

CONTACT INFORMATION
Mining Records Curator
Arizona Geological Survey
3550 N. Central Ave, 2nd floor
Phoenix, AZ, 85012
602-771-1601
http://www.azgs.az.gov
inquiries@azgs.az.gov

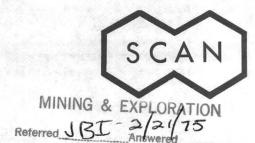
The following file is part of the Cambior Exploration USA Inc. records

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."


The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

HAIR from the desk of Donald L. Everhart 4/21/75 To Bruce Imswiler The attached is self-effanctory, Obviously we know nothing of this + hold no faitable briefs. Ple handle se you see fit.

COPIES TO: Mr. M.A. Upham

RECEIVED FEB 1 9 1975

File - Adm. - Com. - Loc. - Opt. - Eqp. - Prac.

Subject

TO Dr. D.L. Everhard

FROM Lionel A. York

DATE February 12th, 1975

SUBJECT Porphyry Type Copper prospect

I am forwarding the enclosed brief description of a base metal prospect located 15 miles from the Twin Butte deposits, as it could be of interest to you. Furthermore, your department would be more familiar with the area and might even have received a copy of the data submitted to me.

Best regards.

dionel

January 22, 1975

Gentlemen:

I am submitting the following brief details of a "Porphyry Type" copper prospect that I have an interest in.

This property is located 55 miles southwest of Tucson, Arizona and is approximately 15 miles from the Twin Butte open-pit mine deposits.

Two relatively shallow holes have been drilled. These holes intersected lead, silver and copper sulfide mineralization. Data includes assays, I.P., ground mag and geochem anomalies.

This property is in a favorable geological environment and should be thoroughly explored by a drilling program.

If your company is interested in a project of this type, please contact:

Steve Tima
2242 East Lincoln Drive
Phoenix, Arizona U.S.A.
85016
(602) 955-3535

Or I can be reached at (602) 887-3205 after 4:30 p.m. or on weekends.

Sincerely yours,

Leslie W. Lawrence 1349 West Kleindale Road Tucson, Arizona U.S.A.

85705

March 3, 1975

Mr. Steve Tima 2242 East Lincoln Drive Phoenix, Arizona 85016

Dear Mr. Tima:

I am in receipt of a letter from Leslie W. Lawrence of Tucson indicating that you are the person to contact regarding a porphyry copper prospect located approximately 55 miles southwest of Tucson and 15 miles from the Twin Buttes Mine. If you have any reports or other summary data regarding this prospect, I would be happy to review this material and return it to you.

Very truly yours,

J. Bruce Imswiler Manager of Exploration

Western U.S.A.

:btr

Liberty Project 400' Array 2510 Line "C" +600 EAST OF LINE "A" 1:13 I STATION 9.5 1840 600 2.28 325 240 Fence @ A 700 1.94 230 190 10.2 1000 2050 255 1.98 1880 10.3 Prospects @ 1400 ± 1400 192 1800 9.3 235 1.30 1480 140 Prospects @ 122-23 1.47 2200 210 7.0 225 2350 2600

		Line "D)	400' Array					
				±950' EAST OF Line "C"					
STATION	工	۵V	1.P.	1.P.	9				
600	1940	245	2.14	8.7	325	A700 € Section Corne			
1000	2200	200	1.58	7.9	230	7615			
1400	1720	190	1.38	7.3	280	*			
1800	1770	172	1.01	5.9	245	×			
2200	2040	160	1.06	6.6	195				

Liberty Project 100'Arras
Line'C' Detail Survey

	4	4	
1'	2	0.	-
0	٠.	/	
-	/		
1			

STATION	エ	ΔV	1. P.	1.P.	P	
8+50	1020	290	.82	2.8	179	Fence @ 17too
9 +50	1660	525	2.06	3,9	199	
10 +50	1440	555	1.62	2.9	242	
11 +50	960	3 90	1.36	3.5	255	
12 +50	1100	465	1.62	3.5	265	
13 +50	1200	560	2.03	3.6	2.93	
14 +50	1070	400	1.60	4.0	235	
15 +50	1360	520	1.68	3.2	240	
16+50	1000	3/5	.82	2.6	198	
	4		X		F + -A 9	
100'	Array	Lin	e "F"	200	o' west e	F'C'

100	Hrray	Lin	er	200	o west e	of C
STATION	I	△V	1.P.	11P	P	
16+50	780	340	. 88	2.6	274	Prospects @ 16+50±
15+50	910	455	1.84	4.01	314	Fence @ =7+00
14 +50	830	290	1.18	4.1	219	
13 +50	690	388	1.46	3.8	353	
12 +50	920	445	1.78	4.0	311	Prospect @ All+10
11 +50	970	375	1.28	3.4	243	
10 t50	720	308	.91	3.0	269	
9 +50	1370	340	1.46	4.3	156	

4						
2510	1	iberry	Projec Line 7		o'West	400 Arrag
STATION	I	ΔV	1. P.	48	P	1070 0770
600	1900	200	2.00	10.0	265	A700 @ Fence
1000	1700	240	2.60	10.8	355	
1400	1820	195	17.4	8.9	270	*
1800	2180	260	2,50	9.6	300	
2200	2180	190	1.60	8.4	220	
2600	1700	83	.70	8.4	120	
3000	30/0	146	. 74	5.1	120	
			ine "B"	400'	Arrap	
± 80	o' West o	F Line A"			<u> </u>	
STATION	工	ΔV	1. P.	1.P.	J	
600	1350	250	1.52	6.1	465	Fence @ A 700
1000	1490	260	2.68	10,3	440	Dike @ A1000
1400	1960	260	2.74	10.6	330	
				1		•

9.1

1.37

.55

2510			Line Y)''		
STATION	工	ΔV	1.P.	1. P.	£	
200N	1815	227	2.20	9.7	314	
2005	1350	223	1.86	83	415	
6005	1530	285	1.88	6.6	468	
9						
				-		
	Manage of the state of the stat					

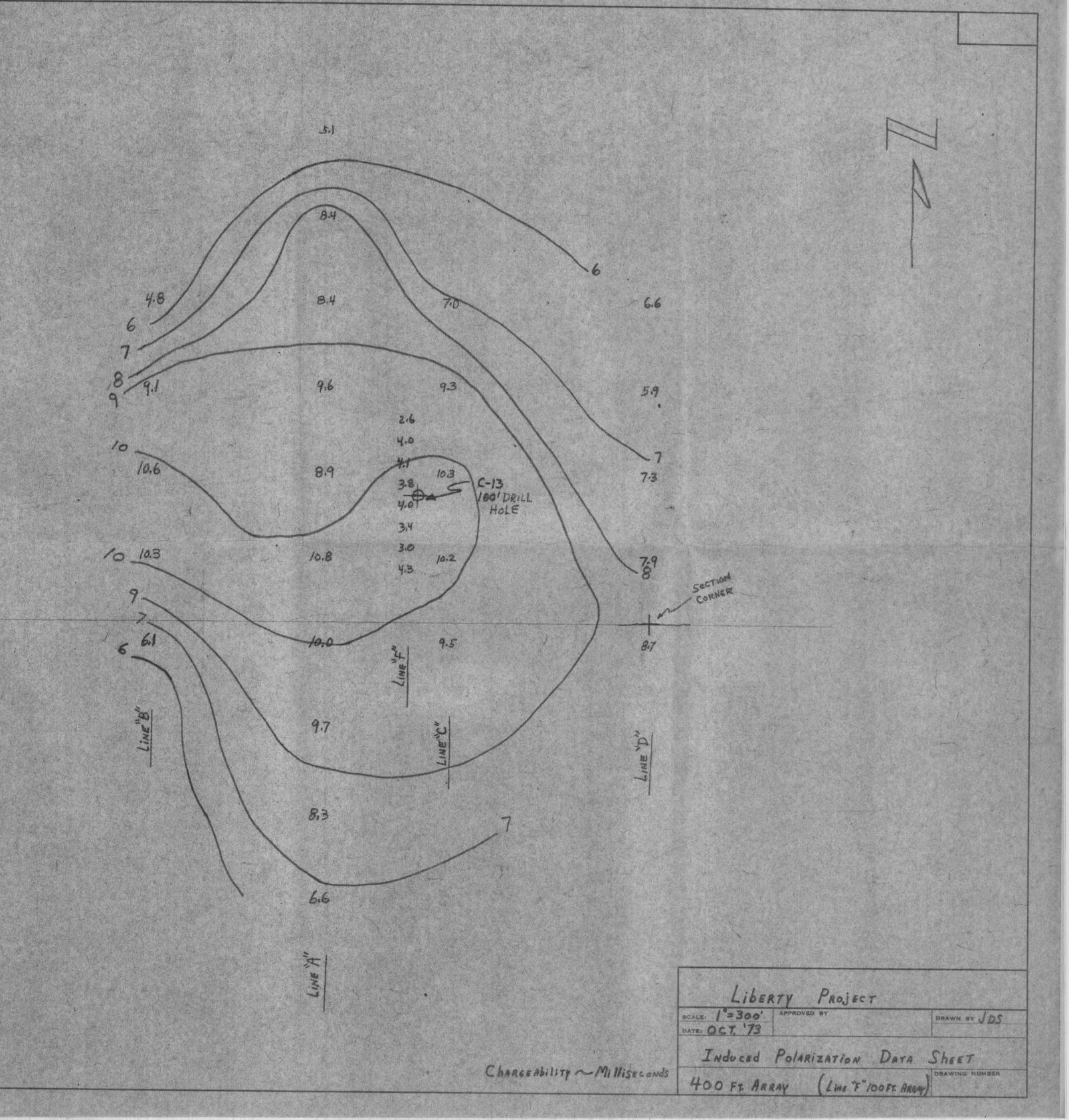
2510	400' A rra	į.	Line E	"	300' EAST	cf "A"
STATION	工	DV	1. P.	1.P.	9	•
600	1540	200	1.25(?)	6.3	326	DIL & Fence
1000	800	104	.82 (?)	7.9	326	High Noise Today
1400	1100	108	1.07(3)	10.0	2 46	
1800	1580	177	1.26(?)	7.1	281	
2200	1000	82	.64(?)	7.8	206	
•				= "		

International Minerals & Chemical Corporation 390 Freeport Blvd, Suite 12 Sparks, Nevada

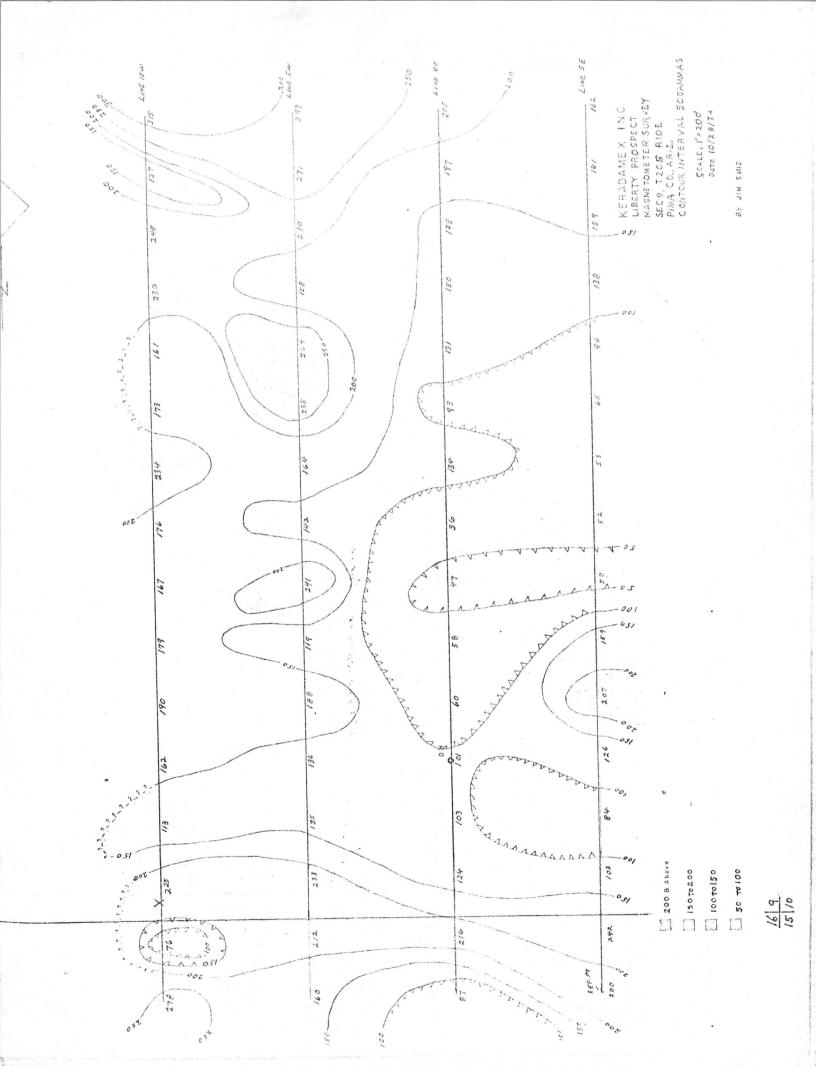
Dear Mr. Imswiler,

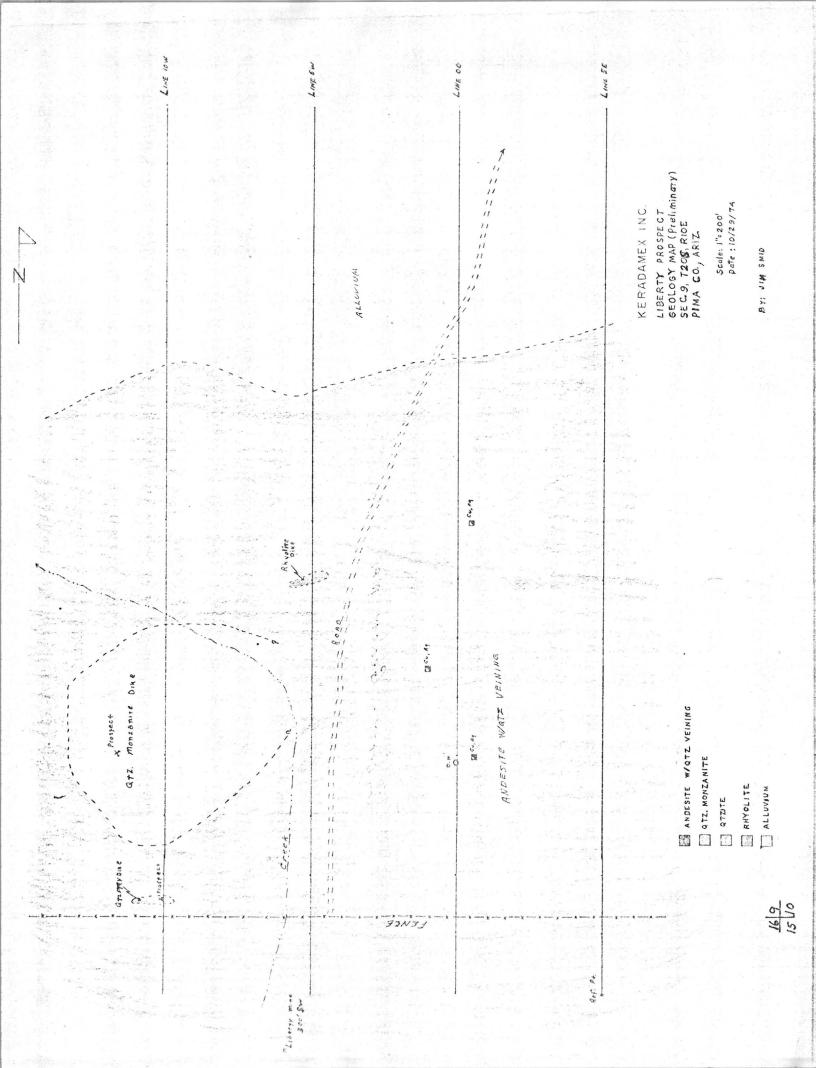
In reference to your letter of March 3rd 1975, we are enclosing the data on the Liberty project.

This copper-silver prospect has a greater potential than the anomalus area that is presented here, as we control only a small portion of the mineralized area.


Thank you for letting us present this information.

Yours truly,


Leslie W. Lawrence


1349 West Kleindale Road

Tucson, Arizona 85705

DIETZGEN MASTER FORM 198MF PRINTED ON DIETZGEN 198M AGEPROOF VELLUM

PHONE (602) 296-9073

7526 EAST PALMA TUCSON, ARIZONA 85710

R.10E. T.20S.

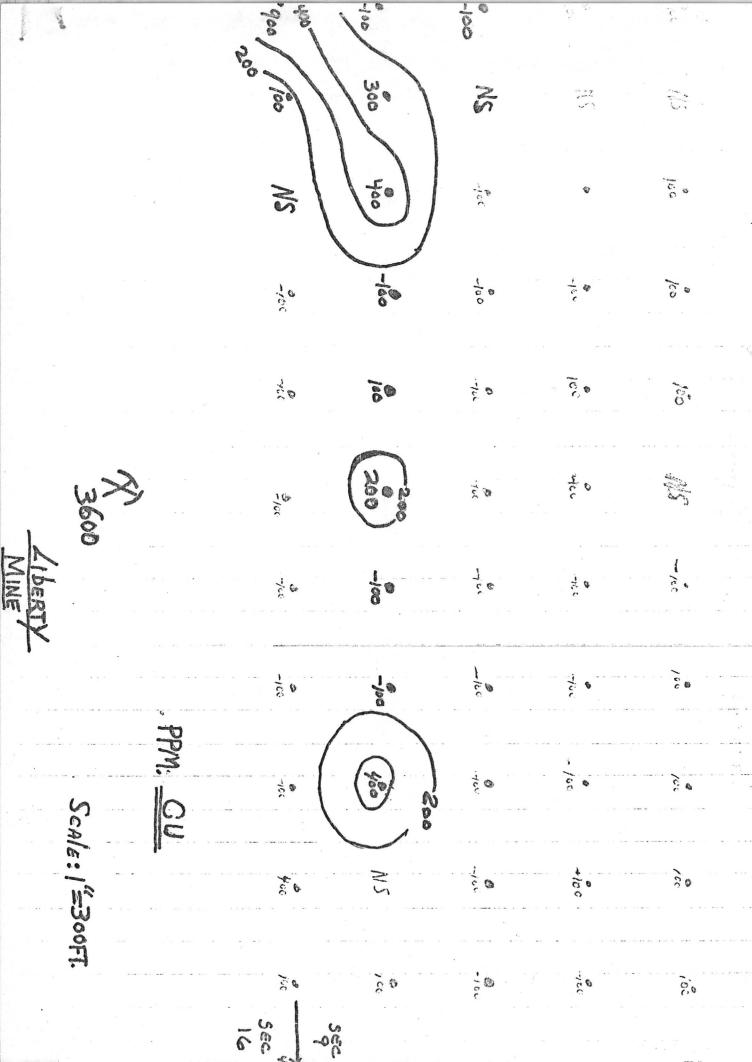
Pulla Con MRIZENA

Liberty PRoject

Tima Prospect Assay

Interval	Total Cu%	I	nterval	Total Cu%
1	.09	-	27	01
2	.01		28	01
4	01		29	01
5	01		30	01
6	01		31	01
7	01		32	01
8	01		33	01
9	01		34	01
10	.04		35	01
11	.01		38	01
1.2	.04		39	.01
13	.01		40	~.01
14	.01		41	01
16	.04	•	42	01
17	01		43	.01
18	01		44	.01
19	.02		45	01
20	.01		48	.01
21	01		49	.01
22 23	.04		51	.01
24	.03	1.0	52	.01
	01		53	.01
25	01		55	01
		4 8	56 57	.01
			58	.01
			59	.01
			60	.36
			00	•30

51 samples @ \$1.50


Total: \$76.50

Please remit to:

C.R. Caviness

Box AR

Parker, Arizona 85344

Mariposa Spectrographic Laboratory

CHARGES: \$5.00 LAB NO. 20904

\$5.00 Telephone 966-2591

Date 8/3/73 PM

SUBMITTED BY:

Qualitative Spectrographic Analysis

Star Route, Mariposa, California 95338

Mr. James Sorrell 438 W. Columbia Tucson, Arizona 85714 ELEMENTS FOUND AND ESTIMATED PERCENTAGE RANGE OF CONCENTRATION

SAMPLE MARK

Liberty #9

	VEIN. SAM	PLES							
_	ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %
	Aluminum	0.03	0.10	Lithium			Thallium		· ·
	Antimony	2.0	4.0	Magnesium	0.04	0,12	Thorium		
	Arsenic	0.01	0.05	Manganese	.008	0.04	Tin		
	Barium	.0007	。003	Mercury	0.01	0,05	Titanium	.0006	.002
	Beryllium			Molybdenum	•0006	•002	Tungsten		
	Bismuth	•006	0.02	Nickel	.0004	.0008	Uranium		-
	Boron			Osmium			Vanadium	.008	0.04
	Calcium	.002	.008	Palladium			Zinc	0.20	0.40
	Cadmium	•008	0.04	Phosphorus			Zirconium		
	Cesium			Platinum Not det	ected in	sample	RARE EARTHS:		
	Chromium	tine over base tists	•0004	Potassium	-		Cerium		
	Cobalt	.0004	.0007	Rhenium			Dysprosium		
	Columbium			Rhodium			Erbium		
	Copper	0.40	0.80	Rubidium			Europium		
	Gallium	Best data (vit) (vita	•002	Ruthenium			Gadolinium		
	Germanium			Scandium			Holmium		
	Gold	. •=== pus sici-dos	.0015	Silicon (as Si02)	50.0	70.0	Lanthanum		
	Hafnium			Silver 20 oz.	0.03	0.10	Neodymium		
	Indium			Sodium			Praseodymium		
	Iridium			Strontium			Samarium		
	Iron	4.0	8.0	Tantalum			Ytterbium		
	Lead	3.0	6.0	Tellurium			Yttrium		
		74-	- 4-			ı		. 1	

Remarks: Percentages not shown in this report to equal 100% are largely due to sulphur, due to the presence of sulphide minerals.

percent to ton (2,000 lbs.)

1.0% = 20.0 Lbs. AVOIR.

0.10% = 2.0 Lbs. AVOIR.

0.01% = 3.2 oz. AVOIR

0.001% = 0.32 oz. AVOIR. 0.0001% = 0.032 oz. AVOIR.

Respectfully Submitted

(Spectrographer)

MARIPOSA SPECTROGRAPHIC LABORATORY

Mariposa Spectrographic Laboratory

CHARGES: \$5,00 Star Route, Mariposa, California 95338
Telephone 966-2591

Date 9/2/73

LAB NO. 20206 SUBMITTED BY:

Qualitative Spectrographic Analysis

Mr. James Sorrell 438 W. Columbia Tucson, Arizona 85714 AND ESTIMATED PERCENTAGE RANGE OF CONCENTRATION

SAMPLE MARK

Liberty #9

VEIN SAMPLES											
ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %			
Aluminum	3.0	6.0	Lithium			Thallium					
Antimony	0.10	0,30	Magnesium	0.20	0.40	Thorium					
Arsenic	v		Manganese	•005	0.01	Tin					
Barium	.001	.006	Mercury	0.03	0.10	Titanium	0.01	0.06			
Beryllium			Molybdenum	.0007	.003	Tungsten					
Bismuth	.002	.007	Nickel	.0004	.0008	Uranium					
Boron			Osmium			Vanadium	0.10	0.30			
Calcium	0.08	0,20	Palladium			Zinc	0,40	1.0			
Cadmium	.002	.005	Phosphorus			Zirconium		i.			
Cesium			Platinum Not det	ected in	n sample	RARE EARTHS:		,			
Chromium	.0006	.002	Potassium	0.03	0,10	Cerium					
Cobalt	.0004	.0007	Rhenium			Dysprosium					
Columbium			Rhodium			Erbium					
Copper	0.20	0.40	Rubidium	-		Europium					
Gallium	.002	•006	Ruthenium			Gadolinium					
Germanium			Scandium			Holmium					
Gold Below dete	ction 1	imit	Silicon (as Si02)	70.0	85.0	Lanthanum					
Hafnium			Silver (12 oz.)	0.02	0.06	Neodymium					
Indium	-		Sodium			Praseodymium					
Iridium			Strontium	•0006	•002	Samarium					
Iron	3.0	6.0	Tantalum			Ytterbium					
Lead	0.5	1.5	Tellurium		,	Yttrium					

Remarks: This sample is principally composed of Quartz, along with Pyrite, Limonite, unidentified minerals containing Vanadium and Aluminum, Galena, Sphalerite.

Respectfully Submitted

percent to ton (2,000 lbs.)

1.0% = 20.0 Lbs. AVOIR.

(Spectrographer)

0.10% = 2.0 Lbs. AVOIR. 0.01% = 3.2 oz. AVOIR

0.001% = 0.32 oz. AVOIR. 0.001% = 0.032 oz. AVOIR. MARIPOSA SPECTROGRAPHIC LABORATORY

Mariposa Spectrographic Laboratory

CHARGES: \$5.00

LAB NO. 21493

Mr. James Sorrell

438 West Columbia

Tucson, Arizona 85714

SUBMITTED BY:

Star Route, Mariposa, California 95338 Telephone 966-2591

Date 10/15/73 PM

Qualitative Spectrographic Analysis

ELEMENTS FOUND AND ESTIMATED PERCENTAGE RANGE OF CONCENTRATION

SAMPLE MARK

(Liberty A-8, 75 ft.)

CORE

ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %	
Aluminum	4.0	10.0	Lithium	.008	0.02	Thallium			
Antimony			Magnesium Mg0	3.0	7.0	Thorium			
Arsenic			Manganese	0.03	0.10	Tin	.008	0.04	
Barium	.002	ø008	Mercury			Titanium	0.10	0.30	
Beryllium	-		Molybdenum			Tungsten			
Bismuth			Nickel	.0007	.003	Uranium			
Boron			Osmium			Vanadium	.002	.006	
Calcium as CaO	4.0	10.0	Palladium			Zinc 250 orwa	0.01	0.04	
Cadmium			Phosphorus			Zirconium			
Cesium		3	PlatinumNot dete	cted in	sample	RARE EARTHS:			
Chromium	.0008	.004	Potassium	0.03	0.10	Cerium			
Cobalt	.0007	003،	Rhenium			Dysprosium			
Columbium	-		Rhodium			Erbium			
Copper TSPPM	.005	0.01	Rubidium			Europium			
Gallium	.002	•008	Ruthenium			Gadolinium			
Germanium			Scandium			Holmium			
Gold Not detec	ted in s	ample	Silicon (as SiO2)	40.0	60.0	Lanthanum			
Hafnium			Silver /ppm	.00008	.0003	Neodymium			
Indium			Sodium	0.5	1.5	Praseodymium			
Iridium			Strontium	.002	.008	Samarium			
Iron	4.0	8.0	Tantalum			Ytterbium			
Lead /40 ppm	• 0 08	0.02	Tellurium		,	Yttrium			

Remarks: See letter.

percent to ton (2,000 lbs.)

1.0% = 20.0 Lbs. AVOIR. 0.10% = 2.0 Lbs. AVOIR.

0.01% == 3.2 oz. AVOIR

0.001% = 0.32 oz. AVOIR, 0.0001% = 0.032 oz. AVOIR.

Respectfully Submitted

(Spectrographer)

MARIPOSA SPECTROGRAPHIC LABORATORY

Mariposa Spectrographic Laboratory

CHARGES: \$5.00 LAB NO. 20204

SUBMITTED BY:

Star Route, Mariposa, California 95338 Telephone 966-2591

Date 9/2/73

Qualitative Spectrographic Analysis

Mr. James Sorrell 438 W. Columbia Tucson, Arizona 85714 ELEMENTS FOUND AND ESTIMATED PERCENTAGE RANGE OF CONCENTRATION

SAMPLE MARK

I-QV

	Vein SA	MP/E			A MANAGEMENT OF THE PARTY OF TH	processor remains and the state of			
-	ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %
	Aluminum	.0007	•003	Lithium			Thallium		
	Antimony	0.5	1.5	Magnesium	.001	•006	Thorium		
	Arsenic			Manganese	.002	800ء	Tin	-	
	Barium	.0006	.002	Mercury	0.01	0.06	Titanium	.0006	.002
	Beryllium			Molybdenum	•0004	.0007	Tungsten		. 151
	Bismuth	ens consigning	.003	Nickel	ento-garà ciste	.0004	Uranium		
	Boron			Osmium			Vanadium	.001	.006
	Calcium	0,20	0.40	Palladium			Zinc	0.20	0.40
	Cadmium	.002	.008	Phosphorus			Zirconium		
	Cesium			PlatinumNot dete	cted in	sample	RARE EARTHS:		,
	Chromium			Potassium			Cerium		
	Cobalt	600 0.0 610	.0004	Rhenium			Dysprosium		
	Columbium			Rhodium		,	Erbium		
	Copper	0.5	1.5	Rubidium			Europium	9	
	Gallium			Ruthenium			Gadolinium	,	
	Germanium			Scandīum			Holmium		
	Gold Below det	ction 1	imit	Silicon (as Si02)	80.0	90.0	Lanthanum		
	Hafnium			Silver (25 oz.)	0.05	0.15	Neodymium		
	Indium			Sodium			Praseodymium		
	Iridium		-	Strontium			Samarium		
	Iron	2.0	5.0	Tantalum			Ytterbium		
	Lead	0.40	0.80	Tellurium		-	Yttrium		

Remarks: This sample is principally composed of Quartz, along with Pyrite, Tetrahedrite, Galena, and Sphalerite. Source mineral of Mercury is uncertain, but may be the Sphalerite.

Respectfully Submitted

(Spectrographer)

MARIPOSA SPECTROGRAPHIC LABORATORY

percent to ton (2,000 lbs.)
1.0% = 20.0 Lbs. AVOIR.

0.10% = 2.0 Lbs. AVOIR.

0.01% = 8.2 oz. AVOIR 0.001% = 0.32 oz. AVOIR. 0.0001% = 0.032 oz. AVOIR.

Mariposa Spectrographic Laboratory

Star Route, Mariposa, California 95338 Telephone 966-2591

Date 9/2/73

CHARGES: \$5.00 LAB NO. 20207 SUBMITTED BY:

Mr. James Sorrell

438 W. Columbia

Qualitative Spectrographic Analysis

ELEMENTS FOUND AND ESTIMATED PERCENTAGE RANGE OF CONCENTRATION

SAMPLE MARK

Liberty #16

Vein SAMPles

Tucson, Arizona 85714

•	ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %	ELEMENT	Not Less Than %	Not More Than %
	Aluminum Antimony Arsenic Barium Beryllium Bismuth Boron Calcium as Ca0 Cadmium Cesium Chromium Cobalt Columbium Copper Gallium	Less	More	Lithium Magnesium Manganese Mercury Molybdenum Nickel Osmium Palladium Phosphorus Platinum Not det Potassium Rhenium Rhodium Rubidium Ruthenium	Less Than % .001 0.05 .005	More Than % .006 0.15 .008 0.01 .0004	Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Zinc Zirconium	Less	More
	Germanium Gold Hafnium Indium Iridium Iron Lead	1.0	3.0 40.0	Scandium Silicon (as Si02) Silver (700+01) Sodium Strontium Tantalum Tellurium	10,0 2,0 0,03 ,002	30.0 4.0 0.10 .008	Lanthanum Neodymium Praseodymium Samarium Ytterbium Yttrium		

Remarks: See letter.

percent to ton (2,000 lbs.)

1.0% = 20.0 Lbs. AVOIR.

0.10% = 2.0 Lbs. AVOIR.

0.01% = \$.2 oz. AVOIR

0.001% = 0.32 oz. AVOIR. 0.0001% = 0.032 oz. AVOIR.

MARIPOSA SPECTROGRAPHIC LABORATORY

Respectfully Submitted 2/1

(Spectrographer)

ARIZONA TESTING LABORATORIES

A DIVISION OF CLAUDE E. McLEAN & SON LABORATORIES, INC. 817 WEST MADISON ST. PHOENIX, ARIZONA 85007

PHONE 254-6181

For: Mr. Steve Tima

2242 East Lincoln Drive Phoenix, Arizona 85016 Date: Feb

February 11, 1974

Lab. No.: 6127

Sample:

Ore

Marked:

100', 1-26-74

Received:

2-8-74

Submitted by: same

Liberry

DRIII Hole

REPORT OF LABORATORY TESTS

Silver =

less than 1 ppm

Copper =

65 ppm

Lead =

310 ppm

Respectfully submitted,

ARIZONA TESTING LABORATORIES

Claude E. McLean Jr.

Liberry Project

C L & E CORPORATION Copper Basin Project ASSAY REPORT

Date 1/8/74

Page No. 1

Tima P

		5	15	14	L	12	11	0	(0)	တ	.~.)	9	5	4	, u	12	þl	
	19	18	. 17	16	14	13	12	11	10	9	00	7	6	Ġ	4	2	þ	Sample #
	. Sterman														-			
	Section 10	-1	2	<u></u>	1	1	1	1	Н	Н	1.	1	-]	1	-1	-1	H	Ppm ppm
	GIG COLLE	- Ball-official																
	ar transce.																	
l	ω 4	(3)	32	<u>ω</u>	30	29	28	27	26	25	24	23	22	21	20	19	18	
	39	33	35	34	33	32	31	30	29	28	27	25	24	23	. 22	21	20	Sample #
-	F-TT272.0	Lindbark																
		 	1	L	-1	-1	-	5	30		-1	Ļ	-1	<u> </u>	-1	H	5	Ag ppm
				3			,											
-														2,				•
-																		•

C L & E CORPORATION
CODPET Basin Project
ASSAY REPORT

Project Program

Time P

Date 1 / 8 /74

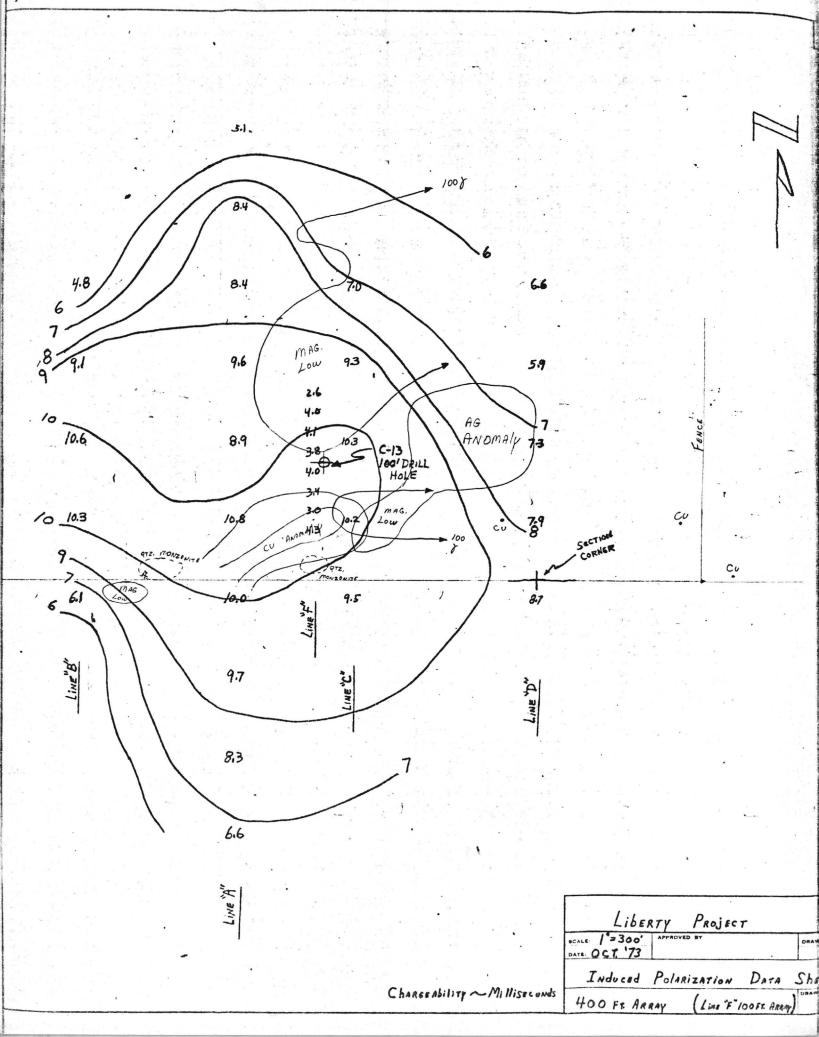
Page No. 2

						•				1	rage No.	7
a aumanta	Sample #		A.3.				tek pand					
-127	07.	2704 1004	2	FOLKOU KASEL		Bateringsman			SERVICION			Bernauman
m N	41	To California and California	7	- The Care and American								
3,1	4.2		-1									CT-266 - 17-12-12-12-12-12-12-12-12-12-12-12-12-12-
! '	43		13						ļ			
<u></u>	77.7		33				<i></i>					
705	45	-	-1	ı								and the state of t
17.17	43		-1									
42	49		М				and an arrangement					
107	51	- Annual Control	-				J 2222222					
777	52	. K 9 gar-0001	2				N. Tro amount - ma					
777	53		H		- actualization		L					
- 5	55	A MARKET TOOK	Н		-		a Ira assau					
77	• •		1			Common contract	L. marin					
727	57		7			PRESENTATION OF	-					
. 57	58		7		W. ANDROOM OF		Jarnese .					
	59	·	r-1			-101-201-2		th, marinmacao				
iri	09	(*********************************	1,000			mann.	distance		Tan Managaga	C.h. 40 Makesiones	- T-1-1-1-1-1-1	
- 5-16-1							1				*	

	20-1	24 23	3 ⊙	% %⊙ %⊙	Ω ₀
	3⊙	220	270-1	0	<u>S</u> 0
	.04	NO	220-	30-1	ერ⊙ %
3503	50	200	∑© 30	14 14 13 33	230
SO 1600	თ ⊙ •	50	S S	€ (3) 3	9
	704	@ _	5-1⊙	200	8.0
0 80	∞⊙	70 6	520 -	20	630
RM. Ag	90	5.0	⊙. - 33 34	20 N 80	30
ocation o or Taken		04	3;⊙	60	G.
	्रहेळ र			0	

SOUTHWESTERN ASSAYERS & GREATSTS, Ing.

REGISTERED ASSAYERS


FELIX K. DURAZO
ARIZONA REG. NO. 8205
WIL WRIGHT
ARIZONA REG. NO. 5875

P.O. BOX 7517 TUCSON, ARIZONA 85725 710 E. EVANS BLVD. PHONE 602-294-5811

Lawrence Exploration Company

JOB# 015232 RECEIVED 2-9-74 REPORTED 2-12-74

				REPORTED_		+
SAMPLE GOLD NUMBER CZ.*	SILVER XXXPPM	LEAD PPM	COPPER PPM	ZINC .		MOLYBDENUM %
Liberty-C-13: D.H.						
10-20	1	286	42			
	2	300	48			
20-30	1	250	32			
30-40	2	500	21	*		
40-50	1	660	37			
50-60	< 1	105	43			
60-70	< 1	242	12			
70-80	1	178	11			
80-90	1	150	11			
90-100	< 1	130				
		,				
	,					
				-		
	*	EGISTERE	ASSANTA			
		E 82	205 70			
	-	FELL	RAZO		-	
. *	13	11 - 12 60	-15/59			
		OGN	U. S. n	72/		-
		Tona	0.0			
			1	1	1	J

KEUFFEL & ESSER CO.

681.51

GEOLOGY OF THE CERRO COLORADO MINING DISTRICT PIMA COUNTY, ARIZONA

by

Richard D. Jones

A Thesis
submitted to the faculty of the
Department of Geology

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in the Graduate College, University of Arizona

1957

Approved:

Director of Thesis

Date

ABSTRACT

The Cerro Colorado mining district is located in southeastern Pima County, Arizona, 50 miles from Tucson.

Volcanic rocks and some sedimentary rocks of unknown age and correlation are exposed within the district. Quartz latite porphyry, as flows or shallow intrusives, and sandstone and arkose are the oldest rocks. These are overlain by a younger series, consisting of limestone, conglomerates, and andesite porphyry flows, breccias, and agglomerates.

Structures of the district include major east-west faults having strike slip movement, northeast, northwest, and north-south faults, a northward trending syncline, and an arcuate arrangement of quartz porphyry dikes and sills. Dike rocks of miscellaneous other compositions are also present. The arcuate structure suggests the presence of an upward thrusting underlying intrusion, but the structure may be due to deflection of the dikes along major fault trends.

Mineralization in the district is confined to narrow quartz veins with infrequent sulphide mineralization. Total production, largely argentiferous tetrahedrite and galena, was \$316,000.

Future Possibilities

It is not likely that ore deposits of any appreciable size will be found in the Cerro Colorado mining district in the near future. The extensive prospecting which has been carried out in the district since the early days has undoubtedly uncovered any mineral deposits which are exposed at the surface. Other deposits, however, may be concealed beneath the thin cover which overlies much of the district. With the largely residual soil, and the thinness of the overburden in most places, it would seem likely that geochemical prospecting techniques are best suited for finding any shallow mineral deposits remaining.

It is possible that ore deposits do exist at some considerable depth, perhaps in or about the source from which the volcanics were derived. Structural conditions not unlike those in this district have localized ore deposits elsewhere in the southwestern United States. Although the surface mineralization is rather sparse, it may be that erosion has not cut deeply enough to expose more intense mineralization. Until such time that methods are devised for exploration at great depths, the district is not a good ore possibility.