618	659_660
Tipperary #5	A MC 63516	618	661-662
Tipperary #6	A MC 63517	618	663-664
Tipperary #7	A' MC 63518	618	665-666
Tipperary #8	A' MC. 63519	618	667-668
Tipperary #9	A MC 63520	618	669-670
Tipperary #10	A MC 63521	683	375-376
Tipperary #11	A MC 63522	683	
Tipperary #12	A MC 63523	6 83	377-378
Tipperary #13	A MC 63524	683	379-380
_		003	381_382
Black Copper #1	A MC 63501	683	250 250
Black Copper #2	A_MC 63502		358-359
Black Copper #3	A MC 63503	683	360-361
Black Copper #4	A MC 63504	683	362-363
Black Copper #5	A MC 63505	683	364-365
Black Copper #6	A MC 63506	683	366-367
Black Copper #7		683	3 68-369
Black Copper #8	A MC 63507	.683	370
Black Copper #9	A MC 63508	683	371
Black Copper #10	A MC 63509	683	372
pracy cobbet #10	A MC 63510	683	373
Black Copper #11	A MC 63511	683	374

NEWMONT EXPLORATION LIMITED

A SUBSIDIARY OF NEWMONT MINING CORPORATION
200 WEST DESERT SKY ROAD
TUCSON, ARIZONA 85704

June 8, 1982

Mr. Richard J. Lundin Wombat Mining Company 3425 W. Bardot Street Tucson, Arizona 85741

> Re: File No. 1340 Kelvin Prospect Pinal Co., AZ

Dear Rich:

Thank you for accompanying me during an April 29th examination of your Kelvin property. We have just received our assay results, and these are tabulated below:

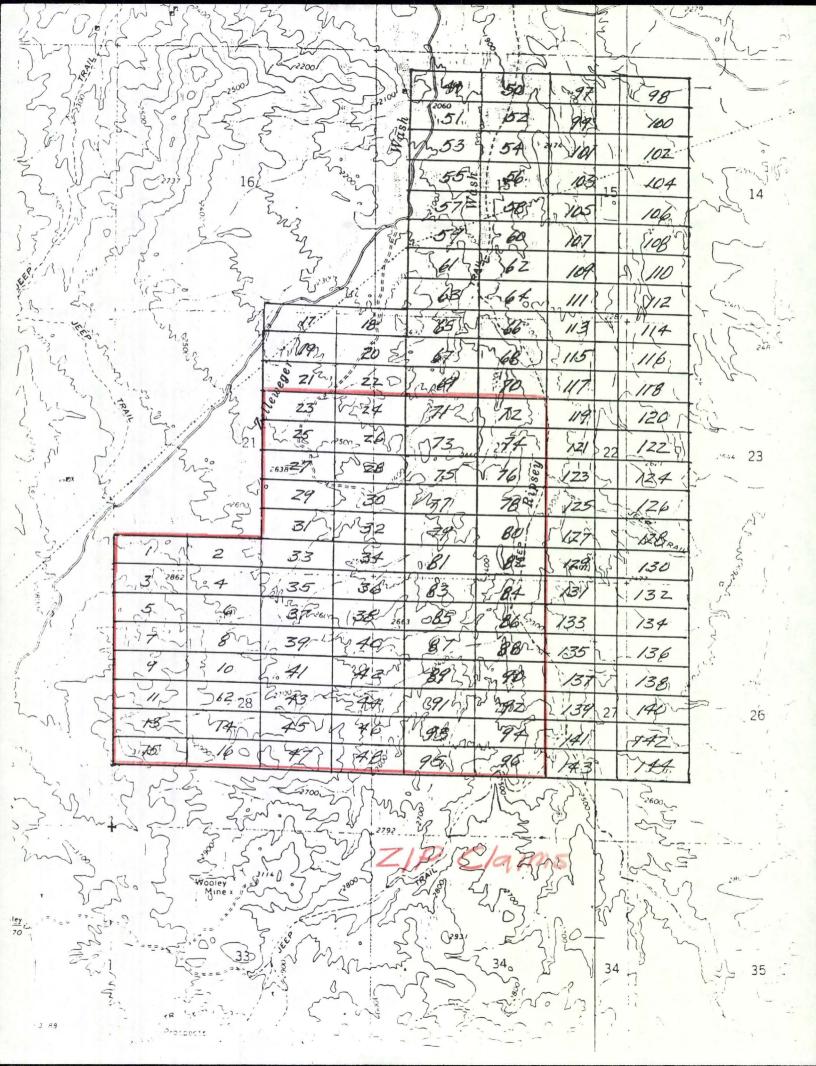
Sample No.	Au (ppm)	Ag (ppm)	Cu (ppm)	Mo (ppm)
NT-71539	< .02	0.8	1,900.	42.
NT-71540	< .02	1.4	2,900.	40.
NT-71541	.06	21.0	12,000.	140.
NT-71542	.06	0.6	2,600.	4.
NT-71543	0.22	40.0	14,000.	330.
NT-71544	.19	100.0	2,800.	38.
NT-71545	.03	2.0	165.	210.
NT-71546	.02	4.4	145.	65.
NT-71547	.03	1.2	1,150.	10.
NT-71548	.12	4.2	5,800.	55.

Rich, I regret that we cannot pursue an interest in Kelvin at this time. These assays are, however, somewhat encouraging, and certainly confirm the presence of a porphyry copper system. Unfortunately, we feel the precious metal values are too low to be of current interest.

Again, I want to thank you for bringing this property to Newmont's attention, and for contributing to a delightful and informative field day.

Sincerely yours,

Roger A. Newell


CORN & AHERN

CONSULTING GEOLOGISTS 8425 Desert Steppes Dr. Tucson, Arizona 85710 (602) 298-1770

KELVIN PROSPECT

General Terms

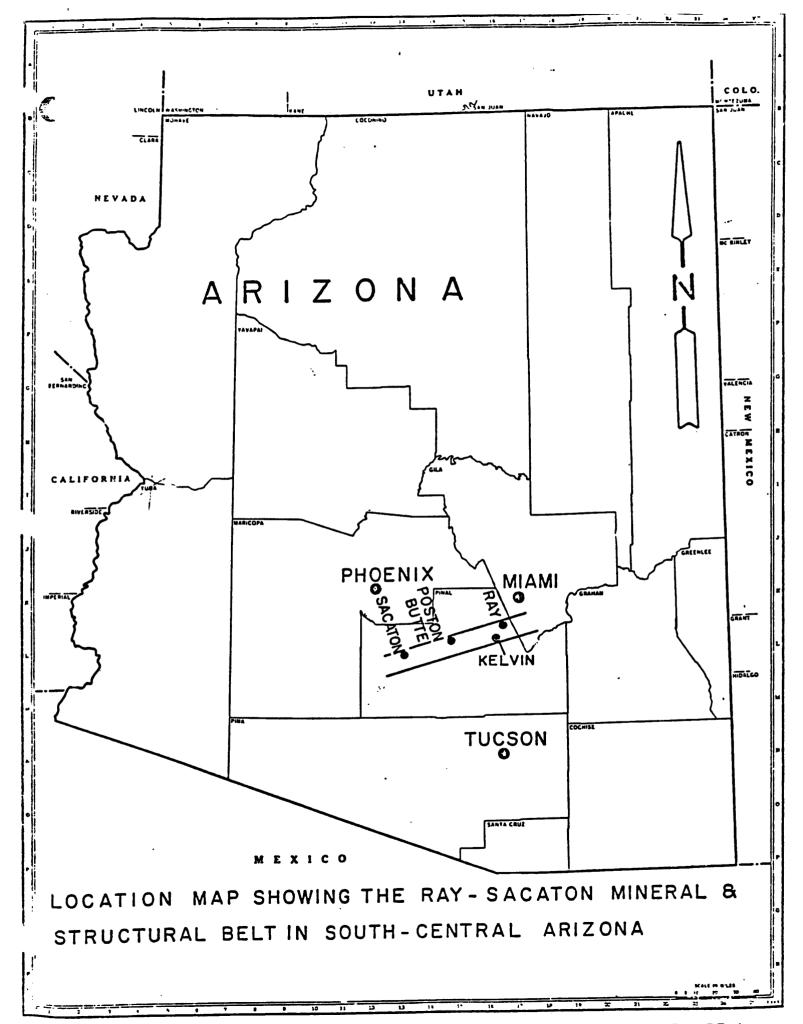
- 1. Advance Royalty Payments \$20,000 on execution, \$20,000 on the 1st anniversary, escalating to \$25,000 on the 2nd, \$30,000 on the 3rd, \$40,000 on the 4th, \$50,000 on the 5th and thereafter.
- 5% NSR production royalty, less the amount of any Federal roalty payment, but not less than a 1% NSR royalty.
- 3. Payments indexed to CPI or similar index.
- 4. Assessment, Rental & Filing obligations.
- 5. Notification of termination six months prior to Sept. 1st or pay BLM rental fee.
- 6. Supply geologic and drilling data upon termination.

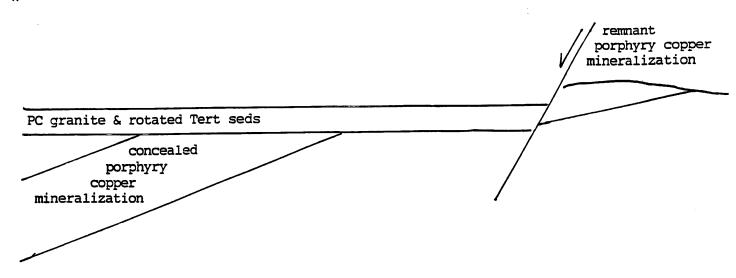
Kelvin Porphyry Copper Prospect Pinal County, Arizona

Exploration Potential:

The Kelvin prospect is a structurally-rotated porphyry copper alteration/mineralization system cut and displaced by low-angle faults similar to San Manuel-Kalamazoo with the majority of the system faulted down to the west and concealed beneath a relatively thin, structurally displaced cover consisting of shattered Precambrian granite and rotated Tertiary sedimentary rocks. Geologic data indicates that the displaced upper part of the porphyry copper system should be preserved beneath the structural cover and that there would be potential for higher-grade copper mineralization in reactive diabase and perhaps Paleozoic limestones. Geologic maps and the exposed breccia pipe at the Wooley Mine, indicate that the structural cover on the west side of Ripsey Wash may be relatively thin. Remnant, fault-bounded segments of the alteration system that are exposed near Kelvin and Riverside exhibit supergene chalcocite mineralization and a sharp zoning pattern in disseminated chalcopyrite mineralization to values that exceed .20 percent copper. Extensive oxidation and oxide copper mineralization characterize the brecciated granite at Ripsey Wash indicating the probability that oxide copper and/or chalcocite mineralization occur in the concealed alteration system at depth. The Riverside and Wooley breccia pipes have been structurally rotated to a sub-horizontal attitude and although exterior to the main alteration system, they do indicate that mineralized breccia pipes of interest should occur in the area. Exposures near Ripsey Wash represent an exterior segment of the alteration system that contains veins with interesting gold values and could have potential for a gold-bearing, structurally-rotated, sub-horizontal breccia pipe.

Land:

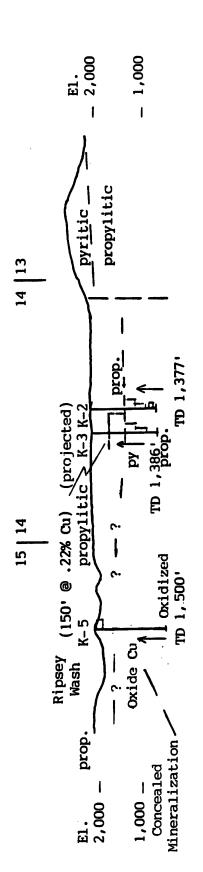

144 unpatented lode claims owned by Richard Ahern and Russell M. Corn in Secs 15, 21, 22, 27 & 28, T4S, R13E in the Riverside Mining District approximately 8 miles southwest of Ray.

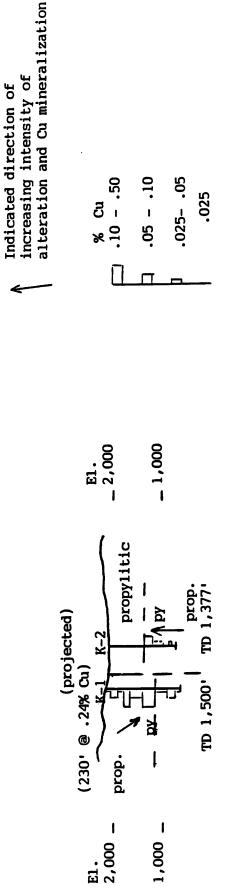

Geologic Setting:

The Kelvin porphyry copper prospect is located at the north end of the Tortilla Mountains in the structurally rotated belt along the west side of the San Pedro Valley that is characterized by near-vertical Paleozoic sedimentary rocks and associated diabase sills. The repeated near-vertical diabase sills on the west side of Ripsey Wash south of the prospect indicate displacement of the porphyry copper alteration system along low-angle faults two to three miles west of the exposures near Riverside.

Previous Exploration:

The chalcocite mineralization near Riverside was explored initially during the 1940's or earlier and since 1960 was drilled by Kennecott and Occidental. In the 1970's Kerr-McGee drilled several holes to the west on down-faulted segments of the alteration system and encountered significant primary copper values beneath unmineralized propylitic altered granite. Gulf Minerals also drilled several holes east of Ripsey Wash and encountered low-angle faults and sheared granite. In 1980 Exxon staked claims and carried out geophysical surveys near the Wooley Breccia Pipe and further south along Ripsey Wash, but there is no indication of drilling on the west side of Ripsey Wash except at the Wooley Breccia Pipe.

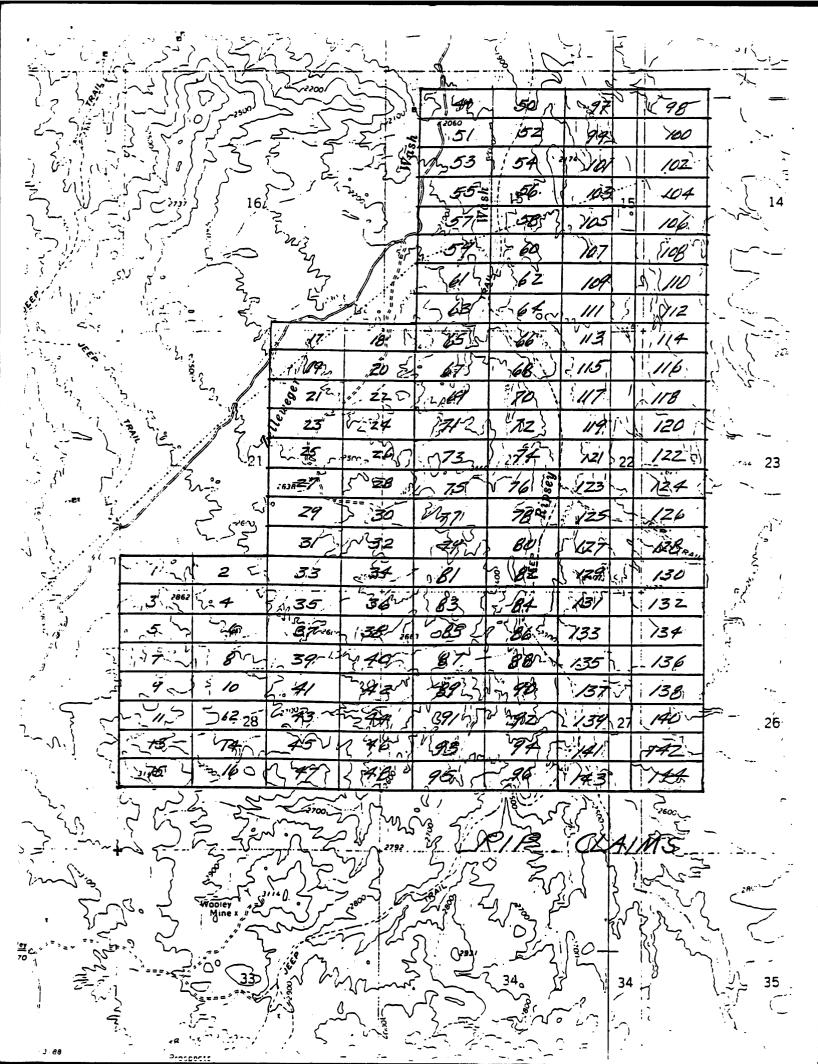



SCHEMATIC DIAGRAM

ILLUSTRATING

THE DISPLACED AND CONCEALED KELVIN PORPHYRY COPPER SYSTEM

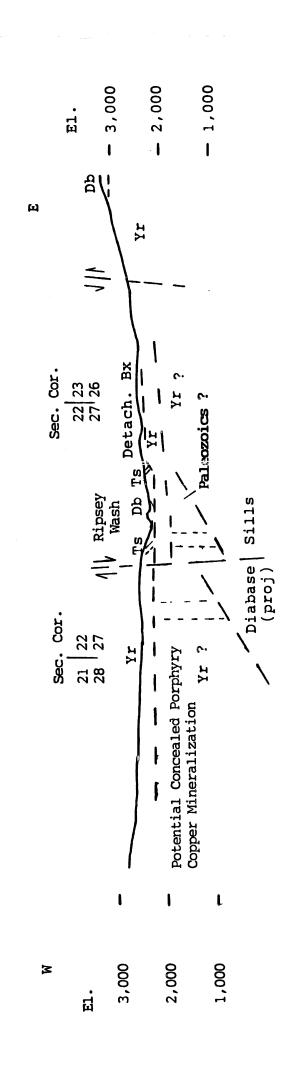
EAST - WEST SECTION THROUGH DRILL HOLES K-2 & K-5



NORTH - SOUTH SECTION THROUGH DRILL HOLES K-1 & K-2

Scale: 1 inch = 2,000 feet H = V

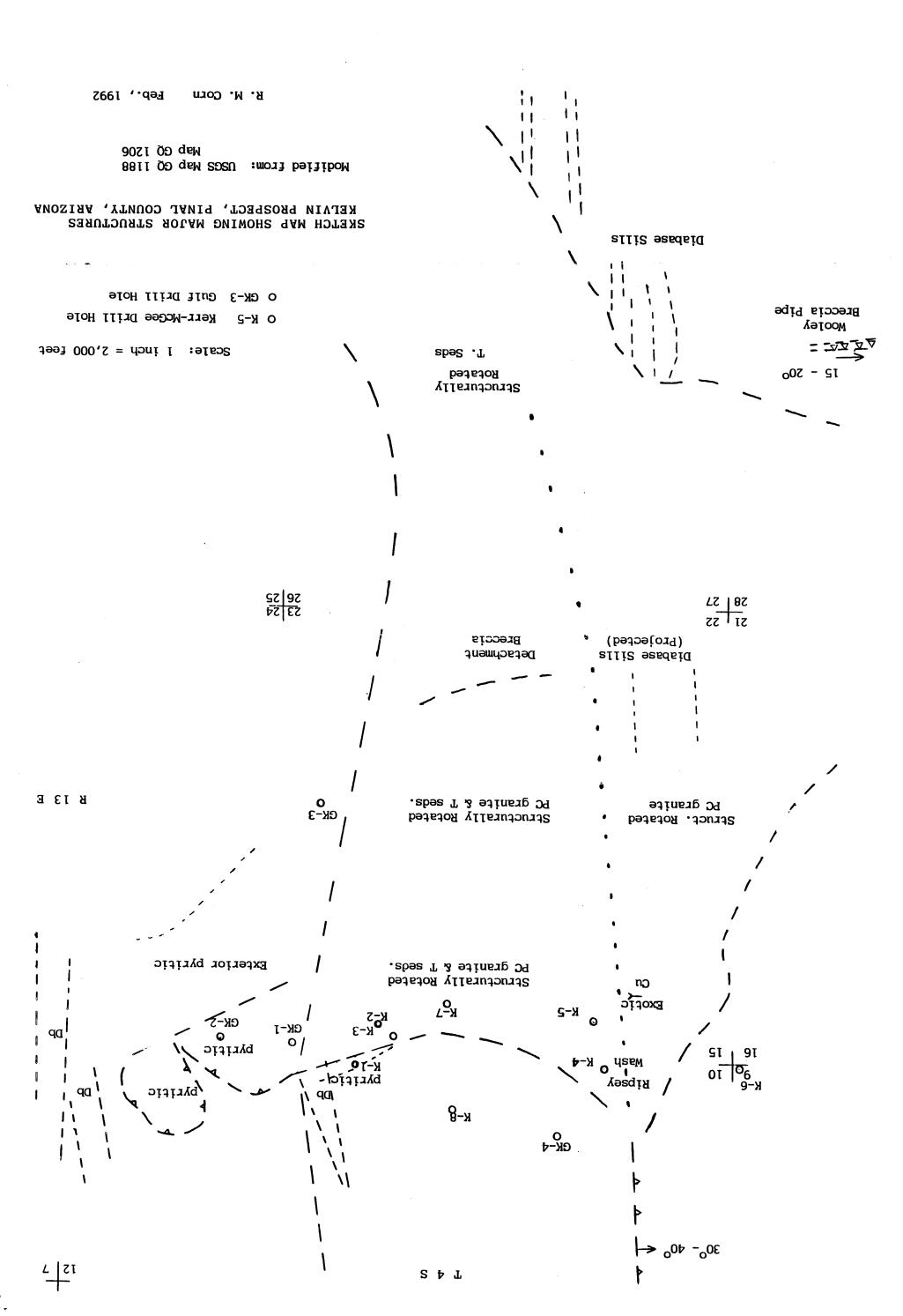
SECTIONS THROUGH DRILL HOLES AT KELVIN PROSPECT, PINAL COUNTY, ARIZONA


ILLUSTRATING ALTERATION AND COPPER MINERALIZATION

Ĭ -2,(딥 1 Cor 12 Diabase Sills propylitic pyritic K-2 (proj) _{Yr} propylitic pyritic // Ripsey Diabase ; Sills ; (proj) Sec. Line 22 21 Potential Concealed Porphyry Copper Mineralization SW 1,000 -2,000 -

NE

NE - SW GEOLOGIC SECTION, KELVIN PROSPECT, PINAL COUNTY, ARIZONA



E - W GEOLOGIC SECTION, KELVIN PROSPECT, PINAL COUNTY, ARIZONA

Scale: 1 inch = 2,000 feet H = V

Surface Geology From: USGS Map GQ 1188 GQ 1206

R. M. Corn Feb., 1992

KERR-McGEE CORPORATION

Hole Number KE-1 Spudded Completed Total Depth 2500 feet Driller Cyprus
wber KE-1 wber KE-1 ed epth 2500 f Cyprus

Collar Coords.	Hole Size	ty	
150 ft FEL	NX Bx	State Ariuson Sec 17 T. 45	
in is		Zona R• 13 E	

		1 ! 1 1	T-1-1-			
	54				6	Depth
				- 		Int.
 - - - 						%Core Rcvy
						Samp. No.
						Cu
						Assays Mo
						ays
						,
	Snowflake Monzonite				Granite	Roc
	i te				ite	Rock Type
61-69	Contact at 40 described fi bottom 500 fe k-spar phenoc secondary bic clusters in d black aphanit			alteration mi moderate exte	Course grain, chlori	R.
feet mi	t at 40 fill ibed fill 1500 fee fee fee fee fee fee fee fee fee f			alteration mine	grain light tized n	Rock Des
issing	o to co irst in eet). Wi crysts, rite irk. q tic mat			iinerals ent	Course grain to med grain, light pink, chloritized mafics;	scription
	o to core, Serst in ma et). White K-rysts, black, rite rk. grey- ic matrix.			s to	Course grain to medium Weak potassic with fresh grain, light pink, with k-spar, cut by chlorite chloritized mafics; ap- fractures; minor sparsely pears replaced by	ion
70 feet vainlets	Secondary biotite, moderate magnetite, minor quartz- K-spar veinlets, k,	Still 80-100 percent oxidized.	Below 30 feet - seconda magnetite along quartz- k-spar veinlets.	some_app silicifi mately_o	lleak k-spa fracti	
	Secondary bioti magnetite, mino K-spar veinlets <,	80-100	30 fer ite a	some apparent pervasive silicification and approxi- mately one quartz veinlet per foot	Weak potassic with fresh k-spar, cut by chlorite fractures; minor sparsel	Alte
nor 1	iotite minor lets.) perc	feet - s along q inlets.	nt per	ic will by ch	Alteration
Minor 1/8" quartz	biotite, moder minor quartz- nlets,	ent ox	secondary quartz-	wasive d_appy weinl	h fre	
		idized c	2	oxi-		
70 feet - sulfides_decreased_to<<1_pero	Locally 100 percent oxicized; primar 30-40 percent with Cu carbonates and neotucite after chalcopyrite; pyrite chalcopyrite - 1-2:1 with disseminat and yeined sulfides 1/2-1 percent.	d. 46 feet - chalcopyrite cc.	[.S. appears to be local breccia zones	Below 25 feet - still 80-90 percent oxidized with minor blue copper carb after calcopyrite. Moderately strong staining, part of which is neotocite	Oxidized with minor remnant Dyrite. chalcopyrite; sulfide content very i	
: - SII	/ 100 ercen ite वर्ष yrite ned s	eet -	appears brecci	25 feet ed with calcopy	ed wid byrite	
l fides	percer t with ter ch l-2 ulfide	two close veinlets,	to be a zones	t - s h min yrite rt of	h min Sul	Miner
decr decr	1 1 1 1 1 1 1 1 1 1 1	two closely spaced veinlets, 1/8" with		still 8 nor blu ce. Mode	or rem	Mineralization
eased te_on_	cized; arbona yrite; th dis	y spaced p 1/8" with	percen	80-90 r lue copr derately	inant-l	tion
to skil	oxicized; primaril u carbonates and copyrite; pyrite: with disseminated 1/2- 1 percent.	ed pyri	1-2 percent highe	- still 80-90 percent ninor blue copper carb te. Moderately strong of which is neotocite	<u>pyrite</u> t very	
sulfides_decreased_to<<1_percent	arily nd le: lted	rite- ocally	ner in	t rbonates ng Mn. te.	1 _{0W} .	
1711				l l l l l		

:

Granite Course grain with large, feet. Prop weak K with pink K-span phenocrystism mannetite; strong chlosses and the chlorite strong chlorate with chlorite and the chlorite strong chlorate with chlorite and the chlorite and	22 -
granite As some with chlorit seams. Granite As some, with abundant quartz as rock grains. Granite As for the dant quartz as rock grains. Diabase 119.5 feet Diabase dike. Diabase 119.5 feet _ cut nearly horizontally by aplite dike.	- La
Granite As above, with abundant quartz as rock dant quartz as rock drains. Granite As above, with abundant quartz as rock d	
Granite As above, with abundant quartz as rock dant quartz as rock qrains.	
Diabase 119.5 feet Diabase dike. Diabase 119.5 feet - cut nearly horizontally by aplite dike. Lower contact at 137	95
Diabase 119.5 feet Diabase dike. Diabase 119.5 feet - cut nearly horizontally by aplite dike. Lover contact at 137	
Diabase 119.5 feet Diabase dike. Diabase 119.5 feet Diabase 121.5 feet _ cut nearly herizontally by aplite dike.	Ī
Diabase 119.5 feet Diabase dike. 121.5 feet _ cut nearly horizontally by aplite dike.	
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike.	
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike.	
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike. Lower contact at 137	
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike. Lover contact at 137	
Diabase 119.5 feet Diabase dike. 121.5 feet _ cut nearly horizontally by aplite dike. Lover contact at 137	1
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike. Lower contact at 137	
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike. Lower contact at 137	
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike. Lower contact at 137	+
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike. Lower contact at 137	1
Diabase 119.5 feet Diabase dike. 121.5 feet - cut nearly horizontally by aplite dike. Lower contact at 137	
feet - cut horizontally by dike.	1195
feet - cut horizontally by dike. contact at 137	
horizontally by dike.	 -
Contact at 137	1
ct at 137	
ct at 137	
ct at 137	
ct at 137	-
	!

Strong K. secondary biotic monzonite at contact constitue spars.	Espth Int.	Core Samp. Assays
G. feet of snowflake Strong with Amount of the Lontact bossib with Amount of tesser spars. Inated sulfides Granite inated sulfides Granite As above cut be calcite, As mipor chabazite veinlets. Diabase As above einlets. Out by einlets carbona minor services desired to the carbona carbona carbona carbona carbona carbona carbona desired to the carbona carbona carbona desired to the carbona carbona carbona desired to the carbona carbona desired to the carbona carbona desired to the carbona carbona desired to the carbona carbona desired to the carbona carbona desired to the carbona desired to the carbona carbona desired to the carbona desired to the carbona carbona desired to the carbona desired to		
Granite Inated sulfides. Granite As above cut be calcite. As above chabazite veinlets. Diabase As above cut be calcite. As above chabazite veinlets. Diabase As above cut be calcite. As chabazite veinlets. Carbona minor s Ontinu Jontinu		
Granite Granite As above Snowflake As above, cut be calcite, As mipor Chabazite veinlets. Diabase As above Veinlets Carbona minor s Carbona Diabase As above Carbona Minor s Carbona Continu	$\frac{1}{1}$	
Snowflake As above cut be calcit a. As mipor chabazite veinlets. Diabase As above cut be calcit b. As above cut be calcit b. As mipor chabazite veinlets. Diabase As above veinlets. Out by veinlets. Vibinlet carbona ninor s. Continu chlorite dets dets de la carbona dets de la carbona dets de la carbona dets de la carbona de la carbon	1375	
Snowflake As above, cut be calcite, As mipor chabazite veinlets. Diabase As above veinlets. Diabase As above veinlets. Carbona ninor s Diabase As above veinlets. Carbona ninor s Diabase As above veinlets. Carbona ninor s Diabase As above veinlets. Carbona ninor s Ouartz Jets da	1375	
Diabase As above Cut by veinlets. Diabase As above Veinlets. Carbona minor sinor sinor sinor sinor to print te de to d	141	
Diabase As above Veinlet Veinlets de la carbona de la carb		
Carbonal Minor se Minor se Jontinue Chlorite Jointile; Jeinlets Carbona Quartz Jets dec	146	
Continue Contin		
Quartz		
Continue chlorite chlorite piotite; veiniets carbona quartz lets dac	1	
Continue Chlorite Carbona Quartz Jets dac agalow_21 Calcita		
Continue chlorite chlorite chlorite chlorite piotite; veinlets carbona quartz lets dac	1	
Continue chlorite chlorite piotite; piotite; peinlets carbona quartz lets dac		
Quartz lets dac	+	
Veinlets Carbona Carbona Quartz		
Quartz lets dec		
Quartz lets dec		
3.2lo::-21		
3.3lo::-21		
991c:-21		
9.31c::-21		

; ;

		1-1-1-1	1111	<u> </u>		
25	2775				230	Capth 221
						Int.
						Core Revy
	<u> </u>					No.
		<u> </u>				င္မ
	<u> </u>					Assays
	 					ays
Granı	Diabase				Gra	Rock
te	ase				Granite	k Type nite
As abo	Dark gr				As a	S
above	een-				above.	Rock De
	black ered.					scription
	, yfq-					ion
tite y (late) chabaz chabaz 287.5 pervas	contimes contimes contimes contimes	Secondary prominent	sive secondinate-	tite-ck-spar let pe chlori	magne stron Weak-	Stro
/einle vein to w feet iva su	nes. chabaz chabaz chabaz		second ite-eq	tite-chlorite tite-chlorite k-spar-epidote let per foot. chlorite-magne all feldspars	local secon quartz-k-s magnetite strong in weak-stron	/a _
tite yeinlets; carbona (late) veinlets; local chabazite with quartz. 287.5 feet -288 feet - 287.5 feet -288 feet -	Erom 210 - calcite and contimes. Local chabazite with of the contimes of the contimes. Local chabazite with of the contimes of the contimes of the contimes of the continues o	iotit	sive secondary K-spar chlorite-epidote Anhydrite	ite yedote-o	local secondary biologuartz-k-spar yeinle magnetite locally we strong in yeinlets. Weak-strong potassic	Alteration g potassic
tite veinlets; carbonate (late) veinlets; local chabazite with quartz. 287.5 feet -288 feet - 287.5 recondary K-spareith-chabasive secondary K-spareith-chabasive recondery Recondery	contimes. contimes. contimes. coal chabazite with quartz. cal chabazite with quartz. luartz-K-spar-chlorite einlets and chlorite-magne-	biotite more	-spa	tite-chlorite veinlets; on k-spar-epidote-quartz vein let per foot, locally strop chlorite-magnetite with all feldspars fresh 238 fee local 6" soction of society of	quartz-k-spar yeinlets, quartz-k-spar yeinlets, magnetite locally weak b strong in yeinlets. Weak-strong potassic alt	alter
	gne rtz.		r r	tite-chlorite veinlets; one k-spac-epidote-quartz veinlets let per foot, locally strong chlorite-magnetite with all feldspars fresh 238 feet local 6" soction of the chlorite	local secondary biotite, quartz-k-spar yeinlets, magnetite locally weak but strong in veinlets. Weak-strong potassic altera-	alteration
s; carbonate of 1:2; below, sulfides drop to 1 pets; local with chalcopyrite on veinlets and vehicles drop to 1 pets; local disseminations with pyrite:chalcopy l:5 ratio. 83 feet - One quartz-K-spar-epidote veinlet pendary K-spar the feet with very minor chalcopyries.	te 262 and 64 feet - 1/8" quartz-chl K-spar, chalcopyrite veinlets, 268 1/4" K-spar-chlorite-chalcopyrite v Occasional (1 per 1-2 feet) thin qu K-spar veinlets carrying chalcopyri 2775 - first 6" of diabase contains sulfides with pyrite; chalcopyrite	from vei	250 feet - at 35° with 250 5 feet			th
n chalcopyrite on veinlets and veinlets and veinlets and veinlets and veinlets and veinlets and veinlet chalcopy ratio. quartz-K-spar-epidote veinlet per vith very minor chalcopyri	262 and 64 feet spar, chalcopyr 4" K-spar-chlor casional (1 per spar yeinlets ca 75 - first 6" of		l_feet _ 1/4" K-spar _ chlorite \ 35° with minor molybedum, chalco 1.5 feet 1/8-1/4" anhydrite vein	K-spar veinlets; little t pyrite or chalcopyrite; I with pyrite:chalcopyrite Below 238 feet - rock dev	apart K-spar-quartz-chalcopyrite-minor epidote Overa	229 f
ms wi -spar	and 64 feet - 1/8" q chalcopyrite veinles spar-chlorite-chalco mal (1 per 1-2 feet veinlets carrying cl first 6" of diabase s with pyrite; chalc	t local	1/4" mino 1/8-1	halco: :halco: ::chal	ong c	Mineralization feet = 2 1/4 =
lfides on vo th pyr -epido y mino	ite vite-cite-cite-cite-cite-cite-cite-cite-c	hlebs	/4" K-spar ninor molyt /8-1/4"_ant	pyrite copyr rock	dote.	11zat
in lat	1/8" qua veinlet -chalcor 2 feet) ving cha iabase c	chalc	ch bedum hydri		Overall	
sulfides drop to 1 pite on veinlets and v with pyrite:chalcopy with pyrite:chalcopy par-epidote veinlet povery minor chalconyri	ad 64 feet - 1/8" quartz-chl chalcopyrite veinlets, 268 par-chlorite-chalcopyrite value (1 per 1-2 feet) thin queinlets carrying chalcopyrieinlets carrying chalcopyrieinlets carrying chalcopyrieinlets carrying chalcopyrite; with pyrite; chalcopyrite	t. local blebs chalcopyrite	chlorite edum, chal	o no dis	hyrite 11 I	1/2" vein]
percent d vfg. opyrite - opyrite -	e 262 and 64 feet - 1/8" quartz-chlorite- K-spar, chalcopyrite veinlets, 268 feet - 1/4" K-spar-chlorite-chalcopyrite veinlets Occasional (1 per 1-2 feet) thin quartz- K-spar veinlets carrying chalcopyrite. 2775 - first 6" of diabase contains 5" sulfides with pyrite; chalcopyrite ratio	e outward	veinlets copyrite	to no disseminated I.S. %l percent 1:1-2 void of sulfides	K-spar-quartz-chalcopyrite-minor minor epidote. Overall I.S. w '3 percent. w '3 percent.	nlets 6"
	ets.	ard .	te te			න =

								Ī							-	1	405		Ī	1	376		<u> </u>	361	1	1	- L	2/0	 	Ī	Ι	320	Τ	320	i	1	T		Dapth
				Ï	Ť		-	†	-	<u> </u>	 	<u>:</u> 	\dagger	\dagger	$\frac{1}{1}$	+	+	$\frac{1}{1}$	-	 		_ 	 		1	+	\[\]	<u> </u>	1	-	<u> </u>		-		+	+	+	Int	o th
				Ì	Ì		İ		Ï	Ť	\uparrow	†	+	\dagger	\dagger	\dagger	\dagger	+	\vdash	-					+	+	╁	-	+	-		\vdash			 	+	+	<u> ⊥։</u> -	C'C
				-	<u> </u>	T	 	\dagger	╁	╁	\dagger	+	+	+	$\frac{1}{1}$	\dagger	+	1		-					<u> </u>	+	+	+	1	\vdash	-	-			+	-	+		c'Core isa
-	_		-	<u> -</u> 	<u> </u>		<u> </u> 	-	<u> </u> 	<u> </u> 	+	+	+	+	+	+	+	+				_			+	1	+	+	L	L	\vdash	_			-	1	\perp	" '	isarm.
-			-	<u> </u> 	-	-	\vdash	-	<u> </u> 	l	\dagger	+	+	+	+	-	+	+							+	+	+	+	L	L				+	+	<u> </u>	igapha	E C	
-	_	 			-	-		\vdash	+	<u> </u> 	+	+	+		-	\perp	L	-	_					+	+	+	+	_		_	_			4	\downarrow	+	<u> </u>	Mo Say) con
			-	_ 	<u> </u> 		<u> </u>	\mid	+	H	+	+	$\frac{1}{1}$	+	+	ig	+	_	_					-	+	+	+	-		-				1	-	-	Ļ		
						<u> </u>																												1					
																	Granite		17one ??	Fault]	Gran		Monzonite	Snowflake		1	<u>Diabase</u>					Grani		+	$\frac{\perp}{1}$		 	NOCK	3
																	te		??]		1 +0		nite	Take			se					te		İ				Туре	
												fractured	depth	incre	K-spa	with no	Light		shat	MOLIS	Ac a				†	1	Shat		grani te	diabase	breco	Inter	-	1					\dashv
													1	increasing	K-spar near	no lar	gray		shattered	snowflake	ישיטים.						Shattered			3.	precciated	ntenselv	!					носк рев	
												to 434	-	ال	7	rge.	- pm		throu	monzo	inter		!							xed with	with	fract						scription	
												feet.	sheared	n number wi	fault, but	oink,	mq-cq.		throughout	monzonite and	אַמע ייַ									th	broken	ractured.						tion	
-							domi	rite	pota	pota	overal l	J	. 1			near	_ loua				<u> </u>	- F	- 1 A	1	chi		Alt			-	4	A	016		be	31	8		$\frac{1}{2}$
							dominant				all	rite-	ll fresh	th Local quartz	-	c fault.	ctz-ve	2000	rhona :	av cl		4177172	+++	111:	orite	base	Alteration				800	As ahove	continue.	Ouartz-K-enar	below 310	310 feet,	No barite	A1 t	
							to 434	clay-	al ter	with	alter	magne	sh K-	quart		t.	inlet		to mat	olorid	-5		00.		-magne	highe	on is				ľ		inde.	-cnar	1 1	1 1		Alteration	
							feet.	clay-sericite	alteration; chlo-	no str	alteration is	chlorite-magnetite but	K-spar with	z vei			Quartz-veinlets, secondary		Carbonate material	Clav. chlorite: abundant	**		Arylllic; no secondary		chlorite-magnetite veinlets	<u>diabase higher in hole.</u>	is weaker							vainlate	ţ.	increased again	noticed	On	
							•	te	chlo	ong .		ut	∥i th	veinlets.			conda			undan dan			lary		veinl	ole.	r tha						1000			d aga	300 f		
							-		Ī		weak Li	_		ch	0,	8	٧ ا	+	+			\downarrow	+	+	ets	less.	than in		\downarrow	\downarrow	_		l l	_		'n	feet-Su		
					İ						ttle i			alcopy	tside	inlet	rite?			TILE							E				500	2	Sulf				ll fi de		
											on o			/rite.	of f		Cha			<u>ou</u> 01							6				10.1.01		ides.				s almo	K	
									İ		sul fi			mino	= 1	1	CODV			pyri							מעם ס				ST LIKE						ost no	neral	
			1								des .			מעם	nfluo	46	3			te and							ite a				10.0						n-exi	Mineralization	
														1 70	nca.	il dua		-		chal							nd cha				labas						s ten t	8	
		!	1											2000	c pot t	7. 2.7.1	2			axdoo						j	lcopy				P								
				1																ite.							71 10												
1	!	!			!	Ĺ	\perp			1	1					ja	1	!	1																				

:

				1:	11:	 		1 .	1 1	, ,	, i	, ,				_	
	 	 						460		460						434	Dopth
-	<u> </u>	╫┼┼				<u> </u>											Int.
																	Core Revy
	<u> </u>													 	_		Samp.
													\top				ς C
													11	\parallel			As Mo
														$\dagger \dagger$	H		Assays 'o
									\Box			+		+			
-		++++				<u> </u>	66	6					<u> </u>				
								Gravback							Gd.	Gravback	Rock Type
		core	467-77						${\dagger \dagger}$				++	plag	gray	Medi	
		shatte												10C			Rock De
		tered.												ghtly ase.	n-proj	rain	ecription
			jumbled.											htly clouded se.	-prophyritic	14ah+	tion
\parallel	Ch los	Be l cha		Mea pot				_ <u> </u>		35 25		+		 	! !	0	
	Below 480 become fi chlorite	Below 480 chabazite carbonate		Weak potassic						5-59 artz-l				occasional	feldspars	+ 7004	AI.
	Balow 480 feet become fresher: chlorite locall	1 1 1 1 1		assic						355-59 feet near-vertical quartz-K-spar veinlets.				pal K	in Si		Alteration
		ete		- str				İ		ear-v ve in					1 1		on
	magnetite- y present.	local artz and		strong						ertic				veinl	rock with		
-	3 496. 2 in	! !	2 5	2 1	P K	41	2 8 6	3	15£		8 2		<u>0</u> ≥.		14		
		Little	No sulfides.	1-3 pyrite veinlets sulfides approach	einles vrite	462 feet 466 feet	nolybdenum_veinlet_at chalconvrite = 1:1	161 -60+	nervasive 159 feet	No chalcopyrite or pyrite except fo	molybdenum_veinlet_with_minor_chal	151 feet - let at 90°	with 1/4" of veinlet	445 feet 450 feet	ant Thes are	16:4	
	197: 1	to no	ides.	ite v	very	+ + + ·	3.6		ve K-s	copyri	om A	1	. 6		are		五
	odera fra	pyrite	.7 =	einle	n° wi abunda	1/2" pyrite 1/2" quartz	inlet	3	par r	te or	inlet		ebs_m	1/8"_pyrite_veinlet 1_1/2" quartz_veinl			Mineralization
	erately a fragment.	ુ		L per	th cha	yrite wartz	at 6		eplac	ovri	Mi th	-spar-	Lybde	rite ouari			izati
	abunda •	chalo		foot:	ninor Pleopy	veinlet -K-snar-	20 Mil		ement	te ex	mino	chalc	e mua	vein]			8
	an č ch	chal copyrit		मामा अर्थ	rite molyb	r-cha	th pyr		K-spar replacement block	cent	par-p	opyri	long	et nlet			
	5-497: moderately abundant chalcopyric	ie.		l-3 pyrite veinlets per foot; overall sulfides approach percent with pyrite;	veinlet at 30° with chalcopyrite and pyrite very abundant; minor molyhdenum.	Conv	veinlet at 65° with pyrite; te = 1·1		at), 	inlet with minor chalcopyrite	1/8"_K-spar-chalcopyrite_vein	with 1/4" blebs molybdenum along borders of veinlet.	1t 70°			
						÷ †	118-				F	7	8				

. . .

Hole Number KE-1

Fage Amber 7

W.

	 	ī	<u>.</u>	1	<u> </u>	Т	T	ī	i	T	ī	T	T	T		-;			<u> </u>	ı	1	ī	<u> </u>	 	<u> </u>	T	_ T	1	6	<u> </u>	<u> </u>	Γ		-			
Dopth								625	L						646				 -			L		 	_	1	+		692		è	_					
Int.			L	igspace				L	L		L		-	\downarrow	_			_	_	_	_	-	L	Ļ	ļ	\downarrow	+		_	<u> </u> -	 -		_	_			
Revy						L					L									_		<u> </u>		-	L	+	\downarrow			-	22						
Samp.						L		22702						_		_				L		L		1	<u> </u>	Ļ	_ _				703			_			
5				L	L			.003	L						1					_	L			<u> </u>	Ļ	_	1	_		_	0.39	_					i
Asays Mo p			L.			_		9							1									_	ļ	ig	\downarrow		_		027 .0	L	_			_	
ys _{Ph}						L		.005							1								L	_		_	\downarrow			-	005						<u> </u>
7n								.003																							.020						
Rock Type															Gravhack	Gd											:		Sheared	yein?							
Rock Description	3111			With increasing depth	İS	iO.									Bock hatween 635 and	645 feet is lost:	shearing, granulation	decreases: 635-645 feet			664-675 feet fault;	core is			s dull gray-		clay alteration		392-700 feet - lost;	ee d	strong fr	715	cturing below				
Alteration	fractures contain pink,	soft mineral?; also abun-	nk chaba	tified (?) by Cyprus.	8	•	615 - Strong clay-chlorite	alteration associated	with shearing and granula-	tion.					Ralow fault: still chlorita	clay with minor reannearing	secondary biotite.		Rock below 650 feet is very	ındant se	dary biotite and increas-	ing magnetite.		Increasing clay-chlorite-	sericite.	S - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Clay-sericite-chlorite	alteration.		Clay-chlorite with spec	molybdenum fracture fillings;			Below 720 feet rock becomes	fresh with quartz-k-spar	veinlets and secondary	biotite.
Mineralizatica									629 feet - shiny, black, very hard	resinous grains with red halos-	Branneri te?		- local b	adjacent to quartz-chaic	Ve111161.	,			Little to no sulfides.						veinlet at 20°.		num with abundant specularity		700-701.5 feet - specularite-molybdanum	vein. Molybdanum on fractures to 712 rear.						724 feet - 1/8" quartz-chalcopyrite	at 30°

1.3

Dopth	T	li	733				750	754			758.							
Int.			$+\Box$															_
fcore Revy																		
Samp.		- - - 															_	_
Cu.																		
Ase Mo																		
Ascays																		
															-			
Rock Type			0racle Gr.(7)				Grayback Gd.	Quartz, Monzonite	porphyry dike.		Grayback Gd.							
Rock Description			Intensely sheared ground-up rock.				ith	Light_graysilicified.	, P	specs	Contact extremely							
Alteration	Below 725 feet - increased clay-chlorite.		733-750 feet; rock appears to be Oracle gr., 60-80	percent clay-chlorite with minor disseminated nolybdenum.	Spotty quartz-K-spar veinlet carry minor chalcopyrite; but molybdenum appears	associated with chlorite.	Local secondary biotite with predominant clay-chlorite.	ied, Local calcite veinlets.			Contact altered to clay.	clay-chlorite with local secondary biotite.	- local cal	chabazite veins; no quartz veinlets.		K-spar veinlet, dominant	calcite veinlets dipping at consistent 30°.	
Mineralization	725 feet - 1/8" quartz-chalcopyrite-	" quar	Minor disseminated molybdenum.	molybdenum. Dercent clay-chlorite	ts 647 feet - vertical 3" quartz veinlet with selvages of chlorite-molybdenum.						Sulfides very minor to nill.		No sulfides.		775 feet - 3" diabase s i/ith	or disseminated chalcopyrite.		

;

:.

			1 9 1	bol 1		1 1 1		1 1-
		912	900	879	25		.800	Lipth
		+ + + +	╂╂╂╂		+++++			Het.
		++++	22					Revy
		╀╬┼┼	22695 .				22704	No.
	++++	 	007				.007	ភូ
		+++	00				,001	Aseays Mo Pb
			005				.004	ys Pb
			015				.005	Zn
				Fault	Grayback GD.			Rock Type
	and quartz-K-spar-zco- lite veinlets in grayback.	t - quartz	t shartered, ; gray-green ersists.	fracturing below 860. 879-883 feet - Fault Gouge.		fault? 820-823 - quartz monzonite dike; abundant carbonate.	800-feet intensely shattered to 818 foot	Rock Description
ement; weak marris; increasing increasing increasing increasing increasing in the color of the c	Very numerous quartz-zeolite veinlets; carbonate veinlets numerous.	Strong sericite-clay. leak potassic alteration.	Moderately strong clay- chlorite.	No quartz or K-spar in veinlets.	Continued clay-chlorite very strong; occasional quartz-K-spar veinlet. Magnetite is weak to nil.		790 feet alteration is chlorite-clay with no quartz and almost no K-spar. 800 feet - strong clay alteration of all feldspars	Alteration
ng sulfides	or pyrite.	No sulfides 919 feet - 1" quartz-zeolite veinlet at 10° with abundant chalcopyrite,			No sulfides.	No sulfides.	No sulfides.	Mineralization

1125	1-100		1050		1035	1025	واا	اماا		<u> </u>		l ia
5 25					35	25 25	983	980		-	950	Dopth
	╏┤╏			+++		5		+++		\perp		Int. R
22707		$\frac{1}{1}$				22				+		Score Sa
07				+++		22706			1111	+		No.
- 00				+++						+	-	Cu K
001 .006		$\frac{1}{1}$				002 0				+-	 	Asays Mo
		$\frac{1}{1}$				003				+		5
004						150						
							Gray Gd			Ī		Rock
							Grayback Gd.					Rock Type
							Light fresh			broken	950 -	Rock
							gray bioti			Þ	sha	S.
							with black,				ttered,	scription
							lack, sters					on .
Most o	O <u>martz veinlets carry no</u> sulfides.	quartz calcit calcit calcit calcit calcit			Altera:	felds	Weak al qu	980 feet quartz ve	decro			
Most quartz-zeolite cchtain-no-sulfidos	z vein	guartz veinlets; calcite and zeoli 1092 feet - 3" queinlet with no			ation_con ame;_mino t_locally	pars_	potas	980 feet - very quartz yeinlets	rase i			Alter
-zeol	lets	nlets; d zeol 3 qu			conti inor	ceplac y-zeo	sic wi	very	feet n num nlets ontin te vei			Alteration
1 4 1 1	carry	s; continued olite veinle quartz o sulfides.			Alteration_continues_much the_same; minor_quartz except_locally.	pervasive_replacement_of_ feldspars_by_zeolites_(?)	Weak potassic with occasi al quartz veinlets; local	very spotty	Below 960 feet sharp decrease in number of quartz yeinlets 970 feet continued abu			
veinlets	no	yelow 1070 reet - minor quartz veinlets; continued calcite and zeolite veinlets 1092 foet - 3" quartz reinlet with no sulfides.			nuch	(2)	Weak potassic with occasion		Below 960 feet sharp decrease in number of quartz veinlets. 970 feet continued abundance of carbonate veinlets.			
	Ch 10 S		Very. ted in	1042 at 3 chal	1035 bden	No-s		No.				
feet - quartz	io sulfides except very minor cha on occassional, near-vertical qua chlorite veinlet.		13 13 1	1042 feet 1 at 30° with c chalcopyrite.	1035 feet - minor smeared blebs of m bdenum on chlorite fracture-hairline	No_sulfides		No sulfides				
- pyr z vei	s exc onal, einle		spar orite below	विञ्ल	chlor	es		l es				Mineralization
pyrite-ch veinlet	ept ve		se cha and r		or sm							11zat
halcop at 80°	ery mi verti		se chalcopyrite and magnetite, 1050.	z-zeol diame	eared ractuu							EL CH
pyrite-chalcopyrice byeinlet at 80°.	nor c		1 1 1 1	1" quartz-zeolite yein one 1/8" diameter bleb	hlebs ce-hai							
ხქვნ				einlet leb	minor smeared blebs of moly- lorite fracture-hairline							
	copyrite		issemina- gins		Jly-							

Dopth	TT	115		T	T	1	İ	T	İ	1	1166	Ī	i	-				1	1	1200	1225	Ī		1246	T			İ			_	
oth Int	-			+	1	1	<u> </u> 	+	+	+	6	+	+				-	_			25	+		<u> </u>	+		-					
Core Revy		+		+	 -	+	\dagger	\dagger	\dagger	1		\dagger	+				T	\dagger		1		+										
y No.		+		+	-	_	l	1	+	+		İ	Ť				\mid		+		22708	 										
Ç C		\dagger		-	-	\dagger	1	\dagger	-	-		-	+	+						1		1										
. Ası		1						1					T							Ī	001											-
Aseays o Pb	++-	†			<u> </u>			Ť		1											.006										L	
Zn																					.003						 					
Rock Type								 			Grayback	fid.																				
Pe		+						1		+	k	_	1	+			-		L	-		+	-	1246) Cia	gge	1250) - - -	1216		-	
Rock Description																								6' - broken, brec-	incr	S	0 - Mo brecciation	chlor	alteration of biorite	continues.		
Alteration		TET foot finet V can	observed for serveral	hundered feet; secondary	biotite very fresh; no clay	br chlorite except after	matics.				Weak-strong potassic:	lincreasing chalcopyrite	associated with increase in	K-spar and decrease in zeo-	Below 1180 feet veinlets	احنا		crystalline calcite vein-	lets dominant with very	sparse quartz veinlets.				Biotite altered to chlorite	foldspars altered to clay.		Charle V. Cann. Grants	-yeinlets:	chlorite continues at	100		
Mineralization	1145 feet - minor chalcopyrite grains on chloritic fracture.		at 30° with epidote, minor chalconvrite	also at 1152 and 1154.		1159 feet - 1/4"	veinlet at 30° wi	chalcopyrite in pyrite:chalcopyrite	ratio 1:5; average of one quartz-K-spar-	chalcopyrite veinlet per every 2-4 feet.	1169.5 feet chalcopyrite-molyhdenite	t at 60°.	1		;	with chalcopyrite.			1215 feet - 1/2" quartz veinlet at 35°]		1226 feet - quartz-minor chlorite	veinlet with weak chalcopyrite.	t Little to no sulfide material			1:++10 +0 50 6:16:400	Table 10 no sullings.				

	1300	1264	1238	<u> </u>		un den
	25		8		+++++	Int
						Revy
	22709					Namp.
						Cu
╏┼┼┼┼┼	001					Assays Mo Pb
$\frac{1}{1}$	005					╀┼╣
	012					Zn
			Grayback		1233	Rock Type
			Core lost 1233-1264- 1264-1290 feet in one hox - 33 percent core recovery in wedge off	1232-3615 feet - schist fragment; strong chlo- rite-magnetite.	Strong brecciation Strong brecciation with inclusions? of diabase, extensively	Rock Description
Sparse quartz-K-spar vein- lets with pervasive fresh secondary biotite.	much fresher; very little clay-chlorite pervasive-type alteration; some quartz-zeolite veinlets.	Alteration is weak chlorite- clay with minor quartz veinlets. 1295 and below: local thin K-spar-quartz-epidote veinlets; biotites are		Chlorite-magnetite-sericite	veins: general pervasive clay-chlorite is weak; local disseminated fresh biotite. Strong, pervasive chlorite and calcite; magnetite in chlorite.	Alteration 1280 - local K-sapr replacement outward from hairline K-spar-quartz
chalcopyrite on quartz veinlet. 1331 feet - pyrite and chalcopyrite in 1:1 ratio in quartz-chlorite vein it at 25°.	Little to no sulfides 1320 feet - very fine grain specks or	Little to n 1295 feet - 1 chalcopyrite		e. Disseminated pyrite and chalcopyrite very minor.	Local disseminated (minor)chalcopyrite associated with strong chlorite-magnetite clusters.	Mineralization

Dopth			1410		1425	1425	1425	1425	1425	1425
int.	 			25						
Core Revy										$\frac{1}{1}$
Samp.				22710						_
Cu		4444			$\frac{1}{1}$	111			_	-
Assays No Pb				001	- - -	111				
ys Pb		1111		006						
Zu				.002						
Rock Type			Grayback Gd							
Rock Description			As above							
Alteration	Below 1370 feet - slight increase in quartz and K-spar with associated slight increase in chalcopyrite; locally, rock is replaced b silica and K-spar.		Weak-strong potassic.				Very minor pyrite along occasional quartz veinlet;	zeolites and calcite still moderately abundant.		
	1368-69 feet - K-spar replacemen minor disseminated chalcopyrite.	1408 feet - 1" quartz-zeolite veinlet with very minor fine grain specks of chalcopyrite.	1411.5 feet - 1/8" quartz-K-spar-pyrite veinlet, no chalcopyrite.	Sulfides very, very minor to non-existent. 1428 feet - I" quartz-chalcopyrite veinlet at 20°.	1434 feet - 4" quartz-chlorite veinlet 20° with very minor pyrite.	1438 feet - 1/16" chalcopyrite-pyrite veinlet.			11167 feet _ 1/4" nuartz_K_enar_chal	nyrite veinlet with pyrite: chalcopyrice

												-				T	1540			l	1534			1519		Ī	500	İ		Γ	T		Π	i		T	Espth
										İ									+	\dagger	t	-		25	-	\mid	 		-		-				_	-	int.
	_								ŀ																					 							;core
	_																							22711						 					-		Samp.
									L																												Cu
	_				_									L										- 001													Assays No Pb
_	_			_	_		-	-	-		_				L	_		L	_			L		.002		<u> </u>											ys Pb
																								030													Zu
														-			Oracle Gr	1		Granite	Dracle																Rock Type
																	As above.	shattered.		anite	Course_grain,_porphyri_																Rock Description
				chlorite.	ues to alter to clay,	1880 - plagioclase contin-		to no chalcopyrite.	with spotty pyrite, little	13	1566-and below; occurrence		clay.	is altered to chlorite,	K-spar is fresh; plagioclas	and disseminated blebs;	Locally magnetite veinlets						Chlorite-clay increases to		chlorite-clay alteration.	to moderately strong	Below 1500 feet - change				to 1500 feet.		Slight increase to 3-4 quar				Alteration
		 magnetite-quartz with disseminated very	1598-1605 - Strong biotite-chlorite		copyrite.	veinlets and disseminated is dominant	Pyrite on chlorite and quartz-K-spar					and on chiori	1550-60 feet - moderately abundant pyrite		ישו	disseminated and veined pyrite with	Pyrite:chalcopyrite>>1:1 with very minor			quartz-pyrite veinlets.	Pyrite dominant over chalcopyrite on			ts with spo	Below 1500 feet - sparse quartz-K-spar		Decs (overall pyrite:chalcopyrite ratio of 1:1:	K-spar-chalcopyrite-pyrite veinlets with	1482-88 feet - numerous hairline quartz-	a seem interest for J. Time grain enal cop.) I tec	disseminated very fine	rtz- 1482 feet - diorite fragment with		et.	1477 feet - minor pyrite on quartz-K-spar	Mineralization

							1725				!			1700		1694	İ								T				•		1623	Dopth
- -		_				L	25													Ť	T				1						33	Int.
																									+							Core Revy
							22713													1				1	+				-		22712	Somp.
																					Ī			İ	T							C _L
							001																								.002	Ass Mo
							.031			_															Ì				7	寸	:003	Assays to Pb
							.005																								.002	Zu
													Monzoni te	Snowflake	Monzoni te	Snowflake																Rock Type
													black	White feldspars in					broken.	bood-90 - Sheared,	3							crys t		hination of magnetite-	ا بد	Rock Description
	will chi concarn charcopyrice.	veinlets, very rew of	ains r	1735 - 46 feet - core jumb-		 1730 - occasional quartz-		veinlet.	iotite-chl	magnetite veinlet; magnetite	magnetite; occasional	ciated with quartz-chi	biotite; chalcopyrite	Strong potassic with fresh		Occasional quartz-K-spar-	ward		locally abundant zeolites;	Argillic alteration with			Der Di liaglierite veilliers.	how of magnetite wainlote				magnetite.		chlorite clave	1615 - decreased	Alteration
			22	:2.	l percent with	copyrite veinlet	1725 feet - 1/8-1/4" quartz-zeolice-	- 1	quartz-chal copyrite	1721 feet - 1/16" biotite-chlori	-	-quartz or chlorite.	chalcopyrite and along veinlets with		 inated or veined pyrite	Minor chalcopyrite on veinlets: no	or charcopyrice.	om chalconwite	1		Sulfide content very low, < ! percent.	יס כמורווים מוששביותווים גבם כוומוכטטאורוגב.	30° Carring disseminated chalconymite	ISAS Sort 1/81 managetita mining t		sericite veinlet with pyrite, no chal-	2	1	increased magnetite and K-snam	disceminated chalconveite associa	Increased amount of very	Mineralizatica

20 20		!					
2023.5		2006				1923	Dopth
25		<u> </u>				25	Int.
							Core Revy
22716						22715	Samp.
						551	5
.004						004	¥ As
.009						020	Assays to Pb
.003						.00	Zn
Granite		Quartz mon- zonite to Pf. Gr.					Rock Type
Numerous 1/2-2" thin_diahasa_dikelets_at	2023 <u>- locally intense</u> shattering,breccia	ight gray-green, cours grain, intensely altered; shattered, sheared to minor extent.		ecc:	1946-60 feet - fault?		Rock Description
2023:5-ebundant_chlorite;iminor_increase_in_magnetite;indicelase_eemplotelyinclease_eemplotelyinclease_eemplotelyinclease_eems_	2023 - complete argilliza- tion of plagioclase; local dusting of K-spar.	green, cours: Heak potassic with abundant nsely quartz weinlets, chlorite; attered, no magnetite; local seconminor dary K-spar yeinlets; local dusting of K-spar and plagional ioclase	1980 - Sharp_decrease in chlorite-clay with return of fresh K-spar.		Strong chlorite-clav:		Alteration
Linor disseminated pyrite, chalconyrite in Latio; also, occasional quartz winlets carring pyrite, chalconyrite in 1-2:1 ratio	2018 - chalcopyrite primarily on thin. K-spar veinlets with minor quartz, possible K-spar.	Sulfides minor <1 percent, with pyrite: chalcopyrite ratio 1-2:1; minor visable molybdenum on most quartz veinlets; lipyrite associated primarily with quartz- chlorite veinlets and minor magnetite.	1986.5-1989 - moderately abundant moly- bdenum on quartz-K-spar veinlets. Minor chalcopyrite, no pyrite.		I.S. very low with pyrite:chalcopyrite = 1:1. 1:1. 1939 feet local visable molybdenum on quartz veinlets.	1920 - locally pervasive quartz-magnatite with minor disseminated chalcopyrite	Mineralization

:

. :

Diabase Very fine grain - aphanitic, dark black, intensely fractured. Below 2032 feet - Snow flake appearance; light fractured flake appearance; light fractured flake appearance; light flake appear	Depth	Int.	Core	ilo.	ნ	₩ ₩	P	Zn	moch 17 be	NOCK MESTIFICION	OT SET BEST VI	
aphanitic, dark black, intensely fractured. Intensely feat - Snow Intensely fe	2030	\prod		H	Ħ		H		Diabase	fine grain -	Serici	tic-chlorite - to
Below 2032 feet - Snow flake appearance; light gray-white, K-spars in very fine grain matrix dark gray. Below 2038 feet - Snow dark gray. Below 2038 feet - Below 2038 feet - Below 2038 feet - Below 2038 feet grades we carbonate. Al 2043 feet grades back into material as at 2030-2032. Granite As above with fresh K-spar, clay altersh tinn of plagioclase. Granite As above.	Ī	\dagger		 -	T	T	+			, dark black,	weak	weak potassic with fresh
Below 2032 feet - Snow flake appearance; light gray-white, K-spars in very fine grain matrix dark gray. Below 2038 feet - Below 2038 feet - abundant pervasive carbonate. AT 2043 feet grades back into material as at 2030-2032. Granite As above with fresh tion of plagioclase. Granite As above. Granite As above.				i		†	+	-		ly fractured.	fe]d	feldspar faces; weakly
gray-white, K-spars in gray-white, K-spars in gray-white, K-spars in dark gray. I dark gray fine grain matrix dark gray. Below 2038 feet - Boundant pervasive carbonate. Al 2043 feet grades back into material as back into material as as above with fresh K-spar, clay alteration of plagioclase. Granite As above. Granite As above.		1	1							2032 fast - Snow	veinl	Veinlets.
Below 2038 feet . Below 2038 fe										rance;	clus	nd epidote
dark gray. Below gray. Below gray. Below gray. Below gray. Below gray. Below gray. Below gray. All 2043 feet . All 2043 feet grades back into material as at 2030-2032. Granite As above with fresh tion of plagioclase. Granite As above. Granite As above.	ļ	Ť	1	1	\dagger	1	\dagger			K-Spar	CIUS	ters.
Below 2038 feet - abundant pervasive carbonate. All 2043 feet grades back into material as at 2030-2032. Granite As above with fresh tion of plagioclase. Granite As above. Granite As above.										gray		
Beloy 2038 feet - abundant pervasive carbonate. All 2043 feet grades back into material as at 2030-2032. As above with fresh K-spar, clay altera- tion of plagioclase. Granite As above. Granite As above.												
Granite As above. Granite As above. Granite As above. Granite As above. Granite As above. Granite As above. Granite As above. Granite As above.							\dagger			38 feet -	12	Chlorite associated with
AT 2043 feet grades back into material as at 2030-2032 Granite As above with fresh K-spar, clay altera- tion of plagioclase. Granite As above.				T	1	T	\dagger			pervasive	מפון מ	arg. alt. of plagioclase,
AT 2043 feet grades back into material as at 2030-2032. Granite As above with fresh K-spar, clay altera- tion of plagioclase. Granite As above.							\dagger				ا ب	quartz yeinlets.
Granite As above with fresh K-spar, clay alteration of plagicclase. Granite As above. Granite As above.										43 feet grades	10.1	Same as at 2030-32. Abundant chalcopyrite
Granite As above with fresh K-spar, clay altera-tion of plagioclase. Granite As above. Granite As above.										30-203	1 1	
K-spar, clay alteration of plagioclase. Stion of plagioclase. Granite As above.	2046								Grani te	above_with_fresh	lea	Weak potassic, weak clay- Moderately
Granite As above.										spar, clay altera-	er	lorite.
Granite As above.							1			plagioclase.	lei	1
Granite As above.							\prod				B c	fractures. pyrite, molybdenum, chalcopyrite.
	2050					Ī	1		F	above.	_	Continued weak potassic Chalconvrite
										1 1		~
		L					Ť					$\overline{}$
							Ì					veinlets with minor K-spar.
	2065											Very low sulfide in strong Sulfides:
								-				ite; weak, weak
		<u> </u>									1=	esh.
The second secon	<u> </u>	_	1								₩	Below 2068 feet magentite X-spar vointats carrying abundant order.
											ဋ	
		Ļ	_				T					<u>magnetite-chlorite:clusters</u> <u>after mafics: increased Decreased</u>

Hole Number KE-1

Fage Fumber 20

7190 7190	2160	2135 2140 2150	2110 2120 2130	2090	2080	Lepth
in in in	10 10		000	0	30	th Int
						f.Core
22724	22722	22720 22721	22717 22718 22719			Samp.
.029 .042	.032	.030	.044			Cu Cu
.003 014	.008	.007	.002 .002			Assays Mo Pb
005	004	.004	.007 .005			lys Pb
	.002	.002	.004 .007			Zn
		Granite				Rock Type
Below 2180 - fresher appearance to rock; dark green-black with clay.	Continued fracturing	2135 feet - shearing increases again. Course grained. fractures, partially sheared with chlorite on all fractures.	2095 feet - Strong shattering and shearing with chlorite, calcite on fractures. 2123-2135 - no shearing			Rock Description
Strong chlorite on fracture abundant quartz veinlets; little to no magnetite.	Abundant carbonate veinlets	Clay-chlorite-quartz- dominant alteration. leak pot. to prophyry with magnetite, chlorite, clay occasional quartz veinlets.	Clay-chalorite; decreased magnetite; continued abundance of quartz-K-spar veinlets; continues with moderate sericite to 2123.	2-3quartz-K-spar- chalcopyrite veinlets per foot. Continued increase of magnetite to 2095.	Continued abundance of calcite filling vugs:	Alteration
2196 feet - 1/4" K-spar -chalcopyrite veinlet. 2188-95 feet - local thin quartz-K-spar-molybdenum veinlets with spotty chalco-pyrite; also, occasional thin, hairline quartz-chlorite-chalcopyrite veinlets.	Occasional chalcopyrite bleb on quartz veinlets. Pyrite:chalcopyrite overall - 1:1-2	2151 - 1" quartz-carbonate-K-spar vein with abundant molybdenum. 2152 feet - locally abundant chalcopyrite no pyrite on fractures.	Minor chalcopyrite, pyrite disseminated and on veins; T.S.	average 1:1 pyrite: chalcopyrite with <<1% T.S.	Chalcopyrite >> Chalcopyrite on veinlets; dissem	Mineralization

Hole Rumber KE-1

	2300	2283 2290	2278 2280	2 <u>2260</u> 2270	2 <u>2240</u> 2250	2230	2220	2200	Copth
		10	10	5 5	10 10	ō	10	10 10	in Int.
									Core Revy
		22735	92734	22/32	22730 22731	22729	22728	22726	Samp.
	1111	.982	.066	.068	039	053	026	053	Cu
	1111	.00	┸		.007	.003	.005	.002	Assays Mo Ph
		005	005	003	.003	.003	.005	.005	ays Pb
		.003	.003	003	.001	001	.001	.001	Zn
	Granite	<u>Granite</u>	Granite and diabase.						Rock Type
		Contact at 0° to core axis.	andCotact at 10°, inter- spersed dikes of dia- base in granite.						Rock Description
2310 - increased quartz veinlets with K-spar veins containing minor chalcopy-rite, epidote: numarous quartz veinlets.	Meak potassic with increas- ing clay-sericite and de- creasing magnetite below 2300 to 2310.	Weak potassic.	Intense chlorite, weak potassic alteration, abundant calcite veinlets.		2-4 Quartz veinlets with minor K-spar per foot. occasional K-spar veinlet with minor chalcopyrite.	Weak magnetite continues.	magnetite with chlorite clusters. 2212 - local epidote clusters. ters.	Definite increase in number of quartz and quartz-K-spar veinlets.	Alteration
Minor chalconyrite: byrite:chalcopyrice ratio is 1:2-3 with << percent f.S. Moderately abundant molyocenum on quartz= K-spar veinlets; minor spots or charcopyri		Sparse but predominant chalcopyrite to 2285. Neak, spotty chalcopyrite and minor pyrite to 2300.	sed chalcopyrite on fractures , minor pyrite.	2262 feet - 1/8" chalcopyrite veinlet at	Minor chalcopyrite and pyrite on veinlets		as pyrite, chalcopyrite in 1:2 ratio. 2216feet = 1/4" quartz-molybdenum	2200 feet - 1/8" chalcopyrite vei 30°.	Mineralization

							-		
								╁╁	
veinlets with strong chalcopyrice.	chlorite-magnetite.								<u> </u>
num and chalcopyrite; yery little pyrita.	ets per foot	i	Plonzoni te			<u> </u>	+	-	-
Ouartz-K-spar veinlets all carry inclinates	As above: 1-3 or more	As above.	Snowflake						2380
chalcopyrite ratio of 1:2-3.								\parallel	
associated with change to pyrite:						-	-	+	1
	blebs of epidote to 2380								
Numerous thin, hairline chalcopyrite-	Minor K-spar appears on					<u> </u>		-	1
					†		-	+	+
2269-70 feet - 1/2" Near-vertical mints	molvbdenum.							-	
molybdenum_alteration_1/16"_thick.	Veinlate with noceible(2)								
2310 feet - near vertical chalcopyrite-						+	+	-	-
		shattered.			+	-	1	+	
specks on all quartz veinlets	Q	atic a			+	-	+	\downarrow	1
1-2:1: minor yeary fine grain molybdon	strong magnetite	ine					_	-	
L.	minor higher of anidota:	grains in dark grav						L	_
Ing downward; chalcopyrite in quartz	prominent with moderately	and wound outset	+3110% 1 1 axe						
ccent,	Secondary biotite	Snowflake_appearance;_	Snow £1 aka			$\frac{1}{1}$	_		711
	-					+		+	2000
		dary_						ig	
sparse pyrite	material remains abundant	abase'ı				L			$oldsymbol{\downarrow}$
1	2346 feet _ carbonate	Occasional 1"-2" sec-							
	_decreasing_in_abundance								
	K-spar-molyhdenum veinlets	1			-	+	+	1	
ure filled with K-spar. cart	minated within: quartz-	on f			-	1	+	+	
2332 feet - abundant molvbdenum on	with chalcopyrite disse-				<u> </u>	<u> </u> 	<u> </u>	-	
	magnetite-chlorite blehs	片				+	-	-	
in 1:1-2 ratio with T S <<1%	alteration with local	tered, par					_		
- 1	Continued weak notacete	Rock continues to be							2325
Mineralization	Alteration	Rock Description	Rock Type	Assays	32	tto. Cu	Revy 1	Int.	mden
						-		,	

,

Hole Number KE-1

2469		2500												-	
							1		_	<u> </u>		<u> </u>	-	<u> </u>	-
											Ļ	<u> </u>	Ļ	ļ	_
													_	_	
												<u> </u>	L	ļ	_
													ļ	1	
D1 abase															
Dark_gray-black, aphanitic.		2500 feet is bottom of hole!													
Potassic with carbonate veinlets.															
Chalcopyrite decreases slightly with depth. Pyrite is minor to non-existent and increases slightly with depth.	2485-2500 feet - interspersed diabase and snowflake monzonite with weak chalco-pyrite on quartz-K-spar veinlets and carbonate veinlets.														

Spudded 7-1-72
Completed
Total Depth
Driller Joy Mfg. - B. Ga
Logged By D. A. Wolfe District | Hole Number Riverside-Kelvin - B. Gardiner

Claim Hole Size NC
Hole Angle Vertical Elevation Keri 17 Pinal State Arizona
Sec 11 T.4S. R.13E

Collar Coords. 150 # 75
N.

•		50	3				43		į	40				33		18	30	-								20		T					T	T	To	-	Depth
	-	ō	\dagger	+			L		į	5	+		_			E	3									20								1		Int.	-
	-	100% 12			_				208	4-	1					1009	٠.									100%										Rcvy	Core
	-	21965	L	\downarrow	1				71964			1				FOCT?										21962										No.	Samo
	-	.086	_	1	\downarrow	4			.092		\downarrow	1	1			977										T50.										Cn	
			L	1	+	-	_				_	1	1				L	1					\downarrow													M S	
	_		L	-	+	1	4				-	1	\downarrow	4			L	1				\downarrow	1													O	
					Monzon1 te	Yugr CZ							TPAIIC	2										Ì										Monzon1 te	Ouartz	HOCK	
-	\downarrow	-		S	L	1	1	1	_	-			\downarrow	1	\downarrow				1															n1 te	, į	коск Туре	
				sericite	gray-green	T TTTO	1				tured,	rock 18	ľO									granual ted	to minor	more p		2						-1 0	ly fr	quartz-mor	Coare	Rock	
				fr		10					granul	int	di.										يوا	romine	٠1	1						ectated,		Z-mon z			
				ctures.	chlorite-	ured to	1					ensely f	ping at										egree is	nent; rock	fracturing								- 11	szonita: loca		Description	
-	+	5		4		Ξ	十	-			7	frac+ c	20° 1	100						+			_	Ck	ng		\downarrow	\downarrow	_	\downarrow	1	sneared.	TOCAL	-		on	
		CION OF KIELDSpar.		sericite: partial doct	tion of plagioclase and	Argillic-sericite altera-	wnere s		car specurarice; locally		minerals	chlorite	Intense clay-sericite-	sericite,	CUTOLI LE	manual, Pragrocrase	יבלחוות	fractures; quartz veinlets	gene (?).	snear		magnet	biotite altered	Minor oxidation		to 20'	serici	plagic	serici	magne	tite	and r	•	Neak			
		Terdsi		ייינים	plagic	-seri	snearing	DIOTI te	TIPTUS				clay-		TIS B	210	7	es; q	· loc:	or anes		+0. 21	e alte	oxidat		ŀ	te; 90	clase	sericite alteration of	ite: s	ltered	cesh,	resn Kr	potass		Alteration	
•)ar.	ביםד ת	2	oclase	cite a	g is m	and Af	ce; to	cacepe quarez;		alteration of	serici	minor clay.	Still altered	TOCT		lartz	1 chl	to 29	OAR PI						-100%	and ch	eration	uperg	to c	second	eldspa	ic cha		tion	
			SCLUC		Pue.	ltera-	minor.	and Kfeldspar	cally	7 (2) 7			te-	Ÿ	ered to	ase and		veinla	local chlorite on	Planes to 29', super-	Sum on	of	War TCS	200			sericite; 90-100% oxidized	plagioclase and chlorite	on of	magnetite: supergene clay-	tite altered to chlorite,	fresh, secondary(?) bib-	iresnkfeldspar, mafics	potassic characterized			
			-	†		7		7	1	TO+ gen	†	7		;	-	at	62	7			10	T CE , CI		2	1		ed	6				6	Г	1		\dashv	
				Pyrite: chalcopyrite	total suffice remains high 2-3%					gene copper.	cnal copyrite	THETERSEN COLUI	Transparent traced marics.	in chloritical ci	Very	30	1	1		chalcocite, weak Total colera	10cally 50-75%	arcopy	<u>preseminated</u>					Telict by	halcoc	0 - 80%	Below 18'	= 2-3:1	sulfide at	Limonite after purite.			
				alcopy	rige r					er.	1 te =	COCA	r r zea	1			Massive			te, we	50-75%	T BOIL	lated r							replac			at 19	e afte		3	
				rite r	emains						1-2:1:	Sulfide	13	raine			molybd			ak To	repla	atio c	pyrite,					Shires					ייים	r pyr		Mineralization	
			- 1	ratio t	high						11	ide to	1	d chal			enum-s		Car S	121	red by	f 1-2	chal					on re	Cover	61101						zatio	
											le to no	1-2%; p		chalcopyrite			molybdenum-sericite		TITIDE	1612	replaced by covell	1-2:1, chal	<u>chalcopyrite</u>					Tact	TE	Chalco		era se sudicopyri	TANGE FOR	la I con			
					in 2-3:1					0000	4	pyrite:	i	te blebs		STWTER S			ess	100		o l						yrite.	chalcocite costing	laced by complete		tte ratio	X L CC	Track F			
														bs		Fac			than	Tocal		+	in pyrite						eak			tio	Total	- 11			

	110	100	90	80	70		60		Depth 50
	10		10	10	10		10	+	th Int
 	100%	100%	100%	100%	100%		1003	+	_ 24
1	21971	21970	21969	21968	21967	11111	21966	$\dagger \dagger$	
-	.02	.017	.019	.017	.035	╂╂╂╂	66 .082	+	No. Cu
j.	++++		++++	++++			2	+	
-			+++	++++	+++	HHH			Assays Mo
	NOTE: Change in							Quartz-Monzonit	Rock Type
	30 Per foot. assays from geochemica	13 10.1			As above: Kfaldenay			Coars	Rock Description
	at 5° with clay	Material on fractures. Abundant chlorite-clay With minor sericite on fractures. 103-108' - Tightly charactures.	little to no fresh biotite; magnetite still moderatel, strong.	Decreasing argillication of plagioclase; local fresh plagioclase faces. Increased clay-sericite		to chlorite. Plagioclase remains altered to clay, sericite.	chlor chlor ces fresh lay.clay- 59' Lo filling	Weak pot	Alteration
	what disseminated.	95-100' - Local disseminated chalco- pyrite very minor; no disseminated pyrite. 100' - Chalcopyrite increases with	<pre>pyrite and chalcopyrite associated with fracturing.</pre>	70-80' - Approximately 1" quart sericite as above with pyrite, chalcopyrite; 98% of sulfides quartz veinlets.	62-67' - Veinlets carrying 90-100% of sulfides in pyrite:chalcopyrite ratio 5-10:1; little to no disseminated pyrite ratio		chalcopyri 52' 8" qu strong bre of host mo chalcopyri	7-	Page Number 2

Page Number 3		Mineralienti	_1	one quartz-sericite-pyrite mainit	4	40-50°, very minor	Dyrite, chalcopyrite.					Moderately abundant	copyrite or Dyrite, weak chal-	fire on snears, fractures,	Sericite	1/8 inch						1	124-128 1/2-1" quartz-pyrite-sericit	Veinlets with abundant pyrite chall	DVrite in 2:1 ratio; increased to.					With abundant chalcopyrite ming	ii	134 - Granulated quartz-pyrite-seri	130 moderate molybdenum	chil	charcopyrite veinlets with abundant		lant; pyrit	.= 1-2:1.		sulfide in	are 1-3% Pyrite:chal	3-4:1.
		Alteration	Weak potassic fractite.	Spar; chlorite-magnetic		plagioclase					S + S	Strong Sericite-clay with	carponate on shears.		Uniorite-clay replacement	of rock.		Oxidized near contact;	Weak potassic with strong	clay alteration of plagio	c]ase;	124-128' - Numerous gnarts	1	╀	+	alteration of	plagioclase.	+	Martz-	4	\dagger	1	4	140' Moderately per-	+		11	USBITT	Ē	10	148	
	Rock Description		110-11	DIOKEN than below;	- 1	"Outonite with large	, , ,	CIVSUS; fracture planes	at 80° contain no	chlorite.	Intensely sheared.	~	I	Dark grev to black	litic: intencel	shattered.	As above.				1	되	verse veinlets, v		or shearing, brec-	ctation.	1	o diabase strino	er; shattered, recovery mo		to			╅	nattering	to shear zone	140 reet.					
	Rock Type	Onarte Mon	Karte Molizoni te								Shear			Diabase stringer			Vuartz-Monzonite																									
_	. Cu Mo											.02				-		- - -									.04					0.	01					60.				_
% Core	nevy no.		1									100% 21972														100% 21972	H				1	100% 21974		+	1		100% 21075	2/2/3		†	+ - - - - - - - - -	
Denth Int									115		130	130 5 10	5.031			123				124			128'			130 10 1					-	10	45				50 10 10	1			-	

Hole Number K-

Fracturin from 197. 210 10 100% 21981 .17	200 10 100% 21980 .10 Well sha	190 10 100% 21979 .04 no chl	100% 21978 .10 Major	170 10 100% 21977 .05	160 10 100% 21976 .15 below	Ouartz-Monzonite Contin	Depth Int. Rcvy No. Cu Mo Rock Type Rock
persists on fractures; sericite halos from quartz sericite veinlets entered but still 6-8" into monzonite. hav-chlorite sericite veinlets entered hav-chlorite	ttered 194-197'	co axis; contains	fracture s		153'. clase is weak; strope chlorite-magnetite verse some fresh biotite; K-feldspar.	ued shattering, ng to 152'.	ck Description Alteration
		qid- 187.5" - 21/2" quartz-sericite e veinlet. 189' - 2" quartz-sericite-chloriveinlet with abundant pyrite	1.77 30° Lar	fractures @ 160': 1/2" quartz-sericite- chalcopyrite veinlet @ 30° with moder- ately abundant tetrahedrite. 169-171' - Local molybdenum blebs 1/4 to 1/2" in diameter	quartz-pyrite copper, dippin 2% with 1-2:1 sh	152' - Abundant chalcopyrite res on quartz-sericite-breccia	

% Core

Assays

Hol
e z
fumbe
7 K-1

270 266 260 253 250 240 230 220 Depth 210 10 10 10 10 10 10 Int. 100% 100% 100% 100% 100% 100% Rcvy 21987 21986 21985 21984 21983 21982 Samp. . ၀ .08 . 03 .04 .04 .07 ဥ 3 Quartz-Monzoni te Rock Type 8" fault gouge to 260' ture returned. Below 253' - Little to turing; granitic texno shattering, fracalmost complete loss of rock texture to 223' Increased fracturing and shearing with cal shearing. 216-218' - Near-verti-Very coarse-grainedcrysts. monzonite with large (1-2") K-feldspar pheno-Rock Description contain carbonate (vertichlorite alteration; closely magnetite veinlets carry chalco-Heavy clay-alunite(?) alation is weak potassic with predominantly fresh 266' - Decreasing clay-Geldspar. above and below fault. alteration; overall alter 254.5' - 1/4" quartz-sericite-pyrite Still major chlorite-clay teration of plagioclase feldspar altering to chlorplagioclase and part of chlorite-magnetite. To 242' - Increased claynumerous quartz veinlets; Increased clay and chlorite 223' Increase total sulfide to 2-3%; in rock and on fractures; cite-chlorite veinlets ite; locally fresh biotite breccia veinlet with pyrite much greate &feldspar, magnetite, chlor= 211' - 2" Quartz-sericite-chlorite appear brecciated. Weak potassic with fresh Alteration 2-3:1. or chalcopyrite. Pyrite in pyrite:chalcopyrite ratio of Numerous near-vertical quartz-pyrite-Pyrite veinlet 1/8" dipping at fault gouge, veinlet with very minor chalcopyrite. 248.6' - 2" quartz-pyrite-sericite Abundant pyrite with chlorite and clay veinlet at 40° with minor chalcopyrite little to minor chalcopyrite. Pyrite:chalcopyrite ratio = 5-6: chalcopyrite. molybdenum intergrown, numerous quartz with abundant magnetite, chalcopyrite, fractures to 223' carry minor pyrite, 219' Pyrite-sericite veinlet; 2" at 30 215' - 2" quartz-sericite veinlet with Pyrite, chalcopyrite and minor magneti chalcopyrite in 2-3:1 ratio. chlorite veinlet with abundant 213-214.6' - 1/8" near vertical sericite than chalcopyrite. Little to no disseminated pyrite Mineralization 30° in pyri te

	-	% Core	e Samp.	1	Assavs				- O Gwail GI
vepch	Int.			CH	Mo	Rock Type	Rock Description	Alteration	
270						Quartz-Monzoni		╫	Mineralization
T	\dagger	†				X 22 .101120111	nink wi	+	273.51-01137+2-73-1-1-1
		1	1	1			large Kfeldspar pheno-	+	++
					/		crysts.	ation.	pyrite stringers with chlorite
280	10	1003	21088					277-280' - Local fresh.	-Sericite veinlet at
1				- 5	+		Shearing, fracturing	Below 280' - Increased	also at 279', both 1/4" thick.
T							similar to 220-250'	clay-chlorite on abundant	
								fractures.	304 335
T					+				quartz-magnet
					+		j		etiat
290	10	1000							287.5'-288.5' - 1/A"
					+			Chlorite-clay altount	with minor chalcopyrite at 5-10°
									2961 1741
				-			Below 297' shattoning		ate veinlet at 40°
				-			decreases.		byrite-chalco-
				\downarrow	<u> </u>				magnetite veinlet, 1/4" at 30°
300	10	\$001	21990	.05	+				' - 1/2" quartz-
202	L			-					verifier at 25°.
				$\ \cdot\ $			NO snattering, frac-	Weak potassic alteration;	
		\downarrow		+			from light gray to	fresh/feldspar; relict	
				+			pinkish-white; strong	ite, magnetite: local	Quartz-sericite veinlets carry pyrite
							granitic texture.		and minor chalcopyrite.
010	15	\$00T	21991	.03				1,000	veinlets with very mine in the pyrite
_	+	+	1	+	<u> </u>				313-315' - Some local fraction in
320	10	100%	21992		+			tite veinlet	ciated
-	 -								319 - Near vertical 1/16" quartz-
-	-		-						122 124 225
+	+	1		-					Dyrite-chalconyrite minimizericite-
+	4	+		+	+				2
330	10	100%	21993						pyrite, very local occurrence.
+	+	-							
	+	_		+					
		-	-	_	_				

			% Core	7	-							Fage Number 7
r ——	Depth	Int.	Rcvy	No.	Cu		Mo		Rock Type	Rock Description		
- Г	330				-				Oneta-Monage	1	Alteration	Mineralization
			1	+	+	-	$\frac{1}{1}$		21110211044		Weak potassic with local,	332' - 2" Glarta
				-	+	+	+				minor silica flooding.	at 5° minor magnetite seric
	340	10	\$001	21994	1.1	97						ျယ္
TT		$\ \ $	П		+	+	\pm				345-347' - Abundant	um veinlet, 1/8-1/4" at 5°
, -	\perp				H	H					11	347-3481 Ch-1
	350	10	100%	21995	+	+	+	igg				away from quart-
Т					+.	ť	#	1			Very weak class state	veinlet.
\top	\downarrow				H	H		1			of plagioclase. Local	- 14
7	1			T	\dagger	T				Below 352' - Thomas	+-	copyrite strong sericite, minor chal-
	360	5	\$00T	21996	1	1	1	-		fracturing, shattering	atteration of plagioclase	- 1/4" pwrite
T		Ц			1	1	†	+			fracturing chlori+; zer	امًا
T	\downarrow	\downarrow						4			· ····································	
T	+	\downarrow			T			\sqcup		fracturing shearing and		369' - 120 174
[w]	370	10	100%	21997	2	1	 	\dotplus				inches apart: por inches
-	\perp	\downarrow			\prod	П		-				extends between the two: very minor
380		5	1003	21998	*	T	I	+			fresh.	373' - 1/4" byrite-chalo
382	\mathbb{H}	\sqcup			į.		+	+		1 1	Т	376-378' Thin 1/16" quartz-chalconiet.
-1	+	\downarrow					1	+		la	Relatively pervasive	veinlets and 1/4" pyrite veinlet
7	+	4	1							original rock testroys	Т	locally with 3-5-1 total sulfide,
	H	H				1	+	+		1 1		ratio; disseminated.
080	+	10	100%	21999	.17						389' Locally strong car-	
T	-	+	\downarrow							13	veinlets with con-	390' _ 1 //"
400	H	10	100%	22000		\perp	-	+		STATE CO 395'.	2-	N I
401	\vdash	Н			1	\downarrow	+	+			39. 39. 39.	396-397' - 1/4" chalcopyrite-magnetic
7	+	+					+	+	4	ss of	pervasive Weak potassic with guart- 40	t at 40°.
Ī	+	+	+						+ 9	ricite	1-	byrite weight
405	1	+	+		1	1	-	+	ţ.	te. Has granterd	Quartz-pyrite veinlet	403' - Ouartz-Dyrita - Dill
		H			- -	+	+	\dagger				pyrite. "Siybdenum-chalco-
	+	+	1	-		-						
		ŀ	 		-	-	-	1				

Hole Number K-1

]-				İ		444			100	30							430							230	T	T	T					1	T	T	4	T	T	T		405	Depth	7
	_							L	10		_		\downarrow					Ę	5						٤		1	1		1	1	1	1	1	1	+	5	\dagger	\dagger	1	\dagger	+	h Int.	1
	 			-				60-80%	\$00T									1004							\$00T	T			T	1		1	1	1	1	F007	133	†	†	†	\dagger	+		g Core
į									21029									820TZ							21027			T	1	\dagger	\dagger	1	\dagger	1	\dagger	9Z0T2	+	\dagger	\dagger	\dagger	\dagger	+	y No.	1
	-		.	1	7	7			.05									.09			1	1			.14			\vdash	\dagger	-	+	\dagger	\dagger	+	+	6 .18	\dagger	+	-	L	+	igg	Cu Cu	-
	+	+	+	<u> </u>	+	+	1	1	-										_	-	+	+	+	-																			As:	
	+		1	1	1	1	1								+	-			_	-	+	+	+	+	+	1				-	-	-	-	-	\vdash	L	\vdash	-		L	ig		Assays Mo	
							Sagres Courses	+			Diabase Dike																														Quartz-Monzonit		Rock Tone	
					ts.	nk K-spar	-grained with	1	incensely shattered.	K											428' Granitic texture									5											e	nock Description		
				7.00.4000	plagioclase	+ (ssic: little		teration; some carbonate	Strong chlorite, clay al-		ite coatings	434' - Sharp increase in				dark K-feldspar replace-	429'- 6" pervasive secon-	abundant magnetite.	ahundant pocassic with	428' West note and Cary.	minor calcito and ora	n late.	feldspar in quartz-magno	419' & 421' - Secondary	alteration.	quartz-magnetite-chlorite	grey rock with pervasive	weak potassic to dirty	418 - Change								carbonate veinlet.	406' - Near-vertical			Alteration		:
									pyrite veinlet.			3	The day	es Ties	with pyrite:chalcopy	+ 40°	430' - Onartz Switch tet at 20		5-429	428' - Magnetite-chalconvrite	l	ALSO at 424-425	minor molypdenite.	7					-	pyrite:chalcopyrite ratio	412-418' - Chalconwrite	no disseminated sulfit	25°: chalconurite-cn	/8" quartz-purit -1	•	- Strong guartz ch-1	copyrite.	molybdenum rimming veinlet with	ispar-marne+i+c breccia		Untabatte sassa	Mineralization		S Lagrange S

					10 100% 21034 .09					60. 25017 \$001													470 10 100% 21032 07					- ATDIVES CENTRAL	0 100 21031 .09	silicification los	457-460' - Partiasino			+									Quartz-Monzonite	444	The second secon
		16	4			1	4		many veinlets have a minor	ctay, chitorice, pyrite,	ĸ		Caci or		nlets,	Г					curorice-magnetite clusters.	UT TO CE WITH	+	468' - Local fine-crains		minor carbonate on near-	ation is weak potassic;	veinlets; pervasive alter-	-		verifiec per root.	ac same uib average one	Camp di	thickness. similar	let varies 1/8"-1"	449' - Sericite halo on			along with chlorite, mag-	of fresh secondary biotite	inlets	445 - Minor carbonate on		The second of th	
		_ l'	490 - 1/8 magnetite-chalcopyrite vein-	1		let.		1				tarto equal to 1:1-2.	overall pyrite:ch	Sullides	lets per foot Total cale:	1-2 quartz-magnetite-pyrite	magnetite.	verniers with pervasive silicification	yuartz-pyrite-chalcopyrite	472-4731 0	Tacil ligito.	uartz-magnetite	magnetite veinlet at 20° with 2" thick	70/ - 1/8-1/4" chalcopyrite-quartz-	- 1/0 1/4"		10+	460' - Ouartz-chalcon		veinlet at 40°	455' - 1/4" magnetite-chalconic		S	veinlet at 30°.	449 - 1/4" quartz-sericite-pyrite	ovrite.	un, healed fract	occasional at:	disseminated and also at 4	pyrite rat	CODVrite weinlet at ace	445' - 1"		Mineralization	_

					534	T	18	530	T	T	T	125.5	534	T	-	T	020		T	T	1		T	T	100	2	T	T	T	T	1	T		Γ		П	Γ	490	De	
	†	1			+	+	15	+	\dagger	+	+	+	\dagger	-	+	+	10	-	+	+	15	+	-	+	15	+	+	+	+	+	+		-		$ \cdot $		-		Depth 1	
f	1	\dagger		+	\dagger	\dagger	1003	1	1	+	\dagger	+	+	+	-	\vdash	100%	L	-	+	\$00T	\downarrow	+	+	1	\downarrow	\mid	+	+	+	-	_				-			Int.	
+	+		-	1		-	L	\perp	1	1	\vdash	-	-	 	_		L	L	-	_	L	Ļ	\downarrow	1	\$00x	Ļ	L												Rcvy	% Core
-	1			\downarrow	1		21038										21037				21036				21035														No.	
-	ļ-		+	\downarrow	+	-	80				L						.09				.05				.13									1	†	\dagger	1	+	Cu	-
-	-		+	+	+	-			_		-	-		+	4		1																		1		1		Mo	Ass
			\dagger	\dagger	\dagger									+	1		+	+	1		-										1	4	\downarrow	1	\downarrow	\downarrow	\downarrow	1	į	Assavs
				Quartz-Monzonite						- 1		Late Ouartz-													·								1			-	Yuar tz-Monzoni te		Rock Type	
								Table 1	di. no observable	contacts grada-	-grained, olive									rracture.	Francisco - Near-vertical Carbonate												itic texture.	henocrysts;		grey,	ite Coarse-grained pinkish-		Rock Description	
					(original).		minor disseminated, partialy-	minor sericite assemblage	of rock to chlorite-clay-	tense, pervasive alteration	Green color due to in-			i		Local vertical, chlorite-					l Carbonate material.				and magnetite veinlets.	498-499' - Quartz-K-spar	veinlet.	netite-secondary K-spar	494-495' rimmed by mag-	Silicified vein zone at	lets.	netite-chalcopyrite vein		quartz-pyrite veinlete	ippears more ahindant	around vainlate	Ouartz-sericite	utceration	174	
							y -		pranes.	thin fracture	Very minor project	tite Toislot chalcopyrite-quartz-magne-	e 5221 1/4 1 1	ite-molybdenite veinle	Near-vertical quartz-magnetite-	son is rimmed with molybdenite	- 1/4" quartz-pyrite- cha	THIEF per foot to 580.		pyrite overall average sulfides in	Zuar cz-sericite-chalcop	505' Charley chalcopyrite.	with minor enidets the		7	498-499' - Roth ::::1	ce veinlets,	bden	سنال	494-4051		493.5	Within: dipping at 15°	pyrite, m	40			Mineralization		

		590				580						0/0		T	Γ	T	T	200		T	T	T	T		550	ī	T	T		Π					П	540		534	Depth	
		5				10			-			5			T	T	\dagger	15	;	\dagger	\dagger	\dagger	\dagger	 	15	+	I	\vdash	_						Н		-			-
		100%	Ť	-		100%	1				\vdash	100%	-	-	+	-	\dagger	ROOT	+	+	+	1	+	-	100%	L	-				\dashv				Ц	10 11			Int.	26
1	- -	21044	+				4	-	-			L			-	-			L		-	\downarrow	igg	L					·						Ц	100%				Core
1		+	_		_	21043	\downarrow		-			21042						21041							21040											21039			No.	Samp.
-		7	+		-	3	+	1	+	-		.09			_	L	L	96	L	L					.05											75			Cu	
	+	+			+	$\frac{1}{1}$	+	+	$\frac{1}{1}$	1	-	-	-					L	L	_	_									1	1	1				Ī			Mo	Ass
-		\downarrow			1	+	1											L											1	+	+	1	1	+	+	+	$\frac{1}{1}$	-	Mo	avs
				10	58	C	1.6	19:	<u> </u>			B																									Zum cz iolizolit c	Onarty-Mongonit	Rock Type	
				1 quartz-monzonite.	581' - Schist fragment	ts.	I?	ed but with no	rock is coarse-	reluspar becomes	5/0 - Flag10-	6701																						CLase.	to alteration of plagio	ctled	AS abov		Rock Description	
									increased silica content	what silicified; pervasive	570' - Rock appears some-	E	carbonate material on	teration of plagioclase,	complete clay-alunite al-	566' - Sharp change to	1					crease from above.	e sho		pyrite veinlet.	K-Spar on quartz-chalco-	546.5' Local secondary			Į,	543' - 20-25% secondary	on fractures.		542-543' Increased frac-			Weak potassic.		Alteration	
	veinier, 1/8",	- Near vert	veinlet at 60°, 1/8" thick.	586' - Ouartz-K-spar-purity									below 566', little to no coless	ite. No quartz-chalcon: to inclybden	magnetite, chalconvrite local abundant	564'-566' Silicified 7000th	and and	to much less than 1	Quartz and total su	ri	rtz-K-spar-carbonate	veinlets.	551, 552' - Quartz-magnetite-chil					disseminated sulfides	byrite chalcon increased	average 1-2 and chlorite veinlets				of 1.2-3	ğ	waitz-sericite-magnetite	534-535 51 - 0	rineralization .		

		660				 -		650					640				630					020	T	T		Ī	J of E	013					\int			600							590	Depth	1
		10	1					10					10				10					5		1		T	15	†	†	\dagger	†	†	+	1	1	10								h Int.	-
		\$001						1 100%					\$001			100	1000					\$00T			T	T	100%	1	†	1		1	†	1	7	\$001 (7	1			1		Rcvy	א ייטנים
		21051	1					21050	- 		1		21049			╁	210/8	1				21047	├	 	-		8 21046	╁	+	+	\dagger	+	1	+	+	+	1	\dashv	1			1	4		
	i -	1 .03	+	+	4	4		0 .05		-	$\frac{1}{1}$	-i	49 .03			100	╁	+	+	1			L				┝	╄	-	-	-	\downarrow	+	1	+	21045	-	\downarrow	1	4	1	4			-
	1		1			j		<u>.</u>			\dagger	1	7		-	16	1	\dagger	-	1	-	05		_	-		2	-	-	H	ig	-	+	+	16	3	+	+	+	+	-	+		Cu	
	-		1														1			1							_					-	-		\dagger	\dagger	1	1	+	\dagger	\dagger	+	-	Mo	accaye
-	+	+	+	+	1	-	-			L	+	1	4				-	1	1																				1	1	1	1			
																																										Quartz-Monzoni de		Rock Type	
																																							phenocrysts.	minor pink K-spar	coarse-grained with	Light	11	Rock Description	
						fractures.	of carbonate material on	640' increasing abundance	surrides, magnetite; below	TELS AT LILE AT LILE	K-spar weinlet with no	plagioclase; occasional		534-650' - Slight clay-												STRES.	recs; minor epidote per-	leta minayiette vein-	Chlorite-magnetite	Occasional shallow at	at 601, 603,	quartz-magnetitic	epidote associated with	veinlet with enidote:	600' - Quartz-magnetite	no carbonates.	little to no sericite,	veinlet; no sulfide,	597' - K-spar-magnetite	netite alteration:	Str	Weak to strong potassic		Alteration	4
	"aynerice-charcopyrite-pyrite veinlet.	127	657_6501 N CHAICOPYFICE.		are very low with no as	minor pyrite, sericite, total with	netite-chalconvrite: 1	To 650' - Occasional thin								ו ש			<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	621' - Magnetite at a very two reet.	epidote veinlet per amanie zumagnet	618, 620, 622' - One client - machine	on chlorite-magnetite fractures	Below 615' minor chalcopyrite pur	pyrite veinlet.	615' - 1/4" quartz-magnetite-chall		sericite veinlet at 15°, with mag	9 608' - 1/4" quartz-		sericitic halo.	pyrice vein	oub: - 1/8" quartz-magnetite-chalco-					TOTAL MILITAGE	sulfides very minor	Sulfides - none disseminated	magnetite-chalconvrite-chalconvri	Occasional thin near-working	UOTSEZITE ISHII:	M:1070 1 470+401	

					+	1	4	4	
rec maynetice verniers.				_		-	_		_
10					-	1	+	1	
720' - Near-Working 1 -1 -1					2	/C017	2007	- 2	160
- 1					+	╄		╀	735
					\downarrow	-		-	
	gnetite-clay altera-	1 4.			+	-		1	
	7:	æ			-		ļ.	1	
		C		+	\downarrow		-	_	
ite.		slightly sheared rock. i			+	\downarrow	-		
No quartz veinlets. little	lor-	- Dark grey			-	_1	4		
	in and along veinlet's.	ve.			3	21056	100%	5	710
	added silica, magnetite	magnetite is		1	4				
	dant chlorite, magnetite;	ey color where		+	-				
	secondary biotite, abun-	and change to			+				
	All feldspars fresh, minor	oss in granitic		+	4		_		
	30°.			+	4				
inant.	car						-		
chalcopyrite with chalcopyrite	/00 = 1/8" quartz-chlor-								
magnetite veinlets with minor	1				.01	21055	100%	5	è
Several	a+ 20°			_			Ļ		
Į.	695' - Magnetite veinlet				1		1		
inated en	veinlets.		·	-	\downarrow		1		
decreased to ratio of	with chlorite-magnetite in			 	-				
Overall pyrite-chalconyrite	691-693' - Minor epidote					2007		ļ	
					3	21054	000	5	690
veinlet at					1				
-	let occupies most of core.				1				
chalcopyrite veinlet:	sericite halo along vein-								
te- 685-687' - 1/8-1/4" guartz-	685-687' - Quartz-magnetite- 685-687'								
	ľ								
	with no H		-		97	21053	\$001	10	680
	vasive alteration is weak								
	with local sericite; per-								
	tite-chlorite veinlets								
Ξ.	677-680' - Quartz-magne-								
672-673' 1/8-1/4" gnartz-ser		netite, biotite.			- 0.6	20013	-		
quartz and chlorite veinlets		E		+	3]	21053	100%	5	670
<u>Fide</u>		lark grey		1]				
at 30°		pink K-spar phenocrysts:		+					
663' - 3" quartz-magnetite-rv	Weak to strong potassic.	Т	Ouar rz-monzoni re	1					
			On the last of the						660
Mineralization	Alteration	Rock Description	Rock Type	Mo	Cu	No.	Rcvy	Int.	Depth
				Assays		odino.	270.0	_	_

770	760	758	750		735	730		Depth
10	10		10	į		10		Int.
100%	100%		100%	A CO		100%	1111	% Core
21062	21061		21060	55017		21058	++++	re Samp.
. 10	.05		.06	04		.08	+++	Cu
$\frac{1}{1}$								
				$\frac{1}{1}$				Assays Mo
	Monzonite (Tertiary) Quartz-Monzonite	Late Quartz-		Quartz-Monzonit	Aplite Dike		Quartz-Monzonit to Granite	Rock Type
	cite, medium-grained, pervasively altered. Grey-green from pervasive sercite, but with mottled pink of K-spar, years of the service of the se	Grey-green with seri-	Continues to 758'.	Fault zone(?) intense shearing, brecciation; 741-745' - Grey-green.	tte-magnetite-clay. Very fine-grained, apl	- Dark grey	plagioclase in interva 500-700'. Very little at 720'.	
e materi	with quartz-magnetite veinlets. Intense sericite-chlorite clay with fresh K-spar; l/2" quartz-magnetite veinlet at 760 762'.	ed to magnetite-hematite, or removed. Intense quartz-sericite	K-spar clouded, plagio- clase, all others altered to sericite, clay, minor	Abundant chlorite, clay, sericite.	aplite with weak potassic alteration.	along veinlets with dis- seminated pyrite:chalco- pyrite. 730-732' Vertical, chlorite filled fracture.	Weak potassic; locally I strong, chlorite filled fractures at 80°; some pervasive silicification	Alteration
strong sericite halo with abundant pyrite:chalcopyrite in 1:1 ratio.	at 30° 1:1, s	chalcopyrite veinlets at 40°.	\Box	740' - Minor molybdenum on quartz- magnetite-carbonate veinlet, 1/8". Apparent disseminated pyrite, chalco-	Chalcopyrite-chlorite veinlet at 735', 1/8", some disseminated pyrite, chal-	inated pyrite, chalcopyrite in chalcopyrite ratio of 1:1.	┠┋╏	Mineralization

	890	886	870	868	860	850	77	846	-	П	Τ	7	00 m	П	<u>"</u>]				T .		- ,	T			γ,			-	_
	1-1-1	+	+	a		ő	\prod	<u></u>				1	838		820	018		8	790			780					770	Depth	
	10	0	+		5	10	++	5			1	\downarrow	10		5	10	į	5	10			10				1		Int.	1
	100%	100%	1003		100%	100%		100%					\$06	300	902	100%	908		100%			\$001						% Core	1
	21074	21073	21072	Ì	21071	21070	21003	21060				T	21068	/ OUT?	3102	21066	21065		21064	+	\dagger	21063	\dagger		+	\dagger	1	(0	1
	.06	.07	.04		. 15	.24	.02	3		\dagger	\dagger	+	.08	- 00	+	5 . 22	.02		4 .05	+	+	.05	+	H	+	+	#-	Samp. Cu	
				\prod											T	$\dagger \dagger$	\dagger	H	1	\dagger	\dagger		\dagger	H	+	\dagger	1		
	+		+	+					4	\downarrow															1	\dagger	'	Assays Mo	
	+	Pebble	6	Oua	+		+	H	-	Qua	Bre	End	H	+	-		\perp	\prod	+	\downarrow		79			1	X			
			co Granite	ctz-Moi					- 1	TTZ-Mc	Breccia,	of									1 1	Fault B				uartz-	166		
		Breccia(?		Quartz-Monzonite					(Terclary)	Quartz-Monzonit	Late	Obvious										Breccia				Quartz-Monzonite	wock Type	3	
	apparent ments.) Intense	k-spar p	Coarse-q	1	sericite	conti	Belo	cite;	┰	Н	Breccia		\dagger		\dagger	qua	gra	she	7851	be		+	H	+	i ta		\dashv	
	1 1		with n	e-grai	11	cite-c	color due to chieven	Below 838 brecciation	; heav	te-chl	E	- 1					quartz gr	granulate	sheared;	5' - B1	below 780'	Increase					KOCK D		
	rounded	ly altered	h numerous henocrysts;	rained pinkish		-chlorite.	grey-	n snear	y gree	chlorite-seri-	h quai	below Rigi		$\ \ $			grains.	ted with	intens	Brecciated,)1	broo					k Description		
	frag-	4 ti	h numerous large tion with magnetite; henocrysts; no locally strong serici	nkish		e.	green	r plane	cite; heavy green clay-	seri-	quartz-maq-	•					20010	ated with rounded	d; intense alter-	ed,	780'.						tion		
	pervasive	locally biotite	e tion local	Local		5-10%;	with	ROCK S		М	_		+		+	\dagger	-	\neg			+		H	+	Si.	0	·····	-	
	sive a	ly fre	with ly str	ly st		eminat b; som	quart			h K-sr	ndant r						ered;	dspars	sericite with	Abundant					sic, as	lartz-s			
	pervasive alteration.	fresh, secondary	tion with magnetite; locally strong sericite;	Locally strong silicifical		<pre>disseminated magnetite 5-10%; some fresh K-spar.</pre>	with quartz and magnetite			K-spar in fragments	abundant pyrite,						arcered; no veinlets.	feldspars, all minerals		chlorite		$\ \ $			as above	Ouartz-sericite	Alter		
	ricite	condar	ite; ricite	l ici fi		netite h K-sp	maynet			fragments							nlets	miner							18	3	Alteration		
+	+	111	, ,	1 1	-	ar.	i te	H	1	-40	7-	L	\prod	1		\coprod	Ĺ	ils	lv all						Pocas-				
	Local mag		pyrite, chalcopyrite in 1		ratio remain high.	0 4	840.5			, veined;	Below 8			5-10:1 below	Pyrite:chalcopyrite				Chalow	chalc	781 ·	veinl	at 30°	776	7/0' -				
	magnetite veinlets, les.	1/4" quartz-magnetite-cha	chalco		emain	conte	1/4			Pyz	lã.			below	:chalc			T-1:1-2	/80	chalcopyrite, magnetite.	781' - 2" quartz veinlet at 30°.	et wit	l•	1-1	1-	H	فيودا		
	e vein	artz-m	minated sulf chalcopyrite				magna a			<pre>pyrite:chalcopyrite</pre>	sulfides disseminate			8201	opyrit		$\ \ $	Tn. L	ninor	e, mag	uartz	near-			quar	11	Mineralization		
	ets,	lagneti	fides.		7 7 7 7 6	-97.5				lcopyr	s diss								dissem	netite	veinle	vertic		chalc	tz-cha		lizati		
	dissem	te-cha	Very 1 rati		h.	nalcor				ite ra	eminat				ratio incr			ratio:	inated		TYGOD.	al mac	7.5	quartz-clay-pyrite	quartz-chalcopyri		3		
	inated	lco-	minor io with		copyrit	yri te	$\ \ $			tio 5:1	ed and			cases	20260				pyrite:	ľ		1/8" near-vertical magnetite	ce verurer	e, no	ite veinle				
						Ц	Ц					L	Ш	8		Ш	\perp		::	TOUT			Ter	no pyri	inle		l		ا

		926				923	T	I	920	T			T			Ī		T					910		T	T	T	T	T	T	T	Ţ	8	1		g	T	T	T	Τ	890	Dej	7
									10	T	1	1		f	\dagger	\vdash	\dagger	+	+	1		-	-	┞	 	igg	-	+	+	+	+	+	+	$\frac{1}{1}$	1	7	+	\downarrow	\downarrow	+	ŏ	=	_
							\vdash		一	\dagger	-	+	-		\vdash	-	\vdash	$\frac{1}{1}$	+	+	-		10 1	L	-	\vdash	-	+	+	+	+	\downarrow	+	+	12	+	+	+	\downarrow	+	_	Int.	
	$\left \cdot \right $	-	1	+	\dashv				100%	_		-	_		_			-	1	+			100%		L					\downarrow					100%							Rcvy	% Core
		1	1	1	4				21077														21076												2/0/5							1	Samn
	+	+	$\frac{1}{1}$	4	+	+	4		. 05									_		1	\downarrow		200												. 22		T	T		_		င္မ	
	+	1	+	+	+	+	1	+	\dashv				-	-	+	4			-	1	+	\downarrow	1		4																	M o	Ac
	+	\dagger	+	$\frac{1}{1}$	\dagger	1	+	+	1	_	_	+	-	+	+	1					+	+	+	1		-					_	L								\perp		Mo	
ľ				1	1	†	1	1	1		1	1	1	1	1	1			-	\mid	\dagger	+	+	+	1	1	1			\vdash	to	Ou;			Di					-	Pe		$\left\{ \right.$
																															Granite	artz-M			Diabase					~ I	Pebble	Rock	
+	+	-	-	-	-	1	\downarrow	1	$\frac{1}{1}$	1	\downarrow	\downarrow	1	1	\downarrow	1	1														te	Ouartz-Monzonit			Dike					5)	Brannia	Rock Type	
												Fracturi	176						Cryst	pink k-	grani te	Coarse-				sneared	, hir 133	107	1506			e Coarse	76-9117		Black.		7	1	1	AS	r.	R _C	
												uring.	<u> </u>						· f	ונט						ľ		10	١ [k-sna	30.00	TPTA		- 1					above.		Rock De	
													8							- 1		grained,				appearance.	uark green,	gark and st			-spars		ied-ap	TO COLL	fractured							Description	
_							L	_					000								e	grey				ce.	en,	snat-			WICU		carned-appant tic	Y VELY								Lon	
		magnetite-highire	tinued pervasive curry	Weak potassic with con		with r	let of	Occasional hairline	and po	alter	quart	fresh,	Weak				veinlet	. 7TE	mayii.		perv.	Weak				cite.	on i	905-	magi	MT CI	weal	97.6		Т		\dagger	\dagger	\dagger	vei	Abu	\parallel		
		italhi	Derv	otass	ė	pyrite, minor chal-	let of chlorite-biotite	ional	and pervasive.	alteration; in veinlets	quartz-sericite-magnetite	seco	Weak potassic with very				et at	$\frac{1}{8}$	mayne cree	magnotite dearca-curoring	ac i vo	Weak potassic with				•	fractures;	905-909' - Strong chlorite	magnetite	with quartz-sericite-	weak to strong potassic	are veiniets.	quartz-magnetite carbon-	ong CI					veinlets; magnetite.	Abundant			
	001.00	0+1+0	aci vo	2 5 5 7		mino	rite-b	hairli	ve.	in ve	cite-r	ndary	ic wi			•	N			A work	772	Sic Wi					res; c	Stro	veinlets.	Tas-ser	trong	ets.	gneti	ay-se					magn			Alteration	
		Anar LZ				T Cha		ne vein		inlet	nagnet	secondary biotite	th ver					magneti te		OTIL							clay-seri-	ng ch	ets.	1C1 te	potas		ce car	Clay-sericite with					etite.	quartz-carbonate		tion	
+	- Yay	十	+	+	†	+	4	7	\dashv	\dashv	7		\dashv	1	1				L	-82.7.7		locali	+	+	1	4	-17	lorite		Ľ	Sic		bon-	with	Ŀ					onate			
	Pyrite-chalcopyrite	1/8 ca	- 1	923 -	Te	177	- 10	BATTCE		918 E 919' 1/2 7/1"	pyrite: chalcomyrite;	einlei	Below 914" C. Vernier	martz	9131	of 1.2-3	655 +	silica	copyri	carryi	NOTION	Warrice: Charcopyrite ratio of 1:2-3.		70 010	CODUT		907			in 1:1	Minor		chalo	veine	semi	nite	pred	chal	in 5	Diss			
	halco	carbonate veinlet; also	or ch	1/4" magnetite	at 20°	1/8 magnetite-chalcopyri	S WICE	veiniet at 40°		101		2 2	114"	Transfer chalcopyrite on	2	7 1	han le	אה א	te ass	ng cla	TA-Sb	Cnal		TO 910' - VETILLED		بإدِ				l ratio.	diss		chalcopyrite ratio 1-2.1	veined chalconvrite:	nated)	nite associated with chalcony	predominantly disseminated		in 5-10:1	Disseminated		_	
	pyrite	e vein	alcopy	agneti	ŀ	lagne t	MYZOW	t at	- 1/2-3/4" quartz-cha	37770	e y cild	Andri	7	מוזכ כו		TAG	Turboon	CCOM	ociat	ay and	aced h	copyri	roken	THITEC		- 1				9	disseminated pyrite		te rat	CODVY	minor	iated	tlv d	te in	. L	2	nineralization		
	veinlet,	let;	rite,	te ve		ite-ch	bdenit	40° W	14. 01	e inc	TCODY	z-ser	Turec	Talcop		rce:cn	IGLIOI		Pd wi	chal	airli	te ra	chalc	ar 35							ed by		10 1-		diss	with	issemi	1:1 7	io veir		lizat:		
	let, v	also	pyri	inlet		alcopy		with 4"	martz-	rease	LT EG:	icite-	at 80	F.		al cop	יצי נס	Table 1	÷	opyri	ne fra	tio of	opyrit	ŀ	quartz-pyrite-	Lcopy							2.1		emina	chalco	total	ed by	nd cn		Lon		•
	vertic:	- 1	- 1	at 10		rite		halo of	chalco	to 1-2	ratio	Carri chal sericite-pyrite	8.	on 1/8"		rite	tal su	VAS1 Ve		7	ctures	1:2-	e vei		te-ch	l w				CHATC			.	ed an	27.77	OUTIN	TITUS	rice a	veined chalcopyrite				
	ical.	lar	cut by					Of	ĭ			100		8,		ratio	Lfide	Ĺ	iat -				nlets		chal-	vein-				TCOPYET			oyrite:		STDIA	Z DOX	des	E	अरम्				1

Ī	950				945	T						940									7	T	1	220	T	T		930				П	T		976	3 5	,
-	5			1	7	+	+	-					+	+		+	+	+	+	+	+	+	+	+	+	+	-	-	_	H		-	+	+	°	↓ S	\dashv
-	100%			1000	╬	\dagger						5 10	\dashv	\dashv	+	+	+	+	+	+	+	+	+		-	-		10				1	+	1	+	Int.	\dashv
-	. -	╂	+	+	+	-				_	4	100% 2	4	1	1	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	1		*00T	4				100%								Rcvy	& Core
-	21082	\prod	1	TROTZ								21080											66012					21078								A	
-	.74	H	+	.59				+	4	+	-	5	1	1	1	1	\downarrow			\prod			.09					2						$\frac{1}{1}$	H	S.	
			+	+	-			+	1	+	+	+	+	+	+	$\frac{1}{1}$	$\frac{1}{1}$	+	1	+	\downarrow	-	L	_			_	4	_	1			I			ĕo	Ass
			\dagger	+			+	1	+	\dagger	+	+	+	+	+	+	+	+	+	+	1	-		_			+	+	+	+	+	+	-				Assays
							1	1	1	1	1		1	1	\dagger	\dagger	\dagger	+	-	-	ig	-				+	+	+	\dagger	+	+	+		to	Oua		\dashv
																																		to Granite	rtz-Mo	Rock Type	
+	+	+	\downarrow			+	\downarrow	\downarrow	+	1	-	igg																						P	duartz-Monzoni.	Туре	
																											ance.	grey,	rock	928.5						Ro	1
																							İ					1	texture	1						Rock Des	
																												brecciated	8	te						Description	
H	\prod	\perp		1	\downarrow	_		_																				appear	dark	loss of						9	
									ite al	magnetite-sericite-chlor	940										Ter X		Sericite.	WT CH	932'-	chlo	930		magn	928.51			1	†	\parallel		
									alteration.	ite-se	80-100%										WT CU CI	1	9116	80% q	Rock	rite v	[1]	20-25°.	ite								
									on.	ricit											cnarcopyrite.	16" K-S		uartz-	as at	chlorite veinlets.	Secondary		introduced	Abundan t						Alteration	
		$\ \ $								Ch 10	quartz-										vrite.	k-spar vein-	ľ	with 80% quartz-magnetite	Rock as at 928.5-930	S	k-spar-									tion	
pyr	948	maq	6	all	1/8"	int	1 ye	2 2	十	\top	STEE	Let	93			9	Se	2	0	0	9	1		1	9	+	4	4	+	quartz-	1						
pyrite:chalcopyrite	948', pyrite:chalcopyrite	magnetite chlorite at 0/6 51	to 1:1-3.	pyrit	" chal	interval with 3-co	pyrite "sinlet"	SUTTINE				t at 3	5	O	Pyrite veinlet	37' - 1	sericite	copyri te	pyrite	copyrite veinlet at	936' -			veinlet at	' 932.5' - 1/8" gijar	ninor (1020	copyrice in quartz-magnetite.	720.3 -932	ceration;	associated with quartz-magnet	Pyrite and chalcopyrite in 1:	at 3-5° with minor chalcopyri	926-92			
1 copy	ite:ch	13	Very	e:chal	copyr	4+ tm	1	100	copyri	Disseminated	os alo	35°. Lc	4	lite.	einle:	1/2" q	alte	diss	ratio	e vein	1/8-1/4"		- 1	at	- 1/	hal con		ce in	75.6-	On: to	ated w	and c	° with	7.5'		×.	
copyrite in 1:1	te:chalcopyrite =)	LCOPYE	Very minor molybdenite	copyr			/4" ne		te in	ted	halos along quartz	Local molybdenite i	quartz-chalcopyri		at 3	lartz-	alteration in	eminat	of 1:1	let at	4" mac				/8" One	veinlets		quartz	Mode	total su	ith qu	hal co	mino	- 1/8"		Mineralization	
	' L !:	ite wi	molybo	te ra	copper)	pyrite	near-vertical		1:1-2 ratio		rtz ve	lybder	-chal		5°, be	nagnet	in 1:	ed wit	; pyri	50,	magnetite-guar		1	at 300	TIECTE	Lets w		-magne	rately	sulfide less	lartz-n	yrite	chal	magne	OTABA		
ratio.	1:3-4	th qua	eni te	io dec		one f	tical		ratio;	veined p	veinlets	ite ir	opyri		ring 1	ite-ch	lrati	h quar	te and	vrite:	quar		ľ	TCODY	le to	ith ma		tite.	abund	less t	lagne tj	in 1:	ייישם	ti te w	_		
with massive ratio.	94/-	artz-		pyrite:chalcopyrite ratio decreased		00t	ctical chalco-		; total	yrite		n seri-	e veir		ninor	alco-		e disseminated with quartz-	ratio of 1:1; pyrite and chal-	chalco-	7			rice	guartz-chalcomo pyrite	with magnetite,			 Moderately abundant chal 	than 1%.	te all	ratio	- Carrier	magnetite wainiat			1
				-47		4	<u></u> L	1				ناـــ	L	_1_	_				1	L	L	L	L	L	g				믭		er		1	I		1	ı

	995	066 686	980 985	970	وو			
	5		1111		963.5 965	960	955	Depth :
	100%	100%		<u></u>	UN .		м	Int.
-	╄╁╁┼┼	╼┾╼╂╼╂╼╂	╎ ┤┽┽	95%	80%	1003	100%	% Core Rcvy
	21091	21090	21087 21088 21089	21086	21085	21084	21083	Samp.
	.54	10	.16	<u> </u>	35	38	72	C L
		++++						Ass
			1111	++++++		++++	414	Assays Mo
		Ouartz Monzonite to Granite pa			Diabase Dike (Precambrian)		to Granite (?)	Rock Type
		Dark grey, sheared, artially broken quartz- nzonite.	Increased fracturing and shearing below 975.		Intensely broken, shat- tered. Brecciated to 967' with 50% core loss, rock is fine-grained-	texture observed.		
	K-spar veinlet: locally abundant chlorite-magne-tite-hematite on fractures, shear planes.	rate cite dant		and carbonate coat all fractures. 970' Quartz-K-Spar veinle cut by carbonate veinlets	Intense quartz-sericite is pervasive with moderate chalcopyrite, quartz-mag-		guartz-magnetite-chlorite and sericite; distinct lineation of fracturing	Alteration
	with quartz-magnetite veinlets and magnetite clusters on shears.	ow 991' - chalcopyrite very t with pyrite:chalcopyrite r 1:2-3; chalcopyrite associate			magnetite-chlorite, respective continues from 961-962. 962-963.5' Massive magnetites with little to no sulfide. Pyrite, chalcopyrite on fractuchalcopyrite on veinlets with			Mineralization

e**r** 19

				-	-	-	I T	ļ		1
						-	1	+		רו
					-	1	-	+		
					1	1	1	4		
	qu				1	+	+	-		
of 1:2; major molybdenum	73				+	-	1	4	1023	}
to 1023' in pyrite:chalc	TOCAL Magnetica.			1	†	1	1	\dashv		
sseminated chalcopyrit	Orita: local manage			+	$\frac{1}{1}$	-	-	-		_
selvages of sericite-molybdenite	023': very minor			1	1		1)—·
0	als except guarda	_	co orantre					 	<u> </u>	;
1	asive sericite after	Coarse-grained; dark	10		1			L		}_
10171 211	7				1			_	1019	
	quartz-chalcopyrite vein-						_		-	- -
		firelisely snattered.			09	21095	\$00T	5	CTOT	٦-
	fine-grained, disseminated									
- marcopyrice along shears.	sericite; abundant very							-	\downarrow	
	Pervasive, very strong	3 J						\downarrow		
	verniers and chalcopyrite.	Fine-grained dark grain	Diorite Dike		ig	1	1		100	
	urop in number of quartz				1.3	21094	\$00.5	1		,-
	arrerdcrou;				1	2	1000	^	1010	
	Cite altoward seri-				+		1	1		
	十				-			4		
lets at 80° with	pink k-snar phonography iresn,				+					-
	Below IOOR! Iconii:	Below 1008' Considerably			+					
te vein				+	+					
F					$\frac{1}{1}$					
pyrite on quartz vein				+	- 13					
bdenum assoc	, 000T OS CO.	fluidization.				21002	100	5	1005	
pyrite and chalcopyrite in 1:2-3 ratio	of feldspars to 10091	partial brecciation or		+	+					
5°, 1/8-1/4" thick. Minor disseminated	Pervasive sericitization	Below 1003' Fractured,			+					
ıω	fractures			+	+					
1003' Intersection of two quartz-magne	material filling :				1					
					+					
abundant chalcopyrite.	ACTITEC.				+					
1002' 1" quartz-specularite veinlet	weinlet				1					
ite alteration.	10021 01344				1				-	
ָה מ					70.7	75017	7000			
pyrite-chalcopyrite ratio is 1:2-1.	curorice.					21002	100%	5	1000	
veinlets with associated molyhdanim	chlorito	•		+	I					
1	with ahundant magneticite		to Granite	 	1			1		
	Pervasive quarta-comini	te	Quartz Monzonit	+	† †			1		
Mineralization	Alteration							1	995	
		Rock Decomination	Rock Type	Assays Mo	Cu	No.	Rcvy	Int.	Depth	
						1	d Come	1	7	
										_

		1055			1050	7	7	}]	7	1040		7	7	-]	T	T	1	T	1	7			Γ	Τ	1030	Γ	Ţ-	Γ			1025	П	7		<u> </u>	_
	-	H	1	-	1	+	\dagger	+	+	-	-	+		_	-	10	+	+	+	-		-	_	+	\downarrow	+	+	+	-		_		ŏ						25	1		1023	Depth	
			+	*001	\downarrow	+	+	╁	+	+	+	+	-		-	L	L	+	+	+	_		_	-	-	\downarrow	\downarrow	+					5						5	\perp			Int.	
		+	+	\downarrow	\bot	+	1	-	-	1	+	+		_		100%		1	\downarrow	1													100%·						100%					& Core
		\downarrow		21100												21099															٠		21098			1			21097	1			No.	7
		-	-	03	-			L			-	1	1			103				I								\dagger	1	1			66	+	+	+	\dagger	-	3	+	+	╁	Cu	1
	+	+	+	-		_		_		-	<u>i</u> †	<u> </u>	+	+	4	-			-	\downarrow	1	4	1						I									†	+	-	T	+	Mo	
	+	+	+	-	$\ $					<u> </u> 		+	+	+	+	1	-		-	+	+	+	+	1			L		1	\downarrow	-	+	\downarrow		1	1	$oxed{I}$	\prod	1	1	T -		Assays Mo	
	T	+											+	†	\dagger	+	-		\vdash	+	+	\dagger	+	+	+		\vdash	-	+	+	Ċ	101	+	+	+	+	+	\downarrow	\downarrow	0	no Di	lacksquare		
							İ																								AT WILL TE	Martz Mo								Granite	artz M		Rock	
1	+	1	1		1		1	1	\downarrow																						F	Monzoni te								te:	<u> Puartz Monzonite</u>	:	Rock Type	
		1050'.	increases	Brecciation																			Ī	T	T					T	turing,	7	+	T			T	+	\vdash		e 1023		20	
		, ,	r																												ı	1034								Н	Pink		Rock Da	
		MOTERN AND THE PARTY	snearing	}	1																										breaking.	Major								10101	- 11	moradr racae	cond +	
L		_	_	1	1	<u> </u>			1		\downarrow	1																				frac-								Surna	π	101		
	want magnecice yeinlets.	on rrac	-		pyrite	veinlet at 40°; no chalco-	1048' Magnetite-quartz		less_than_at_1030-1040'	predominantly introduced:	put widespread: magnetite	Lathungte material is minor	Carpone de la constante de la	strong	Weak potassic with	with no mineralization	1039' -	magnetite,	Fresn		† 10 TO	stron	diori	secon	1033.5' -	CODY	Th Q	Toted	12103	1033 51	veinlet	1030		K-sp	plag	and	abun	of of	crysts	71	I		-	
	k iliayi	ractures: 1053-1054	t ser			at 4	Magnet		han at	inant)	despre	iate ma	1	COVI	otass	o min	- 5"	tite,	Fresh K-spar with abundant	<u> </u>	to 103/1 103/ 102:	a chic	diorite-sericite to 102/1	secondary K-spar:	5	copyrite veinlet; 1031.5-	in quartz-magnetite-chal-	CTEST MUTCE		ľ	let.	1030' K-spar in quarts		K-spar locally sericitions	plagioclase and	and chlorite on fraction	idant r		•	, •	- 11			
	ect ce	1053	sericite:			O°: no	ite-au		1030	y int	ad: m	reria		1 1 1 1	ic wit	eraliz	5" quartz vein	chlorite.	r with	U34-10	77.00	71 +0-1	ici to	(-spar	1/8" v	einlet	magnet	e, pea	nillor annydrite			ar in		ally	Pue es	ומקווכנ			With mai	Sharp change to		Alteration		
	veini	-1054	chlorit			chalc	artz		1040	esompo.	agneti	is m	grera	1000		a t i on	z veir	te.	abunc	139' -	SELTC1	10	to 1034	stro	veinlet of	: 1031	ite-ch	pearly, F	nnyarı		1000	onar+	7777	מבי כי	1140	TCE-UE	metite te;	or amo	N-Spar pheno-	hange		ation		
+	ets. a	Loc	F	ser	\vdash	-	-	1 2 2	\dashv		F	R	1	-	1	+	1		dant	-	93	1		3	2	5-	-	⊢	4	1	1	\perp		\neg	_	matite	e	unts	ieno-	6				
	ad jacent	Locally minor amounts of		sericite-pyrito-chalcomit	1049' - two veinlets	chalconnite or chalcopyrite; py	inated purity	secondary vernier at 80° with selvag		1045 51	veinlet with o"	veinlet at 30°	1041' -															chalcopyrite	pyrite,	1032	Ardiens	pyrite; molybdenite has dropped	veinlet at	Occasional		K-sp		1:1:	pyrite	Very minor				
	ל לס ס	inor a		te-byrite-chalcomit	WO WAS	1	N SP	Jarun		-	wi th	at 30	•															yrite	1		in c	Y moly	et at	Į.,		K-spar veinlets.	n very	1:1; pyrite-chalcopyrite ratio	pyrite in pyrite:chalcopyrite	ninor		3		
	to quartz	mounts	21010	ich a 1	niot i	cha -	F	η.	quartz-magnetite-cha	136	2" 601	Clif	1/4" quartz-pyrita-chal															ratio	pyrite veinlet at 0-50	1/8" quartz-magnetite-c	in content	<u>bdeni</u> t	30° with little to	1/4" gi		nlets	spot	chalc	/rite:	disseminated pyrite		Mineralization		
	veins.	of m	12600	ar 40	n vein	LCODY	ttlet	With	magne	PETICIE DAIO	5		z-byri														į		nlet	z-magr		e has	th li	ıartz-		•	ty qua	opyri t	chalco	inated		lizati		
		mo l vbdon i	ce.	quar	lets	ite:	ع ممر م	selv	ite-cl	Da lo	Serieite Guarez-ina	20 0110	10101														4:4:		7 0 5	leti te		dropp	ttle t	quartz-chalcopy			rtz-ch	e rati)pyrite	byri	•	3		
!		nite		rtz-	is 1:1.	write	Little to no dissem-	age of	halco-		<u> magnetit</u>	TCODALIC																PAL	S. G. L.C.	-chalc			o no	pyrite				io is the	e ratio of	F0:25				
			1		L		Ľ		L	L	l;	<u></u>	1					L	L									Tre:					ĺ		1	777			100					100

chalcopyrite and pyrite in pyrite chalcopyrite ratio of 1:1-2. Total sulfides less than 1%; no cinated pyrite or chalcopyrite.	magnetite veinlet.					21506 .0	100% 2	10	1110
1/8" near-vertical 1096' - 1 te veinlet with veinlet a halo. condary K-spar- 1100' - 6 veinlet. magnetite	te ecc				Ω	21505	100%	10	1100
1 1084-1086' Quartz-magne- tite-K-spar veinlets with minor chalcopyrite; minor epidote blebs. 1092' - 1/8" epidote vein- let at 50°.	tite-K-spar ve minor chalcopy epidote blebs. 1092' - 1/8" e let at 50°.	Continued coarse-grained texture, little to no fracturing or shearing.			05	21504	100%	10	1090
- 1/4" magnetit 20°.	1076-1077'				04	21503	1003	10	1080
Massive chlorite- etite. 1/2" quartz-magne- veinlet; magnetite mination is minor. ite halos along quart tite veinlets.	magnetite. 1067' - 1/2" quart: tite veinlet; magne dissemination is mi Sericite halos alon magnetite veinlets.				02	21502	100%	10	1070
1 1 1 1 1 1 1 1	Weak potassic ate sericite: lets, minor.		o Granite		.03	21501	100%	5	1060
Alteration		Rock Description	וו עמו	Mo	Cu	Rcvy No.	Rcvy	Int	Depth 1055

			+		-				-
THE PARTY OF THE P			1					_	 -
veinlet at 25° wi	S		1		-				1147
quartz-magnetite			-	1	+		-		
1145 SI 1/OH	1				+	-	-		
sericite, dissemi	7 3				+	-	-		
with half	8				+	_	-		
е.				1	1				
chalconnite		i			-				
vide sericite half it is with 6"									
	sericite halos.						_	-	-
	magnetite veinlets with				-		-	-	_
	weak potassic with quartz-		_		8	21509 .0	\$007	Lo	1140
		As above	Quartz Monzonite		+		╀	+	1122
	المرابع المراب	red.			+		1	+	1130
pyrice.	veinlet at 200	1136-1139' Intensely			+	-	1		
TOUTE SI	+			1	+	-	1		
10	magnetite veinlet				1		1		
	1134.5' 1/4" vertical				1		-		
1132-11331 - 1/2"					-			_	
pyrite veinlet at 30°									
1131' - 16" calcite-chalconii					L			_	
pyrite, minor pyrite.					-				
veinlet at 25° with abundant chalco	actord curorice.				.05	80517	\$00 <u>1</u>	Į	1100
1129' - 1/4-1/2" quartz-magnetite	strong chlouit				+	1		3	1135
disseminated pyrite or chalcopyrite	calcite on all fraction			+	$\frac{1}{1}$	1			
at 20° with minor chalcopyrite; no	netite veinlets: abundant			† 	-				
	copyrite and quartz-mag-			+	+				
11261 174"	tassic; local quartz-chall	intensely fractured.		+	+				
more than le	Quartz-sericite-weak po-	very fine-grained;	Diapase	+	+				
sericite halos man i dello, mostly in	chlorite-magnetite.	- 14	7: 25:00	1					1122
chalcopyrite im 1.1 minor pyrite,	below 6" pegmatite-major	idrue, pink, K-spar			8	21507	100%	10	1120
let per foot carming in quartz veli	K-spar, quartz-muscovite;	C Cext			_				
inated. Approximately on dissem-	6" coarsely crystalline								
halo); copper in sericite halo as	١.				_				
chalcopyrite and specularite (sericit	TOPYLLE	: [
nship	7	fre			-				
	h 1113' _ 1/2"	Rock is very fresh wit		+	-				
	- 10			+					1113
	veinlet			++	+				
	1111' - 1/2" guartz-magne		to Granite	+	. -				
			10	+++	+				
UOT 2 EZTTE ISHT:									1110
Minoralizati	Alteration	Rock Description	Rock Type	Mo	Cu	A	Rcvy	Int.	Depth
				Assavs		Samp.	% Core		
				1		1		1	7

_
\equiv
ō
_
Ò
~
Jumb e
7
产

Page
Ze.
unber
u

1190				 								1180				T				T	77.70	777							1				1160	Γ	Τ	1	T	Ī	7	1150				114/	Ţ-	Depth	7
10									Ť			01				1	1				10	t	1				-	\dagger	+	1			0 10	T	\dagger	+	+	+	7	10			<u> </u>		┰	h Int	4
\$000			j	1	1	7		-	T	1		\$001		-	-	+	1	1	_	-	FOOT	+	+	1		-		+	1	1			100%		-	+	+	1	+	0 100%	4		_		╟		-
21514		1	\dagger	1	1	1	-	- 	+	+	1	21513			 	+	1	1			1	+	1	1				-	$\frac{1}{1}$	+	1		_	L		-	+	+	4	-	4	_				Reve	1
4 .04		1	1	4	+	-			L	\downarrow	+	4			_	-	1				1512	╀	1	\downarrow					1	1			21511							21510						Namp.	
H	1	+	+	+	+	1	-			+	+	2	-	•	L	L	+	+			8	-	+	+	-		_	-	+	+	-		04		L	L	-	+	15	3	\downarrow	1				3	
-		+	+	+	+	+	1			+	†	+	-	-		\vdash	+	+			-	-	+	+	+			-	+	+	+	-			L		-	+	+	+	+	4	_			Assays	
				1						Ì						-	1	1				-	1	\dagger	1			-	+	\dagger		1					H	$\frac{1}{1}$	$\frac{1}{1}$	1	+	+	-			S	
																																								1	+		ı	Quartz Mc	MOCK		
	\downarrow	1	1		1		1				1		1																															Monzonite	Type		
																				1176' - 8" - 1176'																				Euring.	pnenocrysts; no frac-	ge X	Т	Coarse-grained	nock Description		
							cnalcopyrite.	TECS WICH TICTE CO NO	lete with little to me	magnetite and K-spar vein-	1180-1184' Numerous quarta-	along quartz veinlets.	ress sericite in naios	below 11/0 - considerably	C+ KE	++++	1178-1180" Numerous magnet			N OCAL	K-cnar	1169-1170' Minor Socrat-					***************************************	ñ	vasive as fracture, who		in quartz veinlet. Carbon		copyrice veinier.	1130 Quartz-K-Spar-chal-		halos	veinlets with sericita	pyrite and quartz-magnetite	after mafics: quartz-	ate chlorite-magnetite	fresh plagioclase; moder-	fresh K-spar and some	WEAK	Wash sake !	Alteration		
nate	pyrite. 2" halo of sericite with	ately abundant chalconurite	3/4" quartz veinlet at 150	veinlets.	e in	" moderately abundant		ted sulfides; total sul	th verniters increases to 1-2:1; no	in wainlets incurred	1180 below: purite chalcomit					ROPATTE ASTUTEC.	Conveite mini-	1177' Near vertical 1/0"		pyrite-chalcopyrite veinlets at 45°	1169-11/0' - 2 1/4" quartz-magnetite	C±011		Dyrite. no pyrite: strong -:::	veinlet at 80° with abundant chalco	1164.5' Quartz-magnetite-actinolite		<u>oundant chalcopyrit</u>	7	1164' - 1/8" (") - 1/8" (")	- pyrite	1160' Quartz-pyrite-sericite-c		†	disseminated in sericite halo.	F.	quartz-magnetite veinlet	11561 1 /411		_		quartz-pyrite veinlets No die	- 1/		Mineralization		

1230 10 100% 21518 .05			1220 10 100% 21517 02	1210 10 100% 21516 .04	1200 10 100% 21515 ,02	Depth Int. Rcvy No. Cu Mo
	<u>.</u>					Rock Type Duartz Monzonite co Granite
	of granite porphyry in matrix with broken feld- spars.	zonite with no large pink K-spar phenocrysts: rock appears to be com- pletely healed breccia	EB			Rock Description As above, interspersed with light grey material.
	- 1229' - 1/8-1/4" K-spar (vasive. 1207-1210' Abundant K-spax- quartz-magnetite veinlets; Total sulfides much magnetite-sericite replace- disseminated pyrite ment of wall rock.	Strong potassic alteration 1198-1200' Epidote on fractures with magnetite. 1200' Secondary biotite is very fresh; secondary K-spar veinlets. 1206' - 1" quartz-K-spar veinlet at 70°; minor car-bonate (late) ctili	Alteration Weak potassic with near- vertical K-spar veinlets at 1189-1190'
at 45° with 1" sericite halo contains minor chalcopyrite.	28' - 1/8" quartz-magnetite-py alcopyrite veinlet at 45°; pyrj alcopyrite ratio of 1:1 29.5' - 1/4" quartz-magnetite	1222-1224' - 1/8" near-vertical magne- tite-chalcopyrite-pyrite veinlet with pyrite:chalcopyrite ratio of 1:12.	1216' Abundant chalcopyrite on 1/4" quartz-K-spar veinlet at 15°; also at 1218'.	gnetite; no less than 1%		Mineralization 1191.5' Pyrite; chalcopyrite chlorite fractures at 30°. 1194'-1198' Numerous magnetic

1280	12/2	7772]			1270				1263	1260		7		-						057T					124U		T		T	Ī	1633	1326		1231	1230		Depth
10											5					IO										ī		Ī			ľ	;		T	T	1			T		T	1	Int.
100%											100%					\$00T										\$00T					\$00T			T		1							% Core
21523											21522					21521										21520					67577				1			1					Samp.
.06		-	-	-	 - -	†	†- -	1	1		8					.02		1	1							.02					.03		\downarrow	\downarrow	1	+	+	1	\downarrow	+	1	+	Cu
-		-	-		-	+	+	+	+	+	+	1		 		-	+	+	+	-	-		Ŀ	-	+	-	+	-	-	+	+	+	+	+	+	+	+	+	+	+	-		Assays Mo
						1	+	†		1						-	1	+	1	-			_	-	-	$\frac{1}{1}$	+	 	-	+	\dagger	1	+	+	\dagger	1	+	+	1	+	+	4	/s
															Duartz Monzonite																						ADITCE			to Granite	Quartz Monzonite		Rock Type
	as above.														Fractured, sheared.																				blebs.	with minor sericite	draine			As above.	_		Rock Description
ets with sericite	Weak potassic with quartz	fine-grained fresh K-spar.	quartz-sericite cut by	granite; locally strong		15					TTOM GOTTER CONTROLL	from anlike contact	decreasing fracturing away	decreasing	Abundant chlorite, clav.									sericite veinlet at 30°.	1252' - 1/16" pyrite-										cite halos.	quartz veinlets with seri	Weak potassic with local			Weak to strong potassic.			Alteration
1	1279' - 1/4" (") 2 + 2 - 2 - 2 - 1 - 1 - 1 - 1				ſ	veinlets with pyrite:chalcopyrite ratio	1273' Local thin pyrite-chalcopyrite	cnalcopyrite veinlet;	cal quartz-	2-3:1 With massive sulfide content.	: pyrite:chalcopyrite	magnetice-quartz veinlet at 10° with	ATTRE-CUGICODA	1268' 1/4-1/2" purita-chalconii:		der		1259.5' 1/4" quartz-carbonate veinlet	1		15	dicominated with more abundant	of sericite with more than a	1253.5' - 1/4" quartz veinlet with 3"			veinlet at 40° with abundant chalco-	. 1/	veinlet at 35°.	_	ite.	rtz	similar 1/4" veinlet at	٠,	abundant disseminated chalcopyrite.	1-2" sericite halo containing	1235' - 1/4" barren guartz vei	pyrite or chalcopyr	SSS	Minor pyrite, chalcopyrite in 7/8"			Mineralization

Hole	
Number_	
K-1	

Page Number 26

					-				
				1	+		_		
					-		-		
					-		 		
					.03	21529	100%	10	1340
ractures.									
pyrite ratio 2-1:1 on thin, hairline	or charcopyrice.				-				
Yrıce:cha	chalconuri to				4				
lower to 1 3%ththe orop even	+				4				
15	1				04	21528	1003	10	1330
					 -	-			
1328' 1/4" quartz-magnetite veinlet				-	1				
halo with abundant chalcopyrite.	are fresh.			+	+	1			
phenocrysts veinlet at 30° with 3-4" sericite	and plagioclase phenocrysts			+	+				
1320' 1/8" quartz-sericite-magnetite	veinlets although K-spar			+	07	21527	\$00T	10	1320
	evidence of K-spar in				1			;	
quartz-magnetite-chalcopyrite veinlets	Below 1315': little to no			+	\downarrow				
1313' Intersection of three 1/4"				+	+	1			
of 1:1.	spar.			+	+				
sulfides in pyrite:chalcopyrite ratio	chlorite, quartz or K-			1	+	1			1
Most hairline veinlets contain minor	carrying major			1	\downarrow				
	hairline fractures or			+	1				T
<pre>pyrite:chalcopyrite ratio = 1:2-3.</pre>	Core is cut by numerous			1	2	97577	\$00T	ŀ	OTCT
chalcopyrite-pyrite veinlet at 45°;	1				3	+	1000	3	1310
1306' 1-1 1/2" quartz-sericite-				+	-			T	T
chalcopyrite.					+			T	
magnetite veinlets to 1305', with	tite, clay.	snearing at 1297-1300'		+	+				1
Occasional hairline quartz-sericite-	101	rable			.14	21525	1004	10	1300
		1			-			:	
molybdenum in sericite of both inter-					+				T
pyrite; same at 1293-1296'; minor	veinlets.			-	-				T
moderately abundant chalcopyrite, no	quartz replacement and			-	10	21524	\$001	10	1290
- placement by quartz-magnetite with	Strong sericite-magnetite				-				T
1287-1289' Veinlets and pervasive re-	1287-1289 and 1293-1296'				-				T
molybdenum.					-			1	
ricite halo cont				+	+			T	T
1285' - 1/2-1" quartz veinlet with	ondary biotite.			+	+			T	
	1283' Locally fresh sec-		to Granite	++	1				T
		0	Quartz Monzonit		1			Ť	1280
Mineralization	Alteration	Rock Description	Rock Type	Mo	Cu	No.	Rcvy	Int.	Depth
							14 6000		7

	1390 10		-					+		1	1	1380 10				1370 10	╁		1360 10					1000	十						1340	Depth Int.
	100%											100%				100%			100%					TOOS	1000							Rcvy
1 104	21534											21533				21532			21531					00012	21520							No.
-	<u> </u>				-		-	_		1		08				03			03		1	1	1	10	3	1						Cu
							1	+	$\frac{1}{1}$	1	+	$\frac{1}{1}$												1								Mo
							1	+	+	-	+	+	1		_								1							60 0	Qua	
																															Duartz Monzonite	Rock Type
											at 1779-1781'	Fault Zone or shear					dike: contact at 30°.	<u> 1366'-1369' - 3' aplite</u>														Rock Description
	t 60°.	1388' -1/8" epidote vein-			alteration '	Weak to strong potassic								aplite dike for 5'.	magnetite alteration below	Strong sericite-chlorite-	pyrite.	No quartz-sericite-chalco-		1357' - 1" barren diartz	alteration of placing	weak porassic arretation	Below 1350': Continued						11-1343'.	secondary	Weak potassic; locally	Alteration
		1387' - 1/4" quartz-K-apar veinlet at 75° with 1" halo sericite-magnetite	pyrite and pyrite.	th local magnetite ch	1/10 1/0"	nyrite chalconnite with overall		th pyrite:chalcopyrite	35'	alteration with chalcopyrite.	1383-1384' Quartz-magnetite-K-spar		#	spar-chalco	abundant chalconvrite	vith moderatel	ctical	Veinlets as in aplite dike at 1935		no purite	b" quartz-sericite-magnetite				minated	opyrite	6	molybdenum Also at 1345'	2+	1343' 1/4" marty_marmotito_cominity		Mineralization

101
rite veir
1418' - 1/4" K-spar quart
-
ntact of brec- Occasional K-spar-quartz
dominant on fractures.
Chlorite-magnetite pre-
Aplite. Quartz-sericite veins.
┞
placement with magneti
healed K-spar-quartz-epidote re-
ap- 1397' - 1" thick zone of
quartz-magnetite.
pervasive introduction of
Below 1392': apparent
stringers.
cut by quartz-magnetite
spar phenocrysts locally
plagioclase. Original K-
sericite alteration of
veinlet
intro- 1390.5' Secondary K-spar
due to netite.
+
alteration; moderately
ed breccia fraq+ Weak to strong potassic
7
Alteration

	1470					7,01	1/67	1460						7		T	T		1450		T	Γ					1440	-	14.00		T	T	T	Τ	1420	Depth
	10					1		TO	1			1		T	1	1		1	T _o	t	T	\dagger		-			10		10	†	\dagger	\dagger	t	Ť	1	Int.
	1003			7				\$00T					1	T	1				100%		T						\$001		1000	100	1	1	+	T		Rcvy
	21542			1	1			21541		T		Ì		1	1	1	Ť	T	21540		T						21539		0.000	3153	1	\dagger	$\frac{1}{1}$	<u> </u>		No.
	.02	-	†	+	1	1	+	.06						1	$\frac{1}{2}$		1		.06								.05			2	\dagger	+	+	_	-	Cu
-			+	1	+	+	-	 	1	+	+	-	-	+	+	1	+	-	F	I	I	-							1	1	1	T	1	1		Assays Mo
			+	+	+	+	+	+	+	+	$\frac{1}{1}$	+	+	+	+	+	+	+	+	$\frac{1}{1}$	+	1		-		-			+	+	+	+	+	+	-	ıys
																																	•	to Granite	IQ.	Rock Type
			by potassic alteration.	ch na	ia ted appo	Still nas fractured,									shearing, fracturing.	on	XTX	inued brece						brecciation.	Below 1445': strong				preceiation continues.		pears brecciated.	·H	Rock cut by numerous		As above.	Rock Description
		Secepty aibbind ifactures	tte disseminated and on	magnetite; abundant chlor-	very strong introduced	Weak to strong potassic;		Weak to strong.								veinlet at 35°.	1452' - 1/4" magnetite	coming much more abundant	Secondary K-spar is be-	minor sericite.	of quartz-magnetite and	Brecciation with matrix	veinlet, 1/4" at 50°.	1446' Magnetite-chlorite								minor sericite.	spar-ma	vasive introduction of K-	1420-1421' Vein plus per-	Alteration
			clay veinlet at 35°.	1469' - 1/4" chalcopyrite-magnetite-		netite veinlets with minor chalcopyrite.	4		veinlet at 35°.	1/8-1/4" quartz-epidote-molybdenum	chlorite veinlet; cut at 1459.5' by	1459-1459.5' Vertical magnetite-	chalcopyrite veinlets at 40°.	1458 and 1459' - 1/8" quartz-sericite-		No disseminated sulfides; pyrite:chal-	disseminated chalcopyrite.	magnetite-K-spar veinlet with local	1450'-1451' 1/2" near-vertical quartz		1449' - 1/8" quartz-magnetite-chalco-	let at 30°.	1448.5' - 1/16" quartz-magnetite-		ve molybdenum.	1444' - 1/4" quartz veinlet with	pyrite:chalcopyrite ratio of 1:1	tite with abundant culfider with		1429'1" quartz-magnetite-sericite vein-		pyrite, chalcopyrite, magnet	1423-1428' Vertical quartz veinlet with	introduced potassic alteration.	1420-1421' Very minor chalcopyrite with	Mineralization

·			-		-				
					+	-			
					-		-		
					-				
					-		-		 -
					: 	-			 -
					<u> </u>				
				-	Ļ				
					_				
					L				
				i 	-				
		FEET IS TOTAL DEPTH -	1500						
					80.	21545	\$00T	10	1500
veinlet.									
1494' - 1/4" magnetite-chalcopyrite									
fides; total sulfides remain very low.					_				
ratio of 1:1-2; no disseminated sul-	sericite alteration.								
chalcopyrite in pyrite:chalcopyrite	uartz-magnetite-								
veinlets to total depth with pyrite,	0				_				
Three to four quartz-magnetite-sericite	Continued brecciation,				· 80	21544	\$001	10	1490
at 40°.									
1487' - 1/8" quartz-magnetite veinlet							·		
veinlet at 80-90°.									
1485' - 1/4" sericite-molybdenum									
tite-chalcopyrite veinle					4				
1484' Near-vertical 1/8-1/4" quartz-			•						
					2	21543	\$001	10	1480
e veinlet at 80°					1				
1478.51 Massive K-spar cut by chal-					1				
THE THE PARTY OF THE PROPERTY					1				
1475' Vertical chlorite-pyrite fracture	les.				$\frac{1}{1}$				
					1	-			
pyrite veinlet at 1473'.	Magnetite veinlets are				-				
Near-vertical quartz-magnetite-chalco-			Ouartz Monzonite						1470
Mineralization	Alteration	Rock Description	Rock Type	Mo	Cu	No.	Rcvy	Int.	Depth
				Accore		2	4		

KERR-McGEF CORPORATION

District Riverside - Kelvin
Hole Number K-4
Spudded 5-9-73
Completed 7-13-74
Total Depth 875'
Driller Joy Mfg.
Logged By D.A.Wolfe

County Pinal State Arizona Claim State Section Sec 10 T. 4 S.R. 13 E. Elevation ~ 1960' Hole Size Core Size NC 0' to total depth. Hole Angle Vertical Collar Coords. 7004 FEL E.
--

-					109		100		90		80			70				55		50				40				21		Depth
	_			_	မှ		10		10		10			10						10				7						Int.
																													STARTED	%Core Rcvy
				_	24014		24013		24012		24011			24010						24008				24007						Samp.
					.0516		.0181		.0144		.0195			.0209						.0462				.0706					CCRING I	Cu
		_			9		10		8		5			7						15				22					ÀT 21	Ase Mo
			_		26	L	22		11	L	22			31						18				230					2	Assays Mo Pb DDM DDM
					T			-							Dike	Porphyry	Monz	Late	-						<u> </u>			Breccia		Rock
						L										hyzy	Monzonite	Quartz										ia		Rock Type
							sheared,	92-109					55'.	less br	and qua	dant fe	groundmass	Fine-grained	stain.	pervasive	character	rocks and	material	brecciated	phyry dike	quartz-monzonite. Por-	appears to b	Predominant		Roci
							1	•						brecciat	rtz ph	feldspar	lass wi	ained		1	1	ınd bre				monzor	to be	•		Rock Desci
							granulated.	Brecciated,						ted below	quartz phenocrysts	r, mafic	ith abun-	aphanitic		hematite	concealed by	brecciated	with original	ranula ted	in extremely	lite. P	e late	rock type		ription
	-			-	H	se	L	<u></u>	_	S S	Ве	_	-	-	┢	L	L	┨	_	-	bγ	ď	-		۴-	1	a	L		
						sericite	extensive clay-chlorite-	Local ca.		crysts 1	Below 81' K-spar pheno-			veinlets.	te; lo	and sericite, minor magne-	feldspars altered to clay	All original mafics and						calcite	lay-chl	te on	tion wi	uartz-s		A.
						alteration.	e clay	calcite vein		ocally	' K-sp				cal qu	cite,	s alte	inal m						vein f	orite	veinle	th abu	ericit		Alteration
						ation.	chlor	vein f		locally fresh.	ar phe				artz-c	minor	red to	afics						vein filling.	100%	ts, ak	ındant	e-clay		on
							te-	fillings,			<u>10-</u>				tite; local quartz-chlorite	magne-	clay	and						•	clay-chlorite; 100% oxidized	tite on veinlets, abundant	ation with abundant magne-	Quartz-sericite-clay alter+		
				at 109'	Weak o			,			pyrite	75' L				no vi	on all	Minor			•				d	voids.	pyrite	Very minor		
				-	Weak capping after						e asso	ocal c					l frac	Minor black mineral,								Rock		minor		
					afte						ciated	apping				sulfid	fractures	miner								Rock is 100%	tenori	capping after		Miner
					<pre>probable</pre>						with	after														08 oxi	te-nec	ıq afte		Mineralization
											associated with abundant	proba					ar qua	tenorite								oxidized.	tenorite-neotocite.	r poss		ion
					chalcopy						nt teno	Local capping after probable cha						or nec									e. Minor	possible c		
					yrite						orite(?	lalco-					einlets	eotocite									or pyrit	chalco-		

\prod	210		200	\dashv	190					183		180	175	170				160	Н								150				140		130			120	109	Depth
$+\!\!+\!\!\!+$	10		10	4	6	_					1	5	5	P				10								_	5				10		10			11	ğ	Int.
												4	8	100				100									8				100		100			100		% Core
	24926		24925		24924							24923	24922	24921				24920									24919				24918		24917			24916		Samp.
	9810		.0346		.0733							2900	.0870	. 2200		_		2700									.0860				.0427		.0224			.0492		Cu
+	-											-				L				L	-																	Assays Mo
	-						L								<u> </u>	-		-	-																			7.5
										Shear							Monz	Quartz	Prec	155				Dike	Lamp	154-155			Fault	142-146			Brec	Granite	Port	Monz	Late	R.
										Zone(?)							Monzonite	C2	Precambrian						Lamprophere	55 '			t	-			Breccia(?)	ite	Porphyry or	Monzonite	Quartz	Rock Type
+	-	m.i.	ру	Wi	of	<u>b1</u>	15	Wi	zd	L			-	g.	S.	<u>s</u>	15		L	L	lg.	98	C	fì		Dį			£	Breccia 1	e.	S	۾	a	L	'n		
		mixture.	pyrite-ch	with red	chalc	bleached	inal rock	with little to no orig-	ecciat	Rock is				thite st	with bio		-		shattered	above	pentine.	seems to	calcite,	fractures	aphanitic, crossed by	Dark bro			fragments	Rounded,	entirely	some orth	dish-grey	all feld	where in	rock idea	Can't be	Rock D
				hemat:	ocite o		k texture,	tle to	ed, she	is extensively	Ì			stain.	tite a	ker th	Rock is	•	jā.	1	1			s fill	c, cro	brown to black,			S.			hoclas	~	feldspars	txo no:	entification	certa	1 0
			rite	hematite after	chalcocite capping	white, typical	ire,	no or	eared,	ively					biotite and goe-	darker than above,	is some-			almost all		be mostly ser-	kaolin. Matrix	filled with	ssed b	black,				slickensided	secondary.	noclase may	color. And	to a red-	iron oxides stain	ation	certain of	tion
	+	-		er		_	+-		+	_			-		ŀ	re,	168	╀	-	-	+	F	È	3			amic	9	رطھ	L	_	be and	_	T	Г	Т	Th	
						dized and bleached white.	40°		alteration with local,	Pervasive sericite-clay							Biot										among int	on fracture surfaces	abundant as well as stain	morphic after pyrite is	biotite.	and kaolin as well.	red zor	some sericite. The shat-	orthoclase, some chlorite	quartz, probably secondary	The most intact rock shows	
						bleacl	rock is 100% oxi-	artz v	n with	seric							Biotite abundant										interstices.	re sur	as wel	fter p	Hematite psuedo-	n as w	ies sho	cite.	se, son	robabl	intact	Alteration
						ned whi	100%	eining	local	ite-cla							undant										es.	faces	1 as s	yrite	te psu	1	w seri	The sh	me chlo	y seco	rock	tion
1	+	-	_	_	-	te.	╀	 	╀						-		-	-	+	1	-		-				L	and	tain	is	edo-	So	Cite	at-	rite,	ndary	shows	
							pervasive.	with c	after	Abunda		azurite.	177-17			copper	Locall	azurıt	156-15						fracture,	154' 9										3-48,	Origin	
							ive.	halcop	pyrite	nt bri		Ф.	177-179' Copper			-bearı	y abun	e on r	Mox 8						ire, br	oft bl										now er	Original sulfide	Mi
								vrite o	-chalco	ck-red			per st			copper-bearing(?) stains	dant m	azurite on fractures.	156-158' More copper						brochantite(?)	ue cop										3-4%, now entirely oxidized.	lfide c	Mineralization
								cappine	opyrite	to max			stains, n			stains	oLybdei	es.	er sta						ite(?)	per co										oxidi	content	ation
								with chalcopyrite capping weak but	mixtu	Abundant brick-red to maroon limonite			malachite,			on fract	į		stains, malachite							154' Soft blue copper compound i										zed.	probabl	
								but	Fe	monite			te,			actures	13		lachit							in											bly	

_	7	-	-	_	-	-	_			 		·,								_											_						
	370				360		350		340	330		320		310		300		290	287		280		270		266		260		è	350	240		230		220	219	Depth
$\perp \downarrow$	5				10		5		10	10		10		10		10		10			10		10				5		5	3	10		10		10		Int.
	100				100		100		100	100		100		100		100		100			100		100			18	18		700		100		100		100		Mcore Revy
	24942				24941		24940		24939	24938		24937		24936		24935		24934			24933		24932				24031	1	24930		24929		24928	_	24927		Samp.
	.0046				.0109		.0057		.0058	.0052		.0054		.0053		.0110		.0074			.0117	1	.0303			一:	<u>-</u>	T	.0353	_	.0215	-	.0200		0598		ဌ
												-									7		۳			ľ	1	T					٥		8		As a
																										†	Ť	T									Assays lo
																										1	†										
														-	-	_	Mor	Ouz	Prec				-		Fault	+	M X	Fre	+	 						Aplite	Rock
																	Monzonite	Ouartz	Precambrian						lt Zone		Monzon i te	Precamoria								ite	k Type
			ciated	369-374									fresh	ciation,	Below		╌				of c	apha	monz		Intense	Ť	arcered	7	_			as :	ite	ately	ric	Fin	Rock
			ed diab	374' Mi									h looki	1	w 308'-		1	c, fra	Medium-gra		of clay-se	aphanitic		ano	nse br	İ	au naz	-				above.	-	ly abun	n apli	Fine-grained,	
			base.	inor brec-									ing ma	re	- less		sheared.	fractured,	ined,			groun	fragments	lar quartz	recciation		1	d, int						ndant	te wit	ned, c	Description
				rec-									ing material	dense,	s brec-		ed.	d,	-ydgzog		e.		ents in	artz	tion		CONTEACE.	, intensely					fractured	dant muscov-	rich aplite with moder	uartz-	noı
ite.	conta	magne	stron	Abundant							staining.		Ţ		_								2		Clay	1	near	+-	╄		cite	quar	_	_			
	contact with quartz	magnetite; edpidote along	strongly chloritized,	ant ca							ing.	dant c	propylitic alteration with	easing	Magnetite prevalent				Propylitic alteration(?)						Clay predominates.		CONTRACE.	I OI			halo	tz ve	in aplite,	with sericite less	rtz v	Sericite-clay with	Alteration
	h qua	edpid	nlorit	calcite veinlets,								hlorit	alter	below	preval				c alte						minat		ict.	seric			3 1/4	inlets	, 100%	cite 1	einlet	clay w	ation
				veinl								e, mai	ation	in a					eratio						es.			sericite-clay		-	to 1/2	have	oxid	ess po	s, as	ith 10	
	monzon-	ong	no	ets,				•				abundant chlorite, manganes	with	decreasing below in apparen	to 327'				n(?)									ay			" wide	quartz veinlets have seri-	zed	rvasi	 quartz veinlets, as above, 	local	
		contact	after	No ap								TD.		ì	ļ				No St					qeneral	Weak		rich	254.	stain	249-	•		100% oxidized	ता	_	Blea	
		ct.	after pyrite	No apparent										n on	No sulfides, local weak molybdenum-				sulfides,					2			rich stain on fractures.	5 Blac	n (cor	12:				ite vo	copyrite as above with less dissem:	Bleached with capping after pyrite.	-
			P	sulfide										fractures.	s, loc				1					mineralization of rocks	limonite in		on I	k cop	(copper-bearing?)	ocal				ids w	s abo	vith c	Mineralization
														res.	al we				100% oxidized			İ					ractur	per-be	earing	black				ith c	ve wi	appin	lizat:
ì			abase	except minor											ak mol				dized					n of 1	some fragments but		es.	aring	(?) on	molyb				alcop	h les	afte	Top.
			mon zc												ybden								00,0	rocks	nen+s			(3)	fract	denum-				vrite	s diss	r byr	
			mi te	limonite											um-rich									200				254.5 Black copper-bearing(?) molybdenum-	fractures.	rich				capping.	seminated	to-ch:	
	!			티											7													ig.							Ž.	-	

TH AS OF JUNE 21,	Depth 378.5 380 390 400 425 425	10 10 10 11 10 12 125 225 25 25 25 25 25 25 25 25 25 25 25	╼╂╼╀╼╂╼╂╼╂╼╂═╂═╂╼╂╼╂╼╂╼╂╼╂╼╂╼┼╼╂╼┼╼╂┈╂┈╴╌╼┨		Уащр. No. 24943. 24944. 24945. 24946.	.0130 .0127 .0164	Assays			Rock Type	fine-grained, c, moderately -fractured. nues with grad- increasing brec- on, chlorite alt- on on fractures arbonate fracture arbonate fracture ngs to 481'.		Alteration Deep weak potassic to pro- pylitic, magnetite, chlor- ite - fresh to partially altered feldspars, clay veinlets. Chlorite-magnetite-carbon- ate.
Precambrian Shattered, sheared. Quartz Monzonite 500' IS TOTAL DEPTH AS OF JUNE 21,	++++	++++			940						-482' F		
100 24949 500' IS TOTAL DEPTH AS OF JUNE 21,		11	+	$+\!\!+$	$\bot\!\!\!\!\bot$	$\bot\!\!\!\!\bot$		\prod	Z IO	uartz onzonite		propylitic alte	alteration.
IS TOTAL DEPTH AS OF JUNE 21,	ő	25	-	-	949								
			+++	+	411	111			50	IS TOT	DEPTH AS OF JUNE 21,		
				+	\perp	\perp			-				
			H	H	ig	\sqcup							
				+	_	-		-					
				+	\perp	\perp							
	\coprod		$\dagger \dagger$	+	\perp		$\perp \mid$	\parallel					
			$\dagger \dagger$	H	+	\prod	\coprod	\parallel					

DDH K-4

Page 5

	650' 25' 90 28753	625' 25' 80-90 28752		615'	600' 25' 80 28751			594'	575' 25' 80 28750				550' 25' 80 28749	546'				5281	525' 25' 50 28748							500 '	Depth Int. Core & Samp.	Hole reentered July 6
	84	69	H		85				0 83			\dashv	9 151						8 215								np. ррм	, 1974,
																											Assays Mo	at 500'.
	n tangasa		1 1	Quartz Monzon-			- 1	Fault Breccia					1	Ouartz Monzon-				Fault Breccia							Oracle Granite	Precambrian	Rock Type	
	well-fractured diabase			As at 546'.	ed fragments	angular	fine grained to cobble	Breccia gouge with very	red.		onite after sulfides;	3	are	Medium to coarse-grain-	COTE GYTS.	ents. Fault ar	0 9	Breccia gouge with an-					zonit	ed, fract	stained, highly	Medium-grained, red-	Rock Description	
minerals: very minor magne- tite, chlorite strong on all fractures.	chlorite alteration of all	100e outstand: intono	1 1	As at 546', with increased	oxidized.	molybdenum stained; 100%	clay, chlori	Granulated, flour matrix of	arqillized.	plagioclase clouded to		oxidized; chlorite-molv		- Propylitic with very minor			by extreme granulation.	Intense clay-chlorite caused		20-1004 OXIGINER.		after sulfides stains chlor-	planes, abundant limonite		•	Propylitic to weak K(?):	Alteration	
	oxidized with increasing red staining	1						No observed increase of sulfides					after purite no veinlets noted	Very minor, sparse limonitic voids			a red-buff transported	Limonite after pyrite, cha	Molybdenite throughout as stain.	accurate determination	Very minor disseminated pyrite(?),	1.	ly. Shearin	with relict	- 1	518 & 525' Capping on fractures af	Mineralization	

; :

σ

					828'	825'	820'			803	900'						775'			750		725'				700'					675'		665'	Depth
						25'					25'						25'			25'		25'				25 '					25			Int.
						100					100						100			100		100				100					90			Core Rcvy *
						28760					28759						28758			28757		28756				28755					28754			Samp. No.
		1	1			19					18	_					28			8	_	22				17					70			PPM Cu
												_																						Assays Mo
					Alaskite	1 1	Ouartz Monzon-																								Granite)	ite (Oracle	Ouartz Monzon-	Rock Type
		8	200	+hi+o-minuta-covici+o	Coarse-grained, per-		As above.		strong gouge with small	Fault(?) breccia.		above.	780-783' Alaskite as								spar-quartz-sericite.	Ь	strong	dike at 25° to core	709-710.5' Diabase		į		IO.	۲.	-red prin	pink to grey, st	Coarse-grained, light	Rock Description
					Sericite-pyrite.		As above.							750' Minor epidote veinlets	veinlets.	minor calcite and zeolite	ciation when introduced:	moderate breaking and brec-	veinlets which have caused	of chlorite and chlorite	zonite exhibits large clots	Below diabase, quartz mon-						ed	i i		denum on	veining, minor clay, molyb-	Propylitic: strong chlorite	Alteration
			Copper		Very minor limonite after probable															6618	n I	Sulfides - pyrite 100% oxidized, verv											Minor disseminated pyrite, 70-90%	Mineralization

																		875'			850'	844'	T		0	832	Depth
																		25'			25 '						Int.
			L				_		\downarrow		_			_				100			100						Core Rcvy %
																		28762			28761						Samp. No.
																		22			48						nე Wad
																											Assays Mo
															875' IS TO		-					Quartz Monzon-				Diabase	Rock Type
															TOTAL DEPTH		Г	diabase at total depth	Minor fragments of			As above		broken.	dark black, highly	Very fine-grained.	Rock Description
																				total depth.	ing carbonate veinlets to	As above, but with increas-	Strong magnetite.	on abundant fractures.	with chlorite and calcite	Chlorite-clay pervasive	Alteration
																						Occasional grain pyrite, 100% oxidized				No observed pyrite.	Mineralization

KERR-McGEE CORPORATION

Logged By	Driller	lotal Depth	Completed	Spudded	HOIR NO.	District
G. J. Huerstel, Jr.	Joy Manufacturing	802'	09/13/76	08/19/76	DDH K-8	Riverside (Kelvin Area)

	Collar Coords.	Hole An	Core Size		Elevation	Claim	County
L	coords.	Angle 90°	XN	0-53	3		Pinal
10011	850ft 1			4½" Rotary; 53-802' NX		Sec.	State
SL	EEL			3-802' NX		11	te Arizona
						T.4 S.; R.13	a

	ا	130			125				300	100				87				75			3					1	5 6	ueptn
		\downarrow		ļ	25	1			2								į	22								į	40	11
	L		1	1																						100	0	Rcvy &
				209/3	36073	1			7/695								7/505	26071								369/0		No.
				2	3				34								2,0	5								33		٦.
																												Mo c
	L			α.υ				L	5.4								υ. α									2.2		cU308
	0																			Granite		granite below.		block of gramte Abdt biotit	Appears to be	Pe ruin granite		Rock Type
ŀ	Granite is less altered	verticle & horizontal.	ensides running both	r zone w/slick-			@ 103' & 116'.	granitic mat'l.No bio.	in	colored.Nbgoodcontacts	coarse ortho salmon	assive	om vertical.@87.5'	growth trend approx.30°	otite.Bio.	<u>i</u>	1	oxidized	e to weathering.	zed to about	52-52' badly broken.	@50° from vertical.	micro fract	Abdt biotite.Intense	1-2" ortho phenocrys.	granite Limonite-Jarosite stn.		Rock Description
	altered Felds are more fresh as is	is kaolinized.	plag.& biotite.Orthoclase	Intense chloritization of	plag more evident.	Chlorite stained kaolinized		stain on fracture.	Mixed hematite & chlorite		ortho zone.	immediately below massive	biotite.Plag.is chloritized	approx.30° sible chloritization of the	Biotite fresh w/hint of pos-	clouded & somewhat kaolinized	fresh while plag is more	per 3-5' Ortho grains fairly	colored vlts of ortho @ 1	Scattered very fine salmon		to be secondary.	fairly fresh.Biotite appears	round biotite books.Ortho	plag.Slight iron stain a-	Oxidized kaolinization of		Alteration
	Magnetite occurring w/hiotite								Minor fine-grained by, on fracture.		zone.	Reaches possibly 1% in massive ortho	Py. first appears in broken zone @ 87'							Magnetite w/biotite common occurrence.			_	Magnetite < 1%.	curs on fract.sur	No apparant sulfides. Minor amts of		Mineralization

÷ :.

\int		256						250							222		225	220			1	T		3	100	180	T	T	Tor	175	T	T	T	166	Γ	Γ	T	150	Depth
			1	1	1	1		3	1	1	1	1	1	\dagger	1	1	2	1	+	1	1	+	\dagger	1	+	1	+	$\frac{1}{1}$	1	25	+	L	-	"	-	\vdash	+	0 25	th Int.
				1	1	1	1	1		1	1	7	1	1	\dagger	1	\dagger	+	1	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger		ŀ		-	\vdash		_	+	-	
H	1	1	-	+	1	+	202/0	926	+	+	1	1	+	+	+	100	32	+	+	+	$\frac{1}{1}$	+	$\frac{1}{1}$	+	+	$\frac{1}{1}$	ig	-	+	36	L	_				L		Lu W	Rcvy
Н	1	+	+	+	\downarrow	+	4	4	1	1	1	1	1	\downarrow	1	103//	1	1	1		\downarrow			$oldsymbol{\perp}$						36975								36974	No.
H	+	+	+	+	$\frac{1}{1}$	+	9	1	+	+	+	+	+	+	+	15	3 -	+	-	1	\downarrow	+	-	-	ig	-	L	-	-	39	_							32	Cu
H	1	+	1	+	\dagger	\dagger	1	1	+	\dagger	+	+	\dagger	+	+	+	+	+	+	+	+	+	+	+	-	-	-	-	ŀ								-		Mo Mo
	1	1		1	1		0.3			1	1	1	\dagger	\dagger	1	5.0		\mid	\dagger	1	1	\dagger	H	I	-	\vdash	_	-	\vdash	6.6							_	4.8	ys c0 ₃ 0 ₈
													Ī			T	T		ľ	T	T	T	Gran	T	Fault													Н	
																							Granite vi		t gouge													Granite	Rock Type
		Į.	de	Z.	D.	Į g	l W	ig	1	\downarrow		15	C	2			737	L																					уре
	Rock appea	broken zon	deve loped	Verticle slickensides	broken	gouge fo	1/2					breaks	common.	Numerous			Rock sl			coating.	chlorite	but still	Fractures	diameter.	Broken ma		place)	pears	Intenselv				for about	Rock in	from ver	47041	Core b	Granite	Rock
	SI	i.	ı	lo	fault	followe	recemented fault					along	Core	I			slightly			F	"	1	es not	r.	mat'l	olor d	brecciated mat'l.					ľ	bout 15'.	more co	ertical.	700 7	0	П	
	fresher.		on mat'l in	kensid	lt mat'l.	lowed by	nted 1					fractures.	ore completely	fractures			htly fresher				stained k	have hem &	t as abd't		t'1 @ 1" in	r dk.red &	ated n	be cemented in	fract.rock					e competitent		37 177	along	ore b	Description
			L	L									-	are			her				kaolin	æ	pd t		in	& Grn	1at'1.	ed in						100	tical.	0V-VE	along abd't	is more bleachedClavs	9n
<pre>Dears that qtz replaci chloritized material</pre>	Noticable		calcite.	cite coating on fract	slightly kaolinized. Ser-	biotite &	Complete chloritization	strongly chloritized.	sibly secondary. Bio &	incr.&	or hem red.Ortho content	stained dk.chloritic green	chlorite devel.which are	Fractu	above.	plag &	Fresh orthoclase while	chloritized biotite books.	sercite developed about	Plag also kaolinized.Minor	kaolinization of ortho.	alter	Reman		Stron		exhib	stain	ap-Good chlorite-hematite		Ortho	מפוס	inten	Chloritic.	TEAGE		along fract.Chloritic	Clavs	
that q			ŗ.	oating	ly kao	e & p]	te chi	ly chi	second	appea	red.C	d dk.c	te dev	res ha			ortho	tized	e dev	ilso k	nizati	d to	ent bi		hema		it sli	on fr	chlori		מינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים ליינים		TUTC 0	1	tud or	1 1 1 1 1 1	frac	deve	_
tz rep	incr.in qtz.			on fi	liniz	plag.Ortho	loriti	oriti	lary.B	rs to	ortho	hlori	vel.wh	ave go		more f	clase	bioti	eloped	aolini	on of	chlori	otite		tite s		exhibit slickensides.	act.w	te-her		THE MOI	Plan c highten action	intense espo along from		brad	To Canada	Chlo	loped	Alteration
qtz replacing				ract a	ed. Se	tho is	zation	zed.	10 & F	appears to be pos-	conter	tic gr	ich ar	od sei		bio more fresh than	while	te boo	about	zed.M	ortho	altered to chlorite.Slight	Remanent biotite completely		Strong hematite staining		ides.	stain on fract. which often	natite	Accomed more weeth	Ortho permesempled of the Control of	hlow4+4=0			prag is more	4 4 6 4 6	ritic	developed thinly	tion
+	Ap-	_	-	are	Y-		of		plag)S-	ī			Fractures have good sercite Py.	_	_	-	oks.	-	inor		ight	_					ften	1	- 4	14 200	2 .	Scarn		re	1			
												biotite		ı			Fine-grained py.@ 220' 7							<1/2°	inor														
												books.	o occi	sprin			ained						- 1	@ 185	fine-q														×
												•	urs in	cled 1			py.@							-	rained						l								Mineralization
													stron	ightly			220' 7		.						diss														izati
													also occurs in strongly chlor	is sprinkled lightly in some			7 1/28								Minor fine-grained disseminated														9
													hlorit	ome fr											Pd Pd														
													ized	act																									

		376			375			361			359			356			353			350	Ī		I	T		I				T	325	T		300	296				275	Depth	7
	1	-			25		\perp													25								T		T	25			25					25	Int.	1
																																								Revy	S Core
					16981															36982											36981	-		36980			1	-	36979	y No.	7
	1				3								1	1	7	1				125			-		-		_				1 38			0 44			+	4	70 67	o. Cu	
-	1			\downarrow	\downarrow	1								1																			1	1	1	+	\dagger	1		mđđ	
-	+		H	+	+	$\frac{1}{1}$	$\frac{1}{1}$	+	+	+	+	+	+	+	1	+	+	+	1	4	1]	1	\downarrow	1		says	
-	H	Broken		+	+	\dagger	Gra	+	+	ркокел		+	+	+	+	+	+	+	+	٥	+	+	-	+	+	-		-		1	5.6 Gr	1	ŀ	2 2	١	4	\downarrow	1.3 6		сU ₃ O ₈	
		2000					Granite			zone.																					Granite			eraven gone.				Granite	11	Rock Type	
	zone or proken rraq.		ck.Grains will de-	exture return	olace.	S	een color rock	oken materal.	lateral movement in 3'	Slickensides demonstrate Hematitic	recemented.	rounded breccia fraq.	٦	ly rounded. Med. grey color	mitic	ed breccia.		Ty disappears.							Tractures.		11-	ATERICOTOL WITEM ZONES		Brodominatol: 2 desi			& recemented to 320'	ob 17ne						Rock Description	
	Hem. staining of frac.sur.	fresh.	.Ortho is fairly	Plag & biotite mod.chlor-		alla	4			stain on fracture		_	Pervasive chlorite-magne-			Rock intensly silicified.	regrain boundaries.	granite destroyes much of	-	-	coated by calcite enriched	& ground water fluids.Frac	relds & mag from oxidizing	of rock thus preserving	pears to incr.competence	333'.Silicification ap-	-	_	-	Magnetite vlts cross cut	chlorite. Hem. stain on frac	Biotite-mag.completely to	plaq. Ortho mod.kaolinized	-		while biotite completely	Plaq is kaol	Otz flooding not as appar		Alteretion	
			messe associated w/cnioritized bio.	1		JEST LE	No.			THE CHILD	around 1s	breasin for open s	Magnetite makes in mich		TO 18.	Py content up noticely	. 27-17 altraitering.	Sulfide < 5% Magnetite 1 20 vnlts.	in 17011. 61				354'.	Dessiminated py.approached la ar				2	perimiter. Total sulfides & mar > 16	Magnetite vlts w/pv.sprinkled about	Q.		<u>a</u>			carcice vits @ 292.	Calcite wite 8	Chalconreito	Mineralization		

<u> </u>	_	% Core	Samp.	mad	n Assavs	3				
лерги	int.	Rcvy	No.	- <u>6</u>	Mo.	cU ₃ 08	8 Rock Type	Rock Description	A7+0m+40m	
387							Granite		TOOL BOTON	Mineralization
T	1				-			o k	Ortho.clooding 387-389'	
П				1	+	+		display 40° from verti-	Biotite-magnetite flooding	Ĭ <u>Q</u>
390					+	\dagger		II I	-	
T								Granito med.texture	Magnetite & biotite slightly Magnetite	
400	25		36984	34	-	6.1		graffit ce.	chloritized.	Partared W/Biotite
419				1	+	\dagger			parent. Biosplag chloritized	Py minera
425	25		36985	29	H	6.0	Granite	Weathere	_	Slight py.mineralization associ
				-	+	1		broken zone. Well fract.	chlor	1
440				-	+	\dagger			_	
T					+	\dagger		e stain		Fine by seen
						1		pervase micro fract.		to star assoc
300	25		36986	27		5.3		Slightly fracher color.		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1	\downarrow		+	-			less fracturing. Facilities	the clots of slightly	Magnetite associated w/biotite < 18
		\downarrow		-	1			3		f.
				1	+				no longer exhibit blotite	
				+	+	1				
	1	ig		-					content occasional near	
466	1	+		+	\dagger				vertical vits contain	
			\downarrow	+	\dagger	1			s siliceons uns cut	
475	25		36987	8	\dagger	7 2		esh. Red appear		l a
\overline{I}	-		H			ŀ		to sudden incr	듸	pyrite.
	+	\downarrow	1	+	+					
		1	4	+	\dagger	T			siliceous was place to	-
	\vdash					1		a	are chloritized.Ortho ap-	
068	\downarrow	ļ. <u>.</u>							pears fairly fresh.	
	\downarrow	-						丄	rock	Sulfides up to 1-1.5% 10% of sulfides
	$\frac{1}{1}$	-	1	+				nitic texture more	_	are chalcopyrite, rest in pyrite. Clots
		-	1	+		1			7"	d sulfide
		-		-	1	+			evident Rock mostly out	coarse. Slight halo of hem seen occas-
				-	1	$\frac{1}{1}$		S	7	about pyrite.
-	-	-				1		Ç	ctr.but only slightly ser-	
								1	iticized on perimeter.	

	on many fractures.	011							
	or carcice present			-					
	slickensides coating of	frag. of slickensides co.	to					L	
	ortho. Numerous fract Thin	USTTE	, trice		-			\downarrow	
	Plag.Mod.kaolinization of	THE THIRT CALLON OF			-	-	1	+	
	Aucense Kaolinization of	ured indication of	fx		1	+			
	The darymenty contoricized.	Rock moderately well	Ro	1	+	-	_		
	ly slightly chlorities	no			-				594
	rock lighter color Clay	ro						L	
""" rest is biotite.	VAC	116			_		-	1	1
total mafice bor in about 1/2 of	-	-0101			\vdash		1.	\downarrow	\int
Magnetite accounts for	ח	Color	147		-	+	1	\downarrow	
		Rock more drab or light Mo	RC	+	+				
					1				285
		ruat trends 20-30°.		5.7	19	36991		10	
	W/Calcite & chloritic clay	+ rondo 200	+		1		\downarrow	*	575
No appreciable sulfides.	coated	ract	n	1	+				
	L	Slickenside zone on	4.						
	teration envelopes vein								
	vert @ 534'.Chloritic al-	V			L			\downarrow	220
	carcice vn running 10° from				-				
	Calcita curoritazed. 1/4"				\downarrow				
	Doese chlorities	and 544-549'.	a	+	-				
we appreciable sulfides.	Silica content down Plac	enish tint at 527-534							
	Mafics become chloritized	in the same.			_				
	in clay coating fract.			4.5	33	OKKOC		I	
	angle @ 523'. Calcite					3		×	550
	whit cuts core at right				1				
	White is caking place.								
	of felds is taking all on				1				
	tent incr silicification								
TOCK.	appear secondary.Otz con-							T	
Marine Es of marines most or marines.	Ortho predominate Felds	porored Argures.						1	
Magnetite comprises	Marics compose 3-5% of rock Magnetite	Cranito Straton &						1	
	to AGULTAIZED.	1		6.4	2				
	is kanlining				2	36989		25	525
	appears secondary of the	green due to			1				
200	Large clots fresh ortho	rock mafics.Fractures							Ī
3	Intense biotization w/mag	NOCK VERY OK. 10% of						1	T
	granular mat'l.							1	T
	1te makesup most inter-					 	\dagger	1	517
	Within ortho grains.Chlor-						1	1	
	chitorice intergrowth occur					1	1		
	Sericite IINY Specks of				1	+			
_	Perimerers are green stain				1	1	1		
Chal	- or phenocrysts but			+	1	1			
L	in ctr of phononic resh	color.		1	1	-			
	Ortho grains fairly 6	Granite has overall	erante.						Γ
Mineralization	Alteration	uotagraped was		7 3	140	36988		25	500
		Rock Donald	Rock Type	Mo cuaoa	င္မ		- Rcvy	h Int	Depth
				ppm Assavs	7	re Samp.	% Core		,
rage number o								1	7

÷,

	1		700		989							675	T			I		Ī		669				650			627			625					I				,
	+	1	25	L		\downarrow	1	1	1	\downarrow	15	2	1	\downarrow	\downarrow	1	1	1	1	\perp	1	1		30						25								25	
	1	L		<u> </u>	-	ļ.	1	1		1	1		1	\downarrow	1	1																							Rcvy
			36996								30773	3005											20224	2602						36993								36992	
H	+	_	149				1	-	1	1	200	35		1	1	1	1	1	1	1	1	1	24							18		L		†	‡	1	<u> </u>	23	
H	+	-	-	-	L		-	1	$\frac{1}{1}$	+	1	+	+	+	+	+	1	1	+	+	+	+	$\frac{1}{1}$	+	lacksquare	1			-	_	\vdash	ŀ	-	\downarrow	\downarrow	\downarrow	+	+	Mo
	f L		5.9			L				1	0.4	1	1	$\frac{1}{1}$	1	+	\dagger	1	1	-	\dagger	1	4.9	;	ł	1		-		5.2	-	-	ŀ	1	ig	\dagger	t	6.4	1 2
																			GLUDIA											Fault								Granite	11
			lateral	ckensides show move-	33' gouge or fault mat'l					rensely iract & rehealed	ey-Dk grey in-			and plag.	hLori	ghtly	1	w/occasional large l"	Kture		growens.	or orange-tan ortho	adual 1		appears fresher.	ally decr, thus rock	Fract.intensity gradu-	broken mat'l.	625' l' zone of angular	Fracturing incr until @						chloritization.	darker tint due to	묽	Rock Description
	pears on fractures.	fract.Hem.stain seldom ap-	chlorite build-up on some	chloritized Good kaolin-	Felds & mafics intenselv	fledspars.	slight seritization of	same. Alteration may include	of qtz & py near vns of	felds & mafics.Slight incr		•	vn cuts core & slight ortho	@ 669-674' At 674' calcite	tization of bio fract. Vertical qtz-mag vn	green tint due stained mat'l buildup on	secondary orthograined.Good chlorite	fract often chloritically	Plag kaolinized. Along	grains intensely kaolimized	sociated w/mag vnlts.Plag	50%. Some qtz flooding as-	Ortho content down to 40-	remain.	@ 80% of rock.Qtz & mafics	ary ortho incr until 642'	Fine vns mag cut core.2nd	little chlorite stain.	kaolinized accompanied by	Fault fragments slightly	chloritized.	Mafics including plag are	that is now chloritized.	appears to be 2ndary bio.	sional stringer of what	ಜ್ಞ		Broad vn @ 606' has 2ndary	Alteration
					Occassionally fine by grains appear in					sulfide.	Total sulfide > 1/2%.Py.is dominate				ı	within massive magnetite.	Sulfides associated w/qtz-ortho vn	mag flooding.Chalcopyrite:py ratio 50:50	Mag predominate mafic.@674' massive	_		Sulfide content > 1/2%	Near vertical mag vnlts @ 650'.	_			Py.flecks associated w/fract w/mag &			Sulfide & mag center down / 1/2%						Sulfide < 1%.	ated w/incr in mag.mineralization	y Slight incr in dessiminated py.associ-	Mineralization

:.'

								L	-	-
					L	_			\downarrow	\downarrow
						1			4	
				1	+	-			_	
								-		
					-			ļ		-
						L		-	\downarrow	1
					-				4	1
				1	1			_		
				1						
		·								
					_				1	\downarrow
-									1	\downarrow
					1					
	TOTAL DEPTH	TOTAL DEFIN		1						T.D.
but chalcopyrite is predominate	of rock	71170111		4.7		27	37000		27	202
D 1										
stue of calcite enriched clays. Mag.	fair in function with the	or.			-				\downarrow	
side of cers to be unmineralized out-	E-	on fracture gives rock			-					
ract appears to L	n of feld	-sericite coat		†	1					
	been chloritized.	ber Inch.			-					/84
	nave	1 504 5-1								
ry. predominately vn. <1/28	ļ	Occuring ap-			-				\downarrow	
	v-chlorito	Vnlts approx 30° from		9:0	-	å	20000		1	
	seritization.			1	1		00001		25	775
	slight slicification &			1	1					
	appears to be undergoing			1	1					
	chloritized.Ortho				-				L	
Mag-bio ratio 50:50	9									
	_	Rock fairly compitent								
										768
	dominate minerals			12.0		1	30,00			
	& at-2	ortho.Orange-tan color.		# !	 		36908		25	750
Sulfide & magnetite with	Ortho flooding plag & ma- s	1 1/2' zone predomin.		1	1	1				
		18		1	1	1				743
		ent. Roci		1	1	1				
		S				1				
		Coror-Streamsides dem-								
	all feldspars.	color of ok gray-green								
	tucense chloritization of	766-768' Dr 223-737 8					-			
	The Clay & some calcite.	Broken zone 733-737' c				-				او
	cita-class ract of ser-					f			T	723
	linized near front of				F	t	T		T	
	slightly-moderatel				F	\dagger	\dagger	T	1	
Suffices Nil.Magnetite content down.	4_			ig	+	\dagger	\dagger	T	7	T
	Plag intensely kaplinized	Fewer fractures, Core	Granite	0.5	1	10	1000			
Mineralization	viceration		H			J.	36007		25	725
	4.1	Rock Description	Rock Type	, cu ₃ 08	Mo	Cu	No.	Rcvy	Int.	Depth
							╗	% Core		

KELVIN PORPHYRY COPPER PROSPECT

GULF MINERAL RESOURCES REPORTS

Report on Geology and 1978 Drilling Results

1977 Report on the Geology, Geophysics and Exploration Potential

of the Kelvin Porphyry Copper Prospect

FINAL REPORT ON THE GEOLOGY AND

1978 DRILLING AT THE KELVIN (RIVERSIDE)

PORPHYRY CU-MO PROSPECT, PINAL COUNTY, ARIZONA

Tucson Area Office

Joe Wilkins Tom L. Heidrick Greg R. Wessel

February, 1979

TABLE OF CONTENTS

FIGURES

- Figure 1. Location map of the Kelvin (Riverside) prospect, northern Tortilla Mts., Pinal Co., Arizona
- Figure 2. Claim location map of Kelvin (Riverside) prospect, Pinal Co., Arizona
- Figure 3. Detailed geologic map (1"=1000' scale) map of the Kelvin (Riverside) prospect
- Figure 4. Detailed geologic cross sections (1"=1000' scale) of Kelvin (Riverside) prospect
- Figure 5. Proposed pre-drilling model of the Kelvin (Riverside) target
- Figure 6. Log of diamond drill hole GK-1
- Figure 7. Log of diamond drill hole GK-2
- Figure 8. Log of diamond drill hole GK-3 and -4
- Figure 9. Post-drilling model of the Kelvin (Riverside) target

APPENDICES

- Appendix A. Summary and detailed (1"=20') logs of drill hole GK-1 thru GK-4
- Appendix B. Assay data of GK-1 thru GK-4
- Appendix C. ZERO 1978 complex resistivity data and report

INTRODUCTION AND GEOLOGY

Geologic mapping and geochemical sampling in the northern Tortilla Mountains (Fig. 1) during the summer of 1977 delimited a somewhat fragmented but basically upright porphyry copper system lying within the submitted Kerr-McGee claim block (Fig. 2). Detailed geologic mapping and subsequent cross section construction showed the system as emplaced into Precambrian Ruin granite, an aplitic phase of the Ruin, diabase "sills", and Laramide age dikes (Figs. 3 and 4). Alteration-mineralization studies, geochemical dispersion patterns, complex resistivity, and ground magnetometer data refined this interpretation and indicated that the system was largely centered in the SW% of section 12, T4S, R13E (Fig. 3, DDH GK-2). The strongest alteration at the surface is pervasive quartz-sericite-pyrite showing marked enhancement along ENE-trending joint sets, veins, and fault-veins. The quartz-sericite-pyrite alteration is surrounded by an aureole of mixed phyllic-propylitic assemblages, which in turn grades latterally (outward) into a propylitic dominated assemblage and finally into relatively unaltered host rocks. Alteration was expected to change with depth to a low-sulfide potassic alteration assemblage associated with copper-molybdenum metallization. A weak but uneconomic chalcocite blanket outcrops locally at the surface.

An ENE-trending fracture set pervades the entire region and is best developed where alteration-mineralization intensifies (Fig. 3). Alteration and mineralization is well developed along coeval sets of subvertical ENE-trending veins and fault-veins. Numerous vertical to subvertical quartz monzonite, hornblende monzonite, quartz latite, and hornblende latite porphyries share the ENE azimuth.

The porphyry copper system appears to have been emplaced into a N- to NNW-trending, east-facing monoclinal fold (termed the Riverside monocline) which—is defined on a regional scale by steeply dipping to overturned ridges of Precambrian Apache group and diabase sills, as well as Paleozoic sedimentary rocks. In the Kelvin (Riverside) area, the position of the fold is defined by a series of N- to NNW-trending axial plane faults, zones of intense cataclasis, and the overall monoclinal attitude of diabase sills (subhorizontal to the west and steep to overturned to the east).

Several low-angle decollement surfaces are recognized immediately west of the proposed prospect area (Fig. 3). In particular, the Ripsey Wash and Jeep Trail faults and their coextensive zones of post-mineral breccia are interpreted as marking the trace of significant westward propelled hangingwall detachments. In addition, several small discontinuous gravity slide surfaces are present along the east side of the prospect area with indicated movement toward the east into the San Pedro rift valley. As for detachment faults beneath the proposed target, none are known to outcrop anywhere in the Kelvin (Riverside) prospect area. The presence of such low-angle structures were suggested by Kerr-McGee explorationists and were viewed as potentially underlying the entire prospect area. The presence of subvertical ENE-trending fracture and porphyry zones, flat lying diabase sheets, along with the near vertical contacts of the Riverside breccia pipe (Figs. 3 and 4) were interpreted by us as indicative of nonrotation. Figure 5 summarizes our pre-drilling interpretation of the Kelvin (Riverside) structure, alteration-mineralization zoning, and relative position of the high-grade protore Cu-Mo target sought.

1978 DRILLING RESULTS

Protore Cu-Mo metallization lying within reactive diabase sills showing potassic alteration comprised the exploration target at Kelvin (Fig. 5). Drill holes GK-1 and GK-2 were layed out so as to test the potassic core of the upright porphyry copper system. Hole GK-3 was an alternate site designed to test for high-grade Cu-metallization beneath outcropping pyritic crackle breccia. Hole GK-4 was drilled to perform the required maintenance work on an Arizona State mineral lease in section 10.

DDH GK-1 (Fig. 6) was designed to encounter the reactive diabase sill at the interface between the phyllic and potassic alteration zones. Our proposed target depth was between 1500 and 2000 feet. The hole was collared in mixed phyllic-propylytically altered Ruin granite containing moderate Cu dispersion and high Mo/Pb geochemical ratios just east of the Jeep Trail fault zone. Propylytically altered Ruin containing 100-400 ppm Cu and 2-5 ppm Mo was encountered between 0 and 360 feet. A flat-dipping (200), propylytically-altered, and cataclastically deformed diabase sill was encountered from between 360 and 905 feet. As suspected, this diabase proved receptive and contained 2-3 times more Mo and Cu as the overlying or underlying Ruin granite. Between 905 and 2000 feet, the hole penetrated cataclastically deformed and propylytically altered to fresh Ruin granite with background levels of Cu, Mo, and Pb.

DDH GK-2 (Fig. 7) was placed at the eastern most boundary of the Gulf/Kerr-McGee joint claim block (Fig. 2) in order to test the proposed potassic altered core. The target depth was 1500 to 2000 feet deep. GK-2 was collared in phyllically altered Ruin granite associated with a strong Mo/Pb anomaly and moderate Cu geochemistry. Phyllically altered aplitic Ruin was present from collar to 860 feet. A 35 foot thick sheet of diabase was encountered overlying 45 feet of normal Ruin granite at 450 feet. Mixed phyllic-proplytically altered Ruin granite occurred between 860 and 1340 feet with a 25 foot thick diabase sheet at the base. From 1365 to 2260 feet the propylytically-altered Ruin granite gradually became fresher with the bottom of the hole in very weak proplytically altered to fresh Ruin granite. Within the phyllic zone, the Cu varied from 200 ppm to 0.12 - 0.14%, while Mo ranged from 25 to 167 ppm, and Pb from 7 to 508 ppm. No significant increase in metallization was encounterd in either diabase. Very little variation in the Cu, Mo, or Pb was noted in the mixed phyllic-propylytic or propylytic-fresh alteration zones with Cu at 100 ppm, Mo at 1-5 ppm, and Pb at 10-15 ppm.

DDH GK-3 (Fig. 8) was an alternative test site collared within a "pipe-like" crackle breccia composed of phyllically altered fragments of Ruin granite and diabase containing 1-3% pyrite. Target depth was 500 to 1000 feet with protore chalcopyrite within phyllic-potassically altered breccia as the target. The hole was rotary drilled to 72 feet and surface casing set at that point. With increasing depth, the hole passed progressively from pyritic crackle breccia to sheared and propylitically altered Ruin granite. Total fracturing and veining decreased as well with depth and at 390 feet the Ruin granite appears relatively fresh and contains occasional veinlets of epidote calcite-chlorite-specularite. GK-3 was bottomed at 775 feet in relatively fresh unsheared Ruin granite. Cu, Mo, and Pb were relatively uniform with 25 ppm Cu, 1-5 ppm Mo, and 10-20 ppm Pb.

DDH GK-4 (Fig 8) was drilled to perform the required maintenance on Arizona State mineral lease in Section 10, T4S, R13E. The entire hole from 0 to 223 feet was in weakly propytytic Ruin granite containing less than 100 ppm Cu, 1-2 ppm Mo, and 7-15 ppm Pb.

GEOLOGIC SYNOPSIS

All 4 holes drilled at Kelvin show decreasing fracture intensities, alteration, and mineralization with increasing depth; phyllic alteration yeilds to propylytic and propylitic to fresh, total sulfides decrease from 1-2% to trace amounts, copper decreases from 0.2 - 0.14% to less than 100 ppm while molybdenum goes from +100 to less than 10 ppm at TD. As shown in Figure 9, this tendency for decreasing alteration, mineralization, geochemical dispersion, and the "floored" nature of crackle breccia zones suggest that the supposedly Kelvin(Riverside) porphyry system is rotated some 70-80° clockwise when looking NNW. Consequently, the alteration-geochemical dispersion patterns observed at the surface represent a sub-vertical slice from top to bottom through the systems rather than a horizontal slice across its top.

Since the ENE-trending dikes, veins, fault-veins and planar joint sets are subvertical and conform to well-established regionally controlled fracture trends, the rotation must have taken place along an axis perpendicular to this strike (i.e. NNW). Rotation of the system took place after Laramide time (55my) but before the deposition of the San Manuel formation (17-22my). Subsequent low-angle movement along the Jeep Trail and Ripsey Wash faults plus minor eastward movement into the San Pedro rift occurred after main stage rotation in Post-San Manual time since large blocks of San Manual are involved (Fig. 4). A major low-angle fault apparently terminates at the San Pedro rift as postulated in Figure 9.

The Riverside-Kelvin monocline originally defined by an east-facing monoclinal fold in the diabase, now appears to be a "T" shaped configuration of sills (now sub-vertical) and their feeder dikes (now flat-dipping). The sill portion, originally thought to be the east-face of the monocline, dips steeply into the San Pedro, while the dike portion, originally thought to be the axial limb of the monocline, has a flat sill-like configuration.

As shown in the geologic cross-section (Fig. 9), post-Laramide rotation and subsequent denudational faulting along the Jeep Trail and Ripsey Wash faults have removed the productive portion of the Kelvin system, leaving a thin, nonproductive slice of phyllically and propylytically altered Ruin grantite behind. The top and the proposed productive center of the system apparently has been transported to the west beyond Ripsey Wash, and if present occurs as complex slices beneath fresh unaltered rocks in the Greyback Peak area.

SUMMARY AND CONCLUSIONS

The areal geology, geochemical dispersion patterns, geophysical prospecting techniques, and a 4-hole drilling program totaling 5268 feet, have defined a rotated and complexly faulted porphyry copper system at Kelvin, Pinal County, Arizona. Drill holes GK-1 and GK-2 collared in an alteration patch associated with strong Cu and Mo but low Pb geochemical dispersion showed decreasing alteration (phyllic to weak propylytic) sulfide content plus Cu-Mo metallization with increasing depth. Drill hole GK-3 collared in a pyritic crackle breccia likewise drilled out of the same with depth indicating a "floor" created by post-emplacement rotation.

Drill holes GK-1 and GK-2 have effectively eliminated the possibility of a deep protore porphyry copper system at Kelvin and GK-3 has eliminated the breccia pipe potential. Although Kerr-McGee's holes K-1 and K-3 intersected sub-ore grade copper in thin slices west of the Jeep Trail decollement, Kerr-McGee holes K-2 and K-4 thru K-8 have effectively negated the possibility of a large ore-grade slice existing between Ripsey Wash and the Jeep Trail fault.

It is possible that ore-grade slices of the Kelvin(Riverside) system exist on Kerr-McGee/Gulf joint venture ground in Section 21 and 22 (1 mile south of the Cities Services drilling). Potential targets however are quite deep, structurally complex, and not attractive enough to justify additional drilling at this time.

RECOMMENDATIONS

Compiled and synthesized geologic, geochemical, geophysical, and drilling information constitute a data base adequate to eliminate the existence of significant ore-grade Cu-Mo metallization within the Kelvin (Riverside) claim block (Fig. 2). It is recommended, therefore, that Gulf counsel notify our farmout partners (Kerr-McGee) that GMRC is no longer interested in pursuing metals exploration on subject property. Complete sets of factual data including drill logs, assays of core, and geophysical survey information with reports are included herewith should Kerr-McGee request the same (Appendices A, B, and C respectively).

Tucson Area Staff

TABLE I DRILL-HOLE SUMMARIES

·		AREA WEST	OF RIPSEY WASH		
Cyprus DDH 19	972			Average	Best
Hole no.	Attitude	Depth (ft)	Alteration	ppm Cu	Intercept
KE-1	60 ⁰ N	2500'	strong phyllic & strong potassic	360 40ppm Mo	1750-2100' 948 Cu, 51 Mo
Tipperary Land	d & Exploration	on RDH 19	<u>70</u>	•	
T-1 T-2	vert vert	1400' 1635'	N/A	N/A	N/A
Minbanco RDH	Pre-1970				
J3 J9	vert vert	1165 2320'	N/A	N/A	N/A
		AREA EAST	OF RIPSEY WASH		
Kerr-McGee DD	l's 1972-1976	<u>5</u>			
K-1 K-2 K-3 K-4 K-5 K-6 K-7 K-8 Inspiration Di ICC-1 ICC-2 Occidental Min 0X-1 0X-2	vert vert nerals DDH's 60°S 60°S25°E	1500' 1377' 1386' 875' 1497' 500' 1077' 802' 400±' unkval 1967-1968		890 188 810 470 130 44 130 44 N/A	800-1030',0.26% 775-920', 0.05% 640-790', 0.26% 150-190', 0.17% 20-120', 0.05% 420-470', 0.01% 500-505',400ppm 686-700',150ppm
0X-3 0X-4	60°S 60°S5°E	396' 500' (un		11	ti
Pre-Occidental	CDH's 1949				
CDH-1 CDH-3 CDH-6 CDH-8	vert vert vert vert	520' 735' 457' 352'	N/A " " OOTAGE DRILLED	N/A " "	N/A " "
	Cvi) ft.	
		rr-McGee	9014		

802 0 ft.
9014 ft.
400 ft.
1811 ft.
2064 ft.

Total known Kelvin 22309 ft.

Page 2 of 3

	Sample <u>Number</u>	Cu ppm	Pb ppm	Mo ppm
AZ.KT-	19/50	205	15	-1
	50/100	120	15	-1
	100/150	50	10	5
	150/200	110	15	4
	200/250	400	15	3
	250/300	305	35	1
	300/350	20	15	-1
	350/400	295	20	11
	400/450	150	25	2
	450/500	95	25	-1
AZ,KG-	100/110	65	10	-1
	150/160	110	15	-1
•	200/210	55	10	5
	290/300	275	10	1
	300/310	145	15	7
	400/410	155	20	-1
	440/450	195	15	-1
	500/510	145	20	21
COMPOSITES AZ.KJ-	50/80 80/100	130	20	-1
AZ.KG- KJ- KJ KJ	100/110 110/120 120/140 140/150	35	10	7
AZ.KG- KJ KJ	150/160 160/180 180/200	250	10	5

KELVIN DOH 1

	Sample Number	Cu ppm	Pb ppm	Mo ppm
COMPOSITES AZ.KG- KJ KJ	200/210 210/230 230/250	230	15	1
AZ.KG- KJ KJ	290/300 310/330 330/350	205	10	-1
AZ.KG- KJ	300/310 310/330 330/350	55	15	1
AZ.KJ-	350/370 370/390 390/400	325	20	-1
AZ.KG- KG KJ	400/410 440/450 410/425 425/440	175	20	2
AZ.KJ	450/470 470/485 480/490 490/500	120	25	3

By Farry S. Zillard

Parry D. Willard

ROCKY MOUNTAIN GEOCHEMICAL CORP.

2561 EAST FORT LOWELL ROAD . TUCSON, ARIZONA 85716 . PHONE: (602) 795-9780

Foreign Job No.:....

Local Job No.:....78-15-30.

RMGC Numbers:

Certificate of Analysis

_	_	

September 28, 1978

Client:

Gulf Mineral Resources

2015 N. Forbes

Suite #105

Tucson, Arizona

85705

Client Order No.:

21148

Report On:

40 samples

Submitted by:

Tom Heidrick

Date Received:

September 7, 1978

Analysis:

Cu, Pb, Mo

Analytical Methods:

Determined by Atomic Absorption

Remarks:

Kg and Kj samples assayed in 50' intervals.

CC:

Enc: 2 RMGC/SLC file

PDW/ls

All values are reported in parts per million unless specified otherwise. A minus sign (—) is to be read "less than" and a plus sign (+) "greater than." Values in parenthesis are estimates. This analytical report is the confidential property of the above mentioned client and for the protection of this client and ourselves we reserve the right to farbid publication or reproduction of this report or any part thereof without written permission.

ND = None Detected

1 ppm = 0.0001%

1 Troy oz./ton = 34.286 ppm

1 ppm = 0.0292 Troy oz./ton

SOUTHWESTERN ASSAYERS & CHEMISTS, Inc.

WIL WRIGHT ARIZONA REG. NO. 5875 REGISTERED ASSAYERS

P.O. BOX 7517 TUCSON, ARIZONA 85725 710 E. EVANS BLVD. PHONE 602-294-5811

Gulf Minerals Resources G. Wessel

Page 2 of 2

022225 Continued JOB #__

RECEIVED .

1		•			REPORTED			
SAMPLE NUMBER	GOLD OZ.*	SILVER OZ.*	LEAD PRM	COPPER PPM	ZINC %		MOLYBDENUM PPM	
1800-1850			9	106			4	
.850-1900	1		9	138		 -	11	
.900-1935			8	141	!		< 1	
.935-1950		!	8	146			2	
950-1952			7	373			4	
.952-1957			6	244			5	
1957-1981			8	95		•	< 1	
.981-1983			7	95			9	
1983-1995		,	6	85			3	
L995-1997	٠.		8	46			< 1	
997-2000			8	64			< 1	
				STERED ASSAULT ENTITION SESSE Dryaneners mruttal Shah	10-16	-78. AF	E # 8214	
ARGE \$ 273.	.00	Custor Pb-39 @ :	nar Co	py - Po	705a PQ	y From a \$2.50,	Prep-39 @	બિ \$1.

* Gold and Silver reported in troy oz. per 2,000 lb. ton.

INVOICE

SOUTHWESTERN ASSAYERS & CHEMISTS, Inc.

REGISTERED ASSAYERS

WIL WRIGHT
ARIZONA REG. NO. 5875

P.O. BOX 7517 TUCSON, ARIZONA 85725 710 E. EVANS BLVD. PHONE 602-294-5811

Gulf Minerals Resources
Mr. Greg Wessel

2015 N. Forbes Blvd.-Suite 105

Tucson, Arizona 85705

JOB* 022225

RECEIVED 10-10-78

REPORTED 10-16-78

PO# 21164					REPORTED 10-16-78		
SAMPLE NUMBER	GOLD OZ.*	SILVER OZ.*	LEAD PRM	COPPER PPM	ZINC		MOLYBDENUM PPM
KEG-1-J;							
510-525			16	314			11
525-540			14	204			25
540-550			10	92			5
KE-1:							
550-600			. 9	220			7
600-650			10	101		·	2
650-700			11	174			10
700-750			12	312			19
750-800	٠.		10	199			9
800-850		·	12	227			9
850-901	į		18	361			3
901-950			7	56			< 1
950-1000			6	80			1
000-1050			9	131			2
050-1100			10	70			< 1
100-1150			8	48			2
150-1200			8	56			< 1
200-1250			7	55			< 1
250-1300			8	56			< 1
300-1350			7	100			7
350-1400			8	70			1
400-1450			6	66			. 3
450-1500			8	66			< 1
500-1555			9	64			1
550-1600			7	48			< 1
500-1650			8	69	,		< 1
550-1700	ŀ		9	88	,		< 1
700-1750			8	70			< 1
750-1800			7	66			< 1

CHARGE __

SOUTHWESTERN ASSAYERS & CHEMISTS, INC.

WIL WRIGHT ARIZONA REG. NO. 5875

REGISTERED ASSAYERS P. O. BOX 7517 TUCSON. ARIZONA 85725

710 E. EVANS BLVD. PHONE 602-884-5811 884-5812

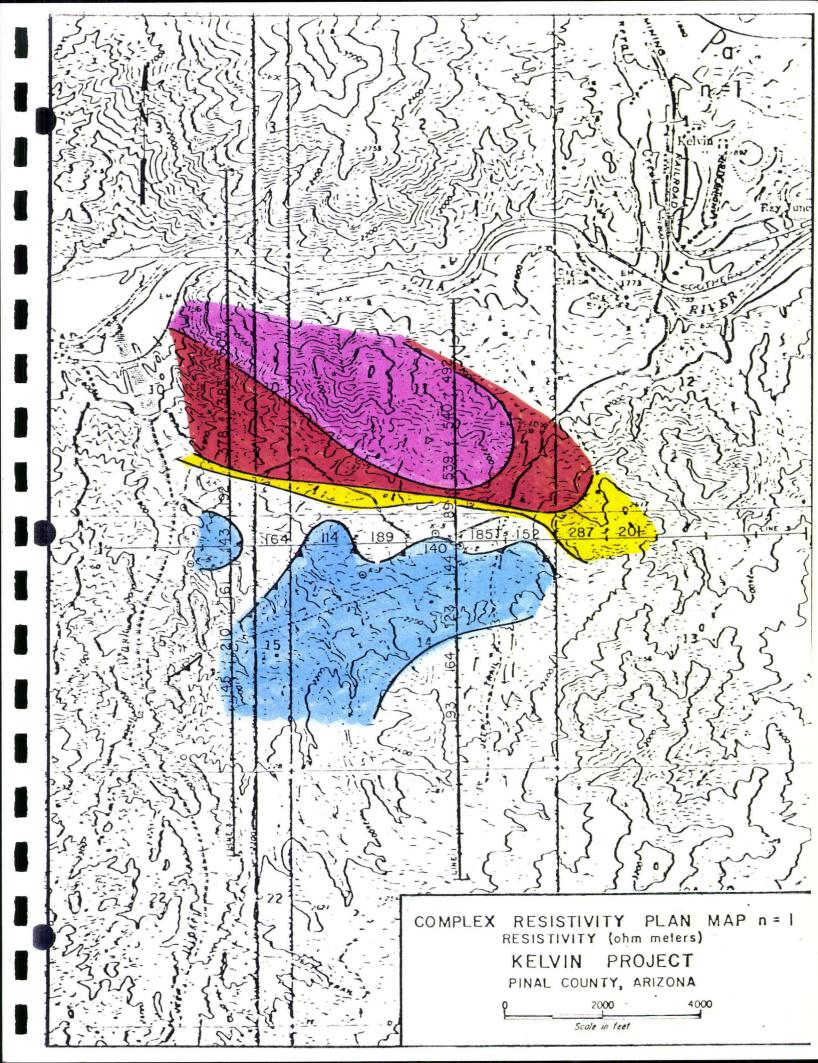
DNYANENDRA A. SHAH ARIZONA REG. NO. 8888

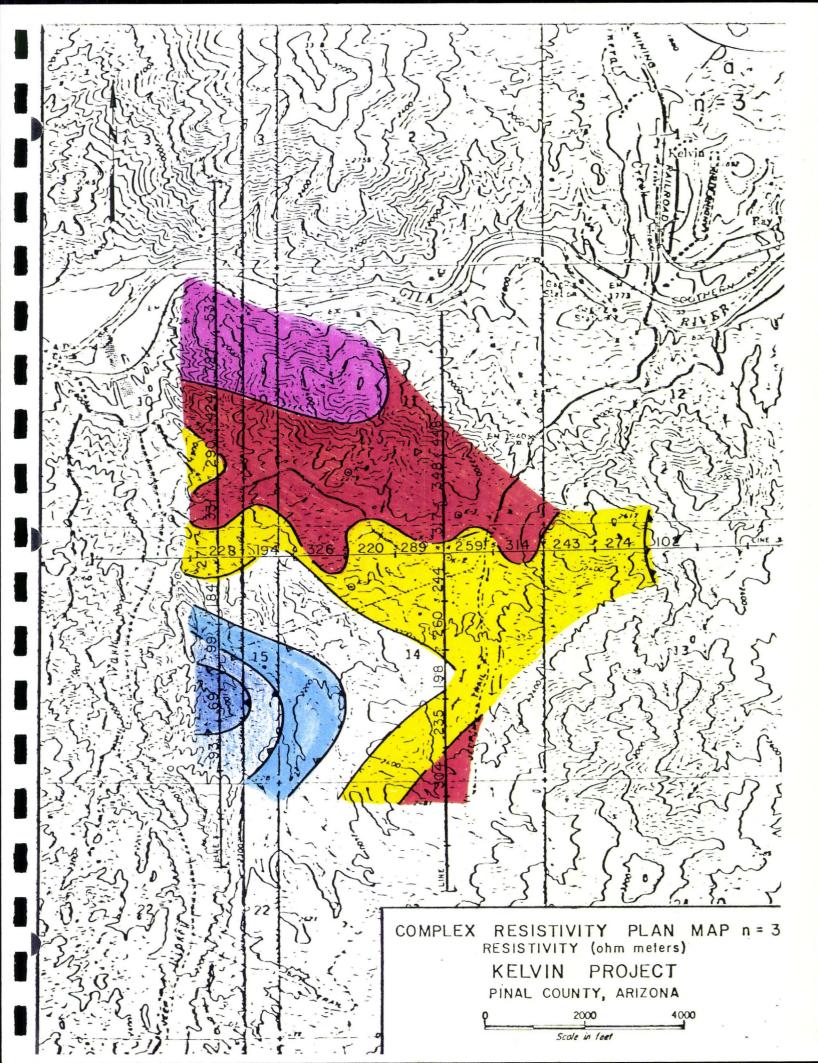
Gulf Minerals Resources Mr. Greg Wessel 2015 N. Forbes Blvd.-Suite 105 Ducson Arizona 85705

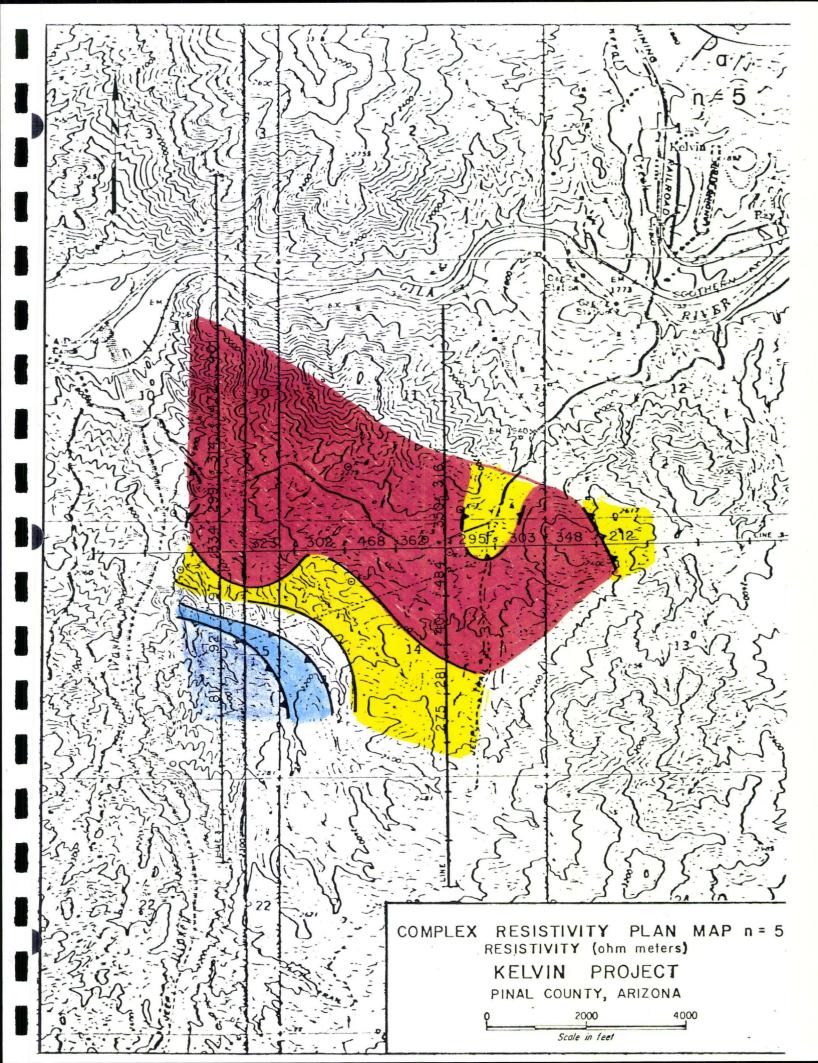
022513 JOB #. 1-5-79 RECEIVED_ 1-11-79 REPORTED.

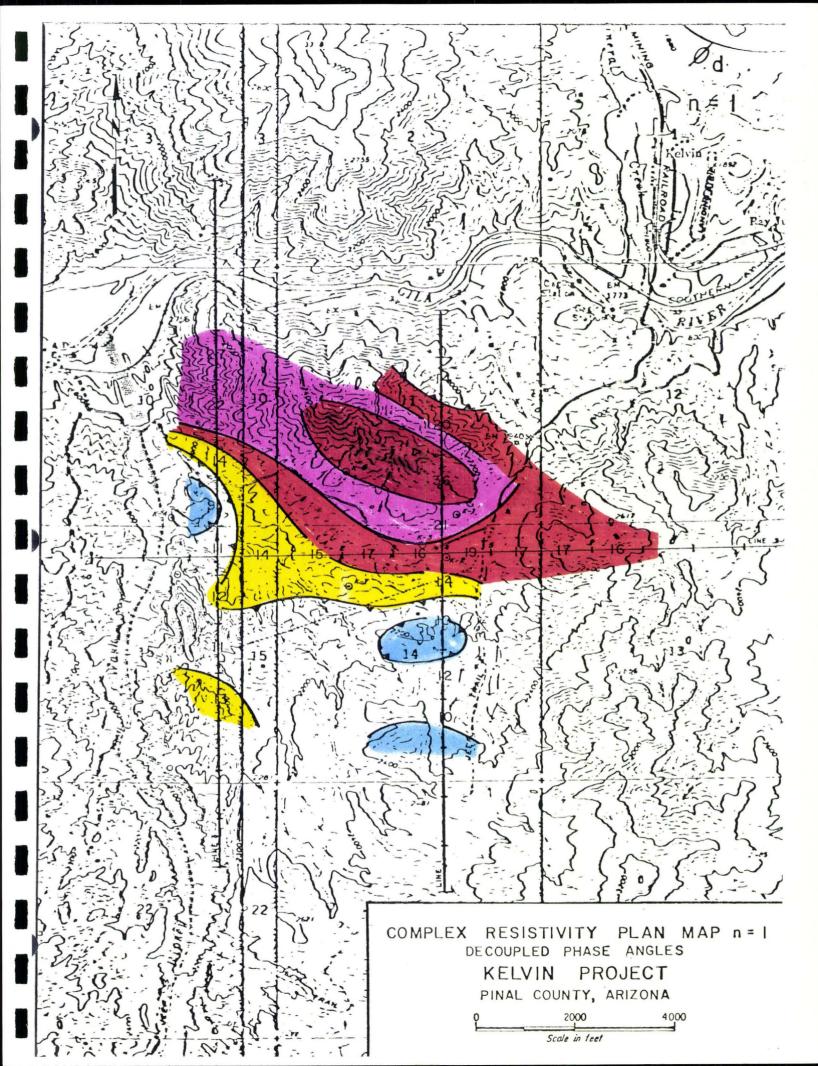
SAMPLE NUMBER	GOLD OZ.*	SILVER OZ.*	PPM	COPPER PPM	ZINC PFM		MOLYBDENUM PPM
KE-4:							_
1			12	74			3
0-50			13	93			3
50-100			11	97			3
.00-150			9	62			2
.50-200			8	64			.4
200-233			8				
					STERED ASS		
					6883 E888		
				1 #	Dnyaneno Amrutial S		
				1.	NOW	NY.	7
				`	TE CONED	X/V-	70
					Arizona U.		
	1		1		1	ı	-

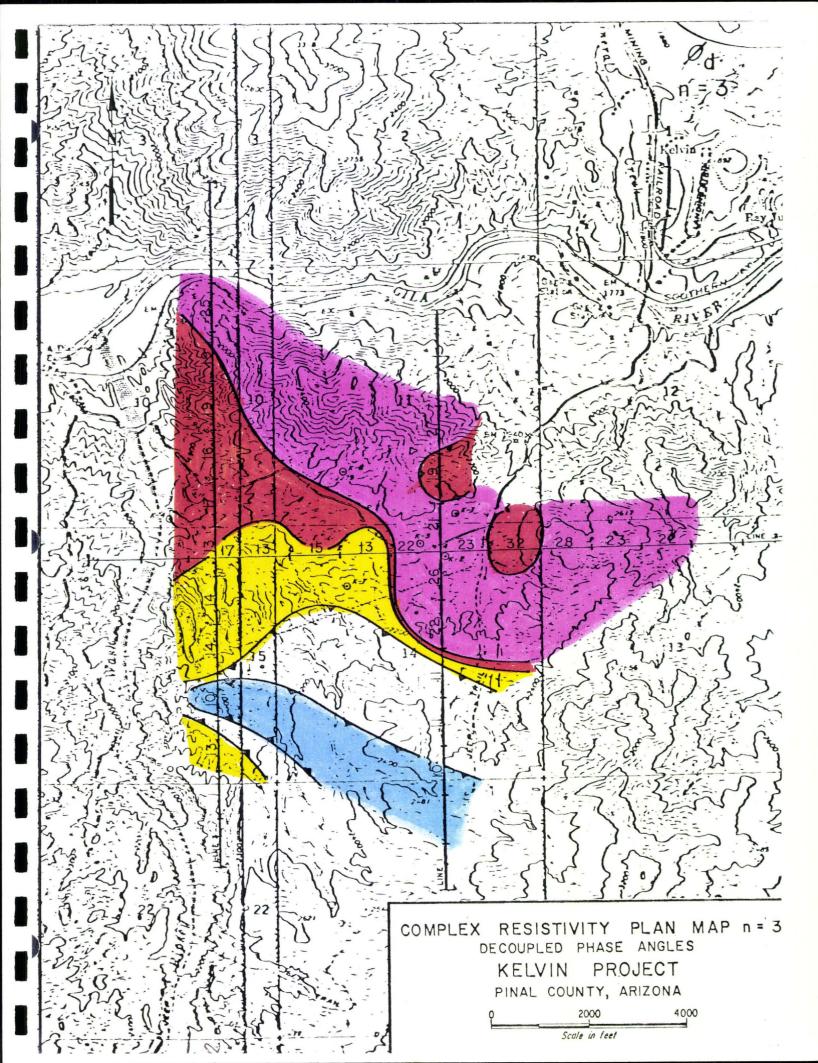
1 ppm = 0.0001%

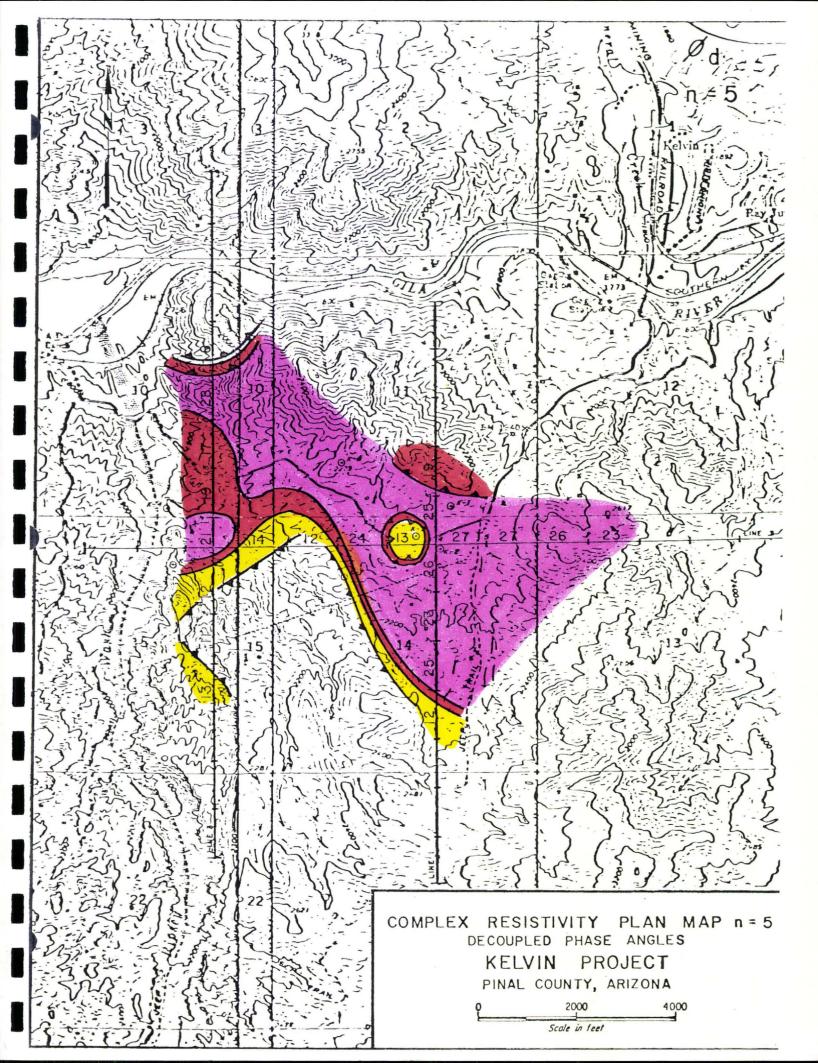

.....


1 troy oz./ton = 34.286 ppm


1 ppm = 0.0292 troy oz./ton


* Gold and Silver reported in troy oz. per 2,000 lb. ton.


002



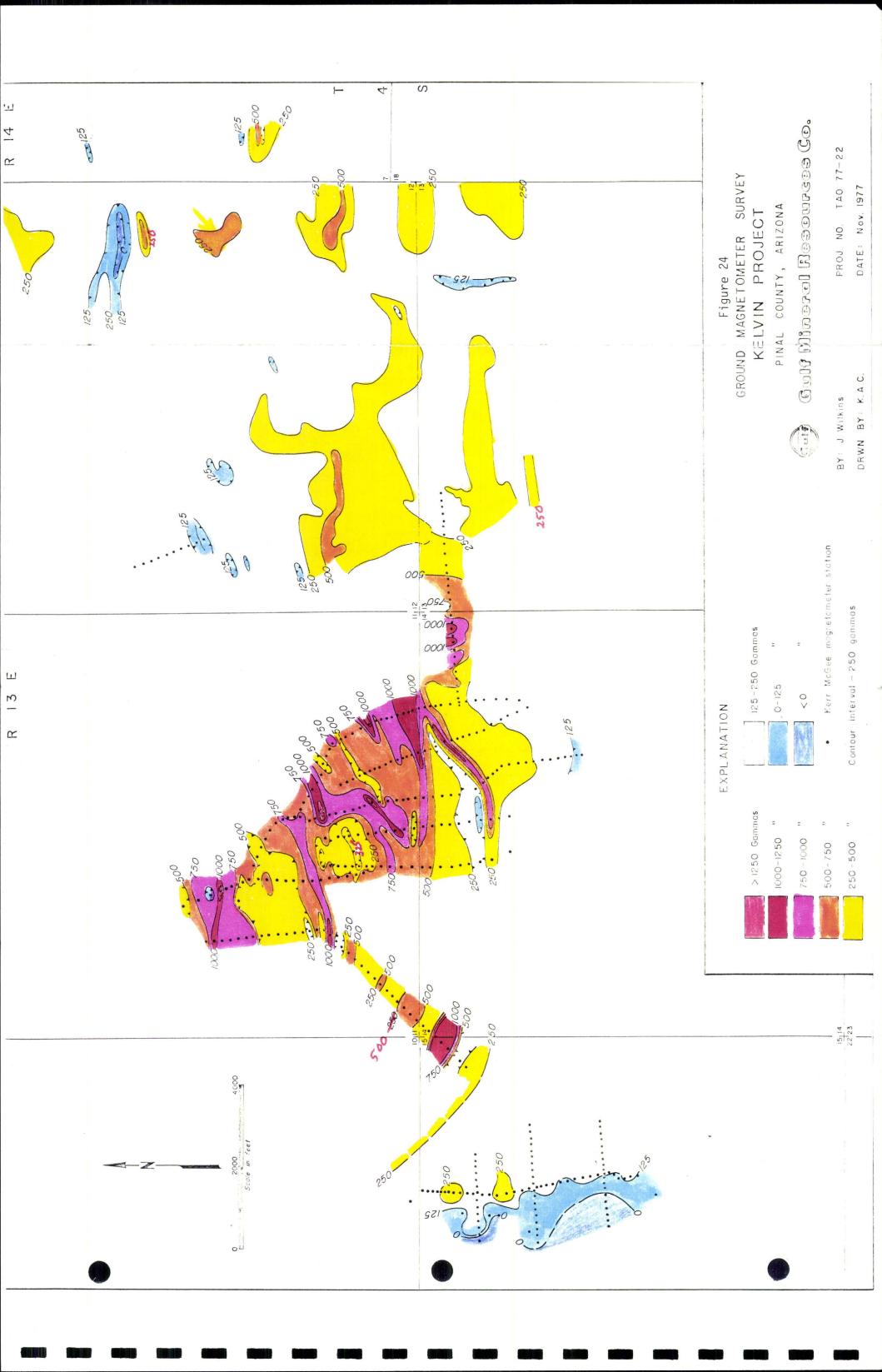


TABLE OF CONTENTS

Figures

- 1. Location Map
- 2. 1:12,000 scale geologic map of the Kelvin (Riverside) area
- 3. 1:12,000 scale cross sections of the Kelvin area
- 4. 1:62,500 regional geologic index map surrounding Kelvin
- 5. Laramide structure-tectonic-volcanic framework map
- 6. Land status and drill hole location map
- 7. Kerr-McGee's conceptual model of a porphyry copper alteration system
- 8. Kerr-McGee's working model of the Kelvin area
- 9. Composite columnar section of the Tortilla and Dripping Spring Mountains
- 10. Alteration Map
- 11. Histograms: Geochemical data analysis of vein material assays
- 12. Contoured geochemical distribution of copper (ppm) in selected vein and fault-vein samples
- 13. Contoured geochemical distribution of molybdenum (ppm) in selected vein and fault-vein samples
- 14. Contoured geochemical distribution of lead (ppm) in selected vein and fault-vein samples
- 15. Molybdenum/lead ratio
- 16. Contoured Mo X 10/Pb ratio in selected vein and fault-vein samples
- 17. Contoured geochemical distribution of combined gold-silver in selected vein and fault-vein samples
- 18. Complex resistivity plan map n=1, resistivity (ohm meters)
- 19. Complex resistivity plan map n=3, resistivity (ohm meters)
- 20. Complex resistivity plan map n=5, resistivity (ohm meters)
- 21. Complex resistivity plan map n=1, decoupled phase angles
- 22. Complex resistivity plan map n=3, decoupled phase angles

Figures (cont)

- 23. Complex resistivity plan map n=5, decoupled phase angles
- 24. Ground magnetometer survey
- 25. Hypothetical model of a porphyry copper system
- 26. Working porphyry copper model of the Kelvin prospect

Tables

- I. Drill hole summaries
- II. Complex resistivity survey results

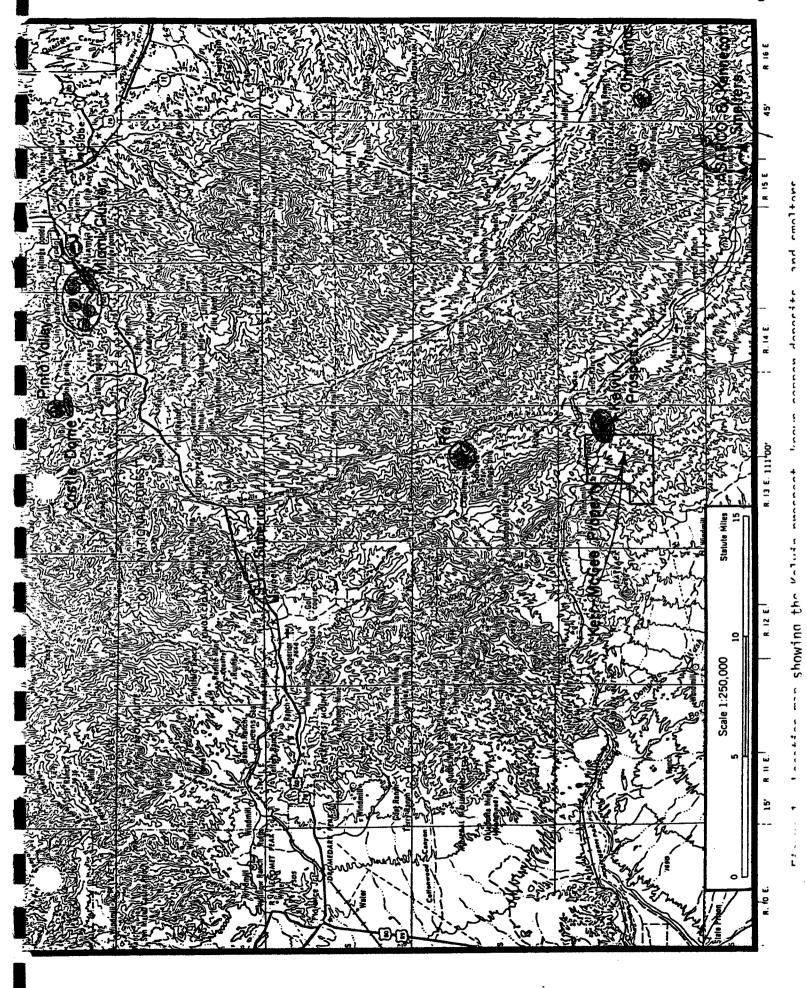
<u>Appendices</u>

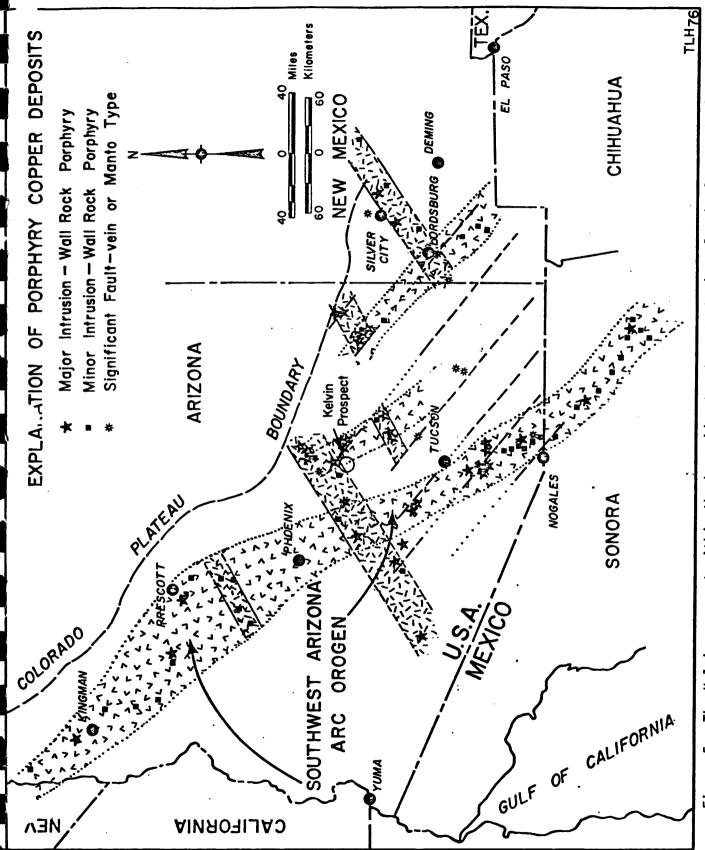
- I. Kerr-McGee drill log summaries for K-1 through K-8
- II. Mining claims for Kelvin area
- III. Geochemical assays
- IV. Zonge Engineering and Research Organization's report

INTRODUCTION

The Riverside (Kelvin) mining district is one of several proven base metal districts in south-central Arizona. The area considered here is immedately south of Ray and covers the northern portion of the Tortilla Mountains, Pinal County (Fig. 1). The principal areas of interest are located in sections 10-14, T4S, R13E and the west half of sections 7 and 8, T4S, R14E. Detailed geologic mapping (Figs. 2 and 3) coupled with district-wide geologic compilations (Fig. 4) and regional structure-tectonic analyses (Fig. 5) demonstrate convincingly that the Riverside district is geologically situated in an area conducive to the localization of high-grade porphyry copper-type mineralization supporting significant byproduct molybdenum. This report will cover the results of GMRC's exploration program to date including geologic mapping, geochemical sampling, alteration-mineralization studies, and a complex resistivity survey. Recommendations for additional exploration are included.

TOPOGRAPHY-VEGETATION-LOGISTICS


The Kelvin area is marked by locally rugged topography (steep slopes and canyons) adjacent to low-relief and gently rolling hills. Elevations range from 1800 feet along the Gila River to 3200 feet above sea level (Fig. 2). Access is good but limited to the less rugged areas. Since the more promising area of alteration-mineralization occurs in the topographically high portions of the prospect, an extensive network of drill roads are required over the more precipitous terrain; fortunately, previous exploration efforts have established portions of this network which will require only nominal cat work.


As shown by Figure 2, it is difficult to find a viable porphyry prospect occupying a more logical setting than at Kelvin-Riverside. Abundant water, power, and rail transportation facilities are present on or immediately adjacent to the property. The entire area is a well established mining subprovince and presently supports a readily available work force at Kearney, Riverside, Superior, and Florence. The ASARCO and Kennecott smelters at Hayden are only 14 miles SSE of the prospect (Fig. 2).

PREVIOUS EXPLORATION SUMMARY

Previous drilling by at least 9 major and minor exploration companies in the Kelvin area aggregate in excess of 23,000 feet. Major companies include Kerr-McGee, Cities Service, Cyprus Mines, Inspiration Consolidated Copper, Occidental Minerals, and Kennecott Copper-Ray Mines Division. A summary of known drilling is given in Table I and the location of each hole is indicated on Figure 6.

Kerr-McGee: The Kerr-McGee effort involved 8 diamond drill holes totalling 9014 feet of drilling (DDH summaries are given in Appendix I). The Kerr-McGee conceptual model of the Kelvin porphyry copper system, Figures 7 and 8,

The Kelvin prospect within the Laramide structure-tectonic-volcanic framework along with other known porphyry copper deposits and prospects. Figure 5.

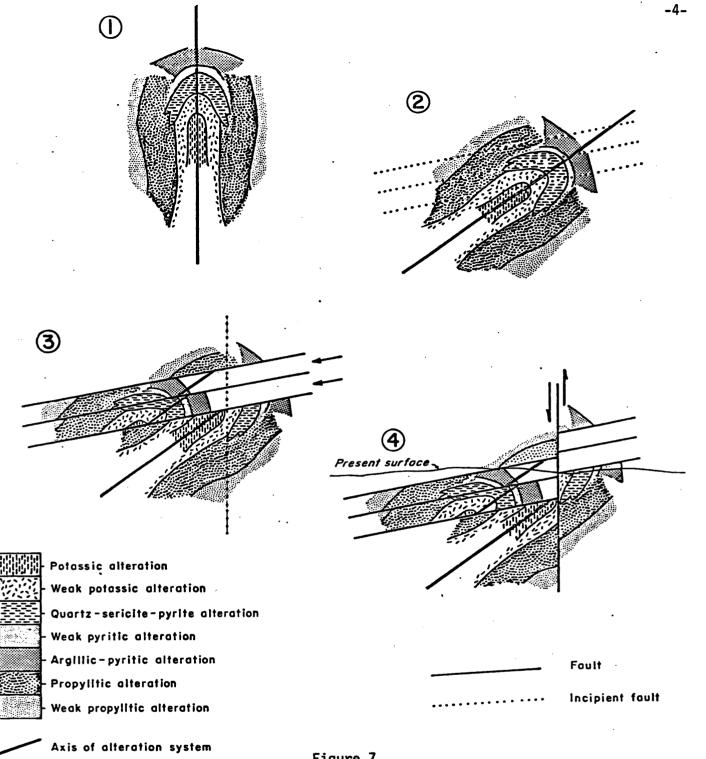


Figure 7

KERR - McGEE CORPORATION

SUGGESTED EFFECTS OF LOW ANGLE FAULTING ON A STRUCTURALLY ROTATED PORPHYRY COPPER ALTERATION SYSTEM

> KELVIN AREA PINAL COUNTY, ARIZONA

R.M. CORN

JULY, 1973

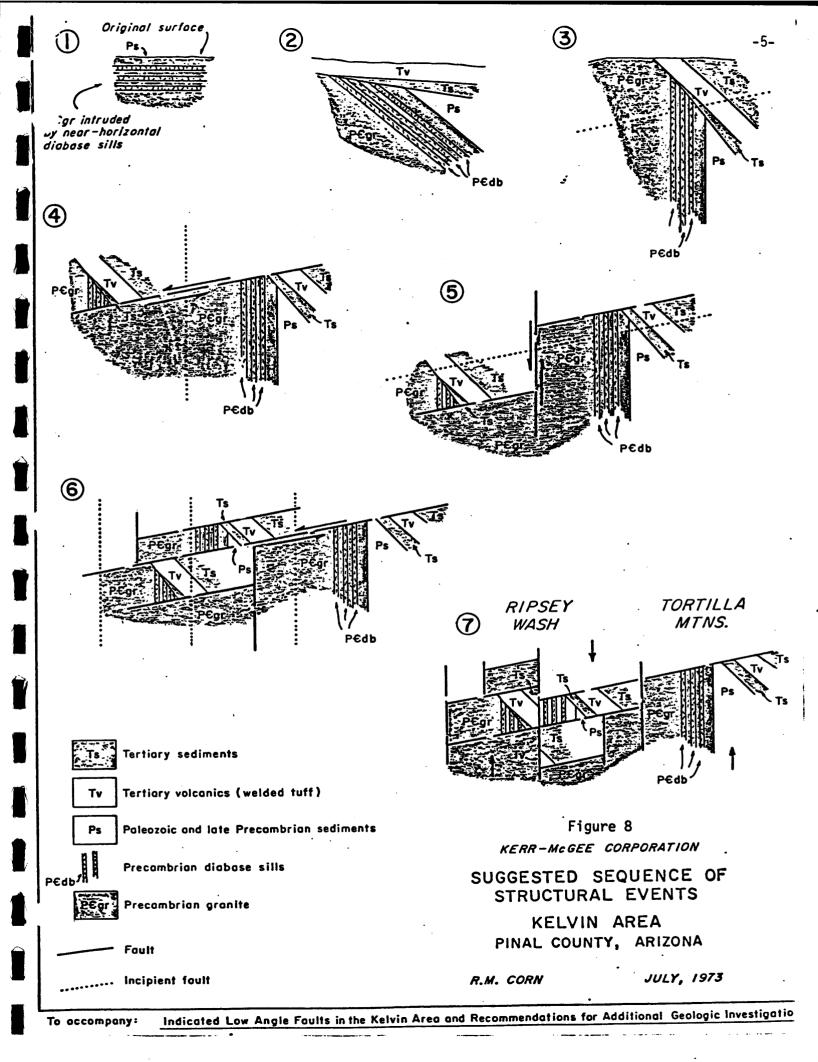


TABLE I
DRILL-HOLE SUMMARIES

AREA WEST OF RIPSEY WASH

Cyprus DDH 19	72		01 1121 021 11/10/1		
Hole no.	Attitude	Depth (ft)	Alteration	Average ppm Cu	Best <u>Intercept</u>
KE-1	60 ⁰ N	2500'	strong phyllic & strong potassic	360 40ppm Mo	1750-2100' 948 Cu, 51 Mo
Tipperary Land	& Explorat	ion RDH 19	<u>70</u>		
T-1 T-2	vert vert	1400' 1635'	N/A	N/A	N/A
Minbanco RDH	<u> Pre-1970</u>				
J3 J9	vert vert	1165 2320'	N/A	N/A	N/A
		AREA EAST	OF RIPSEY WASH		
Kerr-McGee DDH	's 1972-19	<u>76</u>			•
K-1 K-2	vert vert	1500' 1377'	st.phyllic-wk.pot. propy-phyllic	. 890 188	800-1030',0.26% 775-920', 0.05%
K-3	vert	1386'	propy-phyllic	810	640-790', 0.26%
K-4	vert	875'	propylytic	470	150-190', 0.17%
K-5 K-6	vert	1497'	wk.phyllic-propy	130 44	20-120', 0.05%
K-0 K-7	vert vert	500' 1077'	weak propy weak propy	130	420-470', 0.01%, 500-505',400ppm
K-7 K-8	vert	802'	phyllic-propy	44	686-700',150ppm
Inspiration DH		002	phy in to propy	• •	000 /00 ,100pp
ICC-1	vert	400±'	N/A	N/A	N/A
ICC-2	vert	unkval		11,71	11
Occidental Min	erals DDH's	1967-1968			
0X-1	60 ⁰ S	415'	N/A	N/A	N/A
0X-2	60°S25°E	500'	11	**	II
0X-3	60 0 S	396'		,, ·	II .
0X-4	60 ⁰ S5 ⁰ E	500 ' (un l	k) "	11	II .
Pre-Occidental	CDH's 1949	<u>)</u>			
CDH-1	vert	520'	N/A	N/A	N/A
CDH-3	vert	735'		11 11	II II
CDH-6	vert	457'	11 11	**	" "
CDH-8	vert	352'	**	••	••
		T0.T41 -	207105 2271152		

TOTAL FOOTAGE DRILLED

Cyprus-Tipperary-Minbanco	8020	ft.
Kerr-McGee	9014	ft.
Inspiration	400	ft.
Occidental	1811	ft.
1949 CDH's	2064	ft.

Total known Kelvin 22309 ft.

was a 4-event model that became progressively complicated with each additional drill hole. The model was based upon the following sequence of events:

- 1. Vertical emplacement of a porphyry copper system of the Red Mountain type.
- 2. Post-emplacement rotation to a sub-horizontal position.
- 3. Low-angle faulting, with the top of the system moving to the west.
- 4. High-angle faulting with a strong lateral componet offsetting and down-dropping portions of the deposit to the east.
- 5. Erosion to the present surface.

Following completion of drill holes K-1 through K-3 (1972-1973), a second episode of low angle faulting and normal faulting was added to the working model. The basic reasoning behind this interpretation is quite sound since the Tortilla range is suspected as one of the many rotated mountain ranges in Arizona's Basin and Range Province. However, in the Kelvin area the axis of rotational faulting appears to have been to the west of the main Kelvin area. Drill log summaries for holes K-1 through K-8 are included in Appendix I.

Cyprus-Tipperary-Minbanco: The drilling west of Ripsey Wash in the Johnson area, now under option to Cities Service, lends credence to Kerr-McGee's interpretation. Here the exposed rocks are an allochthonous block of propylytically altered Ruin granite, intruded by the Tea Cup granodiorite (62.9 and 61.4 m.y., Cornwall and Krieger, 1975) and several quartz latite porphyry and rhyodacite porphyry dikes. This sequence is partially overlain by steeply tilted Whitetail conglomerate (32 m.y., Cornwall and others, 1971) and conglomerate and tuffs of the San Manuel formation (17 m.y. to 24 m.y., Cornwall and Krieger, 1975).

The drilling to date totals 8,020 feet including a 2,500 foot hole and a 2,320 foot hole. In addition, Cities Service has completed a number of holes with unknown results. Our interpretation of the geology of this area suggests that Ripsey Wash marks the trace of a large low-angle fault and the area to the west is an allochthonous block of a propylytically altered portion of another porphyry copper system.

Occidental: Occidental Minerals drilled 4, possibly 5 drill holes totalling 1811 feet with the deepest hole 500 feet deep. The OXY program, instigated by Mr. Bob Holt (of Holt, Inc.) was designed to test a shallow chalcocite blanket play in sections 12 and 13 (Fig. 2). According to Mr. Will Chester, Project Geologist for Occidental in 1967-68, the program was partially successful but a "low-angle fault" was encountered at the base of the "thin" chalcocite blanket and inadequate reserves were indicated to justify additional exploration.

During the current mapping program, an intensive search was made in order to locate these postulated low-angle faults. The trace of the chalco-

cite blanket was found but there was no evidence of any movement along its base. Instead, a thick alteration zone composed of supergene argillization was encountered that could have been interpreted as fault gouge in a drill hole.

<u>Pre-Occidental and Inspiration</u>: Pre-OXY drilling consists of 4 churn drill holes totalling 2,064 feet. The holes were probably drilled by Kennecott Copper Corporation-Ray Mines Division. This effort was directed at delineating a chalcocite blanket and probably encountered results similiar to Occidental's. The Inspiration drilling consisted of two shallow validation holes spotted to test shallow IP anomalies.

Other Drilling: Kennecott Copper-Ray Mines Division is still active in the area as indicated by drill hole KCC-1012, completed to 1,850 feet in 1977 in the NE% section 14 (Fig. 6). Three additional holes of unknown origin were encountered in the map area but all lie within peripheral alteration-mineralization and appear to extend to limited depths.

LAND STATUS

There are 6 major mining claim groups (patented and unpatented) in the Kelvin portion of the Riverside district. The approximate locations of each major group is shown in Figure 6. Exploration companies actively involved in each area are Kerr-McGee-GMRC, Kennecott Copper Corporation (Ray Mines Division), and Cities Service. Individuals holding large blocks of claims include M.S. and Lucy Wilkins, Ronald R. Deen, and James Gaylor.

GMRC-Kerr-McGee: The current GMRC-Kerr-McGee joint venture negotiations include Keri 1-99, the Rip 1-72 claims staked by Kerr-McGee and the 13 Ruby Marlene claims optioned from R.R. Deen by Kerr-McGee. Also included in this potential joint venture agreement is the state prospecting permit covering most of section 10.

Cities Service: Cities Service Exploration has 4-5 square miles of claims and state prospecting permits (section 16) under option immediately west of the Kerr-McGee-GMRC ground. The precise configuration and location of Cities' holdings are not known but their eastern claim lines and the Kerr-McGee-GMRC western claim lines appear to be a common boundary.

Kennecott Copper Corporation: Kennecott maintains 2 unpatented claim groups (River 1-27 and Erman 1-31) and several patented claims, millsites, and townsites in the northeast quadrant of the Kelvin area (Fig. 6). The River group is situated in section 13 and overstakes the Ruby Marlene claims (the location of each River and Erman claim is given in Appendix IIa). The Erman group straddles the Gila River and in part, covers the patented surface ground held by Kennecott. Kennecott's patented ground in sections 1, 6, and 7 is fairly extensive and includes: 1) 18 millsites (62 acres), the Kelvin townsite, and 400 acres of surface (but not minerals) in the east half of section 7; 2) 351 acres of surface plus minerals in the west of section 1; and 3) most of section 6.

M.S. and Lucy Wilkins: A large block of 27 patented mining claims and one patented millsite totalling 523 acres is owned by Mr. M.S. and Lucy

Wilkins of Morgan, Texas (no known relation to Joe Wilkins). These claims were optioned to Occidental in 1967 but subsequently released and are currently available for option or purchase.

<u>Deen Claims</u>: The following claim groups are apparently valid claims in the Riverside district held by Mr. Ronald R. Deen:

Ruby Marlene gp. 13 claims Optioned by Kerr-McGee

Rosa Lee 8 claims Sec. 18 and fractions in Wilkins gp

Riverside 4 claims Sec. 6, KCC patented surface

Hidden Treasure 4 claims Cities Service area

The Ruby Marlenes are located on Figure 6, but the location descriptions of the Rosa Lee and Riversides, given in Appendix IIb are vague and not amenable to accurate plotting.

Gaylor Claims: Assessment work was filed by a Mr. John Gaylor, Universal Copper Company, Tucson, Arizona to cover 72 claims in the Riverside mining district (see Appendix IIc). The exact locations of these claims is not known but we believe that they are situated in the Troy area. However, there is a possibility that some of these claims are located in the north 1/2 of section 11 and the NW 1/2 of section 12.

Other Deeded Lands: About 80 acres of deeded land is present in section 1 in the town of Kelvin that has been partially subdivided. Each parcel within this zone ranges in size from 1 to 40 acres each with a different ownership.

Other Mining Claims: Assessment work for 1977 was filed for the following claims in the Riverside district:

Dan claims by Albert Smith
Sun Goddess by Laberta Estes
Tipperary 1-13 by J.P. Vromar

The locations of each claims is not known but the Tipperary group is believed situated in the Cities Service area.

GENERAL GEOLOGY AND STRATIGRAPHY

Broader aspects of the geology, stratigraphy, and structure surrounding the Kelvin prospect are provided by our compilation of available data from the Granite Mountain, Sonora, Winkelman, and Grayback Mountain quadrangles (Fig. 4). Rocks in the general area vary in age from Precambrian to Holocene. Figure 9 is a generalized composite columnar section outlining the stratigraphic succession drawn from published data on the Tortilla and Dripping Spring Mountains.

The oldest rocks in the area covered by the larger scale index map (Fig. 4) include the Pinal schist of Precambrian X age and intrusive rocks,

PINAL SCHIST 10-200' 1		FORMATION	THICKNE SS	AGE
WILLIAMSON CANYONS WILLIAMSON CANYONS VESICULAR BASALT THE THE THE THE THE THE THE THE THE THE	. !	RHYOLITE TUFF	0-200'+	A A A
WILLIAMSON CANYONS WILLIAMSON CANYONS VESICULAR BASALT THE THE THE THE THE THE THE THE THE THE	,	DO BIG DOME	0-150'+	UATERN
WILLIAMSON CANYONS WILLIAMSON CANYONS VESICULAR BASALT THE THE THE THE THE THE THE THE THE THE		APACHE LEAP TUFF	0-200 +	•
PINAL SCHIEFT IF		WMITETAIL CONGLOMERATE	0-550'+	TERTIARY
PINAL SCHIET IF			0-4000	
DRIPPING SPRING SO'-400' BARNES CONGLOMERATE DIABASE D				\$
WESICULAR BASALT INTERPRETATION DIABASE DIABASE DIABASE DIABASE FORMATION DIABASE FORMATION DIABASE DIABASE FORMATION DIABASE DIABASE FORMATION DIABASE DIABASE FORMATION DIABASE DIABASE FORMATION DIABASE DI		NACO LIMESTONE	0-1700°	PENNSYLVANIAN
DRIPPING SPRING OUARTZITE DIABASE DIA		ESCABROSA LIMESTONE	0-500	MISSISSIPPIAN
VESICULAR BASALT THE THIN HERE TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO			370'	DEVONIAN
DRIPPING SPRING SO' QUARTZITE 30'-40' BARNES CONGLOMERATE PIONEER 125' DIABASE 350' POR MATION 100' RUIN GRANITE 400' PUNABASE 300' PUNABASE 300' PUNABASE 300' PUNABASE 300' PUNABASE 300'			1150	
DRIPPING SPRING SO' QUARTZITE 30'-40' BARNES CONGLOMERATE PIONEER 125' DIABASE 350' POR MATION 100' RUIN GRANITE 400' PUNABASE 300' PUNABASE 300' PUNABASE 300' PUNABASE 300' PUNABASE 300'	VESICULAR BASALT		1 80'	NA NA
DRIPPING SPRING SO' QUARTZITE 30'-40' BARNES CONGLOMERATE PIONEER 125' DIABASE 350' POR MATION 100' RUIN GRANITE 400' PUNABASE 300' PUNABASE 300' PUNABASE 300' PUNABASE 300' PUNABASE 300'	_	MESCAL LIMESTONE T	270	ВМА
BARNES CONGLOMERATE DIABASE DIABASE RUIN GRANITE DIABASE DIAB		DIABASE	400	
DIABASE FORMATION FO	BARNES CONGLOWERATE	QUARTZITE	30'-40	e 40
FOR MATION 100' RUIN GRANITE 400' PUBBASE 300' PUBBASE 200' PUBBASE 200' PUBBASE 200'		PIONEER	125	
DIABASE		FOR MATION	100	
PINAL SCHIST	· ·	0000000	1 1	NV:
PINAL SCHIST		N DIABASE	300'	¥ 3
PINAL SCHIST		+ + +		BEC
PINAL SCHIST + unknown		L 6 1 7 6 7 6 7	500,	
	•	PINAL SCHIST		LOWER

Figure 9. Composite columnar section of the Tortilla and Dripping Spring Mountains.

largely Ruin granite (Oracle granite equivalent) or its aplitic facies, of early Precambrian Y age (Figs. 2 and 3). Batholithic masses of Ruin granite (1,430 m.y.) were intruded after a period of intense deformation which produced subvertical east-trending foliation and bedding in the schist.

This older Precambrian basement is cut by a profound angular unconformity and overlain by Apache Group sedimentary and metasedimentary rocks of Precambrian Y age. Formations involved include the Scanlan conglomerate, Pioneer formation, Dripping Spring quartzite, Mescal limestone, a vesicular basalt unit, and the disconformably overlying Troy quartzite. Figure 9 summarizes this stratigraphic succession, generalizes pertinent lithologic characteristics, and gives the corresponding thickness of each respective rock unit.

Abundant Precambrian diabase dating 1,200 m.y.BP forms sills within the Apache Group and Troy quartzite (Fig. 9). Sill-like masses of diabase are also noted cutting the underlying Pinal schist and Ruin granite on a regional basis (Fig. 4). In general these masses are distributed paraconformably to the pre-Apache angular unconformity. This distribution coupled with the fact that these sill-like intrusions are rarely if ever found more than 500 feet below the unconformity, suggest to us that they were emplaced along subhorizontal exfoliation surfaces oriented sympathetic to the Precambrian Y erosion surface.

Following a long period of erosion, no more than 2,500 feet of Paleo-zoic strata were deposited paraconformably on the Precambrian sedimentary rocks and diabase (Fig. 9). Paleozoic units suspected as having once overlain the Kelvin prospect include limestone of the Martin, Escabrosa, and Naco formations. As shown by our regional compilation (Fig. 4) and corresponding cross section A"-A", Paleozoic and older rocks in the Dripping Spring Mountains (northeastern portion of the index map) are gently to moderately dipping except along selected high-angle normal faults. In contrast, comparable strata west of the Gila River flood plain and south of the prospect area, crop out in N-striking vertically dipping linear belts overlying Precambrian basement.

Up to 4,000 feet of volcanic rocks of Late Cretaceous age disconformably overlie older rocks in the Dripping Spring Mountains (Willden, 1964). Andesitic flows and rhyodacitic-quartz latitic pyroclastic units cropping out in the Kearney quadrangle southwest of Kearney are considered correlative to the Williamson Canyon and Glory Hole volcanics respectively (Fig. 4). These volcanics are viewed here as extrusive equivalents of the Laramide intrusions noted prevading much of the Tortilla and Dripping Spring Mountains.

As generalized on the regional index map (Fig. 4) and detailed on our Kelvin geologic map (Fig. 2), Laramide intrusions include: 1) numerous large to small plutons of diorite, quartz diorite, granodiorite, and quartz monzonite, 2) small apophyses and comagnatic dike swarms of andesite, dacite, and rhyodacite, and 3) occasional pipes of intrusion breccia such as the one mapped immediately south of Riverside (Fig. 2). K-Ar data on these Laramide porphyries from the mapped and immediately surrounding area fall between a maximum of 74 and a minimum of 59 m.y.BP. Hydrothermal alteration believed

coeval to the dominant period of Cu-metallization at Ray and Christmas is placed at 65 and 62 m.y.BP respectively.

The oldest known Tertiary sedimentary deposit in the area is the Whitetail conglomerate. Pebbles, conglomerates, and boulders of Precambrian, Paleozoic, and Laramide ages, were laid down in local structural basins, and contain interbeds of tuff which date 32 m.y.BP (Oligocene). Overlying the Whitetail are several Tertiary units formerly assigned to the Gila conglomerate, which now include three formations: San Manuel (early Miocene), Big Dome (late Miocene), and Quiburis (Pliocene) as described by Krieger (1974). The moderately deformed San Manuel formation consists of alluvial, lacustrine, and playa deposits, the gently deformed Big Dome formation is alluvial, and the undeformed Quiburis formation consists of lake bed and alluvial facies. For simplicity and ease of compilation, sediments of the Big Dome and Quiburis were grouped into a single unit on Figures 2 and 4.

Quaternary accumulations composed of cobble, pebble, sand, and silt occur on pediments, flood plains, steep talus slopes, and fill stream channels throughout the mapped area. For convenience, these assorted deposits were not subdivided.

STRUCTURE-TECTONICS

Clusters of porphyry copper deposits often lie at or adjacent to the intersection of two or more premineral-intermineral regional tectonic elements. As indicated on Figure 5, the Kelvin-Ray area constitutes one such setting in that it occupies a common intersection formed by the following elements:

- The NW projection of the N55^oW trending Dos Cabezas-Ray discontinuity.
- The ENE-trending porphyry break extending through Ajo, Casa Crande, Florence, and Ray.
- 3. An en echelon volcanic arc of NNW trend sympathetic to the probable crest of the Laramide arc orogen of southwest Arizona.

It is not surprising then that these are the three directions mimicked in great detail by lower order elements mapped on Figures 2 and 4 including folds, faults, dike-vein swarms, and elongate aureoles of primary alteration-mineralization.

Tortilla Mountains Monocline: One major and structurally significant element delineated by the 1:62,500 compilation is the N to NNW-trending en echelon set of steeply dipping, overturned, or overturned-overturned ridges of metasedimentary (Yms), diabasic, and Paleozoic sedimentary rocks. The tops of beds forming these upright ridges invariably face east and are interpreted as partly denuded roots of a single monoclinal fold traceable throughout the length of the Tortilla Mountains and beyond to a point NW of Ray. As indicated on Figure 4, the steeply dipping east-facing monoclinal flexure is locally offset by NE to E-trending strike-slip faults or repeated by

low-angle gravity slide (decollement) surfaces (i.e., Ripsey Wash zone). Locally the stratigraphic succession within an individual ridge is repeated along high-angle faults striking sympathetic to the monoclinal axis (Cf. Sec. A"-A"', Riverside Monocline area). Krieger (1974) interpreted these high-angle normal faults as having formed as low-angle west-dipping thrust faults which were subsequently tilted during the development of the monocline to their present nearly vertical position.

Reconnaissance mapping throughout the Tortilla Mountains and detailed studies in the Kelvin area show the monocline as having formed after the Williamson volcanic (75-80 m.y.) eruptions but for the most part prior to the emplacement of numerous 72-59 m.y. plutons, porphyry dike swarms, and the Riverside breccia pipe. Although folding adjacent to the monocline continued during and after deposition of the Miocene San Manuel formation (Fig. 4, A"-A"'), we view this tilting as largely drag-related along the boundary separating the uplifted Tortilla Mountains block from the subsiding graben blocks forming the San Pedro rift.

Elongate Plutons, Dike Swarms, and Fault-Veins: Our regional structure-tectonic synthesis of Laramide volcanism, plutonism, and metallization in the American Southwest demonstrates that most major porphyry copper deposits lie along ENE-trending porphyry breaks. Several of the better documented belts are indicated on Figure 4. Evidence of this regional structural control is present on every scale of geologic mapping in the Kelvin-Ray-Tortilla Mountains area.

On the 1:62,500 scale map (Fig. 4), this grain is particularly apparent as evidenced by the numerous: 1) elongate plutons and apophyses of diorite, quartz diorite (71 m.y.), quartz monzonite (68 m.y.), and granodiorite (66 and 62 m.y.); 2) comagmatic porphyry dikes including dacite (71 m.y.), an assortment of rhyodacite (66 m.y.), quartz monzonite (63 m.y.), latite, aplite, and hornblende andesite; and 3) coeval sets of subvertical veins and fault-veins containing quartz, specularite, magnetite, chlorite, epidote, tourmaline, chryscolla, calcite with or without propylytic-phyllic alteration selvages. The inset strike rosette shown on Figure 2 summarizes the overall trend of 601 Laramide mesoscopic elements mapped throughout the Tortilla Mountains - including the Kelvin prospect. This rosette was constructed using 1000 ft. strike segments, averaging the bearing of each segment, grouping each segment into 100 class intervals, and plotting on a standard percentage strike frequency rosette. The marked preference of subvertical to vertical Laramide structures to strike E-W to ENE is quite apparent. Identical distributions are revealed by rosettes constructed using comparable data from the areas surrounding the Ray and Christmas porphyry copper deposits.

Smaller scale elements including individual mineralized joint sets, veinlets, and dikelets within these productive systems also mirror the more regional control. This is the case at Kelvin-Riverside in that our detailed mapping (Fig. 2) reveals a marked preference for most small-scale high-angle mineralized structures, dikes, and intrusion breccia masses to strike ENE sympathetic to the porphyry breaks delineated on Figure 5. The marked influence of this penetrative structural grain and its control over

the distribution of hydrothermal fluid flow is particularly evident in the geochemical dispersion and alteration maps of the Kelvin area as discussed later.

Previous work in numerous districts throughout the American Southwest demonstrates convincingly that most of the ENE-trending Laramide structure is regional tectonic in origin (Rehrig and Heidrick, 1972); however, the obvious enhancement in frequency of ENE-striking elements eastward across the Florence highlands and in particular as one crosses the hinge of the Tortilla monocline (Fig. 4) is no mere coincidence. This spatial congruency is suggestive of a cause and effect dependency between monoclinal flexuring and local wholesale N-NNW-directed extension. And since most SW porphyry systems occupy settings showing significant extensional tectonism, this indirectly provides us with some much needed insight concerning the regional control of ore localization at Ray; particularly, since to our knowledge no one has yet mentioned the possibility that Ray lies along or straddles the hinge of a Laramide monocline of regional porportions. This appears as an inescapable consequence of the regional tectonic overview provided by Figure 4.

Postmineral Gravity (Normal) Faults: Gravity induced tectonism runs rampant throughout the Basin and Range province of the western United States and the Kelvin-Ray area is no exception. Two styles of gravity (normal) faults are recognized in the mapped area and include: 1) relatively high-angle N-NW-striking faults associated with the blocking-out and rifting along the San Pedro drainage (Fig. 4), and 2) low-angle, depth flattening, N-NNW-striking faults associated with westward-directed gravity sliding away from the hinge of the Tortilla monocline (Fig. 2, Sec. A-A', B-B').

Rifting accompanied by subsidence along the composite San Pedro graben system commenced during Oligocene time, accelerated during the Miocene (San Manuel and Big Dome formations), and persisted through the Pliocene (Quiburis formation). East of Riverside, available regional gravity data suggest a minimum of 9,000 feet of Late Tertiary conglomerate, sedimentary breccia, megaslide blocks, sand and silt within the San Pedro graben system. Blocking out of this N-NNW-trending catchment basin was facilitated and probably controlled in large part by the upright limb of the NNW-trending Tortilla monocline (Fig. 4). Termination of the rift on the north appears coincident with the projected trace of the N55°W trending Dos Cabezas discontinuity shown schematically on Figure 5, and mimicked in more detail by the regional geology on Figure 4.

In the Kelvin-Ray-Tortilla Mountains, gravity slides (decollement or detachments) occur as concave-upward (cycloidal) surfaces. They separate younger metasedimentary and sedimentary hangingwall rocks from older Precambrian footwall terrains (Figs. 2 and 3). The Ripsey Wash decollement is believed representative in that: 1) detached young hangingwall sediments dip moderately in the opposite direction from the glide surface, 2) imbricate shingling across the entire zone produces dip separations totalling several thousands of feet (Fig. 3, A-A'), 3) dips of younger sedimentary units steepen progressively within higher cycloidal slices, and 4) numerous N-NNW-trending antithetic normal faults were activated

after the Ripsey Wash decollement was emplaced. Details concerning the orientation of the transport vector (dip-slip) for these slides remain enigmatic but work continues in this regard.

ORE DEPOSITS

Subvertical ENE-trending quartz-pyrite veins and veinlets containing anomalous Cu, Mo, Pb, Ag, and Au associated with sericite, chlorite, magnetite, specularite, epidote, tourmaline, and/or calcite transect Ruin granite, diabase sills, Laramide dikes, and are associated with intrusive and crackle breccias along the axis of the N-trending, east facing, Riverside monocline. The southeastern edge of the mineralized area is inturn cut by a complex decollement involving mineralized Ruin granite, diabase, Tortilla quartz diorite, and Gila conglomerate (see Figs. 2 and 3 for details). Axial faults, cataclastic deformation of the Ruin and diabase, and the variable attitudes of the diabase sills define the axis of the monocline.

Mineralization

Mineralization is confined to the ENE to ESE-trending veins, veinlets, and coated joints but is often sparsely disseminated throughout the alteration selvages surrounding the mineralized joints. The strongest and most persistent mineralization occurs along vein and veinlet swarms (up to 80 veinlets per 10 foot traverse) at the boundary between sections 12 and 13 and south of the intramineral Diamond Hill fault. A thin discontinuous chalcocite blanket that was developed in post-decollement time is present in this area. On the outer margins of the strong mineralized zone (at Sultana-Arizona and adjacent to Ripsey Wash) mineralization is confined to relatively thick throughgoing veins containing pyrite, chalcopyrite, galena, and molybdenite or their oxidized products. Although mineralization appears to transect lithologic boundaries, the diabase appears to be a chemical and physical barrier to the migration of the hydrothermal solution and copper appears to be more highly concentrated in diabase units.

Alteration

The area of intense alteration is centrosymmetric to the area of strongest mineralization, concentrically zoned, elongate ENE-WSW, and grades from intense phyllic outward to a mixed phyllic and propylytic zone into strong to weak propylytic alteration. The limit of each zone is outlined on Figure 10.

The area of pervasive phyllic alteration is recognized by thorough wall-rock sericitization-silicification and appears spatially restricted to areas of strong pyritization. Within the phyllic zone the iron phases are pyrite and/or magnetite (common in diabase units) and all feldspars and mafic silicates are replaced by sericite - except in the diabase where chlorite is a stable phase.

The mixed phyllic-propylytic alteration zone surrounds the phyllic zone and is defined by coexisting sericite and chlorite - with or without epidote or tourmaline but not both. Stable iron phases are pyrite, magnetite, and specularite.

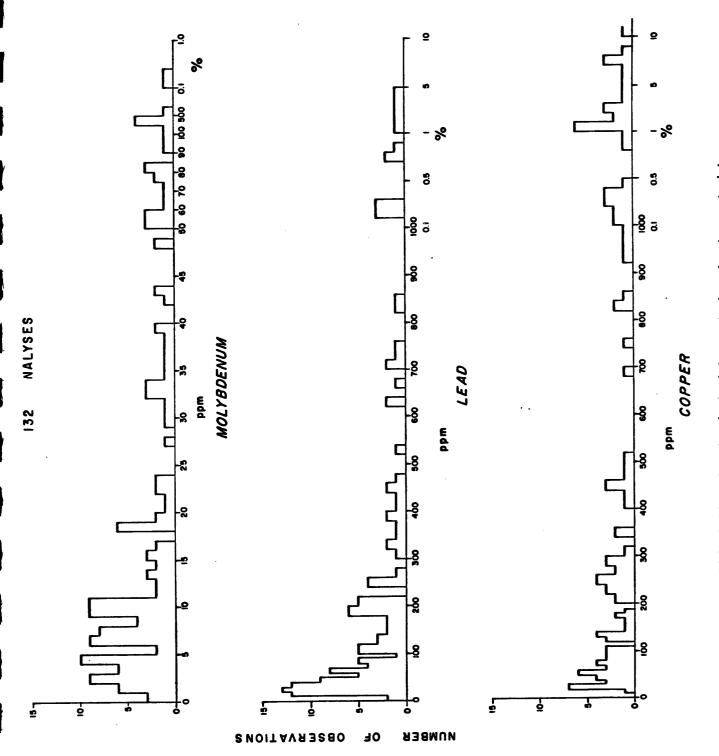
The propylytic alteration zone is widespread, decreases gradually outward from the phyllic center, and is defined by coexisting epidote and tourmaline with calcite and chalcedonic quartz veins. Specularite and pyrite are the prevalent iron phases.

<u>Geochemistry</u>

One hundred thirty two rock-chip samples of vein, veinlet, mineralized dikes and breccias and their alteration selvages were collected from the mapped area and analyzed for Cu, Mo, Pb, Au, and Ag. These are routinely the least mobile metals occurring in an oxidized porphyry copper environment. Vein sampling was deemed necessary because 95% of the mineralization at Kelvin is confined to these structures and their respective alteration selvages.

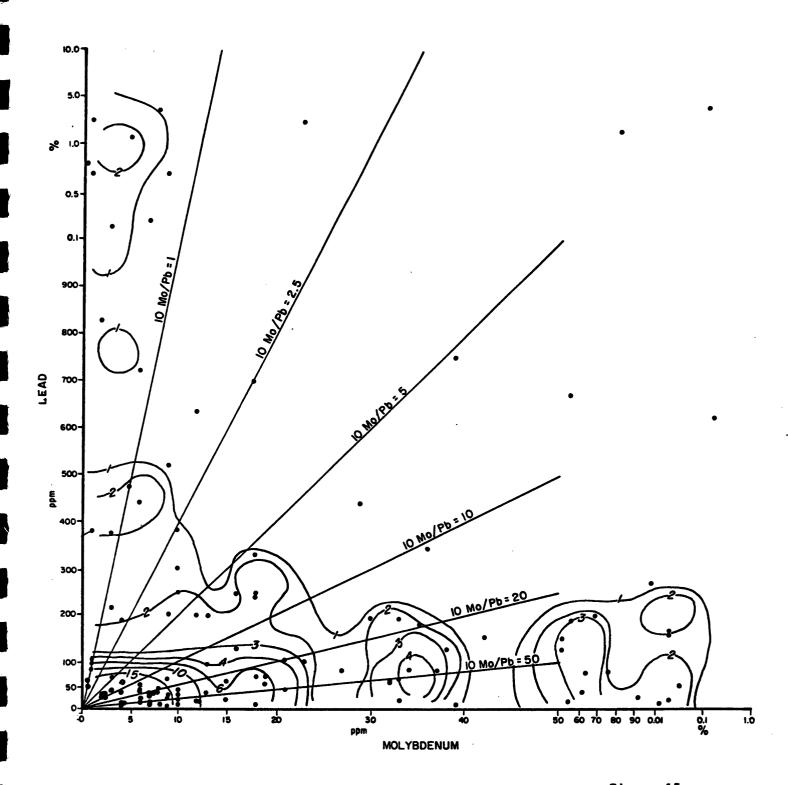
The geochemical analysis were plotted as histograms (see Fig. 11) and a background concentration established for each metal. As shown on the histogram, the distribution peaks for each metal is semi-logarithmic and these peaks provide the basis for the contour intervals used on each geochemical distribution map. The data for each metal were plotted in plan (Figs. 12, 13, 14, and 17) and contoured using the previously established contour interval.

<u>Copper</u>: Above-background Cu values ranging from 300ppm to 10% are correlative with the phyllic and mixed phyllic-propylytic alteration zone (Fig. 12) and with diabasic units - especially in the Sultana-Arizona area - again illustrating the strong lithologic control over copper deposition exerted by the diabase.


Molybdenum: Anomalous Mo values ranging from 20 to 100ppm are concentrated within the phyllic zone (Fig. 13), associated with copper mineralization at Sultana-Arizona, in the crackle breccia to the south, and along an ENE-trending vein system to the north. The moly zone is strongly aligned ENE parallel to the strike of the strong mineralization structures and highest in the area of pervasive phyllic alteration.

<u>Lead</u>: High Pb values ranging from 25ppm to 5% are present along the southern margin and outside of the strong phyllic zone (Fig. 14). The distribution of Pb is assymetric about the ENE alteration-mineralization axis - high on the south and low to the north.

Mo/Pb Ratios: The ratio between the Mo and the Pb was calculated, plotted graphically in Figure 15 and contoured in plan on Figure 16 in order to compare the distribution of the high-temperature Mo with the lower temperature Pb. As shown in Figure 16, the greater than 1 Mo/Pb rato contours is clearly coincident with the more intense alteration zones (phyllic and mixed phyllic-propylytic) and highly aligned ENE.


Gold-Silver: The combined Au and Ag values, shown in Figure 17, are correlative in part with large through-going vein structures containing Cu or Pb.

In general, the maximum geochemical values conform to their respective alteration zones; Mo in phyllic, Cu in phyllic or mixed propylytic-phyllic and in the diabase, Pb in propylytic and mixed zone, and Au and Ag scattered throughout.

HISTOGRAMS: Geochemical data analysis of vein material assays

FIGURE

Contours on 1,2,3,6,10,15 times the expected value in 10% of the area.

Figure 15

MOLYBDENUM/LEAD RATIO
KELVIN PROJECT
PINAL COUNTY, ARIZONA

Geophysics

A three line complex resistivity (CR) survey and two reconnaissance ground magnetometer surveys were completed in the Kelvin area. The CR survey, 2 N-S and 1 E-W lines (Fig. 18), was completed by Zonge Engineering and Research Organization and the results tabulated on Table II and shown in plan on Figures 18 through 23. Zonge's report is given in Appendix IV. The magnetometer survey data, consisting of 2 irregular-spaced surveys by Kerr-McGee and Occidental, were normalized then plotted in plan and contoured (Fig. 24).

<u>Complex Resistivity</u>: The CR data, resistivity, polarization (phase angles), and spectra correlate quite well with the mapped alteration zones and with known structures. The following correlations are apparent for each alteration zone, and for the unaltered Gila conglomerate:

Alteration	Resistivity (ohm-meter)	<u>Polarization</u> (phase shift)	Spectral Type
Phyllic	200-300	20-30	aB
Mixed	300-500	15-20	aB
Propylytic	150-200	12-15	ВС
Gila congl.	100	12	Сс

Where: aB is characteristic of mixed pyrite-chalcopyrite with strong alteration

B is characteristic of weak pyrite with chlorite

Cc is characteristic of weak to barren sulfide with clay-chlorite alteration

The CR data indicate continuity of sulfide mineralization with increasing depth in the phyllic and mixed alteration zones. This is in marked disagreement with the Kerr-McGee working model which shows flat-faults bottoming mineralization (Figs. 7 and 8). Instead, as illustrated by the distribution of the resistivity and phase angles (Figs. 18-23), the high-resistivity (300 ohm-meters) - high polarization (20 milliradians) boundary migrates to the south and to the west with increasing depth delineating the trace of the Jeep Trail-Ripsey Wash decollement and the Diamond Hill fault where high resistivity-low polarizing rocks underly the intensly broken and weakly mineralized units found at the surface.

Magnetics: The magnetometer data (Fig. 24) correlate extremely well with lithology and structure; highs and high-low pairs occur over diabase and/or magnetite veins with low flat-relief responses present in weakly mineralized Ruin granite. Structures, such as the fault occupying the N-S wash immediately west of the Riverside breccia pipe and the Diamond Hill fault, are characterized by sharp discontinuities in the data.

for willan

REPORT ON THE GEOLOGY, GEOPHYSICS, AND EXPLORATION

POTENTIAL OF THE KELVIN (RIVERSIDE) PORPHYRY PROSPECT

PINAL COUNTY, ARIZONA WITH RECOMMENDATIONS

Tucson Area Office

Joe Wilkins
Tom L. Heidrick
Greg Wessel

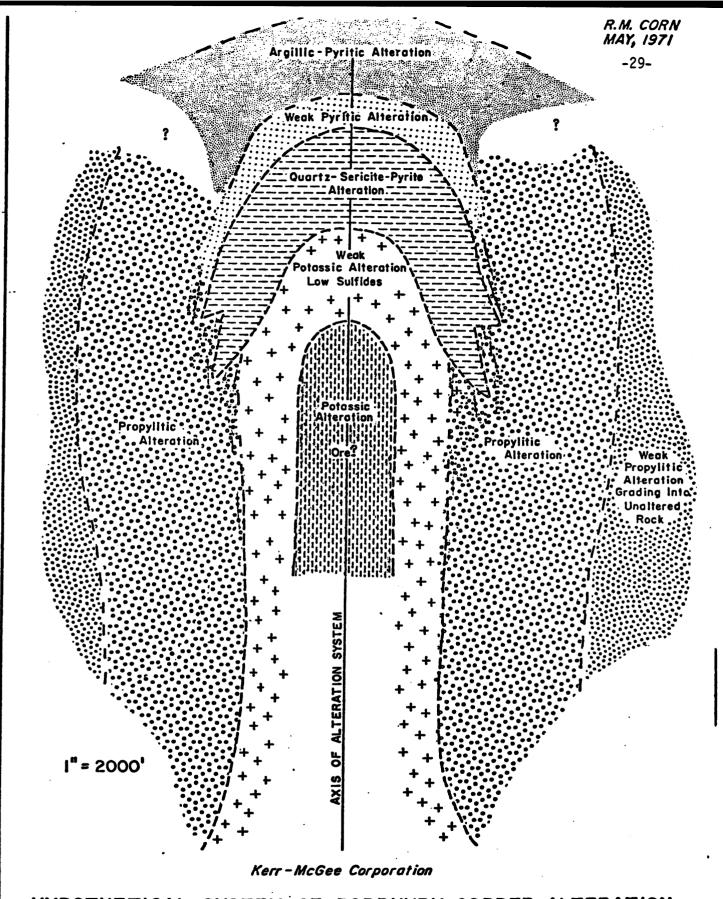
November, 1977

Table II. Complex Resistivity Survey Results, Kelvin Project, Pinal Co., Arizona

LINE NO.		RESISTIVITY	VITY		8	POLARIZATION	TION			SPEC	SPECTRAL DATA	
	Location	Magnitude Ohm-meter	Location Magnitude Alteration Contact Ohm-meter Type Location		Location	Magni	tude E: PFE Si	Location Magnitude Estimated Phase PFE Sulfides %	Location Type	n Type	Inter Sulfides	Interpretation Sulfides Alteration
Line 1	5-7	200	Phyllic	2	9-9	> 25 > 3.5	3. 5	3-5	4-6	aB	Ру-Сру	Phyllic
•	2-50	> 300	Phyllic	ည	2-5	25	25 3.0	2-3	2-4	à.B	Py-Cpy	Phyllic
	1-58	<200	Prop	n=2	4-1	10	1.5	-	4-1	æ	wk Py	Propylytic
	-1-20	200	Prop	2				-	-	ပ္ပ	Barren	Chloritic
Line 2	5-8	300	Phyllic	9	4-8	25	25 3.0	2-3	3-7	ab	Ру-Сру	Phyllic
	2-6D	> 300	Phyllic	2	3-6	25	3.0	3-5			•	1
	1-65	<200	Prop	4-6	1-58	< 15	2.0	-	1-6	Bb	wk Py	Propylytic
	ω	<200	٠.	ω	ω	20	2.5	2-3	œ	ab-B	Py-Cpy(co	Py-Cpy(cc) Phyllic
					•							
Line 3	-1-2	<100	Gila Cg	2	-1-2	12	<2	0	-1-2	p-c	barren	Gila Congl
	2-58	150	Prop	ഹ	2-5	12	< 5	1	2-5	Bb	wk Py	Chloritic
	3-50	300	٠.	2	2-5	15	2	1-2	4-6	B-ab	Pyrite	wk Phyllic
	2-8	> 300	Phyllic		2-8	> 20	۳ ۸	2-3		Bb-ab	Py-Cpy	wk Phyllic
	Jipdi ()	D indicates deen										

D indicates deep S indicates shallow

CONCLUSIONS


Regional structure-tectonic compilations-analyses (Figs. 4 and 5), detailed geologic mapping (Figs. 2 and 3), alteration-mineralization studies (Figs. 10 and 11), geochemical dispersion patterns (Figs. 12-17), coupled with complex resistivity (Figs. 18-23) and ground magnetometer (Fig. 24) data combine to delineate an upright although somewhat fragmented porphyry copper system in the SW2 of section 12, R13E, T4S, Pinal County, Arizona. The outcropping portion of the system considered herein lies immediately SW of Riverside and south of Kelvin.

The delineated zone of intense phyllic plus mixed phyllic-propylytic alteration (Fig. 10) when considered in concert with the dispersion of molybdenum (Fig. 13) and the Mo X 10 / Pb ratio (Fig. 16) within rocks of the leached cap, define a potentially productive porphyry system with an ENE-trending semi-major axis of +5000 feet and semi-minor axis of +3000 feet (1.2 million tons/vertical foot). Complex resistivity Line 2 (Figs. 18-23) suggest that pyrite (py) + chalcopyrite (cp) metallization persists continuously to depths of 2500 feet at least. The CR signatures are not clearly diagnostic and estimates of cp/py ratios remain indeterminant.

As indicated by our regional geologic compilation and cross section (Fig. 4, A"-A"'), the Kelvin (Riverside) alteration-mineralization system is housed in the down-faulted east-dipping homoclinal limb of the Tortilla (Riverside) monocline. If this interpretation is correct, the system delineated is essentially upright and it seems unlikely that a west-dipping flat fault floors the system. The sub-horizontal attitude of the weak oxidized chalcocite blanket established by shallow OxyMin drilling likewise indicates an absence of west-dipping cycloidal faulting since oxidation-enrichment.

Based on data acquired during exploration-development of the San Manuel-Kalamazoo deposit, Lowell and Guilbert (1970) postulated that porphyry copper deposits normally exhibit concentric patterns of alteration and mineralization. Alteration types recognized at Kelvin (Riverside) are identical in most respects as those encountered at San Manuel. The ore zone at San Manuel-Kalamazoo totals in excess of one billion tons, occurs as an open cyclindrical zone averaging 600 feet in wall thickness, and lies at the interface between a central zone of potassic alteration and the surrounding zone of phyllic alteration. The outer diameter of the phyllic-ore-potassicore-phyllic alteration-mineralization system is just over one mile. More recent observations, however, by Kerr-McGee at Red Mountain, Arizona and elsewhere by others, help define an important and common variant of the Lowell and Guilbert model. Figure 25 summarizes many of the more salient aspects of the "restricted phyllic envelope" model as envisioned by Russ Corn of Kerr-McGee - a model he believed potentially applicable at Kelvin-Riverside. The most important facet of this model lies in the possibility of our having the axial portion of the alteration-mineralization system occupied by ore-grade material completely incased within rocks showing only weak potassic alteration containing low total sulfides.

Accepting an upright hypothetical system similar to that shown on Figure 25, the available Kelvin geology, geochemistry, and geophysics appear

HYPOTHETICAL SYSTEM OF PORPHYRY COPPER ALTERATION

WITH RESTRICTED ENVELOPE OF QUARTZ-SERICITE-PYRITE MODELED AFTER RED MOUNTAIN IN SANTA CRUZ COUNTY

KELVIN AREA

PINAL COUNTY

ARIZONA

to fit quite well. As noted previously, the inhomogeneous distribution of mineralized joints, veins, and fault-veins in the mapped and sampled area (Fig. 2) produces a somewhat elliptical alteration-mineralization pattern in plan. Section A-A' (Fig. 3) bisects the area of most intense alteration-geochemical dispersion and is oriented parallel to the long dimension of the alteration ellipse. The hypothetical vertical axis of the ellipsoidal Kelvin alteration-mineralization cylinder, as defined by the common overlapping coincidence of intense mineralized fracturing, hydrothermal alteration, +50 ppm Mo mineralization, and +10 for the Mo X 10 / Pb ratio, lies at the common intersection of Sections A-A' and C-C' (Fig. 3). The geometrical consequences of the above proposed working model is summarized on cross section C-C' (Fig. 26). And if correct in principle, a vertical 2,500 foot drill hole collared at the common intersection of A-A' and C-C' might prove most interesting and rewarding. This is particularly true when one considers that the prospect:

- 1. Occupies a geologic setting knwon for its large protore tonnage (½-1 billion tons) containing 0.72% Cu and 0.02% Mo (i.e., Ray and San Manuel-Kalamazoo);
- 2. lies within an established mining area supporting a readily available work force;
- has a readily available supply of water and power as well as railroad facilities;
- 4. is only 14 rail miles from the ASARCO and Kennecott smelters at Hayden (Fig. 1);
- rests in an area of modest relief that is readily accessible by improved secondary and primary roads; and
- underlies available patented mining claims held by M.S. and Lucy Wilkins and unpatented claims controlled by the Kerr-McGee Corporation.

Should the Kelvin core shown schematically on Figure 26 prove productive, these assorted plusses would ultimately contribute significantly to the 1990 economics of block caving, milling, and smelting and they should be viewed in terms of copper ore equivalency at the onset of exploration.

In summary, the delineated protore porphyry system recognized at Kelvin (Riverside) has many geologic, economic, and land status characteristics which make the prospect very attractive even during this period of adverse metal prices. Alteration-mineralization intensity and continuity plus the fracture frequency and intensity exposed over the buried target suggest drilling depths of $\pm 2,500$ feet. This inferred depth to potential ore is at best a crude estimate since the degree of alteration-mineralization telescoping beneath the flat diabase sill remains unknown. Geochemical work within and beneath the exposed upturned limb of the monocline in the Arizona-Sultana mine area (Fig. 12) and the localization of copper mineralization in similar diabasic units at Ray, clearly demonstrate the effectiveness of the diabase as a receptive-reactive host for Cu-metallization and a barrier to Cu-bearing hydrothermal fluid flow. These data alone would tend to suggest that similar damming might be the rule beneath the diabase sill inferred to underlie the target area. If correct, the hypothetical bullet-shaped potassic core-ore zone might be somewhat mushroomed in transverse section (C-C', Fig. 3) and an oblate spheroid in longitudinal section (A-A', Fig. 3) - a geometry ideally suited for optimizing an underground block caving operation.

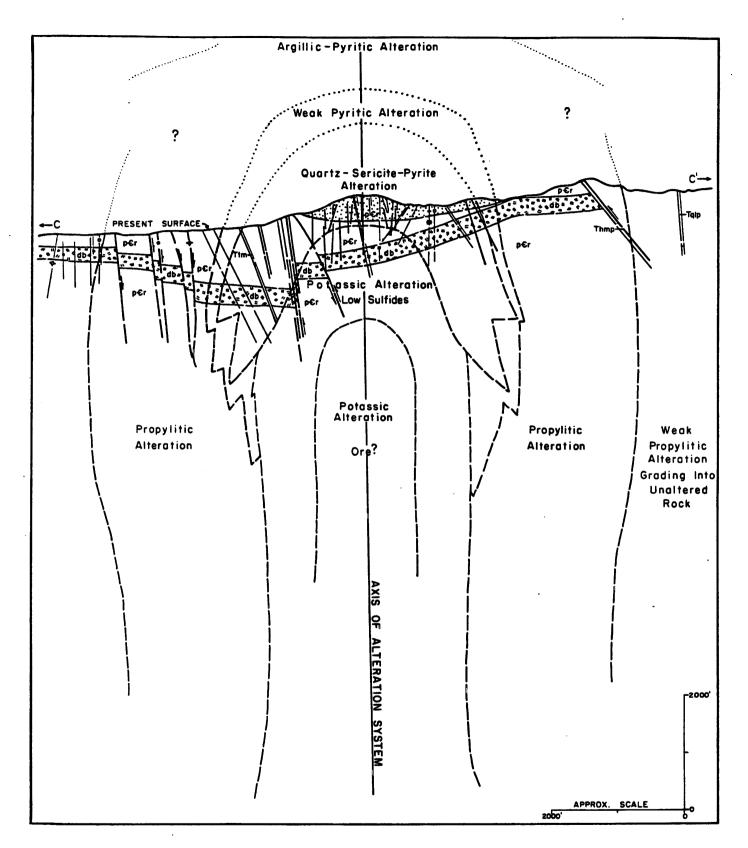
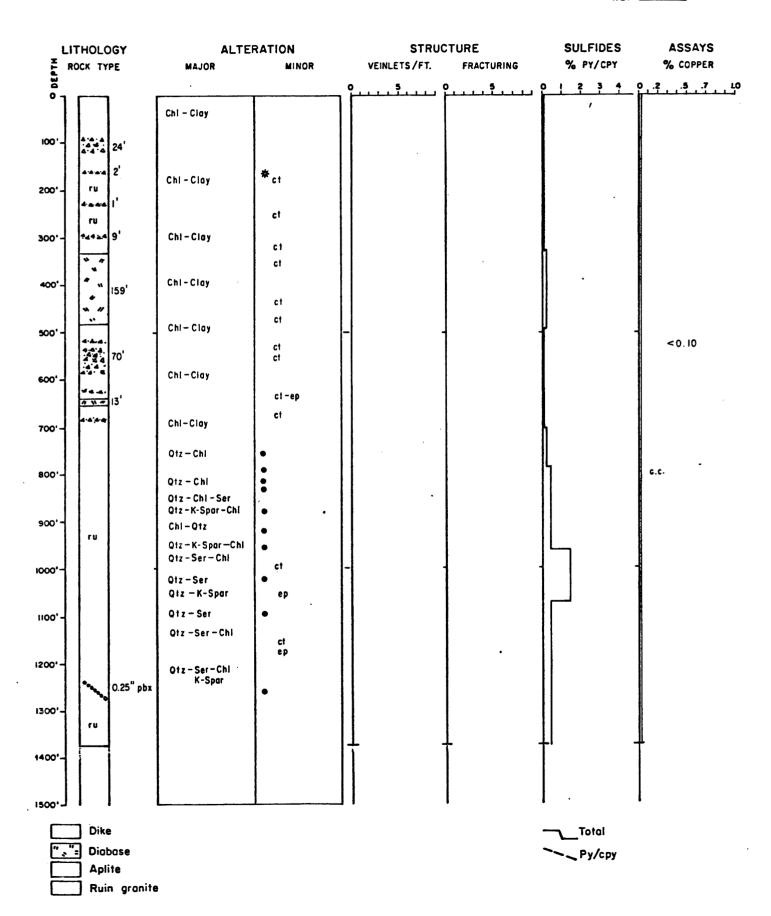


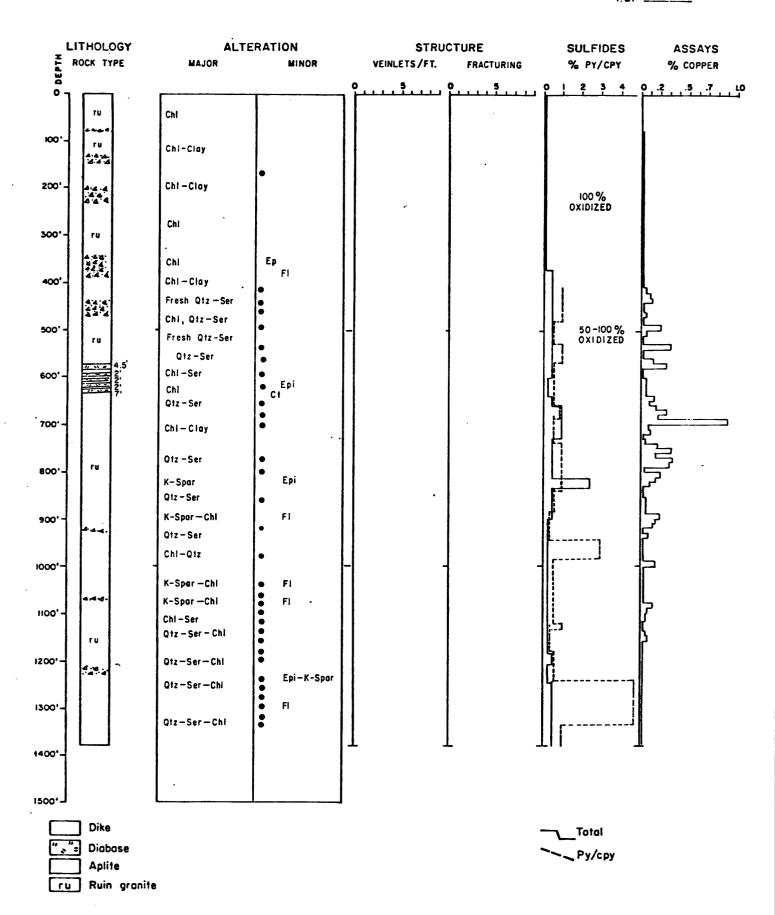
Figure 26. Conceptual model of the restricted phyllic alteration model as applied to the Kelvin porphyry prospect, along a portion of cross section C-C' (Fig. 3). View looks N70°E parallel to the long dimension of the intense structure-alteration-mineralization ellipse.

RECOMMENDATIONS

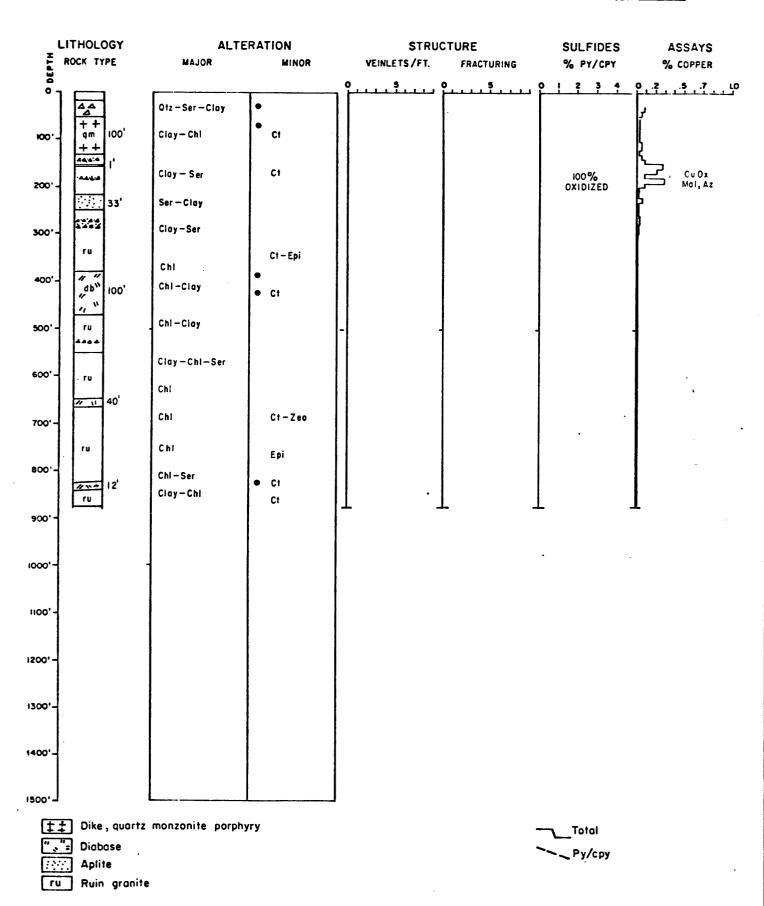
The time frame for acquiring, drilling, delineating, and developing the Kelvin porphyry Cu-Mo deposit would place Gulf in the ranks of copper producer in the early 1990's. And if the past "ups and downs" of the copper mineral industry is any indication of the future, a Kelvin-type high-grade porphyry play suited to underground development will not only be economically viable but an actively sought out resource in the 1990's. It is within this context that we recommend that:

- 1. Gulf continue to "push" for reasonable joint venture terms with Kerr-McGee Resources Corporation covering their 4,200 acre claim group shown on Figure 6. An outline of initial terms proposed by Kerr-McGee were conveyed to W.S. Cavender from E.E. Jones (Kerr-McGee's Director of Mineral Exploration) in September, 1977. Negotiations continue at present and suitable terms appear eminent.
- We contact M.S. and Lucy Wilkins, Star Ranch, Rt. 1, Box 140, Morgan, Texas (76671). The Tucson office contacted them on October 18, 1977 concerning the availability of their 27 patented lode mining claims (523.47 acres) shown on Figure 6. They indicated that the property was available and showed an interest in pursuing talks with GMRC. No follow-up work insued but it seems in order at this time.
- 3. The land department complete the detailed land status check requested on November 3, 1977 (Heidrick-Wilkins/Pickard). Preliminary phone conversations with the Albuquerque office confirm our earlier preliminary findings summarized on our land status map (Fig. 6). The Wilkins' patented claims are as indicated, as are the Kerr-McGee claims; however, additional information is needed concerning the small unstaked fractions overlying parts of the hypothetical ore zone and the apparently open ground immediately to the north of the Wilkins' property. If open ground exists south of the Gila River and within section 12, R13E, T4S as shown on Figure 6, it should be staked providing recommendations 1 and 2 (above) are feasible.
- 4. The Tucson office complete additional areal mapping and sampling in order to fully evaluate the mineral potential of the entire Kerr-McGee claim block as well as the superjacent holdings of Cities Service (Grayback claims, south and west of the Keri group, Fig. 6). Productive porphyry Cu-Mo deposits of the American Southwest commonly occur in clusters, and additional systems parasitic to the Kelvin play may exist along with other blind occurences caught up in the Ripsey Wash decollement. This suggested work is timely since Cities terminated copper exploration during 1977; and the Grayback data will almost certainly come available to GMRC early in 1978. These areal studies would clearly contribute to our evaluation of their rumored "weak potassic-low total sulfide intercepts lying beneath a flat westward dipping fault".

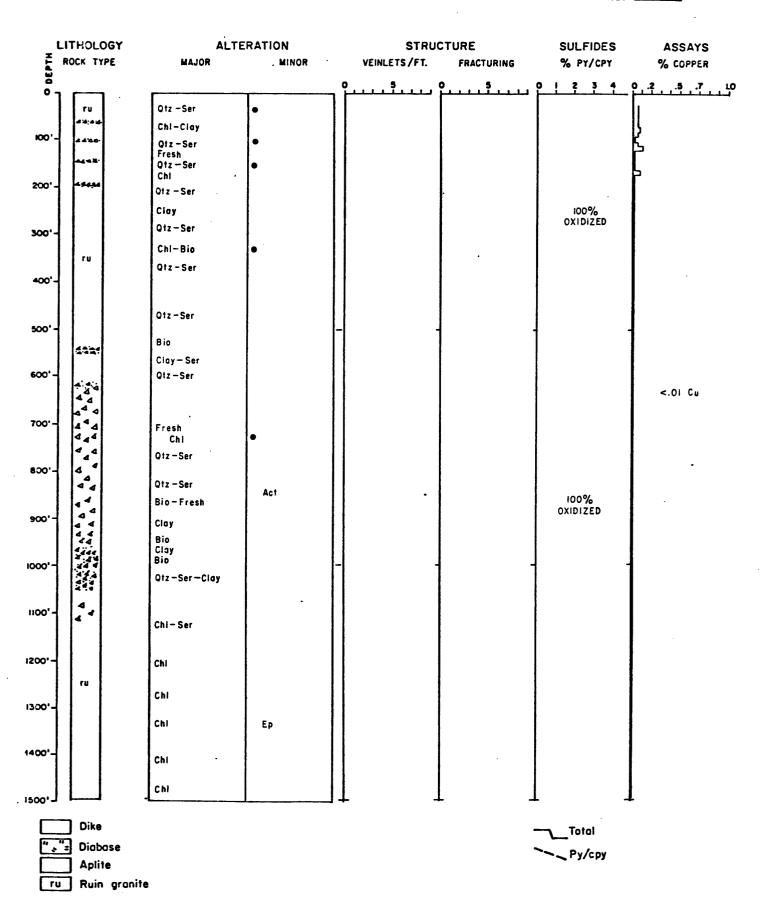

APPENDIX I

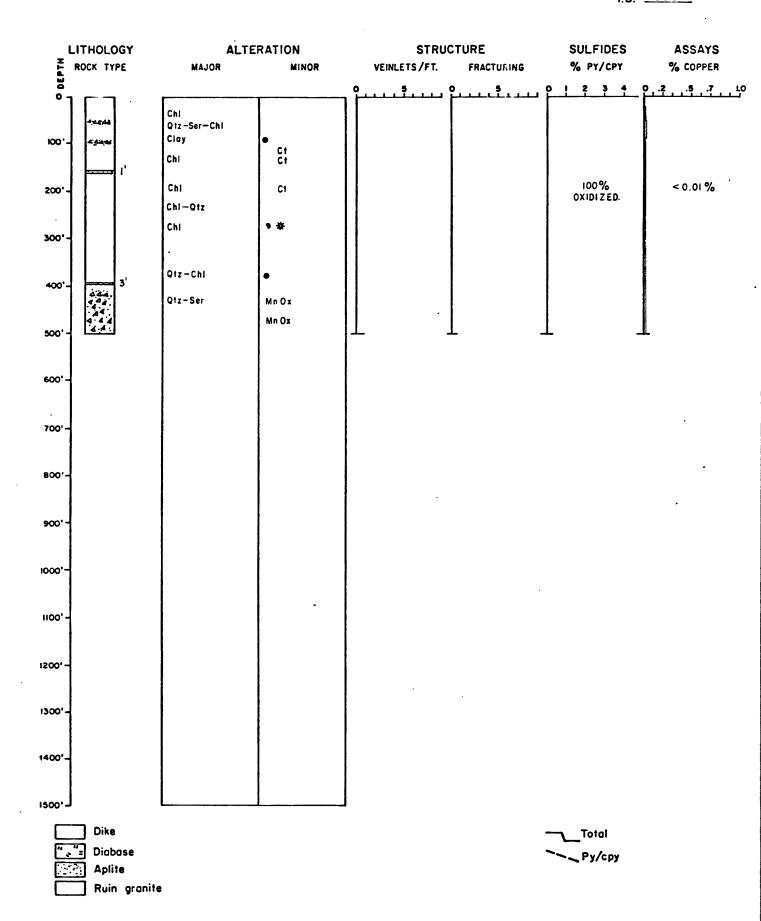

KERR-MCGEE DRILL LOG
SUMMARIES FOR K-1 THROUGH K-8

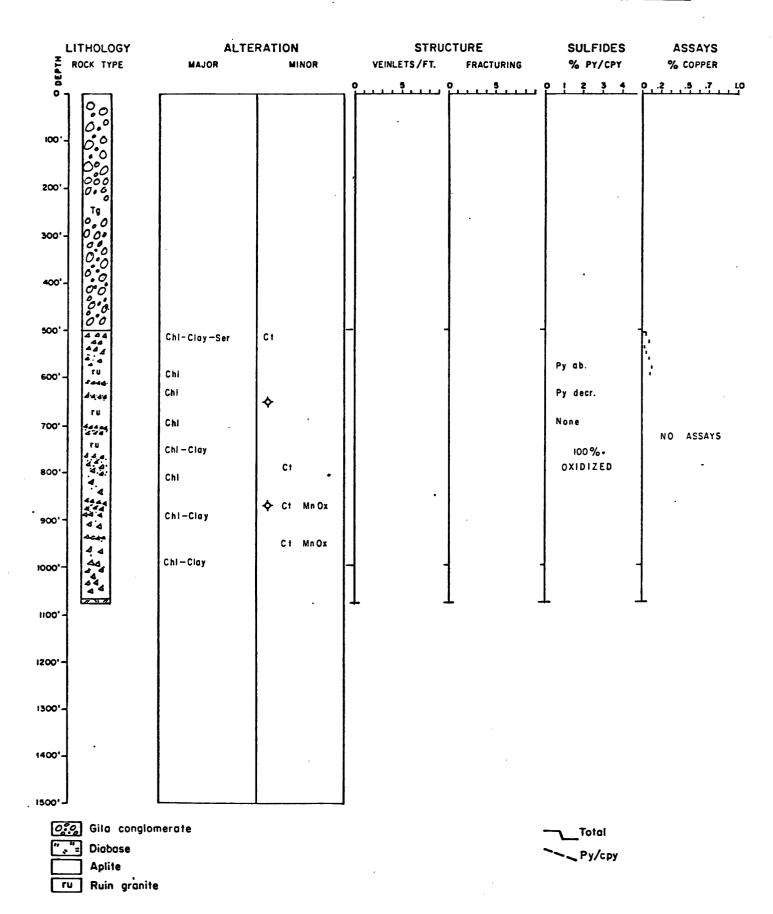
DDH-<u>K-I</u> T.D. <u>1500'</u>

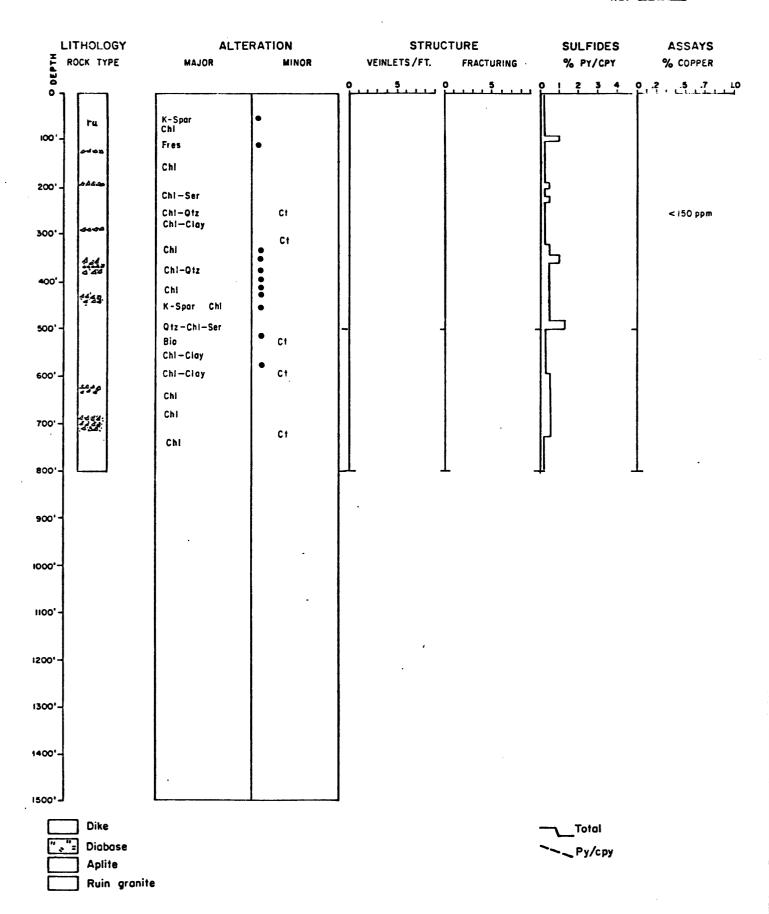


DDH- K-2 T.D. 1377




DDH - <u>K-4</u> T.D. <u>875</u>


DDH-<u>K-5</u> T.D. <u>1497</u>


DDH-<u>K-6</u> T.D. 500'

DDH-<u>K-7</u> T.D. <u>1077'</u>

DDH-_K-8 T.D. 802

APPENDIX II

MINING CLAIMS FOR KELVIN AREA

- a. Kennecott Copper Corp.
- b. Rosa Lee (R.R. Deen)
- c. Other

APPENDIX IIa

KENNECOTT COPPER CORP. MINING CLAIMS Riverside Mining District Pinal County, Arizona

ERMAN Claim Group

LIVIAN CTATIII GLOUP			
<u>Claim</u>	Book Docket	Lo	<u>ocation</u>
ERMAN 1 2	537 209 210	1500'S, 3500'W 2100'S, 3500'W	Common Corner Secs. 5, 6, 7, & 8 T4S, R14E
3	211	2700'S, 3500'W	H
4	212	2700'S, 2000'	· ·
5	213	3300'S, 3500'W	ii
0	214	3600'S, 2600'W	
5 6 7 8 9	215	3600'S, 2000'W	" (I
8	216	3600'S, 1400'W	"
	217	4200'S, 3600'W	
10	218	4200'S, 3000'W	
11	219	4900'S, 2000'W	II .
12	220	300'S, 2200'W	Common Corner Secs. 7, 8, 17, & 18
13	221	900'S, 2200'W	T4S, R14E
14	222	1200'S, 1600'W	H .
15	223	2100'S, 2200'W	II .
16	224	2700'S, 2200'W	II .
17	225	300'E	West ¼ corner, Sec. 18, T4S, R14E
18	226	900'E	II
19	227	1500'E	u .
20	228	2100'E	n
21	229	2700'E	II .
22	230	3300'E	. "
23	231	3900'E	n
24	232	2700'E	North of Common Corner Secs. 17, 18,
25 25	233	2100'E	19, & 20, T4S, R14E
26	234	1500'E	H
27	235	900'N	II .
28	236	300 'N	U
29	237	150'W	¼ Sec. Corner, Secs 17 & 18, T4S, R14E
30	542 378	50'S, 1384'E	West & Corner Sec. 18, T4S, R14E
31	379	1150'S, 3500'W	Common Corner Secs. 5,6,7, & 8, T4S, R14E

ANNUAL ASSESSMENT WORK:

	<u>Book</u>	<u>Page</u>	Work Filed
1977	880	773	Deepened DDH 1012 1640' to 1850'
1976	834	716	Deepened DDH 1012 1270' to 1640'
1975	794	881	•

Affidavit filed to cover ERMAN 1-31 and River 4-9, 13-18, and 22-27 claims.

River Claim Group July 17, 1972 Claim Book Docket Location River 1 673 385 1400'S, 295'E NW Corner Section 13, T14S, R13E 2 1400'S, 386 885'E 1400'S, 1475'E 3 388 1400'S, 2065'E 4 389 5 390 1400'S, 2655'E 6 7 391 1400'S, 3245'E 392 1400'S, 3835'E 1400'S, 4425'E 8 393 9 394 1400'S, 5015'E 1500'S, 10 Dropped 1976 295'E 11 Dropped 1976 1500'S, 885'E 12 1500'S, 1475'E Dropped 1976 1500'S, 2065'E 13 673 398 14 399 1500'S, 2655'E 15 400 1500'S, 3245'E 1500'S, 3835'E 1500'S, 4425'E 1500'S, 5015'E 16 401 17 402 18 403 22 404 4300'S, 2065'E 23 405 4300'S, 2655'E 24 406 4300'S, 3245'E 25 4300'S, 3835'E 407

4300'S, 4425'E

4300'S, 5015'E

26

27

408

409

APPENDIX IIb

ROSA LEE CLAIM GROUP RIVERSIDE MINING DISTRICT Pinal County, Arizona

Ownership:

Ronald R. Deen Star Route Box 128 Riverside, Arizona (602) 363-5638

Claim Name	Date	Book De	ocket	Location
Rosa Lee 2	4-3-62	323	591	9000'SE of Kelvin. Bound on S by Sec 13, on E by R.L.#4 in Sec 7, on W by Sec 12 (100'E-1400'W)
Rosa Lee 4	4-3-62	323	592	9500'SE of Kelvin. Bound on S by Sec 18, on N by St.Karl No.O and contact, on E by R.L.#6, on W by R.L.#2 (100'W-1400'E)
Rosa Lee 1C	5-16-62	331	45	5680'SE of Kelvin. Bound on W by Sec 12, T4S, R13E, on E by R.L.#2C, on S by R.L.#1D (Sec 18, 4S 14E), on N by St. Karl, located in Sec 17, T4S R14E (60'S-1440'N)
Rosa Lee 1D	5-16-62	331	46	5740'SE of Kelvin. Bound on W by Sec 13, T4S R13E, on E by R.L.#2D, on S by R.L.#1E, on N by R.L.#1C, located in sec 18, T4S R14E (60'N-1440'S
Rosa Lee 3D	6-1-62	331	53	5140'SE of Kelvin. Bound on W by R.L.#2D, on E by R.L.#4D, on S by R.L.#3E, on N by R.L.#3C (Sec 7 T4S R14E), located in Sec 18 T4S R14E (80'N-1420'S)
Rosa Lee 2D	6-1-62	331	54	5940'SE of Kelvin. Bound on W by R.L.#1D, on E by R.L.#3D, on S by R.L.#2E, on N by R.L.#2C, in Sec 18, T4S R14E (150'N-1350'S)
		RI	VERSIDE CLA	AIM GROUP
Riverside 9	7-25-68	543	609	Bound on W by River #12, on N by Riverside, in Sec 6, T4S R14E
Riverside 10	7-25-68	543	610	Bound on W by River #11, in Sec 6
Riverside 11	7-25-68	543	611	3300'S Common corner Sec 1,6,31,& 36-T3S R13E

3900'S

4500'S

612

613

Riverside 12 7-25-68 543

Riverside 13 7-25-68 543

APPENDIX IIc

OTHER MINING CLAIMS RIVERSIDE MINING DISTRICT Pinal County, Arizona

Claimant: James Gaylor, Universal Copper Company, Tucson Arizona

Claim Names	Book	Docket	Date	Location
Alice 1-6	,?	?	?	probably Troy district
Gaylor 1-16	669	361	4-11-72	?
Gaylor 18-26				?
Jim 1-10	669	351	4-11-72	?
Kid 1-16	987	881	6-1-75	?
Kid 18-26	987	897	6-1-75	?

1977 assessment filed Book 879 page 991

<u>Claim Name</u>	<u>Claimant</u>	1977 Assessment Work
Dan	Albert Smith	Book 832 Page 268
Sun Goddess	Laberta Estes	Book 871 Page 559
Tipperary 1-13	J.P. Vroman	Book 837 Page 922

APPENDIX III

GEOCHEMICAL ASSAYS

By John D. Ghilland

-0.1

-0.1

-1

Parry D. Willard

475

95

5

· 1

10

20

20

21

	2		-
Page	_	of	

					L age
Semple No.	Cu ppm	Pb ppm	Mo ppm	Ag pom	Au ppm
AZKE 22	45	. 20	3	-1	-0.1
23	145	375	3	-1	-0.1
24	70	30	10	-1	-0.1
25	745	335	18	7	0.1
26	355	0.27%	1	4	0.5
27	35	35	7	-1	0.1
28	290	35	8	2	0.1
29	135	5	4	-1	-0.1
30	170	5	9	-1	0.1
31	65	25	2	-1	-0.1
32	0.10%	55	6	-1	-0.1
33	230	95	13	-1	-0.1
34	125	150	51	3	0.1
35	135	10	8	-1	-0.1
36	1.10%	10	39	3	-0.1
37	930	635	12	3	0.1
38	70	15	12	_1	-0.1
39	180	20	33	-1	-0.1
40	425	15	7	-1	-0.1
41	505	30	7	2	-0.1
42	50	15	53	-1	-0.1
43	260	40	66	1	-0.1
44	95	30	9	-1	-0.1
45	95	85	37	2	0.2
46	255	15	12	-1	-0.1
47	290	350	36	5	-0.1

ROBXY MOUNTAIN GEOGRAMICAL CORP.

itam • rend. Meval

TUCSON, AR

	Page	_3	of	
--	------	----	----	--

					_
Sample No.	Cu DDM	Pb ppm	Mo ppm	Ag ppm	Au pom
AZKE 48	0.12%	3.9%	8	+100 *	2.7
. 49	100	160	0.032%	2	-0.1
· 50	2.7%	4.2%	0.247%	+100*	21.7
51	135	180	35	. 8	-0.1
52	240	. 55	32	1 .	-0.1
53	55	. 20	10	· -1	-0.1
54	4.4%	520	9	16	0.6
5 5	0.32%	50	0.050%	5	-0.1
56	95	250	10	-1	-0.1
_. 57	85	10	4	–1	-0.1
58	250	10	7	-1	-0.1
59	450	65	3	4	-0.1
60	820	250	18	29	-0.1
61	7.4%	200	69	16	-0.1
62	980	25	. 4	-1	-0.1

*fire assay report to follow from Salt Lake City

By Kannyh Calland
Parry D. Willard

Sample No.	•	oz/ton Silver	0308 pbw
AZKE 48		4.34	
AZke 50		17. 91	0.12%

Client <u>Gulf Minerals Resources</u>	Date Aug 26, 19"	77 RMGC Job No. 77-51-24T
---------------------------------------	------------------	---------------------------

				Page _	2 of
Sample No.	Cu ppm	Pb ppm	Mo ppm	Au ppm	Ag ppm
KESP	50	20	15	-0.1	-1
AZKE 63	35	30	7	0.1	-1
64	20	15	. 6	-0.1	-1
65	45	25	92	-0.1	2
6 6	60	35	13	-0.1	-1
, 67	7.6%	65	33	0.2	-1
68	6.1%	40	8	0.2	24
69	5.4%	190	4	0.2	3
70	970	275	98	-0.1	2
71	10.8%	45	4	-0.1	24
72	2.12%	25	6	-0.1	2
73	7.5%	35	6	-0.1	' 2
74	1.22%	40	6	-0.1	15
. 75	0.24%	1.75%	82	-0.1	14
76	1.16%	305	10	-0.1	9
78	400	380	1 .	0.1	· 7
79	0.34%	2.25%	23	1.6	73
80	80	200	13	0.2	-1
81	85 0	625	0.12%	0.1	7
82	130	750	39	0.1	. 2
83	40	60	4	-0.1	1
84	175	40	3	-0.1	2
85	3.85%	165	210	-0.1	3
86	2.52%	80	27	0.1	8
					_

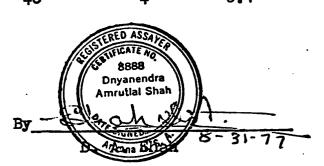
0.2

1.94%

Client Gulf Minerals Resources Date	Aug 26,	1977	_RMGC Job No.	77-51-24T
-------------------------------------	---------	------	---------------	-----------

Page ______ of ___

Sample No.	Cu ppm	Pb ppm	Mo ppm	Au ppm	Ag ppm
AZKE 88	0.13%	385	10	0.3	11
· 89	0.38%	1.46%	5	0.2	19
90	1.13%	0.20%	7	0.1	29
91	470	70	. 19	-0.1	3
92	8.8%	100	23	0.1	9
93	1.14%	130	38	0.1	.4
94	165	40	10	0.2	1
95	940	65	9	-0.1	4
96	455	250	16	0.1	21
9 7	345	80	75	-0.1	8
98	830	75	63	0.4	2
9 9	0.19%	70	18	0.5	11


By Lanus W. C. Willard
Parry D. Willard

lient <u>Gulf Minerals Resources</u>	_ DateAug_31,_1977	RMGC Job No. 77-52-7T
--------------------------------------	--------------------	-----------------------

Page	2	of
------	---	----

Sample No.	Cu ppm	Pb ppm	Mo ppm	Au ppm	Ag ppm
AZKE 100	205	0.28%	84	-0.1	. 5
101	270	0.17%	10	0.1	15
102	25	110	43	-0.1	1
103	20	35	. 4	-0.1	-1
104	215	0.18%	2	-0.1	4
105	, 50	65	2	-0.1	-1
106	100	855	71	10.3	8
107	100	400	32	-0.1	13
108	25.	80	6	-0.1	-1
109	685	330	9.	-0.1	10
110	1.18%	110	2 2	-0.1	17
111	440	45	7	-0.1	-1
112	65	30	48	-0.1	-1
113	120	30	14	-0.1	-1
114	125	40	4	-0.1	-1

Client	· G	ulf	Hineral	Resources	Co Date_	Sept	30 ,	1977	RMGC Job	No	77-54-14
--------	-----	-----	---------	-----------	----------	------	-------------	------	----------	----	----------

					Pagec
Sample No.	Cu ppm	Mo ppm	Pb ppm	Au ppm	Ag ppm
AZKE 115	105	· 1	7 <u>.</u> 5	-0.1	1
116	65	18	240	0.1	4
117	775	33	195	-0.1	4
118	90	-1	60	-0.1	-1
119	30	-1	50	-0.1	-1
120	0.15%	21	40	-0.1	1
121	395	12	205	-0.1	-1
122	75	18	10	-0.1	-1
123	200	21	105	-0.1	1
124	55	15	20	-0.1	-1
125	350	261	20	-0.1	-1
126	65	2	30	-0.1	-1
127	705	106	15	-0.1	-1
128	290	51	130	0.2	8
129	220	42	155	0.3	8
130	30	5 5	670	-0.1	1
131	700	32	60	0.1	3
132	155	19	55	-0.1	8
133-134	0.84%	56	190	-0.1	76

By Kanny D. Willard
Parry D. Willard

APPENDIX IV

ZONGE ENGINEERING AND RESEARCH ORGANIZATION'S REPORT

REPORT ON COMPLEX RESISTIVITY
FIELD SURVEY
Kelvin, Arizona
For Kerr-McGee Corporation &
Gulf Mineral Resources Company

ZONGE ENGINEERING & RESEARCH ORGANIZATION 5634 East Pima TUCSON, ARIZONA 85712

14 October 1977

Tom L. Heidrick
Gulf Minerals Resources Co.
2015 N. Forbes Blvd.
Suite 105
Tucson, AZ. 85705

Dear Tom:

I apologize for being so late with this report, but a rash of last minute assessment work really overwhelmed us. Our normal turn around time is two to three weeks, depending upon the complexity of the survey. I hope this will not happen again.

We have found that an invaluable aid to the interpretation of geophysical data is the inclusion of all known geological data for cross correlation. Very little geologic input was obtained for the analysis on your Kelvin Prospect, but the overall importance of including these data cannot be over-emphasized.

We are continuing to reduce the EM data acquired during the course of this survey and will provide you a summary of these data when completed. This analysis is still in the research stage and any additional information you can provide on this property would be appreciated and included in this final report.

If you have any questions on this report, please do not hesitate to call upon us for an explanation.

Best regards,

Kenneth L. Zonge

cc: R.M. Com

ZONGE ENGINEERING & RESEARCH ORGANIZATION

5634 East Pima TUCSON, ARIZONA 85712

14 October 1977

Report on Complex Resistivity Field Survey
Kelvin, Arizona
For Kerr-McGee Corporation &
Gulf Mineral Resources Company

Introduction:

Zonge Engineering and Research Organization mobilized a complex resistivity (CR) crew to Kelvin, Arizona, Pinal County, on August 11, 1977. The CR survey was run over a known area of disseminated pyrite/copper mineralization approximately 1.5 miles SW of Kelvin. The center of each of the three survey lines was located by Joe Wilkins of Gulf Mineral Resources.

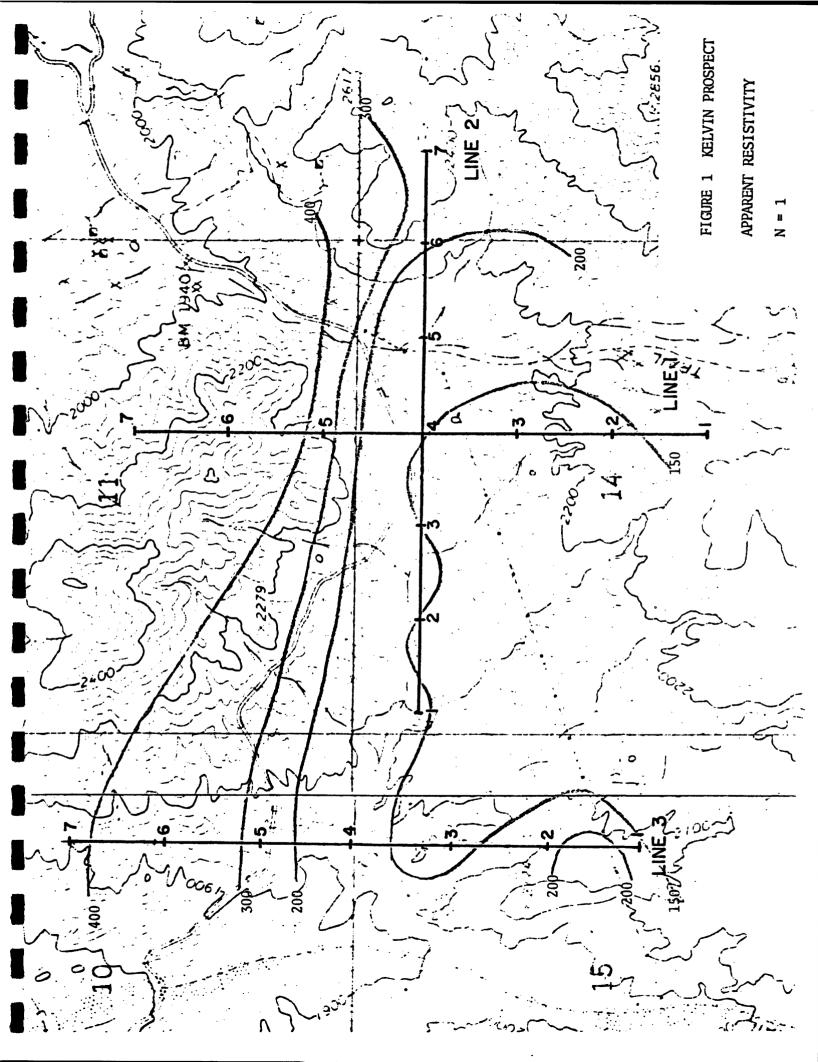
The Z.E.R.O. crew was headed by Van Reed, geophysicst, and the field crew consisted of Arnie Ostrander, Gary Axion, and Mike Harbison.

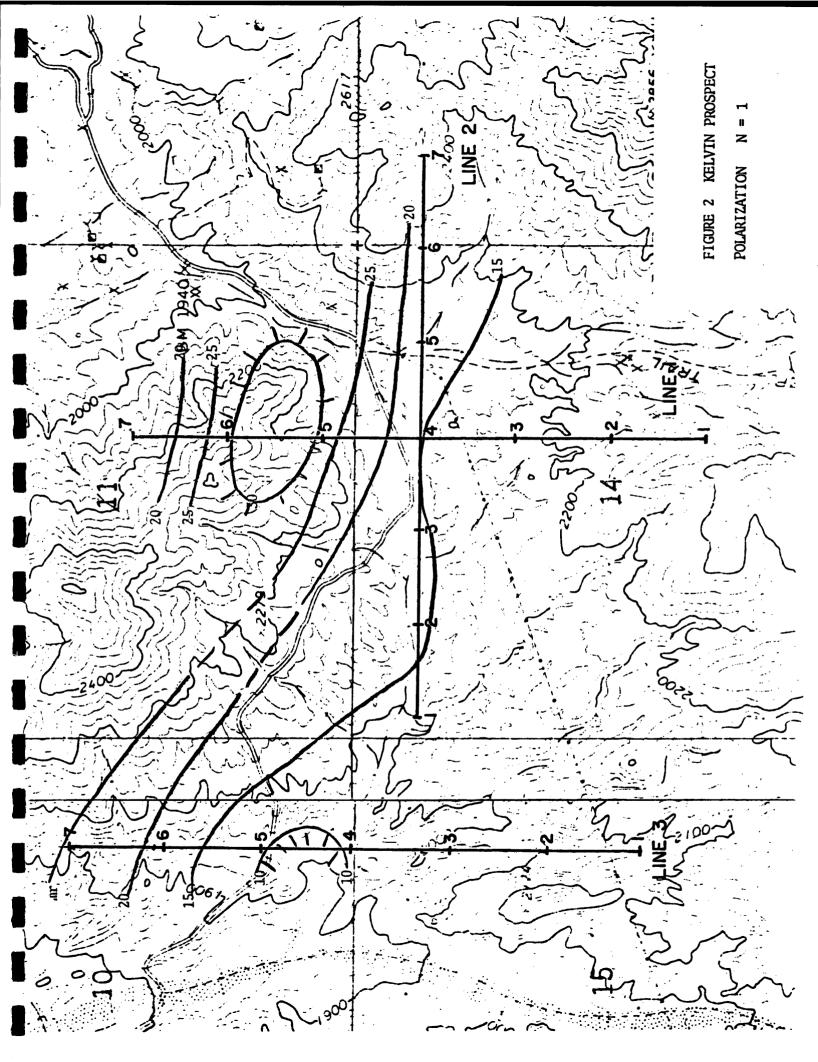
Three separate survey lines were run over the Kelvin Property. Standard 1000 foot dipole-dipole techniques were used along with Z.E.R.O.'s high resolution complex resistivity equipment. Lines 1 and 3 were oriented north-south and Line 2 ran east-west, sharing a common center electrode with Line 1. Line 1 was cut short by two diagonals on the north end because it was not possible to cross the Gila River, which was at flood stage at that time. The crew was able to cross the Gila on Line 3 via a railroad bridge which was only 200 feet off line.

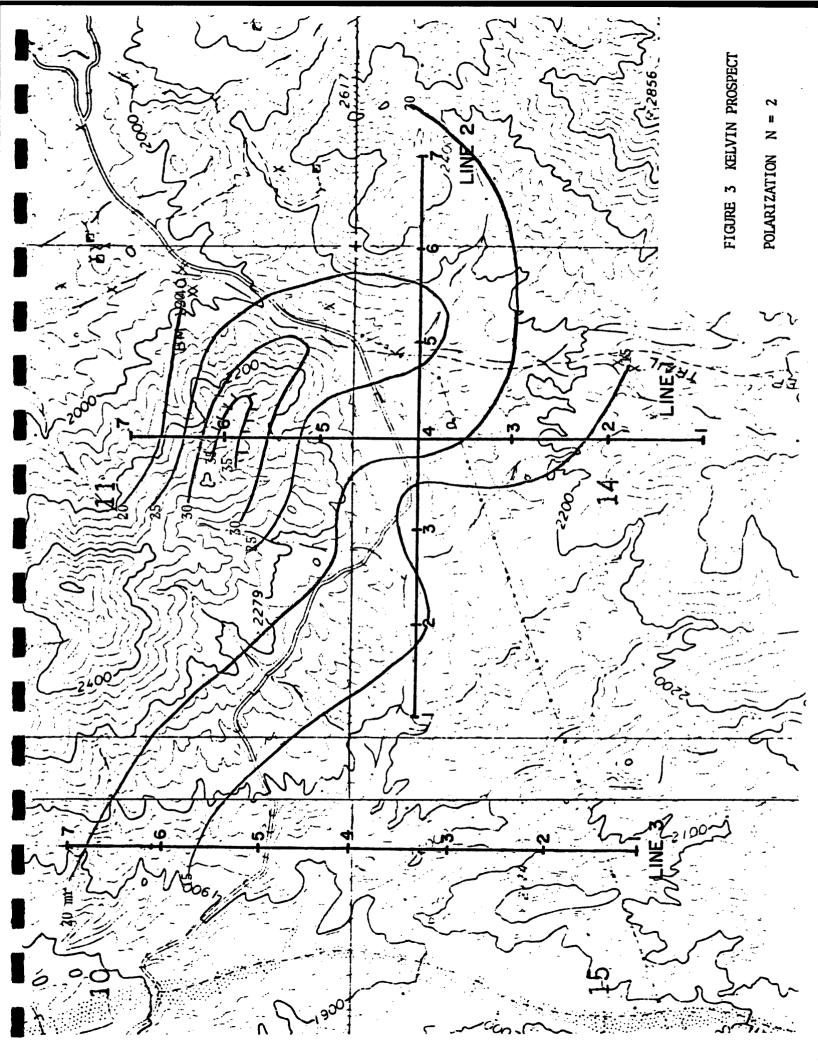
This survey was conducted during the peak season for thunderstorm activity in southern Arizona. However, the Z.E.R.O. CR field system is designed to minimize the effects of atmospheric noise, and in an attempt to further mitigate the problem the crew was in the field each morning at daybreak in order to utilize the early morning hours when thunderstorm activity was at a minimum. As a result the CR data collected on this survey was relatively clean considering the noisy conditions.

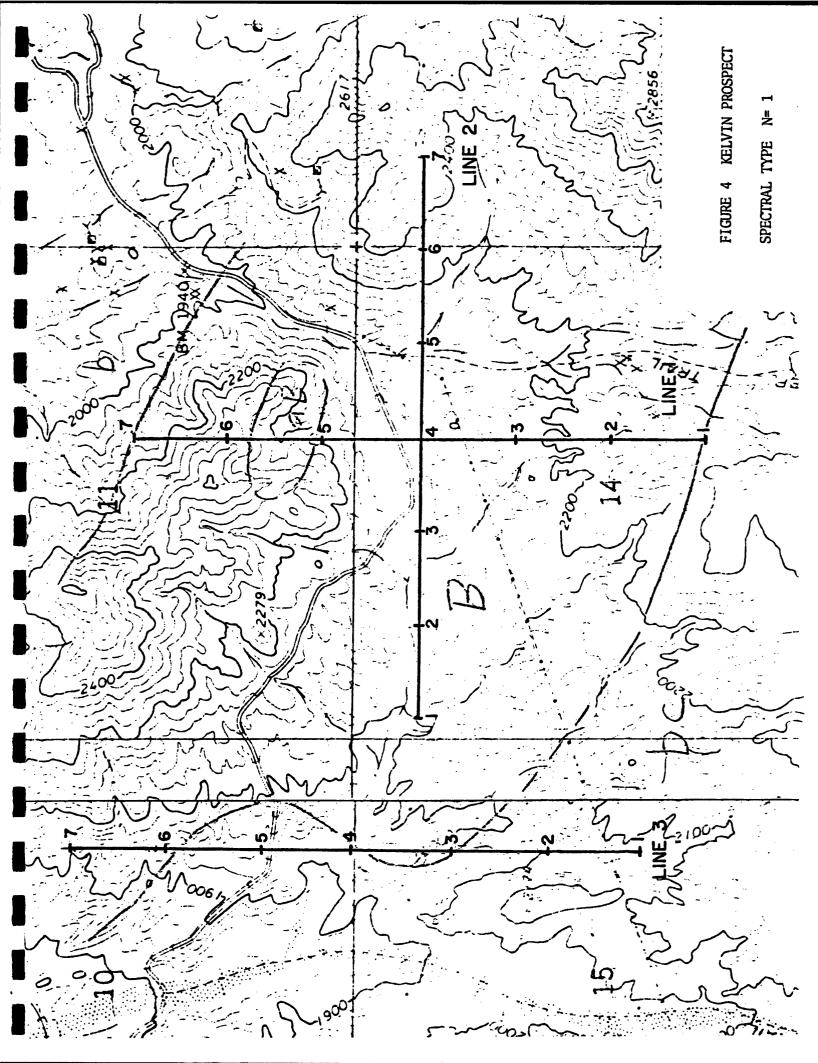
All field work was completed by 21 August, for a total of 11 days. One-half day was lost during this job due to a return trip to Tucson to repair equipment. In all, 9.4 field days for equipment and 10.1 field days for the field crew were utilized for the completion of this survey.

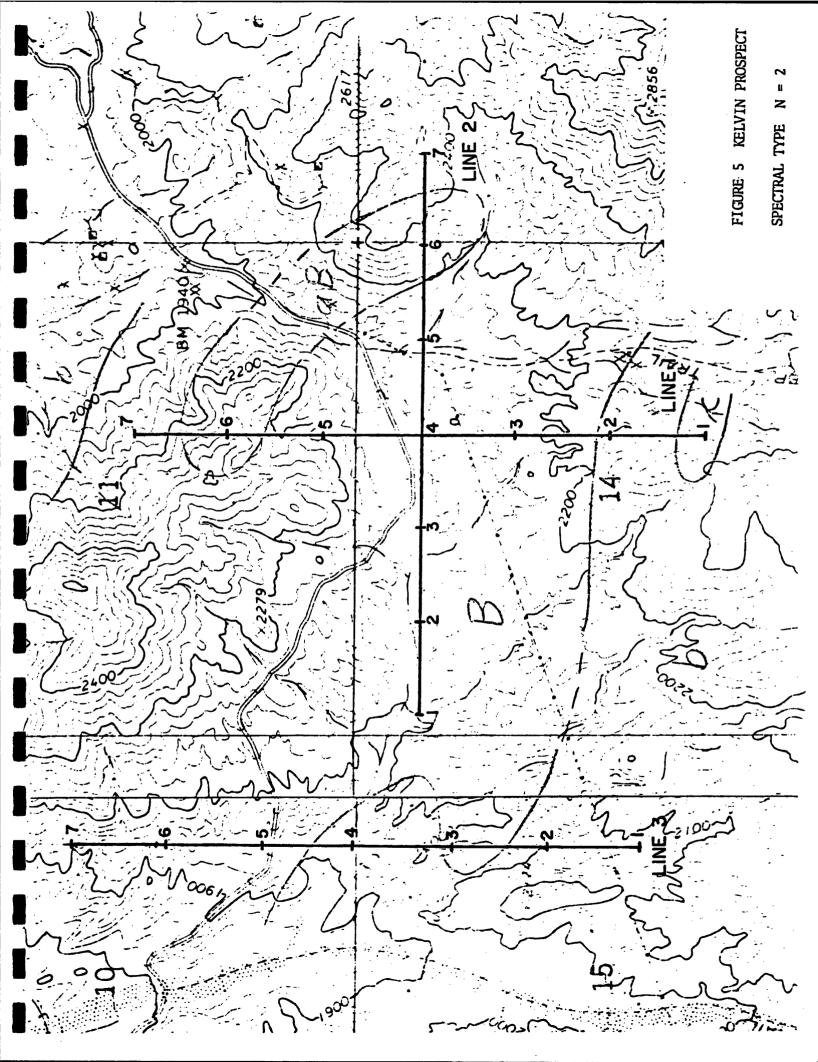
Phone 602 885-3478


Results of the survey are delineated on a line by line basis with the data presented in pseudosection form and explained in some detail by outlining the salient IP and CR features. A general explanation of our CR field techniques is also attached to the end of this report.


Summary:


Apparent resistivity, polarization and spectral type responses all tend to have a NW-SE trend. See Figures 1 through 5. Discounting the block of Gila Conglomerate off the south end of Line 3, the resistivity data show a low resistivity feature between Lines 1 and 3 and south of Line 2, with an increasing trend to the NE. (Figure 1).


Polarization data display a relatively high and pervasive background response which is generally attributed to alteration and small amounts of sulfides. The polarization feature beneath stations 5 and 6 on Line 1, 5 and 6 on Line 2, and on the northern end of Line 3 may all be related (Figures 2, 3). All have a relatively high alteration response and appear to contain pyrite with some chalcopyrite.


Spectral types tend to link these three anomalous areas, with the most noticeable feature being the type \underline{a} spectra or low frequency "tail" which we associate with a strong alteration response. Although no ideal py/cpy spectral responses were obtained, several spectra on each line provided features associated with this type of response and examples are shown in the following description of the results for each line.

Line 1, N-S, 1000 ft. dipole-dipole:

The apparent resistivity pseudosection shows a near-vertical resistive contact near station 5 which tends to display a steep southerly dip. The lower resistivity rock material to the south of this contact has a smoothly layered texture, gradually increasing in resistivity with depth.

The higher resistivity material to the north of station 5 appears to host most of the polarization response which is centered between stations 5 and 6. Background polarization values are quite high (10 mr) and appear to be due to alteration and a small amount of sulfides.

Spectral data do not provide any "textbook" py/cpy signatures although several spectra in the vicinity of stations 5 and 6 do display general characteristics of a pyrite/chalcopyrite environment. Most of these fall in the \underline{B} or $\underline{a}\underline{B}$ spectral type shown in the pseudosection in that area. The $\underline{a}\underline{b}$ spectra at depth beneath stations 3 and 4 show signs of a combined low pyrite content and fairly strong alteration response. The strong alteration response seen in the data from beneath and to the north of the center of the line tends to overwhelm any mineralization response that might be there. Figure 6 is a near surface spectra which displays what we feel is a combination of a relatively strong alteration response with pyrite and a slight indication of chalcopyrite.

Coupling data supports the resistivity pseudosection in a general way. However, these data indicate a shallow layer of high resistivity material covering most of the surface (probably less than 200 feet thick) along this line. These data also indicate a high resistivity mass beneath stations 2 and 3. This feature probably accounts for some of the irregularity in the resistivity pseudosection, and could reverse the assumption of a steep southerly dip on the contact near station 5.

```
9 8275
9 9264
9 9253
                                             50.69
70.99
                     ZONGE ENGR & RISPICH
                                                        9.8752
       08/14/77
                             CR5.8/729
                                                        0 8645
   1-RUIR 06
                  EMTR 04
        1.0 1.1.0 A-SP 1000FT
OCPLD 21SEPT77 OPR
                                             96 09
                                                        0.8529
                                                        0 8499
                                                                   0 6236
                                      EUR
                                            119 99
                                                           0.043 ****
                                                                          0 066 ****
                                             9.045 ***
                                                                           ****
                                                           ****
                                             ***
                                                           0.100 417x
0.100 7***
                                                                          119.0
                                             1.000 ****
                                                                          110 0
                                             0.190 ****
                                             OPTION 17
  00
                                    9 9
       8
  CORPECTED REAL AND IMAGINARY
           1.0000
                      0.0342
 0 10
                                             OPTION 2?
                      0.0312
   30
900
   50
                      0.0305
           0.9677
                                                            546.0 OHM-METERS
34.2 MILLIRADIANS
4 7
                                                 RHOA=
                      0.0301
           0.9611
                                             .1HZ PHASE=
                      0.0235
 Ģ
   99
           B. 9564
                                             .1-1.HZ PFE=
   19
                      0.0295
1.00
3.00
5.00
           0.9550
0.9345
                      9.0299
                                            RETRY?
                      0.0291
           0.9249
                      0.0294
                      0.0292
 7.99
           9.9189
                      0.0292
           9.9141
 9.00
                      0.0231
           0.9100
   99
11
                      0.0296
           0.9124
19996
                      0 0291
           0.8888
39.99
```

FIGURE 6 KELVIN PROSPECT

LINE 1. EXAMPLE OF ALTERATION,
PYRITE, AND WEAK CHALCOPYRITE
RESPONSE

Line 2, E-W, 1000 ft. dipole-dipole:

Apparent resistivity data display irregular surface resistivities (100 ohm-meters), and a general increasing trend with depth (500 ohm-meters). However, the coupling coefficient data show a relatively thin high resistivity surface layer to the west of station 4, and a low resistivity surface layer to the east. In general, the coupling data show a relatively complex conglomeration of resistivities with intermixed layered features on the western half of the line, and more of a lateral structure on the eastern half.

The background polarization (15 mr) on this line is somewhat higher than on Line 1 and again appears to be due to a strong alteration response. This effect is especially noticeable on the eastern half of the line. A buried tabular feature could cause the high polarization values seen beneath stations 5 and 6, and several spectra show signs of py/cpy in that vicinity. See Figure 2. These spectra are associated with the type aB responses beneath stations 5 and 6, and appear very similar to those seen between stations 5 and 6 on Line 1.

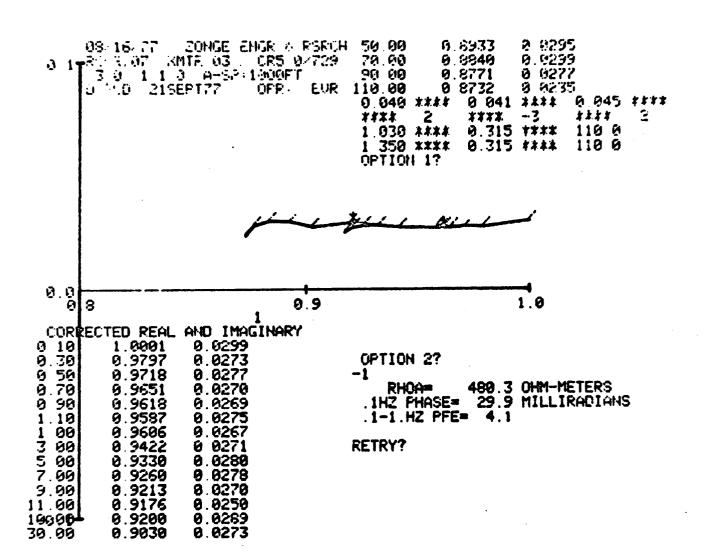


FIGURE 7 KELVIN PROSPECT

LINE 2. COMBINED ALTERATION,
PYRITE, AND POSSIBLE WEAK
CHALCOPYRITE RESPONSE.

Line 3, N-S, 1000 ft. dipole-dipole:

Apparent resistivities along this line display the effects of variable surface resistivities and several lateral contacts. A low resistivity block (Gila Conglomerate?) is encountered near station 0 on the south end of the line, and appears to be at least 1000 feet thick. Another resistivity contact is located near station 5 with increasing resistivity values to the north. The high resistivity diagonal eminating from dipole 9-10 is probably a measurement artifact since this dipole spanned the river via a railroad bridge. However, little if any polarization effects are noticed.

A contact with polarizable material occurs near station 6 and is associated with the higher resistivity material on this end of the line. Several spectra on the north end show relatively strong alteration responses along with a hint at py/cpy content. See Figure 8. The relatively strong background polarization response (12 mr) is again attributed to alteration.

Coupling data generally supports the resistivity data, but in addition indicate a low resistivity cover on the north half of the line. Although data are limited on the southern portion, they tend to indicate that the thickness of the Gila Conglomerate is probably not much more than 1000 feet.

Kenneth L. Zonge

Amold Ostrander

Van Reed

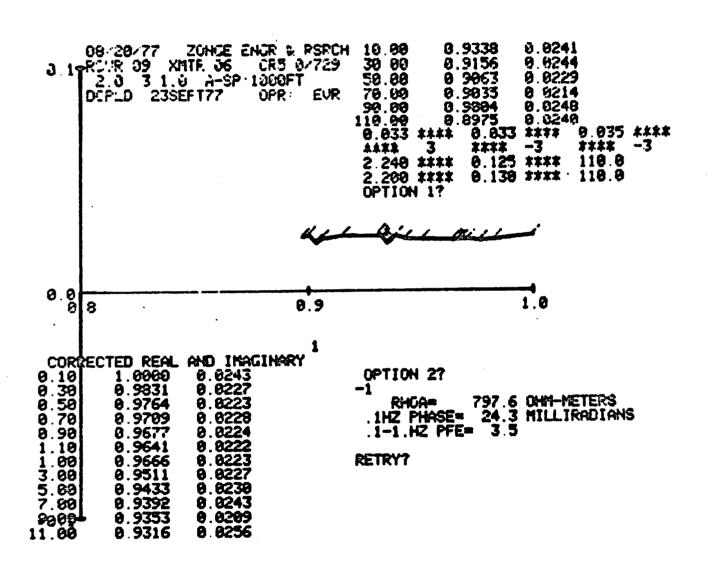


FIGURE 8 KELVIN PROSPECT

LINE 3. COMBINED ALTERATION,
PYRITE, AND POSSIBLE WEAK
CHALCOPYRITE RESPONSE.

DESCRIPTION OF COMPLEX RESISTIVITY FIELD MEASUREMENTS

Our geophysical data gathering and analysis technique is referred to as "Complex Resistivity" since the system measures both the amplitude and phase components of the received electrical signal. Data may be displayed in either complex number terms or amplitude and phase form, the only difference being a transformation between rectangular or polar coordinates. Amplitude and phase data are measured for a spectrum made up of discrete frequencies ranging from .01 Hz to 110 Hz. Graphically this spectrum is obtained by plotting the in-phase and out-of-phase or real and imaginary components of each frequency in the complex plane. This type of display is known as a Cole-Cole plot when referring to dielectric behavior or an Argand diagram in electrical circuit theory.

Data gathering with the Complex Resistivity (CR) system is done completely by a digital computer. The operator need only specify the frequency of the transmitted squarewave and adjust the gain on the receiver. All other operations are done automatically by the computer. Signals are received from the ground using a three electrode receiving dipole. This provides a differential input to the system which is used to facilitate common-mode noise rejection. The received signal is amplified, SP is removed and the signal is then passed through a low pass aliasing filter prior to digitization. Simultaneously the same analysis is performed on the output waveform from the computer-controlled transmitter.

The amplified and filtered signal next enters the computer where it is digitized by a 12 bit analog to digital converter. The present A/D system obtains 1024 sample points on each cycle of the incoming waveform. Successive cycles of the waveform are stacked by synchronously adding the set of 1024

sample points to a double-precision storage buffer in the computer. When the desired number of cycles has been completed the stack is divided by the number of cycles summed to obtain an average value for the waveform. The same technique is used to digitize the transmitted waveform.

This technique effectively removes random noise with the signal-to-noise ratio enhancement being proportional to the square root of the number of samples averaged. The existing CR system has effectively read through signal-to-noise ratios of less than 1/100.

At this stage, numerical representations of the averaged received and transmitted waveforms exist in the computer as digital, time domain voltage values. Next, a Fast Fourier Transform is performed on both. This mathematical transformation acts as a frequency filter and changes the representation of the two waveforms from time domain to frequency domain, resulting in a series of harmonics each having real and imaginary components. Since a periodic, symmetric squarewave has a zero value for all even frequency harmonics, we obtain a series of odd harmonics which now describe the original averaged waveform.

As soon as the FFT has been performed on both the received and transmitted waveforms, the resulting two sets of harmonics are deconvolved. This is done by dividing the received waveform by the transmitted waveform, on a harmonic by harmonic basis, using odd harmonics only.

Several reasons exist for deconvolving the system input and output waveforms. All systems which attempt to measure ground response to electrical stimulus, i.e. IP and CR, actually measure a combination of all of the voltages present. That is, the signal received by the CR system reflects more than just the effects of the ground transfer function. A major contributor to the received voltage is the stimulus itself, or the transmitted waveform, whose effect is convolved with the ground response in the received signal. Removing that factor from the data leaves only the ground response plus noise, which hopefully has been removed to such an

extent as to be very small or unnoticeable. Deconvolution also removes the effects of filtering and any other sources of amplitude change or phase shift in the receiving system, as long as identical channels are used. The result then is a clearer picture of the induced polarization effects.

The final acquisition step includes displaying the data on the teletype and recording it on cassette tape. Three fundamental frequencies are normally used in the field: 10.0, 1.0. 0.1 Hz. The non-zero harmonic numbers calculated for any fundamental frequency are 1, 3, 5, 7, 9 and 11. Expanding the harmonics for each transmitted fundamental, a discrete spectrum from 0.1 to 110 Hz is obtained. Occasionally a .01 Hz fundamental is used to extend the spectra one decade lower for areas where low frequency alteration characteristics become evident.

Nearly all field data contain some degree of electromagnetic and/or cultural coupling, especially at frequencies above 10 Hz. Therefore, these data are further reduced in the office by processing them through an iterative computer routine which removes EM coupling effects and as much of the cultural coupling effects as possible. In addition, all spectra are normalized to the magnitude of the lowest frequency measured.

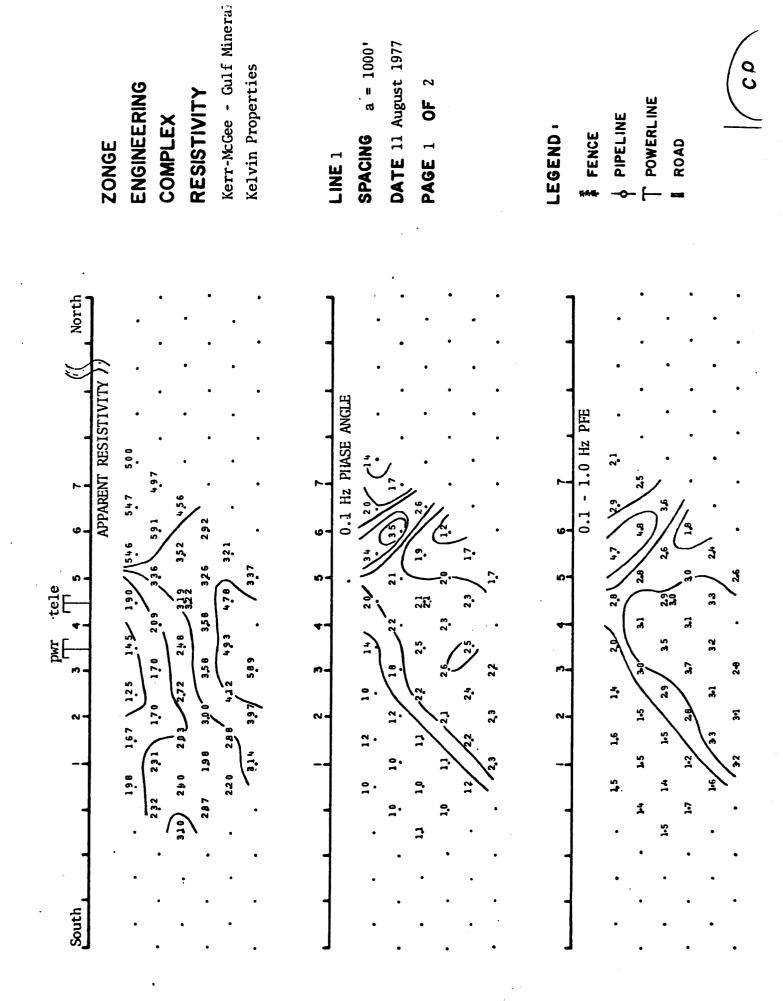
The decoupled spectra are then automatically plotted in the complex plane with the horizontal axis being the positive real and the vertical axis the negative imaginary. This quadrant is where the majority of the spectra fall. Spectra are then examined for traits and behavior that have been found empirically to be of significance from the study of rock sample measurements and field surveys confirmed by drill holes.

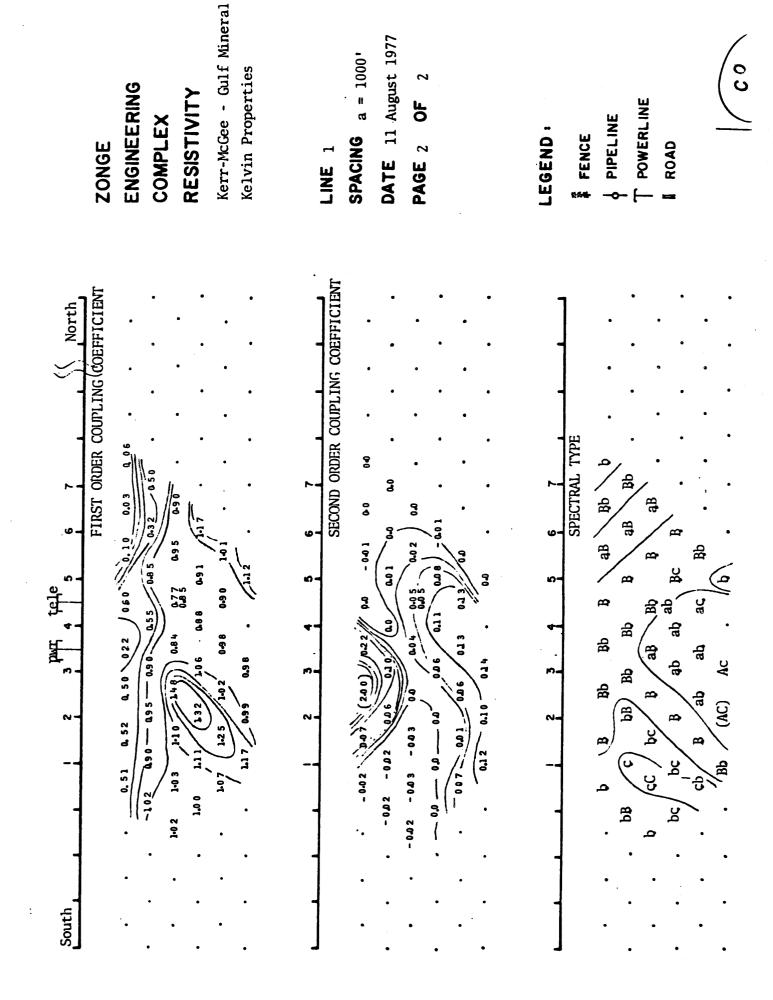
All reduced data are then summarized and plotted in the conventional pseudo-section form. Apparent resistivities, percent frequency effects and phase angles at 0.1 Hz (which are equivalent to time-domain chargeability) are obtained from the field data using conventional techniques. Therefore, the results of each survey are first presented in conventional form using pseudosection plots of apparent resistivity (pa) in ohm-meters, 0.1 to 1.0 Hz decade percent frequency

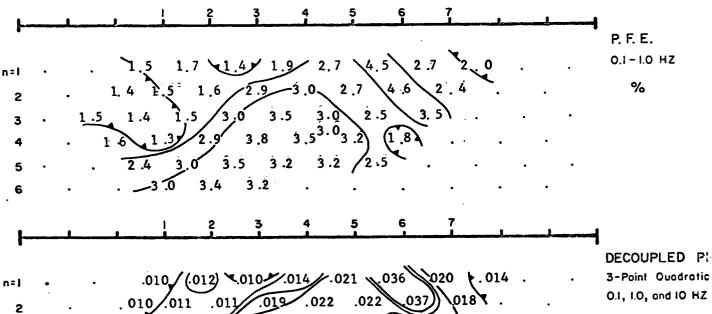
effect (PFE), and phase angle at 0.1 Hz ($\phi_{.1}$) in milliradians, and then analyzed for spectral characteristics.

Apparent mineralization, host rock type response, EM coupling data and other parameters derived from the CR process are presented in pseudosection form when appropriate. EM coupling data are analyzed in an effort to obtain additional data on geologic structure and as an aid in apparent resistivity pseudosection interpretation.

Qualitative analyses are obtained for spectral and mineralization responses and quantitative results are possible when the mineralization response is relatively strong. Basic spectral responses have been grouped into three general categories: Type A, decreasing out-of-phase response with increasing frequency - usually associated with strong alteration, sulfide mineralization including pyrite, graphite and some clays; Type B, constant out-of-phase response with increasing frequency - has been associated with low pyrite/mixed mineral environments and transition zones between Type A and C environments; Type C, increasing out-of-phase response with increasing frequency - usually associated with weak alteration such as chloritization, and does not usually host sulfides.


Subsurface lithology can often be mapped electrically when differing rock types have their own spectral characteristics, regardless of their respective resistivities. This is especially useful in mapping new areas and indirectly searching for deposits such as uranium, coal and geothermal sources.


EM coupling data are furnished when they aid in the overall interpretation of complex resistivity results. The data are presented in two forms: reflection coefficient and residual EM. The reflection (or coupling) coefficient is a multifrequency measure of layered inhomogeneaties with a value of unity (1.0) indicating an apparent homogeneous earth response. In its simplest interpretation, positive reflections (reflection coefficient greater than 1.0) indicate a two layer earth with the uppermost resistivity less than the lower resistivity. Negative reflections (reflection coefficient less than 1.0) indicate the reverse resistivity


structure.

Single frequency deviations from a homogeneous earth EM response are currently being investigated and used to probe deeper than standard resistivity soundings and to aid in subsurface structure determination when normal resistivity techniques are confusing or inadequate. These data are plotted as conventional EM profiles or in pseudosection form as in-phase and out-of-phase components.

This residual EM approach is currently being refined as a new exploration tool. Results to date on dipole-dipole surveys indicate that this technique is sensitive to resistivity or lithologic changes which cannot be seen in standard IP or resistivity data. Also, the depth of penetration, which is frequency dependent, is greater for this type of analysis than standard low frequency resistivity techniques. However, much more modeling remains to be done on our part before this technique can be fully exploited.

.026 .021

.025

.012//.022 .029 .025 .021

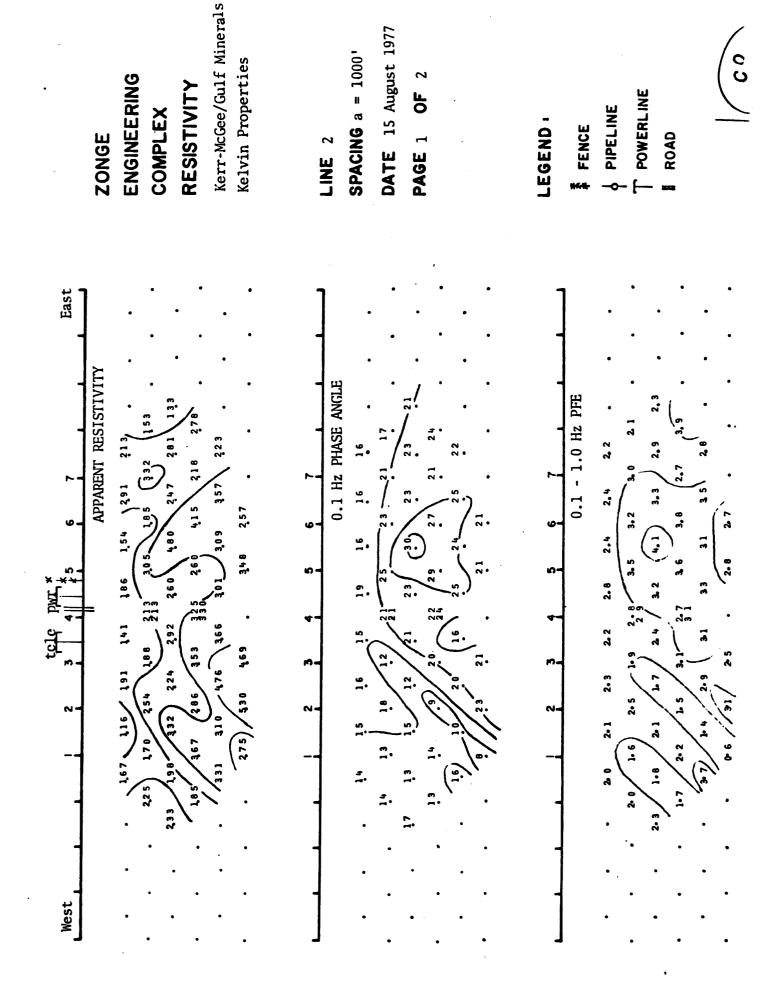
.023

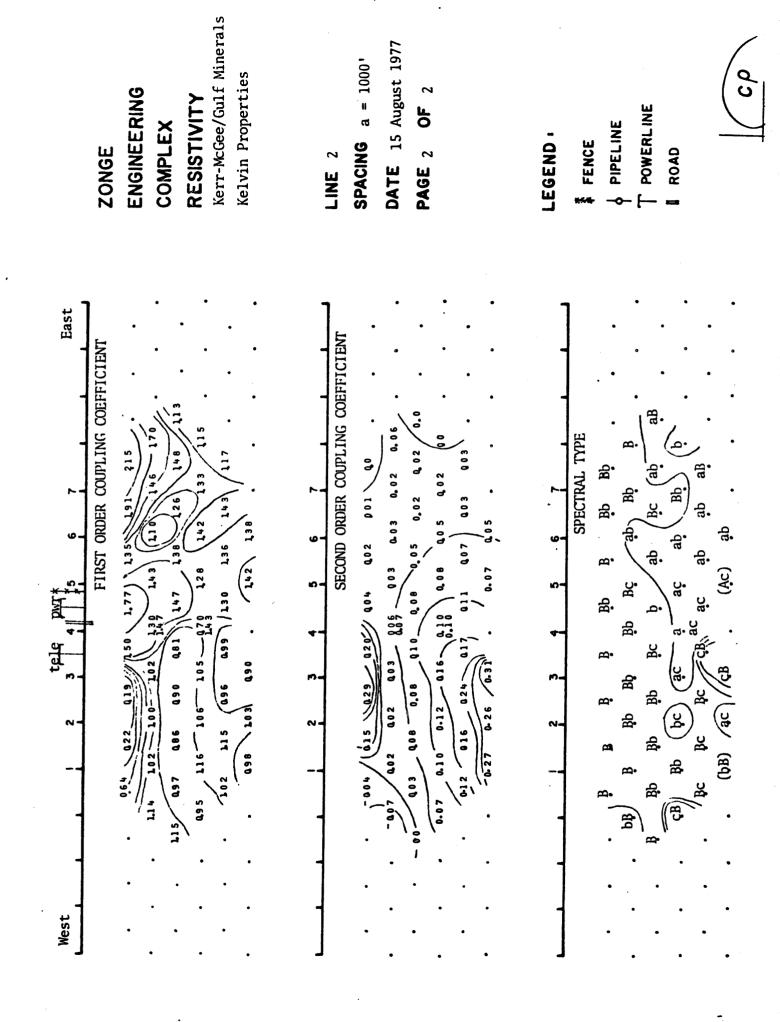
.011//.022

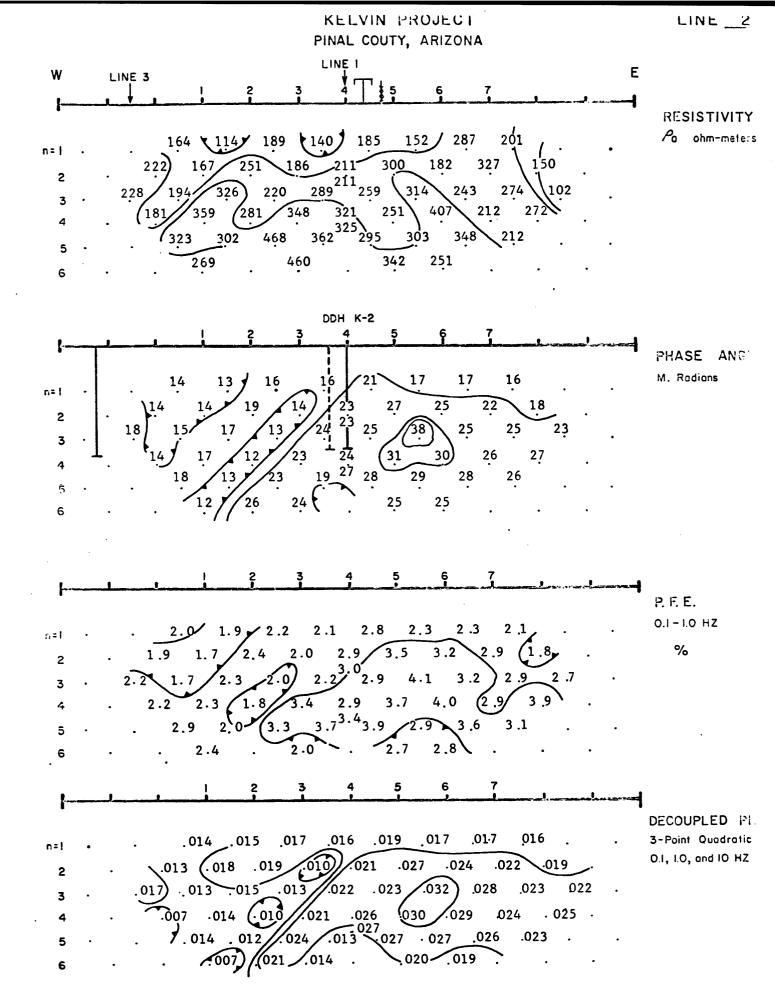
012//025 023 026

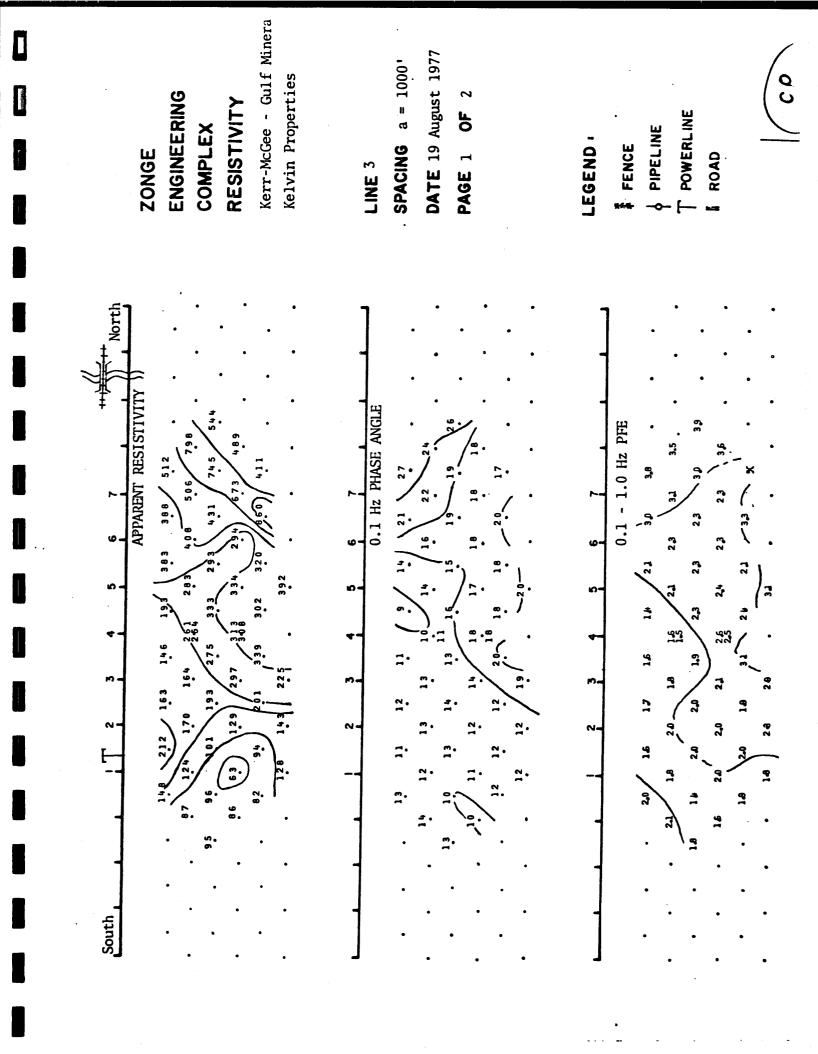
//. 027 .020

.010

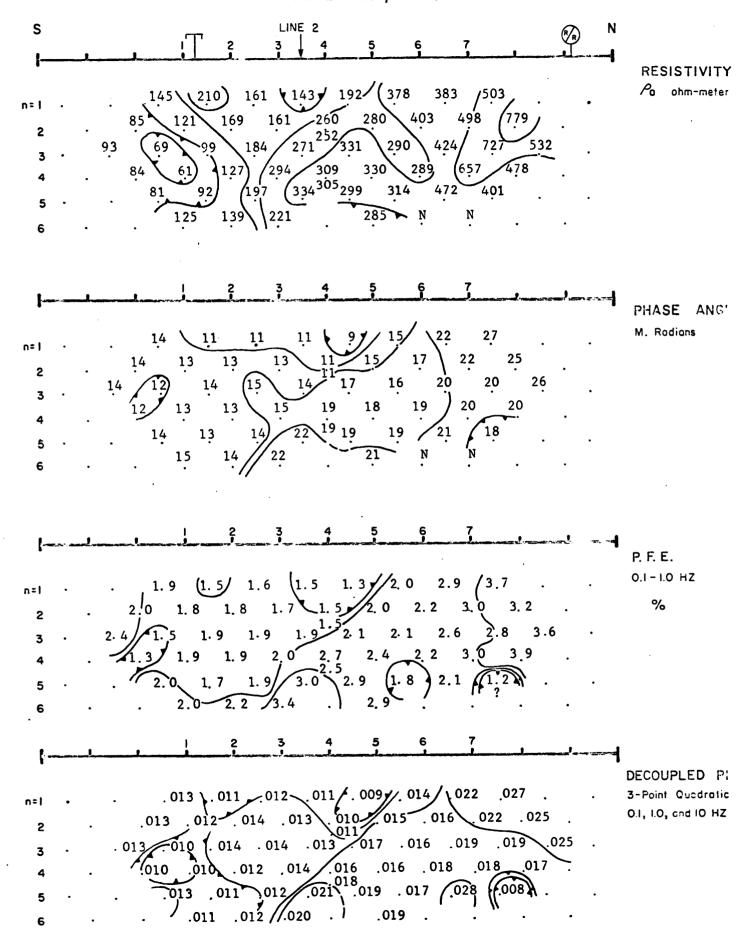

/_011

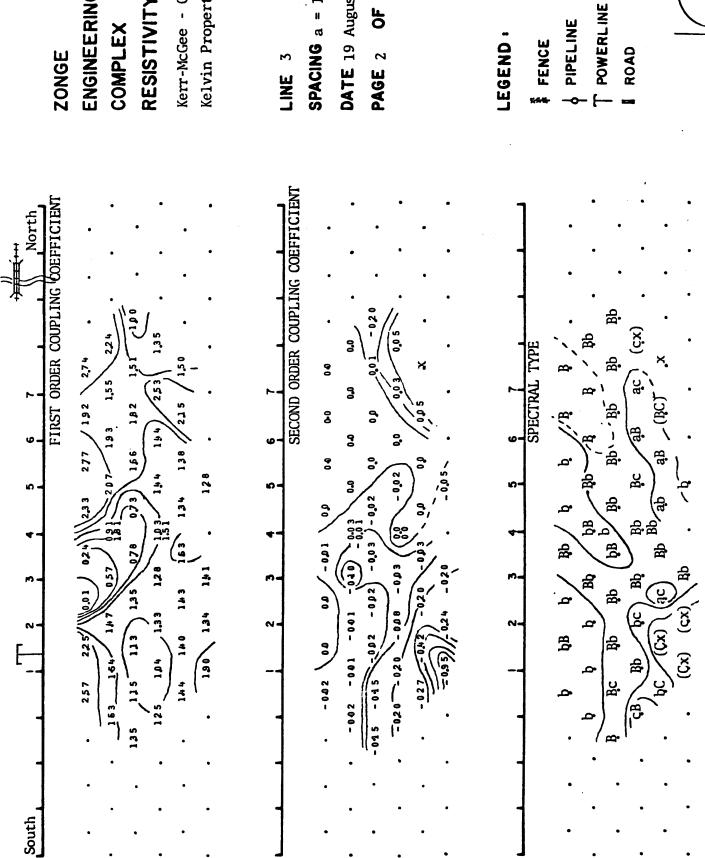

n=1

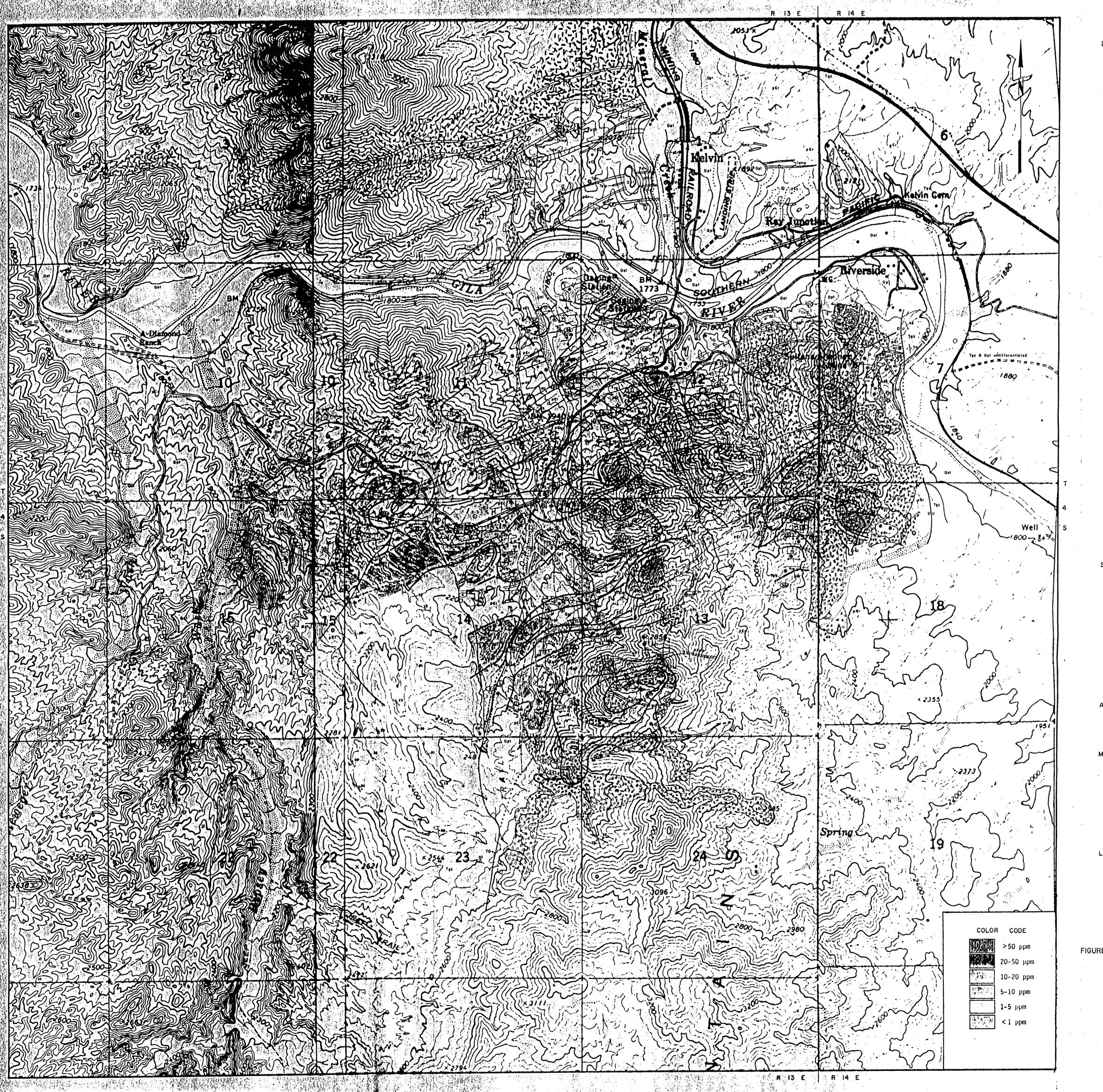

n=1


226

1,1







KELVIN PROJECT PINAL COUTY, ARIZONA

Kerr-McGee - Gulf Mineral: DATE 19 August 1977 SPACING a = 1000' Kelvin Properties PAGE 2 OF 2 ENGINEERING RESISTIVITY ♦ PIPELINE COMPLEX LEGEND . FENCE LINE

EXPLANATION LITHOLOGY Alluvium, sand, gravel, and boulders Pediment and river gravels and talus undifferentiated -----ANGULAR UNCONFORMITY-----Gila conglomerate

Granite to timestone pebble, cobble, and boulder conglomerates; includes the Big Dome and San Manuel formations undifferentiated (Krieger, Cornwoll, and Banks, 1973). An upper tuff unit dates 14 and 17 m.y., while a lower tuff unit dates 17-18 and 24 m.y. (K-Ar method). Ttm ' Teapot Mountain monzonite Intrusion breccia
Round to angular fragments of Paleozoic limestanes
Apache group sedimentary rocks, diabase, and Ruin granite
in a finely comminuated and recrystallized diabase groundmass Crackle breccia
Ruin granite showing round to angular fragments with minor diabase Tqlp Quartz latite porphyry dike 1 Thip 1 Hornblende latite porphyry dike Tqm Tqmp Tam, quartz monzonite; Tamp, quartz monzonite porphyry dike undifferentiated Thmp Hornblende monzonite porphyry Tortilla quartz diorite Ruin granite, aplitic facies stippled STRUCTURE Strike and dip of beds Fault breccia and gouge inclined subvertical vertical Continuous, planar J₁-set showing direction and amount of dip;

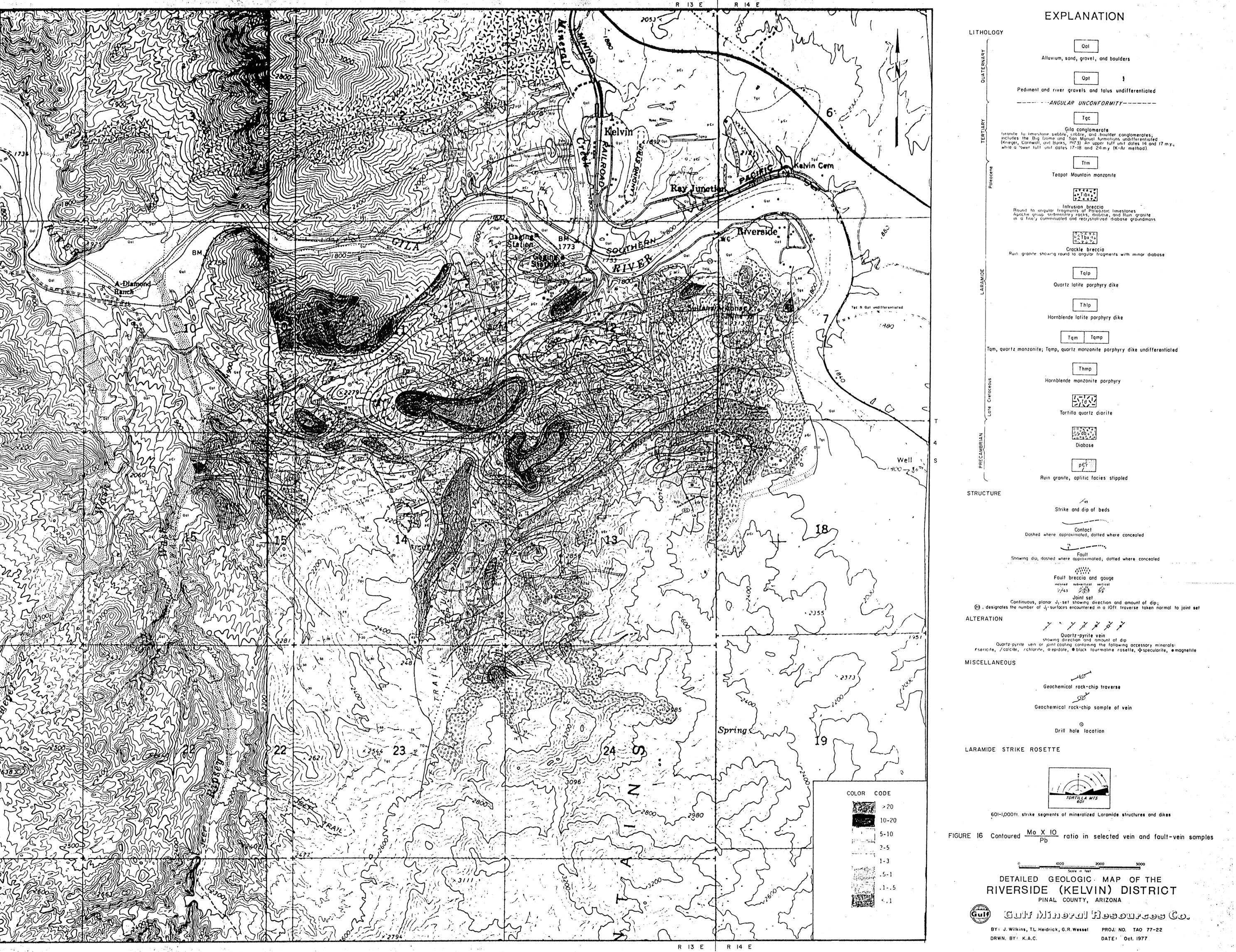

② , designates the number of J₁-surfaces encountered in a 10ft. traverse taken normal to joint set Quartz-pyrite vein
showing direction and amount of dip
Quartz-pyrite vein or joint coating containing the following accessory minerals:
**sericite*, / calcite*, / chlorite*, o epidote*, ** black tourmaline rosette*, ** specularite*, ** magnetite* MISCELLANEOUS

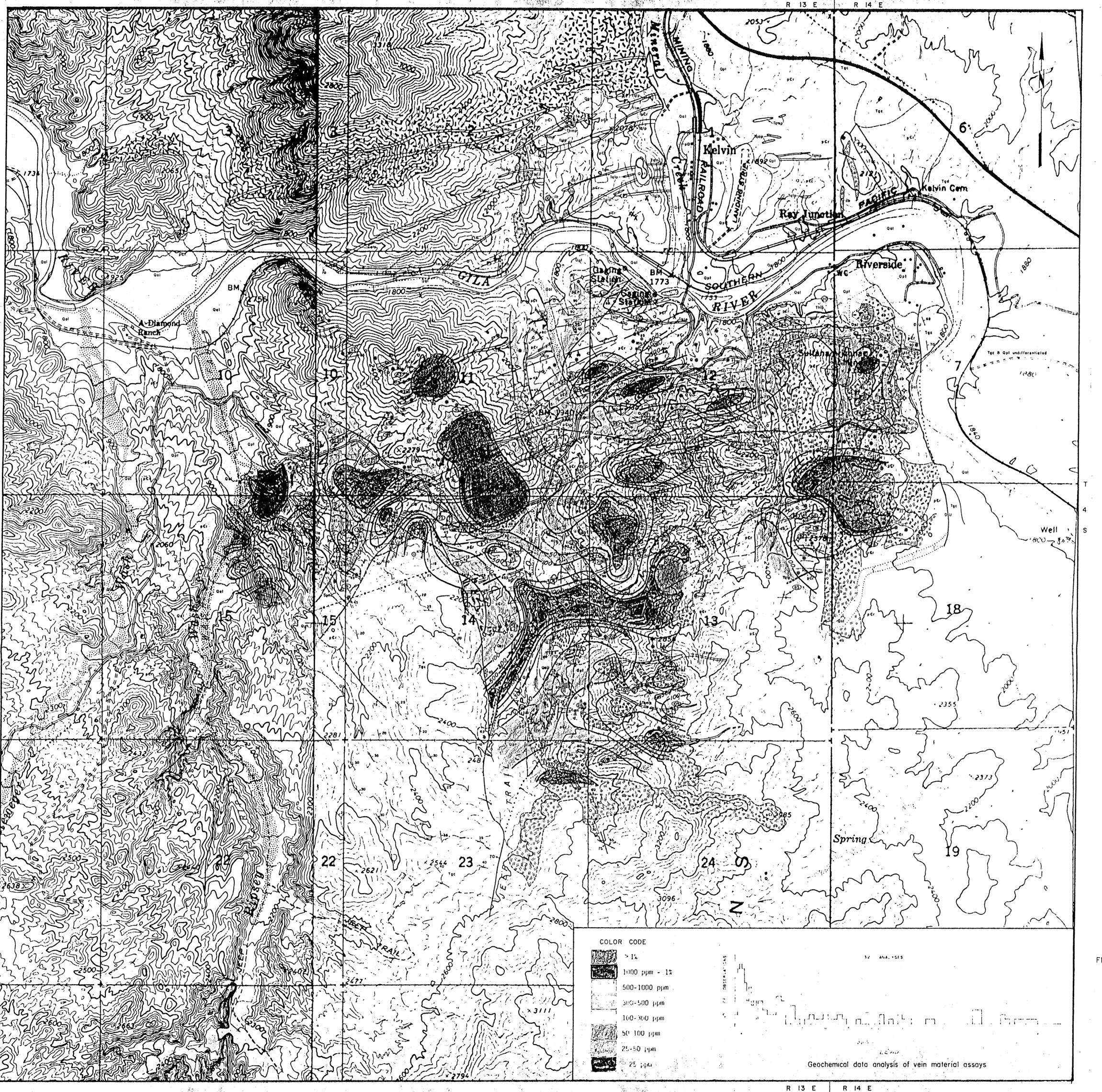
Geochemical rock-chip traverse

Geochemical rock-chip sample of vein

Drill hole location

LARAMIDE STRIKE ROSETTE


601-1,000ft, strike segments of mineralized Laramide structures and dikes


FIGURE 17 Contoured geochemical distribution of combined gold-silver (ppm) in selected vein and fault-vein samples

DETAILED GEOLOGIC MAP OF THE RIVERSIDE (KELVIN) DISTRICT PINAL COUNTY, ARIZONA

) - Oulf Mineral Resources Co.

BY: J. Wilkins, T.L. Heidrick, G.R. Wessel PROJ. NO. TAO 77-22
DRWN. BY: K.A.C. DATE: Oct. 1977

EXPLANATION LITHOLOGY Alluvium, sand, gravel, and boulders Pediment and river gravels and talus undifferentiated ----ANGULAR UNCONFORMITY----Gila conglomerate

Granite to limestone pebble, cobble, and boulder conglomerates; includes the Big Dome and San Manuel formations undifferentiated (Krieger, Cornwall, and Banks, 1973). An upper tuff unit dates 14 and 17 m.y., while a lower tuff unit dates 17-18 and 24 m.y. (K-Ar method). Teapot Mountain monzonite Intrusion breccia
Round to angular fragments of Paleozoic limestones
Apache group sedimentary rocks, diabase, and Ruin granite
in a finely comminuated and recrystallized diabase groundmass Crackle breccia
Ruin granite showing round to angular fragments with minor diabase Quartz latite porphyry dike Thip Hornblende latite porphyry dike Tam Tamp Tam, quartz monzonite; Tamp, quartz monzonite porphyry dike undifferentiated Hornblende monzonite porphyry Tortilla quartz diorite Ruin granite, aptitic facies stippled STRUCTURE Strike and dip of beds

Joint set

Continuous, planar J₁-set showing direction and amount of dip;

(3), designates the number of J₁-surfaces encountered in a 10ft traverse taken normal to joint set ALTERATION

Quartz-pyrite vein

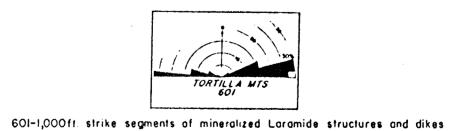
Showing direction and amount of dip

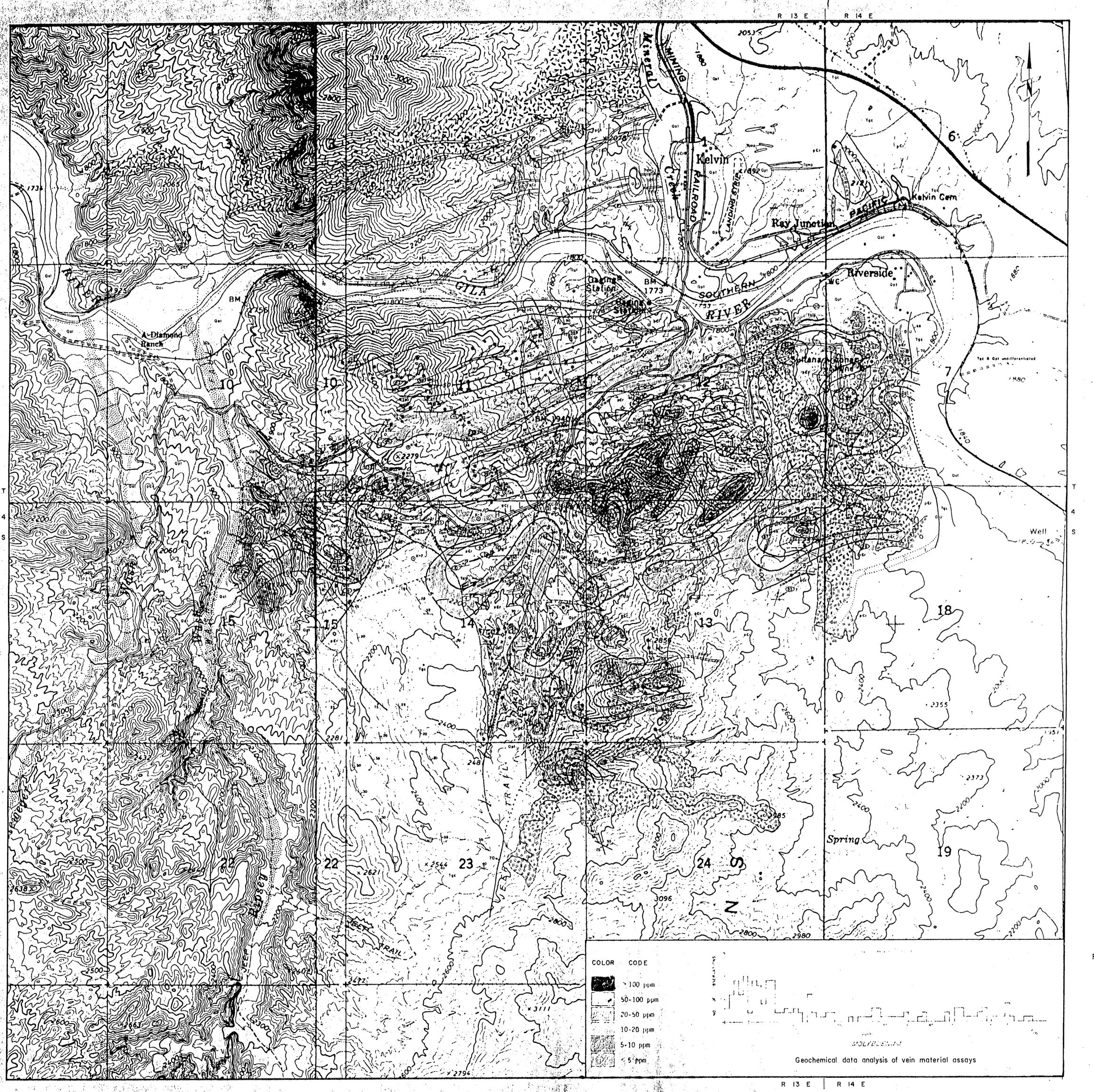
Guartz-pyrite vein or joint coating containing the following accessory minerals:

*sericite, /calcite, /chlorite, o epidole, *black tourmaline rosette, \$pecularite, *magnetite MISCELLANEOUS

> Geochemical rock-chip traverse Geochemical rock-chip sample of vein

LARAMIDE STRIKE ROSETTE




FIGURE 14 Contoured geochemical distribution of lead (ppm) in selected vein and fault-vein samples

DETAILED GEOLOGIC MAP OF THE RIVERSIDE (KELVIN) DISTRICT

CD eestwoeeth lorentki tlud

BY: J. Wilkins, T.L. Heidrick, G.R. Wessel PROJ. NO. TAO 77-22 DRWN. BY: K.A.C. DATE: Oct. 1977

EXPLANATION

LITHOLOGY Alluvium, sand, gravel, and boulders Pediment and river gravels and talus undifferentiated ----ANGULAR UNCONFORMITY----Gila conglomerate

Granite to limestone pebble, cobbie, and boulder conglomerates; includes the Big Dome and San Manuel formations undifferentiated (Krieger, Cornwall, and Banks, 1973). An upper tuff unit dates 14 and 17 my., while a over tuff unit dates 17-18 and 24 my (K-Ar method) Teapot Mountain monzonite Intrusion breccia
Round to angular fragments of Paleozoic limestones
Apache group sedimentary rocks, diabase, and Ruin granite
in a finely comminuated and recrystallized diabase groundmass Crackle breccia
Ruin granite showing round to angular fragments with minor diabase Quartz latite porphyry dike Thip Hornblende latite porphyry dike Tqm Tam, quartz monzonite; Tamp, quartz monzonite porphyry dike undifferentiated Hornblende monzonite porphyry Tortilla quartz diorite Ruin granite, aplitic facies stippled STRUCTURE Contact
Dashed where approximated, dotted where concealed

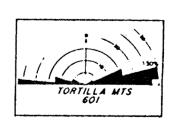
Fault Showing dip, dashed where approximated; dotted where concealed Joint set

Continuous, planar J₁-set snowing direction and amount of dip;

(2) , designates the number of J₁-surfaces encountered in a 10ft traverse taken normal to joint set Quartz-pyrite vein

showing direction and amount of dip

Quartz-pyrite vein or joint coating containing the following accessory minerals:


*/sericite, /calcite, /chlorite, o epidote, * black tourmaline rosette, */specularite, * magnetite

MISCELLANEOUS

ALTERATION

Geochemical rock-chip sample of vein

LARAMIDE STRIKE ROSETTE

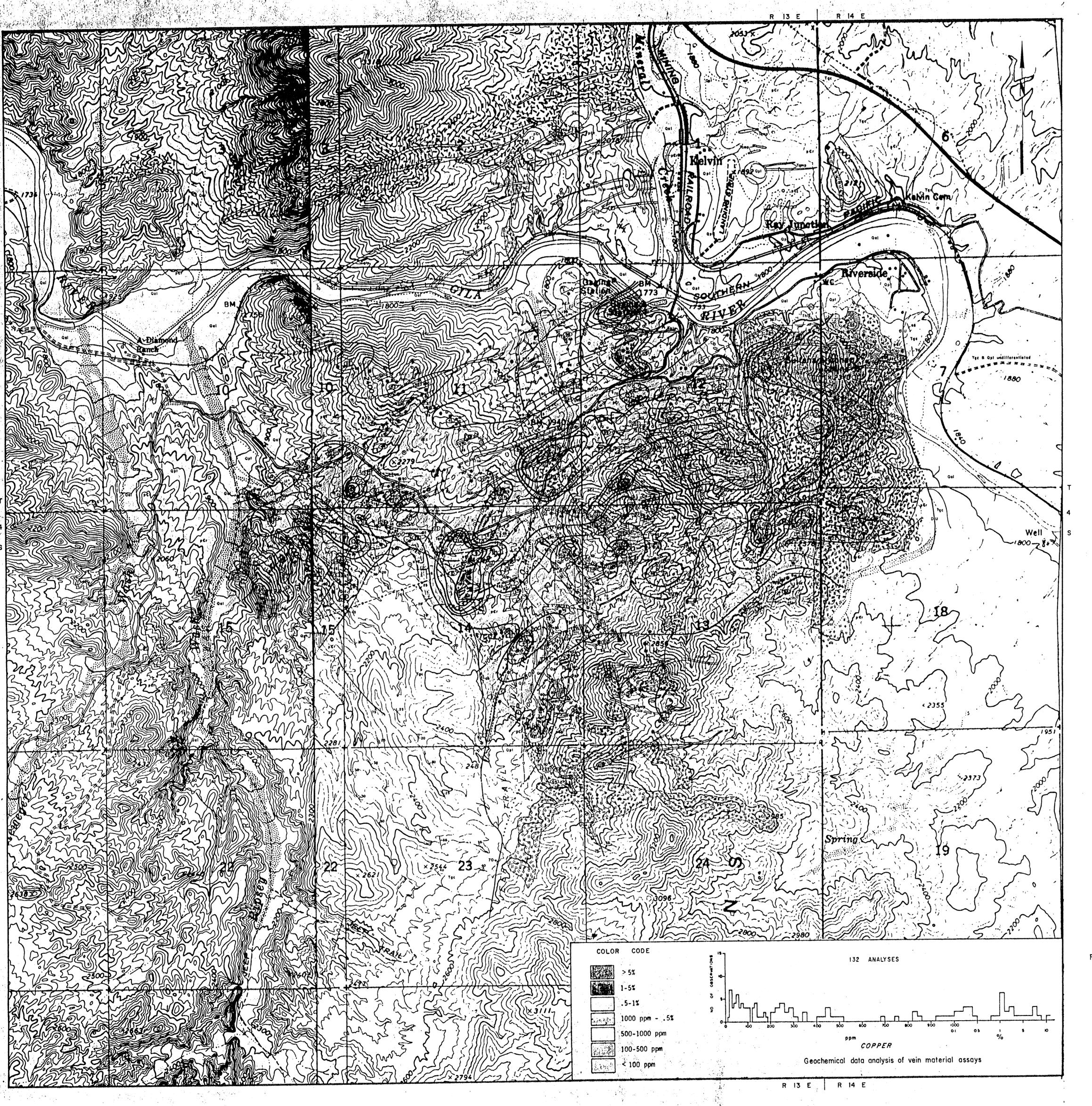

601-1,000ft, strike segments of mineralized Laramide structures and dikes

FIGURE 13 Contoured geochemical distribution of molybdenum (ppm) in selected vein and fault-vein samples

DETAILED GEOLOGIC MAP OF THE

RIVERSIDE (KELVIN) DISTRICT

. .cD eestweeth listentki tlud BY: J. Wilkins, T.L. Heidrick, G.R. Wessel PROJ. NO. TAO 77-22

EXPLANATION

LITHOLOGY

Alluvium, sand, gravel, and boulders

Pediment and river gravels and talus undifferentiated

----ANGULAR UNCONFORMITY----

Gila conglomerate

Granite to limestone pebble, cobble, and boulder conglomerates; includes the Big Dome and San Manuel formations undifferentiated (Krieger, Cornwall, and Banks, 1973). An upper tuff unit dates 14 and 17 m.y., while a lower tuff unit dates 17-18 and 24 my (K-Ar method)

Teapot Mountain monzonite

Intrusion breccia
Round to angular fragments of Paleozoic limestones
Apache group sedimentary rocks, diabase, and Ruin granite
in a finely comminuated and recrystallized diabase groundmass

Crackle breccia Ruin granite showing round to arigular fragments with minor diabase

Tqlp

Quartz latite porphyry dike

Hornblende latite porphyry dike

Tqm Tqmp

Tam, quartz monzonite; Tamp, quartz monzonite porphyry dike undifferentiated

Hornblende monzonite porphyry

Tortilla quartz diorite

Ruin granite, aplitic facies stippled

STRUCTURE

Strike and dip of beds

Contact
Dashed_where approximated, dotted where concealed

Fault
Showing dip; dashed where approximated; dotted where concealed

Fault breccia and gouge inclined subvertical vertical

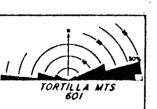
Joint set

Continuous, planar J₁-set showing direction and amount of dip;

(a), designates the number of J₁-surfaces encountered in a 10ft. traverse taken normal to joint set

ALTERATION

Quartz-pyrite vein
showing direction and amount of dip
Quartz-pyrite vein or joint coating containing the following accessory minerals:
*/sericite, /calcite, /chlorite, o epidote, *black tourmaline rosette, \$\diamoles\$ specularite, *magnetite


MISCELLANEOUS

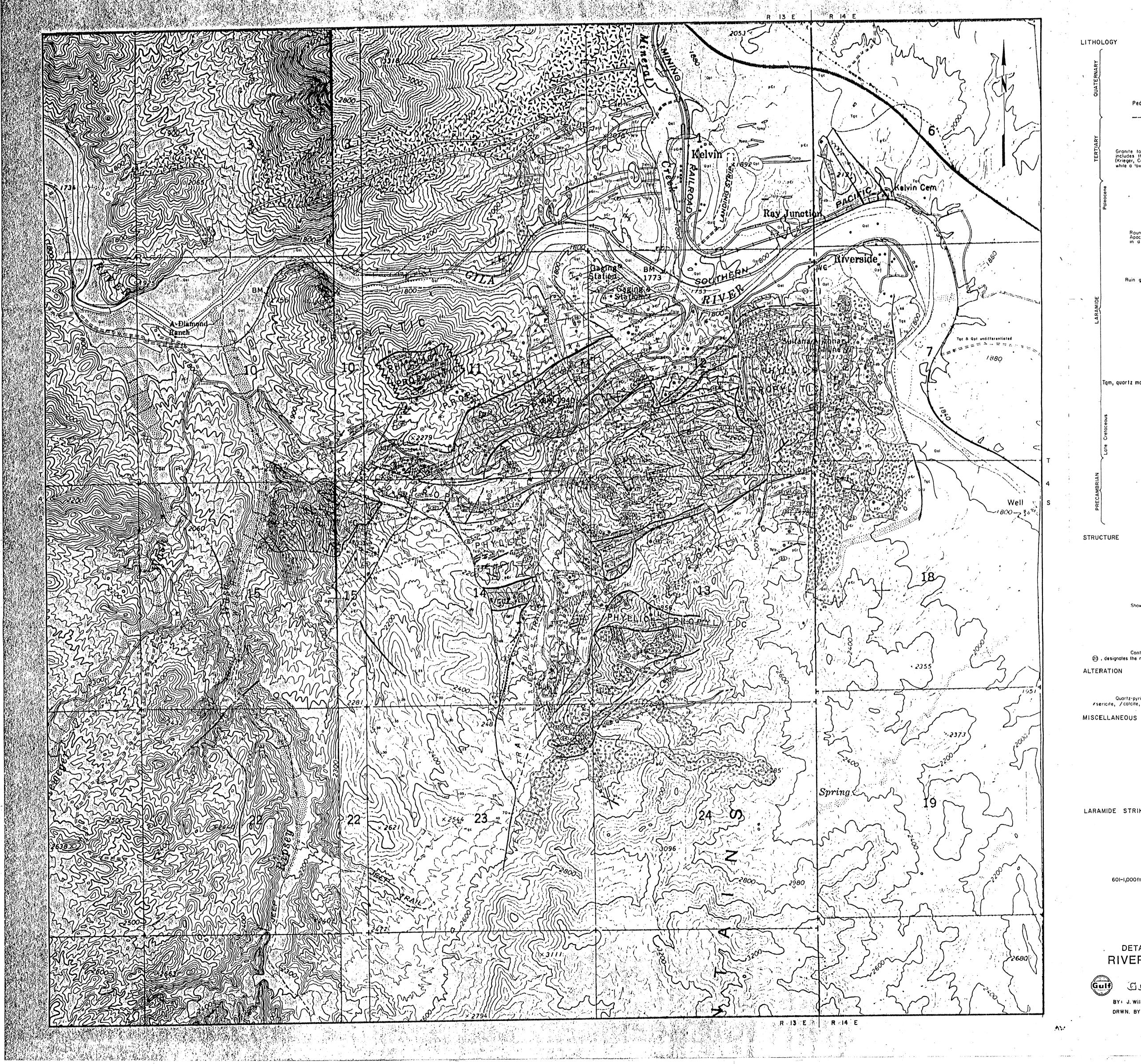
Geochemical rock-chip traverse

Drill hole location

Geochemical rock-chip sample of vein

LARAMIDE STRIKE ROSETTE

601-1,000ft, strike segments of mineralized Laramide structures and dikes


FIGURE 12 Contoured geochemical distribution of copper (ppm) in selected vein and fault-vein samples

> DETAILED GEOLOGIC MAP OF THE RIVERSIDE (KELVIN) DISTRICT PINAL COUNTY, ARIZONA

Col eestwoeeA lotentki flud

BY: J. Wilkins, T.L. Heidrick, G.R. Wessel PROJ. NO. TAO 77-22 DATE: Oct. 1977 DRWN. BY: K.A.C.

EXPLANATION

LITHOLOGY Alluvium, sand, gravel, and boulders Pediment and river gravels and talus undifferentiated ----ANGULAR UNCONFORMITY----

Gila conglomerate
Granite to limestone pebble, cobble, and boulder conglomerates; includes the Big Dome and San Manuel formations undifferentiated (Krieger, Cornwall, and Banks, 1973). An upper tuff unit dates 14 and 17 my., while a lower tuff unit dates 17-18 and 24 my. (K-Ar method).

Teapot Mountain monzonite

Intrusion breccia
Round to angular fragments of Paleozoic limestones
Apache group sedimentary rocks, diabase, and Ruin granite
in a finely comminuated and recrystallized diabase groundmass

Crackle breccia
Ruin granite showing round to angular fragments with minor diabase

Tqlp Quartz latite porphyry dike

Thip Hornblende latite porphyry dike

Tam Tamp Tam, quartz manzonite; Tamp, quartz monzonite porphyry dike undifferentiated

> Thmp Hornblende monzonite porphyry

> > Tortilla quartz diorite

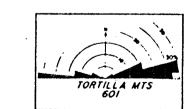
Ruin granite, aplitic facies stippled

STRUCTURE

Contact
Dashed where approximated, dotted where concealed

Fault Showing dip; dashed where approximated; dotted where concealed

inclined subvertical vertical


Quartz-pyrite vein

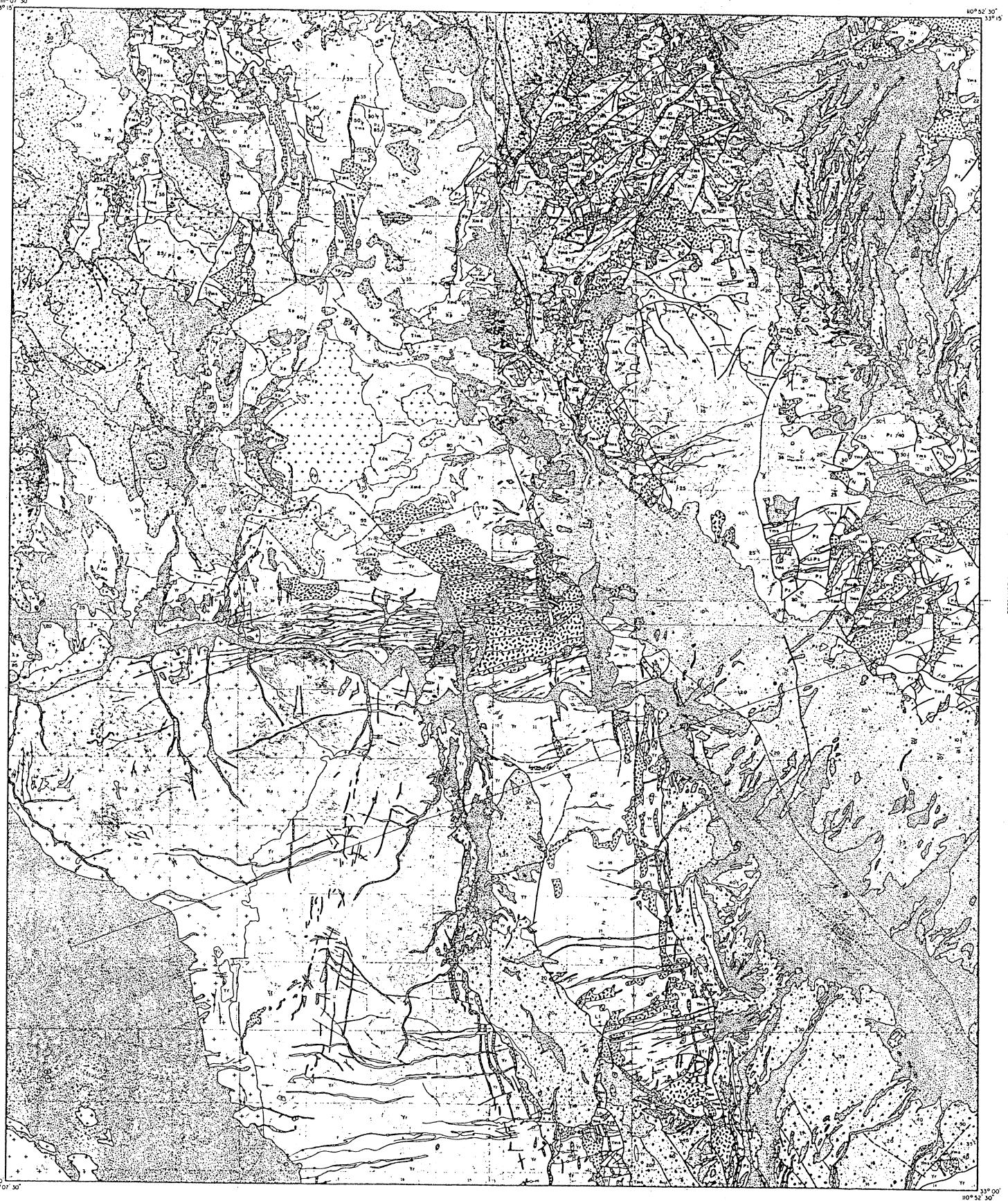
showing direction and amount of dip
Quartz-pyrite vein or joint coating containing the following accessory minerals:
#sericite, /calcite, /chlorite, o epidote, #black tourmaline rosette, \$\infty\$ specularite, \$\infty\$ magnetite

Geochemical rock-chip traverse Geochemical rock-chip sample of vein

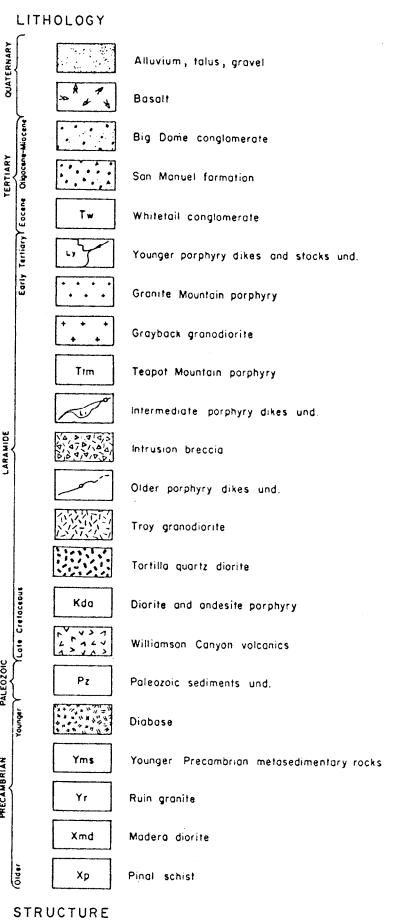
Drill hole location

LARAMIDE STRIKE ROSETTE

601-1,000ft. strike segments of mineralized Laramide structures and dikes


FIGURE 10. Alteration map.

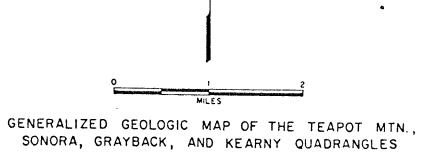
DETAILED GEOLOGIC MAP OF THE RIVERSIDE (KELVIN) DISTRICT



DRWN. BY! K.A.C.

.cd eestweelf litentli thed BY: J. Wilkins, T.L. Heidrick, G.R. Wessel PROJ. NO. TAO 77-22

EXPLANATION



⊕ ∕35 ∕56 ∕50 inclined, overturned, overturned-overturned (right)

Contact, dashed where approximate

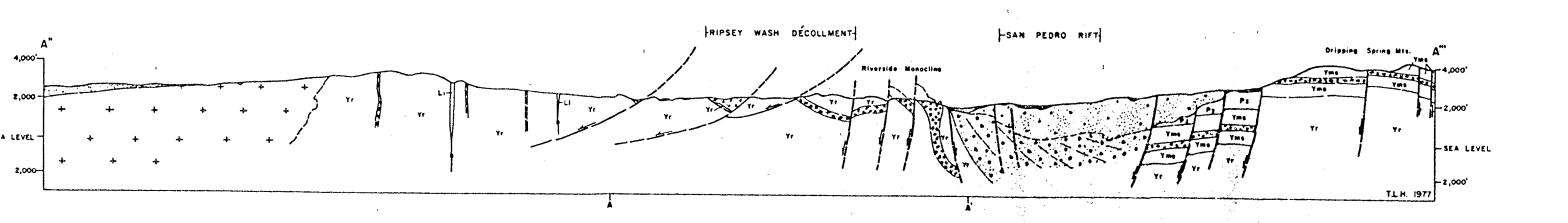
Fault, dashed where approximate, dotted where concealed

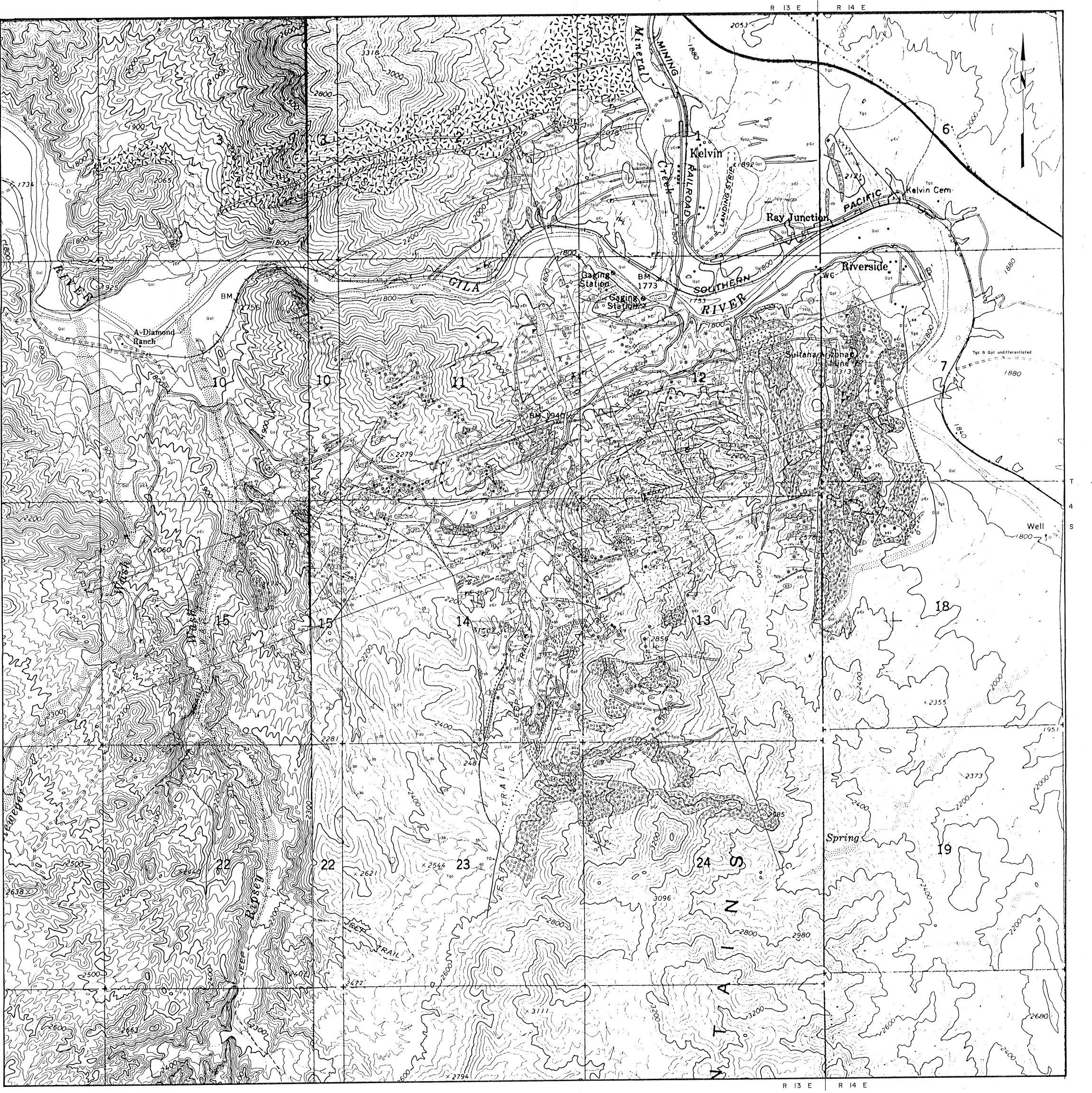
Strike and dip of foliation, showing bearing and plunge of lineation

RA, GRAYBACK, AND KEARNY QUADRANGLES

KELVIN PROJECT

GILA AND PINAL COUNTIES, ARIZONA


Gulf Mineral Resources Co.


Data from: Creasey, S.C., et al., 1974; Cornwall, H.R., et al., 1971;
Cornwall, H.R., Krieger, M.H., 1975

By: T.L. Heidrick

Proi no TAO 77-22

By: T.L. Heidrick Proj. no. TAO 77-22
Drwn by: K.A.C. Date: Nov., 1977

EXPLANATION LITHOLOGY Alluvium, sand, gravel, and boulders Pediment and river gravels and talus undifferentiated ----ANGULAR UNCONFORMITY----Gila conglomerate

Granite to limestone pebble, cobble, and boulder conglomerates; includes the Big Dome and San Manuel formations undifferentiated (Krieger, Cornwall, and Banks, 1973). An upper tuff unit dates 14 and 17 m.y., while a lower tuff unit dates 17-18 and 24 m.y. (K-Ar method). Tim Teapot Mountain monzonite Intrusion breccia
Round to angular fragments of Paleozoic limestones
Apache group sedimentary rocks, diabase, and Ruin granite
in a finely comminuated and recrystallized diabase groundmass · Crackle breccia
Ruin granite showing round to angular fragments with minor diabase Talp Quartz latite porphyry dike Thlp Hornblende latite porphyry dike Tqmp Tqmp Tqm, quartz monzonite; Tqmp, quartz monzonite porphyry dike undifferentiated Thmp Hornblende monzonite porphyry Tortilla quartz diorite Ruin granite, aplitic facies stippled STRUCTURE Strike and dip of beds Contact
Dashed where approximated; dotted where concealed Fault
Showing dip; dashed where approximated; dotted where concealed Fault breccia and gouge Continuous, planar J₁-set showing direction and amount of dip;

(2) , designates the number of J₁-surfaces encountered in a 10ft. traverse taken normal·to joint set ALTERATION Quartz-pyrite vein
showing direction and amount of dip
Quartz-pyrite vein or joint coating containing the following accessory minerals:
#sericite, /calcite, /chlorite, o epidote, *black tourmaline rosette, *psecularite, *pmagnetite MISCELLANEOUS Geochemical rock-chip traverse Geochemical rock-chip sample of vein Drill hole location LARAMIDE STRIKE ROSETTE 601-1,000ft. strike segments of mineralized Laramide structures and dikes DETAILED GEOLOGIC MAP OF THE RIVERSIDE (KELVIN) DISTRICT
PINAL COUNTY, ARIZONA

BY: J. Wilkins, T.L. Heidrick, G.R. Wessel PROJ. NO. TAO 77-22

DRWN. BY: K.A.C. DATE: Oct. 1977

.