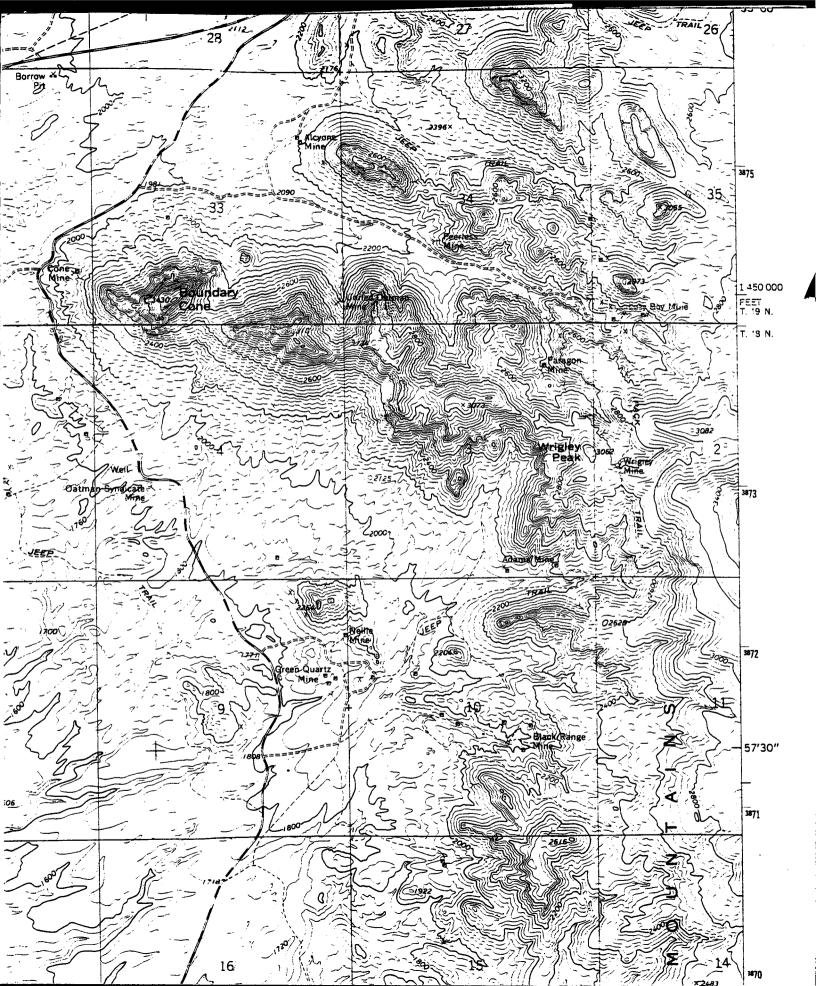


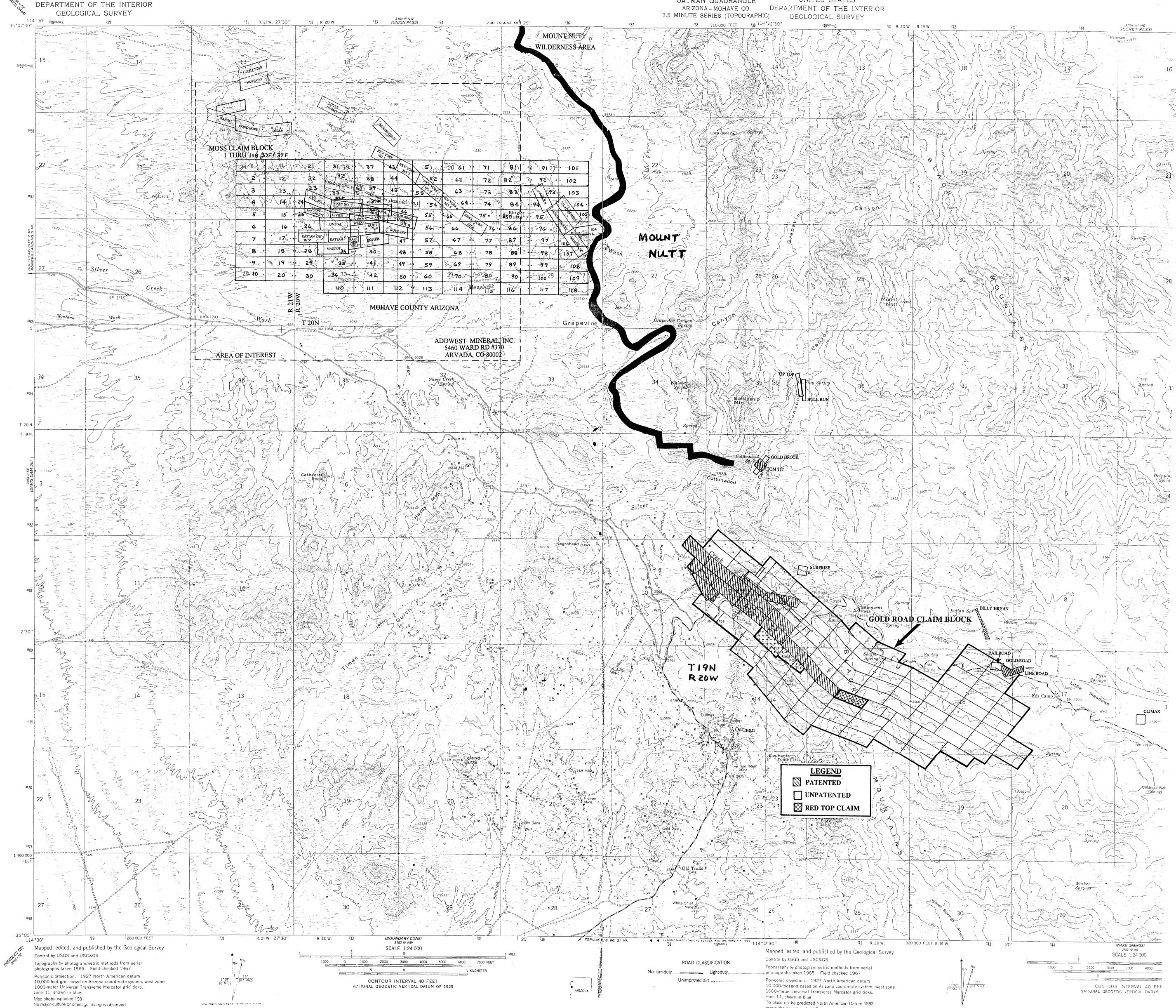
CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 3550 N. Central Ave, 2nd floor Phoenix, AZ, 85012 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the Cambior Exploration USA Inc. records

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.


CONSTRAINTS STATEMENT


The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

OATMAN QUADRANGLE

HTM GRID AND 1967 MAGNETIC MODTH

UNITED STATES

UNITED STATES

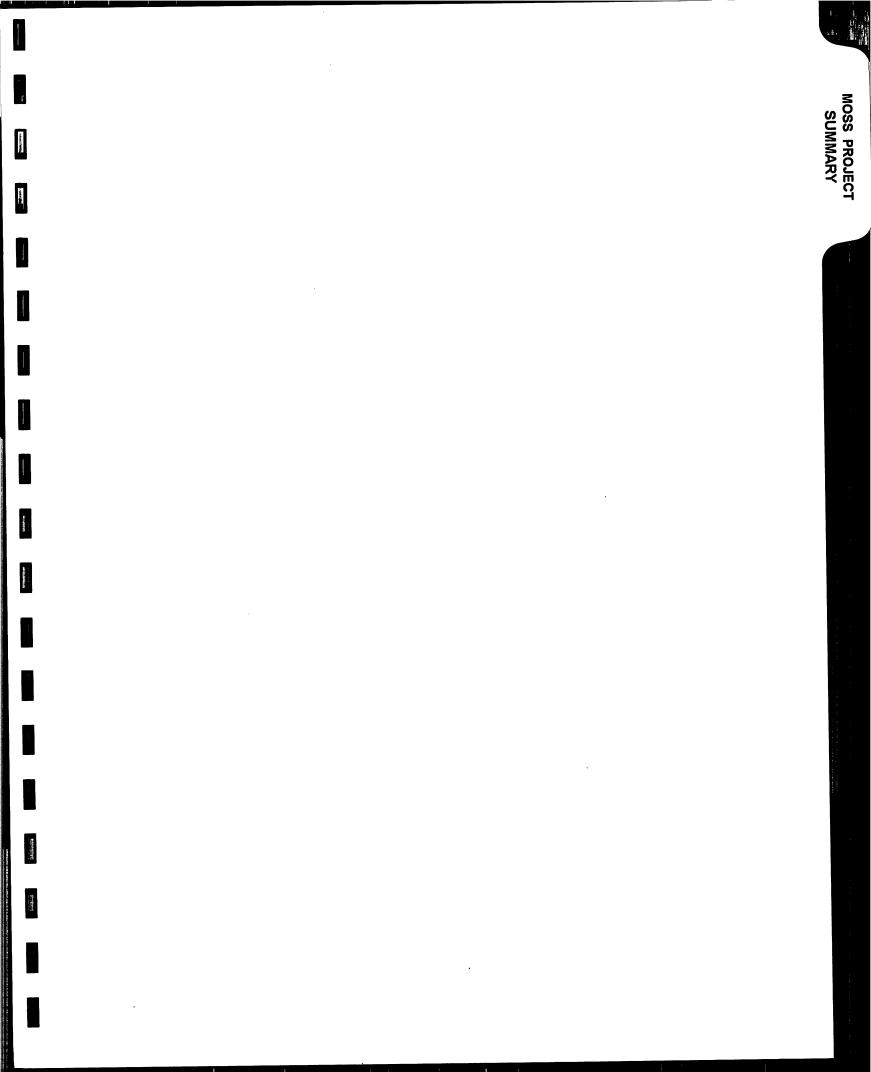
MOSS PROJECT SUMMARY

ł

MOHAVE COUNTY, ARIZONA

ADDWEST MINERALS, INC. MOSS PROJECT

TABLE OF CONTENTS


MOSS PROJECT SUMMARYSec	tion	1
-------------------------	------	---

MOSS PROJECT AUTHORIZATION FOR EXPENDITURE, BUDGET, AND DRILL PLAN......Section 2

MOSS PROJECT MAGMA COPPER 1992 REPORT.....Section 3

MOSS PROJECT MINTEC 1992 RESERVES FOR MAGMA COPPER.....Section 4

MOSS PROJECT ADDWEST MINERALS' RESOURCE CALCULATIONS......Section 5

MOSS PROJECT SUMMARY

MOHAVE COUNTY, ARIZONA

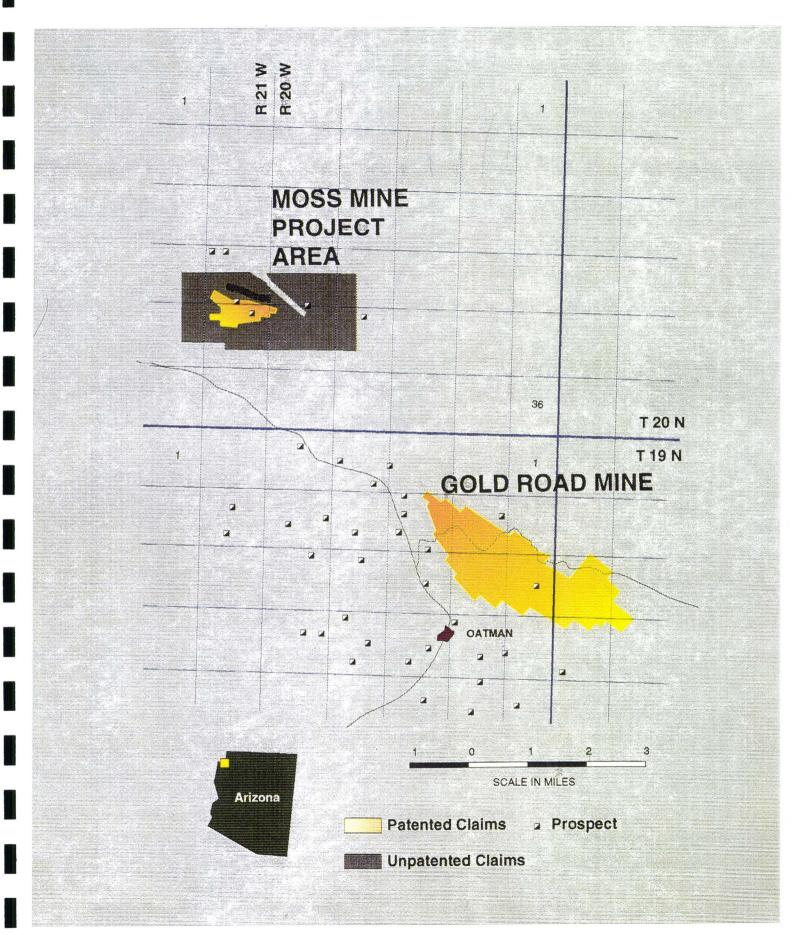
MOSS PROJECT SUMMARY MOHAVE COUNTY, ARIZONA

INTRODUCTION

The Moss Mine Property, acquired by Addwest Minerals in late 1994, is located in the San Francisco Mining District in Mohave County, Arizona approximately 10 miles east of Bullhead City (Figure 1). Addwest Minerals' Gold Road Mine is located approximately 6 miles to the southeast of the Moss Property. The Moss Property contains potential for minable gold reserves that may be exploitable by open pit and heap leach methods.

RESOURCE ESTIMATE

73700


A total of 26,480 feet of drilling has been completed on the Moss Property by various companies between 1981 and 1993. This drilling, which is by no means definitive, has delineated an in-situ resource of 7,414,000 tons at a grade of 0.038 opt gold containing 281,732 ounces. A preliminary open pit resource of 2,996,000 tons averaging 0.044 opt Au with a 1.96:1 stripping ratio can be estimated from the existing data. This resource estimate was calculated by Mintec Inc. for Magma Copper in 1992.

The mineralized zone is open along strike and at depth (Figures 2 & 3). The existing drilling is wide spaced away from the area where the open pit resource was estimated. Addwest's own preliminary estimates of potential resources, based on cross-sectional polygons and manual cross-sections, also indicates that a potential for 6.5 to 7.2 million tons at average grades ranging from 0.037 to 0.044 opt Au exists along strike of the area that has been drilled.

The deposit is open-ended along strike and at depth. Additional drilling internally and along strike has a good chance to increase resources and delineate minable reserves of gold. There are also other good targets on Addwest's large property holdings that have excellent exploration potential.

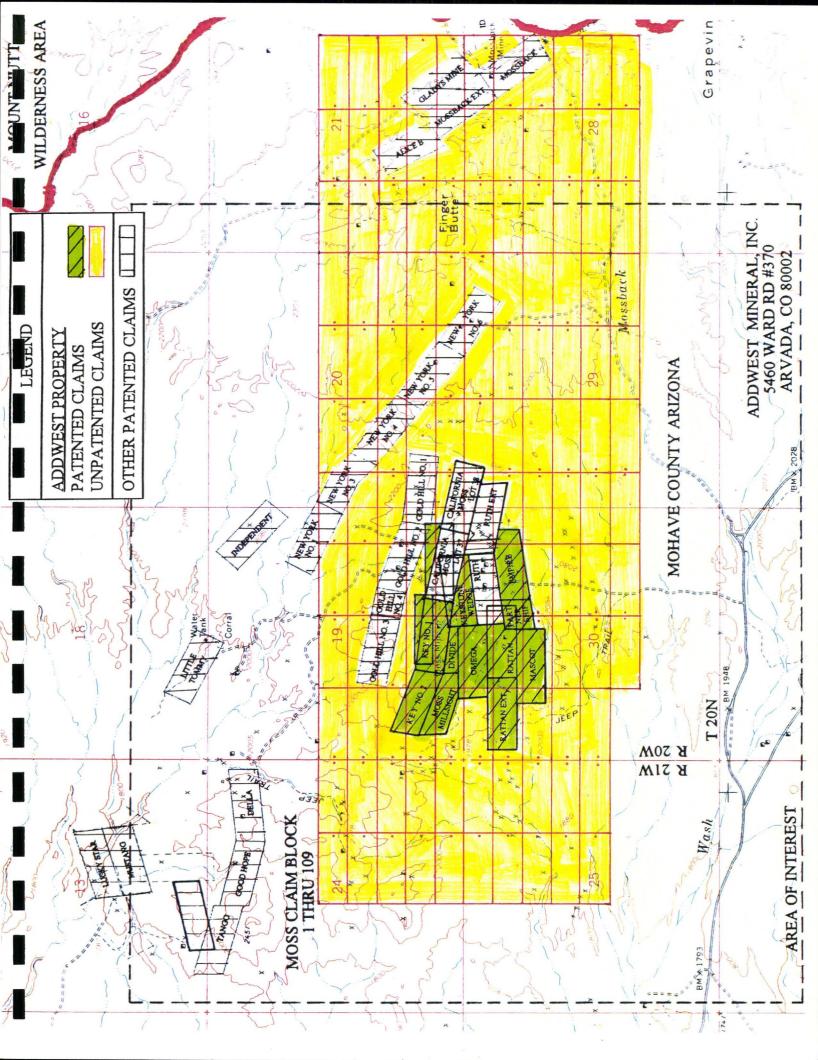
LOCATION AND ACCESS

The Moss Mine Property is located in Mohave County, Arizona, approximately 8 miles east of Bullhead City, Arizona and Laughlin, Nevada and 28 miles southwest of Kingman, Arizona. The village of Oatman, Arizona is approximately 5 miles to the southeast of the property. The Moss Mine is approximately 8 road miles from Addwest Minerals' Gold Road Mine. Access to the property is by a well-maintained two-lane graded county road to within less than a mile to the property, and then by one-lane graded road. The project area is characterized by arid hills between 2,000 and 2,700 feet above sea level.

FIGURE 1

PROPERTY DESCRIPTION

The Moss Mine property is centered around 11 patented lode mining claims totaling approximately 200 contiguous acres optionee from Greg Gintoff. Addwest Minerals is in the process of negotiating for several additional patented claims nearby within the prospective area of interest. Offers have been made on some of these parcels and their acquisition appears eminent. Addwest has staked the surrounding area with 120 additional lode mining claims for a total property package of approximately 2,200 continuous acres currently staked or under option to purchase agreement.


The Terms of the option to purchase the Moss Property patented claims acquired to date calls for a work commitment of \$150,000 in 1995. These patented claims are covered by a total Net Smelter Royalty (NSR) of 3.5% to 4%. In July, an advanced royalty payment of \$50,000 is due and in August another purchase payment of \$50,000 against the final purchase price of one of the claims is due. In addition, monthly payments totaling \$8,000 for 1995 (\$6,000 remaining) will need to be paid.

PROJECT HISTORY

The Moss Mine was the first mine discovered in the San Francisco Mining District. Colonel John Moss, stationed at nearby Camp Mohave, made the initial discovery and conducted the first mining in the district. Approximately 12,000 ounces of gold were reported to have been produced from near the surface in those early days of operations. Since that time, considerable intermittent exploration and development has been carried on, little ore has been mined. Most of the activity in the district since the turn of the century has centered around Oatman and Gold Road where up to 2,000,000 ounces have been produced since 1900, when the Gold Road Vein was discovered.

In more recent years, the property has been leased by Billiton Minerals from 1989 through 1992. Between 1990 and 1991, Billiton drilled 79 shallow air-track rotary holes totaling 13,115 feet. Samples from this drilling was of low quality as were the assaying methods, which only went to two decimal places of accuracy. However, this drilling gave good indications of the presence of gold mineralization.

Magma Copper subleased the property from Billiton in 1991-1992 and drilled 22 reverse circulation holes totaling 10,207 feet. Magma also did surface geologic and alteration mapping and surface sampling at the property. Magma also had Mintec, Inc. prepare computer-generated resource estimated based on the available drilling. This estimate indicated an in-situ resource of 7,414,000 tons at 0.038 opt Au using a 0.02 opt cutoff. An estimated pit resource using 0.02 opt cutoff resulted in 2,996,000 tons at 0.044 opt Au with a 1.96:1 strip ratio or 131,824 ounces. Magma also drilled a fan of three holes to test an area of surface silicification approximately 1,200 feet west of the Moss Mine deposit. These three holes encountered low grade

mineralization throughout the first 300-400 feet. Magma elected to terminate the project in 1992 because their limited drilling did not delineate a minable reserve large enough to satisfy their corporate policy.

Golconda Resources acquired an option on the property and drilled 19 shallow reverse circulation holes for a total of 3,058 feet in 1993. Most of these holes were located within known mineralized areas and they contained good ore intercepts. However, several of these holes were too shallow and ended in mineralized zones. Golconda was unable to make property payments and lost the property late in 1994.

Addwest Minerals' personnel had recognized the potential at the Moss Mine for several years but the property was unavailable or had too many tiers of ownership. When the property became available in late 1994, and a decent acquisition deal was negotiated, Addwest optioned the property and staked additional claims.

GEOLOGY AND MINERALIZATION

The area of the Moss Mine is underlain by Tertiary volcanic rocks of rhyolitic, latitic and basaltic composition. These volcanic rocks are intruded by at least two granitic to dioritic intrusions. The most important intrusion, because it is host to most of the known mineralization, is called the Moss Porphyry. The Moss Porphyry is concentrically zoned, consisting of a granodiorite core enclosed by quartz monzonite with an outer monzodiorite contact margin. The Moss Porphyry is considered to be closely equivalent to the Gold Road Latite, one of the major host rocks at Gold Road, based on its composition and similar age.

The Moss Porphyry is generally characterized by varying degrees of chloritic alteration which imparts a greenish tint to outcrops though limonite development and bleaching occur locally particularly in the southern part of the prospect area. Pervasive silicification is dominant along the Moss Vein and to the area to the west of it. Stockwork quartz veining is present particularly just south of the vein, on its hanging wall side.

Throughout the district, numerous quartz and quartz-carbonate-pyrite veins have been the focus of exploration. The Moss Vein is the most significant expression of mineralization and is traceable on the surface for over 3,500 feet. The vein is hosted mostly by the Moss Porphyry and has been emplaced on a relatively steep (50 to 80 degrees) south dipping structure. The vein system consists of a quartz vein up to 15 feet thick on the footwall of the structure with, locally, a calcite vein of similar dimensions present at the hanging wall contact of the quartz or as a separate vein several feet into the hanging wall. Stockwork quartz veinlets occur for up to several hundred feet into the hanging wall. The mineralization and geochemistry is consistent with a epithermal origin for the deposit.

Gold mineralization occurs within the vein structures. The highest grades mineralization

3

MOSS PROJECT Generalized Geologic and Drill Hole Map

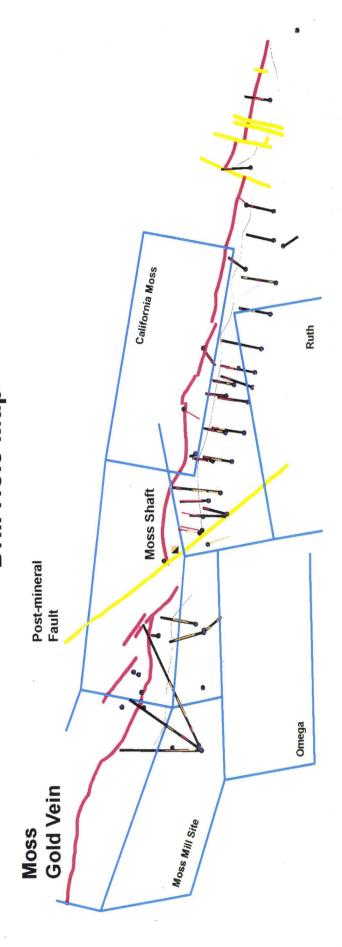
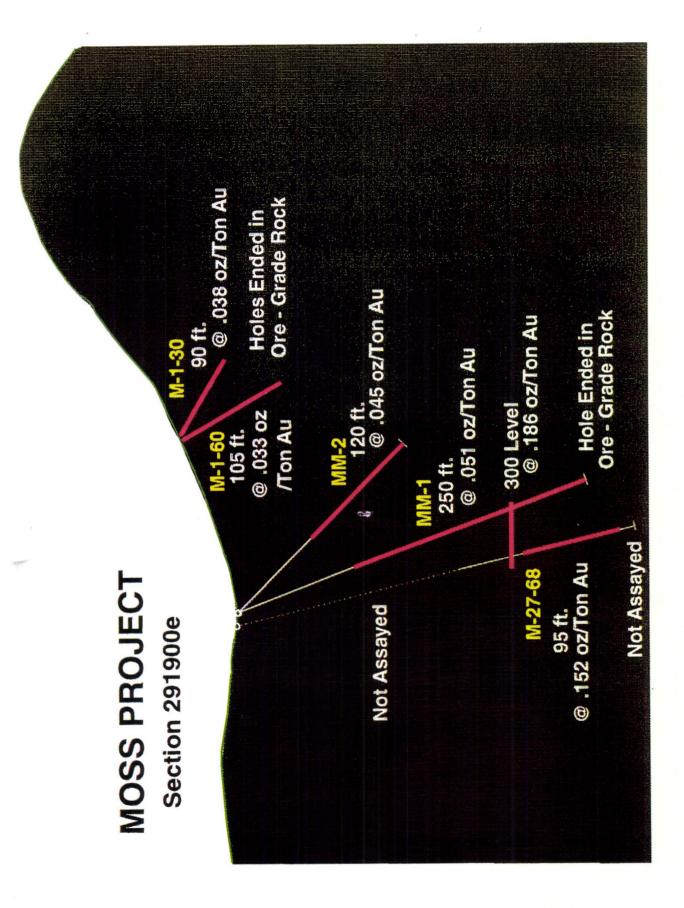



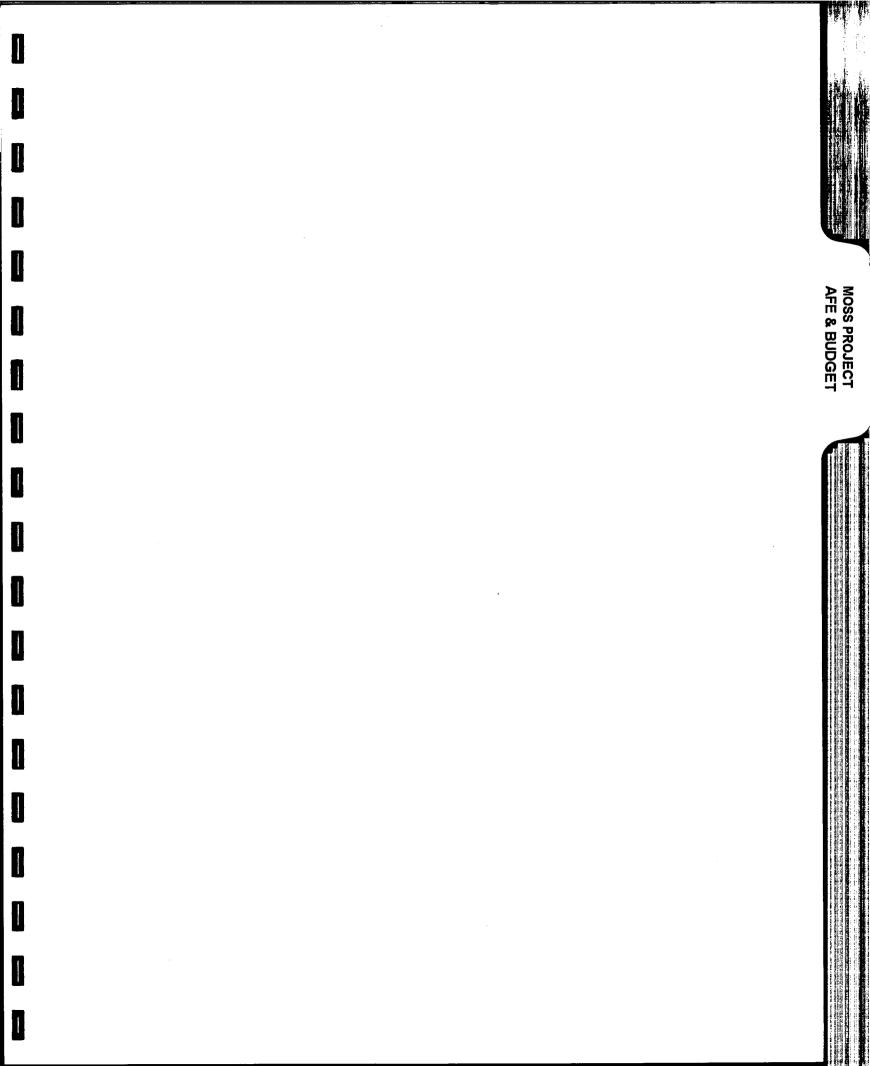
FIGURE 2

1

appear to be associated with the carbonate phase of vein growth. Stockwork zones commonly contain ore grade mineralization as well.

METALLURGY

Two groups of metallurgical tests have been conducted for the Moss Property prior to Addwest acquiring the project. The first was on cuttings from Billiton's drill holes and from bulk ore samples collected from an adit on the California Moss No. 1 claim. The second group consisted of bottle roll tests on material taken from some of Magma's drill holes.


Gold recoveries from Billiton's bottle roll tests of bulk ore was 42% after 96 hours. Recoveries from cuttings from Billiton's drilling ranged from 53% to 78% and those from Magma's holes ranged from 78% to 88%.

In 1995, Addwest Minerals conducted cyanide shake and bottle roll tests on drill cuttings collected by Magma and Billiton's drilling programs. The 6 cyanide shake tests averaged 87% recovery of gold and the bottle roll tests averaged 61% gold recovery.

SUMMARY AND CONCLUSIONS

Preliminary estimates indicate that a resource of over 7 million tons may exist on the Moss Property in near surface deposits. Drilling could delineate a minable reserve on the property with a total potential of 500,000 to 1,000,000 in-situ ounces of gold. An attractive possibility of reserves at the Moss property is that higher grade portions of the deposit could be trucked to the Gold Road Mill and be processed more efficiently than by heap-leach methods.

An exploration drilling program is required to determine the true economic potential of the Moss property. An exploration program totaling approximately \$560,000, including property payments, should give the information necessary to determine if the Moss property has economic potential.

MOSS PROJECT

1996 BUDGET, AUTHORIZATION FOR EXPENDITURES, AND DRILL PLAN

AUTHORIZATION FOR EXPENDITURE

January 11, 1996

RE: Moss Gold Project

The Moss Gold Property is located in Mohave County, Arizona approximately 7 miles from the Gold Road Mine. The property, held by Addwest through leases and claims, is in an advanced exploration stage and requires additional work to determine whether the project area contains an economically viable deposit.

<u>GOAL:</u> The Moss Project requires additional geologic evaluation including drilling, trenching, metallurgical studies, geochemical exploration, and mapping to determine if a minable ore body exists on the Addwest property package. A work commitment of \$150,000.00 is still outstanding from 1995 on the leased portion of the property. The Lessors have agreed to postpone this work commitment until March 31 of 1996. A work Commitment of an additional \$150,000.00 is required by December 31, 1996 to retain the property.

The Proposed 1996 work program has been designed to obtain a maximum amount of information while satisfying the work commitments. An appropriate portion of this program can be completed before the March 31 deadline for the 1995 work commitment. This will give Addwest an opportunity to examine some of the new data before property payments are due in July of 1996 and before completion of the work commitment that is necessary to retain the property after 1996.

The additional work proposed for 1996, after the initial required work commitment expenditures, will be necessary to more completely determine the economic viability of the Moss deposit as well as explore other portions of the Addwest property package. Enough exploration and evaluation work has been designed into this program so that a decision to retain the property should be possible upon completion of the program

<u>WORK PROGRAM</u>: The planned 1996 work program for the Moss Property consists of approximately 12,000 feet of reverse circulation drilling, 4,000 feet of core drilling, surface trenching, assaying, surveying, geologic mapping ,and metallurgical studies around the area of the known mineralization on the Moss property. In addition, surface geochemistry, geophysics, and mapping are planned for the entire Addwest Moss property area. The data collected will help determine the probability of delineating minable gold reserves at the known deposit. This program will also determine if Addwest should plan additional work and make the required property payments (if the work is complete and evaluated by July of 1996 when the first large property payment is due). The proposal also covers evaluation of other properties in the area of interest that Addwest may wish to acquire.

<u>BUDGET:</u> A total budget of \$556,560.00 is proposed for the Moss Project in 1996. A detailed outline of this budget is attached. This budget covers drilling, trenching, assaying, supplies, contractors, and personnel costs and expenses to operate the exploration program, as well as covering all the necessary property payments and work commitments to retain the property into 1997. The budget also contains \$25,000.00 to acquire the California Moss Claim, which may contain the southeast extension of the Moss deposit.

Moss Project - Authorization For Expenditure Page 2

<u>CONCLUSION:</u> A \$150,000.00 work expenditure by March 31, 1996 is required to hold the Moss Property. The requested budget of \$566,560.00 satisfies that work commitment as well as the additional work commitment required in 1996 to hold the property. Expenditure of the total requested budget and completion to the planned exploration and evaluation programs should provide the information necessary to help determine if the Moss deposit can be economic and what work is required to develop the property.

The plan and expendatures can be implimented in such a way that after the satisfaction of the outstanding work commitment of \$150,000.00 due by April of 1996 (by spending approximately \$169,000.00 in a preliminary evaluation program), a decision can be made as to whether there is justification to proceed with the remainder of the \$566,560.00 program, Which includes land payments and additional exploration expendatures.

It is recommended that the budget be approved and the planned work started as soon as possible.

Recommended:

Alan Founie - Projects Manager

Approved:

Charles S. Williams - President Addwest Minerals, Inc.

Approved:

James R. Houston - Chairman of the Board Addwest Minerals, Inc.

Mile (12,000 Feet @\$5 00F1) \$72,000 00 \$51,750 00 \$51,000 00 \$	ITEM	COST	January	February	March	April	May	June	ylut	August	Sept.	-	Oct	Oct. Nov. Dec.
(105)(day*čidays) \$5,300.00 \$31,500.00 \$31,500.00 \$31,500.00 \$31,200.00 \$31,400.00 \$		\$72,000.00 \$3,500.00 \$7,500.00		\$36,000.00 \$1,750.00 \$3,750.00	\$36,000.00 \$1,750.00 \$3,750.00				•					
(4,000 Feet (@ \$25.00) \$10,000.00 \$31,2000 00 \$51,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,2000 00 \$1,400 00		\$6,300.00 \$89,300.00		\$3,150.00	\$3,150.00									
Standouting stration Standouti		\$100,000.00		\$33,000.00	\$50,000.00	\$17,000.00								
\$100,000 \$3,000.00 <th< td=""><td>Mob. & Standby Rig Supplies etc</td><td>\$3,000.00</td><td></td><td>\$1,500.00</td><td>\$2,500.00</td><td>\$1,000.00</td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td></th<>	Mob. & Standby Rig Supplies etc	\$3,000.00		\$1,500.00	\$2,500.00	\$1,000.00					<u> </u>			
(1,200 Gistrating) 55,000 00 514,400 00 51,500 00 514,400 00 51,500 00 51,4,400 00 51,500 00 51,4,400 00 51,500 00 51,4,400 00 51,500 00 51,200 00 51,500 00 51,200 00 51,500 00 5600 00 51,500 00 55,000 00 52,000 00 52,500 00 52,000 00 52,500 00 52,000 00 52,000 00 52,000 00 52,000 00 51,000 00 51,000 00 51,00	Total Core	\$108,000.00 \$6,000.00		\$3,000.00	\$3,000.00									
(j. 6:0) Sit, 4:00:00 Sit, 5:00:00		\$5,000.00		\$2,000.00										
\$7,500.00 \$7,500.00 \$2,400.00 \$2,400.00 \$2,500.00 <t< td=""><td></td><td>\$1,500.00 \$43,200.00</td><td></td><td>\$14,400.00</td><td></td><td>\$14,400.00</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>-</td></t<>		\$1,500.00 \$43,200.00		\$14,400.00		\$14,400.00						1		-
(60 days @ \$550/day) \$2,400.00 \$5,400.00 \$4,800.00 \$4,800.00 \$4,800.00 \$4,800.00 \$4,800.00 \$1,250.00 \$1,000.00		\$7,500.00			\$2,000.00	\$3,000.00	\$2,500.00							
F1,800.00 55,000.00 <t< td=""><td></td><td></td><td>\$2,400.00 \$500.00</td><td>\$6,400.00 \$1,250.00</td><td>\$6,400.00 \$1,250.00</td><td>\$4,800.00 \$1,000.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			\$2,400.00 \$500.00	\$6,400.00 \$1,250.00	\$6,400.00 \$1,250.00	\$4,800.00 \$1,000.00								
\$500.00 \$500.00 \$500.00 \$5,0		\$1,800.00 \$3,500.00	\$600.00		\$600.00	\$3,500.00								
Salaries \$220,000.00 \$5,000.00 \$1,000.00 \$1,000.00 <		\$500.00 \$6,000.00				\$500.00 \$6,000.00			1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			1		
Travel & Expenses \$25,000.00 \$5,000.00 \$1,500.00 \$1,500.00 \$1,500.00 \$1,500.00 \$1,500.00 \$1,500.00 \$1,500.00 \$250.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 \$21.000.00 <th< td=""><td></td><td>\$20.000.00</td><td></td><td></td><td></td><td>\$20,000.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-+-</td><td></td></th<>		\$20.000.00				\$20,000.00							-+-	
\$7,000.00 \$1,000.00 \$2,000.00			\$5,000.00 \$1,000.00	\$5,000.00 \$1,500.00	\$5,000.00 \$1,500.00	\$5,000.00 \$1,500.00	\$5,000.00 \$1,500.00							
\$4,800.00 \$4,500.00 \$51.000.00 \$51.000.00 \$51.000.00 \$51.000.00 \$51.000.00 \$51.000.00 \$11.655.00 \$51.050.00 \$105.00 </td <td></td> <td>\$7,000.00</td> <td>\$1,000.00</td> <td>\$2,000.00</td> <td>\$2,000.00</td> <td>\$2,000.00</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		\$7,000.00	\$1,000.00	\$2,000.00	\$2,000.00	\$2,000.00		-						
\$10,000.00 \$1,000.00 \$5,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$3,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$5,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$5,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$1,000.00 \$5,000.00 \$1,500.00 \$1,1550.00 \$14,550.00 \$1,000.00 \$1,050.00 \$10%. \$37,860.00 \$1,550.00 \$14,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$10%. \$37,860.00 \$1,550.00 \$14,550.00 \$1		\$4,800.00 \$1,500.00	-	\$800.00 \$250.00	\$800.00 \$250.00	\$800.00 \$250.00		\$800.00 \$250.00	\$800.00 \$250.00					
S3,000.00 S1,000.00 S1,050.00 S1,050.00 <t< td=""><td>PERMIT</td><td>\$10,000.00</td><td></td><td></td><td></td><td>\$5,000.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	PERMIT	\$10,000.00				\$5,000.00								
Total Drilling Expenses \$37,960.00 \$10,500.00 \$14,550.00 \$1,000.00 \$1,000.00 \$1,050.0	LEGAL	\$3,000.00			\$1,000.00	\$1,000.00							1	
Total Drilling Expenses \$373,600.00 \$10,500.00 \$11,695.00 \$11,695.00 \$17,050.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$17,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00 \$1,550.00<	SURVEYING	\$5,000.00	-		\$2,000.00	\$2,000.00	_						+	
(10%) \$37,960.00 \$1,050.00 \$	Total Drilling Expenses		\$10,500.00		\$141,550.00	\$91,450.00	\$17,050.00	\$1,050.00 #105 00	\$1,050.00 #105.00			Ш	b	00.00
\$50,000 \$50,000 \$12,000 \$12,000 \$12,000 \$12,000 \$12,000 \$12,000 \$125,0000 \$125,000 \$			\$1,050.00 \$11,550.00		\$155,705.00	\$9,145.00 \$100,595.00	\$18,755.00	\$1,155.00	\$1,155.00			\$0.00	+	\$0.00
<u>\$566,560,00 \$12,550,00 \$129,645,00 \$156,705,00 \$126,595,00 \$19,755,00</u>		\$137,000.00 \$149,000.00	\$1,000.00		\$1,000.00	\$1,000.00 \$25,000.00	\$1,000.00	\$1,000.00	\$50,000.00 \$1,000.00		\$1,000.00	\$1,000.00	(1)	\$1,000.00 \$1,000.00 \$1,000.00
		\$566.560.00	\$12,550.00	\$129	\$156,705.00	\$126,595.00	\$19,755.00	1		\$63,000.00	\$1,000.00	\$1,000.00		\$1,000.00

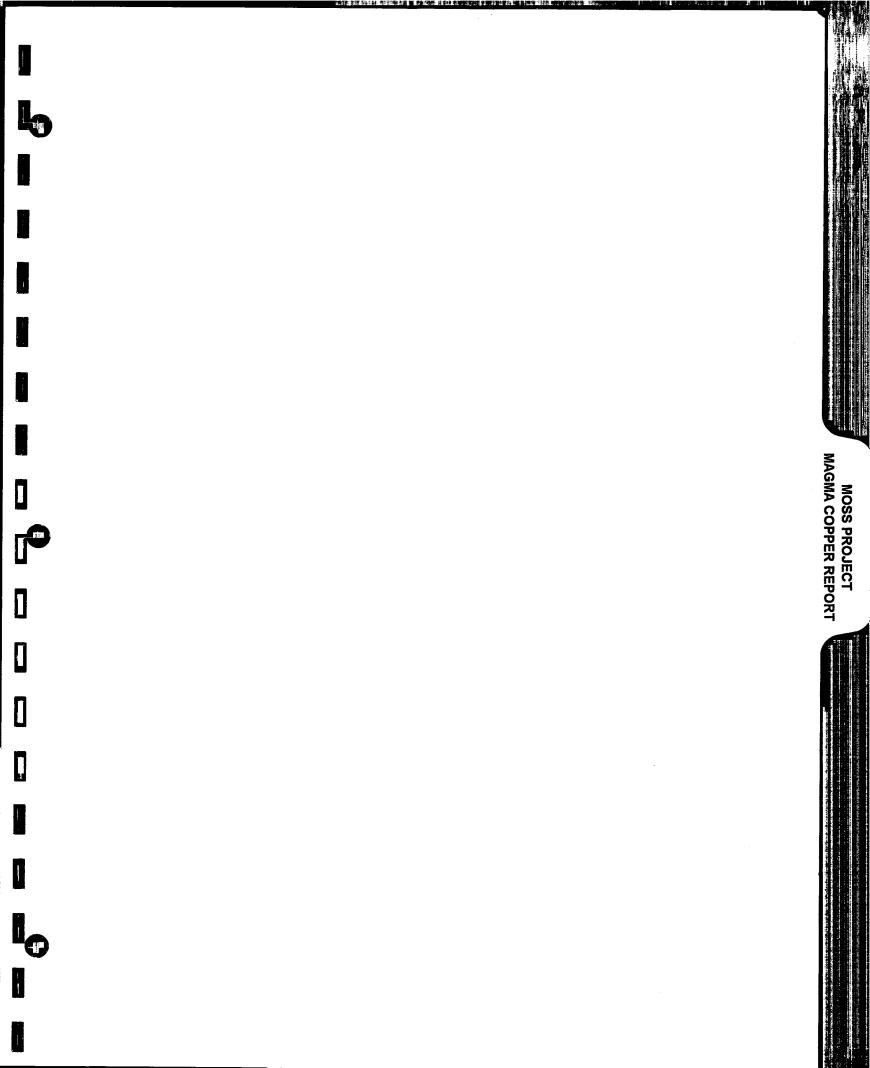
(still outetanding) \$150,000.00 \$150,000.00 \$500,000.00 Spent to Date \$20,000.00 Outstanding \$280,000.00

\$417,560.00

1996 PROPOSED DRILLING PROGRAM MOSS PROJECT, ARIZONA

Addwest Minerals, Inc.

Temp. Hole No.	Depth	Bearing		Northing	Easting	Legal Description
MP-1	200		VERT	1,492,400	291,500	SW,SW,SE, SEC. 19, T20N, R20W
MP-2	400	360	-60	1,492,010	291,550	same as above
MP-3	200	360	-75	1,492,282	291,550	same as above
MP-4	200		VERT	1,492,320	291,600	same as above
MP-5	200		VERT	1,492,270	291,600	same as above
MP-6	300	360	-60	1,492,100	291,600	same as above
MP-7	160	360	-60	1,492,285	291,650	same as above
MP-8 (CORE)	450		VERT	1,492,273	291,650	same as above
MP-9 (CORE)	420		VERT	1,492,187	291,650	same as above
MP-10	440		VERT	1,492,100	291,650	same as above
MP-11 (CORE)	400		VERT	1,492,250	291,700	same as above
MP-12	140	360	-45	1,492,250	291,700	same as above
MP-13	400		VERT	1,492,150	291,700	same as above
MP-14	400		VERT	1,492,250	291,700	same as above
MP-15	220	360	-60	1,492,190	291,800	same as above
MP-16	440	360	-65	1,492,040	291,800	same as above
MP-17 (CORE)	100	360	-60	1,492,320	291,850	same as above
MP-18	480	360	-65	1,492,020	291,850	same as above
MP-19	380	360	-65	1,492,127	291,250	SE,SE,SW, SEC. 19, T20N, R20W
MP-20 (CORE)	550	360	-65	1,491,935	291,900	SW,SW,SE, SEC. 19, T20N, R20W
MP-21	200	360	-60	1,492,193	291,900	SW,SW,SE, SEC. 19, T20N, R20W
MP-22				CANCELLED		
MP-23				CANCELLED		
MP-24				CANCELLED		
MP-25	240	360	-60	1,492,144	292,000	SW,SW,SE, SEC. 19, T20N, R20W
MP-26	160	360	-60	1,492,238	292,000	SW,SW,SE, SEC. 19, T20N, R20W
MP-27 (CORE)	500	360	-60	1,491,913	292,000	SW,SW,SE, SEC. 19, T20N, R20W
MP-28	· · · · ·			CANCELLED		······································
MP-29	200	360	-70	1,492,132	292,100	SE,SW,SE, SEC, 19, T20N, R20W
MP-30	130	360	-70	1,492,215	292,100	same as above
MP-31	160	360	-60	1,492,128	292,300	same as above
MP-32	280	360	-60	1,492,025	292,300	same as above
MP-33	400	360	-60	1,491,918	292,300	same as above
MP-34 (CORE)	180	360	-60	1,492,058	292,400	same as above
MP-35	250	360	-60	1,492,058	292,500	same as above
MP-36	380	360	-60	1,491,960	292,500	same as above
MP-37	520	360	-60	1,491,853	292,500	same as above
MP-38	220	360	-60	1,492,006	292,600	same as above
MP-39	180	360	-60	1,491,990	292,700	same as above
MP-40 (CORE)	100	360	-60	1,492,079	292,700	same as above
MP-41	170	360	-60	1,491,960	292,800	SW, SE, SE, SEC. 19, T20N, R20V
MP-42	130		VERT	1,492,085	292,800	same as above
MP-43	130	360	-60	1,491,985	292,900	same as above
MP-44	220	360	-60	1,491,885	292,900	same as above


MP-45	220	360	-60	1,491,915	293,000	same as above
MP-46	420	360	-70	1,492,200	291,450	SW,SW,SE, SEC. 19, T20N, R20W
MP-47 (CORE)	350	360	-70	1,492,143	291,350	SE,SE,SW, SEC. 19, T20N, R20W
MP-48	520	360	-70	1,492,033	291,250	same as above
MP-49 (CORE)	220	360	-60	1,492,400	291,150	same as above
MP-50	320		VERT	1,492,276	291,150	same as above
MP-51	200	360	-50	1,492,276	291,150	same as above
MP-52 (CORE)	360	360	-60	1,492,387	291,039	same as above
MP-53	260	360	-60	1,492,292	291,050	same as above
MP-54	500	360	-60	1,492,300	290,950	same as above
MP-55	300	360	-60	1,491,800	293,100	SW, SE, SE, SEC. 19, T20N, R20W
MP-56	260	360	-60	1,491,787	293,300	SW, SE, SE, SEC. 19, T20N, R20W
MP-57 (CORE)	340	360	-60	1,491,700	293,460	NE, NE, NE, SEC. 30, T20N, R20E
MP-58	280	360	-60	1,491,715	293,990	NE, NE, NE, SEC. 30, T20N, R20E
MP-59	320	360	-60	1,491,695	293,810	NE, NE, NE, SEC. 30, T20N, R20E
MP-60	300	360	-60	1,491,827	294,190	SW, SW, SW, SEC. 20, T20N, R20E

RVC Footage:	12,430
Core Footage:	<u>3,970</u>
Total Footage:	16,400

Avg. Depth: 292.9

MOSS PROJECT

1992 REPORT FOR MAGMA COPPER COMPANY

FINAL REPORT

ON EXPLORATION

OF THE

MOSS PROPERTY SAN FRANCISCO MINING DISTRICT MOHAVE COUNTY, ARIZONA

for

:.

Ŧ

E

2

ł

MAGMA COPPER COMPANY 7400 North Oracie Road, Suite 200 Tucson, Arizona 85704

bv

Richard A. Jeanne Consulting Geologist 888 Keele Drive Reno, Nevada 89509-2338

February, 1992

EXECUTIVE SUMMARY

The exploration program consisting of geologic and alteration mapping, surface sampling and drilling of the Moss Project has been completed. A total of 10,207 feet in 22 holes was drilled to evaluate potential gold and silver mineralization along 3500 feet of strike length of the mineralized Moss vein.

A drill indicated resource estimate of 89,117 ounces gold at a grade of 0.053 opt was compiled for a 600 foot segment of this vein from data generated by Billiton Minerals USA. Extrapolation of tonnage and grade in this segment onto an undrilled, adjacent claim indicated potential for 213,000 to 382,000 contained ounces gold. Anomalous gold mineralization in surface samples suggested additional potential may exist below a large area of strong silicification at the west end of the Moss vein.

An exploration drilling program consisting of two parallel lines of 17 holes, designed to penetrate the vein at depths of 200-300 feet and 400-500 feet, was conducted on the $(o \lor \varepsilon)$ previously undrilled claim. Phase - II of this program consisted af a horizontal fan of three shallow-angle holes, 700 to 1040 feet in depth, which tested an 800 foot segment of the vein in the silicified area. A fourth hole in this phase was lost at 317 feet and a fifth tested an area of strong acid leaching on Billiton's unpatented lode claims.

Computer-generated resource estimates based on Phase - I drilling data yield a geologic resource of 7.414 million tons at 0.038 opt, or 281,732 contained ounces gold and a pit resource of 2.996 million tons at 0.044 opt, or 131,824 mineable ounces gold.

Phase - II drilling in the silicified area unexpectedly encountered mineralized intervals only in the upper 400 ft of the three holes and not adjacent to the Moss vein as anticipated. Average grade of these intervals is 0.015 opt gold. The maximum probable resource in this area is abut 64,000 ounces gold, but the low grade and unfavorable topography make economically profitable recovery unlikely.

The mineable resource estimate of 131,824 ounces is well below the 250,000 to 300,000 ounce range necessary for Magma to profitably develop and exploit this deposit. Targets which may have contributed to this resource have been tested unsuccessfully and no additional targets are recognized at this time. Based on the results of this evaluation it is recommended that Magma Copper Company terminate the Moss Project.

- i -

TABLE OF CONTENTS

INTRODUCTION EXPLORATION PROGRAM GEOLOGY EXTRUSIVE ROCKS. Alcyone Formation. Other Extrusive Rocks. INTRUSIVE ROCKS Times Porphyry Moss Porphyry. Younger Intrusives. ALTERATION. MINERALIZATION. MET ALLURGY. RESOURCE ESTIMATES. SUMMARY AND RECOMMENDATIONS	EXECUTIVE SUMMARY	ī
EXPLORATION PROGRAM GEOLOGY EXTRUSIVE ROCKS Alcyone Formation Other Extrusive Rocks INTRUSIVE ROCKS Times Porphyry Moss Porphyry Younger Intrusives. ALTERATION METALLURGY RESOURCE ESTIMATES SUMMARY AND RECOMMENDATIONS	INTRODUCTION	1
GEOLOGY EXTRUSIVE ROCKS Alcyone Formation Other Extrusive Rocks INTRUSIVE ROCKS Times Porphyry Moss Porphyry Younger Intrusives ALTERATION MINERALIZATION METALLURGY RESOURCE ESTIMATES SUMMARY AND RECOMMENDATIONS		1
EXTRUSIVE ROCKS. Alcyone Formation. Other Extrusive Rocks. INTRUSIVE ROCKS Times Porphyry Moss Porphyry Younger Intrusives. <u>ALTERATION</u> . <u>MINERALIZATION</u> . <u>MINERALIZATION</u> . <u>METALLURGY</u> . <u>RESOURCE ESTIMATES</u> . <u>SUMMARY AND RECOMMENDATIONS</u>	GEOLOGY.	3
Alcyone Formation Other Extrusive Rocks. INTRUSIVE ROCKS Times Porphyry Moss Porphyry Younger Intrusives. <u>ALTERATION</u> <u>MINERALIZATION</u> <u>METALLURGY</u> . <u>RESOURCE ESTIMATES</u> <u>SUMMARY AND RECOMMENDATIONS</u>		3
Other Extrusive Rocks INTRUSIVE ROCKS Times Porphyry Moss Porphyry Younger Intrusives <u>ALTERATION</u> <u>MINERALIZATION</u> <u>METALLURGY</u> <u>RESOURCE ESTIMATES</u>		3
INTRUSIVE ROCKS Times Porphyry Moss Porphyry Younger Intrusives. <u>ALTERATION</u> <u>MINERALIZATION</u> <u>METALLURGY</u> <u>RESOURCE ESTIMATES</u> <u>SUMMARY AND RECOMMENDATIONS</u> .		4
Times Porphyry Moss Porphyry Younger Intrusives. <u>ALTERATION</u> . <u>MINERALIZATION</u> . <u>METALLURGY</u> . <u>RESOURCE ESTIMATES</u> . <u>SUMMARY AND RECOMMENDATIONS</u> .	INTRUSIVE ROCKS	4
Moss Porphyry Younger Intrusives. <u>ALTERATION</u> . <u>MINERALIZATION</u> . <u>METALLURGY</u> . <u>RESOURCE ESTIMATES</u> . <u>SUMMARY AND RECOMMENDATIONS</u> .		4
Younger Intrusives. <u>ALTERATION</u> . <u>MINERALIZATION</u> . <u>METALLURGY</u> . <u>RESOURCE ESTIMATES</u> . <u>SUMMARY AND RECOMMENDATIONS</u> .		4
ALTERATION MINERALIZATION METALLURGY RESOURCE ESTIMATES SUMMARY AND RECOMMENDATIONS		6
MINERALIZATION. METALLURGY. RESOURCE ESTIMATES SUMMARY AND RECOMMENDATIONS		6
METALLURGY. RESOURCE ESTIMATES SUMMARY AND RECOMMENDATIONS		7
RESOURCE ESTIMATES SUMMARY AND RECOMMENDATIONS		8
SUMMARY AND RECOMMENDATIONS	RESOURCE ESTIMATES	9
		11
	<u>REFERENCES</u>	12

ILLUSTRATIONS

FIGURE 1.	LOCATION MAP	2
FIGURE 2.	REGIONAL COMPOSITE STRATIGRAPHY	5

TABLES

TABLE 1.	DRILL INDICATED RESOURCE - MAGMA HOLES	. 10
----------	--	------

APPENDICES

SURFACE SAMPLE DESCRIPTIONS	APPENDIX A
DRILL HOLE STATISTICS	APPENDIX B
DRILL HOLE LOGS	APPENDIX C
DRILL HOLE GOLD ASSAYS	APPENDIX D
ASSAY LAB REPORTS	APPENDIX E
SURFACE SAMPLES	
DRILL HOLE SAMPLES	
METALLURGICAL REPORTS	APPENDIX F

<u>PLATES</u>

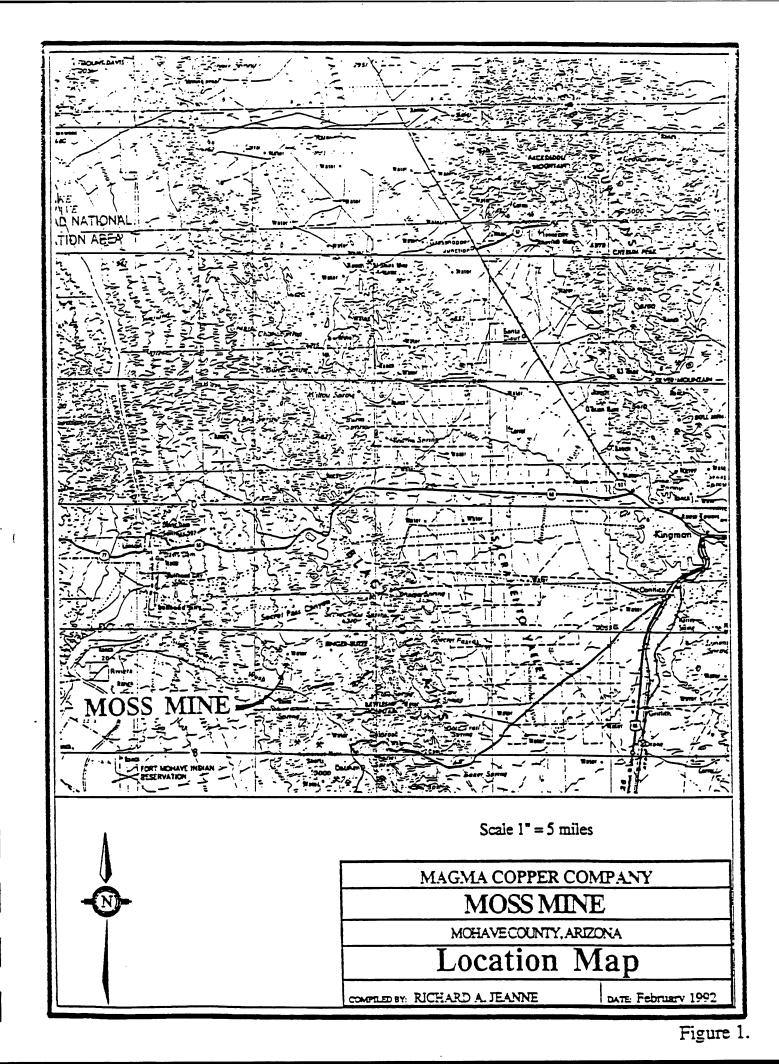
PLATE 1. GEOLOGY	In Pocket
PLATE 2. ALTERATION	In Pocket
PLATE 3. SAMPLE LOCATIONS	In Pocket
PLATE 4. DRILL HOLE LOCATIONS	In Pocket

(

INTRODUCTION

The Moss property is located in the San Francisco Mining District, near Oatman in Mohave County, Arizona (Figure 1). The property was leased by Magma Copper Company from Billiton Minerals USA in 1991, however, final agreement on the sublease of some patented claims was not finalized with the owners until the Fall of 1991. Preliminary evaluation, including mapping and surface sampling had begun prior to the final agreement and drilling commenced subsequent to it.

EXPLORATION PROGRAM


A preliminary data review and sampling program was conducted in April 1991 (Jeanne, 1991) prior to acquisition of the property by Magma Copper Co. As an agreement with Billiton was being negotiated, a more detailed program including mapping and additional sampling was begun.

Geologic mapping was conducted at a scale of 1" = 400' on a portion of the topographic base prepared by IntraSearch for Billiton Minerals. The area mapped in detail comprises about 2.4 square miles in the immediate vicinity of the Moss vein (Plate I).

Outside the area mapped in detail but overlapping the southeastern corner of Billiton's unpatented BMX claims, are widespread exposures of strongly acid-leached Moss Porphyry. I felt this area worthy of some attention, and conducted some cursory limonite and alteration mapping and sampling. No formal maps were prepared pending the outcome of a drill hole planned at the site of a multiple trace element anomaly and exceptionally strong alteration.

Based on data from Billiton and the initial exploration, a drilling program was planned and conducted for portions of the Moss vein on the Key No. 1 and California Moss claims (Plate 4). A second phase of drilling was conducted on the silicified peaks at the west end of the Moss vein and for the strongly altered area in Mossback wash on Billiton's unpatented BMX claims. A total of 10,207 feet was drilled in 22 holes. All holes were drilled at angles of -65° to -30° except the one hole in Mossback wash which was vertical.

Surface samples from the vein on the California Moss claim indicate potential for mineralization similar to that on the Key No. 1 claim. Three parallel lines of drill sites were prepared on the California Moss to test the continuity of mineralization eastward from the Key No. 1 at deep, shallow and intermediate depths. The intermediate depth holes extended the line of Billiton's holes MM-1, 2, 4, 7 and 8 targeting the vein at depths of 250 to 350 ft. The deeper holes, targeting the vein at depths of 400 to 500 ft, were located along a line 100 feet south. Pads for the shallow holes, intended for air track drilling at depths 100 to 200 ft, were located 100 feet north of the intermediate holes along an extension of the line of air track holes drilled by BF Minerals, but were not drilled.

Drilling was initiated on the deeper line at every other site to obtain a broad view of continuity of mineralization with the intent of infill drilling if continuity was established. This program was modified in the vicinity of the adit on the California Moss claim by drilling three adjacent holes to determine if a theorized ore shoot existed there. Intermediate depth holes were drilled adjacent to the deep holes to provide data with which to develop cross sections.

Drilling in the silicified peaks area consisted of a horizontal fan of three angle holes which penetrated the Moss vein over a strike length of about 800 ft. A detailed discussion of this phase of work is contained in my interim report (Jeanne, 1992).

<u>GEOLOGY</u>

EXTRUSIVE ROCKS

Alcyone Formation

The oldest rocks exposed in the district are tuffs, flows, volcaniclastic sediments, sedimentary tuff breccias, welded tuffs and landslide breccias and basalt flows of the Alcyone Formation, exposed in the eastern and western portions of the mapped area (Plate I). The most common representative of this unit is a siliceous, fine-grained, granular-looking, locally porphyritic, rhyolitic flow rock. It is locally present throughout the mapped area and forms much of the higher elevations of the silicified peaks at the west end of the Moss vein.

In the southwest area lenses of black, silty, hornfelsed sediments can be traced for several hundreds of feet. South-southeast of hill 2056, these sediments are exposed in the access road to the property, and carbonized plant fragments were noted in them on the southeast flank of hill 2144. Also near hill 2144 are exposures of welded tuff containing pumice fiamme typically 2-3 inches and up to 9 inches in length with aspect ratios of about 8:1; a gneissic-appearing welded tuff or flow banded rhyolite containing pinkish K-spar, a breccia consisting of a mosaic of welded clasts of flow banded rhyolite; and amygdaloidal basalt. Rocks of basaltic composition are atypical of the Alcyone, and this small exposure may be a block of older, unnamed flows and volcaniclastic rocks which underlie the Alcyone. DeWitt, et al (1991) included older basalts with the Alcyone because of their limited exposure in the Oatman District.

No attempt was made to compile a stratigraphy of the Alcyone due to the complexity of exposures of the various lithologies which commonly can be traced for no more than a few outcrops before changing. Compounding the difficulty in correlating these subunits is the fact that practically all exposures of the Alcyone could be identified as roof pendants suspended in the intrusive Moss Porphyry. At many localities in the southwest area, Moss porphyry is exposed, and can be traced to gradational contacts in which blocks of Moss appear to be enclosed within the Alcyone. The boundaries of these blocks are themselves

gradational and at such exposures, the intrusive relationship is brought into question. At other localities the contrary is evident. For example, just north of hill 2009 on the north side of the wash, a small apophysis of the Moss Porphyry; extremely rich in phenocrysts up to 1 inch in length; has been injected between layers of the carbonaceous sediments in a manner more typical of highly fluid basalts. The intruded body is no more than 8 feet in length and 3 feet in thickness, narrowing to a knife edge at the extremities.

To map each exposure of Moss and Alcyone in the west area would be unproductive. The Alcyone-Moss contact in the western portion of the map therefore, is a boundary, west of which exposures of the Alcyone are commonplace, but Moss may also be exposed. East of this boundary, only Moss is exposed except for isolated scab-like pendants which are mapped.

Other Extrusive Rocks

Two series of extrusive rocks unconformably overlie the Alcyone Formation in the region (Figure 2), but are not exposed in the mapped area. The oldest, the "middle volcanics" consists, from bottom to top, of the Esperanza Quartz Latite, the Oatman Andesite and the Gold Road Latite (DeWitt, et al, 1991). Unconformably overlying the "middle volcanics" are the "upper volcanics" which consist from oldest to youngest of the Antelope Rhyolite, Cottonwood Formation, Flag Spring Quartz Latite and the Meadow Creek Quartz Latite. The volcaniclastic Sitgreaves Tuff is temporally equivalent to all the upper volcanic units (DeWitt, et al, 1991).

INTRUSIVE ROCKS

Times Porphyry

The Times Porphyry is the oldest of two small stocks which intrude the stratified rocks in the district. It intrudes the Alcyone Formation and is exposed south of Silver Creek Wash, outside the mapped area. DeWitt and others (1991) classify the Times as a syenogranite and have determined its major and minor element chemistry most closely resembles that of the Cottonwood Formation.

Moss Porphyry

The Moss Porphyry intrudes the Alcyone Formation in the mapped area, and the Times Porphyry, the Oatman Andesite and the Gold Road Quartz Latite at other localities in the region. It is concentrically zoned, consisting of a granodiorite core enclosed by an inner quartz monzonite and an outer monzodiorite contact margin (DeWitt, et al, 1991). They consider the Moss most closely equivalent to the Gold Road Latite, based on its composition and similar ages of 18.5 ± 2.5 Ma and 18.6 ± 0.9 Ma, respectively. Large (≤ 1.2 cm) anhedral to subhedral phenocrysts of medium gray plagioclase are commonly intergrown with clots of biotite and are enclosed in a finer grained matrix of salmon pink potassium feldspar, quartz, biotite and minor pyroxene. Where altered or weathered, the plagioclase is typically chalky white, imparting a distinctly porphyrinic texture to the Moss.

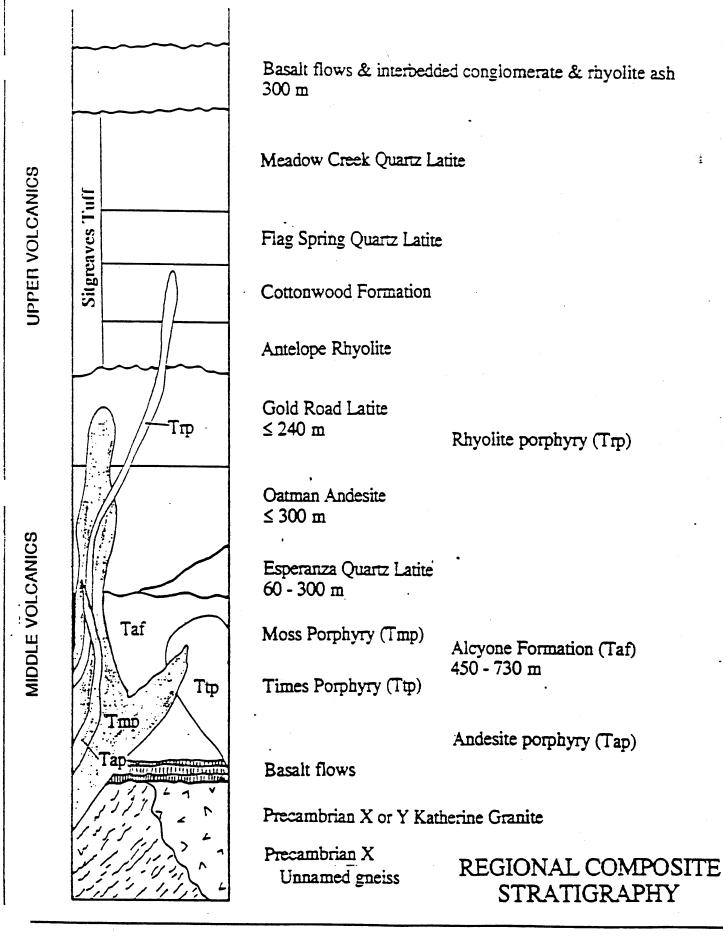


Figure 2.

Younger Intrusives

A series of north to northeast trending dikes of thyolite porphyty intrude the Alcyone Fm. and Moss Porphyty. The dikes contain subhedral to well rounded phenocrysts of potassium feldspar which locally impart a characteristic "birdseye" texture to the rock. The phenocrysts are supported by a fine-grained groundmass of potassium and plagioclase feldspar, quartz and minor biotite.

Minor dikes and small pods of andesite and andesite porphyry intrude the Moss. One such dike averages about 1 foot in width but is traceable over a distance of 2,800 feet (Plate I). This particular dike, on the Gold Hill claims, occupies a structure which, in places, was previously invaded by a quartz-carbonate-pyrite vein.

ALTERATION

Few localities on the property afford the opportunity to examine unaltered Moss porphyry. One such locality is north of the Moss vein on the northeast slope of hill 2371, where salmon-pink K-spar is visible in outcrop. The muck piles around the headframe also contain unaltered K-spar and it is common in drill hole cuttings from the footwall of the Moss vein.

The porphyry generally is characterized by varying degrees of chloritic alteration which imparts a pale- to dark-green color to outcrops. In the southeast part of the mapped area, limonite development and bleaching predominate, respectively producing light to medium brownish and pale yellow to white colors. In the silicified peaks, pervasive silicification is dominant and along the Moss vein, stockwork quartz veins and weak pervasive silicification are present (Plate II).

For mapping purposes, two degrees of chloritic alteration were noted. The weakest produces a bronzy to green color in biotite with minor chlorite development in the groundmass immediately adjacent to the phenocryst. Other mafic minerals typically are found in clots and irregular masses which are completely chloritized. K-feldspars have lost their salmon-pink color. Plagioclase phenocrysts, which may be up to half an inch in length, typically are cloudy to white, imparting a distinctly porphyritic texture to the rock. Although incipiently altered, the feldspars typically are still quite hard and cleavable with twinning evident. The groundmass typically is light to medium gray and in outcrop, the rock is pale to medium gray green. Limonite is common on fracture surfaces, particularly in areas of silicification. Weak to moderate pervasive silicification may be present with this grade of chloritization as in the stockwork zones in the hanging wall of the Moss vein.

The second type of chioritic alteration is stronger than that described above. The groundmass, in addition to biotite and other matics, is completely chloritized giving outcrops a dark green color. Clay alteration of plagioclase is more intense and phenocrysts can be gouged with a pin. On weathered surfaces they commonly have been completely

removed, leaving large casts. Greenish grus is a characteristic weathering product of this alteration type.

The second type is more abundant on the hanging wall side of the vein, and the first on the footwall side, however, both are gradational and may be intermixed.

In the southeast part of the mapped area, the influence of a large area of acid leaching becomes apparent. This area contains abundant pyrite and in the more strongly pyritized areas, weathering has produced enough acid to mobilize the iron and bleach and leach the rock to white or pale-yellow hues. Peripheral to these areas, the iron has undergone little or no transport and from a distance, soil and outcrops have a brownish color as opposed to the pale to dark green of the chloritized areas. In hand specimen biotite and other mafic minerals, as well as much of the groundmass, are replaced by limonite. Plagiociase phenocrysts are commonly altered to white clay. Some can be scratched only with a pin and others can be gouged out with a fingernail. Limonite development overlaps areas of chloritic alteration and patches of chloritized rock among the limonitic can be seen locally. Hand specimens from these areas are greenish-brown on freshly broken surfaces. Weathering of limonite flooded rock typically produces a blockier form of grus that that of the chloritized rock.

The leached and bleached areas typically have fewer outcrops owing to the abundance of clay. Locally, silicification is present and freshly broken surfaces reveal a thoroughly bleached interior in which biotite and other mafic minerals are clay altered and at some localities, sericitized. Feldspars commonly are bleached but only weakly altered; taking metal from the scratch of a pin and showing cleavage and twinning. Hemarite and limonite are common on fracture surfaces and more abundant in silicified rock. Weathering generally produces a light to medium brown grus.

Strong pervasive silicification has invaded the Moss Porphyry and the Alcyone Formation forming the peaks at the west end of the Moss vein. Less intense silicification is locally present in the hanging wall for several thousand feet east of the headframe. In both areas, stockworks of white, clear and/or drusy quartz veinlets are common. The pervasive silicification carries anomalous but not typically ore grade gold mineralization. The stockworks are also auriferous and commonly higher in grade. At the east end of the Moss vein and at scattered localities in the mapped area, gray to reddish-brown jasperoid-like silicification is present. It is very dissimilar to the quartz of the main part of the vein and is barren of mineralization.

MINERALIZATION

Throughout the district, numerous quartz and quartz-carbonate-pyrite veins occur which have been the focus of attention since the discovery of gold there by John Moss in 1863. The Moss vein is the most significant and is traceable for about 3500 feet. The vein is hosted primarily by the Moss Porphyry, but it is also present in the overlying Alcyone

Formation. Development of other, similar veins on the Ruth, Gold Hill, New York and Rattan claims has also been undertaken.

The Moss vein consists, in places, of two parallel veins. A quartz vein up to 15 feet in thickness typically occupies the footwall contact and locally a carbonate vein of similar dimensions may be present at the hanging wall contact of the quartz vein or as a separate vein several feet into the hanging wall. Typically the quartz is white, locally drusy or sugary, but may be fine grained and appear merely to be silicified gouge. In places, carbonate minerals have intergrown with the quartz and where exposed to weathering, the carbonate has been removed leaving a vuggy latticework of silica. In numerous veins varying from fractions of an inch to several inches in thickness, vein filling consists of an outer envelope of quartz, or bands of quartz, enclosing a carbonate core. The carbonate/quartz relationship seen in these and in the Moss vein indicates the carbonate was a later phase in the mineralizing event. Widely disseminated blebs of pyrite are associated with both phases and veins of this association are identified as quartz-carbonate-pyrite or qc-p veins. Fluorite has been noted at a number of localities in the Moss vein; it was mentioned by Godbe (1982) in his report on the property and was noted among cuttings in several of the Magma drill holes. No clear relationship of fluorite to higher or lower grades of precious metal mineralization is evident, however.

Surface samples of silica-rich portions were collected separately from carbonate-rich portions of the Moss vein. Select samples were also taken of stockwork zones, hanging wall and footwall rock, and from exposures where particular features are evident which may assist in understanding the deposit. Highest grades of gold mineralization are associated with the carbonate phase of vein growth. Stockwork zones commonly contain ore grade gold as well. Most of these zones, although appearing to consist mainly of small quartz veinlets, also contain significant amounts of carbonate.

Quartz veins without a noticeable carbonate content are present at numerous localities on the property, however, primary carbonate veins are always associated with quartz veins. A few isolated veins of gray calcite do occur, but they are not significantly mineralized and are thought to be secondary fracture fillings of transported material.

In the drilling, the intervals containing the highest grades of gold also contain varying proportions of q-c-p veins. None of the Magma holes, however, encountered the abundance of these veins as was encountered by the Billiton drilling on the Key #1 claim.

METALLURGY

Two groups of metallurgical tests were completed. The first, on cuttings from Billiton's drill holes and bulk ore samples collected from the adit on the California Moss No. 1 claim was discussed in more detail in my earlier report. The second group consisted of bottle roll tests of sulfide ore from Magma's drill holes. Lab reports from both groups of tests are included in Appendix F.

- 8 -

Gold recoveries in bottle roll tests of -1" mesh bulk ore materials were 42% after 96 hours. Recoveries from cuttings from Billiton's drill holes ranged from 53 to 78% and on those from Magma's holes 78 to 88%.

RESOURCE ESTIMATES

After the initial phase of drilling a hand calculated drill-indicated resource was completed based on data from the California Moss claim (Table I). This estimate yielded a resource of 100,409 ounces gold at a grade of about 0.024 opt Au. A similar estimate for the area drilled by Billiton had been prepared in an earlier report (Jeanne, 1991) which yielded an estimate of 89,117 ounces at a grade of 0.053 opt Au, for a total of about 190,000 ounces.

Mintee Inc. prepared two resource estimates using all available drilling data. An in situ or geologic resource estimate using an 0.02 opt cutoff and a 300 ft search radius yielded 7,414,000 tons at 0.038 opt or a total contained resource of 281,732 ounces gold. An estimated pit resource using a 0.02 opt cutoff and a 100 ft search radius yielded 2,996,000 tons at 0.044 opt and a 1.96:1 strip ratio or 131,824 mineable ounces. Both Mintee's and my estimates assumed continuity of mineralization through those drill sites which had been skipped in Magma's program by projecting average grades from adjacent drill holes. Since none of the data suggested otherwise, it was assumed that infill drilling on these skipped sites would not encounter any significantly higher grades nor longer intervals of mineralization and therefore could not improve the resource estimate. Copies of data printouts, cross sections, plan maps and pit plans prepared by Mintee have been provided to Magma and are not included in this report.

After the second phase of drilling, a very rough estimate of the potential resource of the silicified peaks area was prepared (Jeanne, 1992) yielding an absolute maximum potential of 185,000 contained ounces and a more probable 48,000 contained ounces gold. The grade on which this estimate is based, however, is very low; 0.012 ounces per ton, which is the average grade of the upper 300 to 400 ft of the three drill holes. The average grade of the mineralized intervals in these three holes is 0.016 opt Au. Applying this grade to to the calculations yields only 64,000 ounces.

 $\sqrt{}$

In addition to the disappointing tonnage and grade figures from the silicified peaks, suripping ratios are likely to be high. Topography is steep in the area and continues to climb on the footwall side of the Moss vein. A 45° pit slope superimposed on cross sections of the two westerly holes shows significant footwall material would have to be removed before the pit would reach the levels of the longer mineralized intercepts. It does not appear that this area could contribute to the economics of a mining operation at Moss.

TABLE I. DRILL INDICATED	RESOURCE - MAGMA HOLES

· :

ì

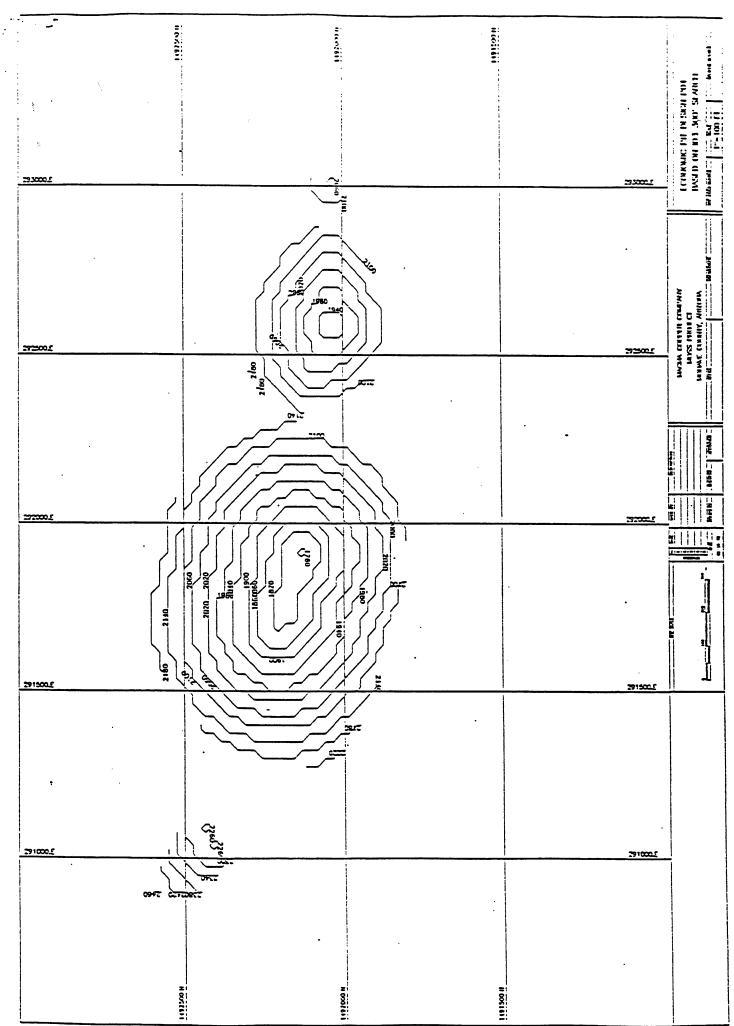
.

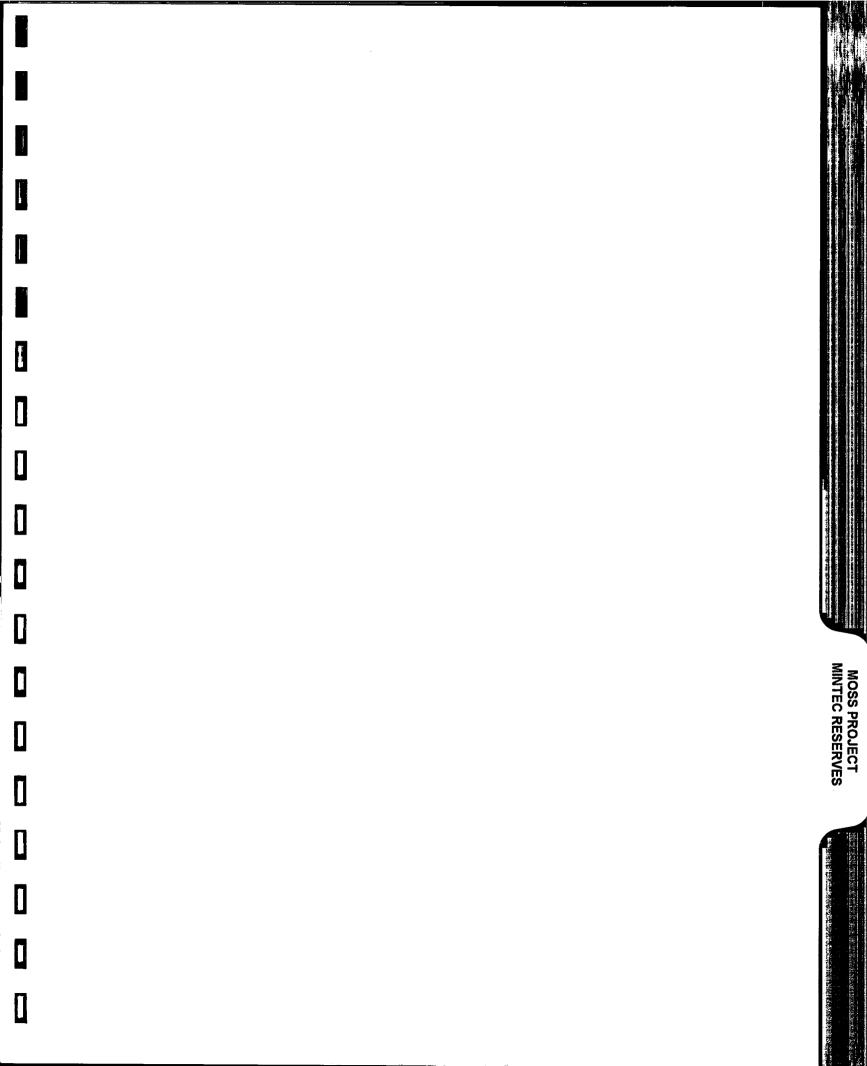
1.00001.	DIGLET	NDICATED	RESOURC				1	
CROSS SECTION		DIP	STRIKE	TRUE	VOLUME	TONS @	GRADE	CONTAINED
		LENGTH	LENGTH	WIDTH	(cu.fL)	12.5 cu. ft/t	(oot Au)	OUNCES
	MC-7	145	100	7	98890	7911	0.018	142
	MC-7	145	100	10	148335	11867	0.012	142
	MC-7	145	100	7	98890	7911	0.011	87
	MC-7	145	100	7	98890	7911	0.011	87
	MC-7	145	100	7	98890	7911	0.010	79
	MC-7	145	100	38	543895	43512	0.018	783
	MC-7	145	100	44	642785	51423	0.021	1080
	MC-11	170	100	10	173910	13913	0.013	181
292180 E	MC-11	285	100	51	1457775	116622	0.037	4315
292180 E	MC-11	325	100	10	332475	26508	0.010	505
	Extra	polation of or	he half sum of	sections 29	2180 E and 29	2360 E into u	drilled man	9124
292360 E	MC-6	. 145	100	27	395560	31645	0.017	538
292360 E	MC-6	145	100	27	395560	31645	0.018	570
292360 E	MC-6	145	100	7	98890	7911	0.018	79
	MC-6	. 145	100	20	296670	23734		
	MC-6	145	100	68	988900		0.019	451
	MC-12	125	100	10	127875	79112	0.028	2215
292360 E	MC-12	180	100	7	127875	10230	0.013	133
	MC-12 MC-12	280	100	10	286440	9821 22015	0.026	255
292360 E	MC-12	370	100	38		22915	0.012	275
		570 Polation of or		20 	1387870	111030	0.057	6329
292590 E	MC-5	135	100		2300 E 200 29	2590 E into u		
	MC-5 MC-5	135	100	14	184140	14731	0.020	295
	MC14	375		65	874665	69973	0.044	3079
	MC14 MC14	200	100	27	1023000	81840	0.053	4338
	MC-3		100	102	2046000	163680	0.039	6384
		140	100	55	763840	61107	0.020	1222
	MC-15	230	100	7	156860	12549	0.014	176
	MC-15	260	100	10	265980	21278	0.023	489
	MC-15	410	100	34	1398100	111848	0.060	6711
292775 E		145	100	24	346115	27689	0.067	1855
292775 E	MC-4	145	100	7	98890	7911	0.014	111 '
292775 E	MC-4	145	100	7	98890	7911	0.022	174
292775 E		145	100	7	98890	7911	0.010	79
292775 E		200	100	17	341000	27280	0.018	491
292775 E	MC-13	260	100	24	620620	49650	0.018	894 -
292775 E		330	100	14	450120	36010	0.015	540
292775 E		395	100	20	808170	64654	0.036	2328
	Extra	polation of o	ne half sum o	f sections 2	92775 E and 29	92940 E into u	ndrilled gap	5800
292940 E	MC-8	115	100	7	78430	6274	0.034	213
292940 E			100	7	214830	17186	0.011	189 .
292940 E			100	41	1554960	124397	0.038	4727
	Extra	polation of o	ne half sum o	f sections 2	92940 E and 29	93130 E into u	ndrilled gap	4380
293130 E	MC-9	285	100	7	194370	15550	0.018	280
293130 E			100	38	1256585		0.019	1910
293130 E		550	100	14	750200	60016	0.024	1440
	Extra	polation of o	ne half sum o	f sections 2	93130 E and 2	93350 E into u	ndrilled gan	5365
293350 E	MC-10	. 75	100	20	153450	12276	0.023	282
293350 E	MC-10	115	100	10	117645	9412	0.019	179
293350 E	MC-10	410	100	20	838860	67109	0.019	2080
293350 E			100	7	320540	25643	0.011	2080
293350 E			100	51	2813250	225060	0.019	4276
		ан Алар						
					TOTALS	2.053.093	0.0237	100.409
								100,407

- 10 -

. .

SUMMARY AND RECOMMENDATIONS


Results of Magma Copper Company's exploration program on the Moss property indicate an estimated total geologic resource of 7,414,000 tons at a grade of 0.038 opt or 281,732 contained ounces gold. An estimate of the pit resource yields 131.824 mineable ounces contained in 2,996,000 tons ore at a grade of 0.044 opt gold. All areas with potential for mineralization have been drill tested without additional success, and no other targets are evident at this time.


The mineable resource estimated from data available to date is well below the 250,000 to 300.000 ounces deemed necessary for Magma to profitably exploit this deposit. It is, therefore, recommended that Magma Copper Company terminate the project.

REFERENCES

- DeWitt, Ed., Thorson, Jon P., and Smith, Robert C., 1991, Geology and gold Deposits of the Oatman District, Northwestern Arizona, in: Epithermal Gold Deposits - Part II, USGS Bull. 1857-I, p. 11-I28.
- Godbe, M. C., 1982, Interim Report and Proposed Development Drilling Program, Moss Mine Project, Oatman-Goldroad Mining District, Mohave County, Arizona, unpublished company report, 18 p
- Jeanne, Richard A., 1991, A preliminary evaluation of the Moss Property, San Francisco Mining District, Mohave County, Arizona, unpublished Magma Copper Company report, 15 p.
- Jeanne, Richard A., 1992, Interim Drilling Report for the Silicified Peaks and Acid Leached portions of the Moss Project, unpublished Magma Copper Company report, 6 p.

MOSS PROJECT

1992 MINTEC RESERVE REPORT FOR MAGMA COPPER COMPANY

Moss Project Report

Submitted to: Mr. Mark Sander

Mr. Mark Sander Magma Copper Company 7400 North Oracle Road Suite 200 Tucson, Arizona 85704

Submitted by:

Mr. Abdullah Arik Mintec, Inc. P.O. Box 31420 Tucson, Arizona 85751

. •

Respectfully Submitted:

Abdullah Arik

MINTEC, INC. Tucson, Arizona February 10, 1992

TABLE OF CONTENTS

EXECUTIVE SUMMARY

INTRODUCTION

SECTION 1 - Study Area SECTION 2 - Data Statistics and Variogram Study SECTION 3 - 3-D Block Modeling SECTION 4 - Pit Design

EXECUTIVE SUMMARY

The Moss Deposit located in Mohave County, Arizona is a veintype deposit which strikes west-northwest. Gold and silver mineralization occurs in guartz-carbonate vein and in stockwork veins in the hanging wall and footwall which steeply dips due south-southeast. There are 96 drillholes in the area, which have been drilled at angles approximately due north to intersect the mineralized veins.

Using the assay information from the drillholes, a 3-D block model of the Moss Deposit has been developed to calculate the preliminary geologic and minable reserves. The block size used was $25' \times 25'$ with a bench height of 20'. The model had the following limits:

Easting	290,500 to 294,0	00
Northing	1,491,500 to 1,493,0	00
Elevation	1,500 to 2,6	00

The 5-foot assays were composited into 20-foot benches for use in variogram study and in interpolation of block grades. Northsouth drillhole cross-section maps were generated at 100'-200' intervals to check the data and to see the continuity of the mineralization down dip and along strike.

Preliminary statistical analyses and variogram study were performed to help decide the parameters of the variogram and search strategy to use during interpolation. Block grades were then interpolated using both kriging and inverse distance weighting methods. Three cases were tried with the strike and dip of the deposit to be N78W and -68° SW, respectively:

1. Inverse distance weighting method of power three (ID3). Search distances along the strike and down dip are 100-

Project #US1242-003

February 10, 1992

feet. Search distance vertical to the plane is 20-feet.

2. ID3. Search distances along the strike and down dip are 300-feet. Search distance vertical to the plane is 20feet.

3. Kriging using the search strategy of Case #2.

Based upon these interpolations, the following geologic reserves were obtained down to 1,600' elevation at 0.02 opt gold cutoff:

Case #1	Case #2	Case #3
ID3 (100' Search)	ID3 (300' Search)	Kriging (300' Search)
Ore Tons 3,545,000 Grade opt 0.044	7,414,000 0.038	7,851,000 0.035

Based upon the block grades generated with Case #2, an economic pit design of the deposit was developed using the floating cone algorithm.

The parameters used for this design were:

Mining cost/ton waste		=	\$0.83
Total operating cost/ton	ore	=	\$4.89
Pit Slope		=	45°
Gold price/oz		=	\$350
Recovery		=	60%

At 0.02 and 0.03 opt cutoffs, the reserves from the economic pit were as follows:

	0.02 cpt	<u>140 E0.0</u>
Ore tons	2,996,000	1,932,000
Grade opt	0.044	0.055
Waste tons	5,868,000	6,932,000
S.R.	1.96	3.59

Project #US1242-003

(church)

1.01104

2024-02-020

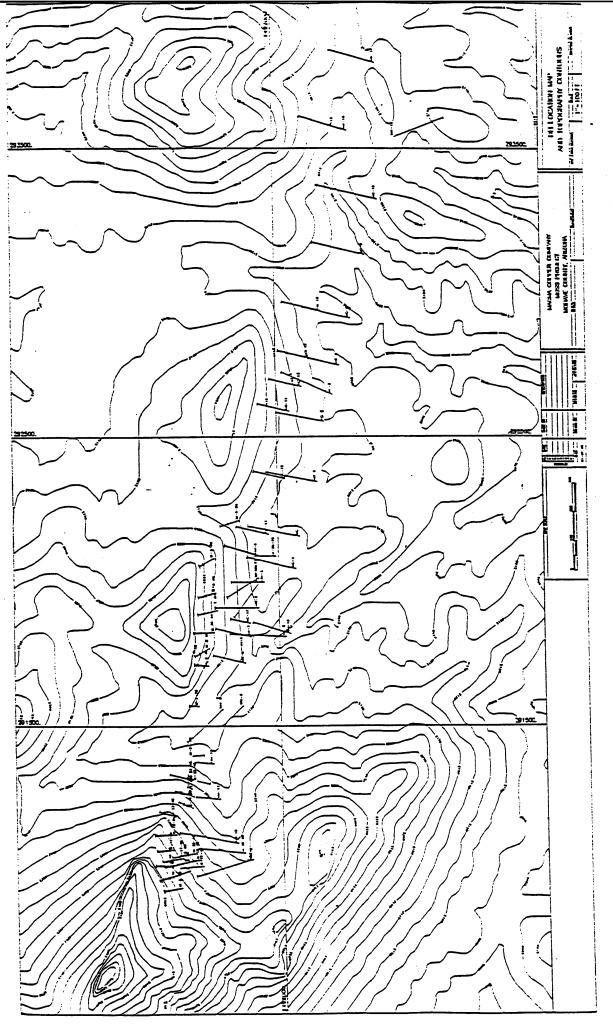
10.21.01.0.0.0

and the second second

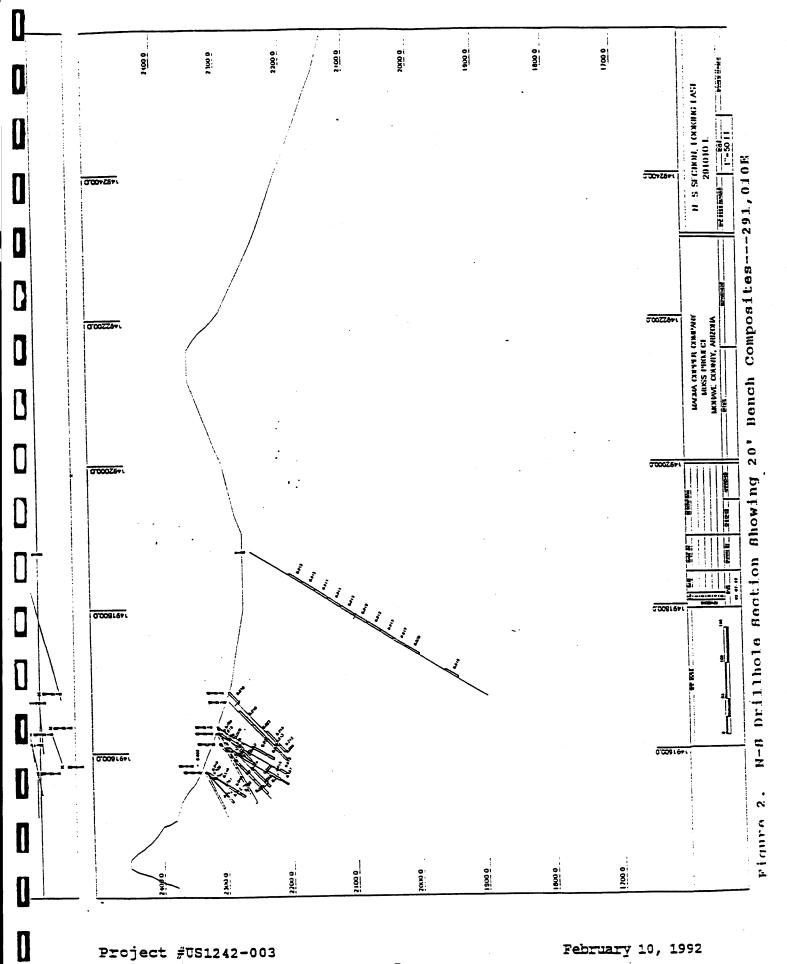
INTRODUCTION

The Moss Project area located in Mohave County, Arizona is approximately 4000' long and 2000' wide. The gold mineralization in the area is mostly confined to quartz-carbonate vein and stockwork veins in the hanging wall and footwall. These veins strike west-northwest and steeply dip due south-southeast. There are 96 drillholes in the area with depths ranging from 30' to 550'. The drillhole spacing is 50' to 200' along strike. The holes have been drilled at angles approximately due north to intersect the mineralized veins.

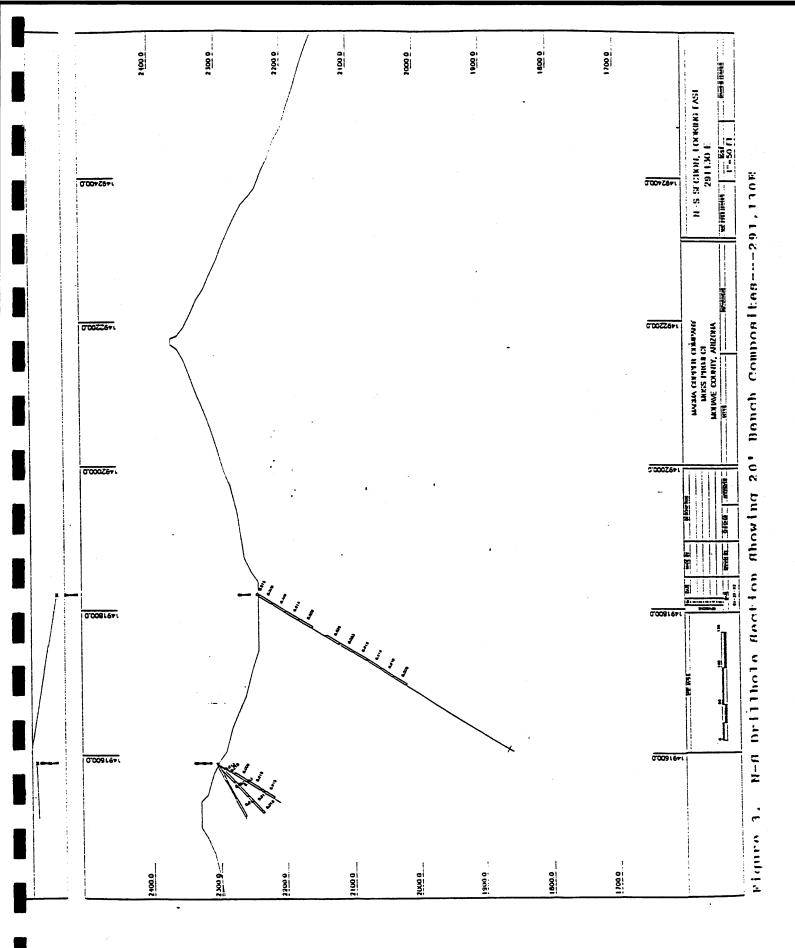
The objective of this study was to develop a 3-D block model of the deposit using the available drillhole data, and to design a preliminary floating cone economic pit. The geological and minable reserves from this study is to aid Magma-Moss personnel in decision making for further drilling in the area.

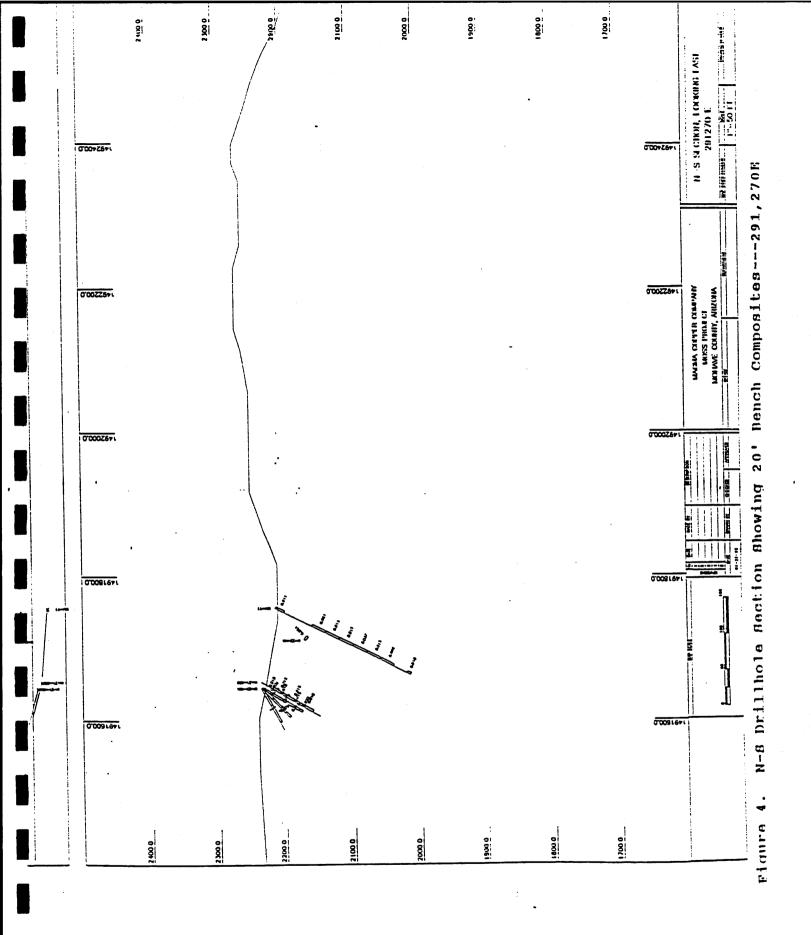

February 10, 1992

STUDY AREA

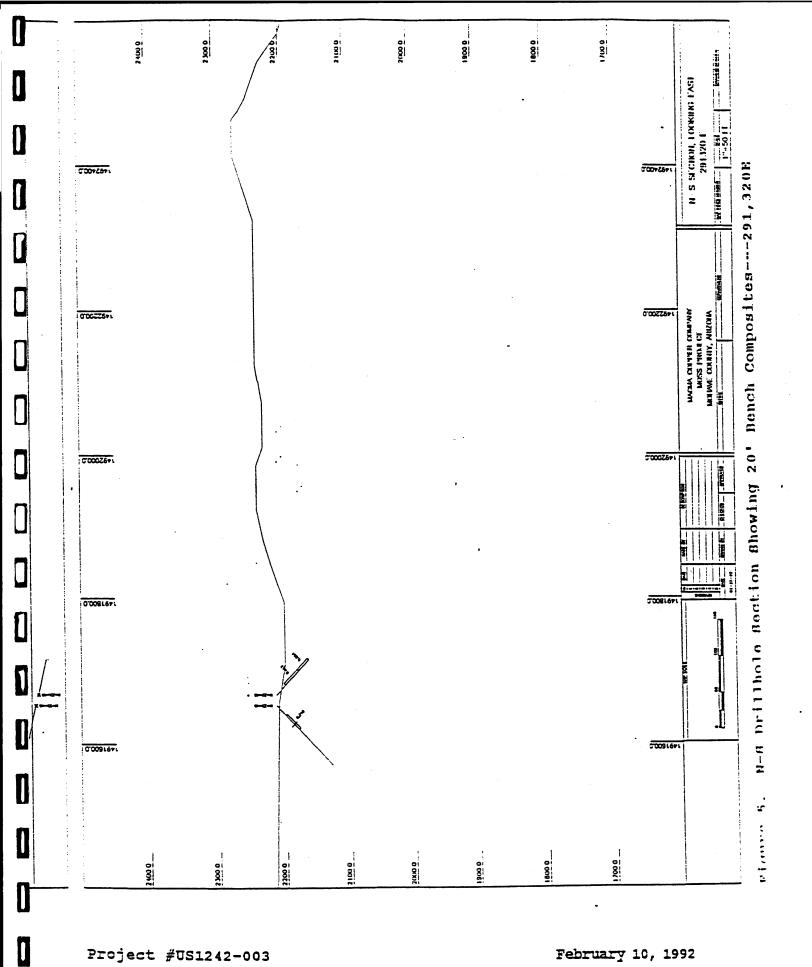

The Moss Project area is approximately 4000' long and 2000' wide. The coordinates of this area is from 290,500E to 294,500E and from 1,491,000N to 1,493,000N. There are 96 drillholes in the area with over 15,000 feet of drilling. Most holes are inclined with depths ranging from 30' to 550'. The spacing of the drillholes along the strike of the deposit is 50' to 200'. Figure 1 shows the locations of the drillholes and the topography contours in this area.

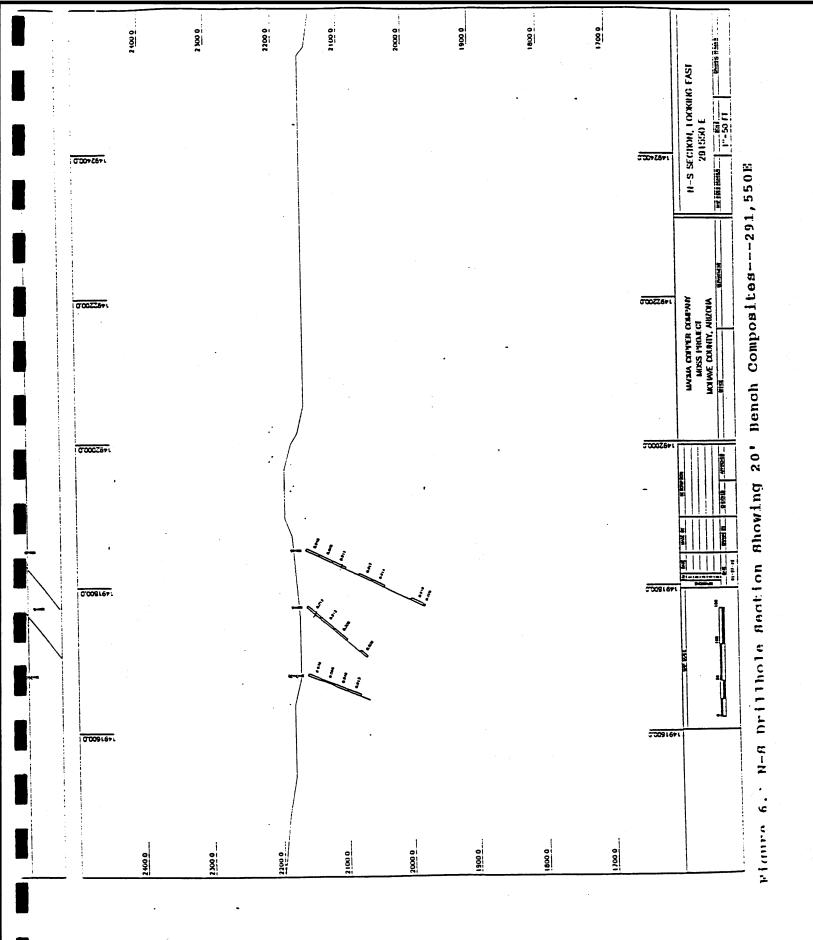
The gold mineralization is low grade and mostly confined to quartz-carbonate vein and stockwork veins in the hanging wall and footwall. These veins strike approximately west-northwest and steeply dip due south-southeast. Figures 2 through 16 are N-S cross-section plots at about 200' intervals showing 20' bench composite assays that are equal or greater than 0.008 oz/ton gold.

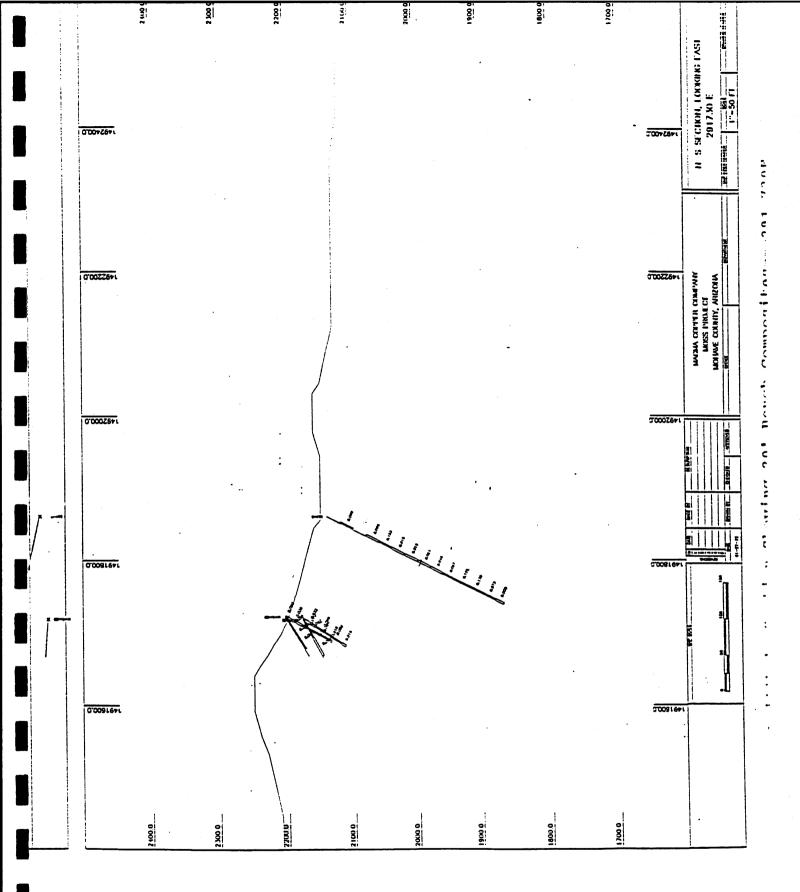

Project #US1242-003



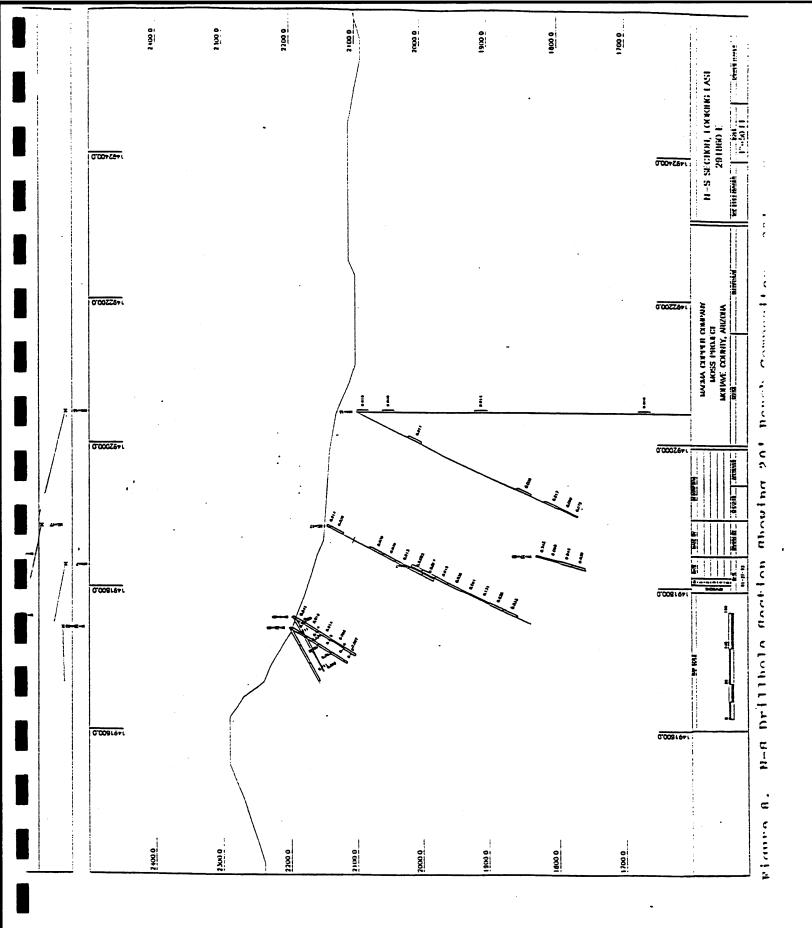
Topography Contours and Drillhole Locations Figure 1.

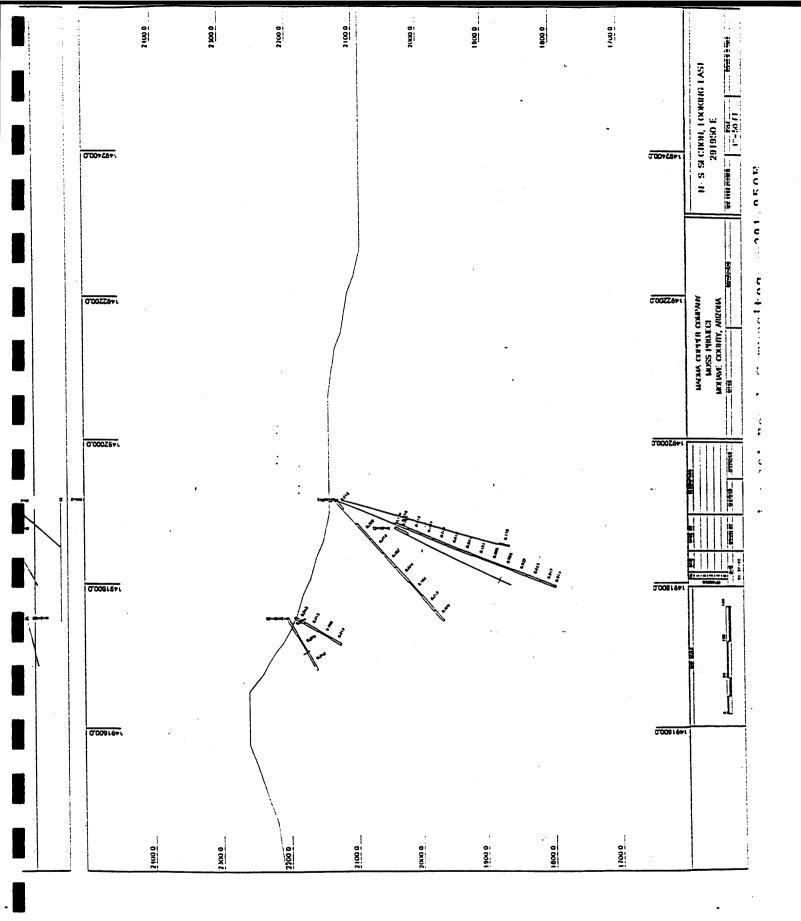


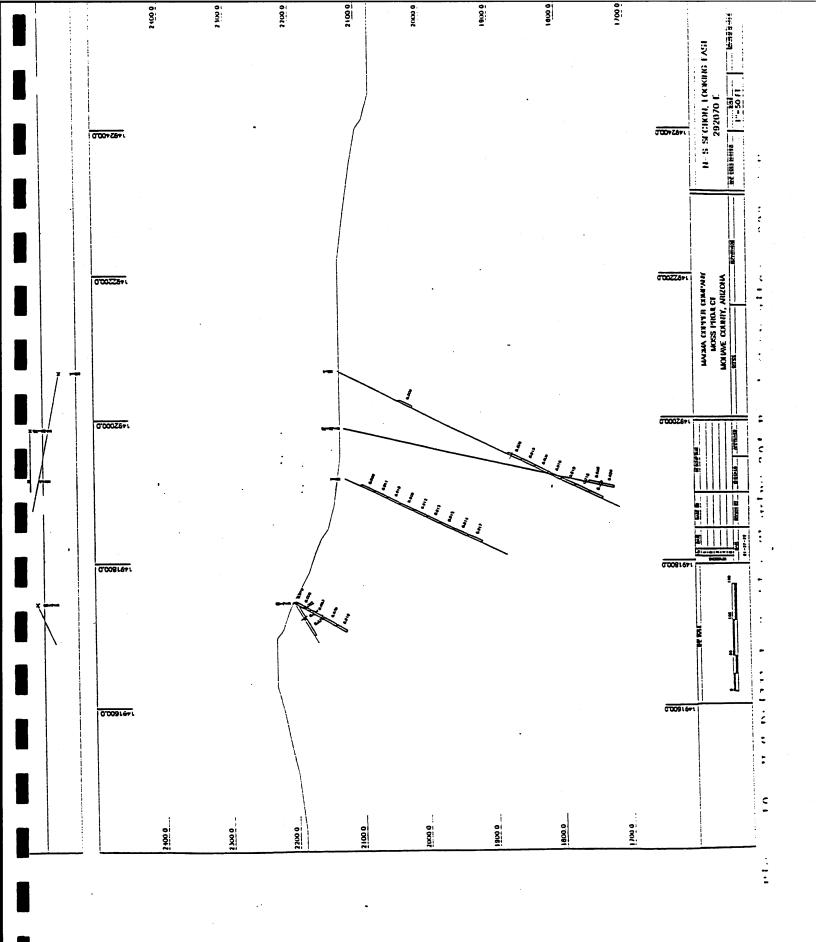

February 10, 1992

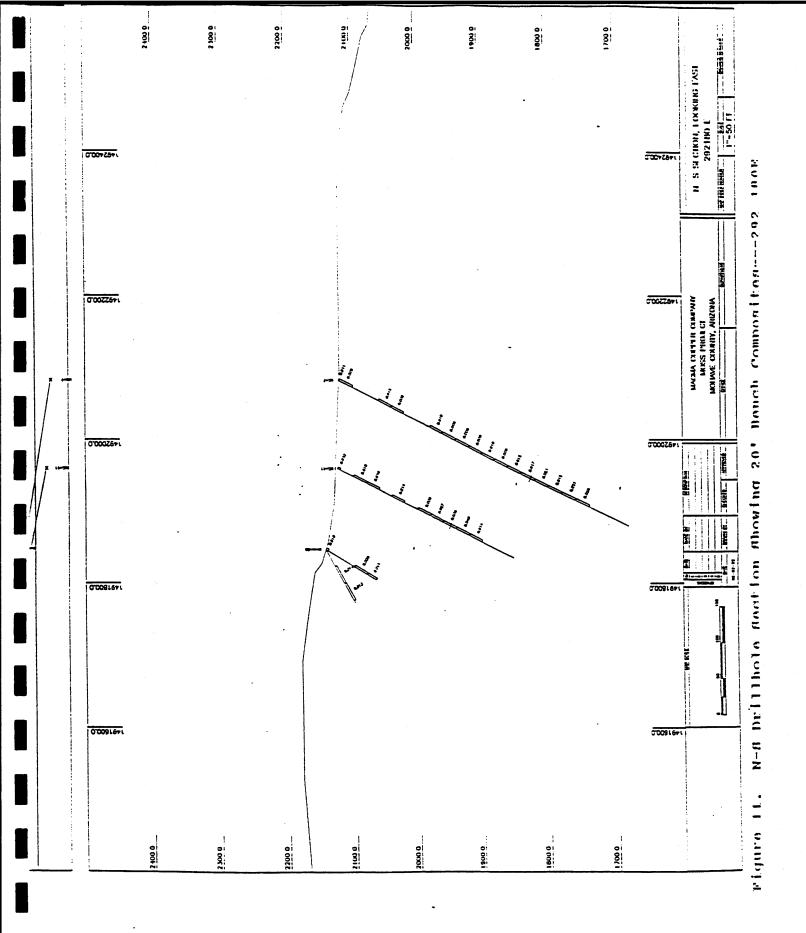


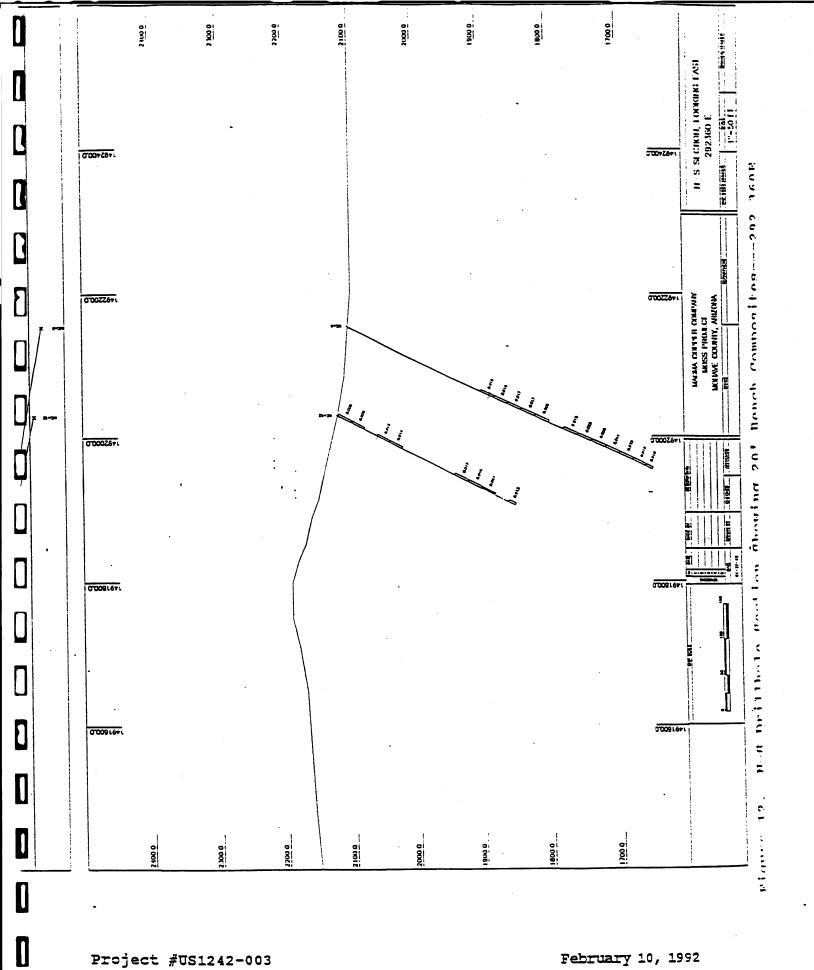
February 10, 1992

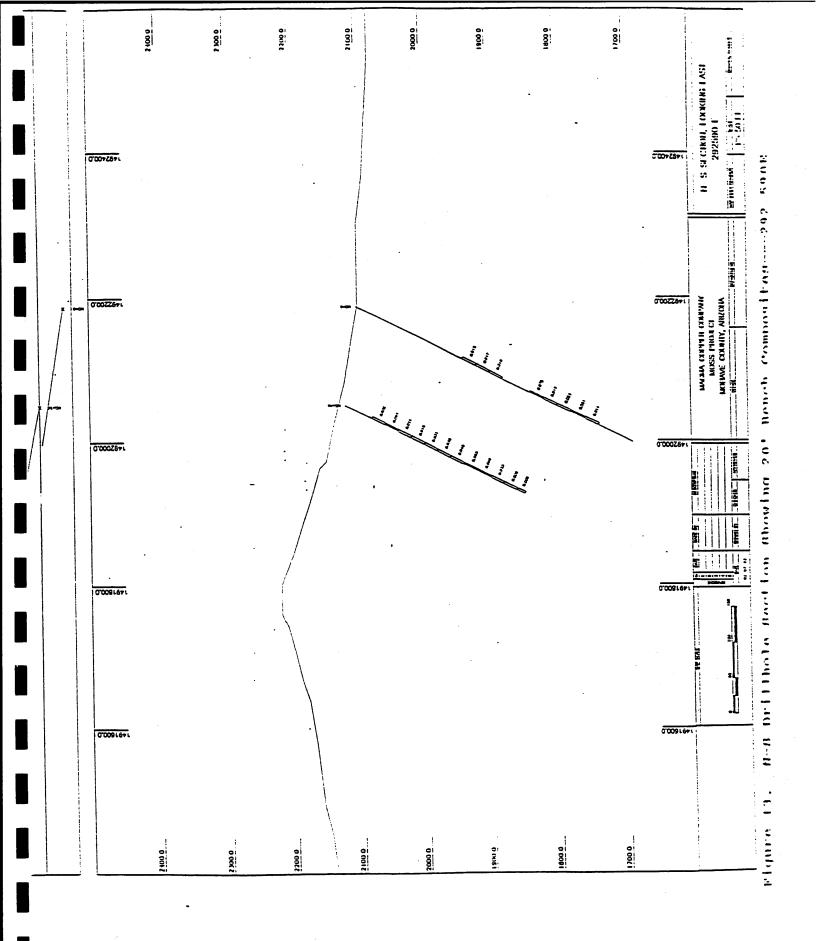


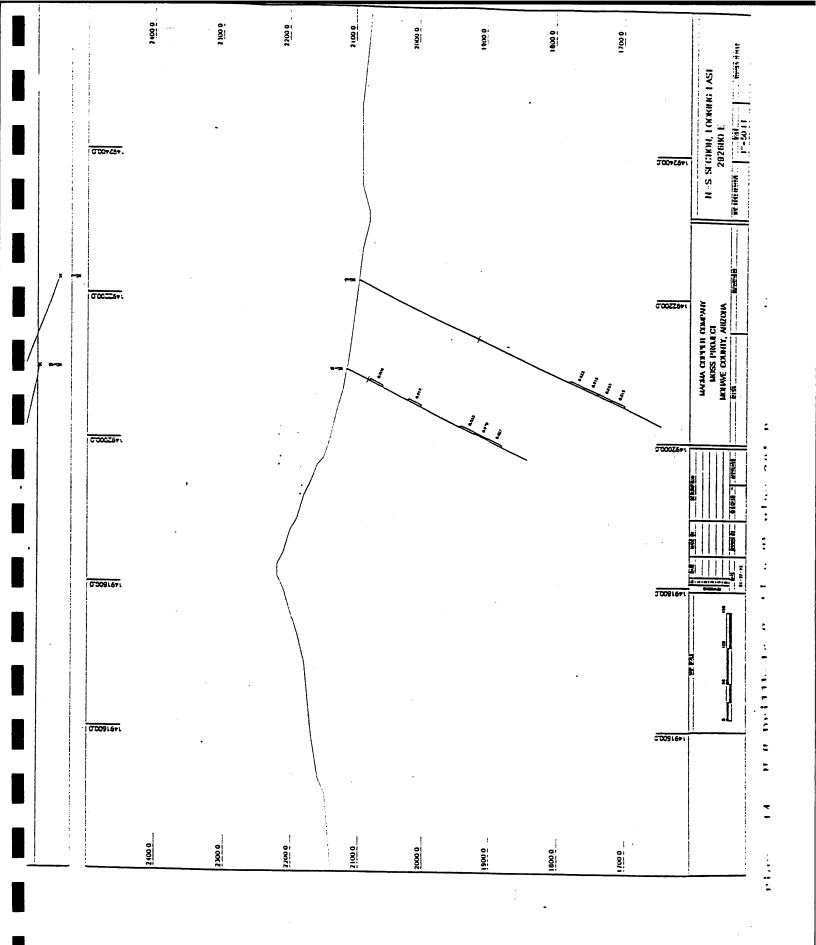


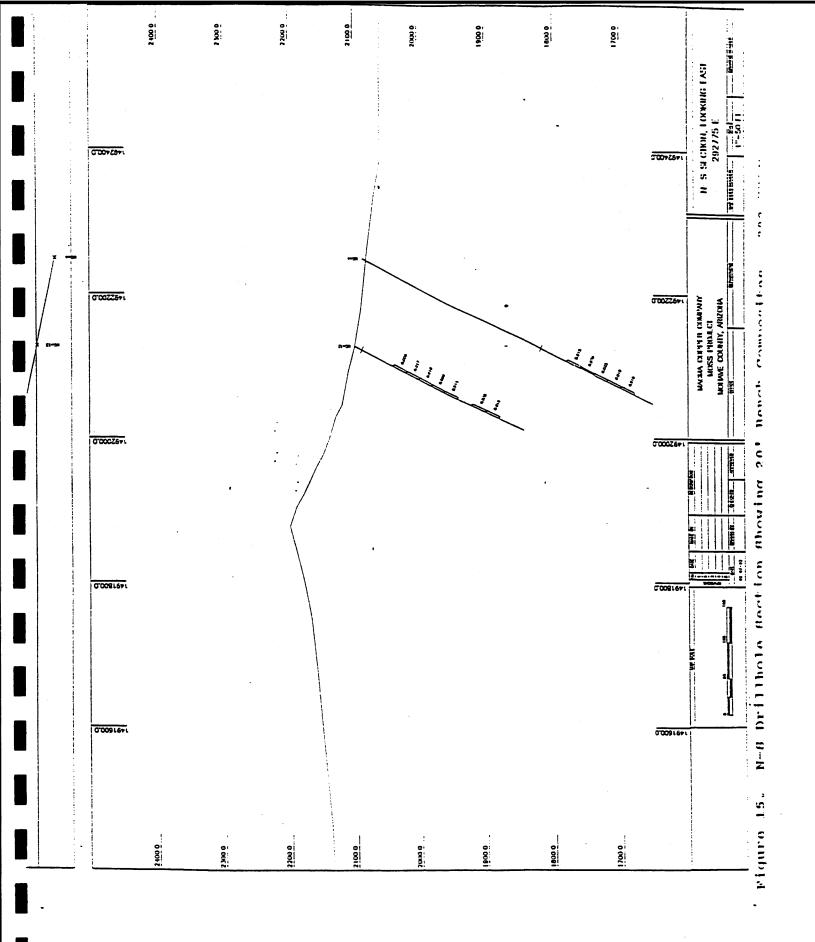

February 10, 1992

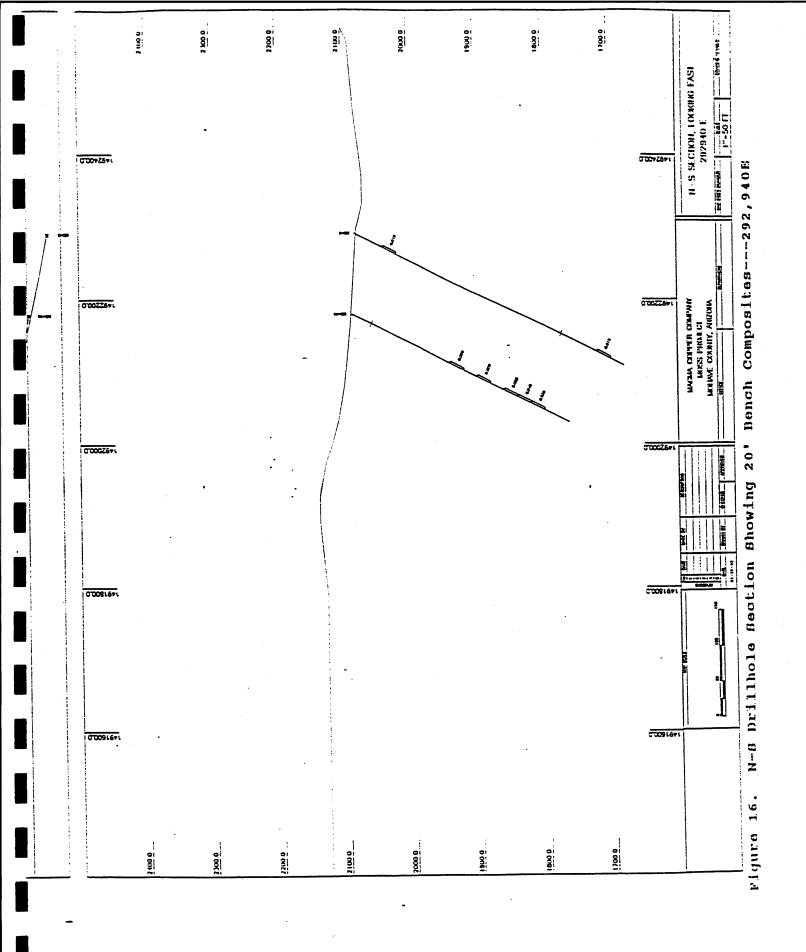

\ 12






February 10, 1992





February 10, 1992

February 10, 1992

DATA STATISTICS AND VARIOGRAM STUDY

Mintec received the copies of drillhole logs for 96 holes from Magma. These holes were assayed for gold at 5-foot intervals. Some holes were also assayed for silver. Mintec entered the gold values for each drillhole in to the MEDSYSTEM data base. Silver values were not entered, but space was allocated for silver in the case of future need.

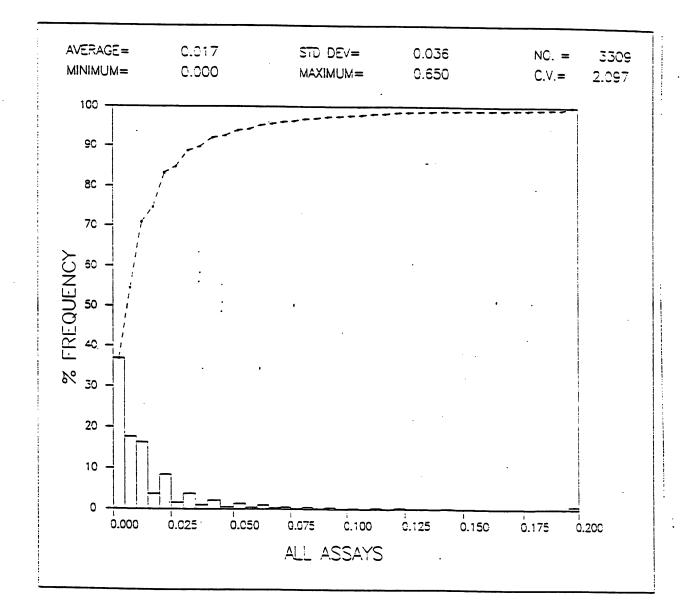
The average grade of all assays at 0.020 opt cutoff is 0.050 opt. Table 1 gives the statistics of all assay values at 0.005 intervals. Figure 17 shows a histogram of these assays.

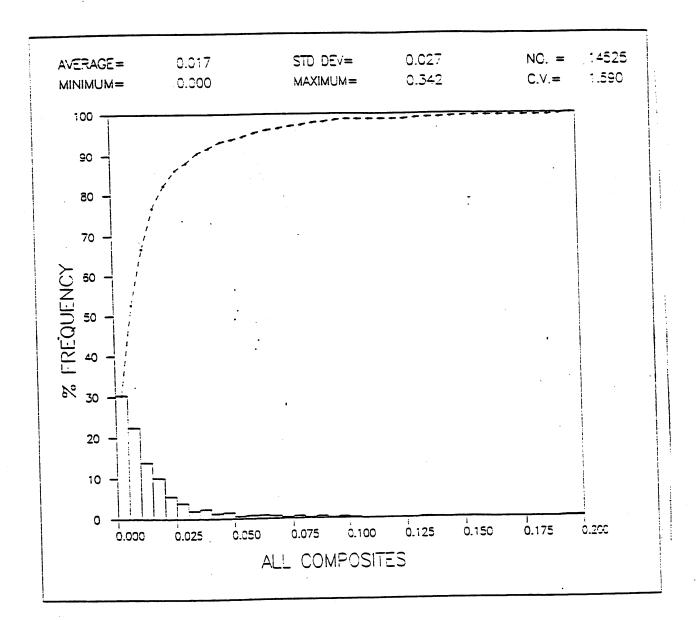
The assay grades were composited to 20' bench height for use in interpolation of block grades and variogram study. Table 2 gives the statistics of all composite data at 0.005 intervals. Figure 18 shows a histogram of these composites.

A preliminary variogram study was conducted using the composite data that are less than 0.25 opt. Two directional variograms were developed, one along strike direction (N78W or N102E), and the other perpendicular to the plane of dip. These variograms with the theoretical models used are shown in Figures 19 and 20, respectively. Because of the spacing of the drillholes, the variogram in strike direction cannot reveal the short-scale continuity.

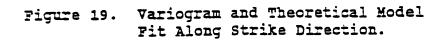
Project #US1242-003

Cutoff Samples Percent Mean C.V. 0.000 3309.0 100.0 0.017 2.097 0.005 2087.0 63.1 0.026 1.622 0.010 1503.0 45.4 0.033 1.421 0.015 961.0 29.0 0.046 1.202 0.020 836.0 25.3 0.050 1.152 0.035 573.0 16.7 0.065 1.014 0.030 500.0 15.1 0.069 0.985 0.040 338.0 10.2 0.087 0.881 0.045 265.0 8.0 0.100 0.823 0.055 203.0 6.1 0.116 0.767 0.065 157.0 4.7 0.132 0.719 0.070 145.0 4.4 0.137 0.705 0.085 104.0 3.1 0.161 0.649 0.090 9.0 3.0 0.165 0.641 0.095 86.0<	Table 1.	Statistics of cutoff grades	all gold	assays at dif	ferent
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-			c.v.
	0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.055 0.060 0.065 0.070 0.075 0.080 0.085 0.090 0.095 0.100 0.105 0.100 0.105 0.100 0.125 0.120 0.125 0.130 0.135 0.140 0.145 0.155 0.160 0.155 0.160 0.165 0.175 0.180 0.185 0.190 0.195 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.155 0.195 0.	2087.0 1503.0 961.0 836.0 553.0 500.0 372.0 338.0 265.0 247.0 203.0 190.0 157.0 145.0 127.0 122.0 104.0 99.0 86.0 83.0 75.0 73.0 61.0 61.0 50.0 47.0 44.0 43.0 38.0 30.0 31.0 28.0 28.0 28.0 28.0 28.0 28.0 22.0 23.0 22.0	63.1 45.4 29.0 25.3 16.7 15.1 11.2 10.2 8.0 7.5 6.1 5.7 4.7 4.4 3.8 3.7 3.1 3.0 2.6 2.3 2.2 1.8 1.5 1.4 3.1 1.0 2.6 2.5 2.3 2.2 1.8 1.5 1.1 1.0 2.6 2.5 2.3 2.2 1.8 1.5 1.1 1.0 2.6 2.5 2.3 2.2 1.8 1.5 1.1 3.0 2.6 2.5 2.3 2.2 1.8 1.5 1.1 1.0 2.5 0 7.5 6.1 5.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4	0.026 0.033 0.046 0.050 0.065 0.069 0.083 0.087 0.100 0.104 0.116 0.120 0.132 0.137 0.147 0.150 0.161 0.165 0.177 0.179 0.188 0.190 0.206 0.206 0.224 0.231 0.238 0.240 0.253 0.265 0.286 0.2313	1.622 1.421 1.202 1.152 1.014 0.985 0.904 0.881 0.823 0.809 0.767 0.755 0.719 0.705 0.681 0.675 0.649 0.641 0.620 0.649 0.641 0.620 0.615 0.575 0.575 0.575 0.575 0.575 0.525 0.508 0.508 0.494 0.494 0.491 0.455 0.450




Figure 17. Histogram of All Gold Assays

Project #US1242-003


Cutoff	Feet	Percent	Mean	c.v.
Grade	Above	Above	Above	
0.000	14525.4	100.0	0.017	1.590
0.005	10118.5	69.7	0.023	1.283
0.010	6853.7	47.2	0.031	1.080
0.015	4827.3	33.2	0.039	0.949
0.020 0.025	3363.0 2567.6	23.2 17.7	0.049 0.057	0.837
0.025	2007.5	13.8	0.065	0.761
0.035	1722.5	11.9	0.071	0.665
0.040	1378.3	9.5	0.079	0.619
0.045	1198.3	8.2	0.085	0.594
0.050	979.3	6.7	0.093	0.558
0.055	897.4	6.2	. 0.097	0.543
0.060	786.8	5.4	0.102	0.527
0.065	665.3	4.6	0.110	0.500
0.070	565.3	3.9	0.117	0.48
0.075	517.0	3.6	0.122	0.476
0.080	432.0	3.0	0.130	0.45
0.085 0.090	392.0	2.7 2.1	0.147	
0.095	312.0 287.0	2.0	0.152	
0.100	227.0	1.6	0.167	
0.105	193.0	1.3	0.178	0.34
0.110	193.0	1.3	0.178	0.34
0.115	192.9	1.3	0.178	0.34
0.120	192.9	1.3	0.178	
0.125	192.9	1.3	0.178	
0.130	192.9	1.3	0.178	0.34
0.135	152.9 132.9	1.1 0.9	0.191 0.199	· 0.32 0.31
0.140 0.145	132.9	0.9	0.199	0.31
0.150	112.9	0.8	0.208	0.31
0.155	92.9	0.6	0.220	0.29
0.160	80.0	0.6	0.230	0.28
0.165	80.0	0.6	0.230	0.28
0.170	80.0	0.6	0.230	0.28
0.175	80.0	0.6	0.230	0.28
0.180	80.0	0.6	0.230	0.28
0.185	80.0	0.6	0.230	
0.190 0.195	80.0 40.0	0.6 0.3	0.230 0.269	
Min. Da	ta Value =	0.000		
	ta Value =	0.342		

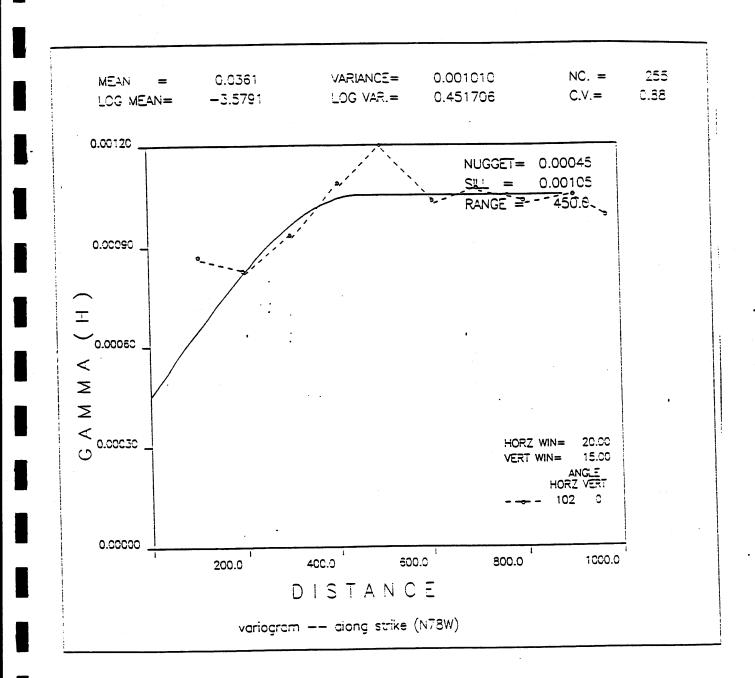

 \setminus

Figure 18. Histogram of All Composite Gold Assays

Project #US1242-003

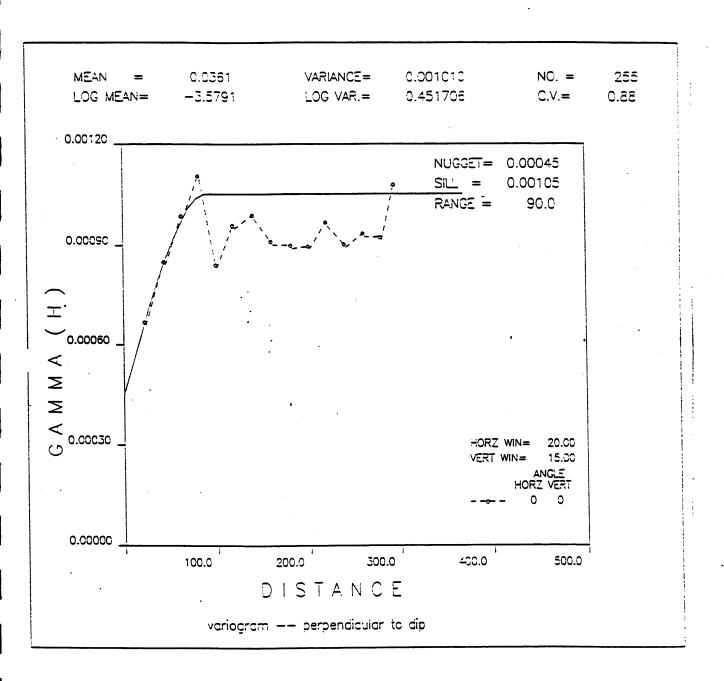


Figure 20. Variogram and Theoretical Model Fit Perpendicular to the Plane of Dip

Project #US1242-003

3-D BLOCK MODELING

A 3-D model of the Moss Deposit was built to assess the preliminary geologic and minable reserves using the following limits:

Easting	290,500	to	294,000
Northing	1,491,500	to	1,493,000
Elevation	1,500	to	2,600

The blocks in the model are 25' square blocks. The bench height is 20'. Therefore, there are 140 columns, 60 rows, and 55 benches in this model. The total number of blocks in the model is 462,000.

Each block in the model has been assigned a value between 0 and 100 to indicate the percentage of the block below the topography. Several other items have been reserved in each block to store the grades and other pertinent information from different interpolations. Table 3 gives the description of the items stored in each block of the model.

Gold grades were assigned to the blocks using both kriging and inverse distance weighting interpolation methods. Using a strike direction of N78W (or N102E), and dip angle of -63° SW, three different cases were tried:

- Inverse distance weighting method of power three (ID3).
 Search distances along the strike and down dip are 100feet. Search distance vertical to the plane is 20-feet.
- ID3. Search distances along the strike and down dip are 300-feet. Search distance vertical to the plane is 20feet.

Project #US1242-003

February 10, 1992

3. Kriging using the search strategy of Case #2.

Tables 4, 5, and 6 give the geologic reserves from these three cases, respectively. They were computed using a tonnage factor of 12.5 cubic feet per ton, down to 1600' elevation.

Figures 21 and 22 are the sample N-S sections through the block model at 291,950E and 292,590E showing gold grades that are greater than or equal to 0.008 opt. The bench composite gold values are also shown on these sections.

February 10, 1992

Table 3.	Description of the Items Stored in the 3-D Block Model
TOPO	- % of the block below topography
GOLDI	 Estimated gold grade from inverse distance weighting method (ID3) 300' search
GOLDK	- Estimated gold grade from kriging 300' search
RECAU	- Estimated gold grade from ID3 100' search
KRGVR	- Kriging estimation error
DIST	- Distance to the closest composite value
SILVR	- Reserved for future use
KODE	- Reserved for future use
ROCK	- Reserved for future use
ORTYP	- Reserved for future use
PRCNT	- Reserved for future use
PROP	- Reserved for future use

l

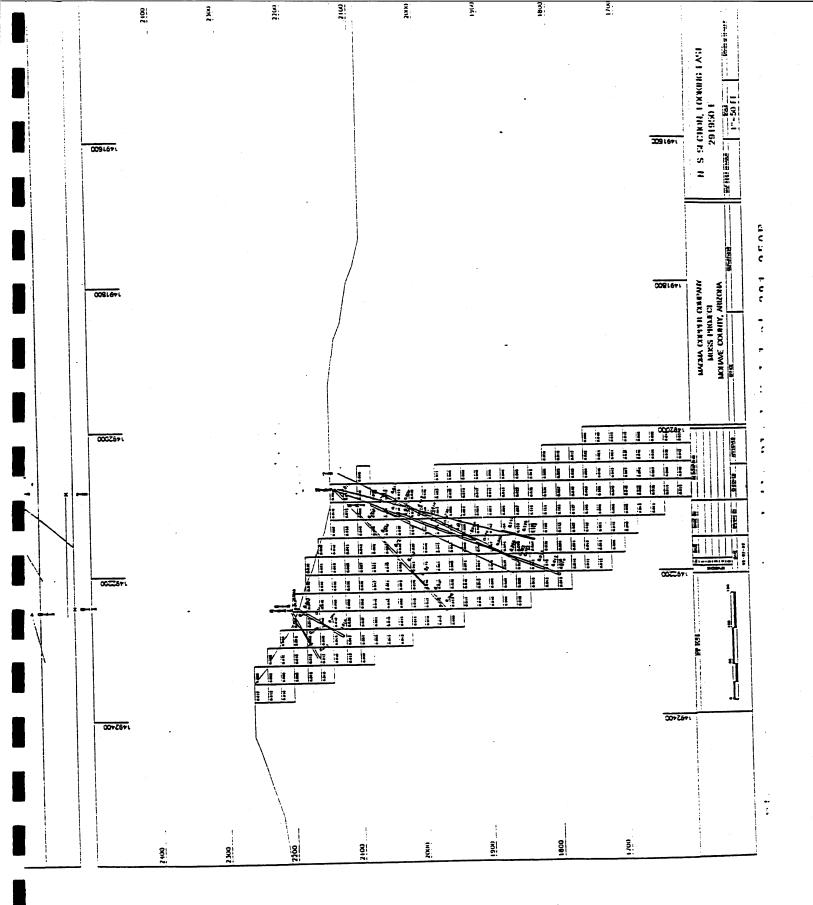
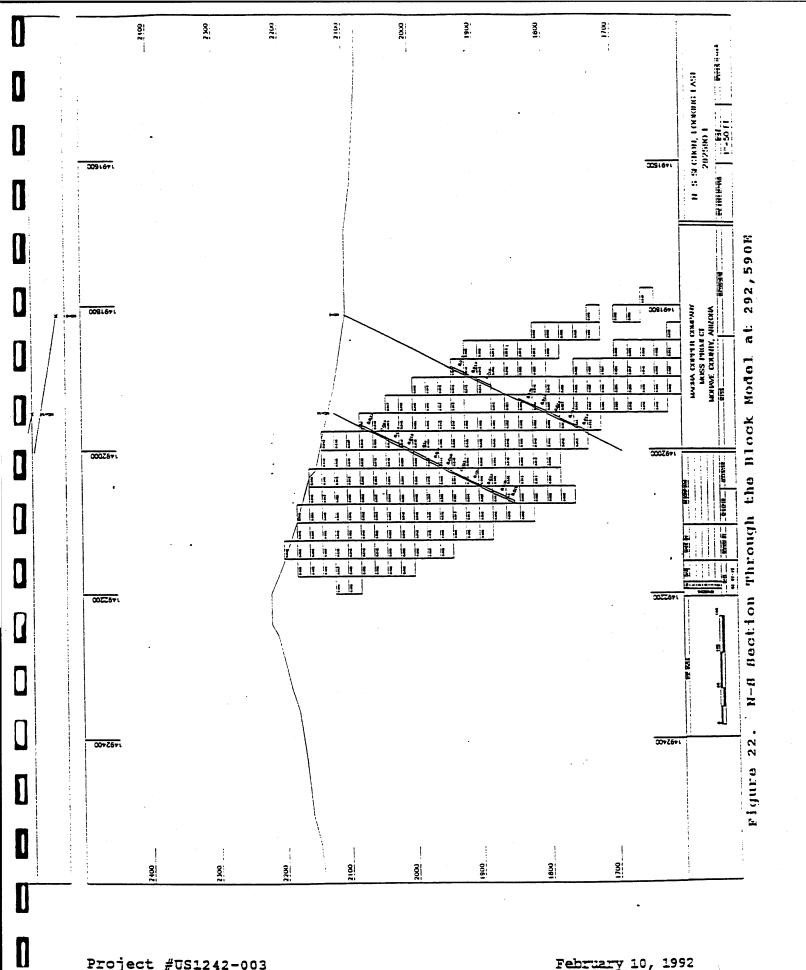

February 10, 1992

Table 4.	Geologic reso at different	erves from ID3 cutoff grades	to 1600' e 100' se	elevation
Cutoff Grade	Ore Tons x 1000	Percent Above.	Mean Above	c.v.
Grade 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.055 0.060 0.055 0.060 0.065 0.070 0.075 0.080 0.090 0.095 0.100 0.115 0.120 0.125 0.120 0.125 0.130 0.140 0.155 0.140 0.155 0.160 0.155 0.160 0.155 0.180 0.190 0.195	18675.0 12555.2 8185.3 5237.6 3544.9 2665.8 2112.5 1736.4 1390.3 1113.1 901.5 747.1 596.6 502.3 440.7 377.2 335.3 295.2 262.6 238.0 212.0 186.0 171.0 154.0 145.0 132.0 122.0 104.0 95.0 86.0 79.0 65.0 51.0 41.0 30.0 29.0 27.0	$ \begin{array}{c} 100.0 \\ 66.5 \\ 43.4 \\ 28.0 \\ 16.8 \\ 14.1 \\ 11.2 \\ 9.2 \\ 7.4 \\ 5.9 \\ 4.8 \\ 4.0 \\ 3.2 \\ 2.7 \\ 2.3 \\ 2.0 \\ 1.8 \\ 1.6 \\ 1.4 \\ 1.3 \\ 1.1 \\ 1.0 \\ 0.9 \\ 0.8 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.1 \\ \end{array} $	Above 0.014 0.020 0.027 0.035 0.044 0.051 0.058 0.063 0.070 0.077 0.084 0.090 0.098 0.105 0.111 0.122 0.128 0.137 0.142 0.137 0.142 0.147 0.151 0.155 0.157 0.161 0.163 0.169 0.175 0.175 0.178 0.183 0.190 0.204 0.208 0.209 0.211 0.228	$\begin{array}{c} 1.46\\ 1.14\\ 0.95\\ 0.81\\ 0.71\\ 0.64\\ 9.55\\ 0.52\\ 0.49\\ 0.46\\ 0.43\\ 0.33\\ 0.33\\ 0.29\\ 0.25\\ 0.225\\ 0.225\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.221\\ 0.21\\ 0.17\\ 0.17\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.15\\ 0.16\\ 0.15\\ 0.15\\ 0.16\\ 0.15\\ 0.16\\ 0.15\\ 0.16\\ 0.15\\ 0.16\\ 0.15\\ 0.16\\ 0.$
Max.	Data Value = Data Value =	0.284		
c.v.	= Coeff. of V	Variation = Sta	andard Devi	ation/Mear

able 5.	Geologic rese at different	rves from ID3 cutoff grades	to 1600'e ; 300'se	arch
Cutoff Grade	Ore Tons x 1000	Percent Above	Mean Above	C.V.
0.000 0.005 0.015 0.025 0.025 0.035 0.045 0.045 0.055 0.065	179.0 157.0 135.0 116.0 101.0 79.0 67.0 53.0 42.0 53.0 42.0 53.0 50.0 5	0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.011 0.016 0.022 0.030 0.038 0.043 0.049 0.055 0.061 0.067 0.075 0.082 0.090 0.096 0.101 0.107 0.112 0.116 0.121 0.125 0.129 0.134 0.138 0.147 0.151 0.157 0.162 0.162 0.168 0.175 0.180 0.195 0.201 0.211 0.213 0.219 0.219 0.232	1.28 0.98 0.80 0.63 0.53 0.50 0.47 0.44 0.42 0.40 0.37 0.34 0.32 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.22 0.22 0.22 0.22 0.22 0.22 0.22


Project #US1242-003

	Percent	.Mean	C.V.
Cutoff Ore Tons Grade X 1000	Above	Above	••••
0.000 51875.7	100.0	0.011	1.16
0.005 35179.1	67.8	0.016	0.90
0.010 21041.6	40.6	0.022	0.72
0.015 12034.4	23.2	0.029	0.59
0.020 7851.4	15.1	0.035	0.51
0.025 5473.8	10.6	0.041	0.46
0.030 3836.7	7.4	0.047	0.41 0.38
0.035 2855.9	5.5 . 4.1	0.053 0.058	0.35
0.040 2148.7	4.1 3.2	0.063	0.33
0.045 1640.1 0.050 1109.6	2.1	0.071	0.30
0.050 1109.6 0.055 849.8	1.6	0.077	0.27
0.060 678.8	1.3	0.082	0.25
0.065 544.1	1.0	0.087	0.23
0.070 451.5	0.9	0.091	0.21
0.075 363.0	0.7	0.096	0.20
0.080 283.0	0.5	0.101	0.18
0.085 236.0	0.5	0.104	0.17
0.090 . 196.0	0.4	0.108	0.16 0.15
0.095 154.0	0.3	0.112 0.117	.0.14
0.100 118.0	0.2	0.123	0.13
0.105 86.0 0.110 54.0	0.2	0.128	0.12
0.110 64.0 0.115 53.0	0.1	0.132	0.12
0.120 41.0	0.1	0.136	0.11
0.125 30.0	0.1	0.141	0.10
0.130 24.0	0.0	0.144	0.10
0.135 16.0	0.0	0.150	0.09
0.140 13.0	0.0	0.153	0.09
0.145 9.0	0.0	0.159	0.0
0.150 5.0	0.0	0.164	0.0
0.155 4.0	0.0 0.0	0.174	0.0
0.160 3.0 0.165 2.0	0.0	0.180	0.1
			0.0
	0.0	0.192	0.0
0.180 1.0	0.0	0.192	0.0
0.185 1.0	0.0	0.192	0.0
0.190 1.0	0.0	0.192	0.0
	0.000		
0.1 0.1 0.1 0.1	70 1.0 75 1.0 80 1.0 85 1.0 90 1.0	701.00.0751.00.0801.00.0851.00.0901.00.0	70 1.0 0.0 0.192 75 1.0 0.0 0.192 80 1.0 0.0 0.192 85 1.0 0.0 0.192

Project #US1242-003

February 10, 1992

Project #US1242-003

February 10, 1992

PIT DESIGN

An economic pit design of the deposit was developed using floating cone algorithm based on the block grades generated from Case #2. The parameters used for this design were as follows:

Mining cost/ton	waste		=	\$0.83
Total operating	cost/ton	cre	=	\$4.89
Pit Slope			=	45 ⁰
Gold price/oz			=	\$350
Recovery			=	60%

Table 7 summarizes the reserves in this pit design. Again, the tonnage factor used was 12.5 cubic feet per ton for both ore and waste. The blocks included in this pit are whole blocks based on whether the center of the block falls inside or outside the pit. Therefore, the pit walls are not smooth. Furthermore, no haul roads were incorporated into the pit because of the preliminary nature of the pit design. Figure 23 shows a plan view of this pit.

Project #US1242-003

February 10, 1992

Table 7. Reserv	ves at diffe floating con		grades in e	conomic pit	design P04
Cutoff Grade	0.000	0.010	0.020	0.030	0.040
Ore x 1000 Grade Waste x 1000 S.R.	5855. 0.028 3009. 0.514	4776. 0.033 4088. 0.856		1932. 0.055 6932. 3.588	1300. 0.065 7564. 5.818
Notes: 1. Pit 2. Tonn 3. Bloc	age factor	t 1800' eleva used is 12.5 e based on II	cu.ft/ton	search	

Project #US1242-003

February 10, 1992

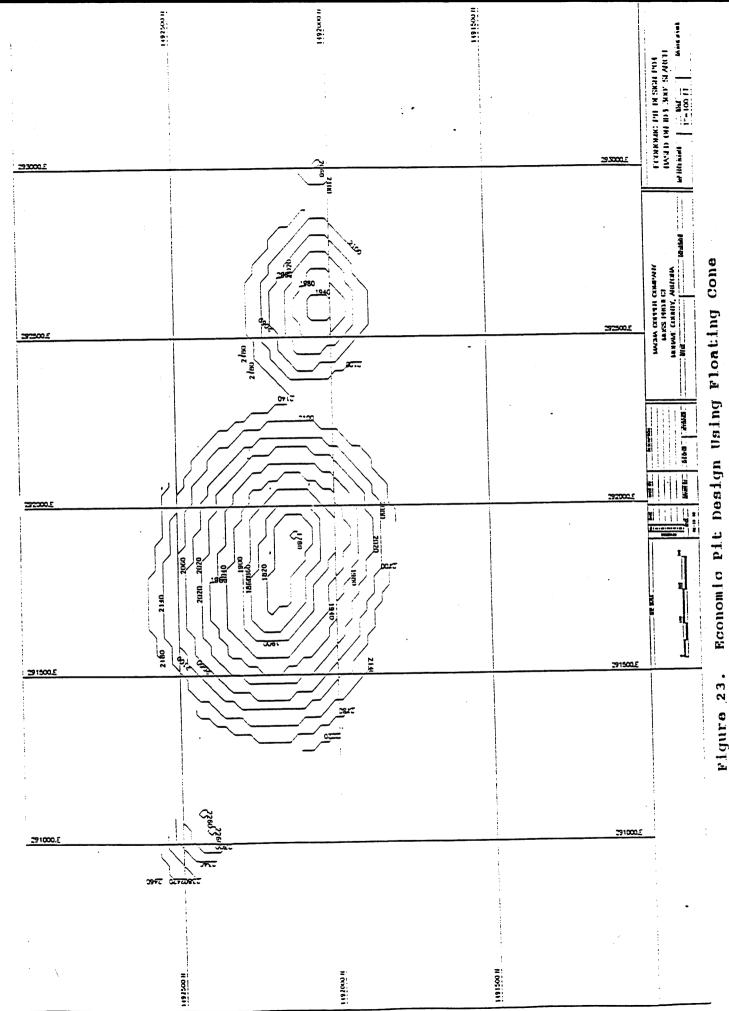


Figure 23.

292600E	100	2,047.5	MC-14	30	0.070	18,340	1,284	
292600E	100	1,975.0	MC-14	30	0.026	18,001	468	
292600E	100	1,956.9	MC-14	30	0.060	12,728	764	
					Totals	386,568	15,353	0.040
292700E	100	1,910.1	MC-15	20	0.081	20,397	1,652	
292700E	100	1,733.5	MC-3	20	0.026	16,334	425	
292700E	100	1,896.5	MC-15	20	0.060	15,724	943	
292700E	100	1,719.9	MC-3	20	0.030	4,770	143	
292700E	100	2,014.3	MC-15	30	0.015	42,762	641	
292700E	100	1,925.9	MC-15	30	0.030	31,287	939	
292700E	100	1,778.8	MC-3	30	0.022	28,246	621	
292700E	100	1,941.8	MC-15	30	0.018	13,196	238	
					Totals	172,714	5,602	0.032
292800E	100	1,904.1	MC-13	20	0.043	22,475	966	
292800E	100	2,052.5	MR-10	20	0.111	22,030	2,445	
292800E	100	1,756.2	MC-4	20	0.039	19,681	768	
292800E	100	2,014.0	MR-10	20	0.034	11,498	391	
292800E	100	1,740.3	MC-4	20	0.104	5,663	589	
292800E	100	2,038.4	MR-10	20	0.056	3,008	168	
292800E	100	2,024.3		20	0.045	2,535	114	
292800E	100	2,017.4		30	0.018	46,146	831	
292800E	100	-	•	30	0.027	27,658	747	
292800E	100	1,963.1	MC-13	30	0.019	16,320	310	
292800E	100	1,944.9		30	0.015	14,148	212	
		.,			Totals	191,162	7,541	0.039
292900E	100	2,066.7	MR-10	20	0.097	17,554	1,703	
292900E	100	1,711.4		20	0.021	4,209	88	
292900E	100	2,080.8		20	0.034	759	26	
202000	100	2,000.0	IVII (~ 10	20	Totals	22,522	1,817	0.081
293000E	100	1 921 6	MC-16	20	0.064	32,800	2,099	
293000E	100		MC-16	20	0.019	32,292	2,099 614	
293000E	100		MC-16	20	0.032	9,037	289	
ZUUUUL	100	1,009.0		20	Totals	74,129	3,002	0.040
293100E	200	1,669.0	MC-9	20	0.024	46,346	1,112	
293100E	200	1,859.4		30	0.016	50,825	813	
293100E	200	1,877.5		30	0.019	47,971	912	
293100E	200	1,843.5		30	0.025	47,211	1,180	
2001002	200	1,040.0		00	Totals	192,353	4,017	0.021
293300E	200	1 720 6	MC 10	20	0.022	60 444	1 400	
293300E 293300E	200		MC-10	20 20	0.022	68,111 31 031	1,498	
		-	⁻ MC-10	20 20	0.024	31,931	766	
293300E	200		MC-10	20 25	0.019	18,782	357	
293300E	200 200		MC-10	35 35	0.015	95,492	1,432	
293300E	200		MC-10	35	0.020	43,984	880	
293300E 293300E	200	1,832.3 2,061.1	MC-10	35	0.028	42,755	1,197	
23000C	200	2,001.1	MC-10	60	0.037	123,288	4,562	

.

•

293300E	200	2,126.8	MC-10	60	0.023	38,951	896	
293300E	200	2,108.7	MC-10	60	0.016	37,440	599	
293500E	200	2,004.9	MR-13	20	0.024	51,270	1,231	
293500E	200	2,019.0	MR-13	20	0.051	13,092	668	
					Totals	565,094	14,086	0.025
293900E	200	1,857.6	MM-17	20	0.036	45,110	1,624	
293900E	200	1,846.7	MM-17	20	0.065	44,881	2,917	
293900E	200	2,099.3	MR-14	20	0.045	43,801	1,971	
293900E	200	2,086.9	MR-14	20	0.184	28,803	5,300	
293900E	200	1,887. 9	MM-17	30	0.022	68,299	1,503	
293900E	200	2,148.8	MR-14	30	0.015	39,818	597	
293900E	200	2,134.6	MR-14	30	0.015	36,700	551	
					Totals	307,412	14,462	0.047
294100E	200	1,886.1	MM-18	20	0.015	59,956	899	
294100E	200	1,914.7	MM-18	20	0.022	52,536	1,156	
294100E	200	1,898.4	MM-18	20	0.067	17,504	1,173	
					Totals	129,996	3,228	0.025

,

CROSS SECTIONAL POLYGONAL RESERVE (200 ft. radius of influence) MOSS PROJECT, ARIZONA

CROSS SECTIONAL POLYGONAL RESERVE (200 ft. radius of influence) MOSS PROJECT, ARIZONA

:

Addwest Minerals, Inc. February, 1995

Radius of influence = 200 ft. Thickness determined by section width (50, 100, or 200 ft.) Cut-off grade = .015 opt Au Utilized 20 ft. composites, bounded by rock type

SUMMARY

Rock Type	Tons	Grade	<u>Oz. Au</u>
Moss Vein (20)	2,790,226	0.049	135,759
Hi-grade Hanging Wall (30)	2,581,978	0.028	73,322
Low-grade Hanging Wall (35)	463,858	0.021	9,863
Footwall (10)	244,578	0.022	5,255
Other Quartz Veins (25)	43,521	0.027	1,160
Rhyolite Dike (60)	441,653	0.034	14,905
Fault (50)	411	0.02	8
TOTAL	6,566,225	0.037	240,272

POLYGON INFORMATION

<u>Section</u>	<u>Hole</u>	Elev.	Thickness	s <u>Rock Ty</u>	<u>pe Grade Au</u>	<u>Tons</u>	<u>Oz. Au</u>	av. grade of section
290250E	MC-18A	1967.39	100	10	0.023	66,831	1,537	
290250E	MC-18A	2003.66	100	20	0.026	58,395	1,518	
290250E	MC-18A	1989.15	100	20	0.016	52,393	838	
290250E	MC-18A	2018.16	100	30	0.018	74,117	1,334	
290250E	MC-18A	2134.22	100	30	0.016	28,115	450	
290250E	MC-18A	2105.21	100	30	0.016	41,829	669	
					TOTALS	321,680	6,347	0.020
290350E	MC-19	2018.48	100	20	0.026	154,331	4,013	
290350E	MC-19	2108.75	100	30	0.034	32,414	1,102	
290350E	MC-20	2120	100	30	0.027	14,108	381	
290350E	MC-20	2130	100	30	0.016	6,058	97	
290350E	MC-19	2120.79	100	30	0.016	31,228	500	
290350E	MC-19	2096.72	100	30	0.016	36,448	583	
			_		TOTALS	274,586	6,675	0.024
290450E	MC-20	2060	100	30	0.020	26,864	537	0.020
290550E	MC-20	1995	100	10	0.018	11,228	202	
290550E	MC-20	2025	100	20	0.018	24,501	441	

	290550E	MC-20	2035	100	20	0.018	95,438	1,718	
	290550E	MC-20	2008.75	100	20	0.015	50,999	765	
			2000.10	100	20	TOTALS	182,166	3,126	0.017
								0,120	0.017
	290950E	M-8-45	2317.18	50	20	0.032	770	25	
	290950E	M-9-60	2307.03	50	20	0.030	567	17	
	290950E	M-8-45	2303.04	50	20	0.030	739	22	
	290950E	M-8-60	2305.7	50	20	0.030	2,794	84	
	290950E	M-9-45	2324.79	50	20	0.027	387	10	
	290950E	M-8-60	2290.54	50	20	0.017	19,818	337	
	290950E	M-8-30	2334	50	30	0.035	10,533	369	
	290950E	M-8-45	2329.55	50	30	0.017	417	7	
						TOTALS	36,024	871	0.024
	291000E	M-10-60	2309.02	50	20	0.162	885	143	
	291000E	M-10-60	2296.03	50	20	0.070	:1,100	77	
	291000E	M-10-45	2310.25	50	20	0.050	609	31	
	291000E	M-15-45	2254.9	50	20	0.040	556	- 22	
	291000E	M-15-60	2245.72	50	20	0.038	987	38	
	291000E	M-16-45	2247.82	50	20	0.030	977	29	
	291000E	M-15-60	2232.73	50	20	0.030	852	26	
	291000E	M-18-45	2214.45	50	20	0.027	1,804	49	
	291000E	M-10-60	2283.04	50 .	20	0.023	541	12	
	291000E	M-19-45	2228.82	50	20	0.020	2,250	45	
	291000E	M-10-30	2317.5	50	20	0.018	20,425	368	
	291000E	M-10-45	2299.64	50	20	0.018	762	14	
	291000E	M-16-30	2280	50	20	0.018	1,736	31	
	291000E	M-16-30	2272.5	50	20	0.015	1,201	18	
	291000E	M-15-45	2265.5	50	20	0.015	307	5	
	291000E	M-10-45	2320.86	50	30	0.130	361	47	
	291000E	M-10-30	2327.5	50	30	0.055	4,253	234	
	291000E	M-10-60	2326.34	50	30	0.047	222	10	
	291000E	M-9-30	2341	50	30	0.043	1,215	52	
	291000E	M-10-45	2331.46	50	30	0.035	220	8	
	291000E	M-18-45	2240.97	50	30	0.030	713	21	
	291000E	M-9-60	2322.18	50	30	0.030	1,793	54	
	291000E 291000E	M-15-30	2282.5	50	30	0.025	547	14	
	291000E	M-10-30 M-15-30	2333.75 2291.25	50	30	0.020	345	7	
	291000E	MM-9		50	30	0.020	560	11	
	291000E	M-9-60	2042.83	50	30	0.018	14,420	260	
	291000E	MM-9	2337.34 2112.12	50	30	0.018	1,532	28	
	291000E	M-16-45	2307.93	50 50	30 20	0.016	21,969	352	
	291000E	MM-9	2307.93	50 50	30 35	0.015	87	1	
	2310000	141141-3	2190.00	50	35	0.019 TOTAL S	25,758	489	0.000
						TOTALS	108,987	2,494	0.023
	291050E	M-17-60	2212.41	50	20	0.220	1,540	339	
	291050E	M-11-45	2289.64	50	20	0.068	1,062	72	
\	291050E	M-11-30	2302.5	50	20	0.047	7,052	331	
	291050E	M-17-45	2258.97	50	20	0.035	1,726	60	
	291050E	M-17-45	2246.59	50	20	0.027	1,443	39	
				-	· · · ·		.,		

E

291050E	M-17-60	2225.4	50	20	0.025	1,842	46	
291050E	M-11-60	2281.7	50	20	0.015	1,219	18	
291050E	M-11-45	2277.27	50	20	0.015	1,454	22	
91050E	M-20-45	2210.68	50	20	0.015	15,373	231	
91050E	M-29-60	1981.2	50	20	0.015	4,617	69	
91050E	BX-6	2234.41	50	25	0.027	9,070	245	
91050E	M-11-45	2303.79	50	30	0.055	691	38	
91050E	M-17-45	2304.93	50	30	0.035	1,217	43	
91050E	M-17-60	2268.7	50	30	0.030	1,932	,58	
91050E	M-17-45	2290.79	50	30	0.027	1,576	43	
91050E	M-20-45	2270.79	50	30	0.023	2,086	48	
91050E	M-11-30	2311.25	50	30	0.020	3,526	71	
91050E	M-11-30	2320	50	30	0.020	2,118	42	
91050E	M-17-60	2286.02	50	30	0.020	1,948	39	
91050E	M-11-60	2299.02	50	30	0.020	1,624	33	
91050E	M-17-45	2267.81	50	30	0.020	- 775	16	
91050E	M-11-60	2316.34	50	30	0.018	1,707	31	
91050E	M-18-45	2258.64	50	30	0.018	7,018	126	
91050E	M-11-45	2317.93	50	30	0.015	204	3	
91050E	M-20-45	2256.64	50	30	0.015	1,807	27	
					TOTALS	74,624	2,089	0.028
							•	
91100E	M-12-30	2279.5	50	20	0.060	4,515	271	
91100E	M-12-45	2264.57	50	20	0.047	1,113 '	52	•
91100E	MM-10	2075.13	50	20	0.027	17,598	475	
91100E	M-12-60	2233.39	50	20	0.025	15,294	382	
91100E	M-12-60	2246.38	50	20	0.018	2,779	50	
91100E	M-12-30	2272	50	20	0.015	4,754	71	
91100E	M-12-45	2253.97	50	20	0.015	1,022	15	
91100E	BX-6	2207.9	50	25	0.025	11,132	278	
91100E	MM- 10	2127.09	50	30	0.032	24,554	786	
91100E	M-12-30	2285.75	50	30	0.030	3,432	103	
291100E	MM-10	2109.77	50	30	0.024	13,685	328	
91100E	M-12-30	2292	50	30	0.020	3,558	71	
91100E	M-12-45	2285.79	50	30	0.018	524	9	
291100E	M-12-45	2275.18	50	30	0.015	754	11	
291100E	BX-6	2199.06	50	35	0.023	8,409	193	
91100E	MM-10	2189.87	50	35	0.018	6,601	133	
		2.00.07			TOTALS	119,721	3,217	0.027
91150E	BX-6	2137.19	50	25	0.029	10,082	292	0.029
291200E	M-13-60	2238.37	50	20	0.027	2,939	79	
291200E	M-13-60	2255.69	50	20	0.025	1,392	35	
91200E	M-13-30	2262.25	50	20	0.020	1,997	40	
91200E	M-13-60	2227.54	50	20	0.020	28,417	568	
291200E	M-13-30	2271	50	20	0.018	957	17	
					TOTALS	35,702	740	0.021
291250E	MM-11	2059.93	50	10	0.022	6,461	142	

291250E	MM-11	2046.33	50	10	0.015	19,696	295	
291250E	MM-11	2082.59	50	20	0.040	5,634	225	
291250E	MM-11	2118.84	50	20	0.023	7,268	167	
291250E	M-21-60	2197.03	50	20	0.020	295	6	
291250E	M-21-60	2184.04	50	20	0.020	355	7	
291250E	M-21-60A	2197.03	50	20	0.020	2,831	57	
291250E	MM-11	2100.71	50	20	0.019	7,311	139	
291250E	M-21-45	2198.88	50	20	0.017	1,062	18	
291250E	M-21-30	2211	50	20	0.015	2,683	40	
291250E	M-21-45	2211.25	50	20	0.015	512	8	
291250E	MM-11	2150.56	50	30	0.022	10,533	232	
					TOTALS	64,640	1,336	0.021
291300E	M-22-45	2178.64	50	30	0.023	6,407	147	
291300E	M-22-45	2168.04	50	30	0.020	73,259	1,465	
					TOTALS	79,667	1,613	0.020
291350E	MM-12	2177.94	50	30	0.024	9,111	219	0.024
291550E	M-7-70	2127.11	50	20	0.072	768	55	
291550E	MR-11	2144.64	50	20	0.048	2,700	130	
291550E	UG65-1	2110	50	20	0.040	357	14	
291550E	M-7-70	' 2108.32	50 [']	20	0.040	1,182	47	
291550E	MR-11	2130.5	50	20	0.037	716	27	
91550E	M-7-70	2145.9	50	20	0.032	1,733	56	
91550E	MR-11	2121.66	50	20	0.020	474	10	
91550E	MM-5	2124.64	50	20	0.019	17,328	329	
91550E	M-7-70	2157.65	50	30	0.040	2,746	110	
291550E	MM-5	2152.93	50	30	0.022	9,553	210	
91550E	MM-6	2060.41	50	30	0.019	6,637	126	
291550E	MM-6	2077.73	50	30	0.016	5,621	90	
291550E	MM-6	2151.34	50	35	0.049	54,046	2,648	
					TOTALS	103,861	3,852	0.037
291600E	UG65-4	2110	50	20	0.140	1,559	218	
291600E	UG65-2	2110	50	20	0.100	4,854	485	
291600E	UG65-5	2110	50	20	0.080	1,811	145	
					TOTALS	8,224	849	0.103
291650E	TR-1	2185.62	50	20	0.091	2,835	258	
291650E	UG65-9	2110	50	20	0.080	25,747	2,060	
291650E	UG65-8	2110	50	20	0.080	5,114	409	
291650E	TR-1	2179.48	50	20	0.058	3,392	197	
291650E	UG65-7	2110	50	20	0.040	1,278	51	
291650E	-	2110	50	20	0.040	1,244	50	
291650E	BX-5	2041.56	50	25	0.026	13,237	344	
291650E	BX-5	2052.17	50	35	0.015	10,923	164	
\setminus					TOTALS	63,769	3,532	0.055
291700E	MR-7	2048.55	50	10	0.028	24,831	695	

-

291700E	TR-3	2207.62	50	20	0.760	4,234	3,218	
291700E	UG65-14	2110	50	20	0.300	194	58	
291700E	UG65-11	2110	50	20	0.300	333	100	
291700E	MR-7	2104.41	50	20	0.116	931	108	
291700E	TR-3	2198.85	50	20	0.105	1,604	168	
291700E	M-6-60	2134.7	50	20	0.095	1,893	180	
291700E	M-6-60	2152.02	50	20	0.095	2,238	213	
291700E	UG65-12	2110	50	20	0.080	910	73	
291700E	MR-7	2121.73	50	20	0.078	1,886	147	
291700E	M-6-30	2163	50	20	0.072	2,151	155	
291700E	UG65-13	2110	50	20	0.070	769	54	
291700E	MR-5	2050.12	50	20	0.065	6,395	416	
291700E	M-6-30	2173	50	20	0.060	1,131	68	
291700E	TR-3	2194.03	50	20	0.060	941	57	
291700E	MR-7	2069.77	50	20	0.056	1,599	90	
291700E	UG220-1	1955	50	20	0.056	-2,200	123	
291700E	UG220-1	1955	50	20	0.047	19,541	918	
291700E	UG65-10	2110	50	20	0.040	277	11	
291700E	UG65-15	2110	50	20	0.040	1,883	75	
291700E	MR-7	2056.78	50	20	0.034	634	22	
291700E	MR-5	2032.79	50	20	0.033	9,394	310	
291700E	M-6-30	2154.25	50	20	0.033	2,409	80	
291700E	M-6-60	2119.54	50	20	0.033	1,493	49	
291700E	MR-7	2087.09	50	20	0.027	2,958	'80	•
291700E	M-6-60	2169.34	50 50	20	0.020	915	18	
291700E	MM-8	2058.43	50	30	0.154	28,396	4,373	
291700E	MM-8	2112.81	50	30	0.097	1,277	124	
291700E	MM-8	2076.56	50	30	0.029	3,557	103	
		2070.00	00	50	TOTALS	126,972	12,085	0.095
291750E	MR-12	1998.58	50	10	0.033	5,256	174	
291750E	MM-8	1883.97	50	10	0.024	5,104	123	
291750E	MM-8	1931.55	50	20	0.192	3,910	751	
291750E	UG220-3	1955	50	20	0.154	1,446	223	
291750E	UG220-4	1955	50	20	0.154	106	16	
291750E	MR-5	2067.44	50	20	0.141	5,176	730	
291750E	TR-6	2235.62	50	20	0.141	667	94	
291750E	MM-8	1913.42	50	20	0.140	5,422	759	
291750E	MM-8	1897.56	50	20	0.126	9,808	1,236	
291750E	TR-8	2239.62	50	20	0.120	693	83	
291750E	M-5-30	2179	50	20	0.116	2,662	309	
291750E	MM-8	1949.68	50	20	0.097	2,002	30 9 96	
291750E	M-5-30	2172.75	50	20				
291750E	MR-5	2084.76			0.090	1,442	130	
291750E	UG220-6	2084.76 1955	50 50	20 20	0.090	1,817	164	
291750E			50 50	20	0.089	452	40	
	MR-6	2156.37	50	20	0.082	855	70	
291750E	TR-7	2229.16	50	× 20	0.080	1,288	103	
291750E	TR-7	2236.62	50	20	0.080	489	39	
291750E	UG220-5	1955	50	20	0.077	926	71	
291750E	MR-12	2023.33	50	20	0.076	3,806	289	
291750E	M-5-60	2152.04	50	20	0.075	1,028	77	

291750E		1955	50	20	0.068	2,803	191	
291750E	MR-12	2009.19	50	20	0.065	5,129	333	
291750E	UG220-2	1955	50	20	0.063	1,860	117	
291750E	MR-4	2104.31	50	20	0.063	3,594	226	
291750E	UG220-5	1955	50	20	0.062	187	12	
291750E	TR-6	2226.85	50	20	0.053	1,566	83	
91750E	TR-8	2230.85	50	20	0.052	147	8	
291750E	TR-6	2222.25	50	30	0.080	961	77	
291750E	UG65-20	2110	50	30	0.060	8,016	481	
91750E	UG65-19	2110	50	30	0.060	346	21	
291750E	MR-6	2165.03	50	30	0.058	255	15	
91750E	M-5-30	2189	50	30	0.054	1,622	88	
291750E	MM-8	1967.8	50	30	0.049	14,301	701	
91750E	MR-7	2160.7	50	30	0.049	1,454	71	
91750E	M-5-30	2199	50	30	0.045	952	43	
91750E	M-5-60	2165.03	50	30	0.045	- 358	16	
291750E	TR-8	2225.81	50	30	0.040	- 54	2	
91750E	MR-7	2143.38	50	30	0.036	771	28	
291750E	MR-6	2178.02	50	30	0.034	609	21	
291750E	MM-8	1985.93	50	30	0.030	8,453	254	
291750E	MM-8	2040.31	50	30	0.029	7,907	229	
291750E	MR-6	2195.34	50	30	0.028	335	9	
291750E	MR-7	2178.02	50	30	0.026	2,977	77	
91750E	MR-5	2110.74	50	30	0.023	754	17	
91750E	MM-8	2004.05	50	30	0.022	8,575	189	
91750E	MR-12	2041.01	50	30	0.021	4,038	85	
91750E	UG65-17	2110	50	30	0.020	458	9	
91750E	MR-5	2128.06	50	30	0.020	1,743	35	
91750E	MR-12	2083.43	50	30	0.020	12,553	251	
91750E	MR-12	2032.17	50	30	0.018	2,780	50	
91750E	MR-12	2055.15	50	30	0.016	4,612	50 74	
291750E	MR-5	2145.38	50	30	0.016	11,285	181	
		2140.00	00	00	TOTALS	164,799	9,568	0.058
291800E	UG220-3	1955	50	20	0.071	00.040	6 460	
291800E	UG300-1	1955			0.271	23,848	6,463	
291800E	UG300-1 UG300-1	1875	50 50	20 20	0.171	22,015	3,765	
291800E	MR-4			20	0.160	11,473	1,836	
291800E		2116.68	50	20	0.082	1,010	83	
	UG65-26	2110 2120 55	50	20	0.060	7,487	449	
291800E	M-25-60	2130.55	50	20	0.060	525	32	
291800E	UG65-25	2110	50	20	0.060	3,002	180	
291800E	MR-1	2132.72	50	20	0.052	1,011	53	
291800E	M-25-30	2169.5	50	20	0.020	9,288	186	
291800E	UG65-22	2110	50	30	0.140	2,340	328	
291800E	UG300-1	1875	50	30	0.126	21,112	2,660	
291800E	MM-7	2103.75	50	30	0.105	8,577	901	
291800E	MM-7	2049.37	50	30	0.091	9,270	844	
291800E	UG65-27	2110	50	30	0.080	517	41	
		0440	50	30	0.080	21,012	1,681	
291800E	UG65-24	2110			0.000	21,012	1,001	
291800E 291800E 291800E	VG65-24 UG65-23 UG220-4	2110 2110 1955	50 50 50	30 30 30	0.080	21,012	1,081	

291800E	MR-4	2162.64	50	30	0.050	9,041	452	
291800E	MM-7	2067.5	50	30	0.041	8,009	328	
291800E	MR-5	2197.34	50	30	0.038	209	8	
291800E	MR-1	2145.71	50	30	0.033	820	27	
291800E	MR-1	2193.34	50	30	0.032	2,366	76	
291800E	M-25-60	2143.54	50	30	0.030	436	13	
291800E	MR-1	2158.7	50	30	0.029	924	27	
291800E	MR-4	2134.36	50	30	0.027	1,270	34	
291800E	M-25-30	2187	50	30	0.025	4,477	112	
291800E	M-25-30	2177	50	30	0.025	4,216	105	
291800E	MR-4	2148.5	50	30	0.023	2,228	51	
291800E	MR-1	2176.02	50	30	0.023	256	6	
291800E	MM-7	1994.99	50	30	0.021	13,025	274	
291800E	MM-7	2031.24	50	30	0.020	10,807	216	
291800E	MM-7	2013.12	50	30	0.019	12,615	240	
291800E	MR-4	2125.52	50	30	0.019	⁻ 587	11	
291800E	MR-5	2180.02	50	30	0.016	1,458	23	
291800E	MM-7	1976.86	50	30	0.016	13,450	215	•
291800E	MM-7	2130.94	50	35	0.021	14,610	307	
291000E		2100.04			TOTALS	252,473	22,589	0.089
291850E	MM-7	1863.58	50	10	0.022	11,887	262	
291850E	UG300-1	1875	50	20	0.180	4,799	864	• •
291850E	MM-7	1913.42	50	20	0.162	5,865	950	
291850E	UG65-40	2110	50	20	0.160	24,040	3,846	
291850E	UG65-34	2110	50	20	0.160	560	90	
291850E	UG65-30	2110	50	20	0.120	400	48	
291850E	MM-14	1778.53	50	20	0.114	11,333	1,292	
291850E	UG65-39	2110	50	20	0.100	1,302	130	
291850E		2110	50	20	0.090	237	21	
291850E 291850E		2110	50	20	0.080	1,012	81	
291850E 291850E		1875	50	20	0.079	3,637	287	
291850E 291850E		2110	50	20	0.060	1,126	68	
		2110	50	20	0.060	105	6	
291850E			50	20	0.060	333	20	
291850E			50	20	0.051	16,927	863	
291850E		1931.55	50	20	0.045	7,699	347	
291850E		2095.93	50 50	20	0.042	10,640	447	
291850E			50 50	20	0.040	5,441	218	
291850E			50 50	20	0.033	18,248	602	
291850E		1949.68	50 50	20	0.033	9,842	325	
291850E		1879.44	50 50	20	0.028	4,167	117	
291850E		1895.3		30	0.025	26,288	1,183	
291850		2176.79	50		0.045	15,508	682	
2918508		2063.43	50	30 20	0.044	8,725	244	
291850		2009.05	50	30	0.028	9,355	234	
291850		2045.31	50	30	10 A A A A A A A A A A A A A A A A A A A	9,355 8,075	186	
291850		1990.93	50	30	0.023	8,075 1,701	36	
291850	E MM-14	1794.39	50	30	0.021	209,249		0.064
					TOTALS	209,249	13,440	0.007
291900	E MM-1	1801.41	50	10	0.016	7,703	123	

	291900E	M-27-68	1832.3	50	20	0.380	2,683	1,020	
		UG300-2	1875	50	20	0.223	192	43	
	291900E	MM-1	1900.08	50	20	0.207	4,157	860	
		UG300-2	1875	50	20	0.207	1,529	317	
	291900E	M-27-68	1850.84	50	20	0.190	1,486	282	
	291900E	MM-2	2007.72	50	20	0.121	9,222	1,116	
	291900E	MM-1	1881.28	50	20	0.118	3,510	414	
		UG300-3	1875	50	20	0.107	379	41	
	291900E	M-27-68	1795.21	50	20	0.083	4,586	381	
	291900E	M-1-60	2123.39	50	20	0.072	1,963	141	
	291900E	MM-1	1862.49	50	20	0.066	3,228	213	
	291900E	M-1-30	2167	50	20	0.066	8,079	533	
	291900E	MM-2	2021.86	50	20	0.063	8,201	517	
	291900E	MR-3	2124.22	50	20	0.047	5,623	264	
	291900E	M-27-68	1813.76	50	20	0.043	3,339	144	
	291900E	M-1-30	2157	50	20	0.040	12,372	495	
	291900E	MM-1	1843.7	50	20	0.039	2,305	90	
	291900E	MM-1	1911.82	50	20	0.031	7,838	243	
2	291900E	M-1-60	2108.23	50	20	0.027	7,867	212	
2	291900E	MR-3	2138.36	50	20	0.025	1,187	30	
2	291900E	MM-2	1993.58	50	20	0.021	10,461	220	
2	291900E	M-27-68	1776.67	50	20	0.020	4,216	84	
2	291900E	MM-1	1829.6	50	20	0.015	2,168	33	
	291900E	UG300-3	1875	50 '	30	0.297	353	105	
1	291900E	UG300-3	1875	50	30	0.116	1,315	153	
-	291900E	UG300-3	1875	50	30	0.070	31,159	2,181	
	291900E	MM-1	1923.57	50	30	0.047	2,402	113	
	291900E	MM-1	1979.95	50	30	0.045	6,751	304	
4	291900E	M-1-60	2188.34	50	30	0.043	6,620	285	
	291900E	MR-3	2166.64	50	30	0.036	3,912	141	
	291900E	M-1-30	2174.5	50	30	0.035	5,313	186	
	291900E	MM-2	2064.29	50	30	0.028	7,805	219	
	291900E	MR-3	2152.5	50	30	0.027	10,023	271	
	291900E	M-1-30	2192	50	30	0.024	545	13	
	291900E	M-1-60	2155.86	50	30	0.022	779	17	
	291900E	MM-2	2050.15	50	30	0.022	8,073	178	
	291900E	M-1-30	2182	50	30	0.022	2,930	65	
	291900E	MM-1	1998.74	50	30	0.021	5,138	108	
	291900E	MM-1	1961.16	50	30	0.019	7,057	134	
	291900E	MM-1	2036.33	50	30	0.019	2,968	56	
	291900E	MM-1	1942.36	50	30	0.017	4,965	84	
	291900E	MM-2	2036.01	50	30	0.015	8,010	120	
						TOTALS	230,410	12,546	0.054
	291950E	MR-2	2118.4	50	10	0.025	9,225	231	
	291950E	MR-2	2157.37	50	20	0.142	1,004	143	
	291950E	M-2-30	2185	50	20	0.100	4,295	430	
	291950E	M-2-60	2157.37	50	20	0.087	1,041	91	
	291950E	M-2-30	2177.5	50	20	0.028	5,625	158	
	291950E	MR-2	2144.38	50	20	0.017	15,581	265	
	291950E	M-2-60	2144.38	50	20	0.015	603	9	

291950E	MR-3	2180.79	50	30	0.054	19,942	1,077	
291950E	M - 2-60	2168.19	50	30	0.050	104	5	
291950E	M-2-30	2192.5	50	30	0.035	1,210	42	
291950E	MR-2	2168.19	50	30	0.022	10,702	236	
291950E	MR-2	2179.02	50	30	0.017	412	7	
					TOTALS	69,744	2,692	0.039
292000E	MM-3	1860.64	50	10	0.026	13,645	355	
292000E	MM-3	1892.36	50	20	0.072	39,115	2,816	
92000E	MM-3	1928.61	50	20	0.071	7,579	538	
292000E	MM-3	1910.49	50	20	0.047	6,642	312	
92000E	MM-3	1946.74	50	20	0.038	38,411	1,460	
92000E	M-26-63	2049.81	50	30	0.150	12,267	1,840	
92000E	M-26-63	2067.63	50	30	0.045	15,141	681	
92000E	M-26-63	2103.27	50	30	0.030	28,762	863	
92000E	MM-3	1960.33	50	30	0.028	62,653	1,754	
92000E	M-26-63	2085.45	50	30	0.027	16,437	444	
92000E	M-26-63	2031.99	50	30	0.020	9,597	192	
292000E	M-26-63	2121.09	50	50	0.020	411	8	
					TOTALS	250,658	11,263	0.045
92050E	M-3-60	2145.71	50	20	0.060	1,640	98	
92050E	M-3-30	2168.25	50	20	0.018	3,218	58	
92050E	M-3-30	2184.5	50	30	0.047	4,621	217	•
92050E	M-3-30	2190.75	50	30	0.020	4,075	82	
292050E	M-3-60	2158.7	50	30	0.019	55,623	1,057	
92050E	MC-1	1851.04	50	30	0.015	58,789	882	
					TOTALS	127,966	2,394	0.019
92100E	M-28-78	1742.52	50	20	0.023	4,464	103	
292100E	MC-1	1764.95	50	20	0.023	792	18	
292100E	MM-4	1896.63	50	20	0.019	6,238	119	
292100E	MM-4	2048.43	50	30	0.030	46,782	1,404	
292100E	MM-4	1957.8	50	30	0.016	6,341	102	
					TOTALS	64,617	1,744	0.027
292150E	MC-11	2028.84	50	30	0.015	31,506	473	0.015
292200E	MC-11	1920.08	50	10	0 020	10 222	204	
292200E	MC-11 MC-11	1920.08	50 50	20	0.020 0.060	10,222	204	
292200E	MC-11 MC-11	1960.86				8,044	483	
292200E	MC-11		50	20	0.047	9,089	427	
292200E	MC-7	1942.74	50	20	0.038	2,533	96	
292200E	M-4-60	1750.41 2092.04	50	20 20	0.029	5,239	152	
292200E	M-4-80 M-4-30		50	20 20	0.027	2,086	56	
292200E		2116.5	50	20	0.020	4,120	82	
	MC-7	1766.27	50	20	0.020	2,039	41	
292200E	MC-7	1782.13	50	20	0.019	7,964	151	
292200E	M-4-60	2079.05	50	20	0.018	7,770	140	
292200E 292200E	MC-7	1813.86	50	30	0.018	6,957	125	
ZJZZUUE	MC-7	1797.99	50	30	0.015	26,104	392	

•

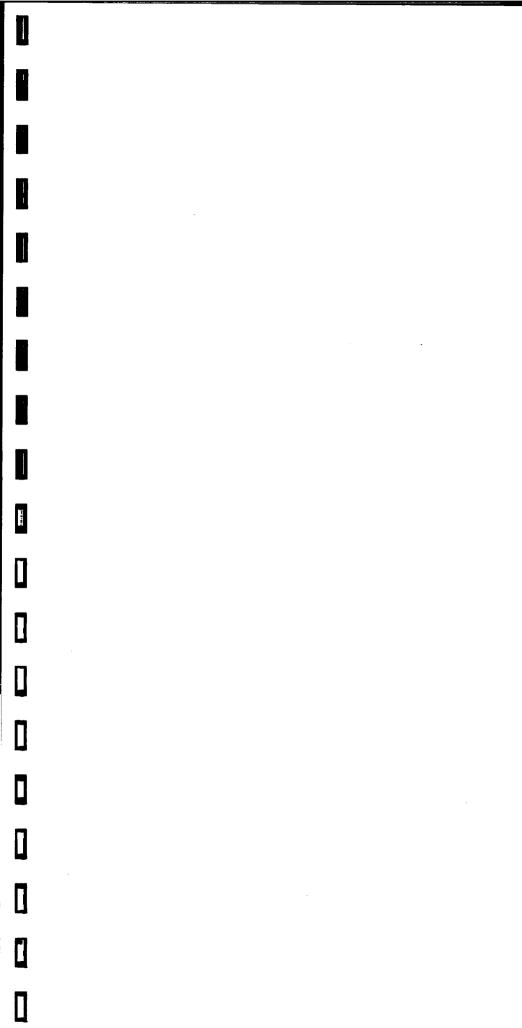
.

292200E	MC-7	1831.98	50	30	0.015	7,810	117	
					TOTALS	99,976	2,467	0.025
292400E	MC-6	1658.36	100	10	0.015	4,595	69	
292400E	MC-6	1672.07	100	10	0.015	16,589	249	
292400E	MC-12	1895.42	100	20	0.015			
292400E	MC-12 MC-12	1913.55	100	20		5,009	431	
292400L	MC-6	1722.31	100	20	0.058 0.047	48,985	2,841	
292400E 292400E	MC-6	1722.31	100	20	0.047	24,312	1,143	
292400E 292400E	MC-6	1688.05	100			6,763	176	
292400E	MC-6	1749.72	100	20 30	0.024 0.025	17,347	416	
292400E	MC-6	1749.72	100			25,636	641	
292400E	MC-6	1841.07	100	30 20	0.022	28,979	638	
292400E	MC-6	1736.01	100	30	0.019	22,798	433	
292400E 292400E	MC-6			30	0.016	90,102	1,442	
292400E 292400E		1859.34	100	30	0.016	18,726	300	
292400E 292400E	MC-6 MC-12	1877.61 2031.37	100	30	0.015	15,453	232	
292400E		2031.37	100	30	0.015	25,922	389	
					TOTALS	351,216	9,398	0.027
292500E	MR-8	2120.31	100	20	0.102	29,919	3,052	
292500E	MR-8	2132.68	100	20	0.064	6,481	415	
292500E	MR-8	2175.11	100	20	0.055	6,516	358	
292500E	MR-8	2146.82	100	20	0.022	6,866	151	
292500E	MR-8	2160.97	100 .	20	0.021	6,816	143	
292500E	MR-8	2189.25	100	20	0.015	3,652	55	
					TOTALS	60,251	4,174	0.069
292600E	MC-14	1893.42	100	10	0.019	31,306	595	
292600E	MC-14	1911.55	100	20	0.066	22,908	1,512	
292600E	MC-14	1929.68	100	20	0.058	22,010	1,277	
292600E	MR-9	2080.65	100	20	0.053	25,406	1,347	
292600E	MC-5	1775.73	100	20	0.053	10,441	553	
292600E	MR-9	2186.72	100	20	0.046	4,351	200	
292600E	MC-5	1759.87	100	20	0.044	23,974	1,055	
292600E	MC-5	1793.86	100	20	0.024	23,374	581	
292600E	MR-9	2200.86	100	20	0.024	7,079		
292600E	MR-9	2200.00	100	20 20	0.023		163	
292600E	MC-5	1825.58	100	30	0.015	16,886 20,524	253	
292600E	MC-14	2047.5	100			20,534	1,745	
292600E	MC-14	1956.86	100	30 20	0.070	18,320	1,282	
292600E	MC-14 MC-14	2065.62		30 20	0.060	12,728	764	
292600E	MC-14 MC-14		100	30	0.036	37,734	1,358	
292600E	MC-14 MC-5	1993.12	100	30	0.032	22,169	709	
292600E	MC-5 MC-14	1898.08	100	30	0.027	26,305	710	
		1974.99	100	30	0.026	18,001	468	
292600E	MC-14	1943.27	100	30	0.022	19,047	419	
292600E	MC-14	2011.24	100	30	0.016	24,935	399	
1					TOTALS	388,321	15,390	0.040
292700E	MC-15	1910.08	100	20	0.081	40,568	3,286	
292700E	MC-15	1896.49	100	20	0.060	15,724	943	
292700E	MC-3	1719.88	100	20	0.030	4,770	143	

292700E	MC-3	1733.48	100	20	0.026	16,334	425	
292700E	MC-15	1925.94	100	30	0.030	31,287	939	
292700E	MC-3	1778.79	100	30	0.022	28,246	621	
292700E	MC-15	1941.8	100	30	0.018	13,196	238	
292700E	MC-15	2014.31	100	30	0.015	102,557	1,538	
					TOTALS	252,681	8,133	0.032
292800E	MR-10	2052.54	100	20	0.111	32,581	3,616	
292800E	MC-4	1740.34	100	20	0.104	5,663	589	
292800E	MR-10	2038.4	100	20	0.056	3,008	168	
292800E	MR-10	2024.26	100	20	0.045	2,535	114	
292800E	MC-13	1904.14	100	20	0.043	22,475	966	
292800E	MC-4	1756.2	100	20	0.039	19,681	768	
292800E	MR-10	2014	100	20	0.034	11,498	391	
292800E	MC-13	1915.47	100	30	0.027	34,843	941	
292800E	MC-13	1963.05	100	30	0.019	16,320	310	
292800E	MC-13	2017.43	100	30	0.018	101,307	1,824	
292800E	MC-13	1944.93	100	30	0.015	14,148	212	
					TOTALS	264,059	9,899	0.037
292900E	MR-10	2066.68	100	20	0.097	43,444	4,214	
292900E	MR-10	2080.82	100	20	0.034	759	26	
292900E	MC-8	1711.41	100	20	0.021	4,209	88	
			100	20	TOTALS	48,412	4,328	0.089
293000E	MC-16	1821.64	100	20	0.064	43,328	2,773	
293000E	MC-16	1839.77	100	20	0.032	9,037	289	
293000E	MC-16	1857.89	100	20	0.019	61,348	1,166	
		1007.00	100	20	TOTALS	113,712	4,228	0.037
2021005		1660.04	200	20	0.004	96.040	0.007	
293100E	MC-9	1669.04	200	20	0.024	86,949 50,430	2,087	
293100E	MC-9 MC-9	1843.5	200	30	0.025	50,439	1,261	
293100E	MC-9	1877.49	200	30	0.019	79,502	1,511	
293100E	MC-9	1859.36	200	30	0.016	75,271	1,204	0.001
					TOTALS	292,161	6,063	0.021
293300E	MC-10	1684.99	200	20	0.024	31,931	766	
293300E	MC-10	1732.57	200	20	0.022	131,320	2,889	
293300E	MC-10	1714.44	200	20	0.019	18,782	357	
293300E	MC-10	1832.26	200	35	0.028	43,849	1,228	
293300E	MC-10	1814.13	200	35	0.020	43,984	880	
293300E	MC-10	1850.39	200	35	0.015	255,680	3,835	
293300E	MC-10	2061.1	200	60	0.037	359,615	13,306	
293300E	MC-10	2126.81	200	60	0.023	41,003	943	
293300E	MC-10	2108.68	200	60	0.016	41,036	657	
					TOTALS	967,198	24,860	0.026
293500E	MR-13	2019.01	200	20	0.051	13,092	668	
293500E	MR-13	2004.86	200	20	0.024	102,516	2,460	
					TOTALS	115,608	3,128	0.027

• .

293900E	MR-14	2086.91	200	20	0.184	28,803	5,300	
293900E	MM-17	1846.73	200	20	0.065	73,332	4,767	
293900E	MR-14	2099.29	200	20	0.045	52,412	2,359	
293900E	MM-17	1857.55	200	20	0.036	54,977	1,979	
293900E	MM-17	1887.86	200	30	0.022	86,947	1,913	
293900E	MR-14	2134.64	200	30	0.015	36,700	551	
293900E	MR-14	2148.79	200	30	0.015	35,654	535	
					TOTALS	368,824	17,402	0.047
294100E	MM-18	1898.35	200	20	0.067	17,504	1,173	
294100E	MM-18	1914.73	200	20	0.022	52,536	1,156	
294100E	MM-18	1886.06	200	20	0.015	125,666	1,885	
					TOTALS	195,706	4,214	0.022


.

100-144

38

•

-

MOSS PROJECT ADDWEST RESOURCES

MOSS PROJECT

ADDWEST MINERALS' RESOURCE CALCULATIONS

MOSS PROJECT MOHAVE CO., ARIZONA CROSS - SECTIONAL POLYGONAL RESERVE SUMMARY SHEET

Addwest Minerals, Inc. 1995

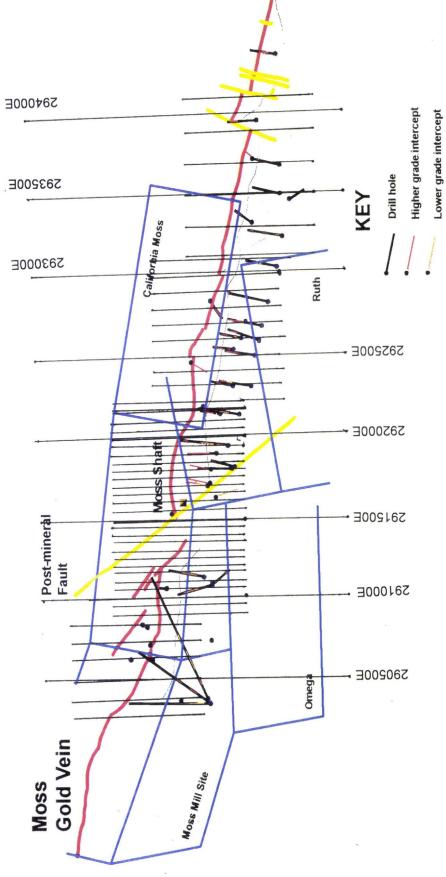
Thickness determined by section width (independent of radii of influence) Cut-off grade = .015 opt Au Utilized 20 ft. composites, bounded by rock type

50 ft. Radius of Influence

Rock Type	Tons	<u>Grade</u>	Oz. Au
Moss Vein (20)	1,359,912	0.057	76,800
Hi-grade Hanging Wall (30)	1,217,548	0.031	37,823
Low-grade Hanging Wall (35)	138,691	0.023	3,205
Footwall (10)	106,662	0.021	2,259
Other Quartz Veins (25)	20,334	0.027	539
Rhyolite Dike (60)	77,378	0.027	2,111
Fault (50)	411	0.02	8
TOTAL	2,920,936	0.042	122,745

100 ft. Radius of Influence

Rock Type	Tons	<u>Grade</u>	OZ. Au
Moss Vein (20)	2,069,880	0.052	108,396
Hi-grade Hanging Wall (30)	1,968,580	0.030	59,933
Low-grade Hanging Wall (35)	270,068	0.023	6,113
Footwall (10)	182,590	0.021	3,855
Rhyolite Dike (60)	199,677	0.030	6,057
Other Quartz Veins (25)	36,701	0.026	970
Faults (50)	411	0.020	8
TOTAL	4,727,907	0.039	185,332


200 ft. Radius of Influence

Rock Type		Tons	<u>Grade</u>	<u>Oz. Au</u>
Moss Vein (20)		2,790,226	0.049	135,759
Hi-grade Hanging Wall (30)		2,581,978	0.028	73,322
Low-grade Hanging Wall (35)		463,858	0.021	9,863
Footwall (10)		244,578	0.022	5,255
Other Quartz Veins (25)		43,521	0.027	1,160
Rhyolite Dike (60)		441,653	0.034	14,905
Fault (50)		411	0.02	8
	TOTAL	6,566,225	0.037	240,272

MOSS PROJECT- ADDWEST MINERALS, INC.

CROSS SECTION LOCATION MAP Showing Generalized Geology and General Drill Hole Locations

CROSS SECTIONAL POLYGONAL RESERVE (50 ft. radius of influence) MOSS PROJECT, ARIZONA

CROSS SECTIONAL POLYGONAL RESERVE (50 ft. radius of influence) MOSS PROJECT, ARIZONA

Addwest Minerals, Inc. February, 1995

Radius of influence = 50 ft. Thickness determined by section width (50, 100, or 200 ft.) Cut-off grade = .015 opt Au Utilized 20 ft. composites, bounded by rock type

SUMMARY

Rock Type		Tons	Grade	<u>Oz. Au</u>
Moss Vein (20)		1,359,912	0.057	76,800
Hi-grade Hanging Wa	all (30)	1,217,548	0.031	37,823
Low-grade Hanging	Vall (35)	138,691	0.023	3,205
Footwall (10)		106,662	0.021	2,259
Other Quartz Veins (25)	20,334	0.027	539
Rhyolite Dike (60)		77,378	0.027	2,111
Fault (50)	•	411	0.02	8
	TOTAL	2,920,936	0.042	122,745

POLYGON INFORMATION

Section	<u>Hole</u>	Elev.	Thickness	Rock Ty	pe Grade Au	Tons	<u>Oz. Au</u>	av. grade
								of section
290250E	MC-18A	1,967.4	100	10	0.023	16,521	380	
290250E	MC-18A	2,003.7	100	20	0.026	15,380	400	
290250E	MC-18A	1,989.2	100	20	0.016	14,404	231	
290250E	MC-18A	2,018.2	100	30	0.018	17,433	314	
290250E	MC-18A	2,105.2	100	30	0.016	16,231	260	
290250E	MC-18A	2,134.2	100	30	0.016	9,983	160	
					TOTALS	89,953	1,744	0.019
0000505	NO 40							
290350E	MC-19	2,018.5	100	20	0.026	35,844	932	
290350E	MC-19	2,108.8	100	30	0.034	10,658	362	
290350E	MC-20	2,120.0	100	30	0.027	5,891	159	
290350E	MC-19	2,096.7	100	30	0.016	13,922	223	
290350E	MC-19	2,120.8	100	30	0.016	8,825	141	
290350E	MC-20	2,130.0	100	30	0.016	4,934	79	
					TOTALS	80,073	1,896	0.024
290450E	MC-20	2,060.0	100	30	0.020	9,947	199	0.020

Ņ

290550E	MC-20	1,995.0	100	10	0.018	7,379	133	
290550E	MC-20	2,025.0	100	20	0.018	9,961	133	
290550E	MC-20	2,025.0	100	20		-		
290550E	MC-20 MC-20	2,035.0			0.018	24,152	435	
2000002	1010-20	2,000.0	100	20	0.015	5,460	82	
					TOTALS	46,952	829	0.018
290950E	M-8-45	2,317.2	50	20	0.032	854	27	
290950E	M-8-45	2,303.0	50	20	0.030	749	23	
290950E	M-8-60	2,305.7	50	20	0.030	2,701	81	
290950E	M-9-60	2,307.0	50	20	0.030	586	18	
290950E	M-9-45	2,324.8	50	20	0.027	352	10	
290950E	M-8-60	2,290.5	50 50	20	0.027	5,879	100	
290950E	M-8-30	2,334.0	50	30	0.035	4,582	160	
290950E	M-8-45	2,329.6	50	30	0.000	-,502 607	10	
		-,	00	00	TOTALS	16,309		0.000
					IUIALS	10,309	429	0.026
291000E	M-10-60	2,309.0	50	20	0.162	885	143	
291000E	M-10-60	2,296.0	50	20	0.070	1,131	79	
291000E	M-10-45	2,310.3	50	20	0.050	609	31	
291000E	M-15-45	2,254.9	50	20	0.040	714	29	
291000E	M-15-60	2,245.7	50	20	0.038	987	38	
291000E	M-16-45	2,247.8	50	20	0.030	1,017	31	
291000E	M-15-60	2,232.7	50	20	0.030	852	26	
291000E	M-18-45	2,214.5	50	20	0.027	2,151	58	
291000E	M-10-60	2,283.0	50	20	0.023	541	' 12	
291000E	M-19-45	2,228.8	50	20	0.020	2,250	45	
291000E	M-16-30	2,280.0	50	20	0.018	1,654	30	
291000E	M-10-30	2,317.5	50	20	0.018	6,688	120	
291000E	M-10-45	2,299.6	50	20	0.018	762	14	
291000E	M-16-30	2,272.5	50	20	0.015	1,273	19	
291000E	M-15-45	2,265.5	50	20	0.015	379	6	
291000E	M-10-45	2,320.9	50	30	0.130	361	47	
291000E	M-10-30	2,327.5	50	30	0.055	2,491	137	
291000E	M-10-60	2,326.3	50	30	0.047	200	9	
291000E	M-9-30	2,341.0	50	30	0.043	1,184	51	
291000E	M-9-45	2,338.9	50	30	0.038	78	3	
291000E	M-10-45	2,331.5	50	30	0.035	258	9	
291000E	M-9-60	2,322.2	50	30	0.030	1,805	9 54	
291000E	M-18-45	2,241.0	50	30	0.030	713	54 21	
291000E	M-15-30	2,282.5	50	30	0.025	359	21 9	
291000E	M-10-30	2,333.8	50	30	0.020	33 9 337	9 7	
291000E	M-15-30	2,291.3	50 50	30	0.020	560	7 11	
291000E	MM-9	2,042.8	50 50	30	0.020	8,152		
291000E	M-9-60	2,337.3	50	30	0.018		147	
291000E	MM-9	2,112.1	50 50	30	0.018	1,4 34 7,467	26 120	
291000E	M-16-45	2,307.9	50 50	30 30		7,467	120	
291000E	MM-9	2,190.1	50 50	30 35 -	0.015	121	2	
		~ , , , , , , , , , , , , , , , , , , ,	50	33	0.019 TOTALS	8,152	155	0.00-
					TOTALS	55,562	1,487	0.027
291050E	M-17-60	2,212.4	50	20	0.220	1,540	339	
291050E	M-11-45	2,289.6	50	20	0.068	1,062	72	
							. 4	

				·				
291050E	M-11-30	2,302.5	50	20	0.047	4,675	220	
291050E	M-17-45	2,259.0	50	20	0.035	1,726	60	
291050E	M-17-45	2,246.6	50	20	0.027	1,443	39	
291050E	M-17-60	2,225.4	50	20	0.025	1,842	46	
291050E	M-11-60	2,281.7	50	20	0.015	1,258	19	
291050E	M-11-45	2,277.3	50	20	0.015	1,543	23	
291050E	M-20-45	2,210.7	50	20	0.015	5,940	89	
291050E	M-29-60	1,981.2	50	20	0.015	4,617	69	
291050E	BX-6	2,234.4	50	25	0.027	5,556	150	
291050E	M-11-45	2,303.8	50	30	0.055	478	26	
291050E	M-17-45	2,304.9	50	30	0.035	1,217	43	
291050E	M-17-60	2,268.7	50	30	0.030	1,932	58	
291050E	M-17-45	2,290.8	50	30	0.027	1,576	43	
291050E	M-20-45	2,270.8	50	30	0.023	2,086	48	
291050E	M-11-30	2,320.0	50	30	0.020	2,118	42	
291050E	M-11-30	2,311.3	50	30	0.020	3,297	42 66	
291050E	M-17-60	2,286.0	50	30	0.020	1,948	39	
291050E	M-17-45	2,267.8	50	30	0.020	775	39 16	
291050E	M-11-60	2,299.0	50	30	0.020	1,624	33	
291050E	M-18-45	2,258.6	50	30	0.018	3,657	66	
291050E	M-11-60	2,316.3	50	30	0.018	1,707	31	
291050E	M-20-45	2,256.6	50	30	0.015	1,807	27	
291050E	M-11-45	2,317.9	50	30	0.015	209	3	
	· · · •	_, •	~~		TOTALS	55,629	ی 1,666	0.030
		•				UU,UZJ	1,000	0.030
291100E	M-12-30	2,279.5	50	20	0.060	3,537	212	
291100E	M-12-45	2,264.6	50	20	0.047	1,113	52	
291100E	MM-10	2,075.1	50	20	0.027	6,470	175	
291100E	M-12-60	2,233.4	50	20	0.025	4,929	123	
291100E	M-12-60	2,246.4	50	20	0.018	2,695	49	
291100E	M-12-30	2,272.0	50	20	0.015	3,277	49	
291100E	M-12-45	2,254.0	50	20	0.015	1,022	15	
291100E	BX-6	2,207.9	50	25	0.025	5,793	145	
291100E	MM-10	2,127.1	50	30	0.032	7,791	249	
291100E	M-12-30	2,285.8	50	30	0.030	2,649	80	
291100E	MM-10	2,109.8	50	30	0.024	8,059	193	
291100E	M-12-30	2,292.0	50	30	0.020	3,358	67	
291100E	M-12-45	2,285.8	50	30	0.018	546	10	
291100E	M-12-45	2,275.2	50	30	0.015	. 666	10	
291100E	BX-6	2,199.1	50	35	0.023	4,563	105	
291100E	MM-10	2,189.9	50	35	0.023	4,303	81	
		_,	••		TOTALS	60,963	1,615	0 026
						UU,0UU	GIU,I	0.026
291150E	BX-6	2,137.2	50	25	0.029	3,520	102	0.029
- 291200E	M. 12 60	0 000 4	50	~~	•			
	M-13-60	2,238.4	50	20	0.027	2,939	79	
291200E	M-13-60	2,255.7	50	20	0.025	1,392	35	
291200E	M-13-30	2,262.3	50	20	0.020	2,087	42	
291200E	M-13-60	2,227.5	50	20	0.020	5,291	106	
291200E	M-13-30	2,271.0	50	20	0.018	957	17	

						TOTALS	12,666	279	0.022
	291250E	MM-11	2,059.9	50	10	0.022	5,275	116	
	291250E	MM-11	2,046.3	50	10	0.015	5,139	77	
	291250E	MM-11	2,082.6	50	20	0.040	5,274	211	
	291250E	MM-11	2,118.8	50	20	0.023	6,483	149	
	291250E	M-21-60A	2,197.0	50	20	0.020	2,709	54	
	291250E	M-21-60	2,184.0	50	20	0.020	355	7	
	291250E	M-21-60	2,197.0	50	20	0.020	333	7	
	291250E	MM-11	2,100.7	50	20	0.019	6,849	130	
	291250E	M-21-45	2,198.9	50	20	0.017	833	14	
	291250E	M-21-45	2,211.3	50	20	0.015	579	9	
	291250E	M-21-30	2,211.0	50	20	0.015	2,808	42	
-	291250E	MM-11	2,150.6	50	30	0.022	7,705	170	
						TOTALS	44,340	986	0.022
	291300E	M-22-45	2,178.6	50	30	0.023	6,096	140	
	291300E	M-22-45	2,168.0	50	30	0.020	17,671	353	
-						TOTALS	23,767	494	0.021
	291350E	MM-12	2,177.9	50	30	0.024	8,507	204	0.024
	291550E	M-7-70	2,127.1	50	20	0.072	800	58 ·	
	291550E	MR-11	2,144.6	50	20	0.048	2,700	130	•
	291550E	UG65-1	2,110.0	50	20	0.040	396	16	
	291550E	M-7-70	2,108.3	50	20	0.040	1,182	47	•
_	291550E	MR-11	2,130.5	50	20	0.037	716	27	
	291550E	M-7-70	2,145.9	50	20	0.032	1,733	56	
	291550E	MR-11	2,121.7	50	20	0.020	402	8	
-	291550E	MM-5	2,124.6	50	20	0.019	6,119	116	
	291550E	M-7-70	2,157.7	50	30	0.040	2,746	110	
	291550E	MM-5	2,152.9	50	30	0.022	9,553	210	
	291550E	MM-6	2,060.4	50	30	0.019	6,626	126	
	291550E	MM-6	2,077.7	50	30	0.016	5,618	90	
	291550E	MM-6	2,151.3	50	35	0.049	14,060	689	
						TOTALS	52,652	1,682	0.032
	291600E	UG65-3	2,110.0	50	20	0.290	316	92	
	291600E	UG65-4	2,110.0	50	20	0.140	1,096	153	
	291600E	UG65-2	2,110.0	50	20	0.100	2,993	299	
_	291600E	UG65-5	2,110.0	50	20	0.080	1,811	145	
						TOTALS	6,216	689	0.111
	291650E	TR-1	2,185.6	50	20	0.091	2,835	258	
	291650E	UG65-8	2,110.0	50	20	- <u>.</u> 0.080	4,301	344	
-	291650E	UG65-9	2,110.0	50	20	0.080	6,342	507	
	291650E	TR-1	2,179.5	50	20	0.058	3,392	197	
	291650E	UG65-6	2,110.0	50	20	0.040	1,315	53	
	291650E	UG65-7	2,110.0	50	20	0.040	1,317	53	
	291650E	BX-5	2,041.6	50	25	0.026	5,465	142	

	291650E	BX-5	2,052.2	50	35	0.015	5,995	90	
						TOTALS	30,962	1,643	0.053
	291700E	MR-7	2,048.6	50	10	0.028	10,245	207	
	291700E	TR-3	2,207.6	50	20	0.760	4,220	287	
	291700E		2,110.0	50	20	0.300	410	3,207 123	
	291700E		2,110.0	50	20	0.300	194	58	
-	291700E	MR-7	2,104.4	50	20	0.000	990		
	291700E	TR-3	2,198.9	50	20	0.115		115	
	291700E	M-6-60	2,152.0	50	20	0.105	1,617 2,298	170	
	291700E	M-6-60	2,134.7	50	20	0.095	2,290 1,791	218 170	
	291700E		2,110.0	50	20	0.080	831	66	
	291700E	MR-7	2,121.7	50	20	0.078	1,886	147	
	291700E	M-6-30	2,163.0	50	20	0.072	2,151	155	
	291700E		2,110.0	50	20	0.072	690	48	
	291700E	MR-5	2,050.1	50	20	0.065	6,395	40 416	
	291700E	TR-3	2,194.0	50	20	0.060	9 <u>4</u> 1	57	
	291700E	M-6-30	2,173.0	50	20	0.060	1,131	68	
	291700E	UG220-1	1,955.0	50	20	0.056	2,106		
_	291700E	MR-7	2,069.8	50	20	0.056	1,599	118 90	
	291700E		1,955.0	50	20	0.047	15,662	90 736	
	291700E	UG65-15	2,110.0	50	20	0.040	1,883	736	
	291700E	UG65-10	2,110.0	50	20	0.040	277	11	
	291700E	MR-7	2,056.8	50	20	0.034	634	22	
	291700E	M-6-60	2,119.5	50 [·]	20	0.033	1,512	50	
	291700E	MR-5	2,032.8	50	20	0.033	8,534	282	
	291700E	M-6-30	2,154.3	50	20	0.033	2,453	81	
—	291700E	MR-7	2,087.1	50	20	0.027	2,961	80	
	291700E	M-6-60	2,169.3	50	20	0.020	2,901 915	80 18	
	291700E	MM-8	2,058.4	50	30	0.154	14,633	2,254	
	291700E	MM-8	2,112.8	50	30	0.097	1,277	2,254 124	
	291700E	MM-8	2,076.6	50	30	0.029	3,557	124	
			_,	••	00	TOTALS	93,790	9,347	0.100
.								0,047	0.100
	291750E	MR-12	1,998.6	50	10	0.033	3,533	117	
—	291750E	MM-8	1,884.0	50	10	0.024	3,915	94	
	291750E	MM-8	1,931.6	50	20	0.192	3,915	752	
	291750E	UG220-4	1,955.0	50	20	0.154	106	16	
	291750E	UG220-3	1,955.0	50	20	0.154	1,308	201	
	291750E	TR-6	2,235.6	50	20	0.141	713	101	
	291750E	MR-5	2,067.4	50	20	0.141	5,176	730	
	291750E	MM-8	1,913.4	50	20	0.140	5,175	725	
	291750E	MM-8	1,897.6	50	20	0.126	7,659	965	
	291750E	TR-8	2,239.6	50	20	0.120	693	83	
_	291750E	M-5-30	2,179.0	50	20	0.116	2,671	310	
	291750E	MM-8	1,949.7	50	20	0.097	988	. 96	
	291750E	MR-5	2,084.8	50	20	0.090	1,817	164	
-	291750E	M-5-30	2,172.8	50	20	0.090	1,442	130	
	291750E	UG220-6	1,955.0	50	20	0.089	452	40	
	291750E	MR-6	2,156.4	50	20	0.082	855	70	
	291750E	TR-7	2,229.2	50	20	0.080	1,297	104	

291750E	TR-7	2,236.6	50	20	0.080	489	39	
291750E	UG220-5	1,955.0	50	20	0.077	1,059	82	
291750E	MR-12	2,023.3	50	20	0.076	3,806	289	
291750E	M-5-60	2,152.0	50	20	0.075	1,028	77	
291750E	UG220-2	1,955.0	50	20	0.068	2,803	191	
291750E	MR-12	2,009.2	50	20	0.065	5,129	333	
291750E	UG220-2	1,955.0	50	20	0.063	1,860	117	
291750E	MR-4	2,104.3	50	20	0.063	3,594	226	
291750E	UG220-5	1,955.0	50	20	0.062	187	12	
291750E	TR-6	2,226.9	50	20	0.053	1,502	80	
291750E	TR-8	2,230.9	50	20	0.052	147	8	
291750E	UG65-18	2,110.0	50	30	0.100	139	14	
291750E	M-5-60	2,178.0	50	30	0.083	322	27	
291750E	TR-6	2,222.3	50	30	0.080	961	77	
291750E	UG65-20	2,110.0	50	30	0.060	7,788	467	
291750E	UG65-19	2,110.0	50	30	0.060	206	12	
291750E	UG65-16	2,110.0	50	30	0.060	313	19	
291750E	MR-6	2,165.0	50	30	0.058	255	15	
291750E	M-5-30	2,189.0	50	30	0.054	1,625	88	
291750E	MR-7	2,160.7	50	30	0.049	1,398	69	
291750E	MM-8	1,967.8	50	30	0.049	8,275	406	
291750E	M-5-60	2,165.0	50	30	0.045	426	19	
291750E	M-5-30	2,199.0	50	30	0.045	961	43	
291750E	TR-8	2,225.8	50	30	0.040	54	2	
291750E	MR-7	2,143.4	50	30	0.036	885	32	
291750E	MR-6	2,178.0	50	30	0.034	496	17	
291750E	M-5-60	2,195.3	50	30	0.032	73	2	•
291750E	MM-8	1,985.9	50	30	0.030	6,461	194	
291750E	MM-8	2,040.3	50	30	0.029	0, 401 7,871	228	
291750E	MR-6	2,195.3	50 50	30	0.028	300	8	
291750E	MR-7	2,178.0	50	30	0.026	2,842	74	
291750E	MR-5	2,110.7	50	30	0.023	2,042 754	17	
291750E	MM-8	2,004.1	50 50	30	0.023	6,302	139	
291750E	MR-12	2,004.1	50 50	30	0.022	4,038	85	
291750E	MR-12	2,041.0	50 50	30	0.021	4,038	220	
291750E	UG65-17	2,110.0	50 50	30	0.020	141	3	
291750E	MR-5	2,110.0	50 50	30	0.020	1,781		
291750E	MR-12	2,032.2	50 50	30	0.020		36 50	
291750E	MR-5	2,032.2	50 50	30 30	0.018	2,780 7 818	50 125	
291750E	MR-12	2,055.2	50 50	30 30		7,818	125	
	(1)) \- (2	2,000.2	50	30	0.016 TOTALS	4,612	74 8 740	0.000
					TOTALS	144,198	8,710	0.060
291800E	UG220-3	1,955.0	50	20	0.271	18,226	1 020	
291800E	UG300-1	1,875.0	50 50	20	0.271 0.171		4,939	
291800E	UG300-1	1,875.0	50 50	20		15,592	2,666	
291800E	MR-4	2,116.7	50 50		0.160	6,709	1,073	
291800E	UG65-25	2,110.7		20 20	- 0.082	1,010	83	
291800E	M-25-60	2,110.0	50 50	20 20	0.060	2,621	157	
291800E	UG65-26	2,130.6	50 50	20 20	0.060	525	32	
291800E	MR-1	2,110.0	50 50	20 20	0.060	3,111	187	
291800E	M-25-30	2,132.7 2,169.5	50 50	20	0.052	1,011	53	
	W-2J-3U	2,109.3	50	20	0.020	4,194	84	

291800E	UG65-22	2,110.0	50	30	0.140	297	42	
291800E	UG300-1	1,875.0	50	30	0.126	17,378	2,190	
291800E	MM-7	2,103.8	50	30	0.105	5,659	594	
291800E	MM-7	2,049.4	50	30	0.091	8,126	740	
291800E	UG65-23	2,110.0	50	30	0.080	217	17	
291800E	UG65-24	2,110.0	50	30	0.080	13,734	1,099	
291800E	UG65-27	2,110.0	50	30	0.080	933	75	
291800E	UG220-4	1,955.0	50	30	0.061	8,551	522	
291800E	MR-4	2,162.6	50	30	0.050	6,401	320	
291800E	MM-7	2,067.5	50	30	0.041	7,167	294	
291800E	MR-5	2,197.3	50	30	0.038	210	8	
291800E	MR-1	2,145.7	50	30	0.033	820	27	
291800E	MR-1	2,193.3	50	30	0.032	184	6	
291800E	M-25-60	2,143.5	50	30	0.030	436	13	
291800E	MR-1	2,158.7	50	30	0.029	924	27	
291800E	MR-4	2,134.4	50	30	0.027	1,308	35	
291800E	M-25-30	2,187.0	50	30	0.025	4,258	107	
291800E	M-25-30	2,177.0	50	30	0.025	3,849	96	
291800E	MR-1	2,176.0	50	30	0.023	589	90 14	
291800E	MR-4	2,148.5	50 50	30	0.023	2,228	51	
291800E	MM-7	1,995.0	50	30	0.023	8,191	172	
291800E	UG65-21	2,110.0	50	30	0.021	1,646	33	
291800E	MM-7	2,031.2	50 50	30	0.020	8,191		
291800E	MR-4	2,125.5	50 50	30 30	0.020	587	104	
291800E	MM-7	2,013.1	50 50	30	0.019	8,191	156	
291800E	MR-5	2,180.0	50 50	30	0.019	1,468		
291800E	MM-7	1,976.9	50 50	30		-	24	
291800E	M-25-60	-			0.016	9,180	147	
291800E	MM-7	2,176.0 2,130.9	50	30 25	0.015	210	3	
291000E	101101-7	2,130.9	50	35	0.021	8,775	184	0 000
					TOTALS	182,701	16,441	0.090
291850E	MM-7	1,863.6	50	10	0.022	5,593	123	
291850E	UG300-1	1,875.0	50	20	0.180	4,023	724	
291850E	MM-7	1,913.4	50	20	0.162	5,865	950	
291850E	UG65-34	2,110.0	50	20	0.160	505	81	
291850E	UG65-40	2,110.0	50	20	0.160	519	83	
291850E	UG65-30	2,110.0	50	20	0.120	223	27	
291850E	MM-14	1,778.5	50	20	0.114	8,005	913	
291850E	UG300-1	1,875.0	50	20	0.105	2,012	211	
291850E	UG65-39	2,110.0	50	20	0.100	1,302	130	
291850E	UG65-35	2,110.0	50	20	0.090	189	130	
291850E	UG65-28	2,110.0	50	20	0.080	1,049	84	
291850E	UG300-2	1,875.0	50 50	20	0.079	1,045	80	
291850E	UG65-41	2,110.0	50	20	0.060	648	39	
291850E	UG65-29	2,110.0	50 50	20	0.060	332	39 20	
291850E	UG65-36	2,110.0	50 50	20	0.060	558		
291850E	UG65-31	2,110.0	50 50	20	0.060		34	
291850E	UG300-2	1,875.0				194 10 930	12 557	
		1						
LUDUE	0000-02	2,110.0	50	20	0.040	2,271	91	
291850E 291850E 291850E 291850E	MM-7 MR-3 UG65-32	1,875.0 1,931.6 2,095.9 2,110.0	50 50 50 50	20 20 20 20	0.051 0.045 0.042 0.040	10,930 7,289 5,617 2,271	557 328 236 91	

291850E	UG65-33	2,110.0	50	20	0.040	5,121	205	
291850E	MM-7	1,879.4	50	20	0.033	6,456	213	
291850E	MM-7	1,949.7	50	20	0.033	8,761	289	
291850E	MM-7	1,895.3	50	20	0.028	4,167	117	
291850E	MR-4	2,176.8	50	30	0.045	15,672	705	
291850E	MC-17	2,063.4	50	30	0.044	7,814	344	
291850E	MC-17	2,009.1	50	30	0.028	7,900	221	
291850E	MC-17	2,045.3	50	30	0.025	6,401	160	
291850E	MC-17	1,990.9	50	30	0.023	6,865	158	
291850E	MM-14	1,794.4	50	30	0.021	1,701	36	
					TOTALS	128,998	7,187	0.056
291900E	MM-1	1,801.4	50	10	0.016	4,174	67	
291900E	M-27-68	1,832.3	50 50	20	0.380			
291900E	UG300-2	1,875.0	50 50	20	0.380	2,441 192	927	
291900E	MM-1	1,900.1	50 50	20			43	
291900E	UG300-2				0.207	4,0 <u>1</u> 8	832	
291900E	M-27-68	1,875.0	50	20	0.207	1,529	317 .	
291900E	MM-27-00	1,850.8	50	20	0.190	1,690	321	
291900E	MM-2 MM-1	2,007.7	50	20	0.121	7,790	943	
291900E	UG300-3	1,881.3	50 50	20	0.118	3,510	414	
		1,875.0	50	20	0.107	379	41	
291900E	M-27-68	1,795.2	50	20	0.083	4,586	381	
291900E	M-1-60	2,123.4	50	20	0.072	1,963	141	
291900E	MM-1	1,862.5	50	20	0.066	3,228	213	•
291900E	M-1-30	2,167.0	50	20	0.066	4,613	304	
291900E	MM-2	2,021.9	50	20	0.063	6,228	392	•
291900E	MR-3	2,124.2	50	20	0.047	4,593	216	
291900E	M-27-68	1,813.8	50	20	0.043	3,339	144	
291900E	M-1-30	2,157.0	50	20	0.040	6,095	244	
291900E	MM-1	1,843.7	50	20	0.039	2,343	91	
291900E	MM-1	1,911.8	50	20	0.031	6,858	213	
291900E	M-1-60	2,108.2	50	20	0.027	5,559	150	
291900E	MR-3	2,138.4	50	20	0.025	960	24	
291900E	MM-2	1,993.6	50	20	0.021	9,552	201	
291900E	M-27-68	1,776.7	50	20	0.020	4,216	84	
291900E	M-1-60	2,140.7	50	20	0.018	1,552	28	
291900E	MM-1	1,829.6	50	20	0.015	2,168	33	
291900E	UG300-3	1,875.0	50	30	0.297	353	105	
291900E	UG300-3	1,875.0	50	30	0.116	1,315	153	
291900E	UG300-3	1,875.0	50	30	0.070	13,177	922	
291900E	MM-1	1,923.6	50	30	0.047	2,402	113	
291900E	MM-1	1,980.0	50	30	0.045	6,751	304	
291900E	M-1-60	2,188.3	50	30	0.043	3,729	160	
291900E	MR-3	2,166.6	50	30	0.036	2,601	94	
291900E	M-1-30	2,174.5	50	30	0.035	3,909	137	
291900E	MM-2	2,064.3	50	30	0.028			
291900E	MR-3	2,152.5	50	30	0.027	5,751	155	
291900E	M-1-30	2,192.0	50	30	0.024	545	13	
291900E	M-1-30	2,182.0	50	30	0.022	2,922	64	· · ·
291900E	M-1-60	2,155.9	50	30	0.022	779	17	λ,
291900E	MM-2	2,050.2	50	30	0.022	6,319	139	
						0,010	100	

291900E	MM-1	1,998.7	50	30	0.021	5,138	108		
291900E	MM-1	1,961.2	50	30	0.019	6,756	128		
291900E	MM-1	2,036.3	50	30	0.019	2,968	56		
291900E	MM-1	1,942.4	50	30	0.017	4,918	84		
291900E	MM-2	2,036.0	50	30	0.015	7,208	108		
					TOTALS	177,088	9,790	0.055	
291950E	MR-2	2,118.4	50	10	0.025	5,029	126		
291950E	MR-2	2,157.4	50	20	0.142	1,004	143		
291950E	M-2-30	2,185.0	50	20	0.100	4,002	400		
291950E	M-2-60	2,157.4	50	20	0.087	1,041	91		
291950E	M-2-30	2,177.5	50	20	0.028	3,555	100		
291950E	MR-2	2,144.4	50	20	0.017	5,552	94		
291950E	M-2-60	2,144.4	50	20	0.015	591	9		
291950E	MR-3	2,180.8	50	30	0.054	7,616	411		
291950E	M-2-60	2,168.2	50	30	0.050	102	5		
291950E	M-2-30	2,192.5	50	30	0.035	1,210	42		
291950E	MR-2	2,168.2	50	30	0.022	3,722	82		
291950E	MR-2	2,179.0	50	30	0.017	412	7		
		,			TOTALS	33,835	1,509	0.045	
292000E	MM-3	1,860.6	50	10	0.026	4,326	113		
292000E	MM-3	1,892.4	50	20	0.072	9,384	676		
292000E	MM-3	1,928.6	50	20	0.071	5,970	424		
292000E	MM-3	1,910.5	50	20	0.047	6,577	309		
292000E	MM-3	1,946.7	50	20	0.038	6,956	264		
292000E	M-26-63	2,049.8	50	30	0.150	4,833	725		
292000E	M-26-63	2,067.6	50	30	0.045	5,051	227		
292000E	M-26-63	2,103.3	50	30	0.030	8,971	269		
292000E	MM-3	1,960.3	50	30	0.028	7,575	212		
292000E	M-26-63	2,085.5	50	30	0.027	4,399	119		
292000E	M-26-63	2,032.0	50	30	0.020	4,820	96		
292000E	M-26-63	2,121.1	50 50	50	0.020	411	8		
2020002		£, 1£ 1. 1	00	00	TOTALS	69,272	3,442	0.050	
292050E	M-3-60	2,145.7	50	20	0.060	1,640	98		
292050E	M-3-30	2,143.7	50 50	20	0.000	2,751	50		
292050E	M-3-30	2,184.5	50 50	30	0.047	4,134	194		
292050E	M-3-30	2,104.5	50 50	30	0.047	4,134	82		
292050E	M-3-60	2,190.8	50 50	30	0.020	4,075	143		
292050E	MC-1	1,851.0	50 50	30 30	0.019	8,368	143		
		1,001.0	50	50	TOTALS	0,300 28,471	692	0.024	
000100-									
292100E	MC-1	1,765.0	50	20	0.023	792	18		
292100E	M-28-78	1,742.5	50	20	0.023	4,464	103		
292100E	MM-4	1,896.6	50	20	- 0.019	5,126	97		
292100E	MM-4	2,048.4	50	30	0.030	7,403	222		
292100E	MM-4	1,957.8	50	30	0.016	6,182	99		
			X		TOTALS	23,966	539	0.023	
292150E	MC-11	2,028.8	50	30	0.015	7,836	118	0.015	

292200E	MC-11	1,920.1	50	10	0.020	6,470	129		
292200E	MC-11	1,931.4	50	20	0.060	4,939	296		
92200E	MC-11	1,960.9	50	20	0.047	6,584	309		
2200E	MC-11	1,942.7	50	20	0.038	2,533	96		
2200E	MC-7	1,750.4	50	20	0.029	4,780	139		
92200E	M-4-60	2,092.0	50	20	0.027	2,086	56		
2200E	M-4-30	2,116.5	50	20	0.020	4,031	81		
2200E	MC-7	1,766.3	50	20	0.020	2,039	41		
92200E	MC-7	1,782.1	50	20	0.019	4,937	94		
92200E	M-4-60	2,079.1	50	20	0.018	5,396	97		
92200E	MC-7	1,813.9	50	30	0.018	5,769	104		
92200E	MC-7	1,798.0	50	30	0.015	9,320	140		
92200E	MC-7	1,832.0	50	30	0.015	7,302	110		
					TOTALS	66,187	1,692	0.026	
92400E	MC-6	1,658.4	100	10	0.015	4,595	69		
92400E	MC-6	1,672.1	100	10	0.015	8,831	133		
292400E	MC-12	1,895.4	100	20	0.086	5,009	431		
292400E	MC-12	1,913.6	100	20	0.058	12,936	750		
292400E	MC-6	1,722.3	100	20	0.047	14,273	671		
292400E	MC-6	1,704.0	100	20	0.026	6,763	176		
292400E	MC-6	1,688.1	100	20	0.024	14,171	340		
292400E	MC-6	1,749.7	100	30	0.025	9,660	242		
292400E	MC-6	1,768.0	100	30	0.022	13,514	297		
292400E	MC-6	1,841.1	100	30	0.019	16,403	312		
292400E	MC-6	1,859.3	100	30	0.016	16,063	257		
292400E	MC-6	1,736.0	100	30	0.016	14,022	224		
292400E	MC-12	2,031.4	100	30	0.015	15,720	236		
292400E	MC-6	2,001.4 1,877.6	100	30	0.015	13,495	202		
	WO-0	1,077.0	100	00	TOTALS	165,455	4,339	0.026	
292500E	MR-8	2,120.3	100	20	0.102	15,621	1 502		
292500E	MR-8						1,593		
292500E	MR-8	2,132.7 2,175.1	100 100	20 20	0.064 0.055	6,481	415		
292500E 292500E	MR-8	2,175.1 2,146.8	100	20		6,516 6,866	358		
292500E	MR-8	2,146.8 2,161.0		20	0.022	6,866 6 816	151		
292500E	MR-8	2,181.0	100 100	20 20	0.021 0.015	6,816	143		
292300E	14112-0	2,109.3	100	20	TOTALS	3,652 45,953	55 2,716	0.059	
292600E	MC 14	1 000 4	400	10	0.040	45 600	007		
	MC-14	1,893.4	100	10 20	0.019	15,636	297		
	MC-14	1,911.6	100	20	0.066	14,828	979		
		1,929.7	100	20	0.058 0.053	13,589	788		
292600E	MC-14		400		11053	10,441	553		
292600E 292600E	MC-5	1,775.7	100	20					-
292600E 292600E 292600E	MC-5 MR-9	1,775.7 2,080.7	100	20	0.053	16,877	895		•
292600E 292600E 292600E 292600E	MC-5 MR-9 MR-9	1,775.7 2,080.7 2,186.7	100 100	20 20	0.053 0.046	16,877 4,351	200		• •
292600E 292600E 292600E 292600E 292600E	MC-5 MR-9 MR-9 MC-5	1,775.7 2,080.7 2,186.7 1,759.9	100 100 100	20 20 20	0.053 0.046 0.044	16,877 4,351 15,165	200 667		-
292600E 292600E 292600E	MC-5 MR-9 MR-9 MC-5 MC-5	1,775.7 2,080.7 2,186.7 1,759.9 1,793.9	100 100 100 100	20 20 20 20	0.053 0.046 0.044 0.024	16,877 4,351 15,165 15,291	200 667 367		
292600E 292600E 292600E 292600E 292600E	MC-5 MR-9 MR-9 MC-5	1,775.7 2,080.7 2,186.7 1,759.9	100 100 100	20 20 20	0.053 0.046 0.044	16,877 4,351 15,165	200 667		

292600E	MC-5	1,825.6	100	30	0.085	13,577	1,154		
292600E	MC-14	2,047.5	100	30	0.070	13,198	924		
292600E	MC-14	1,956.9	100	30	0.060	10,370	622		
292600E	MC-14	2,065.6	100	30	0.036	15,361	553		
292600E	MC-14	1,993.1	100	30	0.032	16,381	524		
292600E	MC-5	1,898.1	100	30	0.027	16,183	437		
292600E	MC-14	1,975.0	100	30	0.026	14,924	388		
292600E	MC-14	1,943.3	100	30	0.022	11,895	262		
292600E	MC-14	2,011.2	100	30	0.016	16,381	262		
					TOTALS	253,344	10,213	0.040	
292700E	MC-15	1,910.1	100	20	0.081	10,543	854		
292700E	MC-15	1,896.5	100	20	0.060	9,145	549		
292700E	MC-3	1,719.9	100	20	0.030	4,770	143		
292700E	MC-3	1,733.5	100	20	0.026	9,731	253		
292700E	MC-15	1,925.9	100	30	0.030	15,233	457		
292700E	MC-3	1,778.8	100	30	0.022	15,864	349		
292700E	MC-15	1,941.8	100	30	0.018	12,277	221		
292700E	MC-15	2,014.3	100	30	0.015	14,973	225		
					TOTALS	92,535	3,050	0.033	
292800E	MR-10	2,052.5	100	20	0.111	11,558	1,283		
292800E	MC-4	1,740.3	100	20	0.104	5,663	589		
292800E	MR-10	2,038.4	100	20	0.056	3,008	168		
292800E	MR-10	2,024.3	100	20	0.045	2,535	114		
292800E	MC-13	1,904.1	100	20	0.043	14,894	640		
292800E	MC-4	1,756.2	100	20	0.039	12,921	504		
292800E	MR-10	2,014.0	100	20	0.034	9,555	325		
292800E	MC-13	1,915.5	100	30	0.027	11,745	317		
292800E	MC-13	1,963.1	100	30	0.019	13,937	265		
292800E	MC-13	2,017.4	100	30	0.018	15,500	279		
292800E	MC-13	1,944.9	100	30	0.015	14,104	212		
					TOTALS	115,418	4,696	0.041	
292900E	MR-10	2,066.7	100	20	0.097	6,587	639		
292900E	MR-10	2,080.8	100	20	0.034	759	26		
292900E	MC-8	1,711.4	100	20	0.021	4,209	88		
					TOTALS	11,555	753	0.065	
293000E	MC-16	1,821.6	100	20	0.064	16,0 21	1,025		
293000E	MC-16	1,839.8	100	20	0.032	9,037	289		
293000E	MC-16	1,857.9	100	20	0.019	15,887	302		
					TOTALS	40,945	1,616	0.039	
293100E	MC-9	1,669.0	200	20	0.024	25,751	618		
293100E	MC-9	1,843.5	_ 200	30	- 0.025	24,337	608		
293100E	MC-9	1,877.5	200	30	0.019	31,131	592		
293100E	MC-9	1,859.4	200	30	0.016	30,730	492		
					TOTALS	111,949	2,310	0.021	
293300E	MC-10	1,685.0	200	20	0.024	23,733	570		

ł

293300E	MC-10	1,732.6	200	20	0.022	32,284	710	
293300E	MC-10	1,714.4	200	20	0.019	18,782	357	
293300E	MC-10	1,832.3	200	35	0.028	26,867	752	
293300E	MC-10	1,814.1	200	35	0.020	32,330	647	
293300E	MC-10	1,850.4	200	35	0.015	33,453	502	
293300E	MC-10	2,061.1	200	60	0.037	34,092	1,261	
293300E	MC-10	2,126.8	200	60	0.023	22,398	515	
293300E	MC-10	2,108.7	200	60	0.016	20,887	334	
					TOTALS	244,826	5,648	0.023
293500E	MR-13	2,019.0	200	20	0.051	13,092	668	
293500E	MR-13	2,004.9	200	20	0.024	25,075	602	
					TOTALS	38,167	1,270	0.033
293900E	MR-14	2,086.9	200	20	0.184	20,017	3,683	
293900E	MM-17	1,846.7	200	20	0.065	22,779	1,481	
293900E	MR-14	2,099.3	200	20	0.045	22,814	1,027	
293900E	MM-17	1,857.6	200	20	0.036	23,267	838	
293900E	MM-17	1,887.9	200	30	0.022	28,299	623	
293900E	MR-14	2,148.8	200	30	0.015	27,359	410	
293900E	MR-14	2,134.6	200	30	0.015	26,617	399	
					TOTALS	171,151	8,460	0.049
294100E	MM-18	1,898.4	200	20	0.067	17,504	1,173	
294100E	MM-18	1,914.7	200	20	0.022	32,310	711	
294100E	MM-18	1,886.1	200	20	0.015	25,465	382	·
294 IUUE		1,000.1	200	20	0.010	20,700	002	

•

-

 \mathbf{n}

CROSS SECTIONAL POLYGONAL RESERVE (100 FT. radius of influence) MOSS PROJECT, ARIZONA

CROSS SECTIONAL POLYGONAL RESERVE (100 FT. radius of influence) MOSS PROJECT, ARIZONA

Addwest Minerals, Inc. February, 1995

100 ft. radius of influence Thickness determined by section width (50, 100, or 200 FT.) Cut-off grade = .015 opt Au Utilized 20 ft. composites, bounded by rock type

<u>Summary</u>

Rock Type	Tons	Grade	Contained OZ. Au
Moss Vein (20)	2,069,880	0.052	108,396
Hi-grade Hanging Wall (30)	1,968,580	0.030	59,933
Low-grade Hanging Wall (35)	270,068	0.023	6,113
Footwall (10)	182,590	0.021	3,855
Rhyolite Dike (60)	199,677	0.030	6,057
Other Quartz Veins (25)	36,701	0.026	970
Faults (50)	411	0.020	8
TOTALS:	4,727,907	0.039	185,332

Polygon Information

SECT	ION Thickness	Elev.	Hole	Rock Typ	e Oz./Ton Au	Tons	Oz. Au	Av. grade for section
29025	50E 100	1,967.4	MC-18A	10	0.023	33,209	764	
29025	50E 100	2,003.7	MC-18A	20	0.026	30,354	789	
29025	50E 100	1,989.2	MC-18A	20	0.016	28,903	462	
29025	50E 100	2,018.2	MC-18A	30	0.018	35,583	641	
29025	5 0E 100	2,105.2	MC-18A	30	0.016	27,465	439	
29025	50E 100	2,134.2	MC-18A	30	0.016	19,157	307	
					TOTALS	174,670	3,402	0.019
29035	50E 100	2,018.5	MC-19	20	0.026	77,207	2,007	
29035	50E 100	2,096.7	MC-19	30	0.016	21,971	352	
29035	50E 100	2,108.8	MC-19	30	0.034	17,937	610	
2903	50E 100	2,120.8	MC-19	30	0.016	16,462	263	
2903	50E 100	2,120.0	MC-20	30	0.027	10,876	294	
2903	50E 100	2,130.0	MC-20	30	0.016	6,058	97	
•					TOTALS	150,511	3,623	0.024 -
2904	50E 100	2,060.0	MC-20	30	0.020	16,879	338	0.020
/								
2905	50E 100	1,995.0	MC-20	10	0.018	11,135	200	

290550E	100	2,035.0 MC-20	20	0.018	49,558	892	
290550E	100	2,025.0 MC-20	20	0.018	18,426	332	
290550E	100	2,008.8 MC-20	20	0.015	15,510	233	
				TOTALS	94,629	1,657	0.018
290950E	50	2,290.5 M-8-60	20	0.017	11,574	197	
290950E	50	2,305.7 M-8-60	20	0.030	2,791	84	
290950E	50	2,317.2 M-8-45	20	0.032	773	25	
290950E	50	2,303.0 M-8-45	20	0.030	739	22	
290950E	50	2,307.0 M-9-60	20	0.030	586	18	
290950E	50	2,324.8 M-9-45	20	0.027	352	10	
290950E	50	2,334.0 M-8-30	30	0.035	8,502	298	
290950E	50	2,329.6 M-8-45	30	0.017	607	10	
				TOTALS	25,925	662	0.026
291000E	50	2,317.5 M-10-30	20	0.018	12,707	229	
291000E	50	2,228.8 M-19-45	20	0.020	2,250	45	
291000E	50	2,214.5 M-18-45	20	0.027	2,165	58	
291000E	50	2,280.0 M-16-30	20	0.018	1,633	29	
291000E	50	2,272.5 M-16-30	20	0.015	1,273	19	
291000E	50	2,296.0 M-10-60	20	0.070	1,131	79	
291000E	50	2,247.8 M-16-45	20	0.030	1,017	31	
291000E	50	2,245.7 M-15-60	20	0.038	987	38	
291000E	50	2,309.0 M-10-60	20	0.162	885	, 143	
291000E	50	2,232.7 M-15-60	20	0.030	852	26	
291000E	50	2,299.6 M-10-45	20	0.018	762	14	
291000E	50	2,254.9 M-15-45	20	0.040	714	29	
291000E	50	2,310.3 M-10-45	20	0.050	609	31	
291000E	50	2,283.0 M-10-60	20	0.023	541	12	
291000E	50	2,265.5 M-15-45	20	0.015	379	6	
291000E	50	2,112.1 MM-9	30	0.016	20,588	329	
291000E	50	2,042.8 MM-9	30	0.018	14,420	260	
291000E	50	2,327.5 M-10-30	30	0.055	3,806	209	
291000E	50	2,322.2 M-9-60	30	0.030	1,805	54	
291000E	50	2,337.3 M-9-60	30	0.018	1,429	26	
291000E	50	2,341.0 M-9-30	30	0.043	1,215	52	
291000E	50	2,241.0 M-18-45	30	0.030	713	21	
291000E	50	2,291.3 M-15-30	30	0.020	560	11	
291000E	50	2,333.8 M-10-30	30	0.020	370	7	
291000E	50	2,320.9 M-10-45	30	0.130	361	47	
291000E	50	2,282.5 M-15-30	30	0.025	359	9	
291000E	50	2,331.5 M-10-45	30	0.035	230	8	
291000E	50	2,326.3 M-10-60	30	0.047	200	9	
291000E	50	2,307.9 M-16-45	30	0.015	121	2	
291000E	50	2,338.9 M-9-45	30	0.038	78	3	
291000E	50	2,190.1 MM-9	35	- 0.019	16,389	311	
				TOTALS	90,546	2,148	0.024
291050E	50	2,210.7 M-20-45	20	0.015	12,252	184	
291050E	50	2,302.5 M-11-30	20	0.047	7,052	331	
291050E	50	1,981.2 M-29-60	20	0.015	4,617	69	

291050E	50	2,225.4 M-17-60	20	0.025	1,842	46	
291050E	50	2,259.0 M-17-45	20	0.035	1,726	60	
291050E	50	2,277.3 M-11-45	20	0.015	1,543	23	
291050E	50	2,212.4 M-17-60	20	0.220	1,540	339	
291050E	50	2,246.6 M-17-45	20	0.027	1,443	39	
291050E	50	2,281.7 M-11-60	20	0.015	1,258	19	
291050E	50	2,289.6 M-11-45	20	0.068	1,062	72	
291050E	50	2,234.4 BX-6	25	0.027	9,088	245	
291050E	50	2,258.6 M-18-45	30	0.018	6,873	124	
291050E	50	2,311.3 M-11-30	30	0.020	3,734	75	
291050E	50	2,320.0 M-11-30	30	0.020	2,118	42	
291050E	50	2,270.8 M-20-45	30	0.023	2,086	48	
291050E	50	2,286.0 M-17-60	30	0.020	1,948	39	
291050E	50	2,268.7 M-17-60	30	0.030	1,932	58	
291050E	50	2,256.6 M-20-45	30	0.015	1,807	27	
291050E	50	2,316.3 M-11-60	30	0.018	1,796	32	
291050E	50	2,299.0 M-11-60	30	0.020	1,618	32	
291050E	50	2,290.8 M-17-45	30	0.027	1,576	43	
291050E	50	2,304.9 M-17-45	30	0.035	1,217	43	
291050E	50	2,267.8 M-17-45	30	0.020	775	16	
291050E	50	2,303.8 M-11-45	30	0.055	482	27	
291050E	50	2,317.9 M-11-45	30	0.015	121	2	
				TOTALS	71,503	2,035	0.028
291100E	50	· 2,075.1 MM-10	20	0.027	14,248	385	
291100E	50	2,233.4 M-12-60	20	0.025	12,115	303	
291100E	50	2,272.0 M-12-30	20	0.015	4,754	71	
291100E	50	2,279.5 M-12-30	20	0.060	4,515	271	
291100E	50	2,246.4 M-12-60	20	0.018	2,779	50	
291100E	50	2,264.6 M-12-45	20	0.047	1,113	52	
291100E	50	2,254.0 M-12-45	20	0.015	1,022	15	
291100E	50	2,207.9 BX-6	25	0.025	10,729	268	
291100E	50	2,127.1 MM-10	30	0.032	18,794	601	
291100E	50	2,109.8 MM-10	30	0.024	12,737	306	
291100E	50	2,292.0 M-12-30	30	0.020	3,558	71	
291100E	50	2,285.8 M-12-30	30	0.030	3,497	105	
291100E	50	2,275.2 M-12-45	30	0.015	5,4 <i>91</i> 666	10	
291100E	50	2,285.8 M-12-45	30	0.018	546	10	
291100E	50	2,199.1 BX-6	35	0.023	8,395	193	
291100E	50 50	2,189.9 MM-10	35 35	0.023	7,153	193	
2011002	00	2,100.0 1000-10	55	TOTALS	106,620	2,840	0.027
291150E	50	21372 BX-6	25	0 029	5 924	170	0 029
291150E	50	2,137.2 BX-6	25	0.029	5,924	172	0.029
-291200E	50	2,227.5 M-13-60	20	0.020	13,140	263	
2012002		2,238.4 M-13-60	20	0.027	2,939	79	
291200E	50	2,200.4					
	50 50	2,262.3 M-13-30	20	0.020	2,087	42	
291200E				0.020 0.025	2,087 1,392	42 35	
291200E 291200E	50	2,262.3 M-13-30	20				

291250E	50	2,046.3	MM-11	10	0.015	10,049	151	
291250E	50	2,059.9	MM-11	10	0.022	6,461	142	
291250E	50	2,100.7	MM-11	20	0.019	7,311	139	
291250E	50	2,118.8	MM-11	20	0.023	7,268	167	
291250E	50	2,082.6	MM-11	20	0.040	5,634	225	
291250E	50	2,197.0	M-21-60A	20	0.020	2,831	57	
291250E	50	2,211.0		20	0.015	2,808	42	
291250E	50	2,198.9		20	0.017	833	14	
291250E	50	2,211.3		20	0.015	579	9	
291250E	50	2,184.0		20	0.020	355	7	
291250E	50	2,197.0		20	0.020	333	7	
291250E	50	2,150.6		30	0.022	10,533	232	
	••	2,100.0		00	TOTALS	54,994	1,191	0.022
					101/20	04,004	1,101	0.022
291300E	50	2,168.0	M-22-45	30	0.020	38,684	774	
291300E	50	2,178.6	M-22-45	30	0.023	6,407	147	
					TOTALS	45,092	921	0.020
291350E	50	2,177.9	MM-12	30	0.024	9,111	219	0.024
291550E	50	2,124.6		20	0.019	9,619	183	
291550E	50	2,144.6		20	0.048	2,700	130	•
291550E	50	2,145.9		20	0.032	1,733	56	
291550E	50	2,108.3	M-7-70	20	0.040	1,182	47	
291550E	50	2,127.1	M-7-70	20	0.072	800	58	
291550E	50	2,130.5	MR-11	20	0.037	716	27	
291550E	50	2,121.7	MR-11	20	0.020	402	8	
291550E	50	2,110.0	UG65-1	20	0.040	396	16	
291550E	50	2,152.9	MM-5	30	0.022	9,553	210	
291550E	50	2,060.4	MM-6	30	0.019	6,637	126	
291550E	50	2,077.7	MM-6	30	0.016	5,621	90	
291550E	50	2,157.7	M-7-70	30	0.040	2,746	110	
291550E	50	2,151.3	MM-6	35	0.049	30,785	1,508	
					TOTALS	72,891	2,568	0.035
291600E	50		UG65-2	20	0.100	4,865	487	
291600E	50	2,110.0	UG65-5	20	0.080	1,811	145	
291600E	50	2,110.0	UG65-4	20	0.140	1,272	178	
					TOTALS	7,947	809	0.102
	-							
291650E	50		UG65-9	20	0.080	14,015	1,121	
291650E	50		UG65-8	20	0.080	5,004	400	
291650E	50	2,179.5		20	0.058	3,392	197	
291650E	50	2,185.6		20	0.091	2,835	258	
291650E	50		UG65-7	20	0.040	1,317	53	
291650E	50		UG65-6	20	0.040	1,315	53	
291650E	50	2,041.6		25	0.026	10,961	285	*
291650E	50	2,052.2	BX-5	35	0.015	10,857	163	
					TOTALS	49,694	2,529	0.051

291700E	50	2,048.6 MR-7	10	0.028	15,957	447	
291700E	50	1,955.0 UG220-1	20	0.047	19,653	924	
291700E	50	2,032.8 MR-5	20	0.033	9,394	310	
291700E	50	2,050.1 MR-5	20	0.065	6,395	416	
291700E	50	2,207.6 TR-3	20	0.760	4,228	3,213	
291700E	50	2,087.1 MR-7	20	0.027	2,958	80	
291700E	50	2,154.3 M-6-30	20	0.033	2,409	80	
291700E	50	2,152.0 M-6-60	20	0.095	2,238	213	
291700E	50	2,163.0 M-6-30	20	0.072	2,151	155	
291700E	50	1,955.0 UG220-1	20	0.056	2,089	117	
291700E	50	2,134.7 M-6-60	20	0.095	1,893	180	
291700E	50	2,121.7 MR-7	20	0.078	1,886	147	
291700E	50	2,110.0 UG65-15	20	0.040	1,883	75	
291700E	50	2,198.9 TR-3	20	0.105	1,609	169	
291700E	50	2,069.8 MR-7	20	0.056	1,599	90	
291700E	50	2,119.5 M-6-60	20	0.033	1,512	50	
291700E	50	2,173.0 M-6-30	20	0.060	1,131	68	
291700E	50	2,104.4 MR-7	20	0.116	990	115	
291700E	50	2,194.0 TR-3	20	0.060	941	57	
291700E	50	2,169.3 M-6-60	20	0.020	915	18	
291700E	50	2,110.0 UG65-12	20	0.080	910	73	
291700E	50	2,110.0 UG65-13	20	0.070	690	48	
291700E	50	2,056.8 MR-7	20	0.034	634	22	
291700E	50	2,110.0 UG65-11	20	0.300	333	100	
291700E	50	2,110.0 UG65-10	20	0.040	277	11	
291700E	50	2,110.0 UG65-14	20	0.300	194	58	
291700E	50	2,058.4 MM-8	30	0.154	27,981	4,309	
291700E	50	2,076.6 MM-8	30	0.029	3,557	103	
291700E	50	2,112.8 MM-8	30	0.097	1,277	124	
				TOTALS	117,684	11,770	
291750E	50	1,998.6 MR-12	10	0.033	5,256	174	
291750E	50 50	1,884.0 MM-8	10	0.033		174	
291750E	50	1,897.6 MM-8	20	0.024	5,104 9,808	123	
291750E	50 50	1,913.4 MM-8	20	0.120	9,808 5,422	1,236	
291750E	50 50	2,067.4 MR-5	20	0.140	•	759 720	
291750E	50 50	2,007.4 MR-5 2,009.2 MR-12	20	0.065	5,176 5,120	730	
291750E	50 50	1,931.6 MM-8	20	0.065	5,129 3,910	333	
291750E	50	2,023.3 MR-12	20	0.192	•	751	
291750E	50 50	2,104.3 MR-4	20	0.063	3,806 3,504	289	
291750E	50 50	1,955.0 UG220-2		0.063	3,594 2,802	226	
291750E	50 50	2,179.0 M-5-30	20		2,803	191 200	
291750E	50 50	1,955.0 UG220-2		0.116	2,662	309	
291750E	50 50	2,084.8 MR-5	20	0.063	1,860	117	
291750E	50 50	2,004.8 MR-5 2,226.9 TR-6		0.090	1,817	164	
291750E	50 50	1,955.0 UG220-3	20	0.053	1,566	83	
291750E	50 50			0.154	1,446	223	
291750E	50 50		20	0.090	1,442	130	
291750E	50 50	2,229.2 TR-7	20	0.080	1,242	99	
291750E	50 50	2,152.0 M-5-60 1,949.7 MM-8	20	0.075	1,028	77	
23 17 JUE	50	1,949.7 MM-8	20	0.097	988	96	

291750E	50	1,955.0 UG220-5	20	0.077	926	71
291750E	50	2,156.4 MR-6	20	0.082	855	70
291750E	50	2,235.6 TR-6	20	0.141	713	101
291750E	50	2,239.6 TR-8	20	0.120	693	83
291750E	50	2,236.6 TR-7	20	0.080	489	39
291750E	50	1,955.0 UG220-6	20	0.089	452	40
291750E	50	1,955.0 UG220-5	20	0.062	187	12
291750E	50	2,230.9 TR-8	20	0.052	147	8
291750E	50	1,955.0 UG220-4	20	0.154	106	16
291750E	50	1,967.8 MM-8	30	0.049	14,301	701
291750E	50	2,083.4 MR-12	30	0.020	12,553	251
291750E	50	2,145.4 MR-5	30	0.016	11,285	181
291750E	50	2,004.1 MM-8	30	0.022	8,575	189
291750E	50	1,985.9 MM-8	30	0.030	8,453	254
291750E	50	2,110.0 UG65-20	30	0.060	8,016	481
291750E	50	2,040.3 MM-8	30	0.029	7,907	229
291750E	50	2,055.2 MR-12	30	0.016	4,612	74
291750E	50	2,041.0 MR-12	30	0.021	4,038	85
291750E	50	2,178.0 MR-7	30	0.026	2,845	74
291750E	50	2,032.2 MR-12	30	0.018	2,780	50
291750E	50	2,128.1 MR-5	30	0.020	1,781	36
291750E	50	2,189.0 M-5-30	30	0.054	1,622	88
291750E	50	2,160.7 MR-7	30	0.049	1,398	69
291750E	50	2,222.3 TR-6	30	0.080	961	77 '
291750E	50	2,199.0 M-5-30	30	0.045	952	43
291750E	50	2,143.4 MR-7	30	0.036	885	32
291750E	50	2,110.7 MR-5	30	0.023	754	17
291750E	50	2,178.0 MR-6	30	0.034	534	18
291750E	50	2,165.0 M-5-60	30	0.045	426	19
291750E	50	2,195.3 MR-6	30	0.028	335	9
291750E	50	2,110.0 UG65-16	30	0.060	313	19
291750E	50	2,178.0 M-5-60	30	0.083	287	24
291750E	50	2,110.0 UG65-18	30	0.100	281	28
291750E	50	2,165.0 MR-6	30	0.058	255	15
291750E	50	2,110.0 UG65-19	30	0.060	206	12
291750E	50	2,225.8 TR-8	30	0.040	54	2
		,		TOTALS	165,037	- 9,624
i					,	•,•= ·
291800E	50	1,955.0 UG220-3	20	0.271	23,848	6,463
291800E	50	1,875.0 UG300-1	20	0.171	20,996	3,590
291800E	50	1,875.0 UG300-1	20	0.160	11,434	1,830
291800E	50	2,169.5 M-25-30	20	0.020	8,363	167
291800E	50	2,110.0 UG65-26	20	0.060	7,487	449
291800E	50	2,110.0 UG65-25	20	0.060	3,002	180
291800E	50	2,132.7 MR-1	20	0.052	1,011	53
291800E	50	2,116.7 MR-4	20	- 0.082	1,010	83
291800E	50	2,130.6 M-25-60	20	0.060	525	32
291800E	50	1,875.0 UG300-1	30	0.126	21,112	2,660
291800E	50	2,110.0 UG65-24	30	0.080	20,896	1,672
291800E	50	1,976.9 MM-7	30	0.016	13,450	215
291800E	50	1,995.0 MM-7	30	0.021	13,025	274
l					,	5 1 7

291800E	50	2,013.1 MM-7	30	0.019	12,615	240	
291800E	50	2,031.2 MM-7	30	0.020	10,807	216	
291800E	50	2,049.4 MM-7	30	0.091	9,270	844	
291800E	50	2,162.6 MR-4	30	0.050	9,112	456	
291800E	50	1,955.0 UG220-4	30	0.061	8,967	547	
291800E	50	2,103.8 MM-7	30	0.105	8,577	901	
291800E	50	2,067.5 MM-7	30	0.041	8,009	328	
291800E	50	2,187.0 M-25-30	30	0.025	4,477	112	
291800E	50	2,177.0 M-25-30	30	0.025	4,216	105	
291800E	50	2,148.5 MR-4	30	0.023	2,228	51	
291800E	50	2,110.0 UG65-22	30	0.140	2,005	281	
291800E	50	2,180.0 MR-5	30	0.016	1,468	24	
291800E	50	2,134.4 MR-4	30	0.027	1,306	35	
291800E	50	2,110.0 UG65-27	30	0.080	933	75	
291800E	50	2,158.7 MR-1	30	0.029	924	27	
291800E	50	2,145.7 MR-1	30	0.033	- 820	27	
291800E	50	2,176.0 MR-1	30	0.023	589	14	
291800E	50	2,125.5 MR-4	30	0.019	587	11	
291800E	50	2,143.5 M-25-60	30	0.030	436	13	
291800E	50	2,110.0 UG65-23	30	0.080	217	17	
291800E	50	2,197.3 MR-5	30	0.038	210	8	
291800E	50	2,176.0 M-25-60	30	0.015	210	3	
291800E	50	2,193.3 MR-1	30	0.032	184	6	
291800E	50	2,130.9 MM-7	'35	0.021	14,258	299	
2010002	00	2,100.0 10101-7	00	Totals	248,580	233	
				i otalo	240,000	22,000	
291850E	50	1,863.6 MM-7	10	0.022	10,552	232	
291850E	50	1,949.7 MM-7	20	0.033	18,248	602	
291850E	50	1,875.0 UG300-2	20	0.051	16,892	862	
291850E	50	2,110.0 UG65-33	20	0.040	12,856	514	
291850E	50	1,778.5 MM-14	20	0.114	11,333	1,292	
291850E	50	2,095.9 MR-3	20	0.042	10,673	448	
291850E	50	1,879.4 MM-7	20	0.033	9,703	320	
291850E	50	1,931.6 MM-7	20	0.045	7,699	347	
291850E	50	1,913.4 MM-7	20	0.162	5,865	950	
291850E	50	2,110.0 UG65-32	20	0.040	5,441	218	
291850E	50	1,875.0 UG300-1	20	0.180	4,799	864	
291850E	50	1,895.3 MM-7	20	0.028	4,167	117	
291850E	50	1,875.0 UG300-1	20	0.105	2,407	253	
291850E	50	2,110.0 UG65-39	20	0.100	1,302	130	
291850E	50	1,875.0 UG300-2	20	0.079	1,229	97	
291850E	50	2,110.0 UG65-28	20	0.080	1,012	81	
291850E	50	2,110.0 UG65-40	20	0.160	680	109	
291850E	50	2,110.0 UG65-41	20	0.160	660 642		
291850E	50 50	2,110.0 UG65-36	20 20	0.060		39 34	
291850E	50 50	2,110.0 UG65-34	20 20		564 512	. 34	
291850E 291850E	50 50	2,110.0 UG65-34 2,110.0 UG65-29		0.160	512	82	
291850E 291850E			20	0.060	378	23	
	50 50	2,110.0 UG65-31	20 20	0.060	266	16	
291850E	50	2,1,10.0 UG65-35	20	0.090	189	17	
291850E	50	2,176.8 MR-4	30 20	0.045	26,288	1,183	
291850E	50	2,063.4 MC-17	30	0.044	15,508	682	

291850E	50	2,045.3 MC-17	30	0.025	9,355	234	
291850E	50	2,009.1 MC-17	30	0.028	8,725	244	
291850E	50	1,990.9 MC-17	30	0.023	8,075	186	
291850E	50	1,794.4 MM-14	30	0.021	1,701	36	
				Totals	197,058	10,210	0.052
291 900E	50	1,801.4 MM-1	10	0.016	7,389	118	
291900E	50	1,993.6 MM-2	20	0.021	10,461	220	
291900E	50	2,157.0 M-1-30	20	0.040	9,840	394	
291900E	50	2,007.7 MM-2	20	0.121	9,222	1,116	
291900E	50	2,021.9 MM-2	20	0.063	8,201	517	
291900E	50	2,108.2 M-1-60	20	0.027	7,867	212	
291900E	50	1,911.8 MM-1	20	0.031	7,838	243	
291900E	50	2,167.0 M-1-30	20	0.066	7,262	479	
291900E	50	2,124.2 MR-3	20	0.047	5,677	267	
291900E	50	1,795.2 M-27-68	20	0.083	4,586	381	
291900E	50	1,776.7 M-27-68		0.020	4,216	84	
291900E	50	1,900.1 MM-1	20	0.207	4,157	860	
291900E	50	1,881.3 MM-1	20	0.118	3,507	414	
291900E	50	1,813.8 M-27-68		0.043	3,339	144	
291900E	50	1,862.5 MM-1	20	0.066	3,231	213	
291900E	50	1,832.3 M-27-68		0.380	2,441	927	
291900E	50	1,843.7 MM-1	20	0.039	2,343	91	
291900E	50	1,829.6 MM-1	20	0.015	2,168	33	
291900E	50	2,123.4 M-1-60	20	0.072	1,963	141	
291900E	50	1,850.8 M-27-68		0.190	1,690	321	
291900E	50	2,140.7 M-1-60	20	0.018	1,552	28	
291900E	50	1,875.0 UG300-2		0.207	1,529	317	
291900E	50	2,138.4 MR-3	20	0.025	960	24	
291900E	50	1,875.0 UG300-3		0.107	379	41	
291900E	50	1,875.0 UG300-2		0.223	192	43	
291900E	50	1,875.0 UG300-3		0.070	21,723	1,521	
291900E	50	2,152.5 MR-3	30	0.027	10,023	271	
291900E	50	2,050.2 MM-2	30	0.022	8,073	178	
291900E	50	2,036.0 MM-2	30	0.015	8,010	120	
291900E	50	2,064.3 MM-2	30	0.028	7,805	219	
291900E	50	1,961.2 MM-1	30	0.019	7,057	134	
291900E	50	1,980.0 MM-1	30	0.045	6,751	304	
291900E	50	2,188.3 M-1-60	30	0.043	6,620	285	
291900E	50	2,174.5 M-1-30	30 30	0.035	5,313	285 186	
291900E	50	1,998.7 MM-1	30	0.035	5,138	108	
291900E	50	1,942.4 MM-1	30	0.021	3,138 4,965	84	
291900E	50 50	2,166.6 MR-3	30 30	0.017			
291900E	50 50	2,036.3 MM-1			3,912	141	
291900E 291900E	50 50		30 30	0.019	2,968	56 65	
291900E 291900E		2,182.0 M-1-30	30 20	0.022	2,930	65	
	50	1,923.6 MM-1	30	0.047	2,402	113	
291900E	50	1,875.0 UG300-3		0.116	1,315	153	
291900E	50	2,155.9 M-1-60	30	0.022	779	17	
291900E	50	2,192.0 M-1-30	30	0.024	545	13	X
291900E	50	1,875.0 UG300-3	3 30	0.297	353	105	
				Totals	218,688	11,698	0.053

291950E	50	2,118.4		10	0.025	8,218	206	
291950E	50	2,144.4	MR-2	20	0.017	12,998	221	
291950E	50	2,177.5	M-2-30	20	0.028	5,618	157	
291950E	50	2,185.0	M-2-30	20	0.100	4,295	430	
291950E	50	2,157.4	M-2-60	20	0.087	1,041	91	
291950E	50	2,157.4	MR-2	20	0.142	1,004	143	
291950E	50	2,144.4	M-2-60	20	0.015	597	9	
291950E	50	2,180.8	MR-3	30	0.054	19,766	1,067	
291950E	50	2,168.2	MR-2	30	0.022	9,555	210	
291950E	50	2,192.5	M-2-30	30	0.035	1,210	42	
291950E	50	2,179.0	MR-2	30	0.017	412	7	
291950E	50	2,168.2	M-2-60	30	0.050	103	5	
					Totais	64,817	2,587	0.040
292000E	50	1,860.6	MM-3	10	0.026	8 ,239	214	
292000E	50	1,892.4	MM-3	20	0.072	19,938	1,436	
292000E	50	1,946.7	MM-3	20	0.038	18,319	696	
292000E	50	1,928.6		20	0.071	7,579	538	
292000E	50	1,910.5	MM-3	20	0.047	6,642	312	
292000E	50	1,960.3	MM-3	30	0.028	24,072	674	
292000E	50	2,103.3		30	0.020	16,029	481	
292000E	50		M-26-63	30 30	0.030	9,098		
292000E	50 50		M-26-63	30	· 0.150		409	
292000E	50 50		M-26-63	30 30	0.150	8,880	1,332	
292000E	50 50		M-26-63			8,798	176	
292000E	50 50			30 50	0.027	8,446	228	
292000E	50	2,121.1	M-26-63	50	0.020 Totolo	411	8	
					Totals	136,448	6,505	0.048
292050E	50		M-3-30	20	0.018	3,218	58	
292050E	50	2,145.7	M-3-60	20	0.060	1,640	98	
292050E	50	1,851.0	MC-1	30	0.015	24,093	361	
292050E	50	2,158.7	M-3-60	30	0.019	21,111	401	
292050E	50	2,184.5	M-3-30	30	0.047	4,621	217	
292050E	50	2,190.8	M-3-30	30	0.020	4,075	82	
					Totals	58,758	1,218	0.021
292100E	50	1,896.6	MM-4	20	0.019	6,238	119	
292100E	50	1,742.5	M-28-78	20	0.023	4,464	103	
292100E			100			-	18	
2321000	50	1,765.0	MC-1	20	0.023	/93	10	
292100E	50 50	1,765.0 2,048.4			0.023 0.030	793 20.574		
		2,048.4	MM-4	30	0.030	20,574	617	
292100E	50	•	MM-4					0.025
292100E	50	2,048.4 1,957.8	MM-4	30	0.030 0.016	20,574 6,361 38,430	617 102 958	0.025 0.015
292100E 292100E 292150E	50 50 50	2,048.4 1,957.8 2,028.8	MM-4 MM-4 MC-11	30 30 30	0.030 0.016 Totais 0.015	20,574 6,361 38,430	617 102 958	
292100E 292100E 292150E 292200E	50 50 50 50	2,048.4 1,957.8 2,028.8 1,920.1	MM-4 MM-4 MC-11 MC-11	30 30 30 10	0.030 0.016 Totais 0.015 0.020	20,574 6,361 38,430	617 102 958	
292100E 292100E 292150E 292200E 292200E	50 50 50 50 50	2,048.4 1,957.8 2,028.8 1,920.1 1,960.9	MM-4 MM-4 MC-11 MC-11 MC-11	30 30 30 10 20	0.030 0.016 Totais 0.015	20,574 6,361 38,430 18,848	617 102 958 283	
292100E 292100E 292150E 292200E	50 50 50 50	2,048.4 1,957.8 2,028.8 1,920.1 1,960.9 1,931.4	MM-4 MM-4 MC-11 MC-11	30 30 30 10	0.030 0.016 Totais 0.015 0.020	20,574 6,361 38,430 18,848	617 102 958 283 204	

•

292200E	50	2,079.1	M-4-60	20	0.018	7,770	140	
292200E	50	1,750.4	MC-7	20	0.029	5,239	152	
292200E	50	2,116.5	M-4-30	20	0.020	4,120	82	- -
292200E	50	1,942.7	MC-11	20	0.038	2,533	96	
292200E	50	2,092.0	M-4-60	20	0.027	2,086	56	
292200E	50	1,766.3	MC-7	20	0.020	2,039	41	
292200E	50	1,798.0	MC-7	30	0.015	24,278	364	
292200E	50	1,832.0	MC-7	30	0.015	7,810	117	
292200E	50	1,813.9	MC-7	30	0.018	6,957	125	
					Totals	98,149	2,440	0.025
292400E	100	1,672.1	MC-6	10	0.015	16,589	249	
292400E	100	1,658.4		10	0.015	4,595	69	
292400E	100	1,913.6		20	0.058	25,115	1,457	
292400E	100	1,722.3		20	0.047	24,312	1,143	
292400E	100	1,688.1		20	0.024	17,347	416	
292400E	100	1,704.0		20	0.024	6,763	176	
292400E	100	1,895.4		20	0.026	5,009	431	
292400E	100	1,736.0	MC-6	30	0.030	45,844	734	
292400E	100			30	0.015	24,499	368	
292400E	100	1,841.1	MC-6	30	0.019	22,798	433	
292400E	100	1,768.0		30	0.022	22,790	433	
292400E	100	1,859.3		30	0.022	18,726	300	
292400E	100	1,749.7	MC-6	30	0.025	16,910	423 ·	
292400E	100	1,877.6	MC-6	30	0.025	15,481	423 232	
	100	1,077.0	WIC-U	50	Totals	265,795	6,909	0.026
2025005	100	0 400 0		00	0.400			
	100	2,120.3		20	0.102	29,885	3,048	
292500E	100	2,146.8	MR-8	20	0.022	6,866	151	
292500E 292500E	100 100	2,146.8 2,161.0	MR-8 MR-8	20 20	0.022 0.021	6,866 6,816	151 143	
292500E 292500E 292500E	100 100 100	2,146.8 2,161.0 2,175.1	MR-8 MR-8 MR-8	20 20 20	0.022 0.021 0.055	6,866 6,816 6,516	151 143 358	
292500E 292500E 292500E 292500E	100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7	MR-8 MR-8 MR-8 MR-8	20 20 20 20	0.022 0.021 0.055 0.064	6,866 6,816 6,516 6,481	151 143 358 415	
292500E 292500E 292500E 292500E	100 100 100	2,146.8 2,161.0 2,175.1	MR-8 MR-8 MR-8	20 20 20	0.022 0.021 0.055 0.064 0.015	6,866 6,816 6,516 6,481 3,652	151 143 358 415 55	
292500E 292500E	100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7	MR-8 MR-8 MR-8 MR-8	20 20 20 20	0.022 0.021 0.055 0.064	6,866 6,816 6,516 6,481	151 143 358 415	0.069
292500E 292500E 292500E 292500E 292500E 292500E	100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4	MR-8 MR-8 MR-8 MR-8 MR-8	20 20 20 20 20	0.022 0.021 0.055 0.064 0.015	6,866 6,816 6,516 6,481 3,652	151 143 358 415 55	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E	100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9	20 20 20 20 20	0.022 0.021 0.055 0.064 0.015 Totals	6,866 6,816 6,516 6,481 3,652 60,216	151 143 358 415 55 4,170	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E	100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9	20 20 20 20 20	0.022 0.021 0.055 0.064 0.015 Totals 0.019	6,866 6,816 6,516 6,481 3,652 60,216 29,616	151 143 358 415 55 4,170 563	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E	100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5	20 20 20 20 20 20	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406	151 143 358 415 55 4,1 70 563 1,347	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E	100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-5	20 20 20 20 20 10 20	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187	151 143 358 415 55 4,170 563 1,347 581	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-5 MC-14	20 20 20 20 20 20 10 20 20 20	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974	151 143 358 415 55 4,170 563 1,347 581 1,055	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-5 MC-14	20 20 20 20 20 20 20 20 20 20 20	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.066	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6 1,929.7	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-5 MC-14 MC-14	20 20 20 20 20 20 20 20 20 20 20 20	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.044 0.066 0.058	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908 22,010	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512 1,277	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6 1,929.7 2,172.6	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-5 MC-14 MC-14 MR-9	20 20 20 20 20 20 20 20 20 20 20 20 20	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.044 0.066 0.058 0.015	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908 22,010 16,886	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512 1,277 253	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6 1,929.7 2,172.6 1,775.7	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-14 MC-14 MR-9 MC-5	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.066 0.058 0.015 0.053	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908 22,010 16,886 10,441	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512 1,277 253 553 163	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6 1,929.7 2,172.6 1,775.7 2,200.9	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-14 MR-9 MC-5 MR-9 MR-9	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.066 0.058 0.015 0.053 0.023 0.023 0.024	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908 22,010 16,886 10,441 7,079 4,351	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512 1,277 253 553 163 200	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6 1,929.7 2,172.6 1,775.7 2,200.9 2,186.7	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-14 MR-9 MC-5 MR-9 MR-9	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.044 0.066 0.058 0.015 0.053 0.023 0.023 0.046 0.036	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908 22,010 16,886 10,441 7,079 4,351 37,733	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512 1,277 253 553 163 200 1,358	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6 1,929.7 2,172.6 1,775.7 2,200.9 2,186.7 2,065.6	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-14 MR-9 MC-14 MR-9 MC-5 MR-9 MR-9 MC-14 MC-14	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.044 0.066 0.058 0.015 0.053 0.023 0.023 0.046 0.036 0.027	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908 22,010 16,886 10,441 7,079 4,351 37,733 26,305	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512 1,277 253 553 163 200 1,358 710	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6 1,929.7 2,172.6 1,775.7 2,200.9 2,186.7 2,065.6 1,898.1 2,011.2	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-14 MR-9 MC-5 MR-9 MR-9 MR-9 MC-14 MC-5 MC-14	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.044 0.066 0.058 0.015 0.053 0.023 0.046 0.036 0.027 0.016	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908 22,010 16,886 10,441 7,079 4,351 37,733 26,305 24,935	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512 1,277 253 553 163 200 1,358 710 399	0.069
292500E 292500E 292500E 292500E 292500E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E 292600E	100 100 100 100 100 100 100 100 100 100	2,146.8 2,161.0 2,175.1 2,132.7 2,189.3 1,893.4 2,080.7 1,793.9 1,759.9 1,911.6 1,929.7 2,172.6 1,775.7 2,200.9 2,186.7 2,065.6 1,898.1	MR-8 MR-8 MR-8 MR-8 MR-8 MC-14 MR-9 MC-5 MC-14 MC-14 MR-9 MC-5 MR-9 MC-5 MR-9 MC-14 MC-14 MC-14	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0.022 0.021 0.055 0.064 0.015 Totals 0.019 0.053 0.024 0.044 0.044 0.066 0.058 0.015 0.053 0.023 0.023 0.046 0.036 0.027	6,866 6,816 6,516 6,481 3,652 60,216 29,616 25,406 24,187 23,974 22,908 22,010 16,886 10,441 7,079 4,351 37,733 26,305	151 143 358 415 55 4,170 563 1,347 581 1,055 1,512 1,277 253 553 163 200 1,358 710	0.069

Мемо

To: Alan Founie
From: John W. Keller
Subject: Moss Project Polygonal Reserves and 1996 Drilling Summary
Date: May 22, 1996

Drilling was completed on the Moss Project in Mohave County, Arizona on March 27, 1996. A total of 30 reverse circulation holes succeeded in accomplishing the objectives of the program, which were to confirm the presence of cohesive ore-grade gold mineralization, fill gaps in previous drilling, extend the limits of the known higher grade zones down-dip, and defining the geometry of a major fault which defines the western boundary of the main known orebody. Additionally, several holes outside of the main zone give strong encouragement for significantly expanding the resource.

Following the completion of the drilling, a computer account with Chemex Labs was set up. This enabled downloading of all final assay data for Moss into the PC-XPLOR database immediately upon completion at the lab. I have included an instruction page for use of this computer service.

All lithology data was entered by into the database. Rock codes for use in PC-XPLOR are based partly on intensity and continuity of gold mineralization, so rock codes were modified based upon receipt of final assays.

Moss Project Rock Codes for use in GEMCOM applications:

- 20 Moss Vein: >50% quartz/calcite vein material. Also commonly includes densely silicified porphyry commonly found in place of open-space filling vein material, especially west of the Blind Boy Fault (just west of the shaft). The Moss Vein always has a clearly defined footwall in RC cuttings. The footwall is conspicuously less altered than rock even hundreds of feet into the hanging wall of the Moss vein. Only by penetrating the footwall is it possible to be certain that the vein is the actual Moss structure, and not a vein in the hanging wall.
- **30 Hanging Wall Vein Zone**: This unit is characterized by numerous high-angle veins and veinlets sub-parallel to the Moss Vein within the host Moss Porphyry. In cuttings, the zone is characterized by 5 50% vein material (locally to 80% when larger veins are intercepted obliquely). The porphyry is variably silicified and iron-oxide stained. To apply this rock code, there must also be cohesive grades of >.01 opt Au over approximately 30 ft or more, or several smaller cohesive zones.
- **10** Footwall: Much less alteration of the Moss Porphyry than in the hanging wall.

Alan Founie Page 2 May 22, 1996

44

Mineralogical texture easily discernible. Chloritic alteration only, with occasional semi-fresh biotite. Although weakly altered, quartz veinlets are locally common and contain ore-grade gold for a distance of up to 40 feet from the base of the Moss Vein. Vein material in cuttings is usually less than 5 %.

- 35 Distal Hanging Wall: Weakly to moderately altered Moss Porphyry with veinlet material generally 1 5% in cuttings. Occasional wide-spaced veins are present which contain ore grade gold, but grade is not cohesive for more than 10 20 feet along the drill hole. Some holes, especially to the west of the Blind Boy Fault had more abundant quartz vein material (5 to locally 40 % or more) with no significant ore intercepts and are included as this rock type.
- **90** Moss Porphry: Weakly altered with less than 1% quartz or calcite vein material and gold grades less than .004 opt over a long distance. Chloritized more pervasively in hanging wall rock than in footwall rock.
- 50 Faults: Cuttings usually contain some blue-grey or tan-orange clay gouge, and occasional slick surfaces on large fragments.
- 60 Rhyolite Dike: None seen in cuttings in the 1996 drill program. Seen on surface to be very hard, dense, light tan to light pink fine-grained matrix with glassy quartz phenocrysts up to 3 mm wide. Appears to shatter easily under tectonic stress and contains numerous qz-FeOx veinlets near its junction with the Moss Vein.
- Mine Dump: Near the Moss mine shaft. Several drill samples indicate it averages .075 0.125 opt Au. It is estimated to be approximately 5000 10,000 tons.

Survey data was entered when final surveys were received from the contractor. Surveys for old MC-series holes in the eastern portion of our drilled area were adjusted 20 to 40 feet to the east of their original database locations because of apparent errors in location as determined by the new survey of several of the old holes which were located on the ground. The digitized topographic map (made from aerial data) is also apparently flawed, since the old holes which were adjusted to the east are now not corresponding well to topography. The topo map is probably the cause of the drill hole survey errors. The old holes were likely surveyed by brunton and tape from prominent topographic points.

A lot of time was spent in a vain attempt to get the old pen plotter to work. Eventually, a good HP650c was rented. New cross section plots were made and new cross sectional geologic interpretations were put on the plots. All sections with new interpretations were then redigitized

Alan Founie Page 3 May 22, 1996

into Geomodel. Cross sectional polygonal reserve estimates were then run.

POLYGONAL RESOURCE ESTIMATES

Cross section polygonal reserves were calculated for both the "Main Area" and the entire project area at 50' 100' and 200' areas of influence. The 100' reserve was run twice, once using old underground and trench data, and once without. The results of these calculations are given in the accompanying table.

A limitation of the cross sectional reserve calculations is that no values are interpolated across section boundaries. Therefore, if any section has minimal drilling, it will not add much to the resource, even if the two adjoining sections have numerous high grade holes. This method is conservative if section spacing is close relative to overall drill hole density. Tight spacing is required to properly constrain the geologic model so grades are applied to the correct rock type in the Geomodel calculations. Cross section spacing at Moss varies, but in the main higher grade area it is at 50 ft. I made some deletions and additions of sections before final interpretation to account for sections lacking drill data.

It is my belief that a geostatistical method such as krieging will result in a significantly higher reserve calculation for the Moss Deposit than the polygonal reserve method.

Level plans were created at 10 ft. intervals and geology was interpolated to them from the cross sections. These plans were then geologically interpreted and digitized into geomodel. A polygonal reserve estimate was made utilizing the levels. These reserve estimates are even more conservative than the sectional reserve, since no grade values are applied up or down dip outside of the 10' level. A drill hole generally penetrates the vein along a fairly narrow vertical corridor, and that will be the only place where the grade and tons get applied. The estimate is included in the accompanying table, but keep in mind that it is unrealistically conservative. Typically, level plans are constructed after a block model has been created and grade-tons blocks have been interpolated between data points.

The level plans were quite useful, however, in displaying the geology of the deposit. The mineralized zone appears to be quite cohesive, with several displacements along high angle faults. The lateral displacements are on the order of 5 to 50 feet, possibly up to 100 feet at the major "Blind Boy" fault. This fault separates ore grade rock to the east from sub-ore grade material to the west, and the displacement is not a concern. The geometry of the Blind Boy Fault was determined to be N25W, 70NE. It occupies the gully to the west of the shaft.

Page 1

MOSS PROJECT, ARIZONA

SECTIONAL POLYGON RESERVE ESTIMATES

Polygons constrained by rock type 20 ft. composites within rock types 0.015 oz./ton Au cut-off grade Thickness limited by section width

						1996 est.	1995 est.		
				TONS	<u>Grade</u>	<u>OZ. Au</u>	<u>OZ. Au</u>	<u>grade</u>	<u>% increase</u>
All Sections	50 ft. Ra	ad.of i	nfluence:	3,786,933	0.040	152,311	122,746	0.042	24.10%
(290250E Thru 294950E)	100 ft.	11	**	6,238,240	0.037	229,422	185,332	0.039	23.80%
	200 ft.	11	11	8,832,461	0.033	294,629	240,273	0.037	22.60%
w/ no trench or u.g data	100 ft.	n	u	6,201,668	0.035	218,005	NA		
<u>Main Area Only</u>	50 ft. Ra	ad.of ii	nfluence:	3,031,077	0.043	129.903	NA		

Main Alea Only	<u>50 II. Re</u>	au.01 I	muence.	3,031,077	0.043	129,903	NA
(290800E thru 293300E)	100 ft.	11	11	4,719,410	0.040	187,678	NA
	200 ft.	11	11	6,363,621	0.036	232,074	NA

For 100 ft. Radius calculation (all sections, 1996)

ROCK TYPE	Tons	Au opt	Oz. Au
Moss Vein	2,390,202	0.053	126,345
Hanging Wall Vein Zone	2,291,098	0.030	68,887
Footwall Zone	493,112	0.022	10,820
Distal Hanging Wall	683,065	0.021	14,429
Moss Porphyry	159,070	0.019	2,945
Other Quartz Veins	25,741	0.027	685
Faults	14,905	0.026	393
Rhyolite Porphyry	170,702	0.023	3,926
Mine Dump	10,345	0.096	991
TOTAL (.015 cut-off):	6,238,240	0.037	229,422
Using .054 opt Au Cut-o \mathcal{F}	1,019,319	0.101	102,904

50 ft. Radius of influence(all sections, 1996)

ROCK TYPE	Tons	Grade	<u>Oz. Au</u>
Moss Vein	1,559,511	0.057	89,352
Hanging Wall Vein Zone	1,482,414	0.031	46,130
Footwall Zone	305,241	0.022	6,783
Distal Hanging Wall	304,299	0.021	6,433
Moss Porphyry	54,090	0.018	996
Other Quartz Veins	14,868	0.027	397
Faults	10,128	0.029	288
Rhyolite Porphyry	47,617	0.023	1,095 -
Mine Dump	8,765	0.095	835
TOTAL (.015 cut-off):	3,786,933	0.040	152,311
Using .053 opt Cut-off:	777,056	0.100	77,644

. •

LEVEL PLAN POLYGONAL RESERVE ESTIMATE

Grade from composites not projected beyond 10 ft. level boundaries. 1600 - 2350 levels

Levels digitized from 290,800 E to 293,500 E (corresponds to "Main Zone" of sectional reserves)

100 ft. area of influence (horizontal)

ROCK TYPE	TONS	AU OPT.	Oz. Au
Moss Vein	944,845	0.063	59,174
Hanging Wall Vein Zone	1,412,178	0.035	48,745
Footwall	195,848	0.035	6,835
Porphyry	86,050	0.018	1,583
Distal Hanging Wall	507,847	0.025	12,670
Rhyolite Dike	8,607	0.023	198
Mine Dump	11,268	0.064	726
TOTAL	3,166,643	0.041	129,930

TOTAL TONS BY LITHOLOGY ONLY

ROCK TYPE	Tons (Levels)	, Tons (Sections)
Moss Vein	3,453,664	7,908,083
Hanging Wall Vein Zone	6,438,506	12,932,309
Footwall	2,518,372	5,477,214
Mine Dump	11,884	10,345
TOTAL	12,422,427	26,327,951

CHEMEX COMPUTER ACCESS INSTRUCTIONS

- Run "HyperTerminal" application from your Windows 95 start menu (in Accessories)
- Follow the instructions to set up a connection. Once you set it up, the information is retained and you can click on your chosen icon for the connection.
- The computer link number is (604) 681-4531 to log on.
- Enter Addwest's username precisely: C_ADD_LSA
- Enter Addwest's password: BIGPIT

۰. •

- The menu should then come up on the screen. Choose "2" to download assay files.
- Choose "2" for ZMODEM file tranfer protocol.
- The file will be downloaded to the c:\program files\accessories\hyper terminal directory automatically, unless you specify otherwise.
- Unzip the file with Pkunzip (any version later than 1.1)

If you have any problems, call John Keller or Nerissa Parto at Chemex. Phone: (604) 984-0221

INSTRUCTIONS FOR ADDWEST'S NUMONICS DIGITIZER

(For use on the MicroSys 486 machine)

- For future reference, to configure the digitizer for Gemcom software you must configure the digitizer as follows (from the Configure Digitizer menu in Gemcom):

Digitizer Make/Model: User Defined

Length of Format: 21 Length of X = 9Length of Y = 9Start of X = 2Start of Y = 12ASCII Value = 10

۰. •

General Definition

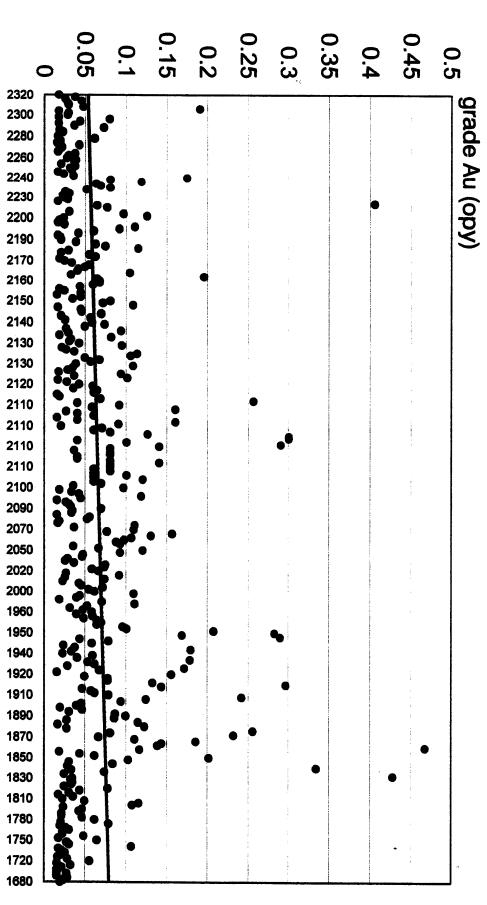
Minimum X = 0Minimum Y = 0Maximum X = 36Maximum Y = 24Resolution = 1

Communications

Com 1 9600 Baud Even Parity 7 data bits 1 stop bit protocol off

DIGITIZING

- 1. Plug cable into Com 1. Normally, the mouse is attached, so you must disconnect it.
- 2. Turn computer on.
- 3. Re-start computer in DOS mode (from shut-down menu only; digitizing will not work in the dos shell environment. Windows 95 must be off) You can avoid getting into Win 95 by hitting F8 as when you see "starting Windows 95" as the machine is booting. Then choose option 6 to get a DOS prompt.
- 4. Turn digitizer on.
- 5. Hit a number key on the digitizer's "mouse" pad to initialize the digitizer.
- 6. Begin digitizing in Gemcom.


Grade vs Easting

Grades in Moss Vein Only, from polygons

grade Au (opy)

Grade vs Elevation

elevation of polygon

Grades in Moss Vein Only, from polygons

STATE OF ARIZONA

Date

Mine Moss Mine

DistrictSan Francisco List. Mohave Co

December 19, 1957

Engineer Lewis A. Smith

Subject: Visit to the Property

Location:

Sec. 13, T 20 N, R 21 W, 7 miles NW of Oatman and 2 miles north of Silver Creek.

Owners:

W. H. Hittson and James McCarthy, Oatman, Arizona

Production: Reported to be about \$240,000 from near the surface.

Work:

The Moss Vein was developed by a 230' shaft, around 750' of workings, 900' of tunnel and several irregular surface openings. Ransone states that the vein, on the 220 level, appeared to be 90 feet wide and, as a whole, probably carries from 0.15 to 0.20 oz of gold per ton. The vein strikes from N 78°W to N 85°W and dips 70°S and lies in what appears to be quartz-monzonite porphyry. The width varies from 20 to 100' wide, the widest part being in the west portion and is traceable for over a mile to the east of the mine and the vein fracture istraceable for some distance to the west.

The vein filling consists of fine grained quartz, calcite, cut by stringers and clusters of pale green fluorite. Sulphides appear to be marcasite and cupriferous pyrite (or miner chalcopyrite). The gold values are mainly in limonitic, or hematitic blebs and stringers, or are associated, deeper, with sulphides. The Moss carries more silver than most of the Oatman ores. The largest ore shoot extended to a depth of 65 feet, lying entirely in oxidized material.

This shoot generally is located where a N-S multiple shear zone crosses the vein. Here as at the Hardy, small rich shoots project out past the vein into the country rock. These shoots were reported to have been much richer than the average grade of the main vein. This shear was prospected, to the south, by shallow pits & cuts, and this highly iron stained zone locally contained areas of material which may exceed \$3.00 per ton.

Choster Mielen repts. 9/13/73 - dulled 70' y. 04 opt Au

check Kingon Minny Project

ADDWEST MINERALS, INC.

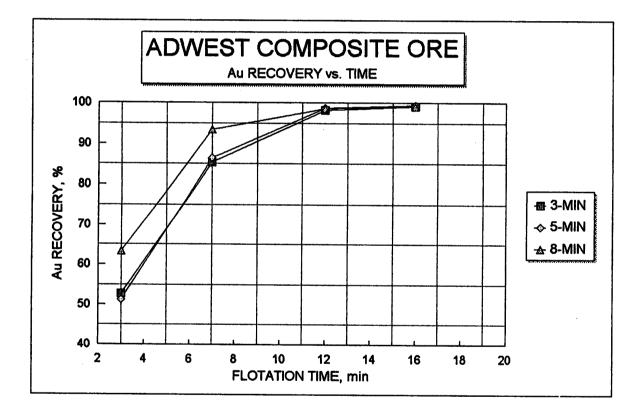
			MOSS PF Drilling - 1		4/5/96	High Grade Interval			
Hole #		T.D Feet	Interval	Thickness	Ore Zone Grade	Hole #	Interval	Thickness	Ore Zone Grade
M96-1		123	0-75	75	0.058	M96-1	20-65	45	0.082
M96-2		250	0-135	135	0.033	M96-2	100-135	35	0.061
M96-3		300	45-225	180	0.029	M96-3	155-215	60	0.062
M96-4		300	0-80	80	0.016	M96-4	0-55	55	0.019
M96-5		340	15-135	120	0.017	M96-5	15-35	20	0.034
M96-6		180	0-105	105	0.043	M96-6	10-45	35	0.073
M96-7		200	0-105	105	0.085	M96-7	0-65	65	0.128
M96-8		165	0-80	80	0.037	M96-8	0-65	65	0.043
M96-9	(Holes 9 thru 13 Are	85	0-25	25	0.011	M96-9	5-10	5	0.029
M96-10	Outside of the Known	435	95-130	35	0.010	M96-10			
1	Mineralized Area,		205-220	15	0.026		205-220	15	0.026
M96-11	They all Contain	300	60-150	90	0.011	M96-11	60-150	90	0.011
M96-12	Intermittant Low Grade	385	275-285	10	0.028	M96-12	275-285	285	0.028
M96-13	[.01X03X] 5 ft Zones)	245	90-115	25	0.015	M96-13	90-115	25	0.015
M96-14		265	100-225	125	0.040	M96-14	145-205	60	0.068
M96-15		425	155-395	240	0.048	M96-15	285-380	95	0.068
M96-16		440	245-385	140	0.042	M96-16	350-385	35	0.060
M96-17		560	305-495	190	0.034	M96-17	345-380	35	0.096
M96-18		205	5-145	140	0.042	M96-18	75-145	70	0.064
M96-19		205	25-65	40	0.018	M96-19	30-55	25	0.021
M96-20		100	0-55	55	0.024	M96-20	10-35	25	0.034
M96-21		120	0-100	100	0.024	M96-21	0-15	15	0.040
M96-22		150	0-110	110	0.036	M96-22	75-100	25	0.079
M96-23		525	365-495	130	0.016	M96-23	395-410	15	0.037
			225-230	5	0.034				
			330-345	15	0.013				
M96-24		385	140-150	10	0.049	M96-24	295-325	30	0.081
			275-355	80	0.040				
M96-25		202	165-190	25	0.057	M96-25	170-190	20	0.066
M96-26		345	195-330	135	0.021	M96-26	270-305	35	0.037
M96-27		235	165-230	65	0.024	M96-27	175-195	20	0.056
M96-28		325	190-275	85	0.085	M96-28	220-255	35	0.152
M96-29		200	130-185	55	0.045	M96-29	135-155	20	0.102
			55-65	10	0.018				
M96-30		225	190-205	15	0.029	M96-30	190-205	15	0.029
Total Foo	tage:	8220							
	To Date)								
	OOTAGE DR		B 220 ft						

SURVEY 4-930827-4-0827 Reg. to: CARLTON-SHUMWAY-NIELSON & ASSUC. File Name: C:\SIMPLCTY\SURVEYS\921.DAT

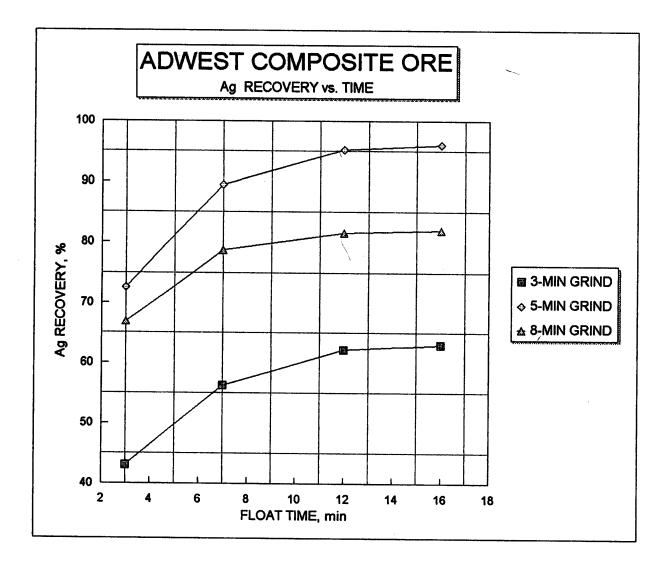
.

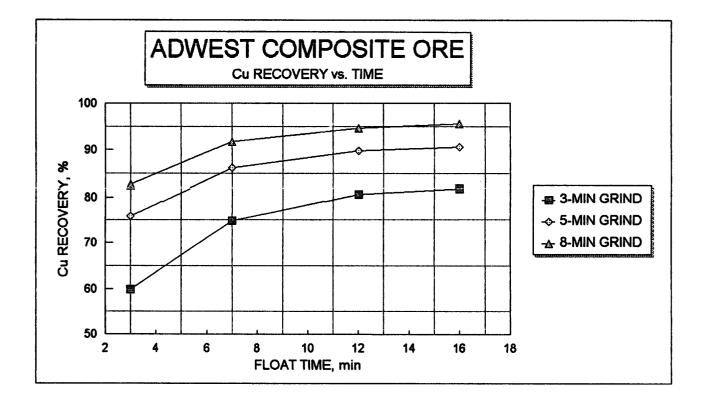
Page 1

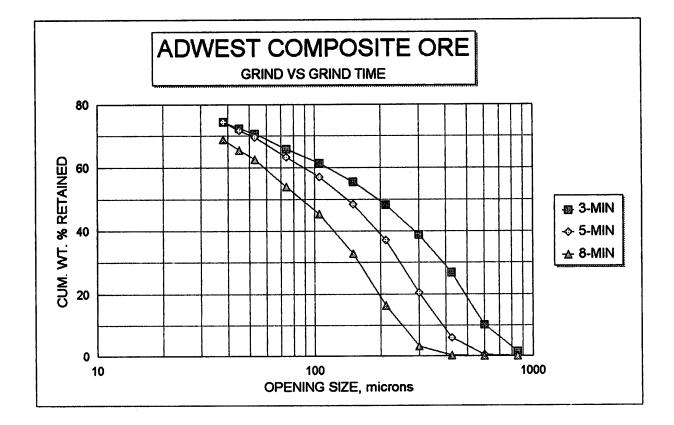
JOD: DRILL HOLE LOCATION AND MINERAL SURVEY RETRACEMENT OF THE MOSS MINE LOCATED IN SECTION 19, T20N, R20W NOTES IN BOOK 89


JSC By:

Point	Direction	Distance	Northing	Easting	Elevation
List			· · · · · · · · · · · · · · · · · · ·		
300			1492300.00000	207150 00000	· · · · · · · · · · · · · · · · · · ·
1	M96-1		1492274.20538	293150.00000 291651.79679	0.00
2	M96-2		1492264.60282	291652.07205	2166.17
			1972209.00202	271002.0720p	2165.63
3	M96-3		1492232.79014	291706.84267	2168.75
4	M96-4		1492179.51371	291656.60012	2153.05
5	M96-5		1492135.27576	291710.10976	2149.33
6	M96-6		1492314.29703	291608.65174	2166.87
7	M96-7		1492263.10306	291605.12307	2165.27
8	M96-8		1492272.91280	291552.37034	2166.45
9	M96-9		1492289.40680	291512.40421	01// /0
10	M96-10		1492104,93380	291641.69907	2166.62
11	M96-11		1492147.20106	291609.38550	2164.43
			T43%T41 * %OTOD	XAT00A*99920	2166.43
12	M96-12 SET FK	•	1492084,17630	291486.89010	2240.33
.13	M96-13		1492218.43183	291458,45103	2179.83
14	M96-14		1492116.09834	291819.49318	2147.54
15	M96-15		1492108,26046	291819.73731	2146.82
16	M96-16		1492018.66637	291868.33163	2143.47
17	M96-17		1491948.16520	291921.06413	2140.64
18	M96-18		1. 6000 1. 11 1. 11 1. 1. 1.		
19	M96-19		1492158.74645	291912.97415	2158.72
20	M96-20		1492132.06931	292114.23401	21.47.94
			1492245.85788	292122.46801	2201.66
21	M96-21		1492248.53600	292067.15553	2204.00
22	M96-22		1492249.08816	292013.82207	2201.26
23	M96-23		1491901.87116	292024.46115	2135.37
24	M96-24		1491920.92328	292329.86670	0117 17
25	M96-25		1492047.50760	292335.74857	2113.13 2131.43
26	M96-26		1491859.32956	292534.56979	2111.05
27	M96-27		14010// / ******		
28	M96-28 SET PK		1491966.68173	292530.23875	2129.56
29	M96-29		1491792.35782	293104.40789	2092.89
~ ~ ~			1491873.74169	293041.82805	2084.48
30	M96-30		1491875.11125	292939.63507	2088.03
31	CNTR MOSS MINE SHAFT		1492305.86085	291592.51548	2167.91
32	COR.2 KEYSTONE WEDGE	MS4484	1492105.72975	291549.34986	2178.73
33	COR.4 KEYSTONE WEDGE	MS 4484	1491726.50422	202110 47/75	2000
	· · · · · · · · · · · · · · · · · · ·	ан на н	man = 1 ≠ des 1 de la las ys and hat the des des	293119.43675	2092.23


÷


÷ . .



.

RESOURCE DEVELOPMENT INC.

MATERIAL BALANCE CALCULATIONS

PAGE 1

ADWEST MINERALS COMPOSITE CUBIC FOOT GRIND 3 MINUTES

18-Apr-96

INPUT DATA

	WEIGHT					
	(GMS)	AU	AG	CU	AS	
CON 1	318.6	59.800		2.412	8.650	
CON 2	322.2	36.500	99.000	0.597	9.430	
CON 3	286.7	16.100	49.000	0.260	7.300	
CON 4	105.3	3.530	18.000			
TAILS	8967.2	0.035	10.000	0.026		
TOTAL	10000.0					
CALC HEAD		3.611	24.170	0.128	1,150	
ASSAY HEAD		5.000	25.000	0.146	1.870	
PCT DIFF		27.8		12.1		
PERCENT DIST						
CON 1 Con 2	3.19	52./6	43.10	59.85	23.96 26.41 18.19	
CON 2 CON 3	3.22	32.50	13.20	14.98	26.41	
		12.78		5.81	18.19	
CON 4			0.78			
TAILS TOTAL			37.10			
IVIAL	100.00	100.00	100.00	100.00	100.00	
CUMULATIVE P						
CON 1			43.10	20 02	22 06	
CON 2		85.32	56.30	74 QA	23.30 50 27	
CON 3			62.11			
CON 4			62.90			
TAILS	100.00	100.00	100.00	100.00	100.00	
CUMULATIVE AS						
CON 1			327.000			
CON 2		48.085				
CON 3		38.198	161.863	1.116		
CON 4		34.663	147.196	1.017	7.752	
TAILS		3.611	24.170	0.128	1.150	
CUMULATIVE AS	SAY IN TAIL	S				
		=======				

CON 1	9681.4	1.762	14.204	0.053	0.904		

MATERIAL BALANCE CALCULATIONS

PAGE 1

ADWEST MINERALS

COMPOSITE FLOTATION TEST CUBIC FOOT 5 MIN GRIND

18-Apr-96

.

.

INPUT DATA

.....

	WEIGHT				
	(GMS)	AU	AG	CU	AS
CON 1	448.6	49.500	295.000	2.344	8.120
CON 2	446.4	34.100	69.000	0.321	9.850
CON 3	272.0	19.600	38.000	0.182	6.770
CON 4	133.6	1.870	11.000	0.085	0.640
TAILS	8699.4	0.035	0.850	0.015	0.070
TOTAL	10000.0				
CALC HEAD		4.331	18.234	0.139	1.058
ASSAY HEAD		5.000	25.000	0.146	1.870
PCT DIFF		13.4	27.1	5.1	43.4
PERCENT DIST					
======================================				75 00	
CON 1 CON 2	4.49	51.27	72.58	75.86	34.44
CON 2 CON 3	4.46	35.14	16.89	10.34	41.58
CON 3 CON 4	2.72	12.31	5.67	3.57	17.41
TAILS	1.34 86.99	0.58	0.81	0.82	0.81
TOTAL	100.00	0.70 100.00	4.06 100.00	9.41 100.00	5.76 100.00
			100.00	100.00	100.00
CUMULATIVE P					
CON 1	4.49	51.27	72.58	75.86	34.44
CON 2	8.95	86.41	89.47	86.20	76.02
CON 3	11.67	98.72	95.14	89.77	93.43
CON 4	13.01	99.30	95.94	90.59	94.24
TAILS	100.00	100.00	100.00	100.00	100.00
CUMULATIVE A					
CON 1		49.500		2.344	8.120
CON 2		41.819		1.335	8.983
CON 3		36.640		1.066	8.467
CON 4		33.069		0.965	7.663
TAILS		4.331	18.234	0.139	1.058
CUMULATIVE A					
CON 1	9551.4	2.210	5.235	0.035	0.726

RESOURCE DEVELOPMENT INC.

MATERIAL BALANCE CALCULATIONS

PAGE 1

= 1000

ADWEST MINERALS COMPOSITE FLOTATION TEST CUBIC FOOT 8 MIN GRIND

18-Apr-96

.

THRUT DATA

INPUT DATA					
222222222					
	WEIGHT				
	(GMS)	AU	AG	CU	AS
CON 1	437.6	52.000	298.000	2.292	8.220
CON 2	420.6	25.700	55.000	0.261	9.910
CON 3	259.4	7.130	21.000	0.140	3.150
CON 4	64.7	3.330	15.000	0.175	1.740
TAILS	8817.7	0.035	4.000	0.006	0.040
TOTAL	10000.0				
CALC HEAD		3.594	19.523	0.121	0.905
ASSAY HEAD		5.000	25.000	0.146	1.870
PCT DIFF		28.1	21.9	16.9	51.6

PERCENT DISTRIBUTION

222222222222	========================	=======			
CON 1	4.38	63.32	66.80	82.67	39.76
CON 2	4.21	30.08	11.85	9.05	46.07
CON 3	2.59	5.15	2.79	2.99	9.03
CON 4	0.65	0.60	0.50	0.93	1.24
TAILS	88.18	0.86	18.07	4.36	3,90
TOTAL	100.00	100.00	100.00	100.00	100.00

CUMULATIVE PERCENT DISTRIBUTION

2222222222		=======			
CON 1	4.38	63.32	66.80	82.67	39.76
CON 2	8.58	93.40	78.65	91.71	85.83
CON 3	11.18	98.54	81.44	94.71	94.86
CON 4	11.82	99.14	81.93	95.64	96.10
TAILS	100.00	100.00	100.00	100.00	100.00

CUMULATIVE ASSAY IN CONCENTRATE

CON 1	52.000	298.000	2.292	8.220		
CON 2	39.110	178.907	1.297	9.048		
CON 3	31.688	142.256	1.028	7.679		
CON 4	30.136	135.292	0.981	7.354		
TAILS	3.594	19.523	0.121	0.905		

CUMULATIVE ASSAY IN TAILS

**********	2222222222222	======			
CON 1	9562.4	1.379	6.779	0.022	0.570

RESOURCE DEVELOPMENT INC.

MATERIAL BALANCE CALCULATIONS

PAGE 1

ADWEST MINERALS Composite LAB Floats Grind P80 65

18-Apr-96

4

. .

INPUT DATA

	WEIGHT						
	(GMS)	AU	AG	CU	AS		
CON 1	37.0	85.900	349.000				
CON 2	43.6	27.600	101.000		9.340		
CON 3	24.3		38.000		4.640		
CON 4	28.1	3.270	15.000				
TAILS	860.9		4.700	0.019			
TOTAL	993.9			• • • • •			
CALC HEAD		5.540	22.847	0.140	1.001		
ASSAY HEAD		5.000		0.146			
PCT DIFF		-10.8	8.6	4.0	46.5		
			0.0	TIV	4V.J		
PERCENT DISTR	IBUTION						
=========================			1				
CON 1	3.72		56.87	66.69	31.17		
CON 2	4.39	21.86		16.05			
CON 3	2.44	4.21	4.07	3.26	11.33		
CON 4	2.83	1.67		2.26	3.59		
TAILS	86.62			11.74	12.98		
TOTAL		100.00					
		100.00	100.00	100.00	100.00		
CUMULATIVE PE	RCENT DIST	REPUTION					
=======================================							
CON 1	3.72		56.87	66 60	31.17		
	8.11		76.26		72.10		
CON 2 CON 3	10.55	83.79	80.33	86.00	83.43		
CON 4	13.38		82.18		87.02		
TAILS	100.00		100.00				
				100.00	100.00		
CUMULATIVE AS	SAY IN CONC	ENTRATE					
222222222222222							
CON 1			349.000	2 512	8.380		
CON 2			214.846	1.431	8.899		
CON 3			173.880	1.143	7.913		
CON 4			140.312	0.925	6.509		
TAILS			22.847	0.140	1.001		
		J.J4V	66.041	V.14U	1.001		
CUMULATIVE ASSAY IN TAILS							
CON 1	956.9		10.236	0.049	0.716		
	29013	6,4JC	10.230	0.043	V./10		

Job: DRILL HOLE LOCATION AND MINERAL SURVEY RETRACEMENT OF THE MOSS MINE LOCATED IN SECTION 19, T20N, R20W NOTES IN BOOK 89

By: JSC

.

Point	Direction D)istance	Northing	Easting	Elevation
Ϋ́Λ	COR.1 DIVIDE=COR.1 OME	004494	1491861.36563	291584.73843	2193.11
34 35	COR.1 KEYSTONE WEDGE M		1491511.33312	291.635.42975	
ALC: NOT					
36	CP MOSS-1		1491958.06322	291975.13565	
37	CP HEAD FRAME MOTOR PA		1492317.48023	291514.58901	2167.52
38	THEO COR.2 DIVIDE 4484	1	1491859.74579	290656.63985	0.00
39	THEO COR.4 OMEGA=COR.4	MOSSMI	1491858.74764	290084.74072	0.00
40	THEO COR.3 MOSS MILLSI		1492112.60271	289383.47384	0.00
41	M-1-60 EXISTING DH		1492242.00009	291899,99965	2197.41
42	MR-2 EXISTING DH		1492250.86309	291963.77980	2197.07
43	THEO COR.2 KEY#2 & MOS	S MILL	1492672.25057	289302.32876	
44	THEO COR.3 KEY#2		1493257.64793	289433.89593	0,00
45	MR-5 EXISTING DH		1492255.13904	291826,08607	2206.17
46	THEO COR.4 KEY#2=COR.3		1492726.48573	290747.46828	0.00
47	MC-7 EXISTING DH	ar e seval i frage	1491916.25663	292160.91992	2121.54
48	MC-8 EXISTING DH		1491725.58737	292954.99525	2084.94
49	THEO C1MM, C1K2, C4K1, C3	3D 4484	1492141.08836	290615,90111	0.00
50	THEO C2 KEY#1		1492539.35169	292235.74946	
51	MC-11 EXISTING DH		1492038,12881	292185.03354	2123.88
52	THEO C1 KEY#1=C2 CALIP	- MOSS	1491953.95432	292104.18228	
53	THEO USLM NO. 1		1491958.94478	291972.27665	0.00
54	THEO COR.V CALIF.MOSS	MS182	1492524.94758	292241.60813	0.00
55	THEO 5.1/4 SEC.19		1491763.32787	291425.38032	
56	THEO COR 3 KEYSTONE WE	EDGE	1492320,90053	293033,35695	0.00
57	THEO COR.111 CALIF.MOS	5SMS182	1491646.56495	293558.65515	0.00
58	THEO COR IV CALIF.MOSS		1492217.55600	293696,08936	
59	THEO COR.1 RUTH EXT.MS	54485	1491396.30927	294582.64258	
60	THEO SEC SEC.19		1491753.26249	294067.77692	2092.23
					£

File: 921.DAT Session terminated at 2:09 PM on 05-01-1996

PROPOSED DRILLING PROGRAM

Addwest Minerals, Inc.

For Fall, 1996

MOSS PROJECT, ARIZONA

Holes previously planned, not yet drilled.

Temp. Hole No	Depth	Bearing	Angle	Northing	Easting	Legal Description
MP-11	150	0	-45	1,492,250	291,700	same as above
MP-12	140	0	-45	1,492,250	291,700	same as above
MP-17 (CORE)	100	0	-60	1,492,320	291,850	same as above
MP-35	180	0	-50	1,492,060	292,540	same as above
MP-38	280	0	-50	1,492,000	292,650	same as above
MP-39	180	0	-50	1,492,000	292,750	same as above
MP-41	170	0	-60	1,491,960	292,800	SW, SE, SE, SEC. 19, T20N, R20W
MP-47 (CORE)	350	0	-70	1,492,143	291,350	SE,SE,SW, SEC. 19, T20N, R20W
MP-48	520	0	-70	1,492,033	291,250	same as above
MP-49 (CORE)	220	0	-60	1,492,400	291,150	same as above
MP-50	، 320		VERT	1,492,276	291,150	same as above
MP-51	200	0	-50	1,492,276	291,150	same as above
MP-52 (CORE)	360	0	-60	1,492,387	291,039	same as above
MP-53	260	0	-60	1,492,292	291,050	same as above
MP-54	500	0	-60	1,492,300	290,950	same as above
MP-56	240	0	-50	1,491,787	293,300	SW, SE, SE, SEC. 19, T20N, R20W
MP-57 (CORE)	390	0	-60	1,491,700	293,460	NE, NE, NE, SEC. 30, T20N, R20E
MP-58	280	0	-60	1,491,715	293,990	NE, NE, NE, SEC. 30, T20N, R20E
MP-59	320	0	-60	1,491,695	293,810	NE, NE, NE, SEC. 30, T20N, R20E
MP-60	300	00	-60	1,491,827	294,190	SW, SW, SW, SEC. 20, T20N, R20E

New Proposed Holes

Temp. Hole No	Depth	Bearing	Angle	Northing	Easting	Legal Description
P-1	420	0	-75	1,492,160	291,780	
P-2	220	0	-45	1,492,210	291,780	
P-3	220	0	-45	1,492,200	291,865	
P-4	260	0	-45	1,492,100	291,970	
P-5	500		-90	1,492,100	291,970	
P-6	210	0	-45	1,492,140	292,055	
P-7	350		-90	1,492,140	292,055	
P-8	210	0	-45	1,492,075	292,275	
P-9	480	0	-65	1,491,855	292,275	
P-10	620	0	-60	1,491,700	292,350	
P-11	160	0	-45	1,492,150	292,275	

Prepared by ADDWEST MINERALS, INC. 5/22/96

Temp. Hole No	Depth	Bearing	Angle	Northing	Easting	Legal Description
P-12	200	0	-65	1,492,100	292,450	
P-13	520	5	-65	1,491,700	292,500	
P-14	410	0	-60	1,491,900	292,460	
P-15	310	0	-50	1,491,900	293,000	
P-16	340	0	-65	1,491,800	293,050	
P-17	225	0	-50	1,491,885	293,110	
P-18	480	0	-50	1,491,680	293,100	
P-19	570	0	-75	1,491,680	293,100	······································
P-20	330	0	-50	1,491,800	293,200	
P-21	500		-90	1,491,785	293,300	

Total Footage: 12,995

COMMENTS: MP-47 thru MP-54 are located west of the Blind Boy Fault and are considered the lowest priority of these proposed holes.

The deepest hole listed is 620 ft. In the event a more powerful RC rig is contracted, or a core rig in addition to an RC rig, one or more deep holes should be planned to test the Moss - Ruth intersection.

•

	AMPLES ONLY
ť · ,	
Addwest Minerals, Inc. : GEMCOM Services PCX_404: DB=C:\P	Arvada Office : XDBMP\REPORTS :
Extraction File : C:\PXDBMP\EXTRACT\ Data Description : rock type 30 (han	30AU_ALL.MEX ging wall vein zone) stats - no cut-off
Minimum Cutoff Value Maximum Cutoff Value Number of Samples <=0	0.001000 0.595100 0
Total Number of Samples Used	1472
Minimum Histogram Value Maximum Histogram Value Number of Class	0.001000 0.595100 30
Class Interval	0.019800
Minimum Population Data point Maximum Population Data point Total Population	0.001000 0.595000 1472
	Ungrouped Data Grouped Data
Median Geometric Mean Natural LOG Mean Standard Deviation Variance Log Variance Coefficient of Variation Moment 1 about Arithmetic Mean	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Moment 2 about Arithmetic Mean Moment 3 about Arithmetic Mean Moment 4 about Arithmetic Mean Moment Coefficient of Skewness Moment Coefficient of Kurtosis	0.000913 0.000881 0.000215 0.000207 0.000092 0.000086 109.771707 111.032089 7.773892 7.921231

•

•

۰.

	and shimes and	
Addwest Minerals, Inc. GEMCOM Services PCX_404: DE	: Arv B=C:\PXDBMP\REPORTS	vada Office : :
Extraction File : C:\PXDBMP\EXT Data Description : Au stats for		n - no cut-off
Minimum Cutoff Value Maximum Cutoff Value Number of Samples <=0 Total Number of Samples Used	0.002000 0.650000 0 658	
Minimum Histogram Value Maximum Histogram Value Number of Class Class Interval	0.002000 0.650000 30 0.021600	
Minimum Population Data point Maximum Population Data point Total Population	0.002000 0.650000 658	
Mean Median Geometric Mean Natural LOG Mean Standard Deviation Variance Log Variance Coefficient of Variation Moment 1 about Arithmetic Mean Moment 2 about Arithmetic Mean Moment 3 about Arithmetic Mean Moment 4 about Arithmetic Mean Moment 6 Skewness Moment Coefficient of Skewness	-3.268764 0.065107 0.004239 0.972397 1.096926 0.000000 0.004239 0.001053 0.000478	0.059217 0.041046 0.039250 -3.237801 0.064819 0.004201 0.808640 1.094594 0.000000 0.004201

. .

- -

۹	DRILL SAMPL	ES ONLY
Addwest Minerals, Inc. : GEMCOM Services PCX_404: DB=C:\P2	KDBMP\REPORTS	Arvada Office :
Extraction File : C:\PXDBMP\EXTRACT\ Data Description : Hanging wall vein	30 MAIN.MEX	
Minimum Cutoff Value Maximum Cutoff Value Number of Samples <=0 Total Number of Samples Used	0.001000 0.595100 0 1022	
Minimum Histogram Value Maximum Histogram Value Number of Class Class Interval	0.001000 0.595100 30 0.019800	
Minimum Population Data point Maximum Population Data point Total Population	0.001000 0.595000 1022	
Mean Median Geometric Mean Natural LOG Mean Standard Deviation Variance Log Variance Coefficient of Variation Moment 1 about Arithmetic Mean Moment 2 about Arithmetic Mean Moment 3 about Arithmetic Mean Moment 4 about Arithmetic Mean Moment Coefficient of Skewness Moment Coefficient of Kurtosis	N/A 0.014879 -4.207814 0.034763 0.001208 0.936741 1.437553 0.000000 0.001208 0.000298 0.000129 88.027585	0.025198 0.016377 0.017736 -4.032155 0.034245 0.001173 0.519178 1.359032

96	LVL	. 1

· . -- 4

Ł

•

	Α	В	С	D	E	F	G	Н	I			
1	1996 LE\	/EL PLAN	POLYGONA	L RESERVI	ESTIMATE			05/20/96				
2	10 FT. lev	vels										
3	Moss Pro	ject Arizon	а									
4	.015 opt Au cut-off											
5												
6												
7	Level	Poly ID	Rock Code	Hole-ID	Easting	Northing	opt Au	Tons	Oz. Au			
	2350lv	9	30	M-9-45	290,979.9	1,492,418.5	0.020	2,672	53			
	2340lv	7	30	M-9-45	290,978.3	1,492,423.7	0.032	346	11			
	2340lv	10	30	M-8-30	290,935.3	1,492,408.4	0.022	5,316	117			
	2340lv	12	30	M-9-30	290,977.0	1,492,427.9	0.041	2,125	87			
12	2330lv	7	30	M-9-60	290,977.3	1,492,426.8	0.021	1,374	29			
13	2330lv	9	30	M-10-30	291,014.0	1,492,435.7	0.050	2,596	130			
	2330lv	10	30	M-10-45	291,014.0	1,492,432.0	0.095	161	15			
	2330lv	11	30	M-10-60	291,014.0	1,492,429.9	0.047	1,215	57			
	2330lv	14	30	M-8-30	290,932.3	1,492,425.4	0.030	3,648	109			
	2330lv	15	30	M-8-45	290,934.7	1,492,411.7	0.016	1,175	19			
and the second second	2330lv	16	30	M-9-45	290,975.3	1,492,433.3	0.043	188	8			
	2320lv	8	30	M-10-60	291,014.0	1,492,435.7	0.089		250			
	2320lv	10	30	M-11-60	291,067.8	1,492,425.9	0.017	615	11			
	2320lv	11	30	M-11-30	291,067.3	1,492,431.6	0.020	2,829	57			
22	2320lv	14	20	M-9-45	290,972.4	1,492,442.9	0.017	541	9			
	2320lv	15	' 20	M-9-60	290,975.6	1,492,432.4	0.037	266	10			
	2320lv	17	20	M-10-30	291,014.0	1,492,453.0	0.025	3,681	92			
	2320lv	19	30	M-8-45	290,933.0	1,492,421.6	0.028	3,212	90			
	2320lv	20	30	M-10-45	291,014.0	1,492,442.0	0.106	479	51			
27	2310lv	7	30	M-11-60	291,067.3	1,492,431.6	0.016	1,317	21			
	2310lv	18	20	M-8-45	290,931.2	1,492,431.4	0.045	3,345	151			
	2310lv	19	20	M-9-60	290,973.9	1,492,437.9	0.028	724	20			
-	2310lv	20	20	M-8-60	290,934.1	1,492,415.2	0.029	355	10			
_	2310lv	24	20	M-10-45	291,014.0	1,492,452.0	0.047	707	33			
	2310lv	25	20	M-10-60	291,014.0	1,492,441.4	0.190		50			
	2310lv	26	30	M-11-30	291,065.7	1,492,448.9	0.023	1,107	26			
	2310lv	27	30	M-11-45	291,066.7	1,492,437.9	0.049					
	2310lv	28	30	M-16-45	291,023.1	1,492,376.9	0.021	49	1			
	2300lv	16	20	M-8-45	290,929.5	1,492,441.3	0.017	3,625	62			
	2300lv	17	20	M-9-60	290,972.2	1,492,443.4	0.029	1,254	36			
	2300lv	18	20	M-8-60	290,933.1	1,492,420.9	0.028					
	2300lv	20	20	M-10-45	291,014.0	1,492,462.0	0.017	772	13			
1	2300lv	21	20	M-10-60	291,014.0	1,492,447.2	0.079	769	61			
-	2300lv	22	20	M-11-30	291,064.2	1,492,466.1	0.043	3,635	156			
	2300lv	23	30	M-11-45	291,065.8	1,492,447.9	0.059	640	38			
-	2300lv	24	30	M-11-60	291,066.7	1,492,437.4	0.022	1,537	34			
and the second se	2300lv	25	30	M-17-45	291,037.1	1,492,398.9	0.034	854				
45	2290lv	6	30	M-12-30	291,122.0	1,492,440.4	0.020	865	17			
46	2290lv	7	30	M-12-45	291,122.4	1,492,428.0	0.018	645	12			
_	2290lv	9	30	M-17-60	291,037.0	1,492,399.6	0.020	1,712	34			
48	2290lv	18	20	M-8-60	290,932.1	1,492,426.6	0.017	5,094	87			

з.

	A	В	С	D	E	F	G	H	1
49	2290lv	19	20	M-10-60	291,014.0	1,492,453.0	0.036	2,013	73
50	2290lv	21	20	M-11-45	291,065.0	1,492,457.9	0.072	2,264	163
51	2290lv	22	30	M-11-60	291,066.2	1,492,443.1	0.019	1,485	28
52	2290lv	23	30	M-17-45	291,035.6	1,492,408.7	0.030	693	21
53	2290lv	24	30	M-15-30	290,982.6	1,492,404.2	0.030	2,696	81
54	2280lv	4	20	M-12-30	291,121.4	1,492,457.7	0.061	2,615	160
55	2280lv	12	20	M-15-30	290,977.3	1,492,420.7	0.018	1,593	29
56	2280lv	13	20	M-10-60	291,014.0	1,492,458.8	0.022	851	19
57	2280lv	15	20	M-16-30	291,012.4	1,492,431.5	0.018	735	13
58	2280lv	16	20	M-11-45	291,064.1	1,492,467.8	0.016	1,156	19
59	2280lv	19	30	M-17-60	291,036.1	1,492,405.3	0.039	1,276	50
60	2270lv	3	20	M-13-30	291,195.6	1,492,439.6	0.019	2,058	39
61	2270lv	6	10	M-12-30	291,120.8	1,492,475.1	0.015	2,242	34
62	2270lv	9	30	M-20-45	291,052.2	1,492,363.7	0.022	4,035	89
63	2270lv	10	30	M-13-45	291,192.4	1,492,428.4	0.016	201	3
64	2270lv	16	10	M-10-60	291,014.0	1,492,461.8	0.020	1,234	25
65	2270lv	17	20	M-16-30	291,009.1	1,492,448.5	0.015	824	12
66	2270lv	20	20	M-12-45	291,121.7	1,492,448.0	0.042	1,559	66
67	2270lv	21	20	M-17-45	291,032.4	1,492,428.5	0.021	509	11
68	2270lv	25	30	M-17-60	291,035.2	1,492,411.0	0.023	1,811	42
69	2260lv	7	20	M-13-30	291,200.4	1,492,456.3	0.018	677	12
70	2260lv	9	20	M-13-60	291,192.1	1,492,427.4	0.016	622	10
71	2260lv	15	20	M-17-45	291,030.9	1,492,438.4	0.029	905	26
72	2260lv	19	20	M-12-45	291,121.4	1,492,458.0	0.037	810	30
73	2260lv	20	20	M-15-45	290,979.0	1,492,415.3	0.027	3,261	88
74	2260lv	23	30	M-18-45	291,027.1	1,492,361.5	0.017	1,314	22
75	2260lv	26	30	M-20-45	291,050.4	1,492,373.5	0.016	7,605	122
76	2250lv	8	20	M-13-60	291,193.7	1,492,433.0	0.038	1,419	54
77	2250lv	18	30	M-18-45	291,025.4	1,492,371.3	0.023	1,519	35
78	2250lv	21	20	M-12-60	291,121.9	1,492,443.9	0.020	2,271	45
79	2250lv	22	20	M-17-45	291,029.3	1,492,448.2	0.037	1,555	58
	2250lv	23	20	M-15-45	290,976.9	1,492,421.8	0.031	2,198	68
81	2250lv	24	20	M-16-45	291,011.6	1,492,435.8	0.033	794	26
82	2250lv	25	20	M-15-60	290,984.4	1,492,398.7	0.036	1,740	63
83	2240lv	7	20	M-13-60	291,195.3	1,492,438.5	0.023	3,806	88
84	2240lv	16	10	M-16-45	291,009.9	1,492,444.5	0.016	2,791	45
85	2240lv	17	20	M-12-60	291,121.7	1,492,449.7	0.016	2,373	38
86	2240lv	19	20	M-15-60	290,982.6	1,492,404.2	0.035	3,437	120
_	2240lv	24	35	BX-6	291,059.1	1,492,096.5	0.015	14,776	222
88	2240lv	26	30	M-18-45	291,023.6	1,492,381.2	0.029	1,473	43
89	2240lv	30	20	TR-6	291,729.7	1,492,343.1	0.174	212	37
90	2240lv	31	20	TR-7	291,739.6	1,492,345.0	0.080	234	19
91	2240lv	33	20	TR-8	291,750.1	1,492,344.8	0.118	2,429	287
92	2230lv	4	20	TR-5	291,721.0	1,492,335.7	0.063	534	34
93	2230lv	5	20	TR-6	291,733.7	1,492,328.3	0.068	103	7
94	2230lv	6	20	TR-7	291,743.6	1,492,330.3	0.080	530	42
95	2230lv	7	20	TR-8	291,755.1	1,492,326.1	0.051	3,509	179
96	2230lv	13	20	M-13-60	291,196.9	1,492,444.1	0.025	4,994	125

ن ۱

961	_VL	. 1

.

4

	A	В	С	D	Е	F	G	н	
97	2230lv	23	20	M-17-60	291,031.6	1,492,433.8	0.023	2,531	58
98	2230lv	26	20	M-15-60	290,981.1	1,492,408.7	0.030	3,152	95
99	2230lv	27	20	M-19-45	291,006.4	1,492,380.8	0.022	831	18
100	2230lv	30	10	M-12-60	291,121.5	1,492,455.4	0.020	2,176	44
101	2230lv	33	35	BX-6	291,065.9	1,492,089.2	0.020	16,380	328
102	2220lv	9	30	M-21-60	291,264.6	1,492,363.9	0.015	293	4
103	2220lv	19	20	M-17-60	291,030.7	1,492,439.5	0.028	3,281	92
104	2220lv	22	20	M-18-45	291,020.2	1,492,400.9	0.016	811	13
105	2220lv	32	20	TR-4	291,701.5	1,492,330.2	0.405	797	323
106	2220lv	33	20	TR-6	291,737.2	1,492,315.4	0.064	3,068	196
107	2220lv	34	20	TR-5	291,724.8	1,492,321.3	0.076	765	58
108	2210lv	2	20	TR-3	291,681.5	1,492,327.9	0.942	3,180	2,996
109	2210lv	6	10	M-16-60	291,012.8	1,492,429.8	0.020	582	12
110	2210lv	18	35	BX-6	291,079.6	1,492,074.6	0.028	18,118	507
111	2210lv	24	10	M-17-60	291,029.9	1,492,444.3	0.265	2,099	556
112	2210lv	26	20	M-18-45	291,018.8	1,492,408.7	0.030	516	16
113	2200lv	3	20	TR-3	291,686.0	1,492,311.0	0.096	3,436	330
114	2200lv	4	20	TR-2	291,663.0	1,492,319.5	0.125	1,034	129
115	2200lv	6	30	M96-20	292,122.5	1,492,245.9	0.020	772	15
116	2200lv	8	30	M-5-30	291,763.3	1,492,284.9	0.040	1,318	53
	2200lv	9	30	M-5-60	291,765.8	1,492,280.3	0.030	411	12
118	2200lv	10	30	MR-7	291,763.5	1,492,279.8	0.016	157	3
119	2200lv	12	30	MR-5	291,799.7	1,492,263.0	0.033	889	29
	2200lv	14	30	MR-1	291,824.0	1,492,259.0	0.017	182	3
_	2200lv	15	30	MR-2	291,961.3	1,492,249.8	0.028	662	19
	2200lv	16	30	MR-3	291,943.9	1,492,243.6	0.061	1,172	72
123	2200lv	17	30	M96-21	292,067.2	1,492,248.5	0.051	1,240	63
	2200lv	18	30	M96-22	292,013.8	1,492,249.1	0.052	2,142	111
	2200lv	20	30	M-1-30	291,899.7	1,492,243.7	0.046	1,923	89
	2200lv	21	30	M-2-30	291,959.9	1,492,256.4	0.047	1,116	53
	2200lv	24	30	MR-6	291,764.8	1,492,281.3	0.021	10	0
128	2200lv	34	35	MM-9	291,023.8	1,492,159.9	0.022	4,591	101
	2200lv	35	35	BX-6	291,086.4	1,492,067.3	0.017	18,070	307
	2200lv	43	20	M-21-60	291,267.7	1,492,375.0	0.023	469	11
_	2200lv	44	20	M-21-60A	291,261.7	1,492,366.0	0.018	342	6
-	2200lv	45	20	M-21-45	291,271.9	1,492,389.6	0.016	2,219	36
	2200lv	59	10	MR-9	292,577.5	1,492,217.0	0.026	2,031	53
	2190lv	3	20	M96-20	292,122.5	1,492,245.9	0.024	944	23
	2190lv	4	30	M-1-60	291,899.2	1,492,246.0	0.061	448	27
_	2190lv	7	30	MR-3	291,936.4	1,492,247.6	0.081	691	56
	2190lv	8	30	MR-5	291,794.2	1,492,264.7	0.032	1,571	50
-	2190lv	9	30	M96-22	292,013.8	1,492,249.1	0.030	1,596	48
	2190lv	10	20	TR-1	291,642.1	1,492,319.0	0.110	1,504	166
	2190lv	11	20	TR-2	291,666.7	1,492,305.6	0.091	690	63
_	2190lv	12	30	M96-21	292,067.2	1,492,248.5	0.022	1,380	30
_	2190lv	13	30	MR-2	291,959.9	1,492,255.4	0.021	440	9
_	2190lv	14	20	TR-3	291,689.0	1,492,299.7	0.060	3,868	232
144	2190lv	16	30	M-1-30	291,897.7	1,492,253.9	0.021	1,529	32

т I

	Α	В	С	D	E	F	G	Н	
145	2190lv	18	30	M-2-30	291,955.7	1,492,273.2	0.058	539	31
146	2190lv	19	30	M-2-60	291,959.9	1,492,256.4	0.035	398	14
147	2190lv	20	30	M-5-30	291,755.6	1,492,299.4	0.058	528	31
148	2190lv	21	30	MR-6	291,762.2	1,492,286.1	0.033	112	4
149	2190lv	22	30	M-5-60	291,763.2	1,492,285.1	0.036	431	16
150	2190lv	23	30	M-25-30	291,823.3	1,492,277.8	0.019	663	13
151	2190lv	24	30	MR-1	291,824.0	1,492,263.9	0.044	248	11
152	2190lv	25	20	M-3-30	292,070.9	1,492,273.7	0.041	1,522	62
153	2190lv	42	30	M-22-45	291,304.6	1,492,308.6	0.016	7,296	117
154	2190lv	44	20	M-21-60	291,269.3	1,492,380.5	0.016	551	9
155	2190lv	45	20	M-21-60A	291,263.3	1,492,371.5	0.019	932	18
156	2190lv	46	20	M-21-45	291,273.5	1,492,395.1	0.020	425	9
157	2190lv	48	35	MM-10	291,097.4	1,492,208.7	0.016	13,366	214
158	2190lv	64	10	MR-9	292,582.5	1,492,208.4	0.037	1,936	72
159	2180lv	1	20	TR-1	291,645.4	1,492,306.9	0.062	3,411	212
	2180lv	4	20	M96-20	292,122.5	1,492,245.9	0.038	1,015	39
	2180lv	6	30	M-6-30	291,705.2	1,492,284.6	0.112	398	45
	2180lv	8	30	MR-2	291,958.5	1,492,261.0	0.020	1,413	28
163	2180lv	9	30	MR-3	291,927.6	1,492,252.3	0.057	1,805	103
164	2180lv	10	30	MR-4	291,835.3	1,492,254.3	0.031	2,765	86
165	2180lv	13	30	M96-21	292,067.2	1,492,248.5	0.018	2,492	45
	2180lv	14	30	M96-22	292,013.8	1,492,249.1	0.023	2,820	65
	2180lv	17	20	M-2-30	291,951.5	1,492,290.0	0.074	2,411	178
168	2180lv	18	20	M-25-30	291,822.7	1,492,295.1	0.029	3,264	95
	2180lv	19	10	M-3-30	292,063.3	1,492,289.3	0.031	3,445	107
170	2180lv	20	20	M-5-30	291,747.5	1,492,314.7	0.114	2,831	323
_	2180lv	21	30	M-1-30	291,894.4	1,492,270.9	0.024	1,066	26
	2180lv	23	30	M-5-60	291,760.5	1,492,290.2	0.096	374	36
	2180lv	24	30	MR-6	291,759.5	1,492,291.2	0.021	274	6
	2180lv	26	30	MR-1	291,824.0	1,492,269.7	0.022	356	8
	2180lv	44	20	M-21-60	291,270.9	1,492,386.0	0.020	502	10
	2180lv	46	30	M-22-45	291,302.4	1,492,298.9	0.020	6,655	133
-	2180lv	48	30	MM-12	291,370.3	1,492,272.3	0.026	7,961	207
_	2180lv	64	20	MR-8	292,499.0	1,492,191.8	0.054	4,011	217
	2180lv	65	10	MR-9	292,587.5	1,492,199.7	0.041	2,201	90
	2170lv	1	100	M96-11	291,609.4	1,492,147.4	0.070	3,293	231
_	2170lv	10	20	M96-20	292,122.5	1,492,245.9	0.033	1,715	57
	2170lv	16	30	MR-2	291,957.1	1,492,266.6	0.032	1,887	60
	2170lv	17	30	MR-3	291,918.8	1,492,257.0	0.052	2,566	133
	2170lv	18	30	MR-4	291,827.1	1,492,260.1	0.077	4,442	342
	2170lv	19	30	MR-5	291,783.1	1,492,268.1	0.020	3,247	65
	2170lv	21	30	M96-2	291,652.1	1,492,264.6	0.021	1,373	29
	2170lv	22	30	M96-7	291,605.1	1,492,263.1	0.065	2,051	133
	2170lv	34	30	M96-6	291,608.7	1,492,314.3	0.017	2,110	36
_	2170lv	48	30	MM-12	291,370.7	1,492,276.9	0.019	6,552	125
	2170lv	49	100	M96-8	291,552.4	1,492,273.3	0.064	2,047	131
and the second s	2170lv	58	20	M-3-60	292,071.9	1,492,271.6	0.024	2,229	54
192	2170lv	59	20	M-1-30	291,891.1	1,492,287.9	0.062	3,403	211

1 I

•

	A	В	C	D	E	F	G	Н	1
93	2170lv	60	20	M-25-30	291,822.1	1,492,312.4	0.018	2,606	4
94	2170lv	61	20	M-6-30	291,706.0	1,492,295.8	0.049	3,169	15
195	2170lv	62	20	M-5-30	291,741.0	1,492,326.9	0.054	1,672	9
196	2170lv	63	30	MR-7	291,747.3	1,492,285.1	0.059	1,457	8
197	2170lv	66	30	M-22-45	291,300.1	1,492,289.1	0.023	5,871	13
198	2170lv	69	30	M-2-60	291,957.1	1,492,267.6	0.036	87	
199	2170lv	70	30	M-5-60	291,757.8	1,492,295.3	0.057	323	1
200	2170lv	71	30	MR-6	291,756.8	1,492,296.3	0.070	100	
	2170lv	72	30	M-25-60	291,823.4	1,492,275.5	0.018	288	
202	2170lv	73	30	MR-1	291,824.0	1,492,275.5	0.021	108	
203	2170lv	96	20	MR-8	292,493.4	1,492,183.5	0.041	3,122	12
	2160lv	18	30	M96-2	291,652.1	1,492,264.6	0.029	2,929	
	2160lv	20	30	M96-11	291,609.4	1,492,148.9	0.020	1,623	
	2160lv	34	100	M96-8	291,552.4	1,492,276.6	0.035	836	
	2160lv	39	30	M96-6	291,608.7	1,492,314.3	0.000	2,707	
	2160lv	41	20	M-7-70	291,568.1	1,492,321.9	0.043	2,726	1
	2160lv	46	30	MR-8	292,487.8	1,492,175.2	0.043	9,610	17
	2160lv	52	100	MM-6	291,569.1	1,492,149.1	0.013	2,099	1
_	2160lv	64	20	M-1-30	291,887.8	1,492,304.9	0.070	2,033	
	2160lv	66	20	M-2-60	291,955.7	1,492,273.2	0.104	1,035	1
	2160lv	67	30	MR-3	291,909.9	1,492,261.7	0.025	2,873	
	2160lv	68	20	MR-2	291,955.7	1,492,272.2	0.025	557	
-	2160lv	69	20	M96-21	291,955.7	1,492,248.5	0.195		10
_	2160lv	70	20	M-5-60	292,007.2			3,100	
_	2160lv	70	20	MR-6		1,492,300.4	0.067	892	(
_	2160lv	71	20	MR-0	291,754.1	1,492,301.4	0.064	1,136	
	2160lv	73	20	M-6-30	291,824.0 291,707.2	1,492,281.3	0.032	1,012	
_	2160lv	74	20	M-6-60		1,492,313.1	0.067	2,013	1:
_	2160lv	74	30	MR-7	291,705.7	1,492,292.4	0.059	1,717	1(
	2160lv	75			291,741.8	1,492,286.9	0.044	1,319	
	2160lv		30	M-22-45	291,298.9	1,492,284.0	0.020	5,516	1
	2160lv 2160lv	80	30	M-1-60	291,895.9	1,492,263.0	0.024	2,439	
		81	30	MR-4	291,818.9	1,492,265.8	0.029	4,983	14
_	2160lv	85	100	M96-7	291,605.1	1,492,263.1	0.141	923	1;
_	2160lv	86	100	MM-5	291,556.4	1,492,229.9	0.025	2,069	
-	2150lv	20	35	M96-15	291,819.7	1,492,108.4	0.015	1,400	
_	2150lv	27	30	M96-4	291,656.6	1,492,179.5	0.026	4,969	1:
	2150lv	29	30	M96-18	291,913.0	1,492,167.5	0.025	8,764	2
_	2150lv	34	30	M96-8	291,552.4	1,492,282.4	0.062	3,171	1
_	2150lv	38	20	MR-11	291,545.0	1,492,349.0	0.024	248	
	2150lv	44	30	MR-8	292,482.2	1,492,166.9	0.019	10,178	1
	2150lv	49	35	MM-5	291,551.6	1,492,235.7	0.020	3,023	
	2150lv	50	35	MM-6	291,566.3	1,492,152.4	0.044	5,436	2
	2150lv	57	10	M-1-30	291,885.6	1,492,316.0	0.047	4,281	2
-	2150lv	58	10	M-3-60	292,066.8	1,492,282.0	0.028	1,527	4
_	2150lv	59	10	M-6-30	291,708.2	1,492,327.8	0.016	3,145	·
	2150lv	61	20	M-2-60	291,954.3	1,492,278.8	0.044	403	
_	2150lv	62	20	M-1-60	291,894.8	1,492,268.6	0.015	2,039	
240	2150lv	63	20	MR-2	291,954.3	1,492,277.8	0.044	1,225	1

.

96LV	L_1
------	-----

.

.

	Α	В	С	D	E	F	G	н	
241	2150lv	64	30	MR-3	291,901.1	1,492,266.4	0.022	4,093	90
242	2150lv	65	20	MR-1	291,824.0	1,492,287.0	0.034	1,544	53
243	2150lv	66	20	M-5-60	291,752.4	1,492,305.5	0.080	1,070	86
244	2150lv	67	20	MR-6	291,752.3	1,492,304.7	0.071	704	50
245	2150lv	68	20	M-6-60	291,706.1	1,492,298.1	0.108	1,909	206
246	2150lv	69	20	M-25-60	291,823.0	1,492,287.0	0.016	994	16
247	2150lv	70	20	M96-1	291,651.8	1,492,290.4	0.044	1,536	68
248	2150lv	71	20	M-7-70	291,568.3	1,492,324.6	0.045	824	37
249	2150lv	72	20	M96-6	291,608.7	1,492,314.3	0.069	1,156	80
250	2150lv	74	20	M96-21	292,067.2	1,492,248.5	0.020	3,367	67
251	2150lv	79	30	MR-4	291,810.7	1,492,271.5	0.023	4,581	105
252	2150lv	80	30	M96-22	292,013.8	1,492,249.1	0.015	7,542	113
253	2150lv	82	30	MR-7	291,736.4	1,492,288.6	0.051	1,026	52
254	2150lv	85	30	M96-2	291,652.1	1,492,264.6	0.044	2,568	113
255	2150lv	86	30	M96-7	291,605.1	1,492,263.1	0.058	4,352	252
256	2140lv	36	20	MR-11	291,550.0	1,492,340.4	0.056	352	20
257	2140lv	39	30	MR-8	292,476.6	1,492,158.7	0.019	10,076	191
258	2140lv	46	35	MM-7	291,808.2	1,492,115.1	0.040	5,351	214
259	2140lv	52	35	MM-6	291,562.6	1,492,156.9	0.015	3,748	56
260	2140lv	60	10	M-3-60	292,064.3	1,492,287.2	0.035	1,744	61
261	2140lv	64	20	MR-3	291,892.3	1,492,271.1	0.025	552	14
262	2140lv	65	20	MR-1	291,824.0	1,492,292.8	0.058	. 1,438	83
263	2140lv	68	20	MR-7	291,730.9	1,492,290.4	0.026	623	16
264	2140lv	69	20	M-6-60	291,706.5	1,492,303.9	0.073	1,596	117
265	2140lv	70	30	MR-5	291,766.6	1,492,273.1	0.017	3,427	58
266	2140lv	71	20	M-25-60	291,822.8	1,492,292.8	0.049	1,099	54
267	2140lv	72	20	M96-1	291,651.8	1,492,300.4	0.093	1,738	162
268	2140lv	75	20	M96-8	291,552.4	1,492,288.2	0.029	644	19
269	2140lv	76	20	M-7-70	291,568.5	1,492,328.3	0.018	728	13
270	2140lv	78	20	M96-6	291,608.7	1,492,314.3	0.081	1,001	81
271	2140lv	81	30	MR-4	291,802.5	1,492,277.3	0.026	4,872	127
272	2140lv	82	20	M96-21	292,067.2	1,492,248.5	0.032	3,350	107
273	2140lv	84	30	M96-7	291,605.1	1,492,263.1	0.127	2,597	330
274	2140lv	91	30	MM-11	291,250.0	1,492,278.4	0.028	12,419	348
275	2140lv	97	30	M96-4	291,656.6	1,492,179.5	0.016	3,285	53
276	2140lv	98	30	M96-2	291,652.1	1,492,264.6	0.029	2,499	73
277	2140lv	101	30	M96-22	292,013.8	1,492,249.1	0.025	7,189	180
278	2130lv	17	35	BX-6	291,133.6	1,492,016.7	0.035	13,832	484
279	2130lv	31	20	M96-8	291,552.4	1,492,294.0	0.030	1,240	37
280	2130lv	35	20	MR-11	291,555.0	1,492,331.7	0.042	396	17
281	2130lv	40	30	MR-8	292,471.0	1,492,150.4	0.090	12,908	1,162
282	2130lv	54	30	M96-18	291,913.0	1,492,187.5	0.034	21,880	744
283	2130lv	55	35	M-26-63	292,011.4	1,492,084.1	0.030	1,791	54
284	2130lv	57	35	MM-7	291,809.0	1,492,118.6	0.016	4,045	65
285	2130lv	61	30	M96-5	291,710.1	1,492,135.3	0.025	2,379	60
286	2130lv	63	30	MM-10	291,103.4	1,492,242.8	0.045	11,706	527
287	2130iv	64	35	M96-10	291,641.7	1,492,104.9	0.018	4,086	74
288	2130lv	77	20	M-1-60	291,892.6	1,492,280.0	0.094	2,043	192

· ·

-

	Α	В	С	D	E	É	G	н	
289	2130lv	78	20	M96-22	292,013.8	1,492,249.1	0.028	1,540	43
	2130lv	79	20	MR-3	291,883.4	1,492,275.8	0.021	1,338	28
	2130lv	81	20	MR-4	291,794.3	1,492,283.0	0.026	1,199	31
	2130lv	82	30	MR-5	291,761.0	1,492,274.8	0.021	5,931	125
-	2130lv	83	20	MR-7	291,725.4	1,492,292.2	0.036	951	34
	2130lv	84	20	M-6-60	291,706.9	1,492,309.6	0.113	1,214	137
	2130lv	85	30	M96-2	291,652.1	1,492,264.6	0.030	4,275	137
	2130lv	86	20	M96-1	291,651.8	1,492,310.4	0.105	1,721	120
297	2130lv	88	20	M-7-70	291,568.8	1,492,331.9	0.049	619	30
298	2130lv	89	20	M96-6	291,608.7	1,492,314.3	0.067	1,095	73
	2130lv	90	20	M-25-60	291,822.6	1,492,298.5	0.056	436	24
300	2130lv	91	20	MR-1	291,824.0	1,492,298.6	0.038	1,071	41
301	2130lv	94	20	M96-7	291,605.1	1,492,263.1	0.108	339	37
302	2130lv	96	20	M96-21	292,067.2	1,492,248.5	0.034	2,238	76
303	2130lv	115	35	MC-10	293,372.3	1,491,628.5	0.020	4,226	85
304	2120lv	30	20	MR-11	291,560.0	1,492,323.0	0.017	342	6
305	2120lv	33	30	MR-8	292,465.4	1,492,142.1	0.102	12,130	1,237
306	2120lv	48	35	M-26-63	292,009.5	1,492,087.5	0.022	1,463	32
307	2120lv	50	30	M96-19	292,114.2	1,492,142.2	0.019	13,058	248
308	2120lv	55	30	M96-5	291,710.1	1,492,135.3	0.041	1,844	76
309	2120lv	65	30	M96-4	291,656.6	1,492,179.5	0.019	2,704	51
310	2120lv	66	, 10	MR-2	291,950.1	1,492,294.6	0.025	3,347	84
311	2120lv	69	10	M96-21	292,067.2	1,492,248.5	0.023	2,651	61
312	2120lv	73	20	M-7-70	291,569.0	1,492,335.5	0.093	408	38
313	2120lv	74	10	M96-1	291,651.8	1,492,320.4	0.046	2,563	118
314	2120lv	76	30	M96-2	291,652.1	1,492,264.6	0.029	3,488	101
315	2120lv	77	20	M96-7	291,605.1	1,492,263.1	0.256	548	140
316	2120lv	79	20	MM-5	291,532.3	1,492,258.6	0.016	1,419	23
317	2120lv	82	20	M-24-70	291,398.7	1,492,322.0	0.015	3,229	48
318	2120lv	84	20	MM-11	291,250.8	1,492,287.7	0.027	4,996	135
319	2120lv	85	20	M96-22	292,013.8	1,492,249.1	0.101	2,336	236
320	2120lv	86	20	M-1-60	291,891.5	1,492,285.6	0.042	1,914	80
	2120lv	87	20	MR-3	291,874.6	1,492,280.5	0.059	1,683	99
	2120lv	88	20	MR-7	291,719.9	1,492,294.0	0.064	2,025	130
	2120lv	89	20	M-6-60	291,707.3	1,492,315.4	0.035	1,419	50
	2120lv	91	20	M96-6	291,608.7	1,492,314.3	0.060	1,872	112
	2120lv	93	20	MR-4	291,786.1	1,492,288.7	0.068	1,771	121
-	2120lv	94	20	MR-1	291,824.0	1,492,304.3	0.018	736	13
	2120lv	95	30	MR-5	291,755.5	1,492,276.5	0.018	4,347	78
	2120lv	97	20	M96-8	291,552.4	1,492,299.7	0.036	973	35
	2120lv	103	30	M-4-30	292,199.5	1,492,192.0	0.019	1,662	32
	2120lv	105	30	M96-3	291,706.8	1,492,232.8	0.045	4,117	185
	2120lv	122	30	MR-14	293,880.4	1,491,820.8	0.016	8,709	139
	2120lv	124	60	MC-10	293,373.3	1,491,633.1	0.023	8,607	198
-	2110lv	13	30	MM-9	291,010.4	1,492,210.1	0.017	3,046	52
_	2110lv	47	10	M96-8	291,552.4	1,492,305.5	0.044	690	30
	2110lv	52	10	M-7-70	291,569.3	1,492,339.2	0.041	1,173	48
336	2110lv	67	10	M96-21	292,067.2	1,492,248.5	0.020	1,964	39

. ,

	Α	В	С	D	E	F	G	H	
337	2110lv	72	20	UG65-1	291,570.0	1,492,323.7	0.040	618	25
	2110lv	77	20	M96-7	291,605.1	1,492,263.1	0.058	598	35
in the second	2110lv	78	20	M-24-70	291,398.9	1,492,318.4	0.015	3,662	55
_	2110lv	81	20	M-1-60	291,890.4	1,492,291.3	0.026	1,526	40
341	2110lv	82	20	UG65-40	291,877.2	1,492,286.2	0.160	234	38
	2110lv	83	20	M96-22	292,013.8	1,492,249.1	0.069	2,842	196
the second se	2110lv	84	20	UG65-32	291,871.1	1,492,249.2	0.040	700	28
344	2110lv	85	20	UG65-41	291,869.5	1,492,275.4	0.060	329	20
345	2110lv	90	20	UG65-33	291,851.6	1,492,289.9	0.040	389	16
346	2110lv	91	20	UG65-34	291,856.5	1,492,285.7	0.160	60	10
347	2110lv	92	20	UG65-35	291,856.0	1,492,281.0	0.090	67	6
348	2110lv	93	20	MR-4	291,777.9	1,492,294.5	0.091	1,367	124
349	2110lv	94	20	UG65-21	291,791.0	1,492,257.3	0.020	251	5
350	2110lv	95	20	UG65-13	291,716.0	1,492,294.6	0.070	656	46
351	2110lv	96	20	UG65-25	291,817.5	1,492,280.7	0.060	478	29
352	2110lv	97	20	UG65-23	291,799.0	1,492,273.9	0.080	465	37
353	2110lv	98	20	MR-7	291,714.4	1,492,295.8	0.126	431	54
354	2110lv	99	20	UG65-14	291,714.3	1,492,290.6	0.300	427	128
355	2110lv	100	20	UG65-11	291,687.7	1,492,281.3	0.300	241	72
	2110lv	101	20	UG65-10	291,680.7	1,492,284.5	0.040	266	11
357	2110lv	103	20	UG65-3	291,588.4	1,492,311.1	0.290	115	33
358	2110lv	104	20	UG65-2	291,588.4	1,492,313.3	0.100	182	18
	2110lv	105	20	UG65-4	291,599.7	1,492,311.1	0.140	212	30
360	2110lv	106	20	UG65-5	291,615.2	1,492,303.5	0.080	740	59
	2110lv	107	20	M96-6	291,608.7	1,492,314.3	0.036	175	6
	2110lv	108	20	UG65-9	291,673.5	1,492,287.8	0.080	624	50
	2110lv	109	20	UG65-8	291,659.5	1,492,308.1	0.080	613	49
	2110lv	110	20	UG65-7	291,659.2	1,492,312.7	0.040	163	7
	2110lv	111	20	UG65-6	291,658.5	1,492,317.6	0.040	112	5
	2110lv	112	20	UG65-12	291,696.9	1,492,276.3	0.080	321	26
أسعدها	2110lv	113	30	UG65-15	291,720.8	1,492,269.5	0.040	438	18
	2110lv	114	30	MR-5	291,750.0	1,492,278.2	0.031	139	4
_	2110lv	115	20	UG65-22	291,806.1	1,492,255.4	0.140	176	25
-	2110lv	116	20	UG65-27	291,821.9	1,492,271.8	0.080	285	23
	2110lv	117	30	UG65-20	291,775.9	1,492,259.9	0.060	2,950	177
	2110lv	118	20	UG65-24	291,821.3	1,492,254.3	0.080	168	13
	2110lv	119	20	UG65-26	291,818.6	1,492,278.3	0.060	112	7
_	2110lv	120	20	UG65-28	291,837.6	1,492,254.1	0.080	189	15
	2110lv	122	20	UG65-36	291,854.9	1,492,275.1	0.060	106	6
	2110lv	123	20	UG65-29	291,846.4	1,492,252.3	0.060	60	4
	2110lv	124	20	UG65-39	291,852.2	1,492,261.0	0.100	101	10
	2110lv	126	20	UG65-30	291,850.6	1,492,251.0	0.120	54	6
	2110lv	127	20	UG65-31	291,862.9	1,492,250.4	0.060	110	7
	2110lv	128	30	M96-18	291,913.0	1,492,207.5	0.019	13,185	251
	2110lv	129	30	MM-10	291,105.4	1,492,254.2	0.029	11,994	348
the second se	2110lv	134	30	UG65-18	291,750.8	1,492,263.8	0.100	376	38
	2110lv	135	30	UG65-17	291,743.9	1,492,265.3	0.020	294	6
J04	2110lv	136	30	UG65-16	291,731.1	1,492,267.1	0.060	338	20

. ,

	Α	В	C	D	E	F	G	H .	I
85	2110lv	137	30	UG65-19	291,761.2	1,492,262.4	0.060	622	37
386	2110lv	140	30	MM-8	291,718.9	1,492,151.7	0.138	1,586	219
387	2110lv	141	30	M96-14	291,819.5	1,492,153.6	0.021	5,784	122
388	2110lv	142	30	M96-4	291,656.6	1,492,179.5	0.025	2,511	63
389	2110lv	143	35	MM-7	291,810.9	1,492,127.7	0.068	2,182	148
390	2110lv	156	35	M-26-63	292,007.1	1,492,091.9	0.030	2,333	70
391	2110lv	165	35	MC-10	293,374.3	1,491,637.7	0.022	12,173	268
392	2100lv	24	20	M96-7	291,605.1	1,492,263.1	0.096	1,273	122
393	2100lv	28	30	M96-2	291,652.1	1,492,264.6	0.016	2,424	39
394	2100lv	45	10	M-7-70	291,569.5	1,492,342.8	0.027	2,077	56
395	2100lv	47	20	M96-6	291,608.7	1,492,314.3	0.035	1,521	53
396	2100lv	48	35	MM-13	291,820.0	1,491,957.0	0.042	286	12
397	2100lv	53	10	M-1-60	291,889.7	1,492,295.1	0.030	5,167	155
398	2100lv	59	20	M96-22	292,013.8	1,492,249.1	0.044	3,093	136
399	2100lv	62	20	M-4-60	292,204.0	1,492,176.4	0.018	4,226	76
400	2100lv	64	20	MR-3	291,856.9	1,492,289.9	0.033	4,703	155
401	2100iv	65	20	MR-4	291,771.4	1,492,299.1	0.042	2,386	100
402	2100lv	67	20	MR-7	291,708.9	1,492,297.6	0.118	3,034	358
403	2100lv	70	30	M96-19	292,114.2	1,492,149.5	0.026	13,589	353
404	2100lv	71	30	M-26-63	292,004.6	1,492,096.4	0.025	6,813	170
405	2100lv	72	30	M96-18	291,913.0	1,492,217.5	0.034	10,323	351
406	2100lv	75	30,	MM-7	291,811.9	1,492,132.2	0.119	1,789	213
107	2100lv	76	30	M96-5	291,710.1	1,492,135.3	0.015	2,139	32
108	2100lv	77	30	MM-8	291,719.9	1,492,156.2	0.035	1,667	58
109	2100lv	80	30	M96-3	291,706.8	1,492,232.8	0.036	3,341	120
	2100lv	92	35	MM-6	291,547.7	1,492,174.5	0.015	6,368	96
_	2100lv	96	35	MM-14	291,820.2	1,491,957.7	0.017	145	3
	2090lv	18	30	MM-9	291,007.4	1,492,221.3	0.015	2,220	33
	2090lv	35	10	MR-10	292,875.4	1,492,058.4	0.022	1,718	38
	2090lv	57	20	M96-7	291,605.1	1,492,263.1	0.015	977	15
	2090lv	81	20	M96-6	291,608.7	1,492,314.3	0.033	1,122	37
	2090lv	85	20	MM-11	291,252.0	1,492,301.6	0.026	5,869	153
	2090lv	90	20	M-4-60	292,202.4	1,492,182.0	0.030	4,179	125
_	2090lv	93	20	MR-3	291,848.1	1,492,294.6	0.032	5,623	180
	2090lv	94	20	MR-5	291,739.0	1,492,281.6	0.069	2,531	175
	2090lv	95	20	MR-7	291,703.4	1,492,299.3	0.034	2,576	88
	2090lv	111	30	M96-18	291,913.0	1,492,227.5	0.025	8,474	212
_	2090lv	112	30	M-26-63	292,002.1	1,492,100.8	0.029	7,519	218
	2090lv	113	30	MR-12	291,725.4	1,492,188.9	0.015	3,454	52
	2090lv	122	35	MC-11	292,188.3	1,492,053.6	0.016	12,660	203
	2080lv	20	35	MC-10	293,377.2	1,491,651.3	0.010	13,058	203
	2080lv	25	20	M-24-70	293,377.2	1,491,001.5	0.022	1,019	
	2080lv	31	10	MR-10	291,399.7	1,492,053.0	0.013	1,272	34
	2080lv	36	20	MR-10 MR-9	292,637.5	1,492,055.0	0.027	1,735	<u>34</u> 95
	2080lv	56	30	M96-2	292,657.5	1,492,113.1	0.055	1,735	<u>95</u> 35
	2080lv	82	35	M96-13	291,458.5	1,492,204.0			
	2080lv	95	20	MM-11	291,458.5		0.021	4,957	
	2080lv	95	20	M-4-60	291,252.5	1,492,306.3 1,492,187.5	0.052 0.018	6,390 4,226	332 76

	A	В	C	D	E	F	G	Н	.
	2080lv	100	20	MR-7	291,697.9	1,492,301.1	0.016	2,554	41
434	2080lv	101	20	MR-5	291,733.4	1,492,283.3	0.110	4,225	465
435	2080lv	102	20	M96-18	291,913.0	1,492,237.5	0.036	6,140	221
436	2080lv	107	30	M-26-63	291,999.7	1,492,105.3	0.035	7,106	249
437	2080lv	109	30	MM-7	291,813.8	1,492,141.4	0.016	2,268	36
438	2080lv	113	30	MM-8	291,721.8	1,492,165.4	0.018	2,762	50
439	2080lv	114	30	MR-12	291,727.5	1,492,198.7	0.015	3,323	50
440	2080lv	121	30	MM-10	291,108.4	1,492,271.3	0.035	8,540	299
441	2080lv	134	35	M96-11	291,609.4	1,492,170.4	0.022	4,574	101
442	2070lv	36	20	MR-9	292,640.4	1,492,108.1	0.109	1,778	194
443	2070lv	40	10	MR-10	292,858.6	1,492,047.5	0.100	1,473	147
444	2070lv	53	10	M96-6	291,608.7	1,492,314.3	0.029	1,061	31
	2070lv	77	30	MC-14	292,639.9	1,491,989.4	0.042	10,017	421
	2070lv	94	20	MR-7	291,692.4	1,492,302.9	0.076	3,125	238
	2070lv	96	30	M96-2	291,652.1	1,492,264.6	0.019	1,333	25
448	2070lv	100	20	MR-5	291,727.9	1,492,285.0	0.156	4,338	677
	2070lv	101	20	M96-18	291,913.0	1,492,247.5	0.130	6,502	845
	2070lv	105	30	MM-2	291,910.0	1,492,148.0	0.016	6,686	107
	2070lv	106	30	M-26-63	291,997.2	1,492,109.7	0.047	7,390	347
452	2070lv	107	30	MC-17	291,863.3	1,492,151.2	0.025	2,295	57
	2070lv	108	30	MM-7	291,814.8	1,492,145.9	0.043	2,687	116
	2070lv	109	30	M96-14	291,819.5	1,492,193.6	0.021	5,029	106
	2070lv	112	30	MM-8	291,722.8	1,492,169.9	0.035	3,109	109
	2070lv	126	35	MM-6	291,536.6	1,492,187.8	0.026	4,942	129
	2060lv	22	35	MC-10	293,379.1	1,491,660.5	0.019	14,125	268
	2060lv	42	20	MR-10	292,850.2	1,492,042.1	0.087	2,691	234
459	2060lv	77	10	MM-11	291,253.3	1,492,315.5	0.025	2,919	73
460	2060lv	78	20	M96-2	291,652.1	1,492,264.6	0.106	2,120	225
	2060lv	79	10	MR-7	291,686.9	1,492,304.7	0.035	2,526	88
	2060lv	81	20	MR-5	291,722.4	1,492,286.6	0.097	4,758	462
	2060lv	82	20	M96-18	291,913.0	1,492,257.5	0.092	7,096	653
464	2060lv	85	30	MM-2	291,910.0	1,492,158.0	0.034	6,322	215
	2060lv	87	30	M-26-63	291,994.7	1,492,114.2	0.026	7,841	204
	2060lv	88	30	MC-17	291,864.2	1,492,155.8	0.057	2,316	132
	2060lv	89	30	MM-7	291,815.8	1,492,150.5	0.033	3,017	100
	2060iv	100	30	MC-14	292,640.8	1,491,994.0	0.027	11,667	315
ALC: NOT THE OWNER OF THE OWNER OWNER OF THE OWNER OWNER OWNER OF THE OWNER OWNE	2060lv	110	35	MM-6	291,532.9	1,492,192.2	0.025	4,435	111
	2060lv	124	35	MC-12	292,382.0	1,491,996.4	0.020	9,792	196
-	2050lv	32	10	M96-6	291,608.7	1,492,314.3	0.017	1,410	24
	2050lv	45	20	MR-10	292,841.8	1,492,036.6	0.120	2,917	350
	2050lv	73	30	M96-3	291,706.8	1,492,232.8	0.020	3,045	61
	2050lv	79	35	MM-3	291,998.0	1,492,096.4	0.016	2,105	34
	2050lv	82	10	MM-11	291,253.7	1,492,320.2	0.019	3,157	60
	2050lv	87	20	M96-2	291,652.1	1,492,264.6	0.035	1,840	64
477	2050lv	88	10	MR-7	291,681.4	1,492,306.5	0.029	2,165	63
_	2050lv	91	20	MR-5	291,716.9	1,492,288.3	0.066	4,756	314
-	2050lv	95	30	MM-2	291,910.0	1,492,168.0	0.022	5,936	131
480	2050lv	96	30	M-26-63	291,992.2	1,492,118.7	0.252	7,880	1,986

.

.4

.

. .

	A	В	С	D	E	F	G	н	
481	2050lv	98	30	MC-17	291,865.2	1,492,160.3	0.042	2,675	112
482	2050lv	99	30	MM-7	291,816.7	1,492,155.1	0.144	3,393	489
	2050lv	101	30	M96-5	291,710.1	1,492,135.3	0.035	2,837	99
484	2050lv	102	30	MM-8	291,724.7	1,492,179.1	0.291	3,509	1,021
485	2050lv	103	30	MR-12	291,733.7	1,492,228.0	0.020	2,375	48
486	2050lv	115	35	MM-4	292,079.7	1,492,066.0	0.038	5,343	203
-	2050lv	117	35	M96-12	291,497.0	1,492,141.5	0.018	14,051	253
	2050lv	130	35	MC-14	292,641.8	1,491,998.5	0.081	8,674	703
489	2040lv	40	30	MC-14	292,642.8	1,492,003.1	0.044	12,844	565
490	2040lv	42	20	MR-10	292,833.4	1,492,031.2	0.046	3,039	140
491	2040lv	47	20	M96-2	291,652.1	1,492,264.6	0.092	2,215	204
	2040lv	48	30	M96-3	291,706.8	1,492,232.8	0.016	2,274	36
_	2040lv	76	10	MR-7	291,678.6	1,492,307.4	0.046	1,985	91
-	2040lv	86	20	MR-5	291,711.4	1,492,290.0	0.047	4,672	220
	2040lv	89	30	MM-2	291,910.0	1,492,178.0	0.016	3,473	56
	2040lv	91	30	M-26-63	291,989.8	1,492,123.1	0.016	7,316	117
	2040iv	96	30	MM-7	291,817.7	1,492,159.6	0.018	3,994	72
	2040lv	98	30	MM-8	291,725.7	1,492,183.6	0.029	3,592	104
	2040lv	99	30	M96-14	291,819.5	1,492,223.6	0.058	2,646	153
	2040lv	100	30	MR-12	291,735.8	1,492,237.8	0.025	1,787	45
	2040lv	110	35	BX-5	291,669.0	1,491,972.2	0.025	18,814	470
	2030lv	43	20,	MR-10	292,825.0	1,492,025.7	0.074	3,213	238
	2030lv	53	20	M96-2	291,652.1	1,492,264.6	0.028	1,794	50
_	2030lv	54	30	M96-3	291,706.8	1,492,232.8	0.023	2,643	61
_	2030lv	57	90	MC-1	292,076.9	1,491,979.7	0.016	10,692	171
_	2030lv	79	20	MR-5	291,705.8	1,492,291.7	0.025	1,675	42
	2030lv	80	20	MR-12	291,737.9	1,492,247.6	0.036	2,421	87
-	2030lv	81	20	M96-14	291,819.5	1,492,233.6	0.073	5,470	399
	2030lv	86	30	MM-2	291,910.0	1,492,188.0	0.029	2,438	71
	2030lv	87	30	MM-1	291,910.0	1,492,121.2	0.025	2,199	55
-	2030lv	88	30	M-26-63	291,987.3	1,492,127.6	0.026	6,025	157
	2030lv	90	30	MC-17	291,867.2	1,492,169.5	0.016	3,036	49
	2030lv	96	30	MM-7	291,818.7	1,492,164.2	0.023	6,448	148
	2030lv	106	35	M96-11	291,609.4	1,492,183.8	0.017	3,921	67
_	2020lv	10	20	MR-13	293,487.6	1,491,890.3	0.058	2,639	153
	2020lv	34	30	M96-3	291,706.8	1,492,232.8	0.024	1,475	35
-	2020lv	55	90	MM-14	291,829.4	1,491,992.1	0.023	2,492	57
the second se	2020lv	72	90	MC-8	292,961.1	1,491,754.3	0.016	18,565	297
	2020lv	81	20	MR-5	291,702.8	1,492,292.6	0.026	2,606	68
	2020lv	86	20	MM-2	291,910.0	1,492,198.0	0.066	4,332	286
	2020lv	87	20	M96-14	291,819.5	1,492,243.6	0.073	3,834	280
-	2020lv	89	20	MR-12	291,740.0	1,492,257.4	0.091	2,750	250
-	2020lv	92	20	MR-10	292,816.7	1,492,020.3	0.025	3,524	88
	2020lv	102	30	MC-17	291,868.1	1,492,174.0	0.015	3,459	52
	2020lv	107	30	MC-11	292,195.1	1,492,085.6	0.015	7,528	113
	2020lv	109	30	MM-7	291,819.6	1,492,168.7	0.018	6,118	110
	2020lv	116	35	MC-12	292,385.9	1,492,014.7	0.016	4,633	74
528	2010lv	11	20	MR-13	293,493.5	1,491,898.4	0.022	3,025	67

, · ·

	Α	В	С	D	Ε	F	G	н	
529	2010lv	24	90	M96-6	291,608.7	1,492,314.3	0.017	7,685	131
530	2010lv	41	20	M96-3	291,706.8	1,492,232.8	0.054	2,562	138
531	2010lv	44	30	MC-14	292,645.7	1,492,016.8	0.017	11,751	200
532	2010lv	45	35	M96-27	292,530.2	1,492,086.2	0.015	7,984	120
533	2010lv	56	90	M96-7	291,605.1	1,492,263.1	0.022	5,878	129
534	2010lv	84	20	MM-2	291,910.0	1,492,208.0	0.042	4,693	197
535	2010lv	85	20	M96-14	291,819.5	1,492,253.6	0.071	3,682	261
536	2010lv	88	20	MR-12	291,742.0	1,492,267.2	0.045	2,402	108
537	2010lv	92	30	MM-1	291,910.0	1,492,128.5	0.015	3,216	48
538	2010lv	94	30	MC-17	291,869.1	1,492,178.6	0.033	2,826	93
539	2010lv	99	30	MM-7	291,820.6	1,492,173.3	0.021	6,251	131
540	2010lv	105	30	MC-13	292,827.6	1,491,930.2	0.025	6,786	170
541	2010lv	106	30	MR-10	292,810.7	1,492,016.4	0.037	4,326	160
542	2010lv	107	30	MC-15	292,732.1	1,491,966.0	0.016	5,007	80
543	2000lv	11	10	MR-13	293,499.4	1,491,906.5	0.023	912	21
544	2000lv	37	30	MC-14	292,646.6	1,492,021.3	0.035	11,373	398
545	2000lv	38	35	M96-27	292,530.2	1,492,096.2	0.066	7,253	479
546	2000lv	71	20	M96-3	291,706.8	1,492,232.8	0.061	5,780	353
547	2000lv	72	30	MM-8	291,729.6	1,492,201.9	0.031	5,685	176
548	2000lv	78	10	MM-2	291,910.0	1,492,218.0	0.143	2,474	354
549	2000lv	79	10	M96-14	291,819.5	1,492,263.6	0.025	3,445	86
550	2000lv	80	10	MR-12	291,744.1	1,492,276.9	0.060	1,902	114
551	2000lv	86	30	MM-1	291,910.0	1,492,132.1	0.022	3,218	71
552	2000lv	91	30	MC-17	291,870.1	1,492,183.1	0.015	2,118	32
553	2000lv	92	30	MM-3	291,998.0	1,492,119.7	0.015	4,051	61
554	2000lv	95	30	MM-7	291,821.6	1,492,177.9	0.025	3,349	84
555	2000lv	101	30	MC-15	292,733.1	1,491,970.6	0.018	6,652	120
556	1990lv	41	10	M96-27	292,530.2	1,492,106.2	0.016	2,638	42
557	1990lv	46	30	MC-14	292,647.6	1,492,025.9	0.031	11,804	366
558	1990lv	71	20	M96-3	291,706.8	1,492,232.8	0.109	5,724	624
559	1990lv	72	30	MM-8	291,730.5	1,492,206.4	0.028	4,972	139
	1990lv	77	10	MM-2	291,910.0	1,492,228.0	0.018	3,980	72
561	1990lv	88	20	M96-29	293,046.8	1,491,968.1	0.043	4,640	200
562	1990lv	89	30	MM-1	291,910.0	1,492,135.8	0.024	3,378	81
563	1990lv	93	30	M96-15	291,819.7	1,492,135.9	0.043	4,183	180
564	1990lv	94	30	MC-17	291,871.0	1,492,187.7	0.022	1,883	41
565	1990lv	103	35	M96-24	292,329.9	1,491,992.0	0.043	14,381	618
566	1980lv	9	20	M-29-60	291,070.8	1,492,309.6	0.018	5,511	99
567	1980lv	49	35	M96-16	291,868.3	1,492,094.9	0.034	8,570	291
568	1980lv	62	20	M96-3	291,706.8	1,492,232.8	0.039	5,455	213
569	1980lv	63	30	MM-8	291,731.5	1,492,211.0	0.044	4,120	181
570	1980lv	83	20	M96-25	292,335.8	1,492,134.9	0.070	4,650	326
571	1980lv	84	20	M96-29	293,047.3	1,491,978.1	0.110	5,180	570
572	1980lv	85	30	MM-1	291,910.0	1,492,139.4	0.026	3,479	91
573	1980lv	88	30	M96-15	291,819.7	1,492,137.7	0.044	4,302	189
574	1980lv	89	30	MC-17	291,871.7	1,492,190.7	0.050	1,589	80
575	1980lv	101	30	MC-13	292,830.5	1,491,943.9	0.016	8,645	138
576	1980lv	103	30	MC-14	292,648.6	1,492,030.5	0.024	10,620	255

	Α	В	С	D	E	F	G	H	
577	1980lv	122	35	M96-12	291,500.7	1,492,162.6	0.016	17,324	277
578	1970lv	52	30	MM-8	291,732.5	1,492,215.5	0.044	3,396	149
579	1970lv	56	20	M96-3	291,706.8	1,492,232.8	0.052	5,222	272
580	1970lv	72	20	MC-11	292,200.0	1,492,108.4	0.031	4,174	129
581	1970lv	73	20	M96-25	292,335.8	1,492,140.7	0.047	4,009	188
582	1970lv	78	30	MM-7	291,824.5	1,492,191.5	0.023	2,615	60
583	1970lv	79	30	MM-1	291,910.0	1,492,143.1	0.056	3,690	207
584	1970lv	83	30	M96-15	291,819.7	1,492,139.4	0.025	4,920	123
585	1970lv	95	30	MC-13	292,831.5	1,491,948.4	0.017	8,595	146
	1970lv	98	30	MC-14	292,649.5	1,492,035.0	0.030	10,665	320
587	1970lv	115	35	M96-12	291,501.2	1,492,165.6	0.016	17,818	285
588	1960iv	46	90	MC-2	291,812.4	1,492,044.0	0.021	1,300	27
	1960lv	58	20	M96-3	291,706.8	1,492,232.8	0.058	3,090	179
	1960lv	60	30	MM-8	291,733.5	1,492,220.1	0.059	3,279	194
591		75	20	MC-11	292,200.9	1,492,112.9	0.039	4,759	186
	1960lv	80	30	MM-1	291,910.0	1,492,146.7	0.017	3,684	63
	1960lv	82	30	M96-15	291,819.7	1,492,141.2	0.024	6,945	167
	1960lv	84	30	MM-3	291,998.0	1,492,138.3	0.029	4,661	135
	1960lv	91	30	MC-13	292,832.5	1,491,953.0	0.020	8,003	160
	1960lv	94	30	MC-14	292,650.5	1,492,039.6	0.073	9,484	692
	1950lv	55	90	UG220-1	291,679.1	1,492,266.0	0.043	2,392	103
	1950lv	56	10 .	UG220-1	291,709.0	1,492,268.1	0.042	733	31
	1950lv	57	20	UG220-1	291,694.0	1,492,267.2	0.059	507	30
	1950lv	61	30	UG220-5	291,726.2	1,492,218.4	0.065	1,274	83
	1950lv	65	10	UG220-1	291,722.5	1,492,268.6	0.060	2,278	137
	1950lv	67	20	UG220-3	291,790.4	1,492,232.9	0.289	1,029	297
	1950lv	68	20	MM-7	291,826.4	1,492,200.7	0.043	3,823	164
	1950lv	70	20	UG220-4	291,778.9	1,492,204.7	0.078	476	37
_	1950lv	75	20	MC-11	292,201.9	1,492,117.5	0.048	4,953	238
	1950lv	76	30	MM-4	292,091.7	1,492,111.1	0.021	9,188	193
	1950lv	79	20	UG220-2	291,728.3	1,492,256.5	0.064	609	39
	1950lv	81	20	UG220-2	291,736.2	1,492,243.8	0.069	490	34
and the second division of the second divisio	1950lv	82	20	UG220-5	291,738.8	1,492,226.2	0.064	141	9
	1950lv	83	20	UG220-5	291,746.6	1,492,231.6	0.095	207	20
-	1950lv	84	20	UG220-3	291,766.6	1,492,235.8	0.100	415	42
	1950lv	85	20	UG220-3	291,781.4	1,492,233.9	0.282	273	77
	1950lv	86	20	UG220-6	291,762.8	1,492,228.9	0.207	116	24
	1950lv	87	20	UG220-4	291,771.2	1,492,217.6	0.168	230	39
	1950lv	88	30	UG220-4	291,784.8	1,492,194.9	0.060	2,896	174
-	1950lv	89	20	UG220-6	291,757.6	1,492,220.9	0.058	138	8
	1950lv	92	30	MM-1	291,910.0	1,492,150.3	0.021	3,079	65
	1950lv	94	30	M96-15	291,819.7	1,492,143.0	0.018	4,851	87
_	1950lv	95	30	MM-3	291,998.0	1,492,143.0	0.033	5,029	166
	1950lv	97	30	MM-8	291,734.4	1,492,224.7	0.076	371	28
	1950lv	101	30	MC-13	292,833.5	1,491,957.6	0.017	7,189	122
	1950lv	104	30	MC-14	292,651.5	1,492,044.1	0.042	8,621	362
	1950lv 1940lv	125	35	M96-10	291,641.7	1,492,104.9	0.033	15,800	521
024	194010	25	20	M96-30	292,939.6	1,491,999.3	0.023	1,977	46

, · ·

.

. .

	Α	В	С	D	E	F	G	н	
625	1940lv	50	20	MM-7	291,827.4	1,492,205.2	0.037	5,145	190
626	1940lv	52	20	MM-8	291,735.4	1,492,229.2	0.179	2,382	426
627	1940lv	54	30	M96-15	291,819.7	1,492,144.7	0.015	8,266	124
628	1940lv	58	20	MC-11	292,202.9	1,492,122.1	0.033	4,593	152
629	1940lv	61	20	MC-14	292,652.5	1,492,048.7	0.022	5,218	115
630	1940lv	66	20	M96-28	293,104.4	1,491,920.7	0.059	5,830	344
631	1940lv	68	30	MM-1	291,910.0	1,492,154.0	0.015	2,733	41
632	1940lv	71	30	MM-3	291,998.0	1,492,147.7	0.040	4,376	175
633	1940lv	79	30	MC-15	292,738.9	1,491,998.0	0.016	10,265	164
634	1930lv	29	90	M96-23	292,024.5	1,492,002.0	0.017	14,898	253
635	1930lv	45	20	MM-8	291,736.4	1,492,233.8	0.178	3,022	538
636	1930lv	52	20	MM-7	291,828.4	1,492,209.8	0.040	5,134	205
637	1930lv	55	30	M96-15	291,819.7	1,492,146.5	0.018	7,256	131
638	1930lv	60	20	MC-11	292,203.8	1,492,126.6	0.053	4,504	239
639	1930lv	62	20	MC-14	292,653.4	1,492,053.3	0.061	5,435	332
640	1930lv	63	20	M96-28	293,104.4	1,491,929.0	0.028	6,045	169
641	1930lv	65	30	MM-1	291,910.0	1,492,157.6	0.015	1,562	23
642	1930lv	68	30	MM-3	291,998.0	1,492,152.3	0.083	4,206	349
643	1930lv	73	30	M96-26	292,534.6	1,491,963.9	0.022	12,674	279
644	1930lv	76	30	MC-15	292,739.8	1,492,002.5	0.032	9,424	302
645	1920lv	44	20	MM-8	291,737.3	1,492,238.4	0.171	3,150	539
646	1920lv	58	30	MC-9	293,191.0	1,491,747.4	0.015	10,582	159
647	1920lv	59	20	MM-3	291,998.0	1,492,157.0	0.067	2,029	136
648	1920lv	60	20	MM-4	292,095.3	1,492,124.6	0.015	3,190	48
649	1920lv	62	20	MM-7	291,829.3	1,492,214.4	0.155	5,236	812
650	1920lv	63	20	MC-12	292,395.6	1,492,060.3	0.049	4,910	241
651	1920lv	67	20	MC-14	292,654.4	1,492,057.8	0.077	4,953	381
652	1920lv	68	20	M96-28	293,104.4	1,491,937.4	0.077	6,552	505
653	1920lv	69	10	MC-11	292,204.8	1,492,131.2	0.015	4,536	68
654	1920lv	70	35	M96-15	291,819.7	1,492,148.3	0.027	5,350	144
655	1920lv	71	35	MM-1	291,910.0	1,492,161.3	0.073	1,175	86
656	1920lv	72	35	M96-16	291,868.3	1,492,122.9	0.051	2,380	121
657	1920lv	92	35	MC-15	292,740.8	1,492,007.1	0.049	7,480	367
658	1920lv	93	35	MC-5	292,612.7	1,491,913.2	0.018	10,775	194
659	1910lv	22	30	M96-15	291,819.7	1,492,150.0	0.033	6,354	210
660	1910lv	32	90	MM-13	291,820.0	1,491,957.0	0.023	8,482	195
661	1910lv	41	20	MM-8	291,738.3	1,492,242.9	0.132	2,860	378
	1910lv	49	30	MC-13	292,837.3	1,491,975.8	0.053	8,137	431
	1910lv	51	30	M96-16	291,868.3	1,492,127.5	0.050	3,230	162
	1910lv	56	20	MM-3	291,998.0	1,492,161.7	0.046	2,075	95
	1910lv	59	20	MM-1	291,910.0	1,492,164.9	0.296	1,671	495
	1910lv	62	20	MM-7	291,830.3	1,492,218.9	0.143	4,661	666
_	1910lv	66	20	MC-12	292,396.6	1,492,064.8	0.057	5,578	318
	1910lv	69	20	MC-14	292,655.4	1,492,062.4	0.061	4,264	260
_	1910lv	71	20	MC-15	292,741.8	1,492,011.6	0.078	2,912	227
	1910lv	72	20	M96-28	293,104.4	1,491,945.8	0.241	6,548	1,578
	1910lv	73	10	MC-11	292,205.8	1,492,135.7	0.015	4,129	62
672	1910lv	79	35	MC-5	292,613.6	1,491,917.8	0.015	11,663	175

.

	Α	В	C	D	E	F	G	Н	
673	1900lv	18	30	M96-15	291,819.7	1,492,151.8	0.041	5,805	238
674	1900lv	19	20	MM-8	291,739.3	1,492,247.5	0.124	3,181	394
675	1900lv	37	10	MC-14	292,656.3	1,492,066.9	0.024	6,323	152
676	1900lv	38	10	M96-28	293,104.4	1,491,954.2	0.095	4,870	463
677	1900lv	40	20	MM-3	291,998.0	1,492,166.3	0.045	2,456	111
678	1900lv	41	20	MM-1	291,910.0	1,492,168.5	0.093	2,367	220
679	1900lv	42	20	MM-7	291,831.3	1,492,223.5	0.039	4,654	182
680	1900lv	43	20	MM-4	292,097.8	1,492,133.6	0.019	3,133	60
	1900lv	46	20	MC-12	292,397.6	1,492,069.4	0.046	5,844	269
	1900lv	50	20	MC-13	292,838.3	1,491,980.4	0.030	2,191	66
683	1900lv	51	20	MC-15	292,742.8	1,492,016.2	0.086	3,721	320
	1900lv	63	35	MC-5	292,614.4	1,491,922.4	0.030	10,892	327
-	1900iv	75	30	M96-16	291,868.3	1,492,132.2	0.029	3,327	97
	1890lv	23	30	M96-15	291,819.7	1,492,153.5	0.018	5,184	93
	1890lv	26	10	MM-8	291,740.2	1,492,252.0	0.073	2,518	184
	1890lv	52	10	MC-14	292,657.3	1,492,071.5	0.022	4,344	96
	1890lv	53	20	MM-7	291,832.2	1,492,228.0	0.027	6,310	170
-	1890lv	54	20	MM-1	291,910.0	1,492,172.2	0.099	2,467	244
	1890lv	55	20	MM-3	291,998.0	1,492,171.0	0.085	2,337	199
	1890lv	58	20	MC-12	292,398.5	1,492,074.0	0.114	5,623	641
	1890lv	62	20	MC-15	292,743.7	1,492,020.8	0.016	3,662	59
-	1890lv	75	35	M96-10	291,641.7	1,492,104.9	0.015	14,944	224
	1890lv	80	30	M96-16	291,868.3	1,492,136.9	0.022	3,285	72
	1890lv	86	35	MC-6	292,381.7	1,491,938.8	0.018	18,684	336
	1880lv	23	30	M96-15	291,819.7	1,492,155.3	0.020	4,785	96
	1880lv	26	10	MM-8	291,741.2	1,492,256.6	0.017	2,589	44
	1880lv	46	10	MM-3	291,998.0	1,492,175.6	0.024	2,948	71
	1880lv	58	10	MC-14	292,658.3	1,492,076.1	0.021	3,953	83
	1880lv	59	20	MM-1	291,910.0	1,492,175.8	0.122	3,813	465
	1880lv	60	20	MM-7	291,833.2	1,492,232.6	0.027	6,004	162
	1880lv	80	30	M96-16	291,868.3	1,492,141.5	0.071	3,286	233
	1880lv	83	30	M96-26	292,534.6	1,491,992.7	0.016	8,802	141
	1880lv	84	30	MC-6	292,382.5	1,491,943.2	0.018	6,710	121
	1880lv	87	30	MC-9	293,194.8	1,491,765.7	0.023	9,036	208
	1870lv	25	30	M96-15	291,819.7	1,492,157.1	0.030	2,780	83
_	1870lv	44	10	MM-7	291,834.2	1,492,237.2	0.049	5,524	271
	1870lv	58	20	UG300-2	291,887.4	1,492,164.1	0.255	1,020	260
and the second second	1870lv	<u>59</u>	20	MM-1	291,910.0	1,492,179.5	0.080	160	13
	1870lv	61	20	UG300-1	291,818.4	1,492,207.7	0.185	3,506	649
	1870lv	62	20	UG300-3	291,915.0	1,492,172.4	0.066	469	31
the second se	1870lv	63	20	UG300-2	291,909.2	1,492,171.5	0.110	68	7
	1870lv	64	20	UG300-2	291,901.6	1,492,168.9	0.231	250	58
	1870lv	65	20	UG300-1	291,817.6	1,492,192.9	0.143	1,493	214
	1870lv	68	20	UG300-1	291,821.0	1,492,178.7	0.138	1,073	148
	1870lv	70	20	UG300-3	291,914.7	1,492,157.4	0.467	2,111	986
	1870lv 1870lv	90	30	UG300-3	291,914.7	1,492,118.9	0.070	5,458	382
		92	30	UG300-3	291,914.7	1,492,127.4	0.151	1,168	176
120	1870lv	93	30	M96-16	291,868.3	1,492,146.2	0.033	1,217	40

	Α	В	С	D	E	F	G	Н	
721	1870lv	94	30	UG300-2	291,873.1	1,492,160.7	0.051	252	13
722	1870lv	100	30	M96-26	292,534.6	1,491,998.5	0.021	9,163	192
723	1870lv	101	30	M96-24	292,329.9	1,492,061.3	0.015	5,450	82
724	1870lv	102	30	UG300-1	291,828.6	1,492,166.0	0.143	153	22
725	1870lv	103	30	UG300-1	291,839.0	1,492,155.5	0.097	203	20
726	1870lv	104	30	UG300-2	291,843.8	1,492,159.2	0.095	234	22
727	1870lv	105	30	UG300-1	291,847.7	1,492,147.9	0.150	1,343	202
728	1870lv	106	30	UG300-2	291,858.5	1,492,159.1	0.048	307	15
729	1860lv	22	20	MC-16	293,004.2	1,491,943.0	0.018	3,369	61
730	1860lv	43	30	M96-15	291,819.7	1,492,158.8	0.060	2,500	150
731	1860lv	45	10	MM-3	291,998.0	1,492,184.7	0.026	1,995	52
732	1860lv	46	10	MM-1	291,910.0	1,492,183.1	0.060	1,986	119
733	1860lv	47	20	M-27-68	291,908.5	1,492,150.4	0.116	5,756	668
734	1860lv	53	20	M96-26	292,534.6	1,492,004.3	0.061	5,814	355
735	1860lv	61	20	M96-24	292,329.9	1,492,067.1	0.043	5,303	228
736	1860lv	74	35	MC-9	293,196.8	1,491,774.8	0.022	13,509	297
737	1860lv	81	30	M96-16	291,868.3	1,492,150.9	0.021	6,787	143
738	1850lv	26	20	MC-16	293,005.2	1,491,947.6	0.030	3,542	106
739	1850lv	48	10	MM-1	291,910.0	1,492,186.7	0.015	3,243	49
740	1850lv	53	10	MC-12	292,402.2	1,492,091.0	0.023	3,940	91
741	1850lv	56	20	M96-26	292,534.6	1,492,010.1	0.028	6,138	172
742	1850lv	57	20	M-27-68	291,905.4	1,492,152.9	0.201	3,424	688
743	1850lv	58	20	M96-15	291,819.7	1,492,160.6	0.102	5,758	587
744	1850lv	63	20	M96-24	292,329.9	1,492,072.8	0.083	5,661	470
745	1850lv	65	30	MC-6	292,384.8	1,491,956.4	0.015	10,159	152
746	1850lv	72	35	MC-9	293,197.8	1,491,779.3	0.022	14,988	330
747	1850lv	74	30	MC-1	292,094.4	1,492,061.8	0.015	1,695	25
748	1850lv	76	30	M96-17	291,921.1	1,492,065.6	0.021	6,308	133
749	1850lv	79	30	M96-16	291,868.3	1,492,155.5	0.027	3,813	103
750	1840lv	20	30	M96-15	291,819.7	1,492,162.4	0.249	2,182	543
751	1840lv	24	20	MC-16	293,006.1	1,491,952.2	0.033	3,541	117
752	1840lv	41	10	MM-1	291,910.0	1,492,190.4	0.057	3,358	191
753	1840lv	44	20	M-27-68	291,902.3	1,492,155.5	0.334	5,070	1,693
754	1840lv	53	20	M96-24	292,329.9	1,492,078.6	0.073	6,189	452
755	1840lv	55	20	M96-26	292,534.6	1,492,015.8	0.024	6,143	147
756	1840lv	56	30	MC-6	292,385.6	1,491,960.8	0.025	10,924	273
757	1840lv	61	30	M96-17	291,921.1	1,492,069.6	0.015	7,020	105
758	1840lv	62	30	MC-7	292,200.9	1,492,045.6	0.015	10,391	156
759	1840lv	67	30	M96-16	291,868.3	1,492,160.2	0.024	3,227	77
	1830lv	16	30	MC-10	293,401.4	1,491,765.4	0.036	6,055	218
761	1830lv	28	20	MC-16	293,007.1	1,491,956.7	0.032	3,726	119
762	1830lv	39	10	MM-1	291,910.0	1,492,194.0	0.017	5,028	86
	1830lv	43	20	M-27-68	291,899.1	1,492,158.0	0.427	2,602	1,111
_	1830lv	44	20	M96-16	291,868.3	1,492,164.8	0.034	1,134	39
	1830lv	47	20	M96-15	291,819.7	1,492,164.1	0.034	4,316	147
	1830lv	49	20	M96-24	292,329.9	1,492,084.4	0.033	5,413	179
-	1830lv	51	20	M96-26	292,534.6	1,492,021.6	0.024	5,796	139
	1830lv	52	30	MC-6	292,386.4	1,491,965.2	0.018	12,419	224

,

. .

/

	Α	В	С	D	E	F	G	н	
769	1830lv	55	35	M96-23	292,024.5	1,492,050.8	0.015	9,002	135
770	1830lv	64	30	MC-7	292,201.7	1,492,050.2	0.017	11,658	198
771	1830lv	65	30	MC-5	292,620.0	1,491,954.5	0.134	14,777	1,980
772	1820lv	15	35	MC-10	293,402.4	1,491,769.9	0.033	14,605	482
773	1820lv	20	10	MC-16	293,008.1	1,491,961.3	0.076	2,784	212
	1820lv	42	20	M96-15	291,819.7	1,492,165.9	0.030	3,699	111
775	1820lv	48	20	M-27-68	291,896.0	1,492,160.6	0.077	2,800	216
_	1820lv	49	30	M96-17	291,921.1	1,492,077.7	0.086	10,826	931
777	1820lv	53	20	M96-16	291,868.3	1,492,169.5	0.043	1,123	48
778	1820lv	54	20	M96-24	292,329.9	1,492,090.2	0.017	5,653	96
779	1820lv	67	30	MC-7	292,202.5	1,492,054.8	0.018	10,966	197
780	1820lv	68	30	MC-5	292,620.8	1,491,959.1	0.021	13,722	288
781	1810lv	20	10	MC-16	293,009.1	1,491,965.9	0.017	2,694	46
782	1810lv	35	20	M96-15	291,819.7	1,492,167.7	0.049	3,023	148
783	1810lv	44	10	MM-1	291,910.0	1,492,201.3	0.023	4,522	104
784	1810lv	48	10	M96-24	292,329.9	1,492,095.9	0.023	4,476	103
785	1810lv	51	20	M-27-68	291,892.8	1,492,163.1	0.035	2,596	91
786	1810lv	52	20	M96-16	291,868.3	1,492,174.2	0.022	977	22
787	1810lv	61	30	M96-17	291,921.1	1,492,081.8	0.064	5,446	349
788	1810lv	65	30	MC-7	292,203.3	1,492,059.4	0.019	10,363	197
789	1810lv	66	30	MC-5	292,621.6	1,491,963.7	0.015	13,597	204
790	1800lv	19	90	MM-1	291,910.0	1,492,204.6	0.016	13,668	219
791	1800lv	25	30	MM-14	291,856.0	1,492,091.2	0.030	5,795	174
792	1800lv	33	20	M96-15	291,819.7	1,492,169.4	0.046	2,377	109
793	1800lv	59	20	M-27-68	291,889.7	1,492,165.7	0.115	2,563	295
794	1800lv	61	20	M96-16	291,868.3	1,492,178.8	0.107	746	80
795	1800lv	62	20	MC-5	292,622.5	1,491,968.3	0.023	6,957	160
796	1800lv	76	30	M96-17	291,921.1	1,492,085.8	0.114	5,782	659
797	1800lv	80	30	MC-7	292,204.1	1,492,064.0	0.017	10,164	173
798	1790lv	30	30	MM-14	291,857.2	1,492,095.7	0.018	5,056	91
799	1790lv	38	20	M96-15	291,819.7	1,492,171.2	0.046	1,666	77
800	1790lv	67	20	M-27-68	291,886.6	1,492,168.2	0.042	2,295	96
801	1790lv	68	20	M96-16	291,868.3	1,492,183.5	0.021	625	13
802	1790lv	71	20	MC-5	292,623.3	1,491,972.9	0.021	6,049	127
803	1790lv	73	30	M96-17	291,921.1	1,492,089.8	0.062	5,704	354
804	1780lv	24	30	MM-14	291,858.4	1,492,100.2	0.123	4,987	613
	1780lv	34	20	M96-15	291,819.7	1,492,172.9	0.061	1,510	92
	1780lv	64	10	M96-16	291,868.3	1,492,188.2	0.020	3,747	75
807	1780lv	66	20	M-27-68	291,883.4	1,492,170.7	0.020	2,740	55
808	1780lv	69	20	MC-7	292,205.7	1,492,073.2	0.019	3,604	69
809	1780lv	70	20	MC-5	292,624.1	1,491,977.5	0.078	6,407	500
-	1780lv	73	30	M96-17	291,921.1	1,492,093.9	0.023	5,710	131
_	1780lv	76	30	M96-23	292,024.5	1,492,075.2	0.031	4,279	133
	1770lv	25	30	MM-14	291,859.2	1,492,103.2	0.077	4,706	362
813	1770lv	30	20	M96-15	291,819.7	1,492,174.7	0.026	2,323	60
	1770lv	48	30	MC-6	292,391.0	1,491,991.5	0.021	3,833	81
-	1770lv	56	10	M-27-68	291,880.3	1,492,173.3	0.020	1,919	38
816	1770lv	57	10	M96-16	291,868.3	1,492,192.8	0.043	1,698	73

96	Ľ	V	L	1	

. . . .

	Α	В	C	D	E	F	G	Н	
817	1770lv	61	20	MC-7	292,206.5	1,492,077.8	0.022	3,883	85
818	1770lv	62	20	MC-5	292,624.9	1,491,982.1	0.030	6,648	199
819	1770lv	74	30	M96-23	292,024.5	1,492,080.1	0.028	4,258	119
820	1770lv	75	30	MC-3	292,750.0	1,491,937.5	0.032	6,071	194
821	1760lv	31	30	MC-6	292,391.8	1,491,995.8	0.020	9,066	181
822	1760lv	48	30	M96-17	291,921.1	1,492,102.0	0.026	10,104	263
823	1760lv	60	10	MC-7	292,207.3	1,492,082.4	0.029	4,486	130
824	1760lv	61	20	MC-1	292,103.1	1,492,102.8	0.022	1,967	43
825	1760lv	65	20	MC-5	292,625.7	1,491,986.6	0.048	6,620	318
826	1760lv	68	30	MC-4	292,825.7	1,491,918.7	0.036	1,443	52
827	1750lv	30	30	M96-17	291,921.1	1,492,106.0	0.016	9,963	159
828	1750lv	55	10	MC-7	292,208.2	1,492,087.0	0.033	3,517	116
829	1750lv	56	20	M-28-78	292,088.0	1,492,092.5	0.017	3,562	61
_	1750lv	61	20	MC-4	292,826.7	1,491,923.3	0.064	3,875	248
831	1740lv	10	20	MC-10	293,410.1	1,491,806.4	0.017	6,083	103
832	1740lv	51	30	MC-6	292,393.3	1,492,004.6	0.040	7,481	299
	1740lv	61	20	M-28-78	292,088.0	1,492,094.6	0.027	3,781	102
	1740lv	62	20	MC-3	292,755.2	1,491,950.5	0.030	3,557	107
	1740lv	63	20	MC-4	292,827.6	1,491,927.9	0.106	3,211	340
	1730lv	12	20	MC-10	293,411.1	1,491,811.0	0.020	5,683	114
	1730lv	22	20	MC-6	292,394.1	1,492,009.0	0.025	5,549	139
	1730lv	66	20	MC-3	292,756.9	1,491,954.8	0.021	3,520	74
_	1730lv	82	30	M96-23	292,024.5	1,492,099.6	0.026	6,729	175
-	1720lv	12	20	MC-10	293,412.1	1,491,815.5	0.015	5,830	87
	1720lv	41	20	MC-6	292,394.9	1,492,013.4	0.055	5,942	327
	1720lv	60	20	M96-23	292,024.5	1,492,104.5	0.016	2,303	37
	1720lv	61	20	MC-3	292,758.7	1,491,959.2	0.028	4,395	123
	1710lv	35	20	M96-17	291,921.1	1,492,122.2	0.015	1,564	24
	1710lv	38	20	MC-6	292,395.7	1,492,017.8	0.032	6,137	196
	1710lv	46	20	MC-8	292,991.2	1,491,895.7	0.021	3,421	72
	1710lv	57	20	M96-23	292,024.5	1,492,109.3	0.015	2,473	37
	1700lv	37	20	M96-17	291,921.1	1,492,126.2	0.028	1,399	39
	1700lv	41	20	MC-6	292,396.4	1,492,022.2	0.027	5,786	156
	1700lv	45	20	MC-8	292,992.1	1,491,900.3	0.015	2,845	43
_	1690lv	33	10	M96-17	291,921.1	1,492,130.2	0.034	1,241	42
	1690lv	38	20	MC-6	292,397.2	1,492,026.5	0.023	6,136	141
	1690lv	53	10	M96-23	292,024.5	1,492,119.1	0.015	1,498	23
	1680lv	37	20	MC-6	292,398.0	1,492,030.9	0.019	6,340	120
	1680lv	40	10	M96-17	291,921.1	1,492,134.3	0.024	1,407	34
_	1670lv	12	10	MC-9	293,215.2	1,491,861.4	0.020	4,361	87
	1670lv	32	10	MC-6	292,398.7	1,492,035.3	0.016	3,702	59
and a second second	1660lv	22	10	MC-9	293,215.9	1,491,864.9	0.037	3,404	126
859 860						TOTALS	0.041	3,166,643	129,930

•

·*,-;*

SURVEY 4-930827-4-0827 Reg. to: CARLTON-SHUMWAY-NIELSON & ASSUC. File Name: C:\SIMPLCTY\SURVEYS\921.DAT

.

JOD: DRILL HOLE LOCATION AND MINERAL SURVEY RETRACEMENT OF THE MOSS MINE LOCATED IN SECTION 19, T20N, R20W NOTES IN BOOK 89

By: .JSC

Point	Direction	Distance	Northing	Easting	Elevation
		n namen naven ander de konstrukter solder. Naven de en staar weer voer	na manana ang ang ang ang ang ang ang ang an	nen herrinerrinerrinerrinerriner den innen men herrinen einen eine herrinerrinerrinerrinerrinerrinerrinerri	Mar rise and rise and lead area after some and
List					· · · · · · · · · · · · · · · · · · ·
300	M96-1		1492300,00000	293150.00000	÷ 0.00
1 2	M96-2		1492274.20538	291651.79679	2166.17
. 4	1170-2		1492264.60282	291652.07205	2165.63
3	M96-3		1492232.79014	291706.84267	2168.75
4	M96-4		1492179.51371	291656.60012	2153.05
5	M96-5		1492135.27576	291710.10976	2149.33
6	M96-6		1492314.29703	291608.65174	2166.87
7	M96-7		1492263,10306	291605.12307	2165.27
8	M96-8		1492272.91280	291552.37034	2166.45
9	M96-9		1492289.40680	291512.40421	2166.62
10	M96-10		1492104.93380	291641.69907	
11	M96-11		1492147.20106	291609.38550	2164.43
			THAYTHA " TOO	XAT00A*99990	2166.43
12	M96-12 SET PK '		1492084.17630	291486.89010	2240.33
.13	M96-13		1492218.43183	291458.45103	2179.83
14	M96-14		1492116.09834	291819.49318	2147.54
1.5	M96-15		1492108,26046	291819.73731	2146.82
16	M96-16		1492018.66637	291868.33163	2143.47
17	M96-17		1491948.16520	291921.06413	2140.64
18	M96-18		1492158.74645	001010 0344F	the second second second
19	M96-19		1492132.06931	291912.97415	2158.72
20	M96-20		1492245,85788	292114.23401	21.47.94
			1434749103100	292122.46801	2201.66
21	M96-21		1492248.53600	292067.15553	2204.00
22	M96-22		1492249.08816	292013.82207	2201.26
23	M96-23		1491901-87116	292024.46115	2135.37
24	M96-24		1491920.92328	292329.86670	· · · · · · · · · · · · · · · · · · · ·
25	M96-25		1492047.50760	292335.74857	2113.13
26	M96-26		1491859.32956	292534.56979	2131.43
27	M96-27		14010// /0175		
28	M96-28 SET PK		1491966.68173	292530.23875	2129.56
29	M96-29		1491792.35782	293104.40789	2092.89
			1491873.74169	293041.82805	2084.48
30	M96-30		1491875.11125	292939.63507	2088.03
31	CNTR MOSS MINE SHAF	r	1492305.86085	291592.51548	2167.91
32	COR.2 KEYSTONE WEDG	E MS4484	1492105.72975	291549.34986	2178.73
33	COR.4 KEYSTONE WEDG	E MS 4484	1491726.50422	293119.43675	2092.23
	с. С. с. с. с. с. с.			the state of the second	

MP-7

MOSS PROJECT, ARIZONA 🔅

		OF2 CO	MMEN	NTS: ¥	of hole such that I				+22-96 250 AM				
FROM	то	ROCK DESCRIPTION	ROCK	COLOR					PRO	A	SSAYS (OP1	D	
			CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	Au (FA) OPT	Au CN SOL	d	
0	5	QZ S+K WX in Moss Porph	30	Lt. bow	Oz StKWX, Some Pervesive Silic Oz It. ary-Wht-denso	10	QZ	-	60%				
5	10	Moss Porph + QZ S+K wk.	30	Lt Brn	TE Ca (Oz	5	Qz	-	1002	.008			
10	15	Moss PORPH - STKWX Moss VN	30 20	LT BRN WHT ₄₂	INCR. Dense Wht-Buff QZ VN. MINOD drusy QZ + CC.	15	QZ Minor	-	100	.020			
15	20	Moss VN - Some Altered porph.	20	Wht-1t. grybrnaz some pink	QZ VN. Incr. Org + PNK FeOx.	65	QZ Recc	(Fe Ox)	100	.030			
20	25	Moss VN - some alt. porph.	20	FINK-BIN Lt. tar sre	Pink Colorcition (Hem) Some Coarse drusy 02.	75	Qz	(FeOx)	100	.046			
25	30 '	+}	20	P.NK BRNOWST		65	Öz	Fe Ox "	Ĩoo	·05Y			
30	35	Moss VN	20	WIHT- LT TAN	QZ VN_ Coarse chips	95	Qz	- FeOx	100	•077			
35	40	MOSS VN	20	II " Some LT GREEN	Less 61Ky chips, 51. incr. porph inclusions	80	ଝ	Teck	100	.096			
40	45	Moss VN	20	Wht - PINK The GAN	BIKY, OZ VN, incr. hem. some drusy oz	90	QZ	FRQ	100	•109			
45	50	Moss VN- A- Porph.	20	PINK+ Wh+ - L+ BrN	Inco. pint Fels: silts Porph claste in VN. Ma Ox spote	75	Qz	- FeCt	100	•131			
50	55	£) .	20	ы	As Above. Some drugs	80	QZ	F.C.	100	·097			
55	60	MOSS VN	20	Ņ	Blocky W QZ, less Silfd porph some tright	90	QZ	Feax	100	.074			
60	65	Moss PORPH (FOOTWALL	10	Med gra- Bra		7	Oz- cc	Fe Oxfa)	100	.055			
65	70	Moss PORPH(FW)	10	<i>,, ,,</i>	Wht. Qz = Cc Vits in Moss Porph.	5	02- ({	- Fe Ox	100	.035		<u> </u>	
70	75	it n	10	ja "	Chlorific alt. (prop. assembly	5	Qz- ce	Fea	100	.031			
75	80	1) II	10	u ji	Same as above. Green-Brn Iropilitized MP w/ 5-10% yLts.	5-10	02- CC	1	100	.007			
80	85	V/ 11	Ø	17 9		2-3	Q2- Ce	1	100	•01			
85	90	<i>וו</i> ן וו	10	" "	(Fairly Fresh looking)	3	Qz- cc	-	100	.008			
90	. 95	Moss Porph	901?)	11 v	Fresher, Very few VIts	1	0z - ci	-	100	-007			
95	100	W V	90	17 17	As Above	1-z	Q ₂	<u> </u>	*	.005	$\overline{\lambda}$		

MOSS PROJECT, ARIZONA

HOLE NO. _____

PAGE_Z_OF_Z_

	FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	A	SSAYS (OPT)
				CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
3-18	100	105	Moss Porphyry	90	Med. grn- BrN	WIL-Mod. propylitic alteration. Iz Gz VLT.	41	02- CL	-	100			
18- 1 5	105	110	И 1)	ц	")1 11	(ک	-	•	100			
13- 118		115	11 11	11	n	<u>и</u> и	21	-	-	100			
//8- 123	115	120	n	90	Turning	Fresh looking Mass Porphy-v. MNA VOT	21	Q.2	-	100			
			TD= 123'										
		1											
	-												
	,												
	-												
		4											
				•									·
			/										

}--

MOSS PROJECT, ARIZONA

-	MP-1	8
---	------	---

		M96-2			NATES:		- 19		E		ĘV			
		Vertical							Y_ <i>J</i> :					
		ION		LE SIZ							10:1			
LENG PAGE		<u>250'</u> OF <u>3</u>							D_2-			00 pm		1
AUE_		Ur <u>_</u> _		MMEN	115: Z Th:	0-65' Occ. Meta is hole Cuts VN H.	i piec W. n	es front	m Casi redox k	ns we	18 in cu 7	- # ngs.		7
FROM	то	ROCK DESCR		DOCK		- 7 mm - mm						ASSAYS (OPI	D	1
FROM				ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	Au (FA)	An CN SOL	Ag (FA)	ľ
0	5	StKWX IN PORPHYRY	(Hew)	30	LT BAN UNT/22	1 400nd. Q2 VLT3		QZ	-	40%	. 021			1
5	10	RUBBL 	E C 11. MOS- PO APH.	30		BIKY - FRACTURED. As above 5:02	25	Q2	-	80%	.033			1
10	15	Ш	"	30	,,	Finerchips, les 61	\$ 20	QZ. cc	-	100%	.048			<u> </u>
15	20	V	"		1) Ta propo				-	100	.042			
20	25	STOCK WORKS ED MOSE POR SULFIDE PAOB	B. CONTAM.		LT BRN Changing To GAD-GRY	UISSEM. in parph larg	25	QZ.	LOCA 12-3 (CONTAM)	100	.030			
25	30	Ge Stkwx 1.A PORPH.	n Moss	50	4 BRN	incr. QZ ULTS, 51.	10	Qz	FOx	100	.025			
30	35	11 11		30	LT BAN.	Decr. FCO,	30		uk FeQ	þo	.053			
35	40	34 1	ч	30	LT gry - BRN Some grxs		15	02, Face	WIL FOR	100	.008			
40	45	"	μ	30	"	E Amethyst	25	Qz.	 w# FoOz	100	.049			
45	50	1/	V	30	u	No amethyst note Decr. Veining	15	Q2- cc ?	we FO	100	-014			
50	55		y .	30	0 R.G BRN (E-Ox)	Much incr. Fe Ox diss Bundled De VLTS m/ TE Amethyst. Soft-) 15		Sta FO	100	.006			
55	60	- FAULT -		30	BAN	As above but 25% TAN-ORG CLAY. SIFT	10		STR FEG	100	.005			
60	65	Q. S+KWX Moss Port		30	LT. GRN- BrN	But of Fit ZONA Hander, Sufd/S+KW. Ser.	x 15	د ب	Mod Fra	100	-019			
65	70	м ,		30	ly .	11 12	20	Qz · <i>C</i> c ?	WKEQ	100	- 014			
70	75	\$1	<i>)</i> /	30	,1	(a little fractured - 61Ky) 25	CC '	wk fa	100	- 008			
75	80	h	n	30	11	" Decr. Oz VLTS. XLN	10		wk Feq.	10	. 013			
80	85	h/	<i>II</i>	30	11 +2 Org-bra	Jan In Car FLUA Gis		Gz. U	- Loc. Mod FEOA	100	.012			
85	90		ч ч		ст. Барл 4 Эту Барл 11	drucy ULTS.	10	Le	WK FE CA	100	. 032			
90	95		•/		grn-gry Jhere unlas		3.15		2 1% A	100	-016			-Re
95	100	μ	U I	30	GRN- BRN		5	Qz. CC	TE Py WE FOY	4.2	.017			

U

[']DRILL HOLE LOG ADDWEST MINERALS, INC.

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-2</u>

R

1-48

PAGE 2_OF 3

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	76	VN	SULFS	REC	A	SSAYS (OPT	·
rom	10	ROCA DESCRIPTION	CODE	COLOR	ALIERATION	VN	TYPE	%	%	An (FA)	An CN SOL	Ag (FA)
100	105	STRWX IN M. Porph.	30	GRN G-RY+ WAT	SILICIF. + QZ STRWX, Chior., Ser Diss Py, Ox now on frx only	20	Oz ; a?	• 5 9. Px (disa)	(600D	.055		
	110	Moss VN	20	WHT. LT BRN	80% WHT, Dense Q2 + Miner CC VN. VN OXIDIZED.	B	Oz + Cc .	Oxidized Loc. str FO	V	-160		
	115	3	20	WHT-LT BRAN. LT BLU-	Qz UN. 30% altered Porph. inclusions which are partially exidized	70	Qz. CC	F. Py W. FeQ		. 039		
	120	11	20	WHT. BLUGAN	Almost Completely unoxiding VN + Silf Porph, and Some Serie Maniposity ch	ЪS З	02- (1)	TE P; FeCroleci		. 025		•
	125	in cr. Oxide	20	LT BAN	Decr. % VN Company	60	Oz. CC.	TE Ay, increase	(mod)	. 093		
	130	deur Ox.	20	WH7	Alonost all VN Material. * Ry. only diss in altered peoph - Not VN	95	Qz- cc(p)	Tz Ay (diss in Amel V. WX FeOr		.095		
	133	у л II	20	WHT- LT GAN- GAY	Si Ho/ Ser. (gow goy, to Py)	85	Qz- (1)	TE Py TE FC		.055		
	140	11 138' FAULT	20 /	Lt gry WIT	V.M. BxD, rescaled uj SiOz, Tocal For Py, Post gouse (fif #)	50	Gz.	R AY (12-199)		. 108		
	145	Moss Porphyry	90	LT GRN- GRY	Soft, Clayey due to proxim to fault.	'		21% Pz				
	150	11 L)	90	'n	ke sa uj	-		21% B				
150	155	i j 1	90	"	Gradually getting nona Competent	—		L %				
	160	LI 1 1	90	Ŋ	,с н	-		L %				
	165	11 T/	90	"	Local clots of py Cubes to 0.5 Mm. Propa	 4.		1%p;		.015		
	170	ע ו(90	4		Tz	QZ	<i>د ه</i>				
	175	ii y	90	н	Mindor WHT QZ VLTS & Clay	3%	Qz	Ē				
	180	vi 1	90	II PINKCY	Fresher/harder Material (still fair)	1%		Ŧ				
	185	11 I)	90	<i>1</i> 1	TE FLUORITE XLS Otherwise as above	No.	Ł	Ł				
	190	n 1/		ij	Mottled green speake, loca / pin K color	~		10		.019		
	195	ע וו		1'	h ,,	-		Ta				
	200	11 11		LT gry Local grn gry	Poss. incr. Silicifit Sor. residual biotite Flecks not present	F	Qe	Diss + FRX Py				
	205	H U		Med griv gri-4 PINK	Freshin looking / some biotite (most brotite shill childrent ced	-		Te				
	210	دو بر))	11 11 11	-	*	F				
	215	Li i/		PINK	Fresher yet. Fresh biorite common	-		l				
215	220	4 1/		11	<i>i' '</i> '	-		-				

HOLE NO. <u>M.96-</u> Z

...

MOSS PROJECT, ARIZONA

PAGE_____OF____

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
220	225	# MOSS Porphy-	90	Med Pink- Jy	WK propylitic alt. along 1-3 man qz-chlon stringers, otherwise fresh	1 19,	QZ chlur	-	100			
	230	l) <i>u</i> j	"	1/	As Above	2 1%	Q2		100			
	235	1. 17	n	PIN & Jry gra gry	incr. propylific alt - QZ VL+3. TE Fluoria	2-3	QZ	Te Py	100			
	240	te ap	11	.,	Decr. VLTS & alt. Quite frash	-	-	-	100			
	245	n łi	11	Рак-длу	BIOTITE MOSTLY FACH	-	-	-	100			
	250	ч и	3)	'n.	AS ABOVE	-	-	-	100			
		TD = 250									4	
-		· · · · · · · · · · · · · · · · · · ·										
												-
		T										
										•		

MOSS PROJECT, ARIZONA

MP-14

- -

HOLE	E NO.	<u>M96-3</u> CO	ORDIN	IATES:	N,			_E	ELE	EV		
BEAR		VERT CO	RE/RV	C <u>RC</u>	BIT FACE SAMPLE LC	GGI	ED BY	15	Kelle	r		
		ON <u>Vert</u> HO	LE SIZ	Έ	ST	ART	ED_	2.22	2-96	3:5		
LENG		<u> </u>	ILLER	Mike	(HACKWORTH) CC	MP	LETE	D <u>2-2</u>	23-1	6 11:	25 AM	
PAGE		OF <u></u> CO	MMEN	NTS: 🖌	IT WARKINGS 206-	J	JANLED	To 120'	. 7	9		
	1-540	1 on back for BIG FAU	TRUE	FAU	TBeba workings	Z135 1.15	4	la e e 161	2-2	2		
		I pack for BIG FAU	<u>si bir.</u> I									
FROM	то	ROCK DESCRIPTION					· · · · · ·				SSAYS (OPT	.)
FROM		RUCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	Au	Au	Ag
		Mara Part		LT-Med	Some first biot.					(FA)	CN SOL	(FA)
0	5	Moss Porphyry W q2 stkwk.	30	BRN.	WK Silicification near narrow 92 VATS. 15%. Massivi war. Qz (mathe)	15%	GR+ U	WK FEOR	70%	-006		
5	10	li n	30 3		As Above; az locally drusy & clear, Generally with.	20%	Qz + ce	WE FOR	100%	.019		
		Moss Porphyry	1		Almost no qz veining		_	wr lag				
10	15	1033 Torphyry	90		WK alt. + FeOx	1%	đ.	THE FEOR	100°s			
15	20	js n	90	y)	Same as above	1.2%	Qr- CL	Locally Str. F.O.	110%			
20	25	p. 9	90	- 11	Same as above; gradually incr. VLTS.	Z-3	Qz- cc	Local Mod FeOy	100%			
25	30	51 + 17	90	11		2.3%	\$2- 66	Mod For	01%			
30	35	n II	90	ORG	Str Dis FOX staining, some of which is red hematite, otherwise as Abo	2%	Az- Cc	 STR Fel	100			
35	40	11 I)	90	ORG BRN GRY BRN	DIMINISHED FOOX,	2%	82- :L	mod for	:10			
40	45	н ц	90	Org Bra 20% LTary	As Above + 20% Lt sty (silfed?) chips. Very Little 92 VN,	L 1%	р	- Local Fedx	100 %			
45	50	STKWX IN MOSS PORPHYRY	30 or 35	ORG BAN	40% WHT-LTGRY	40%	QZ Mice	Loca / STR. FOr	100	. 074		
50	55	11 h	30	ORO BRN WHT, Ligy	As above but deco.	70%	Q ₂	1 STR ROX	100	.020	·	
55	60	н ₃ л	ţı.	U.	Banded, Vuggy	25%	Qz	Lei. FeOx	100	.006		
60	65	11 17	30	ORO- GAN BRN WHT. CAY	Silicification of Porphyny increasing - Numerous gry qz	20,	Ge	1 - Ste	100	-012		· · · · · · · · · · · · · · · · · · ·
65	70	24 34	30	WHT-Gy Org.B		60%	QZ	Local Mad FEOX	100	.061		
70	75	rt 1)	30	Red Org wht-gay	Decr. Si Oe but local diss. hem. STRUM structure	200	Qz	Local Str. hem Fele	100	.010		
75	80	1] //	30	LT BAN GRI HUNT	Out of hem. cone quicking. Min. textup More visible. Drusy az		Qz	- WROX	100	.015		
80	85	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	30	ب,	As above. Fely psqudes aft py noted	150	QZ	WK Fe Ch (Pse v dos)	100	.010		
85	90	30 I.V	30	" Org BRA	Drug of the a	20%	Qz	ince fel	160	-018		
90	95	11 11	30	11	As above	15%		Local Mar Felly		.105		
95	100	- Ag - Ag	30	Lt Med Ban gry	Der, FeOx. Drusy az continues	15%	Qz	"A RA	100	.010		

HOLE NO. <u>M 96 - 3</u>

Π

T

MOSS PROJECT, ARIZO

PAGE く OF

3

y.	U		_	U	Г	_

														_
FRO	ом	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	% VN	VN	SULFS	REC		ASSAYS (O	PT)	
							VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)	
100	0	105	Qz STRWX in Mass Paophys	7 30	Lt-Med bru gry la, grug	Drusy & ults (wht- Lt gry w/ w/ sitest. I porphyry	10	Qz	Joca Mod Fe g	100	- 014	0.1001		
	1	10	61 3J	30	*	As Above	10	Qz	4	100	- 010			
	/'	15	31 9	30	p	Incr. GZ - Drusy X LIKy Wht.	20	RZ	4	100	.007			
22	/	120	j, 1)	30	BRN Bry Org Brn	local FeOx	15	Qz	iucal sta FEOx	100	. 011			
	′	25	11 11 - FAULT -	30	u #	5-10%, Buff-org clay (foult!).	20	Øz	ty	:00	. 037			1
124	5	130	Oz stkwx in Moss Porphyry	30	LY BON Gry	Inco. Silicit. of M.P	25	Øz	WK FeOx	100	.010			
	_/	35	4 p	30	n	AS Above	30	Q2- (2	w¥ feQa	100	.016		1	
	_/′	40	³³ II	30	+ "047	WHT XLN BE incr., also silizif.	50	Q2 U	- WKEC,	105	.029			
	/	45	n 11	30	11	SI. incr. % cx vets Local large gz dovses.	40	Q2- CC	wk KQs	100	.017			
	_/	50	1, 11	30	H Some Ong-Bru		50	Qz- CC	Noo Feg	100	-036			1
157	2/1	55	x) II	30	Org Ban-Gay	103 000	ľŚ	02. CL	MO-SIO	10	.011			
	//	60	Moss VEW	20	Many	Reddish & greenish Q2 - Black J+ red Peck chunks - Juicy	60	8z- (L	STR #	100	.073	· · · · · · · · · · · · · · · · · · ·		
	1	65	() ()	20	Grey, Blrck, red, Wht	Local jarosite - Decr. Oz W Material, Local Chy (fa, 1+7)	40	82 - CC	Rg *	po	.04Z			1
	/	70	n 11	zØ		TE Amethyst - grein + Pink 92. Sulfice + pens	50	Oz- CL- Flumie	< 1% Py STR IOCAL REDR	100	.082			
17	0/1	75	FI ()	20	LT Gry Wht	Ve as the suff mp	45	Qz. U	< / %	100	.040			
_	1	80	n //	20	White White		55	Q2- CC	< 13 pz	100	-198			
	18	35	н µ- ?	20 ?	6+- mod gn 37	MP	30	Q2- Minor CL	⊶ ГУ 	100	-014			
 	4	90)ı IV P	607	Med- & K GRN WHT	6 6 4 4 4	73	OZ	F.A.	90 	.044			
		95	ار ۱۱	20	WHT- UT GN	909% MASSIVE WAT		Qz- Minorce	_	100	. 040		.	
195		00	р <i>и</i>	20	LT SN SY	Do W. local chan, To GAEY QZ	70	QZ- Miner cc	Ŕ	100	.048			W Ho
		05	ls 11	20	"		80~	M M	F.	100	.061		*	De h
 		-	WORKINGS 207-213	77	11	arge chunks.	/*	Øz		15	.081	1. 1. 27 m	Je	J
 ,	_	45	FAVLT	FRULT	GEN GY PINK	20% gray Fault garge Clay. Decr. Gz chipi	20	J z	<1%	50 .	.026	¹ . ² tan − 1 t		ing and a second se
215	2	20	Mass Paro Lur	01	3PN GAV	5% BZ VLTS ONLY.	2	An	1 12					

HOLE NO. <u>M96 - 3</u>

MOSS PROJECT, ARIZONA

PAGE <u>3</u> OF <u>3</u>

IOLE	S NO.	/1/0-5				2	-23	PAG	E <u> </u>	OF_	3	
			DR.	LLING	- WIST H	9 9:44	5 AM -	₿¢	pair hea		ASSAYS (OPT)
FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	An (FA)	Au CN SOL	Ag (FA)
220	225	Moss Porphyry	90	GAN, PINKgry	Chloritization of biotite, Feidsp. Fresh Looks Barren.	1-2	22	R	604	.004		
	230	1) 11	"	17	"No VLTS	-	-	Tz	100			
	235	n 11	ינ	H.	Incr. WHT VLTS, other	2.3	Qz- CL	Æ	100			
·····	240)) — И	"	<i>ii</i>	As above, deca NTS, E FLUORIT		Qz Cc	Æ	108			
	245	ь 17	90	- 11 - 11	As Above Fe contam.	1-2	Q2.	L/%	100			-
245	250	ji il	90	1) (de-4-)	Incr. py clots (diss + fra), otherwise same.	21	QZ	1%	100			
	255	*/	90	11	Fresh looking Porphysy Weak propylitic alt.	-	-	×1 %	100			
	260	μ' ε	90	•1	aa 13	-	-	2 1%	100			
	265	/s = 13	90	1:	1 <u>(</u>	-	-	<i>دائ</i> م	:00			
	270	·/ u	90	ų	() y	-	-	TR	100			
270	275	<u> </u>	fo	7	Play - Prot - Chloriso partia	-	-	TA	100			
	280	je ji	90	n	н <u>I</u> I	-	-	R	100			
	285	h 1)	'n			-	-	龙	100			
	290	H ()	IJ.	· ''	11 sj	-	-	Æ	100			
	295	I , ¹ /	- 11	"	<i>II II</i>	-	-	F	100		_	
295	300	ja 14	ų	н	կ հլ	-	-	12	100			
												
		TD=3	00									
	<u> </u>					1						1
											•	
-												
						-						
	<u> </u>											

mp.9

3

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-4</u> COORDINATES:N,E ELEV BEARING <u>fort</u> CORE/RVC <u>RC (Bit Fries Smpr)</u> LOGGED BY <u>J. Keller</u>													
			CO	RE/RV	ν <u>ς </u>	(BIT FALE SMPL) LO)GG	ED B	Y <u>J.</u>	4.0	112-		
		ON Ver	τ HO	LE SĽ	ZE	- ST	'AR'I	TED_	2.23	- 76	1:00	PM	
LENG	TH		DR	ILLER	Mik	(Hackwood) CC	OMP	LETE	D <u>2-2</u>	4-96	8:55	5 AM	
PAGE		OF	<u>г со</u>	MME	NTS: EA	ULT 53'-56' (BLIND	Ros	1			2/23	footuge =	420
					why :	s rock Oxidized so a	J., ^	9	and L			-	
F	1				···· /			101			When	es the l	Nin?
												ASSAYS (OPT	5
FROM	TO	ROCK DE	SCRIPTION	ROCK	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %			
										70	Au (FA)	Au CN SOL	Ag (FA)
	_	DUMP RU	ARIE -		· · ·	LOTS OF MOSS VEIN					(2)	011002	((27.5)
0	5	ROAD RUB	BLE	5	Varied BROWN GRY					20	.023		
5	10				11		<u> </u>				.065		
3	10	STRWY	ZONE	- 30 -	'	QZ VATS & VINS, FEOR	┣ -			30	.030		
10	15	STKWX	IN MOSS			Silicified Moss Auph of numerous 22 VNS 2			-	<u> </u>			
10	15	PORPHYR	Y (H.Well)	30	ORG- BRN	W numerous q2 VNS 2 VLTS. Str. Limonite +Hem.	20%	QZ	STR FEDY	90	.012		
15	20			70	GRY-BRN	· · · · · · · · · · · · · · · · · · ·	20%		-	4			
		· · · · · · · · · · · · · · · · · · ·	11	30	(LIGHT)	decreased FeOx.		Q-2- MINA CC	WK FEO,	90	.013		
20	25	·	11	30	.,	Fractured, biky, poss. 5% contom from setting Cosing:	15%	Qz-	W.F.F.Q.	100%			
 				<u> </u>		GZ VLTS locally drusy		4	<i>Wiele</i> 0x	100 -	•010		
25	30	¥,	н	20	h	No blocky chunks -	10%	0-	-				
				3.0	n	No CONTHM. S, 160. Moss porphyry, VLTS	10 10	az-	WK ROX	4	.021		
30	35	- u	"	30		h ()	10%	Qz-			A10		
				<u> </u>	.,	· · · · · · · · · · · · · · · · · · ·	10.0	دد	WK Felx	<u>у</u>	.012		
35	40		17	30	37	() ¹¹	15%	Oz-	wk-mad	-1	. 029		
				<u> </u>				22	FeOx		• 021		
40	45	L))/	30	- 11	" (1	10°10	QZ-	- WK FCQ	9	.026		
					+1			رد	UKRU		.026		
45	50	- 1	11	30	WHT	Incr. WHT XIN QZ, Otherwise AA	25%	WK CC	WK FEG.	<u>й</u>	.021		
50		FRINT	PANE	30 7.5	Tour Der	30% TAN ORG-GOUGE		0-			.021		
50	55	GOUGEN	EONE RKas Abore	A WIL	GRY RPA		15%	az	MEFOR	tr	.014		
55	60	15% 6	DUGE	30	GRY.BON	Decreased gouge, The silicities M. P. STAWX BAG	2001	A-					
55	00	STEWX Z	NE . MP.	\$ 30	TAN Org	Silicified M. P. Str Tux Bra ayain	2018	az	Mod Fely	.,	,010		
60	65	STEWX	ZONE	20	Ory - BAN		0.0.						
		in Mo	ss Porphyry	30		QE VLTS (some dous,)	20%	QZ	WK FOR				
65	70		*/	20	.,	<i>y</i>		2-	-				
		10		30		As Above	20%	Qz	wk FG	"			
70	75	11	11	30			20%	BZ.	-		.016		
				50	11	As Above	01,		WKFeg	,,,	.016		
75	80		"	30	WHIT	MULH INCREASED WHT XLN QZ VN MATERIAL	65%	Q Z MINOA MINOA	-	v	a 1 A		
					BAN.GRY	LOOKS "CLEAN"		MINOA	WK FOX		.010		
80	85	te	.,	30	BRY. BRN	Decr. GZ. PORPM Still S. Ifd.	10%	Qz-	-	14	0/0		
								Ce	wh FeOr		.010		
85	90	μ	"	30	"	AS Above NOTE: BE WITS CUP L.	5-1810	02+ CC	WK FOX	.,			
						NOTE: G2 WLTS CUT by			- 100x		-		
90	95	ji ji		30	" # 10 MT	INCA. OR VLTS (LOCAL d-USY)	35%	02- (2	WK FeD.	v,	.011		ļ
0.5	100			22	KON-	(LOCAT A-USY)			WK FeO.				
95	100	нų ,	17	30	we w	Decr. VLTS. RK slightly less slifd.	25%	Q2- 62	WR FOOD				
						and the states			′	7			

HOLE NO. <u>M96-4</u>

F

.

MOSS PROJECT, ARIZONA

PAGE_2_0F_3

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	Å	SSAYS (OPT)
			CODE	COLOR	ADIERATION	VN	TYPE	%	%	An (FA)	An CN SOL	Ag (FA)
100	105	Stkwx Zone in Moss Porphyry	30	Gry Bru Org bow	WK Silicification -Carbonate Vuggy amber Calcite Val	10%	dz+ CC	Mai FeOx	100	.011		
	110	i1 /)	30	BRN-GRY	Decr. Calcite, incr.Oz	20%	OZ · minor ec	wKreg	100			
	115	<i>۱۱ ۲</i>	30		Decr. VLTS, Fractured, Incr. FeOx on Frx	5%	Qz- cc	MOD FC	100			
	120	n ,,	30	GRY - BEN	Same as above	10°10	Qz- cc	Modifici	100			
120	125	LOW GRADE BONE?	30 35 i	ĥ,	Alteration - Silic, f. appears to be decreasing. LESS VETS	510	Øz	WKECX	100			
	130	n n	30		INCR. VEINING & Silicit again	20%	QZ Minor CC	TE FeQ.	100			
	135	11 67	30	1 A.		25	Qz	TE FEQ.	100			
	140	и П	30	11	n . *	15%	QZ. Minor CL	R.F.Q.	:00	•		
	145		30	BRN- GRY	Increased silicif. of Porphyry. Not much uniqz	10%	ØZ	tivik FEOx	100			
145	150	11	30		As above Mainly, but to clay 19	15%	Øz	STR-Fely	100	.017		
	155	- POSS FAULT-	130 30	<i>.</i> ,	WK-Mod Silfo porph.	10	Qz	Mod Fel	100	.010		
	160	STKWX ZONE :. PORPIH	30	GRY- BRN	Q= VLTS/Silicit. somewna + decreased.	5-10	Q2	WK Sis- FECX	100			
	165	MOSS PORPHYRY	90	Ben Gry GNGY	Becoming less Oxidied. Decr. alteration & VETS Chiorite present	3	Qz	WE RO.	10 0			
	170	Moss Porphyry w) Qz StKwx	30	GY BRN GN GY	Some What inc. Silicif. LVLTS again.	5	Rz	Local Moo FoOx	100			
170	175	ja 1 j	30	GNGY GY BRN	As above. Nerrow VL+s have halos of FeOx & Silicif. outward.	5-10 %	Qz	<i>,</i> ,	100			
	180	(Acplacement) Vein	30	۰,	Increased Silicif. * QZ WLTS.	20%	Qz	.17	160			
	185	Moss Vein	20	l)	As Abore C.	15%	or	۰,	:00			
	190	Moss Vain	20	GRY BRN	Strong Silicitication Deer, chlorite	25%	or	"	160	.01)		
	195	"Moss Vein"	20/6	Greenish Gry-BRN	Mod. s. Vicif. but 1885 At WILTS.	10%	QZ	UK FeOy	100			
195	200		90	(incr.GRN)	WK- Mod (localized) Silicif. Little versions		Qz	wk FeOx	100			
	205	(())	90	,,	Chioritic alt. of biot/Abia	5%	Qz	<u>ر</u> ر	p			
	210	·/ '/	90	Olive grw. GAN-S-Y	Incr. Chlorite . Decr. Silve , Basicathy A.A.	3%	Q2	Local Rea FeOy	" H ^{m n}			
	215	n 1)	90	23	As Abore		Qz	"	, ،			
	220	11 Ij	90	11	AS above Vits locally dovey.	1%	Qz		11			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96 - 4</u>

Î

. . . . **.** .

PAGE_3_0F_3_

FROM	то	BOCK DE	SCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)	
TROM				CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)	
220	225	Moss Pe Dike (?), d	brphyry lense,dKgnu,f.g.	90 1	DK gra Sty gra local pink	Chloritic alt local wK-modsiliciti a few Small drugges it to	1%	Øz	WK-Mod Fe On.	100				
	230	Moss	Porphyry	90	Lt gra- gry	Chloritic alteration. Feox on fre, diss Py.	F	az	2 .5% py	100				-Reo
	235	t i	1	90	Ltmed grav * Phakgry	As a bove , local zones of incr dise , py . Drgy	-	-	. 5% Py	100	.010			
	240	11	17	90	Grn GRV PINK gry 6t brd	As above. To clean xin calcite	Æ	cc	C.SPy oxfrx	100				2/23
	245	+1	1	10	, ,	As Above : still parton .	E	æ	L.SPY FRX FROM	¥o			و در این مور	2/23 2/24
245	250	17)/	90	il.	As above Fractured, Minor clear ge	<)%	Qz	12 1 fe Cr	100				
	255	n	11	90	DKGNGY PNKGY	Much less oxidation. Propylitic alt. decreasing	-	-	2.5%	"				
	260	рI	N	20	• 1	As above. Barren	-	-	6,5% No ox	7				
	265	и	11	90	11	v ¹ VI	-	-	L5% P	<i>د</i> ب				
	270	41	У	90	Piuk Gry	Homogeneous fresh.	-	-	EP,	14				
270	275	h	þ	90	PNK Gry CRN	Local propylitic att.	-	-	FR	"				
	280	η	1)	90	"	As above.	-	-	TE Py	1,				
	285	h	11	90	D.	As Above; E aide	-	-	The Py					
	290	ti	¥	90	1/	As Above	-	-	FE Py TA OX	31		-		
	295	ท	11	90	v	As Above: Note: Pink, fresh Mass Porph. has Magaetik (Jiss	-	_	R Py TE Or	τι				•
295	300	· ti	11	90	"	Propylitized has py-No mag As Above. Minor CC 1273	Ē	СС	E Py E Ox	v				
														• •
			······											
			- -											
													1	
	L		N											
·														

DRILL HOLE LOG	
ADDWEST MINERALS, INC.	
MP- 13	

MOSS PROJECT, ARIZONA

1

MIT- 13		
MP-13 Ada		
HOLE NO. 196-5	_COORDINATES:N	,E ELEV
BEARING	CORE/RVC <u>RC (BIT File Sound)</u>	LOGGED BY J. Keller
INCLINATION_Vertical	HOLE SIZE	STARTED 2/24/95 9:45 AM
LENGTH <u>340'</u>	DRILLER Mike (Hackworth)	COMPLETED 2/24/96 6:15 pm
PAGE_/OF3	COMMENTS: NOTE DEEP O	
		xiga Tion. (320)

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	A	ASSAYS (OPT)
			CODE			VN	TYPE	70	%	Au (FA)	Au CN SOL	Ag (FA)
0	5	PAD FILL COLLOVAN										
5	10				Org Llay along bedireck boundary							
10	15	Moss porphy-y w/ Qz VLT STKWX	30	LT BRN	Partially Silicifical Causing Sleaching Q2 VLTS Common acnomic wat- VL+ Gry, Xin	15	Qz	wk Fe Ox	100			
15	20	ن رز	30	ν	LITTLE FeCx, boai Maco -As ABOVE; incr. Q2	25	Q=	¥9 ·	100	.030		
20	25	j., 1)	30	lt Brw	As above. Oz locally d-usy /vuggy.	25	Or- ec	n	100	.022		
25	30	OZ VEIN	25	WHT - LT Gry Ban	Dense, locally bandood, Wht, brw, green gry q2	1.1	d' J	h	100	.059		
30	35	Moss forph. W/stry (fault gouge to)	35	LT-Med 9"Y BIN	WIGE WIS	15	QZ- MNRCC	Mod EQ	100	.023		
35	40	Moss Poaphyry w/ a tew VLTS	90	Med 37-Brn Pink.brn	Darter (fresher) Than above, fewer VLTS. Pink MP W/ Magnetite	5	Q2 - MARCO	wK'FeO3	100			
40	45	Moss Porphyry	90	-11	WK- Mod Prop. alt.	ħ	BZ.		100			
45	50	Moss PORPH. w/ Q2 StKwx	35	lt-med gry bril	Mod silicif., dz ults again - Lighter color	10	Qz	n	100	.024		
50	55	11 yı .	35		Decr. NL+S R Silicit	2	02- CC		100	.007		
55	60	^и . Ц	35	"	Inco. drusy qc & Silicif	/5	82 L LL	4	60	.008		
60	65	// IJ	35	LT BRN BUHP	Bleaching, pour due to WK angillie alt. fairly	Ø	QZ- CL	hoca' Mos FeCx	100	.005		
65	70	a .,	35	lt. Med Gry bow	Decr. bleaching, but still present locally. WK Silicif. Incr. VESS	ĸ	QZ- Marce	wr fedy	100	.023		
70	75	¥ 1,	35	BRN	Incr. bleaching / Vesning, TR Annethy st		02. Ce	weter	60	.017		
75	80	ا ا	35	Lt-med BRN	Less bleached, othering	¥2	Qz. CC	with FeOx	100			
80	85	er by	35	ų	wer- Mod sitient, blacking Little VN Q2	5		LEX FOR	100			
85	90	ji 11	35	14	Only with Silicifi		0	NKEQ	100			
90	95	ji 17	35	11	As above	13	Qz. Mark (C	WK FeDx	100			
95	100	FAULT goige (30%)	10 500	60000 : Tan Org R4: 11 15 N	70% as above 30% Fault 9003e		92	UF. Mod	180	.027		

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-5</u>

.

PAGE___OF_3___

FROM	то	ROCK DESCI	RIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	4	LSSAYS (OPT)
				CODE	COLON	Allaction	VN	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)
100	105	Moss Porp Bz <+Ku	hyry w/ JX	35	Lt-Med Gry brn Yssan Piak		25	Qz		100	.049		
105	110	11	1)	35	"	Decr. Ge VLts, mer. Local FeOx(org.b.n)	10	QZ	Locally Sh ROX	100	.015		
110	<i>115</i>	þ	4	35	ıt.	As a bove: drusy Uts cut weakly allered Automatry. The clear number	10	Qz- ce	WKEON	100			
115	120	1)	IJ.	35	Lt brw. Sry buff	Mad siliaif bleaching. Much into veining	30	Qz.· cı	WK.MOD POCK Lamos Hav	100 4	.013		
120	125	h	"	35	11	Decr. silicit. / De voining Coarse XLM VUD9Y Calcife	15	Q2- CC	WKROX	100			
125	130	<i>II</i>	1/	35	L+-med BN ·GY + DNX SY	As Above: Weakly altered Moss for ph. w/ Bz + CC VLts. No connece	15	012 - CL	we Felde	100	.012		
130	135	11	,,	35	и	Fractured, W FEOX Contings (limohitic) · Sl. inen Win ing	15- 20	Qz- Ce	Lac. str FeOx	100	.012		
135	140	11	11	35	h	As above. DK brw-ang FEDa on some vat selvagis.	15- 20	QZ- CL	LOL. ST Fela	100			
140	145	H.	"	35	µ بو يو +	Basically as a bove; Qe-cc VLTS & NOW Milky with rather than grey-with clear	20	Qz- cu	La st Recy	100			•
145	150	h	lj -	35	- 13	Grn color increasing vets decr.	0	Q च- ८५	"	100			
150	155	р	r i	35	≁ ~,,	(less milk, te)	10	QZ- CC	Los. M.J	Ø0			
155	160	11	11	35	,,	Increased QZ-CC VLTS. Some VLTS WHT, SOME Thenslucent gry. Brahint	20 ikcifi	QZ. Cc	11	100			
160	165	Daill WET	11	35	11	As above: Propatt MP w/ VLTS.	15	dz. ce	17	100			
165	170	+)	11	35	GN BRN BRNGY	Silicification (mod-str); dense. No incr. in VLTS.	15.	RZ- CL	wr-mai FeOx	100			
170	175	te	1	35	Ben Gry	Incr. Qe VLTS, Silicif. decreasing. Inc. propalti	Z5	æ	11	100			
175	180	ń	LI	35	.,	AS ABOVE, Sl. incr. Silicification.	25- 30	Οz	11	100			
180	185	Moss	יי געש	za? 35	LT GRY BRN	Strance silicification & 12 veining Dense, grey box, tenture destroying	40	QZ Some dry VUZGY 7	Loca : Str.Ox	100			
185	190	11	11	35/20?	17	As Above	50	QZ Mara Le	Locaj Mod FEBA	100			
190	195	W	<i>"</i>	35	LT Gry BEN	Chlontic chips w/ mineral texture returning	35	QZ- MARE		100			
195	200	11	"	35	Lt-Med GRN 6-EY GRY BEN	ARD Pylitic , Much decr. Veining & siticif.	15	QZ. MNR CE	we felle	80			
200	205	\$1	ly.	35		SI. incr. Silicit. R Klining again. 1	20	Q2 MNE CC	WKFeOx	100			
205	210	71	•••	35	DK gri BRN.GR,	Group is hing Silieif	15	02 - CC	Local Sto FOX	100	.012		
210	215	11	V	35	BEN GRI	again (moderate)	20	Qz- Mar Ce		100			
Z15	220	¥	*)	35	,,	R Fluorite, Stronger Silicification & veining	35	QZ- MN/ACC	THEOH	100			

HOLE NO. <u>M76-5</u>

MOSS PROJECT, ARIZONA

FROM	то	DOOT NES		ROCK	COLOR		%	VN	SULFS	REC		LSSAYS (OPT)
FROM	10	ROCK DES		CODE	COLOK	ALTERATION	ÿø VN	TYPE	SULFS %	REC %	Au (FA)	Au CN SOL	Ag (FA)
720	225	Moss Port W/QZ ST.	HYRY XWX	35	Breenish Brown- gry	Variable silicitication & chloritization. Drusy, XIn 92 VLts, FEOX	25	OZ- MAR CL	Mad-st Fe Ox	100			
	230)r	¢/	35	,,		20	QZ. MNR	Mar Or	100			
	235	11	"	35	Med. 9"Kin	Decr. Silicitication (almost non-existent) Childri Hized.	5	az	Mod-	108	-		
	240	'n	11	35	4.1	As above. sil. only ads. to vets	5	ðz	- '' FeQ,	100			
	245	h	IJ	35	ر.	As above: chloniticad MP w/Az v/ts, Diss + Frac - fill #20x (hematite comma)	5	QZ- MASC	կ	100			
245	250	t,	t <i>i</i>	35	1.	Mostly as above, but locally a little silicified	10	Qz.	"	100			
	255	11		35	LT GYBA	1035 Childrite. Lighte	15	Qz	2)	100			
	260	şi	''	35	L+-Med g~ BRN	Decr. Silicification, incr. chlorite, A little agillic alt. Decr. VLts.	5	Ø z	mid at	100			
	265	11	1)	35	1.0	As bove, sl. incr. drugy at vits	10	Qz	h	100			
	270	N	L)	35	11	Silicit. & reining nore intense again. A little lighter color	15-20%	Qz	11	100			
270	275	<u>, 1</u>	11	35	L+ gri BRU + L+ GN GY	A little more silicities	20	Øz	Hi-Mad Files	100.			
:	280	Moss	VN (?)	ZÔ	11	Strong Silkification Dense. VLTS remain about same	20	az		100	.005		
•	285		и,	20	Lt gov-Ben to Lt gory		50	Qz	WK FeOx	108	,003		
:	290	11	<i>יו</i>	20	Lr-med gN-BN IF gry BN	Strongly silicified, but sl. less then above; darke		QZ	WK FeOx	100	.002		
	295	1' H	4	20		Variable Silicification but abund. ge v.N., Incr. Chlor.where not subc	60	Øz	WK FEQX	100	.007		
295	300	ii	<i>م</i> ر را	20	Olive green	Moderately silicified, Chloritic, decn en grz (still dousy locally)		Øz	WK FROX	DO	.00 Z		
:	305	•	ל יי	20	grear	Strongly Silisified, dense fairly homogeneous except for Bz vits. TR Amethyst	15	Qz	w K FeOx	100	. 904		
	310	i. Extremely sk	, p) an dmillin' due	20	j. i	As above: Fractioned - blocky		g e	wk Fedr	100	. 00 4		
	315	- Moss	20 Porphyry (Fu)	20	1.	Varia bly silicified, becoming less so. Min textures gotting visible	าร	Qz	WK-ma Fe Ca	100	.003		
	320	(Fw) Mos	s Perphyry	10	Medi olive grn	Greatly diminished Silicitication strong chlosite, Wets conti	10_	Øz	WK ERFEOX	Øð	. 004		
320	325	Moss (fu	Parphyry	10	BLU-GRN + PINK	No Slicification. Local diss py (exhedral cutes. 2000	2%		(170 Py)	100	.012		
	330	Moss	Porphyry	90	11	As Above. Fresh & Barren locking.	1%	wht ciear 92	.5%Ay	100			
	335	h	*/	90	Piwk Med sygnu	Demand Americant	L 17.		2.5%	100			
	340	11		90	>1	As above. FeOx on biky fire.	21%	92	L. S. P. P.	100			

T.D. = 340'

4

<u>ب</u>

MOSS PROJECT, ARIZONA

MP-4 (oia	
HOLE NO	_COORDINATES:N,E ELEV
BEARING	CORE/RVC Rc (Bit Face) LOGGED BY J.Keller
INCLINATION_Vert	HOLE SIZE 5 4 " STARTED 2/25/96 8:45 AM
LENGTH/80'	DRILLER Mike Adkins (Hackworth) COMPLETED 2/25/96 2:30 PM
PAGE_/OF	COMMENTS: POSS X-SXN ON BACK

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT		
			CODE			VN	TYPE	%	% %	An (FA)	An CN SOL	Ag (FA)	
0	5	Moss Porphyry W/Qz StKwx (Hd	30	gry.BRN	WK- Mod siliciti, a few xin qz vits. Felx(org.bra) Chlorite alt.	5	९२	-	:60	.017			
5	10	11 11 Jarge	30	etd Ben	20% BRN gy + rod bra dense hy silicities chips, Incr. 92 Poss V.G. in red silica (or its pu) -	1	92	E? Mod Red	70- 80	.01)			
10	15	NOSS PORPHYRY W/VLTS	30	GRY BRN GN - BN	PARTALLY SUICIFIED , 100 7	5.10	A 72	Mão Rea	95 abom	.020			
15	20	WORKINGS /FILL	FILL	MANY	FILL or caved Matering INCLUDES 30-40% of NO Material, locally not-trucket	30 - 40	۹.۲ در	Mod-str Fege	20%	.073			
20	25	WORKINGS/FILL	Fill	h	BLOCKY))	-11	ન	20 %.	.140			BITABO
25	30	Moss VN ?	5.LL 20/10	WHT . BRY BRN Red hem	50% Milky whtere are 50% Moderately silisified forth, prost constraint Manufacture Prost	50%	QZ- MURCC	WK-MO FEO'V	30%	.05]			DRI
30	35	MOSS VN (P) (contam) (P)	20	11	Many large Fragment. Prog What are the work (here on frx-locally), WK silfd. Porty-	400.	Az. Marce	wK-nod FeOx	30%	.0.010			×-
35	40	Moss VN (?) The Cherces From workinge	20	ы	As Above		Q2- C2	wk-mod FeOs	20%.	.053 50	mples		
40	45	MOSS VN NOT CONTRAN	20	WHT TAN + BRNI	75% wht- It the QZ+ CC Good Sample	75	02- CC	./	65%	•114			
45	50	u 1)	20	Ltgy BAN Wht. ton	Oz decreased. Porph. is only weakly silfd.	40	Oz- cc	ji	90%	.040			22
50	55		20	11	As Above. Inc. Be + Calute.	60	هر در	-ta	100	.023			0
55	60	н э)	20	WHT BEN	Vein Material clearly dominant.	75	az CC	4	100	.045			
60	65	24 1	20	Ŋ	įs 1)	80	az CC	11	100	,034			
65	70	(i))	20	U	vn Material decrosing	50	er cr	¥	100	.037			
70	75	1, 11	20	h	Jaco VN again Some PINK BZ	70	oz ez	ų	100	.033			
75	80	LI 11	20	WHAT	Vein	95	Oz U	ij	100	. 042			
80	85	Moss PORPLyry (FW)	20 10	Med BAGY BILT GN	30-40% VN Material, Fill, Parphyry propyletize	135	GZ V	The Ay	100	.010			
85	90	р Ч	10	GN GY Blu-GN	Qz VIts, propyliticalt. REDOX	10	<i>Bz cc</i>	Listop	100	.01]			
90	95	Vein in Fw	25	Org Ben wht	Houndant FeOr. No sulfida	50	42 (C	1 K. SF. C.	ν	.031			
95	100	VEIN in FW	25	WHT-BUR	May be Mose IN	80	or U	Locai Str FeOy		.033			

4

ه. ش

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-6</u>

PAGE ____OF___

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	A	SSAYS (OPT)
		NOCK DESCRIPTION	CODE		ALIERATION	VN.	TYPE	%	%	An (FA)	Au CN SOL	Aq (FA
100	105	Moss forphyny (fortuall);	10	gn gy Org Ben	Local uk Mod silicit, propylitic dominant. diss py in propyliticed	8	Oz- cc	. 5% py LoL Str 0;	100	.014		
105	110	s ¹ 1/	10	Org BEN GN BN	strong limonite Stain. Fractured; propylitic	3	Oz U	Str. FeOx	(00			
	115	FAULT ? Narray MOSS BRF4-FW	10 4	GNGY GN BN		20	Qr CC	Te Ay Moo	100	•012		
	120	Moss Forphyry(Fw)	10	GN GY	Much decr. FeOx. Chlorite + Ry (propylitic) Alt. Ox conty on fri:	15	82 cl	SX:47	601	·025		
120	125	11	10	Org-BRN GN-BN		2	02 CC	STR Fredr	100			
	130	ji 14]0	GN-GY -	FeOr Moinly on fox. Chloriticalt. Continues	8	Q7 CC	. 5% PY W K - Mod W FEOX	100			
	135	$oldsymbol{y} = -\frac{1}{2}$	10	G-N-67	Oxide almost totally gone now. Strong propyisti alt. continues	4	07 .CC	2.5%	100			
	140	H 9	10	GN-GY Pink BN	41 - 2 J	8	Qz (C	С.5%ру	100			
	145	н ц	10	u P	. 11 D	7	CC . QZ	K. 59% PY	1)			
145	150	FAULT ZONE	50 JE	GN 6Y WHT	Abundatur Gy Clay VLFs common, chilor com	15	Oz U	2.5%py	١,	.012		
	155	Equit zons 1	55 50	11 11	Abundlant GY Clay	15	Qz 11	لام 5% × 2	11	.02.3		
	160	Moss Porphyry	90	GN GY	Clay diminishing VLTS diminishing propylitic alt continues	5	Qui	EPY) I	.017		
	165	Moss Forphyry	90	N 1)	MUCH Decr. clay str. Propylitic alt. FeOx on frx	3	Qz cc	L.Slopy Local FeOx	: 1)			
	170	Moss Porphyry	90	DK purple grey tongy	Propylitic alt. diminishing Fresh, DK Purple gry	1	дг сс	TZ PS (ragnetite)	Ŋ			
170		Moss Porphyry	90	Die purple gry	Fresh, is	-	-	(Magnetite)	м			
175	180	Mass Parphyry	90	33	Fresh, "	-		(mashetite)	H			
_		•			· · ·							
		<i>'</i>				· ·						
				N.								
					•							

MRS

.

· · · ·

MOSS PROJECT, ARIZONA

•

BEAR	ING_ NATI TH	<u>200'</u> HOI	ORDIN RE/RV LE SIZ ILLER MMEN	<u>M;Ke</u>	N,N, <u>Kins (Hackwork</u>) CC Cry Cold, Rainy, & Wino	ART MP	ED_2	2/2 <i>5/1</i> D_ <u>2/20</u>	; /9 6	9:13	5 AM	
FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	A	ASSAYS (OPT)
			CODE		·····	VN	TYPE	%	%	An (FA)	An CN SOL	Ag (FA)
0	5	Pad Fill Rubble	-		Snall Sample				5%	.065		
5	10	# " # 9'							15%	.218		
10	15	Athene Zone in Moss Pouphyry	30	2+ BRN BUFF	WK Siliciti cation/ blacking.	5	Qz	Frea,	60%	.041		
15	20	i y 31	30	Buff. 4-BRN	Mod - locally strong Silicification + bleaching. Local drugy 92. Hard.	15	Qr	TR FEGS	75%	.074		
20	25	C DATAM. Pluggins	30	Varied	Generally as above, but CONTRY.	<u>†</u> 10			20%	.072		
25	30	CONTAM! Plugging	30	st	17 11	= 10	•		20%	•179		
30	35	CONTAM! Martin	30	, ,	57 I <i>I</i>	<u>r</u> 10			20%	.149		
35	40	Moss Vein	20	BUFF-	ABUNDANT VN	60 60	az CC	Minor FeOx	Good	.056		
40	45	F)	20	4		50	ч	<u>ja</u>	1	→.298 •430		
45	50	u	20	4		60	4	۲۱		.103		
50	55	n .	20	Lj -		Ю	η	h		.050		
55	60	<i>F1</i>	20	ч		60	4	11		.058		
60	65		20	η		80	11	31		.046		
65	70	۶1 ب	20	1		75	ч	11		.02/		-
70	75	.H	20	61		40	11	า/		.010		
75	80	4	20	11		80	ĥ	Minor FeOx		. 020		
80	85	VI	20	u		Þ	И	Lo calized 1 jorganiti Felge	•	.009		
85	90	I TMP (Footwall)	ĬÕ	MO-OT EN EN	MD-DK GN BAN SILL TAP Still Present	ĭο	Q2	Feck	<u>،</u>	.017		
90	95	n ii	10	GN GN	Un silicified, but a little clayer (ang.alt)	1_	-	WHER		.002		
95	100	n y	اط	Orager	Strong Fe Ose, Fractured	2	Qz	STR Ox	J	.015		

G

MOSS PROJECT, ARIZONA

HOLE NO. <u>196 - 7</u>

. .

PAGE___OF_~_

.

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	70	VN	SULFS	REC		SSAYS (OPT)	
FROM	10		CODE		ALIERATION	VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)	
100	105	Moss Porphyry (Lauter)	10	GN BN	A little claser & bleached - FAULT ZONE	1-2	az CC	wk FeOx	±50, Быт Аср.	.012			
105	110	11 11	10	Mad gr BN QINEISH	Decr. Clay. Frester, good mineral texture Looks barren.)- 2	OZ- CC		150 262-67				
110	115	" " (Faver)	10 + 50	GRU GY PINKISH	Local Grey + the Org Clay (gouge?). Decr. Fo Ox.	1-2	Q2 CC	WK Fel,	±50				Rech
115	/Z0	"" (fault)	10 + 50	*1	Gouge + clay alt.	3-5	02 - ~~	F. P.	(0) (6000 5	imp to s)			
120	125	Moss Ponphyry	90	Pin Kish BRN	WK a-gillic alt	1	02- (1	wr FeOx	\checkmark				
125	130	Moss Porphyry	90	TI GRN	", Fractured	1	G2. U	en Frx	Good				
;30	135	h u	90	n	XX 1)	-	-	† /))		.011			
135	140	ii 11	90	MO-DK GN-BN PNKIS=	Loca + Silicification, but generally just tractured & propylitized. DX		-	Moll - STR FeOx					
140	145	h i'	90	PNK BN GN BN	No local silicit., localiz prop.a.t., fresh magnet to where pirk.shille little	e _ ayey	-	- Wit Felly					
145	150	11 4	90	11	Slight clayemess diminist; getting hander. FeOx on fry.	_	-	with Fear					
150	155	11 11	90	1/	A 1:14 pinkes fresher) harder. 19,11 Fractured	۲.	-	WK Fed.					
155	160	j) ji	90	1) + Loca i Cra brs	5-10 % limonitic sta chipe (local herestite)	-	-	Loc. str FeQe					1
160	165	<i>ь µ</i>	76	Pinz-BN GRN	WK Propylitic alt. Fe Ox on fractures	-	-	- wk Gy					
165	170	n ⁴¹	90	11 . 0		~	-	wk felt					
170	175	N N	90	H 34	⁻ н. р.	-	-	WK Fear					
175	180	n "	90	1/ ii	(¹ "	-	-	h j,					
180	185	1 ¹ d	90	K #	j i av	-	-						
185	190	11 (1	90	y *'	·1 ·/·	-	-	11 - JI					
190	195	vi p	90	a	Rather monotonous fort		-	1, 0					
195	200	11 11	92	., .	41 V	-	-		V				
		TD = 200'		ļ							••••		
									1			`	
λ. 				-									λ.

·...

MOSS PROJECT, ARIZONA

MP-3

HOLE NO. <u>M96 - 8</u> BEARING <u>Due North</u> INCLINATION <u>-60°</u>	_COORDINATES:N CORE/RVC <u>R((required</u> HOLE SIZE_ <u>5 /2</u>	E ELEV LOGGED BY J Keller STARTED 2/26/95 10.00 AM
LENGTH <u>//s'</u>	DRILLER Mika Adking	COMPLETED 2/26/96 12:25 PM
PAGE_/OF	COMMENTS:	
	SNOWIN G	

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	A	LSSAYS (OPT)
			CODE			VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
0	5	RUBBLE (DUMP)	1	Varies	Abundant Vein Material, also barren M.P.	50	Qz- CC	-	30	.064		
5	10	RUBBLE (NO SAMPLE)	-		(NO SAMPLE)			1	-	_		
10	15	3tKwx in Moss - Porphyry	30	QNBN org BN	Locally Silicified, else propylitic	15- 20%	az.	Stre Ox	60	.005		
15	20	şs 11	30	Lt. BN Wht-gry	Moderately solicified + bleached, abrown.	40 ·	Q2- (1	Mai FeQ.	80	• 11/		
20	25	14 H	30	BUA-gry + LT BRN	Mod-strong silicitication Bleached, Dense Te Amethyst	410.	Az- cc	Mad FeQ	100	. 031		
25	30	1 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	Buff-gry 2+ BRN	A few pervasively lineonitic sitisit. LAIPS, otherwise bleached & silfed. as a boot	30	Oz- CC	Loc. STR ReCk	100	.023		
30	35	1055 VN (7)	20	Buff Litgry	Abund. dease qz + Silfd. porphyry	60	Az- CC	ur FeOx	100	. 033		
35	40	MOSS VN	Z0	ы <i>у</i> :	11 13	80	bz. cc	しゃをの	100	.037		
40	45	Moss VN	20	С µ	As above of some bad q2 w/q2 seal.	70	QZ CC	Mod	100	.030		
45	50	Moss VN	20	Marbon	Local BED & as a bove 15% BROWN Porph. chips	75	Q2- CC	ちょう	100	-019		
50	55	Moss IN	20		VN 2 VN Brillas i; above (76	æz- Marce	wx F.Ox	po	- 044		
55	60	MOSS VN	20	Buff- L+ gry	Decr. Of bon porph. chips Strong silicit. Dense.	75	Or	wx-161 FeOx	6000	. 036		
60	65	Moss VN	20	Buff- L+ gry	A little clayer (for ?) V. Str. Silicification.		Qz	Loc. Str Felx		. 080		
65	70	Moss Porphyry (Fw)	10	Greenish BROWN			az	WK Fecs		. 016		
70	75	11 ¹²	10	Md - dr brown + grybrd	Local dense dk bru-gy Silicification, offerning porphysy (a little clayer)	3	Qz	3 R (3		. 005		
75	80	MOSS PORPH (FW)	10	Reddist Brown to By Ban	Incr. QZ Verining & local STRONG Silicification. Hemotite & limonite.	15	Øz.	STR. GeOy		.018		
80	85	Moss Porphyry (FW)	K	Med GN- BN Pinkish	Fresher looks of; but a little clayer	R	Q2	wK FeOx				
85	90	Moss Porphyry	90	μ _η	h "	-	-	V. Nenk FeOx				
90	.95	n y	90	n ^u	K W	-	~	v) 1)		1		
95	100	n ; 1)	90	لر 11	1.L V	-	-		V		-	

MOSS PROJECT, ARIZONA

HOLE NO. <u>196- 8</u>

PAGE_Z_OF_2__

FROM	то	BOCK DESCRIPTION	ROCK	COLOR	AL TED ATION	<i>ç</i> %	VN	SULFS	REC	1	ASSAYS (OPT)
FROM	10	ROCK DESCRIPTION	CODE	COLOK	ALTERATION	ÿø VN	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)
100	105	Moss Porph offen	#2) 90 50)	Goven	Pos siay rouge. Mar = Vit	1	Øz		600	Ð		
	110	FAULT BONK IN M. A	505	GNGY	Slickensdos scenin Chips	-	1	FeOx Strx		-011		
	115	V1 //	(50)	t)	Blicks/eigy as non. Looks barren.	-	-	4 17				
	120	h er	50	Many	(lay gouge (18%). 51. incr. Fr Ox	-	-	Local STR FEOH				
	123	Moss Porphyr	y 90	DK PW	DET. No cloy. DR PINK TMP	-	المعاد	-				
125	130	11 II	90	Lt Pink Olive gN	5% Sitted. gry (VN) w/ 5% Py (dise & onfrx), otherwise Fresh M.P.	इ (?)	QZ VAY	.5% py 1. 22	D	• 019		
	135	ין יי	90	Pint- grN	+ 10% Silicifie d Chips some clean xin qz virs	10% (T)	Qz	Te				
	140	n h	90	Med. PwK·gn	No Silicification but a few Clean vites	1%		.].				
	14]5	1) 11	98	,,	Fresh looking Moss Fear Porphysy, No VLTS, Fear	-	-	<u>`</u>				
145	150	11 H	90	ŗ	As Abore	L 1%	CC	WX FEOX				
	155	l' *'	90	''	As above - quitefood blky for w/ lines te	-	-	-				
	160	4 4	90		ci y	1	·	WK GeOx				
160	165	· · · · · ·	90	fink grey	Very tresh .	-	-	FeOx on				
		TD = 165'			,							
					6 0							
				/								
					\							

.

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-9</u>	_COORDINATES:N	I,E ELEV
BEARING Due N.	CORE/RVC RC (Regular	LOGGED BY J. Keller
	HOLE SIZE <u>5 4</u>	STARTED 2/26/96 1:00 PM
LENGTH <u>65</u>	DRILLER Mike Ad Kin	COMPLETED 2/26/98 2:30 pm
PAGE_/OF/	COMMENTS: Had to drill 9' cast	of proposed spot.

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE			VN	TYPE	96	%	Au (FA)	Au CN SOL	Ag (FA)
0	5	Colluvial / Allu sail Rubste	-	Veriald	Main 4 Trup: ales + 10-15% WH-QZ	10- 15	Q7	-	foor	.010		
5	10	"	-	4	4			-	Por	.029		
10	15	, /	~	11	, ,				poor			
15	20		ر بر						Fair			
20	25	Moss VN	Zo	LF BON On BRN	WHT dense QZ W + local Org- BrN Silkified Materiol. Some blky controm	35%	Rz	1	FAIR	• •		
25	30	MOSS VN	20	Buff- Hgry	Strongly Silicified (dense) TE Amethyst Vein here May be Tomp replacement	80	QZ)	600 D			
30	35	MOSS VN	20	н	Totally Silicified & bleached	95	Qz	~				
35	40	MOSS VN	20	e)	As a bove, but 5-10% ORGCIAY (Februic	95	Qz	1				
40	45	Top The	20	Mel gr.	30% as above, elsp Tmp w/ only beat silicit	30	Øz	1				
45	50	Top (Fw)	10	11 1) Then clay	Clayey, a few Marrow Sili is Zonos. Hoy alt	10	Oz	1				
50	55	Temp (few)	J0	11	Local str. clay alt. Rare silicification	3	Qz	1				
55	60	Top (Fr)	10	Md-DK grn-Bri	A little clayey (wK- ang att-pervasive) & No silicitication	Æ	Oz	STR				
60	65	Tmp (Fw)	10	II II Tancky	Abundant tan c lay. str. argillic alt? or FLT.	-	,	1				
65	70	Imp (Moss Porphyn)	90	Md- dk gn BRN PINKISH	Barren looking, a littly alayey, chloritic Mindr trac-fill for Ox	-	-	1				
70	75	Thp	90	11	þ	~	—	•				
75	80	Inp	90	1)	1) The Clean whot Galcite	Þ	CC	J				
80	85	The	90'	3)	\$1	-	-		X			
85	90	TD : 85'										
90	95											
95	100	A A A A A A A A A A A A A A A A A A A										

and the second second

e a . 3r

MOSS PROJECT, ARIZONA

HOLE NO. $M_{2} - 10$ COORDINATES: N. E ELEV. BEARING CORRENC CC ($f = 1/f + 1/f = 10$) LOGGED BY $J = 1/f + 1/f = 10$ BEARING CORRENC CC ($f = 1/f + 1/f = 10$) LOGGED BY $J = 1/f + 1/f = 10$ NUCLINATION Let 1 DOE DEC S'A STATED $J = 1/f + 1/f = 10^{-1/f + $			(mP-10)	•						•	:	н. -		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				-										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											_			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					the second se									
Image: Section of the secti						Itolking CC	OMP	LETE	D <u>τ/z</u>	7/96	5:	40 pm		
Using slow drilling tables this zere, but we content. Dump cruding form. VROM TO BOCK DESCRIPTION BOCK COLOR LITBLATION N NI SILES ASSN1077 0 5 Drap Rubh Richt III - R band. IM MI TTZ SILES ASSN1077 10 15 Drap Rubh Richt III - R band. IM And form A BL BL <t< td=""><td>PAGE</td><td></td><td>$_0F_{$</td><td>MMEN</td><td>NTS: _2</td><td>LONE FROM 340-</td><td>380</td><td>Aroc</td><td>duced</td><td>g za</td><td>tycan</td><td>tities of</td><td>KO</td><td></td></t<>	PAGE		$_0F_{$	MMEN	NTS: _2	LONE FROM 340-	380	Aroc	duced	g za	tycan	tities of	KO	
HROM TO ROCK DESCRIPTION ROCK COLOR ALTRATION N TY SULES S ASAMTSOFT 0 5 Dring A Rubhli - Abund. IM Matterial GD CC - Abund. IM Matterial GD - Abund. IM Matterial GD CC - Abund. IM Matterial GD CC - Abund. IM Matterial GD CC - Abund. IM Matterial GD - - Abund. IM Matterial GD CC - Abund. IM Matterial GD -					ve	ry slow drilling below	, th	5 20	ne, but	no C	ontom.	Dump c.	roding /s	seha
Image: State in the state											2			1
0 5 $0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$	FROM	то	ROCK DESCRIPTION		COLOR	ALTERATION				1	:			1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				CODE			VN	TYPE	%	%				
5 10 The (person perpendicular) 35 Hard by the there is the contrast of the contra	0	5	D. All	-		Ab. I wal a f .	10			5				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Dump Kubble				60	<i>CI</i>		100	. 01	8		
10 15 11 35 11 No with a different in the 200 for the interval in the 200 for the interval int	5	10	Tmp (moss porphyry)	35	Mol - DK Pinkish Ben	AA	:5%	Qz-	WK	fair				
15 20 11 35 1 and the second of the	10		Hanging Wall		+ PINK-GRM	SOME CONTEM from dump(10% V. weak alteration,				<u> </u>	-		+	
15 20 11 35 100 BB BM constraints, contain from constraints, contained bits, constraints, constrath, constrath, constraints, constraints, constrath, c	10	15	48 Å Å	35	"	Same Contant from dumin (10)	Contom	QZ-	The Felle	Fair				
u u	15	20		25		15% ORG BRN Limonitic	+ 5%	Qzi	LOC. STR	Fair				1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			vi II	· · · · · · · ·		Some contam from drop (1	61	Ce	FeQ	,,				
25 30 Check if the VELV if the Dirit of Check if the Velt of the State of	20	25	QZ VEIN	25	+ DK PNK	Penso / w/ pcc. small vogs fe stained ez zone in Tap.	35%	Øz	FEOX	A00	D			
30 35 $\int a_{n} \rho \left(Hu, Lot \right)$ 35 $\int a_{n} \rho (Hu, Lot)$ 36 $\int a_{n} \rho (Hu, Lot)$ 37 $\partial (hu, Lot)$ $\partial (hu, Lot)$ <td>25</td> <td>30</td> <td></td> <td>2</td> <td>WHT</td> <td></td> <td>10</td> <td>10</td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td></td>	25	30		2	WHT		10	10		F				
30 35 $\int a_{n} \rho \left(Hu, Lot \right)$ 35 $\int a_{n} \rho (Hu, Lot)$ 36 $\int a_{n} \rho (Hu, Lot)$ 37 $\partial (hu, Lot)$ $\partial (hu, Lot)$ <td>45</td> <td>50</td> <td>+ TmP</td> <td>:</td> <td></td> <td>Vein. Only 310 Org-BN Silfd. Chips as a bout</td> <td>63</td> <td></td> <td>FEQ</td> <td></td> <td>•01</td> <td>/</td> <td></td> <td></td>	45	50	+ TmP	:		Vein. Only 310 Org-BN Silfd. Chips as a bout	63		FEQ		•01	/		
35 40 11 35 11 11 11 11 11 11 12 22 22 62 62 62 610 40 45 11 11 35 610 610 12 22 12 62 62 11 12 62 11 12 62 11 11 12 62 11 11 12 62 11 11 11 11 12 62 11	30	35	Tralus	25	greenich	Out of CC UN Tup looks foirly fraction	10	α			·.0	26		
40 45 11 4 35 Pick or dN Handler, fresher 1/2 $dz = -1$ Now N 45 50 11 1 35 Pick or dN Handler, fresher 1/2 $dz = -1$ Now N 45 50 11 11 35 11 a s above 1/2 $dz = -1$ 1 50 55 11 11 35 11 A Nithe chance 3 CC, Low Not Not 50 55 11 11 35 11 A Nithe chance 3 CC, Low Not Not 55 60 11 35 11 A Nithe chance 3 CC, Low Not Not 56 60 11 35 11 A Nithe chance 3 CC, Low Not Not a cc a cost		15. 19	/ mp (HW.LG)		RN	WK propulitic alt. (deutering	·	a		┝─┼			<u> </u>	
40 45 11 4 35 Pink even Hunder, fresher 1-2 $dz = -1$ V. VK 45 50 11 11 35 11 dz $dbove$ 1-2 $dz = -1$ 1 50 55 11 11 35 11 A 1.444 chem cc 3 $dz = -1$ 1 1 50 55 11 11 35 11 A 1.444 chem cc 3 $dz = -1$ 1 1 1 55 60 11 135 11 A 1.444 chem cc 3 $dz = -1$ 1 1	35	40	11 4	35	11	" Il includes minor 9= : SC VLTS	1				.010	2		
45 50 11 35 11 As above 12 $az - 1$ 50 55 11 11 35 11 A fifth chance 3 $az - 1$ 1 50 55 11 11 35 11 A fifth chance 3 $az - 1$ 1 55 60 11 35 11 A fifth chance 5 $az - 1$ 1 $az - 1$ 60 65 11 35 $az - 1$ 60 65 11 135 $az - 1$ 60 65 11 135 $az - 1$	40	45	Ĩ1 #	25	Pick	_	1.7	az-	V. WK					1
u u			,, , , , , , , , , , , , , , , , , , ,	27	GN BN	Marcher, Tresher	/*2	ce	FOX					
50 55 11 11 35 11 A 11446 chan cc 3 CC, toc, toc, toc, toc, toc, toc, toc, toc	45	50	11 IJ	35	.,	as abore	1-2	•	5					
10^{-11} 10^{-11} 15^{-11} 15^{-11} 50^{-11} 50^{-11} 10^{-11} </td <td>50</td> <td>55</td> <td></td> <td><u> </u></td> <td></td> <td>A little clean CC</td> <td></td> <td></td> <td>Loc.</td> <td>\vdash</td> <td>_</td> <td></td> <td></td> <td>4</td>	50	55		<u> </u>		A little clean CC			Loc.	\vdash	_			4
10 10	50	55	24 v. 6	کر ا	"	+ iner. Felt	3	· ·	Mod.		101	7		
60 65 11 35 11 Coarse, druss g_{2} with 5 g_{2} 11 $m_{c_{c_{c_{c_{c_{c_{c_{c_{c_{c_{c_{c_{c_$	55	60		35	Gon BRA	15 to dease sitted,	5	Qz	Loc.	Π				
65 70 11 35 11/1 a 1: Hk coarse drugg qz, but diminiska 1-2 Qz- cc 11 70 75 11 9 95 11 9 95 11 11 12 Qz- cc 11 11 12 12 11 <th11< th=""> 11 11 <th1< td=""><td></td><td></td><td>-</td><td>ļ</td><td>Prate EN</td><td></td><td>Ĕ</td><td></td><td>FeCr</td><td>μ</td><td></td><td></td><td></td><td></td></th1<></th11<>			-	ļ	Prate EN		Ĕ		FeCr	μ				
65 70 11 35 11/1 a 1: Hk coarse drugg qz, but diminiska 1-2 Qz- cc 11 70 75 11 9 95 11 9 95 11 11 12 Qz- cc 11 11 12 12 11 <th11< th=""> 11 11 <th1< td=""><td>60</td><td>65</td><td>ja 11</td><td>35</td><td>.,</td><td>Loarse, drusy az ut</td><td>5</td><td>G.Z.</td><td>"</td><td></td><td></td><td></td><td></td><td></td></th1<></th11<>	60	65	ja 11	35	.,	Loarse, drusy az ut	5	G.Z.	"					
10 11 <th11< th=""> 11 11 <th< td=""><td>65</td><td>70</td><td></td><td></td><td></td><td>Still a little course</td><td>1-7</td><td></td><td></td><td>Η</td><td></td><td></td><td></td><td></td></th<></th11<>	65	70				Still a little course	1-7			Η				
11 11 <th11< th=""> 11 11 <th< td=""><td></td><td></td><td><i>μ</i>, ''</td><td>25</td><td></td><td>dowsy q. z, but diminished</td><td>1-2</td><td>er</td><td></td><td>Ц</td><td></td><td></td><td></td><td></td></th<></th11<>			<i>μ</i> , ''	25		dowsy q. z, but diminished	1-2	er		Ц				
75 80 1 35 1 $VLTS$ Rane $ < < < << <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<><<<<<<<$	70	75	4 4	35		11 D	1							
80 85 11 35 11 11 $a \ FeOy$ 80 85 11 35 11 11 $a \ FeOy$ 85 90 11 35 11 11 $a \ FeOy$ 85 90 11 35 11 11 $a \ FeOy$ 90 95 11 35 11 11 $a \ FeOy$ 90 95 11 35 11 11 $a \ FeOy$ 90 95 11 35 11 11 $a \ FeOy$ 90 95 11 35 11 11 $a \ FeOy$ 90 95 11 35 11 11 $a \ FeOy$ 90 95 11 35 11 11 $a \ FeOy$ 11 $a \ FeOy$ 90 95 11 35 11 11 12 12 12 12 90 95 100 12 13 12 12 12 13 13 14 a \ FeOy 14 <t< td=""><td>75</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>H</td><td></td><td></td><td>╂───┤</td><td>l</td></t<>	75	0								H			╂───┤	l
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/5	90	1 v/	35,	4	VLTS Rame	</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	85	h 11	35	,,	" <i>(</i> ,	21	Qz.		\square		-	<u> </u>	
90 95 " " " 35 " 51. incr. Wits & 1 & 2- WK PEOX 1 CL FEOX 95 100 " " 35 " Local dense silicification 1 & 2 mK 1/ 100			<i></i>			(àcus floreors	<u> </u>			\square		_		
90 95 " " 35 " 51 incr. With $\frac{1}{FeO_X}$ $\frac{O_2}{CL} = \frac{WK}{FeO_X}$ 95 100 " 35 " $\frac{1}{C} = \frac{1}{CL} = \frac{1}{$	85	90	и 14	35	.,	¹ 4 11	ki	Qz	. 1 7					1
95 100 1 35 11 Local dense silicification Bez WK // All	90	95		2				Qz-	WK	\vdash			$\left \right $	l ·
95 100 1 35 11 Local dense silicification 1 Biz WK 1019	Ĺ		" 4	55	"	FeOx	/		MQX					
	95	100	р. <i>И</i>	35	и	Local dense silicification	e 1	Øz	nr FeOr	\mathbf{N}	1019	, [

MOSS PROJECT, ARIZONA

PAGE____OF____

	FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	A	ASSAYS (OPT	.)
,				CODE	COLOR	ALIERATION	VN	TYPE	30LF3 %	MEC %	Au (FA)	Au CN SOL	Ag (FA)
	60	65	Tmp (Hanging Wall "Lo-Grade" Zond)	35	LS-nd GN BN P: LBN	Propylitic alteration, a few getec VLTS	1	Bz CL	WREA	6000	.012		
/	105	110	vi	35	"	3 a a a	21	02 cC		3.4			
4	10	51	1, 1	35	" rgrngry	51. incr. 1273 Decr. Oxidation (gragging)	r	Az cL	ų	10	, aj l		
	115	120	n 11	35	,,	Incr. whit callite (clean) & FeOy	1-Z	८८ <i>ब</i> र	Moo FeOx	9 7	.01]		
	170	125	H 1/	35	Pindish BRN	As above - Nogngy is increased oxidation	1	CC ?2	sk dy	84			
	125	130	<i>ii</i> 4	35	, U	3% lineaste chips. othernise As Above	1	и 92	Local S Bolly	4	.01)		
	130	135	II I'	35	11	Decr. biosonitic sones	1	el q2	with- Felow	tø		-	
	135	140	11 11	35	1/	As above	1	ec 92	NK ROA	4			
	140	145	1', 11	35	PNK BN GRU LN		.)	8:2	Local STR Feby	"			
	145	150	yı 11	35	LT POLL BAL- GN BRA	A Alex, a 1: Hie More clay alteration that	;3	82 cl	3 FC	<i>יי</i>			
	150	15S	QZ VEIN	25.7	LT BN + PK EX	Strongly, densely silicified w/ sugary texture. 30% chipe Top less altered	4a;	Q2	WK FeCt	1			
	155	160	Timp (ISN) + Some VNG2	- <u>25</u> 30	LT - MO PX+GN BN	Lange and a strength of the second		RZ: MNR	Loc. STR				
	160	165	TMP - "Hi grede" Zone	30	n	A 1. H le Clayly, slightly bleached, Local Feck-rich Zones, Variable Vers	3	Q2- MNRU	، د				
Ŀ	165	170	11 11	30	11	¥. "	10	<i>)</i> 1	p				
	70	175	и и	30	ŋ	·· · ·	5	,,	wK-mad FeOx				
	175	13	v1 1/	30	4	k P	5	1J	wr FeOx				
	180	185	- 11 W	30	D	نې	3	"	N "				
	185	190	.j #	30	UT. BN	Incr. clay x qz VLTS-Light	10	11	Loc str FeOx				
	190	195	11 VI	30	11	ENCE WETS, Still Clayey	15	v	19				
	195	200	ji 1	30	GIN BN + PK BN	Darter gin color Common. Harder, fever vers	3	U.	w K-Mod GeOx				
Ŀ	200	205	11 11	30	LT-MD GN BN	ENCY VITS (Some dousy Q2), FEOX, clay	10	Oz Cc	Loc. STR FEOX			× .	
	205	210	F (30	IT-MO GN BN	Fractured, decr. GE, a little cloyey, incr. NLN Calcite	5	42	V	•	.02		
	210	ZB	л t ¹	30	43 E*	1		02 Cl	mod FEO:		.042		
	215	220	ы	30	H P Biv-gN	Oz intereasing. Druses Common. TE Amethyst	20	82 CC	TE Py Mod RQ		. 026		

Decreased oxidation boally.

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-10</u>

PAGE <u>3</u> OF <u>4</u>

FROM	το	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE	COLOR	-Redox -	Ŵ	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)
Z20	225	Tmp (HW STRWX)	30	FY GN Pink	Propylitic. Mag + Py Plag - BIOT + Chlor. Lago	1	dz ce	.5% Diss - Py	600D			
	230	1 11	30		Look's Immineralized.	1	ط ح در	K.5 Ry FROX	11		r.	
	235	4 M.	30	I)	A little more drug of vers = FeOx	z	Ø2 CC	TE Pr Fre E Ca				
	240	ki D	30	GNBN	Oridized again Inco. Vits, Some Silic.f.	5	Q2_	Moody	1	4 		
	245	Oz-Calcite VN (Moss?)	25	WHT- LT TAW + OKEN		80	Q= cc	WK FECK				
245	250	+ Imp inclusions	25	Вл-дл ШНТ	Decr. Vaining & Silic.f	50	Oz ce	Loia STR FROX				
	255	11 11	25	וי יי	Veining diministring	30	Qr U	//				
	260	Imp (H.W. ZONE)	<i>30</i>	BN GN	Out of Vein, a ten KLTS, Continue. On idized	3	Qz CC	Mod-str (FeOn (1im-Hen				
	265	TMP "	30 [.]	BLUISH GRNGAJ	Hander - V. 1; Hhe Heining, Unoxidized, except the frax.	21	ec Qz	2.5% A		.010		
	270	Tmp 11)	30	77	As obove, u/ incressed Oz Vein lets (x In)	2-4	QZ CC	c.5% A TEFEQ				
270	275	Tmp 4	30	Lt-Med GN gy Pink Sy	Almost No OX. Harder betting fresher	ż1	Ô2	TE Py		.020		
	280	Tmp 4	30_	.,	n <i>"</i>	21	Qr	To By		,0 1		
	285	Tmp 4	30	II GN BN, de BN	VLT Zone encountend W/Drusy qz & FEOx, Minor silicit.	5	ØZ	Tr. Py Los STR FEOX				
	290	Typ "	30	LT. MD GRYGRN F PINK	Hard & Fresher again WK prop. alt. No ay	-	-	ΣPy				
	295	Tmp 1	30	11	As above, but inco. WAT-Clear X/A q=	1-2	Qz	2.5 % Py				
295	300	The 1	30	<i>bi</i>	Decr. Gz., hard, wf Prop. alt.	1	Q2. ec	T. Py				
	305	Tmp	90	μ	As Above; No vits	-	-	₽Ry				
	310	Tmp	90	W	A little clean XIV OZ : Generally HS About	e'	Qz.	t Rj				
	315	Tmp	.90	1 <u>1</u> ·	5% Densi Sugary GN GY Material. probably aplite.	z %	Øz	L , 5% PJ				
	520	Tmp	90	/ر	INCR Dousy VLA GZ PY VLTS. Transluces ?? PY	37.	Oz- Ce	LOCAL HT-ALCH	zones (up to 5	%, 1%,	tom
320	325	Tmp	90	И	No dovsy 92. It dense gran - gry sillet chips up heirline or	Tr	Q2	R PI				
	330	Imp	90	+J.	No Veinlets or Silford Materia: Continued local propylitic alt	Æ	Q2	RP y	2.			
	335	Tmp #	90	+ O-y-BA	The desal That the work	1	6z	TR	\ *			
	340	Tmp	90	4 10	Local Oxidation Continues Prop. alt Continues	121	Qz	R P				1. 1. 1.

[•] DRILL HOLE LOG ADDWEST MINERALS, INC.

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-10</u>

PAGE / OF

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	,	SSAYS (OPT)
FROM	10		CODE		ALIEKATION	70 VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
340	345	Top + Ge VN (+1-GRD HW)	# 25	ORG-BN	Ox, dired again, w/ drusy, XLN BZ	10	Rz	str FeOx	Good			
345	350	11 11	\$ 25	r	ne mansic reus + birni	25	Q2	sta FeOx	Geop			
350	355	Imp (14cm)	30	GN BRN	Ox 105 / Oz decreased. By is common in altored halo adj to vire.	3	Qz	1% A	600			
353	360	Tmp + Gz VN	25:	BN-GN Ora BN	Ox + Oz iver again drusy / vugsy	15	Qz	str FeOx	6			
360	365	Top - G2 VN	25	GRN CRG BN Red.		13	Qz	Ma FeCy	1			
365	370	MP35 VEAN	20:	FAN, WHT ORG BON	Chunky chips of drusy 02, Hematite shin	25	Qz	Still of	"		х	
370	375	Moss VEIN	20	+GREEN +(ed	F ABUNDANT DRUSY O.Z. Hem. stain in alt. porp To AMOTHYSE drusy ge	Ø	QZ	Loc. STR Fe Ox				
375	380	MOSS VEIN	20	Reddishilt	but strong H. red brown but dense silicit. present	Z5		Hen Tron.	<i>ν</i>	.013		
	385	Moss VN (Silicified)	20	BROWN	Intersely <u>cilicified</u> Moss Porphyry, Fracture Zone 381-342 / Druy dz Somewhat decreased		OZ some drug OZ	STR FOLL	. "	. 014		
385	390	Moss VN/Tap	20	Md gybu gn BRN	Silicification + das in, but still silicified w/vers	5-10	(dens)	RUK-Mod FEDr. Local)1			
390	395	Top (footwoll)?	10	OLIVE Green	Diminishing Si licification Mineral texture Visible. A tendense with RCA Fr Silicification now wK.	2.4	Or Or	FeOx (#***)),			
395	400	Tmp (footwall)?	10)) 	Clean drucy of vits present propylitized. still oxidized	5	Oz drusy	FeCt on fox.	y			
400	405	Imp (fw)?	10	n	As above "	2	Or	Mod FeOp	"			
405	410	Top (Fw, Silicified)	10	LI OLIVE GO	Densely silicities again but vers rare	2	Qz	Med ReOx	y			
410	415	Tmp (Fw)	10	PNK/GRNGY	Zoop, into freshin Tap, Locally blky/fractured	1	Qz	Mod Felt				
415	420	Tmp (fw) rers	10	11 11	Not silicified. Just Popylinized. In Grassed Clean drusy of WITS Gettin Fresh Lit HV	8	Oe Oe	",, WK		-		
	1/25 430		10	Pink,	Getting Fresh, but still a few ge wets, and dang ga-gy to drusy. WK Map alt. Fresh looking (my			FeQ	м			
		Imp -	90	gra	Fresh looking (only wkprop ath Fractwood locally (blocky)	F	Q-2	FeQ				
430	435	Tmp -	90	ĥ	Very homogenous, Freih	-	-	wr FeOr	"			
456	77											
		TD= 435										
		••										
					L							

٠

MOSS PROJECT, ARIZONA

HOLE NO// 96 - //	_COORDINATES:I	N,E ELEV.
	CORE/RVC_RC (BIT Face)	LOGGED BY J. Keller
INCLINATION - 75°		STARTED 2/28/96 7:30 AM
LENGTH	DRILLER Mike Adking	COMPLETED 2/28/96 3.30 pm
PAGE /OF	COMMENTS:	· /

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	A	ASSAYS (OPT)
			CODE			VN	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)
0	5	Mine Dump	-	WHT- LTBRN	Aburdanat whit. Vri Material	50	AZ C4	-	10% K	.070		
5	10	1 1)	11	"	ut .	50	u	-	11	.074		
10	15	Tmp - (Hw) qz vcTs ("LO-GRD" ZONE)	35	Med Fink BN to gn BN	WK FeOx (diss + Fracting) Minor Wht. X/M q2 + milesser Calcite Vita,	3	Øz, » <c< th=""><th>WK Fe Ox</th><th>Joel</th><th></th><th></th><th></th></c<>	WK Fe Ox	Joel			
15	20	H Li	35	"	As above	5	Q z «	- 	Good			
20	25	n 1/	35	LT PNK- BN	a little clayey-argillic att. Calcite VIts dom.	3	CC 92	Tur Feat	e)	.012		
25	30	y y	35	اد <i>ا</i> ر 1	Sl. decr. arg. alt, local silicit adj. to VLTS Q2 dominant.	5	Or (l	WK Fels	4			
30	35	24 - 27	35	MA RK-BN	es above	3-4	BZ CL	n	1J			
35	40	11 11	35	n Be	SI. Incr. Clay content (auguilized A)	2	OZ CC	v	ħ			
40	45	11 ^(j)	35	"	An e book : any illized, Wht/ franducent 92 vets	3	Or y	1)	υ			
45	50	i ^I	35	ji	Decr. Chay, a little harder. Less VHS. ALLN CC	1	R R N R	11	ار	2		
50	55	() <u>1</u> 7	35	CT-DE PK BN	Softer again - augstlic alt. Bleached	1-2	Oz. Marce	11	17	·		
55	60	·i /i	35	MD PK-Ben	Hardor, no argiilization. Magnetic Xanolita noted. A little drusy qZ	/-2 •	az,	wk-mod FeOy	5			
60	65	51 fl	35	11	Inco. VIts, biky/fracs.	7	Ø2 ((<u></u> 11	11	-01]		
65	70	/ نا ا	35	"	Аз. а боле.	5	OZ Měc	ĥ	٠,			
70	75	Дания (р. 1917) Дания (р. 1917)	35	,,	ed we	5	Qr y	41	4,		ę.	
75	80	n 1)	35	.,	Decr. Vets; fairly soft. v. weakly argitland be	3	Øz u	î)	V	.010		
80	85	// مو	35	11	XIN G2 VIts increased. Incr. Feld on Fro	5	QU Y	mos ReOs	το			
85	90	t n ¹)	35	i	As Above	5	д г • и	f 3	11			
90	95	Tmp- Hw stockwa Zone	30	LT PK-BR	Local with S. licetrontian BSSC: w/ numerous 92 VLTS, Bleached	か	OZ CL	WK Fely		.040		-
95	100	51	30	v		15	Oz ci	FEOS				

HOLE NO. <u>196-11</u>

14 - **1**4

MOSS PROJECT, ARIZONA

PAGE ____OF ____

Total	-		DOGW				VDI	CTULES	DEC	A	LSSAYS (OPT)	
FROM	то	ROCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN Type	SULFS %	REC %	Au (FA)	Au CN SOL	Ag (FA)	
100	105	Timp - H.W. Sther Zone Lo Grade again	35	Ment PA-BRN	Rec. on for, dougy az VITS, fairly hand	3	Q2	WK FRY	6000				
105	110	n ''	35	л р П	As Above	2	On	with the Ga	• •				
110	115	11 11 (HI GRO?)	30	^{ير} بر	Incr. Qz VLT3, a little hander. Local WK silicit.	7	Q2	uk. Mal FeOr	ч	.013			
5اן	120	n 11 s	30	11 14	Inco. Vers. A jitte block	8	Or er		P	.023			
120	125	Tmp N/StKwx (H.N.)	30	10 m	Decr. local silicif. Maz vets. Hander	3	Qz	FE Ox	ł,				
185	130	· /i - ii	30	6.1	As above : wit local Silicif.,	5	Gr	H 1,					
130	135	Li //	30	(7 4)	n ()	5	QZ		11				
135	140	6 U	30	ы. P	FRATURED, Blocky, Incr. 92 & local silicity Calcito	10	OZ CC	wk FeGs	11	.030			
140	145	h y	30		Not so fractured & baky. Incr. Veining, but decr. Billist. of Top	15	Qz Ecc	р ₁₁	.,			-	
148	150	, ų	30	Ma Gu BN (olive) PHZ BN		25	QZ	ı, ı	.1	.017			
150	155	11 <i>1</i> 1	30	MB PK BN	Peer. VLTS, and Silicification	5	82 CC	""	<i>91</i>	.009			
155	160	n 1)	30	II 53	Inco. VLts but nº pervosive silicif. dous	15 az	Qe Mir CC	with the felt	þ	.006			
160	165	a) ,.	30 ?	PRN GY	Mod-sto Silicitication (gres), fewer VLTS	r	Qz	11 h	"	-008			ļ
165	170	MOSS VN LOST Circulation p 169'	20	GRY BEN Some Red BAN		25	Øz	R n	"	.006			
170	175	Moss YN	20	J1	STR. SILICIFICATION Blocky, fractured, brittle		O2	wKi FeOr	4	.005			
175	180	MOSS VN	20	LF Ben Blu-Gry	Very densely, pervasively silicified. Replacement Vein Porph. sexture "ghast	100	Ge	an n F	ij	.008			
180	185	Moss VN	20	Buff to L+ gn BRU	Hem	90 255	Oz replace. dr. sy		"	• • 10			
165	190	Top footwall zone	10	Md GRN- BRN	Out of densely silfd ever reparement Var. NK local silicit, propylitized KLN Qu	10	QZ drusy	wik ROz. fre.	"	.007			
190	195	Tmp (F.W.)	10	OLIVE	Propylitized.	1	Q2	wix Fe Ox	ų	.005			
195	200	Imp (F.w)?	10	OLIVE GA PK	fropylitise d	-	-	4	4	.004			
200	205	Tmp. (f.w.)	10	21	As above	-	-	(ARx)	'n	. 012			
205	 	Imp	90	11	Local propylitic alt	-	-	yi	n	.006	~	-	
210	215	The	90	41	71 ja	-	-	n	væ	.007			ļ
215	220	Top	90	V	10 50	-	-	-	•	.003		_/	/

DAT

HOLE NO. <u>196 - 11</u>

*

MOSS PROJECT, ARIZONA

PAGE 3_OF 3_

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE			VN	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)
220	225	Ттр	90	GREEN+ PINK PINK	Blocky, fractured, propyliticalt, Fely on fry	-	-	WK-Ma	(J-00D			
225	230	h	η	Blu-GN-GY Pinik	Mostly un oxidized. Propylitized	1	-	TE POX	U -			
230	235	11	11	21	Partially Dr as Alerro	-	-	E Py WKED,				
235	240	11	h	1) + LT gy	30% dense f.g. 2+ PK-gy Aplite.	1	-	TE Py LIR FOR	4			
240	245	ų	- Ŋ	GRN + PNR	WK Propylitic alt	-	-	TE Py NKFEQX	4			
a.im	258	11	4	GN BN GLIVEGN PINK	Increased Fe Ox, a few 92 vc+s	1	QZ (XLN)Q	STEOX	ii.			
250	255	11	U	63	to As Adore Fractured	1	Gz	11	V			
258	260	<i>II</i>	11	GY GN PK	Mixed Ox. + Uncx. Prop. alt., 9= VLTB	1-2	ØZ	Fr Py	1			
260	Z6 3	1 + Silicified material	ų	LT PK+ GN local BEN		3	QZ prvsy + replace	TE Ry VN maters	/ //			
265	270	Timp	17	L+ GN. Soma K	Decr Silfd Material, Dominantly unoxidized propylitized	1	Qz (bense)	Py on FRX FEGRETS),.			
270	275	Timp	y)	11 " 4 BN	Fractured, incr. EOx. R Be only	Tz	Oz- Ce (Hn)	TAR, Mod Fed	**			
275	280	Tmp	n	GN - PZ BNGN	Fractured, oxidized, inco. q= VLT. From	ŀ	ØZ	No P.,				
280	285	Tmp	D	PINK 67 GN GY	Dut of fracture long Unoxidized, weakly propylitized.	Æ	Öz	FE Py FE FE OF				
285	290	11	51	47 - 1 ⁴	f. tractured / oxidized Leaks bargen, NK Propalt.	2/%	GZ NIN	FE Py wK Febr				
290	295	41	h	11 11	As above. Fells along fro. Hard, blocky, forsher	-	-	TE Hy WK FECS				4
295	300	58	n	<u>в</u> 11	As above. Move fink than green.		Oz (Dense)	wik Froz				
		TD=300'										
					1							

¥

- - ·

.

MOSS PROJECT, ARIZONA

mp -	'hen'
------	-------

0 5 Trap 70 Mark R Such W With Propylitic 21 Trap Trap 70 Mark R Such W Trap Trap 5 10 11 70 11 70 11 10 11 10 11 10 11 70 11 10 12 10 11 10 12 10 11 10 12 10 11 10 12 10 11 10 12 10 11 10 12 10 11 10 12 10 11 10 12 11 10 12 11 10 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 10 11			line line										
INCLINATION -15" HOLE SIZE 44^{+} /s STARTED $2229/n$ 44^{+} /s 6^{+} /s PAGE OF 9 COMMENTS: Index for More half COMPLETED 2/s/n 44^{+} /s M^{+} PAGE OF 9 COMMENTS: Index for More half BO'S STOW Sour for pack for More half PAGE 0 5 Trop 76 Stoke for more half Stoke for pack for More half Stoke for pack for for half 0 5 Trop 76 Stoke for more half Stoke for pack for for half Stoke for pack for pack for for half Stoke for pack for for half Stoke for pack for pack for for half Stoke for pack fo			<u> ///96-12_</u> co	ORDIN	IATES:	N,				ELE	V		
INCLINATION -15" HOLE SIZE 44^{+} /s" STARTED $2/29/n$ $4/26$ M_{10} PAGE OF 9 ORILLES Mathematic COMPLETED $2/29/n$ $4/20$ M_{10} M_{10} PAGE OF 9 ORILLES Mathematic Mathematic COMPLETED $2/29/n$ $4/20$ M_{10} PAGE OF 9 ORILLES Mathematic Mathematic COMPLETED $2/20/n$ $4/20$ M_{10} <td></td> <td></td> <td><u>NIOE</u> CO</td> <td>RE/RV</td> <td></td> <td>B-FACE) LO</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td>—</td>			<u>NIOE</u> CO	RE/RV		B-FACE) LO						·	—
PAGE Image: Comments: prod for phone hold DO'S STOW due for pade product Room TO ROCK DESCRIPTION BOCK COLOR Alteration TH Stilles Rec Room TO ROCK DESCRIPTION BOCK COLOR Alteration TH Stilles Rec 0 5 Trap 70 Middle M			ON ~/3 HO	LE SIZ	E 5	<i>ky "</i> ST	ART	TED	2/28/	96 9	1.45 p.	<u>M</u>	-
No. 2002 No. 2002 <t< td=""><td></td><td>_</td><td><u>385</u> DR</td><td>ILLER</td><td>Mill</td><td>Hahins CC</td><td>)MP</td><td>LETE</td><td>D_<u>2/29</u></td><td>96</td><td>4:10 1</td><td>PM</td><td></td></t<>		_	<u>385</u> DR	ILLER	Mill	Hahins CC)MP	LETE	D_ <u>2/29</u>	96	4:10 1	PM	
X = 3 K M rs. APP (EVER) PROM TO BOCK DESCRIPTION BOCK CODE COLOR ALITERATION N NV STLDS BEC 0 5 Tmp 70 Model WIL NV STLDS BEC 0 5 Tmp 70 Model WIL Prophibic Clinitian Mile STLDS BEC 5 10 11 90 Model WIL Prophibic Clinitian Mile 9-4 Mile 9-4 10 15 11 90 11 Model Factor & Early 12 Clinitian Mile 9-4 Mile Mile <thmile< th=""> Mile <thmile< th=""></thmile<></thmile<>	PAGE	/	OF7 CO	MMEN	NTS: h	had to Move hole	20	570	> w	due	to p	ad pa	ob lenn
TROM TO BOCK DESCRIPTION BOCK ODDE COLOR ALTERATION N TYPE SULPS REC RC RC 0 5 Tmp 70 M^2 def WK $P = py (ift) = d$ I MK <td< td=""><td></td><td></td><td></td><td></td><td></td><td>E NOT LEVEL</td><td>~ ~</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						E NOT LEVEL	~ ~						
PROM TO ROCE DESCRIPTION ROCE OODE COLOR MITERATION SILE SILE No.												SSAYS (OPT	,
0 5 T_{mp} 70 Max P_{max}	FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC			
0 5 Trap 70 Mar der Strick Wirk Propylitik 21 Strick Wirk Rig grad 5 10 11 70 " Rescurd - Teach 12 Cc. MRgg. Y 10 15 11 70 " Rescurd - Teach 12 Cc. MRgg. Y 10 15 11 90 11 Incr. Bic Villy of Law 1 Res Will Res 1 Res Will Res 1 <				CODE			VN	TYPE	%	%			Ag
5 10 11 90 11 11 12 13 14 17 16 16 17 16 12 12 12 12 12 12 12 12 12 13 14 16 16 16 16 17 16 16 16 16 16 16 17 16 17 16 16 16 17 16 17 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 18 <th< td=""><td></td><td></td><td></td><td></td><td>Ad du</td><td></td><td></td><td></td><td></td><td></td><td>(FA)</td><td>CNSOL</td><td>(FA)</td></th<>					Ad du						(FA)	CNSOL	(FA)
5 10 11 90 11 Frankind-Frank 12 CC The frankind-Frank 12 10 15 11 90 11 Art Frankind-Frank 1 Arz The frank 1	0	5	Tmp	90	34-64	WK Propylitic	21	Clean	WK FEOR	good			
Image: Second secon	5	10		an			1.2						
10 10 <th10< th=""> 10 10 <th< td=""><td>3</td><td>10</td><td>17</td><td>10</td><td></td><td>Fractured - Felx</td><td>1-6</td><td></td><td>Mode</td><td>У</td><td></td><td></td><td></td></th<></th10<>	3	10	17	10		Fractured - Felx	1-6		Mode	У			
15 20 11 90 11 Inc. Ge Vite of Silvification adjects 2 Vite (bory) Vite Fed. 11 20 25 Ton p N.W. Zowe 35 1 As Above of Silvification adjects 3 Ge Medit 11 20 25 Ton p Fax 355 1 As Above of Silvification adjects 3 Ge Medit 11 25 30 " Fax 55 "Og BM Str FEOx Schurg 2 Gr FEOx 1 30 35 " FEO Str FEOx Schurg 2 Gr FEOx 1 FEOx	10	15	N	90			,	هر	_				
10 10 10 10 11 10 11 10 11 20 25 Ton p New Zowe 35 11 As About w/ inc. REA/Ar 3 Get Members 1 25 30 11 Fax 35 11 As About w/ inc. REA/Ar 3 Get Members 1 30 35 1 Fax 35 11 As About w/ inc. REA/Ar 3 Get Members 1 Get Get Members 1 Get Get Members 1 Get Get 1 Get Get 1 Get Get 1 Get Get Me Me Me Get Me Get Me Get Me Get				10					"Fe Og				
20 25 Timp H.W. Zerve 35 11 His Arbors of the construction of th	15	20	41	90	10		2		Ëde	- 11			
1000 1000	20	25	H.W. HONE	-		Are Artours 1	_						
30 35 i FEQ. 55 i' i'' i'' i'' i'' i''' i''' i''' i'''' i'''''' $i''''''''''''''''''''''''''''''''''''$	20	43	Imp	35	37	incr. FeOx/fx	ک	52	F.C.	U			
30 35 i FEOR 95 i 95 i 96 i <	25	30	" FRX	35	"	Sto FEOX stain,	7.	Qz	Stre				
30 35 1 35 1 35 1 35 1 35 1 35 1 35 1 35 1 1					+ Org BN			ļ	FeCy.	"			
35 40 11 35 Md BN Decreased Fractures 1 Dzz WK $FeDz$ 11 40 45 11 35 $fegular Locally streng: Wirele FeDz Sedz Sedz$	30	35		35		More intense Felle Stain BIKT, a 1: He silicified,	·4,	Øz	STA	()			
35 40 11 55 $plant Description 1 plant 1 1 1 1<$	25	40	N ²		Ad						· ·		
40 45 11 35 12 13 13 14 15 45 50 11 35 11 35 11 35 11 36 3 <td>35</td> <td>40</td> <td>11 tl</td> <td>35</td> <td>PXBN+</td> <td></td> <td>1</td> <td>62</td> <td></td> <td>."</td> <td></td> <td></td> <td></td>	35	40	11 tl	35	PXBN+		1	62		."			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	45	La .	25	AN BN	Locally sty Angillicalt	2	Ø2	Mod-	11			
50 55 n 11 35 Mosele Ne grey site: Z Oze Str 4 55 60 11 35 11 35 11 35 12 Oze Str 4 60 65 11 11 35 11 10 Str 11 <t< td=""><td></td><td></td><td>1 ij</td><td></td><td>2-3 BN</td><td>w/ 92 VL+S. Felk</td><td></td><td></td><td>FeOr</td><td></td><td></td><td></td><td></td></t<>			1 ij		2-3 BN	w/ 92 VL+S. Felk			FeOr				
50 55 n 11 35 Mosele Ne grey site: Z Oze Str 4 55 60 11 35 11 35 11 35 12 Oze Str 4 60 65 11 11 35 11 10 Str 11 <t< td=""><td>45</td><td>50</td><td>i 1)</td><td>35</td><td>1</td><td>Local stor Silicite (Lagy) bes clay (E argille)</td><td>2</td><td>Qz</td><td>STR</td><td><u></u>4</td><td></td><td></td><td></td></t<>	45	50	i 1)	35	1	Local stor Silicite (Lagy) bes clay (E argille)	2	Qz	STR	<u></u> 4			
30 33 n q $3 arggal$ FeOr contrinues. 2 GZ $FeOrFeOr5560n1'35n7^{2}r_{0} of ist q of persairsSticks at low. FactorSticks at low. FactorStick at low. FactorStick$					Ĩ	Str. FeOx				1			
55 60 35 $\frac{1}{11}$ 35 $\frac{1}{11}$ $\frac{3}{25}$ $\frac{3}{216}$ $\frac{3}{216$	50	55	h y	35			2	Oz		4			
60 65 1. 11 35 The ABD GN BD No dense civicif 1:Ko obser. Incr. XLN WHT 4-5 G_Z MeD FeGr. 11 65 70 11 35 11 Pecr. XLN GZ Frac. FeGr. 1-2 G_Z MeD FeGr. 11 70 75 11 35 11 Pecr. XLN GZ Frac. FeGr. 1-2 G_Z MeD FeGr. 11 70 75 11 35 PK BN GN BN Much Fresher than abre. 21 G_Z WIL FEGr. 11 75 80 11 35 Web Prove that shire for the obset. 21 G_Z Web Prove 11 <t< td=""><td>55</td><td>60</td><td></td><td>20</td><td></td><td></td><td></td><td>0-</td><td>Mod</td><td></td><td></td><td></td><td></td></t<>	55	60		20				0-	Mod				
10 35 10 35 10 10 11 35 10 10 11 35 10 11 35 11 11 35 11 11 35 11 11 35 11 11 35 11 11 35 11 11 35 11 11 35 11 11 11 35 11 11 11 35 11 11 11 35 11 11 11 35 11 11 11 35 11 11 11 35 11 11 11 11 11 35 11			H	32	+ Olive GN	blocky, heal clay, deer. Facy	2	~~		11			
65 70 11 35 11 Pecr. XLN GZ 1-2 Q_Z Magber 11 70 75 11 35 PK BN GN BN Much Fresher Han above Decr. FeOx/frx, Q_Z 1-2 Q_Z Magber 11 75 80 11 35 PK BN GN BN Much Fresher Han above Decr. FeOx/frx, Q_Z 41 B_Z WWL FEQ. 11 75 80 11 35 11 35 11 12 Q_Z Model FEQ. 11 80 85 11 35 11 35 11 12 02 11 11 80 85 11 35 11 12 02 12 02 12 02 12 11 11 85 90 11 35 11 12 12 02 11 11 12 12 02 11 11 11 12 12 11 11 12 12 12 12 11 11	60	65	h. D	35	GN BN	a cove. Incr. XLN WHT	4-5	Qz		u			
7075n1135Frac. FeOr continues11FeOr.7075n1135PK BN GN BNMuch Fresher Hun alone. Derr. FeOr/frx, Q211 BZ EvalWK FeOr.117580111135Ear Drusy xen Or vite Words silicif. of Tmp.4.5 BZ EvalWK Hun1180851135Ear Drusy xen Or vite Words silicif. of Tmp.4.5 BZ EvalWK Hun1180851135Drusy xen Or vite Silicif. of Tmp.5 DZ Hun118590113511 HunAs above, above, above, qz.15- 20221111909511113511 HUNCalcite Vain. Carse VLN. Less Qz.304211 H					<u> </u>	az	ļ						
7075HH35PK BN GN BNMuch Frisher than abre. Ler. FeOx/frx, Qz BZ EllerNUL FEQx.H7580HH35HDecr. FeOx/frx, Qz LIBZ EllerNUL FEQx.H7580HH35HEn U/Jecal silicif. of Tmp.4-5BZ BZNUL HER.H8085HH35HDrucy XLN VEPS To 2 of the number of the first locally. To locally.5CZZH8085HH35HAs gbove, above, above, active, frax locally. To local giller of the first local giller of the first locally. To local giller of the first local	65	70	n si	35	v	Frac, FED.	1.2	Qz		4			
75 80 11 35 GN BN Decr. FeO2/fix, Q2 C1 Even) FeQ2. 11 75 80 11 35 Em Drusy sen Qe ver $4/-5$ Q2 WR may 11 80 85 11 35 Em Drusy sen Qe ver $4/-5$ Q2 WR may 11 80 85 11 35 Drusy sen Qe ver $4/-5$ Q2 WR may 11 80 85 11 35 Drusy sen generation $4/-5$ Q2 III min 80 85 11 35 Drusy sen generation $4/-5$ Q2 III min 81 12 13 13 14 Refer to the former $4/-5$ Q2 III min 85 90 35 Refer to the former $4/-5$ Q2 III min 90 95 11 35 Calcite Vein. Carse 20 30 Q2 III min 90 95 11 15 Q3 Q4 Argand Q2 Q4 Q2	70	75	H 11	20	PKBN	Much Erechen then the	21	A7	WK				
8085113511Drucy XCM VETS TO 2 cm. BLKT, frax locally. TE local gitterf. $detaily.$ 5 Q_Z 1111859011113511As above, above, above, qz.15- 20Qz1111909511113511Calcite Vein. Garse VLN. Less Qz.30QC QZ1111		<u> </u>		<u>رر</u>	GN BN	Decr. FeOx/fox, Q2	<u> </u>	Eiren)	FeOx.	"	J		
8085113511Drucy XCM VETS TO 2 cm. BLKT, frax locally. TE local gitterf. $detaily.$ 5 Q_Z 1111859011113511As above, above, above, qz.15- 20Qz1111909511113511Calcite Vein. Garse VLN. Less Qz.30QC QZ1111	75	80	h I)	35		En Drusy XLN One VLA	4.5	02					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							ľ—		100,	<u> </u>			
85 90 " H 35 " As above, aboud, qz. 15- 20 Qz " " 90 95 11 35 " Calcite Vein. Coarse YLN. Less Qz. 30 QC " H H	80	85	HE Y	35	.,	2 cm. BLICT, frax locally. To local cilicity	5	02	"	**			
90 95 n n 35 n $Calcite Vein. Garse 30 G n n n$	85	90	H - H	25			10	0	11	4			
Claver 1/11 hugared				<u> </u>	+ WHT	ns your, alundigz.	20	642				-	
Claver 1/11 hugared	90	95 ′	y1	35		Calcite Vein. Coarse	30		41	н			
$\ 95\ _{100}\ _{V} = \ 1 _{1} + \ 1 _{1$					 								
23 100 5 5 6z 4 4	95	100	£1 ()	35		Clayey. VN decreased.	5		и	v			

.

MOSS PROJECT, ARIZONA

HOLE NO. <u>196 - 12</u>

÷

PAGE <u>2</u> OF <u>4</u>

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	2	ASSAYS (OPT)
FROM	10	ROCK DESCRIPTION	CODE	COLOR	ALIERATION	Ŵ	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
100	105	Tmp (Moss Porpi Hanging Wall 2010	(1) 35	Md Pin Kish to greenish BN	R Clay, generally just propyritic alt. Fractored locally	<1	QZ	WE-MOD FCOX	රියාද			
105	1/0	u 11	35	n	Horder then above. Little Mineralization	21	ec 82	WX FE	ĬZ -			
110	115	11 •1	35	ŋ	A little foretured, inco caleste	2	Cl qz	ñ	ŋ			
115	120	<i>i) </i>	35	11 WHT Cakite	INCR. Calcite VLTS. Looks Barren	5	сс q2	، د	v			
120	125	N P	35	н (тны ынт)	A little fractured. Decr. CC	1	сс 92	wK-Mad FEOx	41			
125	130	(ر / ۱	35	11	51. incr. CC	2	(L 92	"	ti .			
130	135	11. ji	35	II Slightly lighter	As above.	2	() 92	11	17			
135	140	u li	35	"	As above	2	cc 92	4	۰,			
140	145	MIXED CX/SULF	35	Mai PK BN ro GNEN Gy GN	E By (64 GN Material) becoming UNOX. locally. INCV. Catitt. FROX	4	er Qz	TE Py MOD FECS	4			
145	150	11	35	11	Decr. CC VCT3. WK Prop alt (is seen from	<u>)</u> 1-2	cc BZ	(locally he matite)	N			
150	155	11 11	35	GY GN + PK GN - GN/PK BN	As Above	2	CL Q2	h "				
155	160	LI II UNOXIDIZED	35	FX GN	Almost totally mox. On VITE Now SCC. WK propalt continues.	1-2	Q2 C*	Te FeO,	17			
160	165	HALIDLE F.C.	35	رر ۱۱	Vugsy Drusy q2 VLTS, SI. incr FeOx, WK prop.	Z	OZ ((V. WK FEOX	•/			
165	170	וי וי שבי טאסא	35	n <i>V</i>	Decr. VLTS. QUITE Barren. UNOXIDIZEd.	1	CK QZ	E Py				
170	175	a, il	35	e 11	An above	21	ce Or	جو ا کبر	У			
175	180	Imp the Sthews	w) 30	GN+PKBN BY GN	INCH HELK + OL VEINS, local silicit. w/vers	3	az	we . MO FEOX	•1)			
180	185	in 17	30	4-MB GN BN + BUFF	INCR Q2 VETS STRUX W/ MOD Schieff associated, (Sitted = Lighter Color)	10	OZ MNR CC	Moo Fe Ox	,			
185	190	14 LF	30	h 1	AS ABOVE (LOOKS 600)	10	11	16	N.			
190	195	n 7	30	10 SI	As Above	10	11	11	*1			
195	200	n 14	30	10 11	Decr. total OZ, FZ Amethyst. St silicif.	4	"	11	1 1			
200	205	n ⁾ ,	30		NoD - str. silicification No Major VA dz incr.	6	11 -	11				
205	210	pa H	30	MD GN BRIV	Decr. Silicif., but still present lo cally TR. FLUDAITE.	3	GZ CC FLR	n	Ŋ			
210	215	ji il	30	'n 11	As above; No FLUDRA		Qz cr	11	u .			
215	2.20	h il	30	PE-GNGI BN	Fresher, less Oxidian Decr. Oz	1	CC Qz	MAG WK KOz	'			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-12</u>

PAGE _____ OF ____

BOXCAR WILLIE SMOWED UP & ALAYED A TUNE!

		DOX CHE								1	ASSAYS (OPT)
FROM	то	ROCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC	Au (FA)	Au CN SOL	Ag (FA)
220	225	Imp - HW STRWX [DRILL WET 6]	30	BN BN	WK-mod propylitic alt., a few Calcity + BZ VATS, FEDX on Frx, MOST	1 Y unos	02 X	Mag WK FEOx	لەەمۇ			
225	230	ja 11	30	РК СУ, GN СУ	A little fractured inst blocky, hand D luk bcol eiter, whein line Wet		Q2 ec	TR FEGS	"			
230	235		30	II ORG-BRN	Fract wed/blocky Ince az veins, local silf.	3-4	02 - CL	stu Fele	· ·,			
235	240	Imp (+feut+?)	30/0	GN BN + BUF + GN GY	Clayey (gouse?), incr. ox	2	Q2	MOD FeOx	•1			
240	245	Tmp the stkus	30	GN BN	OUT of Clay. Decn FRX. All oxidized. Milky BZ (Not anysy)	4	02- U	wk-ma FeOx	3.0			
245	250	lj 1/	30	GN BN	Mainly XLN &Z, not milk	2	Q2	WK FeCa				
250	255	11 IV	30	GYGN PKGY	Fresher, unox. Mod- str. prop. alt. A few "LT3.	1-2	CC QZ	TE BE	"			
255	260	11 1/	30	YBN GH	Fractured, partially Oxidized, incr. Coleite 2 drusy 92	4	cc Q2	Pyt Mop RCx	ىر			
260	265	р У	30	+ WHT	ALCITE, Fractured. Otherwise fairly free it	15	CC	MOD FeOx	4			
265	270	ii <i>I</i> I	30	PE gy - MULDY GNI	Decr. Calcite, incr. drusy q2. E fy infe	5	OZ CL	TE AY WK FEDX	, v			
270	275	11 1	30	BN	MIXED OX/UNOX; FRX Local dense red BN situit (29%) FEOX	NM	CC QZ	E Pyino MO-STR FEOX	"			
275	230	ii n	30	PK-GN BN	All oxidized. Fractured. WK silicif. due to bairling BZ VLTS.	2	OZ MNR CL	11 IJ	¢.	•		
280	285	11 sy	30	GN-PK BN	local str. argillic alt., Incn Silicif. + 92 Vis. Softer	5	Q2 'L	with Mod FeOx	y			
285	290	11 V	30	<i>u "</i>	Not clayer, decr. Local silicit, fractured	3	Q2 er	н Бех	.,			
290	295	II I/	30	µ ()	Hardler. Oz Cleaner & locally drusy	3	Qz æ	WK Fea	4			
295	300	II I/	30	11 V	Decr. Qz. Homogener	1	02 CL	wk FeCt	L)			
300	305	44 <i>11</i>	30	11 ,1	Propulitic alt. (as above)	e 1	Q2	V. WK REOX	U		· ·	
305	310	9 <i>4</i>	30	GRY BRN - GN BN	Fractured/FeOx.	3	Qz	WK-Mol FEOs	"			
310	315	Getting into Moss IN	30/20		Some Strongly Silicifia billy chips. Freetured. Incr. Heo flow	10°	Q-2 Replace		u 			
315	320	MOSS VEW	20	GN GY GN BRN SLIVE	(A		(·) " "	i)			
320	325	· · · ·	20	11 11	Hs gbore, Silicities Variable, Some cherry pieces are dig-Ban	40?	1.4.00		"			
325	330	Tmp ? fw	10	PK GRN P.N.L. GY Motfled	Appear to be out of VM. Into Moderately angillized Toop in fw. still some sited.	10	QZ rephan	UK.Mal Godi T (FR)	4			
330	335	Imp (fr.)	10	P. JE BN GN BEN	S'IFd. still fractured.	1	QZ NLN & replaceme	+ (67)	"			
335	340	n n	10	11 <i>i j</i>	As above, Plag. phenos -> clay	1	11 B		11			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-12</u>

٠

PAGE <u></u> OF <u></u>

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
FROM	10		CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
340	345	Tmp	90	PK GN BN	Fractured w/ FeOx on First faces. Hardon no arguilization. Minor vits	<	GZZ (dowsy)	A A A	6-1			
345	350	i)	90	PK-GN GY	UNOX. DED, Fresher.	K1	Øz	TEPY	4			
350	355	ų ,	90	'n	Lo cel pyrite in bleached chips	-	-	SPY Localized	ų			
355	360	¥	90	1)	Incr. py Content, locally 2%	-	1	·5°% py localized	Ú.			
360	365	1)	90	11	(deviably propylitized (devterie?) Trop. No Min	R	(van)	₹Py	13			
365	370	h	90	'1	As above. Blockie	-	-	1	11			
370	375	1)	90	ען	As above. Not so blocky - 100KS barron	-	-	i.	v			
375	380	v	90	ų	As above - Very homogeneous.	-	-	1	tı.			
380	385	}1	90	71	11	~	-	-	('			
		T.D. = 385										
• •	۷											
								•				
										\		
										<u>`</u>		

MOSS PROJECT, ARIZONA

BEAR	ING_	Due North CO	RE/RV	C R	<u>N,</u> <u>C (Regula)</u> LC 2" ST)GGI	ED BY	1 T. K	ller			
LENG		245' DR		M:Ki	12" ST Adkins (Hackworth) CC		I FTF	D al	101		20.4	
PAGE		OFCO	MMEN					<u>-</u>	110		-30.00	
				(10.)	Hole cawing @ 5:1;e	. <i>6.</i> ;	2000 . 	. Some	co.	T		
FROM	то	ROCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN	SULFS	REC		ASSAYS (OPT)
			CODE				TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)
0	5	PAD FILL			RUBBLE From Surface				FOOR	,		
5	10	PAD FILL			n 11				PooR			
10	15	Trop - AN/OZ WITS	35		Febr (surficial weather	15	- Qz	LOR. STR	Poor			
15	20	· · · ·	35	Mà gn Bh Phế Bh	a little claver.	2	Qı	Loc. Str. FEOR	600D			
20	25	11	h	п	Fractured, Minor local clay. WK. propylitic	1-Z		WK FEOY				
25	30	i I <u>j</u>	4	in .	, ¹⁰ 13	1-2))				
30	35	11	N :	11	ı <u>ı</u> "	Z		11				
35	40	()	ıl	ч	INCR. Oz Veining (WHT, clean, XLN)	5	Θz	1)				
40	45	Tmp - Stkux in H.W. ("Hi-grade")	30	LT - Md BY BN - PK BN Ruf	Lighter color due to WK silleification, local Casht clay (an. a) H.	8	Gz	with Felton	1	.017		
45	50	43 V)	· 13	i.	Some feldsp + clay	17	Or	11				
50	55	ц ^и	, u	h	Derker color occall, decr. siloz	1.2	Øz	a				
55	60	in, 1)	11	h	Cenerally just wh prop. alt.		Que	11				
60	65	i) 1j	∝ ų	'n	Weakly propylitized, a little local argillic ult of feldspars	3	OZ, MÁJA	۱۲				
65	70	ц 1)	h	h	11 11	2	Gz,					
70	75	y u	ų	13	h y	1	Q2 MNA	4				
75	80	14 17	n	1,	14 H	1		:(
80	85	u U	i,	13	lı yı	2	4	u				
85	90	1, ¹⁾	Ŋ	h	41 i ₁	2		ij				
90	95	2 h V	y	()	ر، _ا ،	1	Ôr ((iv.		.013		
95	100	\$ <i>L</i> 1)	n,	11	in 11	1	UZ CL	11	∇			

.....

HOLE NO. <u>M % - / }</u>

MOSS PROJECT, ARIZONA

PAGE_2_OF_3__

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE			VN	TYPE	%	%	An (FA)	An CN SOL	Ag (FA)
100	105	Imp - HW VLTZone	30	67 - MA 9N B.N PK B.N	Propylitized, lacal avs. Ilization of Alas 4:55 WK lacal bilitit.	1	Or	WK FeOr	Geop	-038		
	110	# VEIN (50%) Moss?	20	AS ABOVE WHT-BUT	50% Wht - Milky GZ + CC Vain Material Imp Wallex Ben, only Weak,	50 5. Al	02- CC	11	11			
	115	VEIN + SIFA. TMP	20	Buff Lt Gry	VeIN + strangly silfd. Tup	95	OZ + S:02 replacen	ii Cat	η	. 012		-
	120	<i>μ</i> η	20	11	n h	95	17	Feldy stain Clay	9 11			
	125	11 /1	20	4	Rlocky gome viggy	85	1)	4	л			
	130	u 11	20	11	Mostly as above UN: exiting UNO 129" Aritims UNO	30	(r	11	- 11			,
	135	TMP - Poss "horse" between Vering	30	Lt. Md BY BN	WK- locally mod/str Silicification	1	Ğz	WK FeOx	(
	140	11 1	30	t,	" "	2	Θz	H	ч			•
	145	(4	30	4	11 11	2	<i>Or</i>	11	ч			
	150	11 "	30	11	·1 · · · · · · · · · · · · · · · · · ·	3	Oz	Locu Ista FeCx	11			
	155	Getting into Vein @ 154'	30	-11	"STR FEO.	15	Qz	LIMENITE Compan	11	.015		
	160	MCSS VEIN (?)	20	WHT LT BNGY	Vern QZ and strong pervasive silicif. of Tmp	95	Θe	WK FEOX		.01/		
	165	1 11 WET +20 V	20.	4	18 y	70	Θz	u.	4	 Э.		
	170	li y	20	11	14 le	60	Qz	1,	ч			
	175	jn))	20	4	··· ··	15	Qz	4	4			
	180	(۱ ا	20	ч	7, N	30	Oz.	17	n .	·		
	185	II II	20	4	// it	95	Qz	ч	41			
	190	11 11 Cine Physical V. Blocky	20	- 1) 11-11- р.2	Getting into Timp @ 193'	50	Q2	U.	4			
	195	Tmp - (Footwall)	10	Med-DK 9N+ PKGN	Green, propyliticed Tmp. FeO+ Stain	3	Or	wr.Nol FeOr	ц			
	200	ij u	10	n 1)	Dimine of UTSelocal Sill	<1	Qz	н _	ч			
	205	11 II	10	11	Clayer WK-Mod Argillication (pervesive) V. little Veining	27	0z	1	4			
	210	14 ij	10	4		۲۱	Qz	4	ų.	$\sum_{i=1}^{n}$		
	215	14 LI	10	H	h y	41	Oz	n	- li		-	
	220	ii 11	10	4	10 11	21	Qz	11				

MOSS PROJECT, ARIZONA

HOLE NO. <u>196-13</u>

PAGE_____OF____

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC .		ASSAYS (OPT)
			CODE			Ŵ	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
220	225	TMP - footure 11	10	DK GN PK GY	Decrecsed oxidation. Redox. Propylitized	-	-	To Pr Por	6009			
	230	Timp Appears to be Contain. W Vein Material	10	17	Pedax. Propylitized 2010 Dense Born picker Silicit Chips Constrant (mile caring) other wire used	15	CONTINU P	F. P. iocelly				
	235	Tmp	10	u .	516 Contam.	5	CONTAIN 7	k ly				
	240	Tmp	10	11	5% contain.	5	CONTAN	ΈPy				
	245	Tmp	Ø	PK GY to GRN	25% contrant. Decreasing prop. alt. Recoming frester More pink some felds - clay locally	3	Contrapt ?	Tely NO OX.	V			
		7.0= 243			some relas of clay locally							
		Hole Cannag Silicif. Zono										
										а 1. 1. п. 1.		
		· • • • • • • • • • • • • • • • • • • •			<u> </u>							
		•										
		,										
				N								
												· •

MOSS PROJECT, ARIZONA

(MP-15) moved # South

HOLE NO. <u><i>M96 - 14</i></u>	_COORDINATES:N	I,E ELEV
BEARING Due North	CORE/RVC <u>R</u> C 5	LOGGED BY J. Keller
INCLINATION45°		STARTED: 3/7/96 11:00 AM
	DRILLER <u>Mike Adking</u>	COMPLETED 3/7/96 3:25 PM
PAGE_/OF	COMMENTS: Arrived at site after	dows off. MOSS VEIN IS WIDE LOOKING

Drillers found Welding 2011p. Missing. 165'-206'=41' Good.

-						-		/65 -	06			
FROM	то	ROCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %		ASSAYS (OPT	
										Au (FA)	Au CN SOL	Ag (FA)
0	5	Tmp - Her VIT Zone	<u>3</u> 5	Md GN BEN	Local Silicit. Ossoc. w/ Oz VLTS (xLN) Other mod. propulsic alteration.	M .3	d'3	MOD-STR Felz stain	fear			
5	10	ί λ μ	35	4 ,,	() (/	Ŋ	Qz	WK . Mad FECX	6000			
10	15	h j <i>i</i>	35	·· ··	ری د.	1	02	wh-med FeOx	ł.			
15	20	i. 1'	35	LT-MO GN BN	SI. lighter color. TE Chay, local silfd. Atherning AT	2	OZ.	MO RJX	10			
20	25	l' incr. Min	30 ?	10 p.	As above; local Armethyet Q2	Ŋ	Øz	п	IJ			
25	30	и /)	30	MED GN BN	As above; decr. VITS. Blockier. EAmer	 .et	Rz	Mar. STR Felz	Ľ			
30	35	ı, <i>11</i>	30	k 13	As Above. the Some	7	Qzy	wk-Mal FeOx				
35	40	ii iy	30	MD GY- BN	WK- locally mod silieif. WK- locally mod silieif. WK blacking. Hairling 192 Vits (XIn, some care Myst	3	or U	'n "	19			
40	45	" (Fault?)	30/201	11	2% Ton-Yellow Clay otherwise AA. Xim nots	2	Qz cc	4	44			
45	50	N 10	30	purpk-BA	Greatly incr. VN Oz. Forestured. B. locally puppe/80	15	QZ MNR CC	Map- Steor	y	. 015		
50	55	11 <i>i)</i> .	30		As Above. Oz varians colors, Bru-Rd-Purple-up	8	Oz U	<i>µ ↔</i>	4	.033		
55	60	n 21	30	GY BN ORG BN	Incr. hem. stain, Not as blocky of Above as more with	10	Or cc	96 - 4 <u>3</u> -	U	.013		
60	65	н 1,	30	4	Same as above,	10	oz CC	Mat FeOx	v	-012		
65	70	ji 17	30	GY BN	Decr. Veining ARAX/ Silicif. / FEOx	4	Ог сл	wr FeOr	V			
70	75	· • •/	30	GY BN Org BN	Inco. hem. Stain Deco. VETS: WK Silicif.	Z	Q2 U	Febr				
75	80	In 16		GYBN	leen VETA: WK Silicif. 11. incr. Silicif. A VES Lorg. Decr. FeCx	8	Gz CL	wk FeOx	50			
80	85	11 ¹⁷	<i>30</i>	GY BII	Inur. Felk again,	3	Oz cr	MOD- STR FEOx	L,			
85	90	י, יי	30	GY BN Local Orga	WIZ Silicif	3	Qz CL	Mos FeOx	v			
90	95	<u>л</u> ъ	30	GY BN		5.6	Qz U	WK FEØx	¥	- 012		
95	100	n N	30	1. 15	n ti	8	Or CC	V. WK FEOX	1.			

HOLE NO. <u>196-14</u>

5

i.e.

MOSS PROJECT, ARIZONA

PAGE <____OF____

FROM			DOOK	GOT OD		_		GUI DO	DEG	А	SSAYS (OPT)	'	
FROM	то	ROCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	Au (FA)	.An CN SOL	Ag (FA)	
100	105	Tmp- How SHKWX ZOOR	30	GY BN WHIT	WK Silicit abund. Wht Oz + CL VLTS. To ame Houst. Hem.	15	O2 Ce	JK-MOD FEOX	good	.023			
	110	1, 1,	30	EN BN	Incr. WHT. BZ. Color charge (Timp) to GN	20	BZ CC	MOD REOX	v	• ७५०			
	115	11 1/	30	+org BN	Dec- Ge. A few dense Org BN S. HELCHIPS	6	Oz ec	Mod FeOx	ע				
	120	n //	30	GY BN	Incr. XLAN QZ+CC	10	OZ CL	wk-nes Felx	y				
120	125	je D	30	GY BN GN BN	Looks a liffle fresh Decr. Oz & Silisif Locally Chloritic	5	O2 CC	Mob FeOx	12				
	130	s, //	30	GN BN GN GY	Mixed Oxide / Suifide. F.g. diss py in clots. We-mod silicifi	15	0° U U	2.5% Py Local mo	77	.011			Redox
	135	10 17	30	GN BY FN BN	Mab. Silicification. Decr. Oxidation	8		L. 5% Py Local nep FEOx	y	•017			
	140	h (*	30	JHT.	As above, w/ much UN Material.	25	OZ CL	44 13		.015			•
	145	11 11	30	GN BN GY ^T BN	WK 5: licif. NOW totally Oxidized again (here stain per. 92. common	10	BZ	Moð Felx	y				
145	150	js 11	30	4 11	Same as above. Amethyst noted	10	Oz U	³ 4 sj	"	.045			
	155	(1 //	30	GY BRI OVS BN - WHT	Abund W GZ. Locally Str. FeOx Stain.	35	62 CC	Mod- STA FeOx	5	•091	н. Полого (1996) Полого (1996)		
	160	ı, ı)	30	11 14	Decr. 92 VN MErrial. A few dense. On Bon Silicense	12	Or cc)) II		• 034			
	165	<u> </u>	D	GY BN +WHT WHT-BUHT	but / Hk EOx stain	20	Ø2 C2	wr FeQx		.033			
	17.0	MOSS VEIN		BN	ABUND GE+ lesser CC. MOD Silicif. of TMP. LITTLE FEOR	60	OZ CZ	wit FEOX	"	.095			
170	175	,	+	h "	As above.	85	Oz cz	10 10	••	•111)		
	180	Moss Vein	20	BUFF Org BRN L+ BN-Tan	Or less wht. Some greenish q2. Incr. FeOr	80	Gz cr	NED	,	•063			
	185	MOSS VEIN DEL		V. DK BEN BAFF+	Fractured Hound MNO2	85	Oz ce	STR Mar Ox	<u>، ر</u>	.051			NATE
	190	MOSS VEIN	20	V. LT GRN		95	Or cr	Local Moox.	y	(110)			
	195	Moss VEIN	20	Ben	Basically as above. 51. decr. Vein. FeOr	85	Gz u	Local FeCx +MaQx	1)	. D90			
195	200	Moss VEIN	20	BUFF-WHI THE BRN	Q2 locally Lt. gra + BRN. The only WK silfed.	70	Ger K	MOD FeOx	1,	-055			
	205	MOSS VEIN	20	BAF+ GYBN + DKGY	5% dk gy str. silfd. chips w/ 1% AY (dk Brw where Brid; ead. Nor FW.	70	Qz CC	Local ReOx sta	Sin Si	.060			
	210	Top - Footwall Zone	10	GN BN GN-PK GY		15	02	2.5% Py Mob-str Febx	- Ŷ	.018			Reda
	215	Imp - Footuall Zone	10	GN GY PE GY		<u> </u>	O2 CC	2.5%					
L	220	h H	10	3, 13	Harder - Fresher, Incr. Fink The (Pink: Magner, te-No Ry Miner ox on the	54	B2 C1	L.S Py WK Feby FRX	n				

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-14</u>

PAGE_3_0F_3_

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	70	VN	SULFS	REC	ASSAYS (OPT)			
FROM	10	ROCK DESCRIPTION	CODE	COLOK		VN	TYPE	% %	REC %	Au (FA)	Au CN SOL	Ag (FA)	
220	225	Tmp - Fw Zone	10	GN GY PK GY	Mod- Str Propylitin alt. Chior-CL-92-py.	3	02 U 02 U	<.5% Py R FEQ	GOOD	.020			
225	230	4 . 1/	10	PK GY GNJ GY	Gradually dominishing propylitic alt: VLT3 are clean who CC 2 Q2.	3	202	2.5% Ay The FeO r	1				
230	235	n fe	10	- ja 17	As above. A little Fractured -/Fe Cr stars	1-2	U Or	FE Py					
235	240	11 1 1	10	9 1F	Decr. Felx/frx WK Prop. alt.	2	4 22	U U					
240	24 5	Poss aplite sill < 1' wide	ĺÜ	GN GY PR GY	Minor local Silicif(?) -/ diss py. # 51. incn) Vits + prop. elt.	2.3`	cc GZ	2.5% Py	.).				
245	250	A1 //	10	CN GY FK GY + WI+T	CO COL STICA INCANT	25	B2 CL	L. 5%					
250	255	y 11	10	PKGY	Decr. Qz. Mostly PK gry (v. wk Prop alt)	8	Qz Ci	πŖ					
255	260	Tmp- Moss Porph.	90	PK GY GN GY	Quite fresh Only localized prop. alt)	ce Qr	πPy					
260	265	,, ,, ,,	90	рк бу	As above	2	いるこ	~					
		TD = 2165'											
		· · ·											
				<u>с</u> (Д									
									•				

X-SXN For BIG FAULT TRUE DIP ON BACK

DRILL HOLE LOG ADDWEST MINERALS, INC.

MOSS PROJECT, ARIZONA

MP-16 (moved N.)

		M96-15 COC	מחת	TA TT C.	NI			E		EV.		
BEAR	-			C R			ED BY	_E (/				
			F SIZ	F 5%	st ST	ART	ED	3/7/96	: 4	1:00 pr	,	
LENG		<u>425</u> DRI	LLER	Mike	Adkins CC	MP	LETE	D <u>3/8</u>	196	4:20	рм	
PAGE		OFCO	MMEN	TS:	Ad Kins CC 100 gpm water below 400 The M96-14 (-45) W VETS Must d	had	1 m	rch M	ئە م ا	who no	ear su	thee,
be low 2	50', in	rmous amount of Water ciuding within Moss. Loss of	fines.	H	W VLTS Must d	<u>q</u>	No	RTH	or i	Near V?	rt cal	
						-	101	et II Be	DEC	A	SSAYS (OPT	
FROM	то	ROCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	Au (FA)	An CN SOL	Ag (FA)
0	5	Trop - Hew Vet Zone (Low grade)	35	Org-RD BN	Hem. & limonite stain WK Silicif. due to bairbine Ge	1-2	Qe	st ROX	foor	.015		
5	10	in n	11	р ч	11 V	2	Oz .	Str Fear	feir			
10	15	<i>1</i> , <i>1</i> ,	1/	aty BN	Decr. FEOx stain	2	Q2	Mod FeOx	Gano			
15	20	11 11	И	Rd Org	-Pervasive - Hairlin ith	1	Qz	STROX	Goat			
20	25)i i/	*1		Heirline VLts / with Silic.	1	Qz	10D FeOx	(col)			
25	30	je (j	17	GY BRN 0-3 BRN	hairline VLTS	1	Q2		4			-
30	35	JL 11	<u>л</u>	ii.	TO rouring of Strong are	<1	Qz		ч			
35	40	11 11	11	GY BN GN [®] BN	Alteration mainly just propylitie. ROx + minor clay is numerous for	< /	Qz	MOD-STR FEOX				
40	45	11 -1	v	μ	AS above Slightly Clepp (with ars alt i)	<1	Ge	MODFO	v			
45	50	ų <i>1/</i>	н) <i>)</i> -		<u>د ا</u>	Qz ?	Mal FeOx	r			
50	55	4 1)	1/	org BN	V. WK Silicif. K hairline ULts, FEOX	/	Q2	st. FeOx	11			
55	60	ر ۲ ۲	"	11	AS Above	/	QZ	STR FECX	4			
60	65	yn s j	"	GY BN Gev BN	Decr. Feche a Mirline VLAS (Afau)	21	Qr	WK-MO Fe Cx	11			
65	70	н <i>У</i>	"	ы <i>1</i> 4	VITS COURSET - 3-5 mm Educy - Kin.	<u> </u>	Gz	lo 1	4	.012		
70	75	11 17	11	• "	Course Dousy Calcite, Vugsy Otherwise weak alt. The Org - Bar Clay	3	az	" "	11			
75	80	¥1 ¥1 ~.	n	h 1/	No drusy Calcite, a fear hairline q= 1/15 Minor cilicit, Prop a H. sof	/	OZ CZ	WK Fely	1)			
80	85	10 i j	1/	• •	<i>n v</i>	1-2	64	WK FEOX	v			
85	90	(Local Rodon)	"	GN BN GN GY	Harder - Partly UNOX. Very little Minutation. A tow hairline 92 with	21	az	FE Ay WX-Mas FEOF	"			
90	95), /), J	1, 4	GN GY	Not exidized. F.Ox on for only. As above with Bluched	21	Ø2	F. P.y EFC,	i,			
95	100	n V)	y	•••	ر۱ ۱	e 1	Gz	11	ע			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-15</u>

PAGE____OF____

FROM	то	ROCK DESCRIPTION			COLOR	ALTERATION	70	VN	SULFS	REC	Å	SSAYS (OPT))
FROM		RUCA DESCRIP IN		CODE	COLOR	ALIERATION	VN	TYPE	30LF3 %	%	Au (FA)	Au CN SOL	Ag (FA)
/00	105	Tmp - the ver	TS	35	CT PK GY	V. WK Silicif. Ossoc. W/ hairline oz VC+S App. o.H - Bleached	21	Ōz	ΈŖ	G ara 0			
	110	N	,	55	LT GN GY PK GY	Incr. prop alt x CC UCTS. Local ang. alt.	1	CL Ø2	ΈPy	4			
	115	4 1	',	35	4 4	As above. Incr.	1	ес 92	.5% Py	V			
	120	is //		35	ų <u>"</u> ų	11 Ju	1	دد 92	·5% A	ų			
120	125	n 11		35	GY BN/org	t 50% oxidized again SI. incr. in VLTS (course)	1-2	Or U	15 Ay MOD DX	v			
	130	N		35	GYBN + GN BN	All OX. again. # Prop. Alt continues. Local WK Silicis. The Amethyst	1.2	Or Z	NX-MO FEOx	y			
	135	n 1		35	H 1)	As above	1	Q2	uk-Mas Felox	u "			
	140	, ti U		35	n	As Abore	1-2	Qz	MOD ROX	v			
	145	Tmp - Hw StKW	NX Zone -	30	GY BN GN BN	Incr. Qz-CC Veining. Amethyst Common	4	Q2	WF- CAO	IJ			
145	150	H LI - A LITTLE H	20.	30	n 61	Deur. Be VLTS. H2O	z-3	Or Ce	- H-mad Fellx	\$1			
	155	10 × 1		30	GY BN	Few VLTS, Minor chay (local arg. alt)	2	Oz CL	<u>))</u> 1)	,,			
	160	h. V	-	30	Org BRN GY BN	+ Strong Veining + FEOx Steining: Silverting	10	De K	STROK	ν	•032		
	165	OZ VEI		25	TAN + BENGY	Dense WAT-TAN VN BE + Densely silicified TMP. Some Gray & BIN BE	50	Oz	WK-ma Fedx.	Н	.063		1
	170	Oz Vein E	WET	z5	WHT- BUT GN BR	Abund white Tan - It g ~ 92. Dense, sugar Decr. silicif. of porphyse	60	Qz	WK FeQe	"	. 044		3
170	175	QZ Vein		25	GN BN Tan WHP	SI cleer. Oz. Tmp mod sile: Fied.	45	Qz	wr.no Felix	مع	.042		
	180	TMP- HW SHKW	" Zore ?	30	CN BN Ort BN	limbuitic chips (gossenous)	17	O2	Local Pennasiva ReOx	y	.021		
	185	<u>,</u> n v/		30	GN BN	Lucally Strong silicit of TMP, incr. 92 ULAS some calcite	25	or er	MOD	D	.027		
	190	ч	"	30	WINT-BUT	The Mal- 8 to silicit abund xin qz vors, Feq	40	OZ MAT C-	str Fely	h	. 630		
	195	ει	11	30	st-md gev bn	Frequen QZ LNS & Silicif (UK-mod)	10	O2 Mit L	Mod FeOx	1,	.018		
195	200	(Hole making Lots of	11, 12	30	Ч <u>у</u>	As above. Propylitic	8	Or u	WK.Nd FeOx	11	.014		
	205	r, ij		30	GRN	As above. Local Se E Chlorite chts.	7	O2 CE	WK-May FEOX	ы	.023		
	210	·, c)		30	LTGN-BN 4. 9VGY	Iner silicition tran (ma-st-)	5	Ge cu	E Py wind FeOx	n	.018		
	215	u. 4		30	Mad 61 BN L+ 94 GY	Mixed ox/suff. as above. Decr. Silicif., iner vets	10	Qz ci	45 50	r	,011		
	220	4 1		30	пИ	All oxidized again. Fractured. Incr. 1855.	15	Oz CC	WK FeOy	7	.015		-

ÍRILL HOLE LOG ADDWEST MINERALS, INC. HOLE NO. <u>196-15</u>

MOSS PROJECT, ARIZONA

Ag (FA)

Redo

PAGE <u>3</u> OF $\frac{\gamma}{2}$

IULE	. NU	110413			^			PAGE	<u>د</u> _	OF_	<u> </u>	-
				<u> X SXN</u>	ON BACK							
FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %		SSAYS (OPT	, ,
										An (FA)	An CN SOL	
220	225	Tmp - Hw Stkur Zone	30	WHT. BUF	BLOCKY - Fractured. The host weakly silfol	50	y y	STR South STR FeOx	Gons	. 020		
	230	in 47	30	PR GY	Quik CHANGE TO UNDA Material (15%), MOD-STA Prop. alt. 3% orsonous chip	3	छर ८८	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	. 025		
	235	11 II	30	GNGY PHGY BN BN	Mixed ox/suit. Fractured Incr. az vits-local Silicif.	15,	Qz CL	FZ Py WK-Mad FEOX		.029		
	240	ધા	30	GN GY GN BN	As above but decr. Vets. Minor silicif.	5	er er	11 11		.023		
	245	n #1	30/25		ABUND WHT Oz + CC. Clean" MOSTLY UNDY.	20	Or C ²	11 +7		.041		-
245	250	ti tl	30/25	LT GN BD	Oxidized. Al: Ho silfd	60	02 CL	WIL. Felow		. 053		
	255	n 1/	30/25 :	LT GNGY PL GY GN BN O WHT	Mixed Ox SulF. WK-Mod silicit. Hound. Ge	50	Q2 U	TE Py Local May		.034		
	260	μ i/	30	μι	Marthy mox. Locally str. silicit., Somewhat diminished un E Amertayst	40	or CC	L.5% Py Minor FeOs		.018		
	265	n V	30	64 6N + + K G Y	Silicit. Moo propylitic alt. Feor on try only	5	OZ CL	2.5%Py == FeOx	Y	-018		
	270	Moss Vein ?	20	ORG BN	Fractured & OMIDIZED ABUND 62/STR SILICIF. Pervasive Limonite (PLOCKY)	30	92 52	REQ		.017		
270	275	MOSS VEIN,	20	WHT ORG BN GN BN	20% BLOCKY - Limonitic es ab Then into Major WHT OZ-LL Win. Eamethyst	65	Qr es	Local STR FEOX		.020		1
	240	MOSS VEIN?	20	CH GN BN ORG BAN WHT	Oce Maroon inclusions in VN	45	Oz Cz	WK ++ 1 ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +		-029		
	285	Tmp - Hw StKwx Zone	30	GT + Org BRN	Decr. VN az-ce 10% o med gry silfed enips. Local felly	15	QZ CC Replacement	C.SZA	4 11 11	. 123		
	290	41 VI	30	LA-DEGEN CAREGRY + UNT	Incr. Silich 2 Veining. Iocal str. Chlonte. Gra Silicif. Chips Contain inc. disspy	30	Or CC	1% Ay Logally 5%		.060		
	295	MOSS VEIN	20	WHT LTGNGY		70	Gz U	<.5% A,		. 044		
295	300	MOSS VEIN	20	LT GN WHT ORG-BN	BACK INTO OXOBIZED VIN MATERIAL. STR. DKBAN MNOX STWIN ON SITE THE	65	S S S	20 × 10		.12/		
	305	Moss Vein	20	WHT- LTGN +RI BRN	Incr. Kin Material. Brochymer The Hocarty reddish brown Calcine		dr u U	Local Fros + Maois		.088		
	310	MOSS VIEIN	20	+ Org - BRN		80	Br CC	η	Y	. 102		
	315	Moss Vein	20	GN BN ORG BN WHT DK	Decr. VN Material, Tmp is strongly oxidized RN mod-gto silicit. Made	40	Qz ec	Stor FOZe Min Ox		7.292)		
	320	Moss Vuin	20	··· ·	Oxides.	40	Or U	Mod EC.		.04/		
320	325	Moss Vein	20	WHT-TAN LT GN BN	Incr. Vn Material. Imp Variably silicified	W	er er	Moo FeOz wk Madx		.027		
	330	Moss Vein	20	WHT-TAN LT GU BN DK BN	Incr. Brown Calcite. otherwise as above	60	Oz ce	u #	•7	•042		
	3 35	Moss Vein?	20	Lt GN BN WHT TAN	Decr. Oz VN Material. sonce fractured be by str MOX Stain Missilier. For	25	d u	Mad Fell		.016		
												-

LT- MACY BO WHT- TAN

20

Moss Vein?

340

Basically same as above 30 "is this the Mors?"

дг U

H H .046

MOSS PROJECT, ARIZONA

		M96-1			IATES:				Ē		V		
		Due N	<u>Inth</u> CO	KE/RV	C <u>R</u>		JGG]	ED BY	(<u>J.</u>)	ne lle	<u></u>	-	
		ON <u>-65</u> 440'	<u> </u>		ZE_5/	$\frac{2}{\sqrt{1/4}}$ SI	ARI		3/8/9	6 3	5:55	pm Calla	
LENG PAGE					TTO				Б <u>з/</u> ј	1			
AGE	_/	OF4	0	MMEN	NIS: M	ASOR Veining 245' ue to wide drill hole OKE DOWN AFTER Toig	- 31 in-	o' in rept	HW.	Pro 6. 2 397.	dips 5' N	68=72 3	" Nor days
												ASSAYS (OPT	
FROM	TO	ROCK DES	CRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	Au (FA)	An CN SOL	Ag (FA)
0	5	Tmp - w/	s Porphyry Minor VLTS	90	Md GY BN	WK propylitic alt. Oxidized. Minor CC+ QZ VLTS. Afou hairline Os	21 n13	сс Q.2	Mod. FeOx	FAIR			
5	10	LI	1/	90	<u>н</u> 14	As Above	<1	ar	WK FeOj	FAIR			
10	15	11	1/	90		As above; incr. pz VLTS (XLN) & FEOx. Local situation	2	Oz CL	Mop FEOx	6000			
15	20	í,		90	Red + GY BN	He matite stained. Fractured. Poss. WK Silicif.	1	02 ce	STR FEOX				
20	25	11	. ''	90	6-7 BN + Red	Decr. Hem stain, else as above.	21	or	Mol -				
25	30	1/	•/	90	14 (y	WK Silicif Lactured. Heirline 92 ULTS, hem Stam. E Clay	2	ar	STR F EL				
30	35	4	4	90	b 14	As above	<u>l-</u> 2	or	str Felt				
35	40	ч	1/	90	Red Ben	INCR. Hometit Stain, & ge vers. WK silicif. R cley	2	Oz	V. Str FeOr				
40	45	н	1/	90	GY BN	Decr. frematite. Decr 32, incr. CC. Heisline	<i>1-</i> 2	cc Qz	Mod. Str FeCx.				
45	50	n	"	90	GY BN	Diminishing Or Wiss. Safter Propyitic att, bear TR Clay	<1	۹۲ در	., ,,				
50	55	*1	1/	90	n 4	As above R beige clay	د ا	02 4	w.K FeO_1	tandi di Latin			
55	60	ų	v	90	h	3% beige cky (ang. alt.) an about	21	Bz 4	with mod Fells				
60	65	<i>L</i> 1	11	90	15 ye	Beige clay as above (2-3%) Some white clay. No vers.	-	-	uk FeQ				
65	70	61	1/	90	11 ''	A 1; the down xin 92 (clean)	٤١	Θz	н ,,				
70	75	n	. /	90	11 " + Red	SI, inar. Witz, Elocal Silicification, de Menn. Stain.	/	Q2	Mos Red				
75	80	71	1/	90	ty Bu + reday	WK sitieit. assac. w/ hairline qz vets. A few larger XIa vets present. 60	1.2	Θz	MOD-STR- FEOX				
80	85	0	1/	90	40	AS ABOVE	z	Gr	11 17				
85	90	и.	۰ <i>۲</i>	90	Org BRN	Limponite stained/some hemotite also. Hairline O-2 VIts.	el	Qr	STA FECX		1		
90	95	η		90	Lt and Sy BN	Much diminished Felle. Just propylitic alt		-	nk FeOx				
95	100	11	۰,	90	ORG BN GY BN GN GY	Becoming Unexidized. Jour. Fedx, Rare VLN de	41	Or	E P) mod fel				

ŕ

MOSS PROJECT, ARIZONA

HOLE NO. <u>196-16</u>

.

PAGE ZOF 4

FROM	то	ROCK DE	SCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)	
THOM		ROCK DE	SCAIP HON	CODE	COLOR	ALIERATION	76 VN	TYPE	SULFS %	%	An (FA)	An CN SOL	Ag (FA)	
100	105	Top - Mo	55 Porphyry	90	Lt-md gn Gy	90% Unaxidized. Strong propylitic alt. No Fresh biotite. Diss Py	21	ar	2.5% Py	Goal				Ped
	110	11	'/	90	+ Ory BN	50% ox. Dized	-	-	2.5 Py Loca 1 Star Fe Ox stain	V.				
	115	"	IJ	90	Lt - MA GY BN	All oxidized again. Decr. FEOx	-	1	WK- FeCx	v				
	120	17	ŋ	90	11 17	Minor hairling 92 vits TE VIA CC	21	az ce	wke.md Felix	v				
120	125	'1	4	90	H 11	A liftle clayey, wk ang alt. Minor hairling de vite	21	ar 	wk FeCr	ų	-			
	130	81	17	90	n Lj	Decr. clay. Otherwise Some as above	41	Qz	w.K FeOr	v				
	135	11	17	90	ير _{بر}	Slightly iner. Fe Or. XLN CC VETR:	c 1	cc er	MOD FEOX	н				
	140		ij	90	11 et	Dec- sale the effect. Propyliticed Top. Dull	<(8. Y	wk FeOr	••				
	145	1 6	11	90	n, 17	Local increased FEOx 2 hairline q2 vits. BOCC. 4 mm xin Q2 vits.	1	Oz LL	Local Str Felx	y				
145	150	¥1	ч	90	L+ GY BN L+ GN GY	20% UNOX. Mob-str. prop alt Continues. Looks barren.		-	E Py WK FeOx	v				
	155	lı	•1	90	lt gn by	90% UNOX. XLN CC. blosjuts. Mob-Str Prop. Alt.	!	cc	Listoly Feox au FRX					Rod G
	160	u.	v	90	C+- MA GY BN	Oxidized again. Minor hairline Uts.	21	Qr	WF-Mot FeOx	4				
	165	4	*2	90	y, v	93 260-2	21	QZ	1	.4				
	170	\mathbf{p}^{*}	ч	90	org BN	15% UNOR. Str Lim, + Hern Stain, Poss. WK silicif. Novet	21	Qz	Str Felix R Py	14				
170	175	10	1/	90	at 11	40% UNOX, Cont. Prop. 017., Occ. hairling 92.12+5; # FCO,	<1	Qz	2.5 PV StreOx	11				
	180	\$1)/	90	ст ды су	All UNOX, Poppylifized. Bos. WK Silfer, diss py. incr. B2 vets incre	Ι,	Ø2	1% PY WE ROA ON FIX	1J	.070			
	185	Alit		90	MA BN GN BN GN BY	90% exidized again. As above elteration. Te rosy Kln 92	21	Q2	LIS PY WX - Mod FEOX	•				
	190	4	" DAILE	90	LT GN GY GN BN	-	21	Øz	. 5 Py	4	510,-			
	195	'n	بر	90	ע וו	80% UNEX. as above alt.	21	O2	L.S.Py WR Fels	Ŀ				
195	200	Tmp- A	HW VLT ZONE	35	Lt-md GN BN	All exidized. KLN G2 VLTS Common Some pion Kish, Prop. alt.	2	Q2	WK Nop FEBs	4				
	205	H)1	35	, N)j	Propylitic alt only	F	Q2	WK FeOr	ų				
	210	й	12	35	a }*	Local bimobitic zones Sli incr. Oz vets	1	82 ce	WK to Jocally Star ReCu	1.				
	215	h	17	35	n v	Incr. XLN BZ V2TS Some drugy.	2-3	Or Marice	uK·mod FeOx	ų				and a second
	220	n	"	35	יי יי		1	02 	A 11	•				-

HOLE NO. <u>M96-16</u>

MOSS PROJECT, ARIZONA

PAGE	3	_OF_	4

HOLE	: NO	1176-16							PAGE	<u> </u>	OF_	4	-
			0	ROSS	SXN	ON Back						/	
FROM	то	ROCK DESCRIP	TION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	Â	LSSAYS (OPT)	
		•	•	CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (CA)
220	225	Tmp - Hu 12	T ZONE	35	L+-M8 g~-BA	MOD-Str Prop. alt., Local WK Silicif., Variable Oz-ec vers	Z	82 CC	WK-MON FECK	Geed			
	230	i, y		35	••	220 UNOX	2	Or num ce	ΞÂγ	4			
	235	te p		35	"	" (m) ox)	4	Oz cl	wx.md FeOx	n	-016		
	240	1, 1)	'	35	LT-MI GN GY	(a little fractured, UNOX)	3	Qz cL	. 5% Py	4	.014		
	245	ii b		35	ORG BRN	(All OX., ST FEOx)	2	O2	Str FeOgenin	•:			
245	Z50	Q-2 VE	N	25	ForestERN	OZ, Mod Silled GAN TAP Party Oxidized	S	OLZ MANA CL	K.SPY WKED	¥	.091		
	255	+ SILFD TA	np	25	Md GN-BA GN GY	SULICIFIED TMP w/	20	Q2 Maye	6.5 Py Med Feby	"	.041		
	260	η ,		25	GN-TAN	Az Veimag. Blocky / Blocky - BOUND BZ FR (wht-Massive-dense) Fr Strongin Silfd. Thip 3	75	Q2 ma	Feld	er	.063		
	265	4). 17	,	25	MD GN-BN + WHT	Decr. QZ, Mob-str silicit Very 61Ky for	30	And in	MOD ROX (IOL. STR)	17	.036		
	270	RE LINE PLUS		25/30	11 1) tory Brr	Decr. Blockiness stractives, WK to v. Str. Silicif. Str. Limonite · B GRN BE- Decreasing Silicif. +	30	Orto	STR FeOx	ų	.oz3		
270	275	TAP - Ha StKi		30	Verious BN GN GY	Abund DE VETS CONTINUE.	30	Or el	C.S.P.y UC.S.R FECK	ų	,033		
	280	De 6;	\$	00	HUGNGY - PKGY - FAVEN Buffwht	As above Rhanks Diminishing Os. The Propyshizd, v. WK shick		Oz Cc	L.5 Py Loe. STR FeGr Te Ry	11	-018		
	285	tourwood	EN	25	Ter Org Ban BRA BA	WK Stic. Fot The nost.	65	82	LOL. STR FEON	4,	•020		
	290	Top - Itw STRAN	- Caving	30	Gy BN WHT	Strongly Fractured OXIDIZED, Str. Silfd.	30	2	STR ReOx	4	.108		
	295	ji 4		Z	GN BN	As Abore.	20	35	12 65	11	•040		
295	300	84 \$1 •		30	Org BN	Variable WK - Stor silicification, Abwood VN Decr. PEDA:	₹£	Q U Q	WH-MO FEOX	tı	.050		
	305	(CONTINUED Freet		30	GN BN DRG BN	t 50% www.idized. Localized Silicif (MOD) AbuMD SZ_; TE watchey	35	Gew	2.5 Py MaeOx	1,	• 023		
	310	Diminish fractor	ringlearing	30	L+BNGY WI+T	90% Oxidized. INCR. VN Material. Imp Only WK siffed.	45	Gr	F.P.	11	.028		
	315	•• • • •	J	30	C+-MD GW + EN WHT	remaant prop. alt.	25	Be Ce	wx-neo FeOx	u	.020		
	320	1, 1)		30	LT-MO GNGY	Qz Dimininging Propylitized. 60% unox.	10	j	L.5 Py V. WK FEOX	"	.017		······································
320	325	5g - 5	/	30	Mostly	Mixed OX/ Sulf. Trice UN: Local Sile F Occ. BIK 24 TA Amerkyst	25	Qe Cr	2.5 Py WK-SM PROX	'1	:041		
	330	in y	1	30	GN G9	90% Unoxidized : Mod str Propylitic att. Diss py	10	Que ce	·SPy FEG	4	.014		
	355	\$1	i)	30	GN GY +GN BN +WHT	Mostly as grove, but. low (5%) dense silicit. Liner oz 1273, 15% oridiza	15	Oz er	L.S.Ry WKFEOS	"	.021		·
	340	E L	N -	30	u 17	+ 5-10% dense grey silfet. naterial (unon), 15% oxi dized	to	Ge LC	L.5Py WK FeOy	10	.029		

MOSS PROJECT, ARIZONA

٠.

							TAT			LCI,	,	UNA
HOLE	E NO	M96-16		Slame	drilling due to =	100		PAGE	<u> </u>	OF_	-	7
	_				illing alle to -		<u>, с. р</u>	in. 2	0 rio	w. Ce	os: of f	ines.
										A	SSAYS (OPT)
FROM	то	ROCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	An (FA)	An CN SOL	Ag (FA)
340	345	Tmp- Hanning Wall Striwx Zowe	30	Lt - md GN EY + on EX	General propylitic of T localized Shicification ± 2% dense gry sincif.	6	Je Maria	2.5 PY WK FEQ. New FFX	Gand	.030		
345	350	QZ Vein	25	WHT-LT SN + LT ORA BN		65	Or Cl	MO-STE FEON TE MAOX	11	.022		
	355	Tmp - H.W. StKuy Zone	30	DK BAN Ligen BN	Abundant Minder. Softer Dittie clayey. All oxidized Ereal citicit. Decr. W. Love a	20 vei	O2 CL	STR/MQ. FeQ.	ג	.087		
	360	ų a	30	DRG- BN - GN BN - DK BN	Decri Mn Ox, but still present Franky soft From legal arg.alt Mariable uk - mod sibicif. The Buck	10	de y	Str Feg	19	.023		
	365	it ji	30	Lt bow + witt	Bleached Variable WK Silicit. , WHT WW Materia. WK MAD.	15	B2 CC	Mod Fe Or we Mode	17	.017		
	370	I) I P	30	TAN- WITT +ORG SN	Sticification, Light cobr Silicification, Light cobr Tegry UNOX. 12./Silicif.	25 ?	Q2 CC	WK-MOO	11	. 027		
370	375	Moss VEIN	20	Tan-1+ BW WHT	Difficult to tell difference between W & sitted purph.	30,	QZ ec	with Folly E Fy	ų	.020		
	380	Moss /EIN	20	Lt Tan Lt Gan witt	Bleeched- 5 trongly Silfed poph. + QZ VN. Sim. lar to MUSS 1/1 to SI. of BB. FLT	607	Дг сс	WK FeOx aii ox	"	.103		
	385	Mass VEIN	20	h / '	AS ABOVE	657	Q2 C2	V. WK FeOx	U.	.142)	
	390	Moss VEIN	20	Olive gN 54 + 647	Silica flooded Tmp w/diminished open-space fill 92. Green,	35	Qz Minr _{c E}	wk FeQx	v			
	395	Moss VEIN	20	<i>h</i>	As Above. Silicification intense.		OZ MAR CL	w.K FeOx	v			
395	400	Moss Vein Bingin 715% Contam - Hw Zone	Zo	CH- Medley GRN	Strong Silicification. 66-70% UNOX 2.5% dis: By Dr. Org BRN TAP-VITS CONTR	ÉO m	Qz (vir + rep bcome	6.5% Py WK-MU FEOF	v			
TRI-CH	405	Tmp - Footwall ULT Zone?	103	Medgngy	R Amethy strung propylitic	15	Qz	15-19,0 V. WK FeOx	11			
	410	MOSS VEIN?	20?	Mid GN BY MD BY	Ince Silicit. & Verining. (Localized)	25	Co star	.57. Py V. NK 5030	4			
	415	Moss Yein	20	MOBYGN	Strong to interve Silies Strong to interve Silies Strong propalt where	(30		,5 Py	٠,			
	420	Tmp - Footwell Kiss	10	PIE GY	Kilicif. + VLTS. MOD-Str. Prop. alt.	4	G Z R	.5 Py № Fc G	• • •			
420	425	Tmp - 4 11	10	'n	MOD. Prop. alt uny. No cilicit,	41	QZ 62	C.SPY No FeOx	v			
	430	Tmp	16	H	As above; a few Be vyts	3	Oz U	2.5Py	**			
	435	Tmp	90	h	Diminished VLTS; SI decr. prop. att	1	Or	4.5% (1)	•			
	440	Tmp	90	PKGY	Prop. alt diaminishing.	1*	cc ar	e. SPy	`'			
	445	TD										
445	450				· · · · · · · · · · · · · · · · · · ·							
	455											
455	460											

(MP-20)

MOSS PROJECT, ARIZONA

BEAR	ING_ NATI TH		-17 COO MORTH COI 8 HOI DRI	RE/RV LE SIZ ILLER MMEN	C <u> </u>	ź ST.	GGI ART	ED BY	_E 7_J. 3//3/9 D3/	6		:30 AN	
FROM	то	ROCK	DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %		ASSAYS (OPT	
0	5	PAN	Eur			······				ProP	An (FA)	An CN SOL	Ag (FA)
5	10	Trao -	FILL Moss Porting	90	Med GN BN + ORG BN	Weak propylitic alteration. Some plag. phenos we arguilized musor	1	Q2 LL	Malox	Poor 10 % 10 R			
10	15	i) ii	"	11	+ ORGEN	phenos w argillized. Munor 4 11 Sl. incr. XLN CC VLTS	Krs Z	(СС ВС2	we not Fely	Fair			
15	20	ц	4	1,7	•1	и 1/	3	LC QZ	wk Fedy	(-00D			
20	25	н	11	1)	n	11 ¹¹	1	сс До	wik FEOX	G00 0			
25	30	n	"	ti	4	St. iner. Felx on Frx	1	CC Q2	WK-Mod FEOX	Ì	•		
30	35	11	u	<i>n</i>	n	(MONOTONOUS Rx)	1-2	دد هر	р <i>V</i>				
35	40	'n	"	4	M) GN BN	(a few hairline Or vers) 30% UNOXIDIZED	21	QZ	11 11 Some HEA				
40	45	31	"	15	ND GN GY	WK-MOD Propylitic alt. Chlor - CC - py (as above)	21	٢٢	WK FeOx				L.c Re
45	50	11	"	ч	MD GN BN	Oxidized. Alt. as above.	41	دد	WK-MOD FeOx				
50	55	·,	"	н	· GN GY		1	C(&Z	τε Ay Μοδ 40,				
55	60	н	"	11	\$1	5% YNOX. ONLY Alt. as above & Silicif. due to minor hairline Be WE	21	G2 CL	TE Py Mod Fely				
60	65	11	IJ	11	MD GN BM PR BN	Oxidized. WK prop. elt. Rare angilization of feldsp.	21	دد	WK-Med FeeOx				
65	70	1,	V	n	MD GN ON PK BN	11 U	21	دد	4 6				
70	75	51	"	11	h 11	(A few XLN OZ MTS)	1	<i>B</i> 2 e•	H 4				
75	80);	"	11	11 11 4 GN-РК ФУ	30 % UNOx; dized.	z	Ø2 U	TE Py WK EROX				
80	85	1	11	17	AP 1.1	20°10 UNOX - Y. W. Prop. alt. Decr. Oz 11to Occ. hairlin	1	86 G2	FE Ry WKEOD				
85	90	21	11	11	MD GN BA	10nty 2 - 4 % UNOX.	۲١	ec	TE PY WK FED,				
90	95	'n	v	1)	PF-GN GY BN	70% UNOX. Pinkish. Quity fresh. V. WK prop. alt. spotty.	21	Ce	TE Py WK FEO,0				
95	100	и	ы		n 4	As above . A few drusy 12.73	T.	Oz	FE P.		- 1		

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-17</u>

PAGE____OF_5

FROM	TO	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
PROM	10	NOCH DESCRIPTION	CODE	COLOR		VN	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)
100	105	Tmp - Moss Porphyry	90	MD GN BN	WK Propylitic alt., Occ. q2 + CC VLTS	1	az	wk Fedy	Gaad			
	110	ц 1)	μ	MDGN BN PK-GNGY	As above - 20% unox	∠ 1	دد	2.5 Py isk-mad				
	115	6 t te	"	4 U	** VI	21	ce	h ()				
	120	n 1/	1,	HO PK GY GN GY + PK BN		21	82	11 12				
120	125	la a	- 11	м ө ркбибу	As above wK propylitic alt. 95% UNOX.	<1	Oz CC	C.5 Py V. WR GOX				
	130	i, i,	η	THE-GN BN	(51. incr. FOx + R2)	1	هي در	2.5py hxFeQ				
	135	n H	<u>n</u>	й цэ -	и у У	1	er cc	. 4 iji :				
	140	n 11	11	*()	(50% oxidined)	1-2	هي ور	4 1,				
	145	. h	11	· · · · //	(ail weekly pridized)	2	Oz ce	wk-ng FeOx				
145	150	it y	11	MD ALGN GY	Decr. VLTS & Oxide. Feox frx only wk propalt.	41	OZ CL	TR Py V. WK FROX				
	155	11 1)	1	11 I/	(Barren looking)	<1	دد	" ij				
-	160	dz 20	л	h "	(SI. incr. FeOr beally)	<1	(c Qz	TR Py UK EO,				
	165	11 4/	11	ч ()	" (decr. FeOx)	21	دد	E P TT Fe Ox				
	170	<u>ч</u> и и	н	10 17 1	Homogeneous	21	دد	h y	_			
170	175)) ij	<i>'i</i>	11 17	As Above - increasing chlorite/ prop. alt.	<1	در	19 . 13				
	180	21 11	. "	B ()	A little tractured.	41	6e	11 U				
	185	1, 1,	"	+ GN BN	A little tractured. & Local FeOx stain. Mob Prop. alt. All Oxidized again.	1	<i>cc</i>	c.5 Py WK FEG.				
	190	Tmp - HW VLT HO ZONE	35	MD GN BN	Eractured. Local ang alt		Oz cc	WK FEOR				
	195	n y net	"	11	La-se VL+s - Calcite. Gz. Brown Calcite. The Flugarite/Amethysto Deca Lole Oll	5	сс 62	Mod FeOx				
195		4g //	u	4	Decr. VM. All some Buice of Still, Soft.	2	02 c~2	MoD-STR FEOx Mos				
	205.	lı "	"	1. 11 ¹¹	Fluorite (pale grew) vets Common FRACTURED. App. alt. 10% UNOX. Decr. Frr.	3	CC FL &Z	FEOx				
, 	210	st <i>11</i>	74	t GN GY	VL+s still present. XIN - open space Silling - BO % UNOX. Hender.		(1 82 _{FL7} CL	E Py				/
	215	н и	"	GN BN	VLTS Mainly of Ox Materia		Or CC	V. WK EQY		- -		
215	220	16 11	11	h u	90% UNOX. Fever Vita beneral prop alt Cout.	1-2	BZ	E AY local fely	V			- /

DRILL HOLE LOG ADDWEST MINERALS, INC. HOLE NO. M96 - 17

MOSS PROJECT, ARIZONA

PAGE_____OF____

							2				A	LSSAYS (OPT	
FROM	то	ROCK	DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	An (FA)	An CN SOL	Ag (FA)
220	225	Tmp -	HW VLT ZONE	35	GNGY PKGY	Propylitic alteration (mod). Occ cc+qz vits, FEOx on fry only]-Z	Ozec	L.5 Py V. WK FEG	Gaal			
	230	4	13	ıl	i, α	Local inco. Py +VLTS. Some tox fill py.	2	Q2 ec	· SPY TE FEDX				
	235	4	11	у	** 4	As above. Occ. hai-line ez rets noted in large chips.	1	Q2 CC	.5 Py RED		ļ		
	240	lı	v	Ŋ	11 41	(Coarser CL - 92 Vet3 - WHT	2		45 Py				
	245	4	1/	31	нц	MONOTONOUS hand, Weakly propylitized, Occ hairling of vets has the	<1 ve	cc	4.5 PY				
245	250	11	v	11	e1 "	TE brite apple green Minrl.	1	CC Qz	2.5Py		ļ		
	255	tı.	17	51	6 V	WE. Prop alt, Occ. Hairline VLTS (es above) Monotonous Ax. Diss Av	<1	62 62	<.5 Py				
	260		11	h	h 7	As above	21	?	2.5 Р у		<u> </u>		
	265	и	11	н	h y	SI Incr. XIn wht CC.	1-2	cc Rz	.5 PY				
	270	4	¥	11	h 7	INCR. QZ VETS + local FOX	2	Qe CC	SPY LOCALEON				
270	275	11	'n	"	4 11	Monotonous pK-grn Weakly propylitized Rot es above.	2)		.5 PY				
	280	34	¥	1 1	1 ⁰))	n n	21	Qz CC	·5 A				
	285	11	V	4	II II LT-MD	Alt. as above, but a little fractural & Oxidiaco Bastally bleached inco	21	Qu Qu	WK R. DA				
 	290	h	"	ч 	FR GY	Partially bleached; incr. diss + frac-fill py- Decr. FeOx. Decr. bleached Chips x	1	2) 20	1% Py				
	295	11	4	<i>i</i> ,	14 u 13 u	nts	21	U BZ BE	1% Py 15 Py				
295		11	ч	4	+GN BN	40% oxidized - fractured FeOx (limpain) or frx. Wt-mod prop. alt continu 10% o gxidized. Diminister	1	CC	Mos Fely				
	305	"	" Ify) S+Kuse	" 30	ORG-BD	Alimereus vie to dense	9-	Oz Gener Kanner	Local Fels Los Ay				
	310		HW S+Kuse ZONR	11	PKGNGY ORG BN	Susary Be VLT3, Ox10125 Local UK. Str Si'lest. EA As above. 5% wht Be, 5% translucenting to		- CC OZ	Str For	$\left \right $			
	315	31	<i>u</i>		GN BN	Re Sh deer 92 x Felx, Siliof. Ically		Qe	Fely Mob-				
320	325	"		1). 11	-n 14	Adj. TO VETS. BLOCKY - FRACTURED, Abund FEOV Be draw	 	Q.	FEBT STR	╞┼┼			
	330		· · · · ·	1/	ON GY	Backinto dominanty UNOR. Material. Decr. Ge (drusy,	2	Qz	Fely Local STF FE				
	335	"Re		ų	PK-GNG	Vuggy & Silicif. Local block	de como	Øz	2.5 Py			2	
335	340	۰ ۲۰ ۱۰		i)	BN-GN;	1.0% Oxidized T.		oz U	V. WEFER				
		·				I MPRES /	<u></u>		Febr	<u></u> .		· · ·	

.

MOSS PROJECT, ARIZONA

HOLE NO. <u>196-17</u>

PAGE_S_OF_S_

FROM	то	ROCK DESCRIPTIO	DN ROCK	COLOR	ALTERATI	ON	76	VN	SULFS	REC		ASSAYS (OP)	ŋ]
FROM		RUCA DESCRIPTA	CODE				VN	TYPE	30LF3 %	%	Au (FA)	An CN SOL	Ag (FA)	
40	465	Tmp - 5; He! (M.	105 30P	Lt-Md GUG + Ten +inttT	Variable Silicit bleaching - Par Abundant dens	ication x tial oxideria	30	Qe	•5% P. WK FEG.	Gang				
	470	Imp - VLTS	301	Ct-md GN GY LUHT	Decr. bleach x = vits.	im/silicif	10	Q Y	2.5 A, V. W.R. BROA					
	475	y n (Moss? 30?	Lt ga gy + Tan munite	Variable Silicit iner de ve			O2 Y	2.5 PY					
	480	Moss Vein	20	WHIT to V. LTgy Xtan	Strongly bles Local mission ch ABLIND. VEIN	ched /s; HJ	75	Oz cc	Te P;					
	485	Moss Veir	20	WHT- V. Lygrad + tan		Local	70	ec ec	V. WK					
	490	Moss Vei	n 20	L+-MO GRAY	INTENSEL SILICIFIED LOCOL WEOV.	Y Tmp Decr. XING	70 (?) Pre 20,	Qz	V. W.L Feor					
	495	Tmp (Fwz		GNGY	a) +. A fow G w) ch orite + pu	Lé + CCVLS	5	Qz cz	D.S. F.					
495	500	,, ¹ 2	10	. + 1	As a comp. diminships	11.4	2	Ôz K	.5 py	1				
	505	- i, V	, 10	η	l)	4)	3	()2 4	·5 py					
	510	in 3	10	"	j1	11	1	Q2 22	.5py					
	515	Tmp (moss Por	physel 90	PK GY GN GY	WK local; alt:, generall magnetic pink	ted prop.	4]	11	<.5py					
	520	ir tr	90	11	•1 •,		< !	n,	1,					
520	525	., 11	90	4		ŋ	< 1	11	ų					
	530	e. 3	90	. 41	11	<i>י</i> ן	21	11	1)				-	
14	535	n li	90	- 11	11	u	<1	11.	1j	1				~
	540	h u	90	η	11	μ	۲ !	1)	11					
	545	н И	90	21	j,	'n	21	11	1	i.				
545	550	$a \rightarrow b$	90	11	'n	1,	<1	ħ	ł)					
	555	fe 31	ag	11	11	у	</td <td>1'</td> <td>1)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1'	1)					
555	560	11 II	90	t/	slightly b	leached, as above	<1	3	']					
		TD =560												
1													1	
		Ň				<u>.</u>								

2

. 19F-2

MOSS PROJECT, ARIZONA

HOLE NO. <u>M 96-18</u>	_COORDINATES:N	N,E ELEV
BEARING JUL AJORA	CORE/RVC	LOGGED BY J. Keller
INCLINATION - 45	HOLE SIZE	STARTED 3-20-36 1:20pm
LENGTH 205'	DRILLER Mile Incins	COMPLETED 3-20-96 4:20 pm
PAGEOF	COMMENTS:	

FROM	то	ROCK DE	SCRIPTION	ROCK	COLOR	ALTERATION	96	VN	SULFS	REC		ASSAYS (OPT)
				CODE	COLOR		VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
0	5	Tmp- Hu	15Hwx ONE	30	Lt-Mel gn-BN + ORFBN	Localized WK Slicifican Numerou: Bet Calcite VLPS; Chloritic alt.	-8 -	O2 Le	MoD ReOx	FAIR			
5	10	и	ν	30	11	Some PINKSH B2	12	Or CC	н ^с	Good			
10	15		L VEIN	25	WHAT + GN BN + ORGBN	Abyrd. Vein Materia) Ping Qe + BN Ce common To Europe Qe	65	Oz CC	Mal FeOx	-			
15	20	Tmp- H	W Strwx ZONE	30	Med GN BN	Localized with Silicif general prop. alt	4	Be CC	STR FeCx				
20	25	h	Ų	30	Lt-ned Gw Ri	It	15_	Gz CC	Mod - STR FEOx				
25	30		11	30	# 11 -	n u	12	02 4	t)				
30	35	11	si	30	ų 1	"(incr. For	10	OL CC	STA Felt				
35	40	۰,	"	30	h 12	2 13 13	15	Oz U	м•ь FeOx				
40	45	"	11	30	2+ 9N 9Y FN BN	Softer, local argillica a H. beached a 15 44 BROWN ac common. M.O.	15 *	Oz U	MOD-Loc Str ROy				
45	50	4	//	30	,1 ^U	Decr. clay; 35: tari Soft: General prof. alt. Continues. Mn Ox	15	Q2 CL	11 /				
50	55	n	<i></i>	30	n 17	Local WK Silicit. * Minor argillic elt. Generol prop alt.	17	Oz ci	MOD FeOx				
55	60	ы	ų	30	ст. дн Ва	As above . Icc beally H. Purpla -En	10	QZ CL	WK-Med FEOr				
60	65	tı		30	11 11	n 11	7	Or CL	NK Fels				
65	70	н	IJ	30	Lt-med GN BN	" " " " " " " " " " " " " " " " " " "	5	Qe Ce	Mad FeOx				
70	75	'n	IJ	30	4 "	INCR. Vericing, esp. WHT XLN Be. R Amethos	20	Or CL	JP ,,				
75	80	LI.	11	30	WHT-BAF LT gn BAI	MAT XLN BC. K PARETAUS -WE ang, 11: C att. ABUND WHT BE VAI Material, WK-Modergillic att	50	θe CC	WH- MOD FEOX				
80	85	6)í	30	L+ GNBN ORG BN+	Veining Locally limonitie	20	O2 ec	Mod - Locally STR-FEOX				
85	90	_ h	ν	30	LTON BN	Genero' propylitic att WK augillic. Minor local WK Silicif.	15	Qe Cc	noo FeOx				
90	95	r1	رہ 	30	1 11 11	11 11	12	Qz co	ls 10				
95	100	11	!!	30	H II YORG BI	(Local Amethyst) "Ince Argillie alt, R with	20	0-2 CL	STR FEOF	\checkmark			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-19</u>

. - -

3

PAGE___OF___

	FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	4	ASSAYS (OPT)
				CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
	100	105	Tmp - HW STKWA ZONE	30	GN BN TOTA EN	WE- Mod angillie Loca WK Silfer Comenas Frop olt. (FOD + Mo Co	15	82 U	Mod-Str FeOx. MaOx	Good			
		110	Moss VEIN	20	WHT BUTT	. LK-MOD areillic in TMP.	60	O2 ce	Local Str Fech	1			
		115	MOSS VEIN	20	LT-MED GN BN FWHT	With Med Silicit. Decr IN Q2. Hemetite	30	Oz ec	n y				
HI - GRADE		120	MOSS VEIN	20	WHT/BURE DK BN	Abuno Vein Material DK BN MnOx (15%)	70	Q2 ec	Str Madx FetOx				
	120	125	Moss VEIN	20	L+-MDGN +WHT BA +DK BN	I THD ADD .: Mized , locally Sille.	40	Oz CC	4 11				
HI GRADE	125	130	Moss VEW	20	DKBN + TAD + RD BN	Some red - BN VN Material. ABUND MAOX, BRN to Red BN (Jz. Local Clay	90	Oz CC MnOx	Intense Madu + Reg				
		135	MOSS VEIN	20	Lt. nd GN-ORG + BUFF - DK BNJ.		65	Oz (L	Stor Felox + Ma Ox Hean. Comm	01			
		140	MOSS VEIN	20		- Greatly diminished MnOx & FeOx, Clean" G2 CC Vein	95	مي م	wK FeCx				
		145	Moss VEIN	20	1+ BN	As Above: 25% Bleached. NOD silfed TMA	75	Or æ	wk Felx				
	145	150	Tmp- FW Zong	10	Lt-MED GN BN	a little cleyey (ang'alt.) Little minime	3	Q2 Cl	wk-mod FeCx				
		155	4 //	10	» <i>"</i>	No silicification. Strong propylitic to WK arcsillic alt.	5	Oz ¢	h ,,				
		160	u //	10	" ()	getting harder & forsher Be Some hand - dense what + bu Be ULT to	10	Oz MWR CC	4 il.				
		165	11 11	U)	ORG BN	Softer again, incr. alt: Fractured, wK- Mod arg. alt; Local He	3	Oz cc	Str. FeOx			1	-
		170	4 11	10	MD GN B. PK BN	unoxidized frop alt,	1	Q2 CC	WK-MAD FeOx				
	170	175	y 11	10	Mogy GY PK GY	Hander Chlor, the alt.	21	ci Oz	EPy Minor Fel	Dx-			
		180	11 11	19	II II GN BN	70% Oxidized again JUCR. VLTS. Prop. alt. 25 obove. Local with Silfed.	4	G2 K	E Ry LKRON				
		185	u p	10	11 11	ENCE. Veining. Fractured. Local up silf	10	Gz C	Te Py Med-STR FeOx	V			
		190	Tmp	90	MEDGNGY *PKGY	Harder, fresher. 95% UNOX.	21	Quy	FE Ry 1. WK FOX				
		195	Tmp	90	R ''	n #	<1	Qz cc	n V ZPv				
	195	200	Tmp (veinzone)	90	e 11	Freatured Qz VNS, beally 10	10	Or ii	WX-Mes Fel x				
	200	205	Tmp	90	MD PKGY GN GY	Fresh - Hard, V. Little alteration. (WK Prop)	-	-	FR				
		^	T.D. = 205			/		ļ					
									N.	-			

...

and a second second

15

٠

MOSS PROJECT, ARIZONA

(MP-29)	- /	
HOLE NO. <u>196-19</u>	COORDINATES:N	I,E ELEV
BEARING Dy. Nurth	CORE/RVC	LOGGED BY J Keller
INCLINATION -69°	HOLE SIZE 5 42	STARTED 3-20-96 5:00 PM
LENGTH 205'	DRILLER Mile Hallins	COMPLETED 3-21-96 8:10 AM
PAGE / OF 2	COMMENTS:	

A little H20 @ 170'. All day drilling.

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	90	VN	SULFS	REC		ASSAYS (OP1	.)
			CODE	COLOR		VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
0	5	Tmp- HW STKWX ZONE	30	Red-Org- BN	Str. FeOr stain Lim. + Hem	8	Oz U	st- Feox	Fair			
5	10	ų	30	"	11 4	3	Oz (L	17	G fair	-		
10	15	£1	30	н	11 <i>0</i>	1-2	Oz cc	H	(000			
15	20	e)	30	IJ	۷ در	4	Ge æ	n				
20	25	1)	30	11	Slightly diminished Feox, up Silicif. due	10	ŋ	MOD-STR Fely				
25	3'0	Ŋ	30	Lt-MD GY BN TORG BN	13 13	10	6)	h //				
30	35	v	30	11 '' + wht	ABUND. Oz/Calcito Verning, Peach. colored Calcito common	35	17	Mad FeOx				
35	40	h	30	IJ	As above. Also Brown - Marcon Callit	10	11	MOD-STR FeOx				
40	45	1	30	ORG BN 14-MD 6481	10% densely silicified , limpoitic material. Sesperaid-11ke.	5	33	STR REQX				
45	50	μ.	30	11 H + W#T	/	40	ez «	Mod FeOs				
50	55	Ŋ .	30	WHT/BUFF + ORG BA	ABUND WHT-LT. Pupp VN QZ. WK Silicif. Top	1	ec ec	4 V				
55	60	на — П а	30	GY BN ORG- BN WAFT	Diminished Qz. WK Silicif. Tmp	40	Or U	11 b				
60	65	37	30	MD GY BA	/ 14 1)	30	Oz CC	1 U				
65	70	H 11	30	LT-MD GY BN +200	WK Local silicit., Hem stain on Fox.	10	Qe 4	Mod Fely				
70	75	n 1)	30	CT-M GY BNJ GN BN	(also local argillic)	4	Oe cc)r				
75	80	h ,/	30	34 V	n <i>v</i>	4	Br ec	y				
80	85	n n + FAVET	30 - 19 19-19 19-19-19 19-19-19-19	TANOROch	Fractured, w/ clays in for. FAULT BALGE. WK Silicif.	4	Qz cl	MOD- STR FEOX				
85	90	" " + FAULT Tmp- 140 St.KW	30	LT-M4 04 8N +GN 8N	WK- Local Str. Silicif. Minor Frac. fill wht. clay. Harder.	15	Qe cr	wK FeOx				
90	95	n V	30	1	As Abore	8	Oz cc	"	IT			
95	100	M P	30	OF BN	Local dense Org-BN Silicification Allo 22% DE BN Silicon Allo 22% Uithin Os W.	15	Or cl	Loca ' STR FO	J		$\sim \lambda_{\rm eff}$	

Jasperoid -1; Ke.

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-19</u>

Ň

PAGE_2_0F_2_

			DOGT			~	1751	GUI PS	DEC		ASSAYS (OPT)	,	
FROM	το	ROCK DESCRIPTION	ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	Au (FA)	Au CN SOL	Ag (FA)	
100	105	Tmp - HW StKwx ZONE	30	LT-MD GY BN HOREBN	Local Silicification, some with permasive limonite stain.	/2	02 ***	Local STR FeOx	Goal				
-	110	4 17	30	LT GY BN		35	Oe ci	WK-MOD FEOR	1				
	115	,, 17	30	LT-MDGY DEG-BN	C. Braun Ga	20	b	Mod- STF Feo;					
	120	11 4	30	L+-MI OY BN	As above, but Reco. limonite.	30	17	WK-MOD FeOx					
120	125	11 (Moss?)	30	n 12	F I al HIK etics	40	O2 MNR (C	.h. //					
	130	Moss Vein	20	LT-MP BN, WHT- BUFF	Ture in the second	ડ્ડ	0e	Local STR FeOx	:				
	135	A	20	LT BUFF	Brittle splintery,	9 5	٥٢	wk-Med Feck					
	140	Moss Vein	20	11 14		100	Q2 MUR SE	ик FeOx					
	145	Moss Vein	20	WHT L+ BN	LIGHT COLOR - Vein Not as dense & splintery	95	O-Z MNRCL	11 //					
145	150	Moss Vein Tmp-Fw Zone	20	WHT-LTGU HD-DKGUBA	60°10 Vein (some Lt. green) 40% propylitized Tomp	55	Ge MNA (C	WK-MD FeOx					
	155	Imp - FW ZONE	10	MD-DK GN BN	Propylitized to weakly	15	QZ MNA CS	WK QQ1					
	160	Oz VN (Mess?)	25	WHT/BUR + MD GNBN + GNGY.	Abund BIKY Massive OZ: Top party Wight Dized Some and Be	60	Oz mna CU	E Py wKFely					
	165	TMP-FW ZONE	10	MD GN GY	95% unoxidized, Strongly propylitized w/ numerous of vers	7	A2 cc	L.5 Py Te FeOx					
	170	tı ı)	10	ND DK GJ GN + PKGY	Harder, Fresher, Decr. Oz. MOD AND AH	2	02 4	·5 AY TE RECX				4	He c
170	175	4 Y	10	n 4	Local Silicif. assoc. Winer. Oc VLTS. Techy	র্চ	Oz U	· 5 Ay Local FeDx					
	180	ų //	10	MDGYGN +PKGY	Local arsillic alt, fractured, Minor local sils	8	Qe Cc	L,5 A, TR FEOX					
	185	u <i>11</i>	10	# 11 11	Propy litized Tmp w/ numerous WAFT WETS.	15	Oe CC	· 5 py No FeOx					
	170	դ //	10	DK GYGN	Local pyritic zones, VCT selvages, diss.	3	02 Ce (1-2% Ay	21				
	195	W IJ	10	MD-DK GYGN	Abund. VN BZ Diss By in Two	30	QZ MWR CC	1% Py					
195	200	и 17	10	DK GY GA FPC GN	V. I. He Veining, Ivce. Diss. Py cubes Hawk Frecher	1-2	Or cc	2% Py					
200	205	The -	90	DK PK GY to GN Gy.	Harder - Fresher Decr. prop.alt. + Py	11	Gz CI	•5-1% Ру					
		TD= 205'								•			
					Λ								

.

MOSS PROJECT, ARIZONA

MP-30 = 25-30 NoRTH

HOLE NO. <u>///96-20</u>		N,E ELEV
BEARING	CORE/RVC_RC	LOGGED BY J. KELLER
INCLINATION Vertical	_ HOLE SIZE_ <u>≤泡</u>	STARTED 3-21-96 9:25 A.M
LENGTH	DRILLER Mike Adkins	COMPLETED 3-21-96 10:50 AM
PAGE_/OF/	COMMENTS: Ind on high .	road. & hole not possible.

. In led on high road. & hole not possible. 25-30 11. of original site, on SKN.

	FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	2	ASSAYS (OPT)
	FROM	10	ROCK DESCRIPTION	CODE	COLUK		% VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
BIG Sample	0	5	Moss VEIN	20	WHT BUFF + DK BUFF	Abund. Wht- It. BN Ve in Material + Silfd (MOD-STRI TAP. FOX - MNOX	75	Qz cc	STR FEBS ManDar in Timp.	600\$			
	5	10	Moss VEIN	20	ji 13		85	Oz CC	11 V	1			
	10	15	MOSS VEIN	20	RD OR + BN + WHT/CONF	Flinter, Trop (repl. vn) + with the as above.	100	Qu U	MOD-STR FOR Stain				
	15	20	Moss VEIN	20	rd org BN	CHEATY Splintery Pervasive silicified Top. Replacement VN	100	Oz	Str FEOX (pervesive				
	20	25	MOSS VEIN	20	RED RD ORG BN	Diminished silicification Strong HEMATITE stain	40	Qz	V. STR FeOx				
	25	30	Moss VEIN	EO	11 ; j + WHT		60?	θz	str. Fe Ox				
	30	35	MOSS VEIN	20	ע א	Limonite dom. over hern Intense siliciti ascim To Py in DK gry chips	807	QT.	FE Py STR FEDE		.,	-	
	35	40	Tmp-FW Zone	10	GY BN Org BN	Greatly decr. silicit. Mob. Argillic alt. Soft.	<١	Qz	STR FeOx			-	
	40	45	11 11	10	ji //	Local WK Silicification, FeOx + Ma Ox increased	2-3	Q2 MVR CL	Mod. STR FEOx				
	45	50	11 IV	10	GN BN ORG BN	Decr. Silicif., a little alayer - wx angulic alt. TA GN Fluorite	1-Z	GZ CC FLUOR	w К-мы FeØx	1			
	50	55	n 17 .	10	GYBN	,	1-2	Q= MNR 1	wy FeOx				
	55	60	n v	10	GY BN Org BN	MOD Argillicalt. With 5% strengty "monitic chip Oz locally vuggy	[*] ر ک	0-2 ((MoD- STR FEO2				
	60	65	р ⁽)	10		Veining incr. XLA OzaCalei Lecte sit	15	Q2 CC	mos FeOx				
	65	70	n H	10	GY BN GN BN	Draminished yesaras. Locally argillized. FRACS. Mod Prop. alt., had	5	Qz cc	WK- MOO REO				•
	70	75	n p	10	PK BN GN BN	Much fresher + Harder. No Voing	-	-	WK-MAD Felgy (IN FRX)				
	75	80	<i>וו</i> וו	10	CN EN PK BN	INCR. QZ VEINS local with mod sitioist.	7	AZ (XLN) MATCO	MOD Felly stain				
	80	85	Tmp	90	"" " GN GY	E Just propylitic git. to ten yets. progher.	4	Gr U	WK FeOr				
-	85	90	j.)	90	GN BN PĚ BN	n jj	2	02 L	n 4				
	90	95	17	90	GN GY Pr GY	REDOX. V. L. HILE Or. E P.J. VID Mostly G	1-2	CC GZ	TE Py To Fear	Π	,	168	
	95	100	11	90	GN BN GN GY	Oxidized again (90%) 12+5 Cakite only.	3	CE	TA Ry WK FeOn	V			

2

Call Contraction in Section

, DRILL HOLE LOG ADDWEST MINERALS, INC. (New Hole) Between State

.....

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-21</u>	COORDINATES:N	,E ELEV
BEARING	CORE/RVC	LOGGED BY J. KELLER
INCLINATION Vertical		STARTED 3-21-96 111 PM
LENGTH <u>120'</u>	DRILLER Mike Ad Kins	COMPLETED 3-21-96 1:30 pm
PAGE / _ OF	COMMENTS:	

FROM	то	ROCK DESCRII	PTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
FROM	10		TION	CODE	COLOR	ALTERATION	Ŵ	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
0	5	Tmp - Hw=	stKwx one	30	ORG BN RD BN	Or calcite veining Fe+Mn Ox Local une ciliers?	15- 20	Oz cc	Mal FeCr	600D			
5	10		4	30	LT RO RN CRE BN TWHT		20	02 ८८	h 47				
10	15	11	v	30	CAG BN RO BN	He operative Fe Ox common.	୫	Oz cu	Moo STA FOx				
15	20	11	м	30	GY BN ORG BN	Limonitéc, less Hem.	15	Gz ce	M.D FeOx				
20	25	g t	17	30	64 BN + W-T	Decr. FeOx WK Silicifie (Kerlin Ko)	15	G= cc	wk FeOx				
25	30	(1	н	30	1 4 (1.)	"I incr. FeOx+ Ge	20	Q_{z}	WK-MOD FEOX				
30	35	li li	,,	30	n "	ii (1	18	Gz u	n *'				
35	40	t i);	30	GY BN -ORG EN - SUHT	SIL INCE QZ + FE Or	25	Q= (L	м•D FeCy				
40	45	н	1	30	Red. Ora BU +WI++	MOD - V. strongly Silicified incr. XIn Azx SE.	30	Qr L	WK-MOD FeOX				
45	50	Moss	VEIN	20	KED OREN	WHT to Lt grav to Buff G2-CC Visin + Mod. 1 fd. Top.	75	Qz ca	h "				
50	55	Moss			ORG-BN WITT	A: good; decr. Q2 Jo. Flynd. Clayey Fines (FOX-Fic	Ð	Oz GL	STA- FROX				
55	60	M•55	VEIN	20	WHT + ORG BN	Decr. Fele & claver fines Local drug y qz	75	Q_2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MoD- _{STF} FEOx	- Ber (M. P			
60	65	Moss	VEIN	20	WHT/LT GY + LT PINK	Fairly " clear " looking	95	Qe Ge	NK local FEOX				
65	70	Moss		20	WHT + RD ^{EY} BN	"Clean" VN as Above + Densely silled replacemently	85	Ge LL	WK-MOD Felz				
70	75	Moss	VEIN	20	WHT- LT gry + LT BN		100		n ')				
75	80	Moss	Vein	20	L- BN. Tz Gr	V. 66CK, & Spontery, UN, +: Jmp 100 % reption w/ 5:02:	100	Qz	\$1 sj				
80	85	Top - Fiv	ZONE	10	Med - OK GYBN	30% Silto as a love 90% WK-Mod silfd, 1020 x 10 02	30	Qz	WK- MOD FEC				
85	90	Top- For	Zonp	10	<i>۱ ν</i>	V. little 92 or Silicif: WK arg. alt?	2.	Qz	11				
90	95) e		10	rag &	Incr. Veining & local WK-mod silicit	15	Qz	Mod-ste Felt				
95	100	10	4	10	GN BN - PK BN	wK. locally str. silicif Generally propylitized.	0	AZ MNR CC	WK.Mo FeOx				

.

⁴ DRILL HOLE LOG ADDWEST MINERALS, INC.

MOSS PROJECT, ARIZONA

HOLE NO. <u>196-2</u>

, ,

PAGE___OF___

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE			VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
100	105	Tmp-FW Zone Tmp Tmp Tmp TD = 120'	10	GN BN	Diminished Veining, Propylitic alt-Minerorsil (No "ULTS)" Harder - Fresher	2	Q2	WK Fely	GOOD			
	110	Imp	90	GN BN PK ^T BN	(NO YLTS) "	-		11 11	t,			
	115	Тмр	90	îr ₁ 7	Harder - Fresher	~	-	n (/	.,			
	120	Tmp	90	<i>II 11</i>	Minor 92 Y2+	1	Ø2	n rj	17			
		TD = 120'										
					•	_						
		•										-
		\										
												·

MOSS PROJECT, ARIZONA

	CORE/RVC <u><i>R</i></u> HOLE SIZE <u>5/2</u> DRILLER <u>Mike Indkins</u>	E ELEV LOGGED BY <u>J KELLER</u> STARTED <u>3-2/-96</u> 2:40 pm COMPLETED <u>3-2/-96</u> 4:25 pm
PAGE_/OF2	COMMENTS:	

FROM	TO	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	70	VN	SULFS	REC		ASSAYS (OPT)
			CODE	COLOR		Ŵ	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
0	5	Tmp- HW STKWX ZONE	30	GY BN WHT	Abundant Vein Material in Imp	40	જ સ	WK- MoD Peox	For			
5	10	OZ VN	25	WHT-B#	WHT- Buff "clean" Vein. Top alt. saft, parous	90	02 W	WK FeOx	for			
10	15	11 IJ	25	11 11	As Above; clean	95	Or u	FR FR OX	Geno			
15	20	Tmp'- HW StKwy ZONE	30	" " + 2+ Ors-BN	Back into StKwx Tmp. Local Silicif.; Felt stain	50	Oz cc	МоД ГеОр				
20	25	II II	30	Lt-md ORG-BN +GN BN	local with silicif. due to hoirline bets The drusy O2	7	Øz	wik - Mod FeOx				
25	30	<i>µ y</i>	30	Lt-Md GN BN + Org BN	, ^{تو} م ا	ð	Oz	H (1		-		
30	35	1(17	30	Lt-nd 67 84	As abre: incr ce. decr. Feon.	8	Дг сс	w¥ FeØx				
35	40	<i>II II</i>	30		<i>,</i> , <i>,</i> ,	5	Ce L L	h				
40	45	<i>L</i> ())	30	Org BN	In peach cale the INCT. What's x FeOx. CONT will Local Silicifi	15	Or cc	MOD FEOY				
45	50	ij 11	30		Iver, Oz.	20	Oz CC	wk RQ				
50	55	<i>II II</i> .	30	ORG-BN	Decr Q2, incr. FC3	5	Or cc	MOD. Str Fe Ox				
55	60	11 11	30	Lt. Md GN BN + On EN	Incr. Qz, decr. Feor. Softer & Clear cc.	15	Oz CC	WK- MOD FEOX				
60	65	<i>II</i> 17	39			50	Or U	" "				
65	70	n "	30			D	Q2 u					
70	75	4 "	30	ORG BA	MOD-Str Silicit. cf Top, Numerous Maisline-Zona Stringers	25	Qz U	Mod- FeOpo				
75	80	MOSS VEIN	20	WHT/BUR + I+ Rd BN + PK	Hair Silver Silver Silver Silver Silver Silver Stringers Hair Since - 2000 Stringers + typical 1050 Ltg. Overall reddish color, Dense Silvert, abund UN	95	the second se	Local FCOx				
80	85	MOSS VEIN Moss Vein	20	WHT/Butt + Org Ben	Deca D. H. J.	80	02 CL	Felge Stain Tap				
85	90	Moss VEIN	20	V. Lt. giv-Ten	Homosenous V. Lt GRN-TAN Vein.	100	BE CE	T2 FeOx				
90	95	MOSS VEIN	20	LT. ODN.	JUTENSE TAP SOZ replace	95	Oz Ce	Te FeOx				
95	100	Moss Vein	20	MD BY BN	Blocky chips; hard 30 lintery Drz + 5:1121 T M An	95	O2 MARE CL	STU CEOY + Maby	\checkmark			

Silfd Tap. MnOx

[•] DRILL HOLE LOG ADDWEST MINERALS, INC.

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-22</u>

1

PAGE_2_OF_2__

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	a.	VN	SULFS	REC		ASSAYS (OPT)
			CODE	COLOR		VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
100	105	MOSS VEIN TMP-F.W. ZONE	20	LT BN +GRAY	5% gray Chip (unan) V. Dense Silicification * Oz Voin	95	Oz	streak !!	Goab			
	110	TMP- F.W. ZONE	10		Argillic alt., SOFT Str. FeOr	10	O2					
	115	11 11	10		- h - D		-	str Feax				
	120	// '/	10	OF O BN	Partially Mox: Propylitic alt: Hardar	1	Qz	TE Py MODECX	-			
	125), //	10	GY GN PÍL GY	95% UNOX. Felx fox only Prop. alt	-	-	E Py E Rea				
	130	Tmp	90	" " GN BN	A little Fractured. 1/ Sl. incr. Feltx	21	Qz	TE P. J. WK REQ.				
	155	ч	90	رد <i>د</i> ر در ۲	str, Feor alora tra ,	~ '	Qz	Fr Sta				
	140	V	90	GY GN PZ GY	Prop. alt. poss local applic: soft Almost	<'	G ² u					
	145	"	90	PX GY GN GY	Handor - Fresher. Decr. Chlorite	Z)	Q= c<	E Ry FRQ				
	150	<i>h</i>	90	PK GY GN 69	Quite Fresh.	R	ec	-	Ţ			
				.1								
									•			
							,					
											Λ.	

, `, ` DRILL HOLE LOG ADDWEST MINERALS, INC.

<u>.</u>-

(np-27)

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-23</u>	_COORDINATES:N	[,E ELEV
	CORE/RVCC	LOGGED BY J. Keller
INCLINATION -	HOLE SIZE_5%*	STARTED 3/21/96 5:25 pm
LENGTH_ <u>525'</u>	DRILLER Mike of King	COMPLETED 3-22-96 5:10 PM
PAGE_/OF	COMMENTS:	· · · · · · · · · · · · · · · · · · ·

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
FROM	10	RUCK DESCRIPTION	CODE	COLOK	ALIERATION	% VN	TYPE	SULFS %	%	Au (FA)	Au CN SOL	Ag (FA)
0	5	Tmp - Moss peoplym	90	MD GN-BN + RD BN	3-4% CORTSO GLASS- Green FLUORITE. WHT - BRN CCalso. FROM N25W, = 90 Voin , 3 Fe Cx	10	CC FL	STR FeOx	FAIR			
5	10	11 ¹¹	90	μμ	2% FLUORITE as above FRX, Str. Fe Ox.	5	CC FL	<i>µ 1</i> /	Jood			
10	15	11 V	90	MD GN BN	Decr. FeOx, out of cc-FL VN. out	δ	Qz	MOD FeOx	1			
15	20	1	90	p - 57	General WK propylitic alt. FeOx on frx	2	Gz					
20	25		90	41 ¹²	1	1	Qz					
25	30	4 4	90	MD - DK GN BN + PK EN	Propylitic alt (weak) FeOx = Frax [As Above	-	-	UK FeOr				
30	35	lı V	90	h sj	" (sl. incr. Fe Ox)	E	ce	М•р FeOx				
35	40	(ر ۱۱	90	ני וו	It II II FeOx Jacolis he an intrict	-	-	<u></u> у, у				
40	45	., Ц	90	·	Barren looking, decr. FeOx.	4	-	wk FeOx				
45	50	y V	90	11 17	General wk propylitic alt. hard local fra Looks Barren.	-	-	n y.				
50	55	n 1/	90	11 n	ii y	-	-	ик-мар FeOx		2		
55	60	и и	90	ŋ ¥	1/ 13	~	-	11				
60	65	n 1/	90	11 *	· · · · · · · · · · · · · · · · · · ·	-	-	и				
65	70	71 Y	90	11 V			-	"				
70	75	11 11	90	0. T. G.Y	Mixed Oxide - Surfice (E diss py) As Above of		-	FE Py UK FEOX				
75	80	.) ₁	90	·, ·	11 <i>II</i>		-	n "				
80	85	h v	90	11 1/	31 ¹ 1	-	-	n 11				
85	90	11 V	90	GN FY	95% unoxidized. Quite barren looking	_	-	L.5 Py TE FeOx				
90	95	h 14	90	11 V	Local Oxidation.	1	cc	L.SAY WK local A	Q.			
95	100	<i>h n</i>	90	ORG BA GN GY	Ther. Felx + Py. Py an Frax.	41	cc	1% Py Lacal Str. FeOy	V			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M76-23</u>

PAGE_2_0F_5_

FROM	то	ROCK D	ESCRIPTION	ROCK	COLOR	ALTERATI	ION	%	VN	SULFS	RI	EC		ASSAYS (OPT)
				CODE				VN	ТУРЕ	%	9		Au (FA)	Au CN SOL	Ag (FA)
100	105	Tmp- M	less Porching	90	LT GN _{SY} ORG BN	Propylitic a. Diss py. Par	lteration trally sxidize	6	1	L.5% py Local Mob FeOx	Ge	20			
	110	п	11	90	h #	12	u	1	CC Q7	¥ U					
	51ן	п	ų	90	n 4	Calcite - Fi VN. Coar	se XLS.	15	CC FL	ч и И					
	120	17	li	90	LT. GN GY + PX GY	WK-MOD Pro alt. Looks Quil NOT OXIDIZED	pylific barren.	-	-	2.5% p					
	125	Ч	11	90	" "			1	Gz cc	L.5% ly					
	130	lı	1/	90	н"	n y (Tr local		1-2	Gz Cc	2,5% px					
	135	R	"	90	4 V	(clear-wht	BE NT)	2	Qz	2.5%p				-	
	140	ц	11	90	<i>11 ¥</i>	CONT. Mild alt. BC	propylitic -rren ?		-	•5% ру					
	145	17	11	90	<i>n V</i>	(Local incr. p	y in fra)	1	در	. 5% p					_
	150	tı.	V	90	ji i	Homogeneou moa propy	' /	1	-	2.5ру					
	155	ţı.	"	90	h iy	41	F1	-	-	<,5p		-			
	160	٤,	ų	90	ORG BA	11 (Minor Felt	u cin Frx)	Ē	cc	2.5 R WK FEQ					
	165	34	1/	90	ц у	A little VN FECX, Minor	92 u/ elay.	2	Q2	TE PY Local str FeOx					
	170		11	90	PK GRY GN GY	WK propynitin Harder, Mage over pynte.	, alt.	-	—	TZ Py (MAG) Aom.					
	175	ja –	ŋ	90	" 4	je		-	-	ļī					
	180	ц	11	90	<i></i>	<u> </u>	ti -	-	-	•1					
	185	Ję	"	90	η μ	1.1	ť	-	-	i)					
	190	ų	V	90	<i>11</i> 9	, .	V	-	-	11					
	195	11	4	90	11 0	 (Quite 1	" Monotoneus)	~	-	v					
	200	4	ij	90	(i v	4	-1	-	-	V					
	205	١r	יו	90	Lt. · GNGY + FRGY	Basically a A few hairline through	as above. Oztcc hout.	<1	Q2	2.5py		•			
	210	h	,1	90	¥ 1/		5,	-1	Bz cc	2,5ру					
	215	n	lş	90	4.32	(sl. iner. Py	frx+diss)	~1	CC QZ	05 Py				Υ.	
	220	n	ła	90	v lj	(decr. py)	,,)	41	CC Orz	2.5 Py		V			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-23</u>

PAGE_____OF_____

FROM	то	ROCK	DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OP)	D
				CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
220	225	Tmp -	Moss porphyg	90	LT GN GY PÍL	WK - Mod propylitic alt: > few hairline 92 + Ce stringers Dissk	<1	сс Ф.г.	<.5% Py	6000			
	230	11	"	90	11 1/	(A few course xin Qe chips)	1	Az CL	c.5 Py	;			
	235	đ	»/	90		" No Coarse VLTS	< 1	CC Gz	nУ				
	240	Le	'1	90	, U	., .,	<1	هي در	њ IJ				
	245	1	<i>'i</i>	90	·· ·y	(MONOTONOUS)	~	••	u v)				
245	250	.,	11	90		N 10	2 I	Qe Ce	ь <i>и</i>				
	255	11	"	90		(L 9	21	GE Ce	3a 6				
	260	4	il	90	L+ PKGY L+GN GY	(Becoming lighter colored)	<)	८८ छर	یو ۱۰				
	265	61	n	90	k+ g~ gy PK	(somewhat darster area	21	Oz cc	2.5 Pr				
	270		'n	90	u 11	" " " " " " " " " " " " " " " " " " "	1	Qz CC	∠.5 Py				
270	275		• /	90	4 7	AS Above; but a little fractured, w/ Minor Febr	1-2	Qz cc	C.S. PY The Fedr				
	280	٦	• •	90	11 //	Dear. XLN BE & FRX. Barren, UK. Mo Prop.	<	az az	2.5 py	anger Bar pro-			
	285	n	" 	90	ע ון	4. U	۷1	CC Gz	<.5py				
	Z90	Tap -	TW VET DRILL ZONE V	35	μΰ	Generally as above. 151. Consistent Inco. in Az (25)	1	82 cl	2.5 P.	i. F			
	295	۹۹	L L	35	10 ¹⁰	INCR. B2 + CC VITS. Locally gx: dized. FRX	z	Ø2 66	.5B	a united as	·		
295	300	35 	1,	35	n ()	Brop. alt+ Hairine On Vite Decr. FRX / FEOY)	CC QZ	2.587				
	305	h 	h	35	PK gy AN GY	97 - 11 11	1	Øz CC	2.5 Py	e an Eliza			
	310	11	j •	35	1, ¹¹	Feox " scally (frix)	2	O2 CL	LISPY LOCAL FEOX				
	315	*1	11	35	9 14	No FeOr	1	cc Or	2.5Py				
	320	4	1/	35	ig 30	Home demove hard, grownitig	<u> </u>	сс Qz	2.5pj				
320	325	h.	r;	35	n ,,		<u> </u>	CC Or	6.5py				
	330	11	"	35	10 IJ	يت ال	21	cı Oz	4.5p			*	
	335	h	Þ	35	1g 17	(Incr. vers)	1-2	cı Qı	2.5 PY		n. 192		
335	340	'n	۲	35	н (1)	(INCT. VLTS, Shout Felr)	Z	Qr Cl	2.5 PY				

MOSS PROJECT, ARIZONA

HOLE NO. <u>196-23</u>

.

PAGE_____OF____

FROM	то	ROCK	DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
				CODE	COLOR		VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
340	345	Tmp -	HW VET ZONE	35	Lt-med gNG-Y PEGY	Genera propylisic alt: UNOXidized. Minor diss. py. Gre. VLTS	~!	cc De	2.5% PY	Good			
345	350	и	17	35	10 y	Local WK silicif., inca 92 Voining, Local fractiv Py. otherwise as above.	3	92 4	<u>رک</u> ک	1			
	355	4	1,	35	y li	"-Silicif causes bleaching -	z	Qz cc	2.5 Py				
	360	1.	ly .	35	h ¹⁷	1, 11	4	Qz cc	6.5 py	1 1 1 1			
	365	h	v	35	31 P	Decr. Wining.	1	02 (L	The py				
	370	Tmp-	HW Sthur ZONE	30	L+- μD GN + ρK 94	Incr. Veining/Local up Silicif., Some argillicath	4	Or CC	2.5 Py				
370	375	11	v	30	4.4 - 1 ¹	H [C= : C: + C Banin co +	3	ec Qz	2.5 Py	a e e			
	380	4	"	30	Md - DK PK gry HGNGI	Top darker (magnetic, less prepulitized)	2.3	62 eL	ξpy				
	385	·Tmp.	HW SHKWX ZONE	307	Lt-md GN + PK-GRY	Local WK-MD Silicification assoc. Winer Oz-ce Verning. Incr. Diss Py	4	Q2 (C	.5% PV				
	390	Ĺ1	*/	30	PK GRY GREE-	Decr. Py. RK more pink (w/ diss. magnetic)	3	<i>α</i> 2 cc	<.5 Py				
	395	:1	U	30	Lt-Md GN GY + PK CV	Incr. Veining, Mod fosal silicit., Part oxidized	10	Bz cc	Local Fela				
395	400	Loin the	11 D-Lanel Smel-Caville	30	Buff- L+ grn Crg BN	ABUND UN Material. Fractured, Oxidized. The Amethyst. Mod silicit	20	Q2 CL	TR Ry Local Str REOX				
	405		LE SPLIT -	¥ 20	n	DRILLERS SCREWED UP.		Qe cc	n ,				
	410	Tmp-	HW STRWX EUNE FINES SAMPLED	30	MD GN GY WHT BUFF + ORA BN	Apple - GrN Oz present, + dense with 92. Local Mod- str. silicit, incr. py Local lim	15 on i:c+	Qe ec	·5 py STR Feox				
	415	<i>ji</i>	"	30	GN BN GN GJ ORG BN	Decr. Q.2 (some dousy), CONT. FRX. FEOX + P. + P. iscolly abund. discum.	в	Oz CC	L.S. py liocally a loc. str RC	y well			
	420	л	۰,	30	GN GY - PEGY + ORG BN	D. Minished Oz x OX. Qz now whto dense. FOX in the only (Winner drugg.	5	Qz ec	LISPY From in				
420	425		11	30	ŋ 9	- as sove-	4	Gz U	1 1 - 11 - 1				
	430	н	"	30	GNGY PKtGY	Generally only propylitic alt w/ clean wht VLTS. TR FEOX only	4	Q2 CC	TR Py EFEG				
	435	ti))	30	(ניי	n 11	2-3	Qz Cc	2.5 py				
	440	14	ly .	30	PK GY GN G.Y	Ince. Oz Verning. Mostly wht but E narrow Green Vits. WK alt. only	5	Or U	2.5 PY FEON ON FR	×			
	445	h	17	30	n 11	Decr. VLts, WK. Mos prop. alt., Local Ferr		G2 66	To Py Local (5%	•		
445	450	ų	11	30	BNGY PR GY	Slightly lighter color (poss. WK silicif.), incr. BZ, tri green gZ, dense	7	Oz er	L.S.PY TR FEOX				
	455	11	l,	3ð	ע ון	Local with Mod silicit. Chloritic Zones. Decreming fink color.	8	O R Mare C e	TR Py TR FeOX				
455	460	11	1 j	13)	11 .,	As above, decr. VLB	4	Be	2.59 Trifeby				

1028-24A

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-23</u>

PAGE_5_0F_5___

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	76	VN	SULFS	REC		ASSAYS (OPT)
FROM	10	NOCK DESCRIPTION	CODE	COLOR		VN	TYPE	% %	wec %	Au (FA)	Au CN SOL	Ag (FA)
460	465	Trop - How Straw Zone	30	GN 51 LF. BN - Ora BN	Mob- St Siljeification Mostly Dridized, Local Stome Fech FRX		Θz	E PX STROOM	6000			
	470	MOSS VEIN	20	it GN BN Ore BN		75	Qz	MOD- STR FRO-				
470	475	MOSS VEIN	20		VEIN GETRE + intensely E Silfd. TMA Greenish Becomme	<i>10</i> 1.	Oz CC	WK FEOx				
	480	MOSE VEIN	20	Lt. gn BN Lt gN WHT	R Amethat. Shill aburden	80	Oz CC	WK- MOD FEOx loc	11-			
	485	Moss VEIN	20	h 11.	VN GZ + mod to intence silfed Top.	90	θz	4 v				
	490	Moss VEIN	20	L+-Md GN BN + WHT	Qz Main y Open space filling - Decrysintense silvief.	5	Qz	WR -Mas FeOx				
	495	MOSS VEIN	20		Silicit; partially Unox. The. Abund. B2 in replacen)60 •^+	Oz	EPY				
495	500	Imp - FW ZONE	10	Bluish Gy GNJ	breatly decreased Oze Silicit. Strong propylitic alt., WK projilic. NOX.	3	Q2 cc	(-570p 2 FeCt				
	505	11 IJ	10	GN. PKGY	WK-MOD propylitic Barria Soria incitication.	21	GZ CC	TE Py No FEOX				
	510	<u>, (і)</u>	10	<i>.,,</i> ,,	9 27	-	-	ŦŖ				
	515	n ,//	70	1)	1. Slichty pleached	21	Qz CL	FERY				
	520	Tmp - Moss porph	90	PKGY GN. SY	Fresher, davier color, harden	~	-	₹P,				
520	525	lı 11	90	h V	Н	4]	92 (1	₹P _y	V			
		TD: 525'										
			ļ									
		/										1 11
			L									

MOSS PROJECT, ARIZONA

(MP-33)

•

HOLE NO. <u>M96 - 24</u>	_COORDINATES:N	N,E ELEV
BEARING Due North	CORE/RVC	LOGGED BY J. KELLER
INCLINATION -60°	HOLE SIZE_ <u> </u>	STARTED 3-23-76 6:45 AM
length <u>385'</u>	DRILLER Mile Adding	COMPLETED 3-23-76 4:10 pm
PAGE_/OF	COMMENTS:	

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPI)
			CODE	COLOR	,	Ŵ	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
0	5	PAD FILL - TAP			Pad Fill - Rubbly			-	Poor			
5	10	Collingium Tmp - Moss Porphyny	90	L+ CN BN -PK BN	No-sample return in colluvion ONLY in Rock Propyliticalt; minur fe Cx	· -	-	wK FeOx	Poor			
10	15	h IJ	90	Lt-md GN BN	Propylitic alteration. Looks Barren.	F	دد	n L2	6000			
15	20	H II	90/	n 1)	ii w/ a l;Hle locol clay, FRX	۷۱	cc	uk-nal FeOx	1			
20	25	FAULT ZONG : Top Probably trends UW in guildy	50	CHI II Beige clans	INC. Clayey for. - FAULT ZONE -	21	دد	Mod Fely				
25	30	Tmp - Moss Porphyry	90	L+-MA GN BN	Not clapey, fractured. Propylitic alt: FOr load		-	wK-mae FeOr				
30	35	и 11	90	<i>,, 1</i>	" " " " " " " " " " " " " " " " " " "	łn	E.	× 1)				
35	40	4 17	90	ун Ц	u II DECR. tem stain	-	-	p fa				
40	45	Minor FAULT in Top	50	L+ IN BN	Fault Some	۲n	دد					
45	50	Tmp- Moss Portin	90	и ²³	A little bleached, irer. FeOx ; VLTS.	3	SQ	MOD Felx				
50	55	a 11	90	L+-MOPK BN GN=PK SY		1.	cc Qz	WX-WOD FEC	8.			
55	60	9	90	<i>11</i> (30310 JADX Chips Miner CL 125; Propylitic at Te clay	۷ ا	دد	a ,,				
60	65	. 11 /1	90	LT GN GY PK SY	FCOx only in frx now. Very iffe purite. Mostly Macherite. wk prop. al.	<1	در	- E Py V. WK FeCx				
65	70	4 ¹ /	90	н. ⁸⁴	n <i>I</i> I	41	در	No Py Seen. To FeOx				
70	75	19 V I	90	11 12	1) ⁽ /	-	-	11 47				
75	80	h li	90	GNEN	RO % oxidized. Otherwise as above	ha	9:14	Local Mod Fely				
80	85	, h 1)	90	L+ pK BN + Zt pt gy	WK. propylipic TIT	F	<i>LC</i>	wx•nd Fe0x				
85	90	и П	90	Lt fkgy FBN	10% Ox. A few Colcite uts, To py	1	در	To Ay Incal Feore ste	in	X		
90	· 95	и II	90	Lt PKBN GN BN	98% oxidized £K. Incr. chlorite	,	دد	yk-Mop FeOr		1		
95	100	Fault in Timp	50	Lt md GN BH t Beige	10% beige clay. Fractured. Soft. Inver. Fear	1	æ	MOD FEOX	~			

MOSS PROJECT, ARIZONA

HOLE NO. <u>196-24</u>

PAGE____OF_

FROM	то	ROCK	DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT))
				CODE	COLON		VN	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)
100	105	Imp -	Moss Porphim	90	GN - FX EN GN - FX 54	40% your material. Sut of Minor foult	1-12	Qui	E Py WK-MOA FEON STAIN	مص ی '			
	110	TMp-	HW VLT ZONE	35	L+-Md GNGY	UNOXidized. INCR. QZ ULTS E FeOx only	3	QZ	To AY FEREDX				
	115	и	17	35	n 17	Occ. hair line 92 uts incr. prop. alt. local Frac. fill py	1	Qe ec	4.50 Te Fear	and design of the second second			
	120	11	11	35	n 4	Decr. Py. Occ. frx w/ epidete - Chlor- py filling (mob. frop. a) f	R	cc	TE PY TE FEOX				
120	125	μ		35	<i>., .</i> ,	SI. incr. Ucts x Iocal Fe Ox. (25%)	1	ec Qz	Fr Py Local Fr	0x			
	130	ti	/ /	35	, ij	R MOLY?) Local Silicif. assoc. w/	2	Qz ec	TZ Py Mo Local Fegy				
	135	11	ч	35	u "	Incr. Re VLTS, local Py. Softer. Argillic White James alt.	3	Oz er	C.SPY Local FeOx	1 3 1			
	140	4	*/	35	11 17	Beer. Carge VLt3. Numerous hairline vers. Local argillic alt.	1	Qr cc	TE PY Local Mo FEOX	Q .			
	145	Tmp-	HW WLT	35	ORG BN	All oxidized. Incr. dense wht + Ban az. soft, argillized. FeOx-sich	5	Qz CC	StR FeOx				
145	150	- 11	"	36	4 17	Local V. soft, argillized. Also some wk-med silfer, com	1	Az ee	STR Fegy				
	155	11	:•	35	Ct. Md GN GY + ORG EN	95% UNOX. again. Harder. prop. pl+ + V. WK siticif. Heirine VL+s	2 '	Q7	L.S.Py Loc. Str Fector				
	160	h	<i>II</i>	35	GN BN GN GY	50% ox. again Prop. alt. only.	< ۱	OZ CL	2.5 Py UK-MOD REOX				
	165	- 11	()	35	, ו וי <i>ו</i>	As above, but a 1: He fracture. Have line Yess	دا	0z 207	4 \$/*				
	70	ų	;,	35	GNGY	All UNOX. HARDER Y. WE Silicif. hair line Vers, otherwise mod. prop. att	21	Or c i	6.5 PY				
170	175	'n	, <i>i</i>	35	1 7 U	/i 12	21	CC Ør	c.5pv	4 1			
	180	1	• ,	35	L+ GN BY	51. incr. Sililif x Diss x.fg py Lighter	<i>2</i> 1	Q2	1% Py				
	185	H	•;	35	ų <i>11</i>	(+ Some Oxidation)	21	Q.	1% Py Loca I FEO1				
	190	л	ν	35	JI 17	p h (No ox)	21	Gz	17. Py				
×	195	r. 	ر ه	35	L+. Md GN BY	# Decr. Silicif (v. work) & diss py. A few howling Be vits. some coar	2 ser:	Oz U	45AY				
195	200		n j <i>i</i>	35	н 17	50552 INCr. Cearse. Oz Vets (wht.) Local Frac.fill py + clots of chlor		Oz ce	. 5 py				
	205	1 A Li	THE HO	35	در <i>ا</i> م	Decr. Coarse Vets, but irer, heirling Vets, py, diss + frac Sin.	1	Q2 (1	1%ру				
	210	u	" DRILL WET	35	211 A	Py + Ge py Stringers V. WK silicifi, general prop. alt.	21	Q ₂	E de Py				
	215	h		35	N 17	Incr. Coarser xin Q= Vity Decr. hairline. Decr. Py stringers.	1	Qe	190 PY				
215	220	H	11	35	+ GN BN	Inco. Heirbing Mets & Inco al Silicit. Py (continues. generally as above, though	1	Qz	19. Ay Local with FEDS	V	•		

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-24</u>

، ۹

PAGE_3__OF_4/____

FROM	то	ROCK DE	SCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
				CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
220	225	Tmp-	HW VLT ZONE	35	Med GN GY FPK GY	General propylitic, V. U.R. Silicif. from Occ. hoiring Gz VLTS	.5	0e	1% Ay FeOx on Frx	Grant			
	230	11	11	35	н і,	to " (a few coarse wht drusy ult	1	Q2	1% Py No 0x.				
	235	n	"	35	""	15 U	1	Qz	H V				
	240	μ)/	35	وز ور	(INCR. Py + QZ)	2	Q2	2% Py				
	245	11	11	35	17 17	(decr. gz/ov)"	1	dz cc	1% py				
245	250	• /		35	<u>а</u> , а	Py areatly does . Be a to	٤1	SC QZ	2.5py				
	255	:	<i>'</i> ,	35	я.	(W= - SREEN CC VETS, Py) incr. Again: Eagy Score	2	CC Az	1% pv Felx on Fox				
	260	Į.	H	35	۳ بر	Dec- Fe On. Fare De vite u/ adjacent steating/ s. From	1	Oz cl	1 % fy E FeOx				
	265	÷٩		35	GN ORSEN	Incr. X/n q2 VLts, lo c 1 oxidation.	2	Oz ce	. 5% py Local Noo Feox				
	270	Tmp-	HW StKWX ZONE	30	L+ gNG1 +0 V. L+ gy	Increased silicification + bleaching - More numer heir in me vers. to see chion the 2000 - 200 pr.	*4	Ge (7	1 % py local Sta ROx-				
270	275	ι	u	30	" " + 0-g BW	Localized MOD-str Silicif., 50% oxidetion,	6	Q2 c1	. 5% Pr 372 FeQ,				
	280	· · · ·	ii.	30	ORG BN PK BN GRY	incr. 92; dence some bu Some Grube, Bucc MOD, to V. Str. Silicif., 95% Ovidized. to Acco	20?	Qz cz	The Pr STR Ecor				
	285	\$1	u	30	Org BN GNGY	Decr. pervasive silicit. * Oxidation (60%), cont. Vein QZ (some green)	12	Qz	. SPy STR Felox				
	290	4	"	30	GN BN +Green +Green +GN GY	75% o oxidized. Decv. De. Green halo in qz aroun Ox. Dv cube. uk siltd.	7	02 el	τε ρy				
	295	MO:	55 VEIN	20	4-00 BN + GN B	Abund VN 92 + intensity silfed Tap Brown Local Made - Fe Or	90	Qz <i< th=""><th>MOD-STL FeOx + Male</th><th></th><th></th><th></th><th></th></i<>	MOD-STL FeOx + Male				
295	300		Veir	20	WHT V. L+ BN MG BN	V. Lt. Color VN noticel Mainly open-space - Not replacement : by	100	Or U	Local Materiats + FeOx				
	305	Moss	VEIN	20	WHT Lt. Yello. - V. It ON	Basically all white. Massive Voin Oz+CC. Some Colcite is Brown.	100	Oz CC	Fech + MO				
	310		VEIN	20	1. 11	AS Above Looks Good.	100	ω	n by				
	315	M05	S VEIN	20	N 17	V. little of anything but 92 & calcite. V. L. grw Oz common.	100	Øz CC	Te FeOx + M#Ox				-
	320	Mos	is Vein	20	4 1. + GN BN	50% as above 50% TMP, weakly silfed but good texture.	50	Qr CC	Mos EOx				
320	32 5	Mos	s Vein	20	WHT Lt GN	Tr. Bruy is wish mack Tap now As about, but Tap now More strongly sites a lighter color. Diss Feo. dia Ry	75	OZ CC	11 1. pseudo nor	phs			
	330		Vein	20	V. IT-MÖ GY +WHT	XLN Cz + CC in Variably (mod-dense) Silto. Top. 9000 UNOX.	40	(dy e	2) 3 H				
	335		5 Vein	20	LT GN GY	As above; Silicification diminishing. More chloride	30	Oz U	2.5 PY Ministry Filox				
	340	Mo	rss Vein	20	N 13	Variable mod- vistory Silicification as above	45	Or CC	L.SOY	\checkmark			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-24</u>

PAGE_____OF____

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
340	345	TMP- FW VLTZONE TMP- FW VLTZONE	10	MO-DR GN+PK + WHT	Greatly diminished Inp Silica + tooling, but abund. YN porgets Frep. att.	30	Gz	L.SPV Local FEOx	Gard			
345	350	Tmp- FW ILT ZONE)0	MD-DK → PK GY	Str. propylitic alt. PY	3	Or U	2% Dist Py Tr FeCe				
350		" " (fault?)		H WHT	5% beige gouse - clay 30% Dxidized Material. Drusy 22 - E amethyst	15	Q2 CC	L.SPY Loc.str FeOp				
355		Tmp- Fw Zone	10	GN GN ORG BN WHT	Much specks? sound with Garage Kill and the second with Much specks? sound with Garage Kill and the second with Garage Kill and the second with the second seco	20	લ્ટ લ્ટ	2.5 PY. Local Str Felta	nn Qu			
360	505	y 4	10	мд-дк бү д. - Рк бу	Out of fracture zone Not oxidized. Propystics De veining continues	10	QZ MNR CC	2.5 Py Te FeCh				
365	370		10	+ WHT + OR6 RN	Abund XLN QZ VL+5, Some drusy. 30% Oxidized Rx.	30		L. 5 PY LOC. MOD- STP FEO,				
370	375	Tmp - Porphyny	90	МО- ^Д к БУбН +РК Су	barren.	21	G2 cc	K.S. Ay No ox.				
375	380	11 Y	90	27:-DK Gygn -PK GY	Incr. Py, Esp. in Chloni, zones. WHT "Bbut Oz. Mon. Arop. alt. Local in cobr	1	02 cc	176 Py				
380	385	34 1/	90		Decr. py 2 BZ. MOD. Propalt. continues	21	07 (4	•5% Py	ł			
		T.D. = 385'										
					-							
					•							
				/								
					Υ.							

MOSS PROJECT, ARIZONA

(MP-32)

	-			IATES:	N,			_E		V		
BEAR				<u>C_RC</u>	LO	GG	ED BY	<u>(</u> <u> </u>	(eller	.		
				Е <u>5%</u>				g-23			5 pm	
LENG								D_ <u>3-</u>				
PAGE		OF2CO	MMEN	ITS: ¥	FW of vein out	terop	in s	iection	is ±	95'	North	"F
Hole lo	st. Br	T LOST down hole. Hommer	and No	TE Nari	MP-31 Site. Chang conness of moss VN con	د ۲	d to	down di	pin	M96-2	.y	
			-								ASSAYS (OP1	D
FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		1	
			CODE			VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
0	5	T HW VL+	35	ORG	str. Mole + Felx	1						
Ľ	3	Tmp - ZONE	در	Ben	Stain. MaOx Mottled FEOX as diss. pseudo after py.	•	Qz	Str. Feox -Mn Ox	FAIR			
5	10	4 1/	35	Lt-md SNGN	Decr. FeOx/matx.	<1	Qz	wK-Mod				
				3,0 0 /2	Prop. alt., Dec. hairline Gzy	15	(e	Felx	ිකා			<u> </u>
10	15	u y	35	17 17	AS ABOVE	<1	az	Med FeOx				Į
15	20		35	μ. 1/	, II () ()	,	Qz	n 17				<u> </u>
		h <u>t</u> /		м · · ,	(Hair line VLts produce mild silicit	/						
20	25	<i>JI Y</i>	35	и — (as above	21	Oz cc	11 (j				
25	20		25		(No drusy ULts: 5% Urox. '			E Ay	1			
25	30	n 1 <i>1</i>	35	6.J 6.Y	Otherwise as above Calcite VLts, az only harring	21	دد و2.	inob FeOx				
30	35	h 11	35	-TAN AN	No UNOX chips. Prop. of dirs + fra fear to siliest from hairwer vite.	21	17-	MOD				
					to siliest from hairing vites. 30% UNOX. (Diss py)	-	G2 ee	FEOr				
35	40	N. 11	35	- GN BY	# Same alt as shows	Ľ	Qz	· 5 PY Mesor.	1			
40	45		35	Lt go gy	Rave coarse xin Ge VLt. 70°B UNIOXidized.		е. А-	L.SPY	1			
40		n 1/	רכ	+ L+ Gu BN	Alteration as above	21	QZ (L	Mood Fe Cyc				
45	50	h <i>H</i>	35	ORG BN	80% oxidized again. 15% strongly limonitized	· ·	Øz	c.spj str				
		1. P+Y. a.		2+9~9y	1590 strongly limon ticd chips. Madraty All Oxidized. Local silicit		el	ROL				
50	55	Imp- HW STRW	30	ORG- BN	Strongly limonitic. INCR WHT On (Dense)	5	02	STR FEOR	8			
55	60	11 15	30			10	QZ	11 17				_
			50	GNBN	Blocky FRAD Q2 + Silfer TAP (20%), else WK-Mat silfer Tap Strong							
60	65	ս դ	30	CT-MD GN BN +ONG BN	N 11	15	Qr	WK- MOD				
65	70			md gu w	WH - locally sto silicit	-	ð:	Feb; 4.5p;	;			-
U 3	/0	n 1)	30	ghigy	Diminiched silicif. (M) material 25% wwox chips. WK-local med silicif, propatt	5-1	æ	WK Feda				
70	75	- ונ א	30	GNGY	TNCR Silicif. but deca VN material. Locally incr. diss py. 20% kappaiking	41	G 2					
		/	<u>}</u>	Org bN GN BN		<u> </u>	C.	· 5 AV Loc she Geor			·	
75	80	. ji 3)	30	GN BN GN GY ORG BN	INCr. XIM - dowsy Be VLTS. 80% Oxidized decr. Str. fimonifized chips	4	Øz ci	TE Py Mod ROX				
80	85	L4 3.2	30	GN GY	90% WALON.		66	6.5 Py				
	ļ			GN BN	Only uk localized silicify	1	Qz	wK Felx				
85	90	s ja su	30	je 17	Mixed Ox/SULF. Little Verning, WU-mad	,	ce	11 14				
		· · · · · · · · · · · · · · · · · · ·	30	1+. Mh	Little Veiling. w/-mod prop alts, the silicit. Martly an dia & Brle	-	Q2	ΈA.				
90	95	И 1,		LT-MD GN BN	Mostly oxidized, Fachy inco. ULTS local Silicif. increased.	5	Gz cL	TE PY MOD FEOX				
95	100	34 ¹⁰	30	H_ U T	Freechured to clay fault?	3	Qe	Mob-str	V			
L				Ora BN	FEDy on fay. Some and daving	Ň	a	FeOx	V		· ·	

a little Ma Ox

· · · · · · ·

MOSS PROJECT, ARIZONA

HOLE NO. <u>196-25</u>

. *

PAGE____OF___

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
FROM	10	ROCK DESCRIPTION	CODE	COLOR	ALTERATION	VN	TYPE	% %	%	Au (FA)	Au CN SOL	Ag (FA)
00	105	Tmp- HW St.Kwx Zone	30	L+ MB GN BN + GN ST	10% UNOX. Chips. Fractured, E arailic alt, comma prop. alt	2	Oz ec	To Py Meterox	G000			
	110	FRULT IN TAP STRWAY		DRG BN GN 57	30% of Ky chips w/ ORG- TAN Clay. Fracture Mod Silicit., Incr diss fy	1.3	Qz ec	(17. B) 572 FEOX				
	115	Tmp- HW StKing Zono	30	CH GN SY	VNOX, dized below they fault. Bleached due to the WHZ TO FEED TO UN. FO.	4	Oz cc	1% Ay 至 FEOX				
	120	₽ r ti	30	lt GNAY - GN BN	(MOD. Bleached TE Arg. alt	15	Oz cc	1% AY Local Mob- STR FEOX				
120	125	yi 71	30	V.LT GN + WH7 GY + L+ BN	Abund wht. It bow Bz + CC VN., Bleached Top, Mod silicit. TE clay	40	oz CC	• 5 PY Local Mod - Str ReOx				
	130	1 6 19	30	L+GN GY	Greatty decr. QZ/CC VN. NK argillic alt, pass wK Silicit - bleached. UNOR.	1	Q2 66	1% ру = FeOx				
	135	<u>, 11 - 3, 11 </u>	30	и,	(inco FEON a "fewfor)	1	Or er	1 % py wr Fe0x				
	140	ji U .	30	a "	4 11	2	er er	•5-1% fy No FeOx				
	145	lı 1/	' 30	4. AD GN + LT PK	we local silicity xin yere	2-3	Qz eL	2.5%py w.k. FeOx				
145	150	JI 'I	30	L+GN CN PK BN	all oxidized with silicf numerous narrow az ut, A it-ie bleached.	5	Q2 	wit-mod Feox				
	155	ц Ц	30	1 7 1	(dear Feox-rich chips)	5	Q2 e1	- Fe.Ox				
	160	н ^т т	30	Lt gu by	Mosti, JMax. Same alt. si scove therei, doer. de 124	3	Q2 54	TE P., WK 1000 Felox.				
	165	II II FAULT ?	30	10 V	INCR. VLTS. All more Bleacted, propylitical V all clicity little pr.	7	Oz u	FR Ay		-		
	170	MOSS VEIN	20	MD GN.BN BUFF	AZ Chips, bxd. Poes. Slicks. 70% Brown Strangly Silfd TAP	100 (vn + repinie		Mod FeOx				
07	175	MOSS VEIN VET	20	WHT BUFF N. LA GRN Feach	Vein Material, Rare BN	100	Or U	WL FeOx MnOx deadoites				
	180	MOSS VEW	20		CA CA K CA BN	85	Oz er	WX FeOx				
	185	Moss VEIN	20	2+- MO 5- BN + WI++			Qz ee	wK FeOx				
	190	MOSS VEIN	20	LtMD6N EN + BUFF + GN-PEGY	10 % yNOX - less altered	50	Gz cc	MOD Felx				
	195	Tmp-FW Zone	10	MED GN-PX GY	Out of Vein Completely. Mob. Arop. alt., a few VLTS.	,	Øz ce	TE Py No FeOn				
195	200	11), M ,, (Frol. w/	10		12. The POIL - FY .	2	Qz cc	2.5py				
200	209	HOLE LOST RIP OUT/IN	10	¥ 17	Quite Fresh looking, except for a little dense war BZ.	2,3	Θz	Fe Ay Fe Febr				
	3/2										,	
	×	\				 						•
1 /5	750											

f

A

MOSS PROJECT, ARIZONA

		(MP.37)								,		
BEAR	ING [¯]	<u>M96-26</u> CO <u>Due North</u> CO ON - 69° HO	RE/RV	C <u>R</u> E <u>5</u>		GGI ART	ED BY	(J. 3-23	<u>Kel</u> 5-9.6	LER 5:3	the second s	
PAGE			ILLER MMEN					D <u>3-</u> 2				
FAUE_		Ur <u>3</u> U	IVIIVIEN	//	Noss Vein appe predicted here.	ars	to	dip,	less :	(per)	they	
FROM	TO	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT))
			CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
0	5	Tmp- Moss Parphy	30	Med GN BN	Moberate propylitic a teration. Fe Ox on local frx + sime dis. f. pv.		-	wk·nos FeOx	FAIR			
5	10	h sj	90	<u></u> ич	11 3 <i>1</i>	F	در	wK Fi ^J x	لات صرک			
10	15	LI + FAULT	50 Minor	<u>а</u> н	II II FRACS. (Tr DR's - RW C'ar DOUGA)	Ł	02 cc	MOD Real				
15	20	11 ¥	50 M	H 17	11 11 (FRACS) (Fr tan- gra r'ai pra	F	رد	<u>)</u> і У.	i			
20	25	p V	90	р /	11 - min but fractured)	Æ	ce	wik. Mob Fe Ox	i,			
25	30	h 11	90	n 37	n ⁱⁿ	ħ	ce .	* y				
30	35	bi 19	90	L+-MO GN BN	Softer a little clayey. Mod <u>araiilic</u> ait it Lucr. Diss FeOx after py.	TE.	ce	моб FEOX	4			
35	40	м :/	90	n ()	(lionion solor due is acid-land)	R	cc	WK-MOD FEOR				
40	45	ər V	90		n it	R	æ	·+ 1)	1 7 1			
45	50	:/ //	90	Lt GN·BN TAN	Lighter color, continued Soft due to Mod. pervosive anaillie alt	Fz	cc	1 1				
50	55	31 ⁷⁷	90	11 11 L+- Mô	n u Harder - Decn arguillic	反	<u>cc</u>	MoA FeOx Te Py				
55	60	30 33	90	GN BN	alteration. Mod propulities alt. Be comine unoridized.		-	жетов FeOx				
60	65	54 IJ	90	Lt 94 94 + 94 BN	Bleached. WK argillic alt continues. Profee	£	сс _/ ,	LISPY Local Mop FEOX LISPY		· .		
65 70	70	<u>р</u> ј/	20	LT GN бУ	. " "	Fe La	ce/p.j	2.5 py				
70	75	n ^y	90			TR	ce/py	E EOX				
75	80	<i>n n</i>	90	H II th EN IT III	(Fractured, w/ Folk+ Minor elay in for) R/acched Saft mil	ē	Ce/py	· 5 Py				
80	85	JI))	20	LT GN BY	argilic alt, incr. diss. py: Oz ult	<1	Q2 ~~	1% ry T= 50,				
85	90	y <i>il</i>	20	H U.	(Py tissem + fox fill -/a)	21	Q2 (1	1% Ay				
90	95	A 4	<u>"ĵ</u>	» tj	51, harder & darker Color. Decreasing arg. att	-	-	•5 Ay				
95	100	je 3*	90	n p	Same as above	4۱	Oz Če	·5A To FeOx	V			

7

MOSS PROJECT, ARIZONA

¥.,

HOLE NO. <u>196-26</u>

PAGE_2_OF_3___

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT	
FROM	10	ROCA DESCRIPTION	CODE	COLOR	ALTERATION	VN	TYPE	30LF3 %	%	Au (FA)	Au CN SOL	Ag (FA)
100	105	Tmp- Moss Porphyry	90	LT-MD GN gy	WR- Mod Argillic olteration 2 deaching. Diss. R. trac. Pr.	-	-	19% P	Gast			
	110	- <u>i</u> y , 1	90	_N [™] 17	AS ABOVE, but inco. PV + BE E TITE.	2	92 X	1-2% P.	•			
	115	La Vi	90	11 IZ	st. darker color o harder. Decr. avoillic alt.	TR	دد	1% Py				
	120	FAULT IN IMP	50	41 11	10% arey clay douge. Otherwise as above.	Ę	ec_	1% p.,				
120	125	Top . Moss Porphyry	90	LT GN DY	INCr. bleaching and argillic alt & diss py	~	~	2%Py				
	130	1, I)	90	n 1/	* I vok ary suitche with also 32-pv stringer noted Otherwise as above.	21	8 -2 CC	г% ру				
	135	u iitle damp	90	L+ - MÔ GN GY	Harder, a little fractions Not arollized. Hairing Oz VLts present. R silicif.	1	02 Ce	1% Py				
	140	a 1, DR 12L ; DET	90	tø 14	V. WK Silicif. due to presnce of nairline or vits. Bare X in 02 465 3-5mm	1	Ge er	1% fy				
	145	11 W	90'	. 1	(Calcite dom, over az)	1	्ट द्रिष्ट	19% py				
145	159	FAULT ZONE IN TMP	50	LT 94 94	Rileacred, Soft, 10%	2	CC . BZ	2°Py Etco				
	155	30 g.a.	50	MD GNGY + PK GY	Darker AK below fau in.	1	sz ee	•5ру				
	160	Tmp - Moss Porp	30	h h	EV. UK and Sulfidie VLTS. 20% Dridized AK. Mon. franvistic alt	1	OZ CL	, S Py Loca / Hao Febr	E E			
	165	1e 1/	90	н 1/	CONT. A WK Siliciti near hairline of 12th, Oce Coarser Betch UK. WR ADAG	1 1/4.	Be Ce	· 5 PY TR FEGS				
	170	6 U	90	• "	1 x 1005. AZ 46 TS w/ diss PY)	!	Oz CL	E PY	e e e e e e e e e e e e e e e e e e e			
170	175	9 <i>I</i> I	90	n 1)	V. Small chips- As Above Alt	1	Oz cc	FE-Py				
	180	ц И	90	к ″	(a , the morn chloritic)	K1	Qz CC	E PY				
 	185	Į. 17	90	u y	n "11	</td <td>Oz ec</td> <td>τĄ</td> <td></td> <td></td> <td></td> <td></td>	Oz ec	τĄ				
	190	4 17	90	4 и	Tiecr. Chlor. a little for	21	CL Q2	TE AY E REGY				
-	195	y 1)	90	,, //	5% WHT XLN Calcite SI. JNCR. Chlorit atton	2	CC Øz	2.5Py EFEOX				
195	200	VEIN	25	WHT LT GRY	imer. diss py	65	62	2% Ay 12 Fe0,				
	205	Tmp - Hw StKwx Zone	30	CT-MD GN GY + R GY	Out of Vein, y WK- mod silts + Licached. Deer, py	5	Gr Ci	1% Ay FEFEOx				
	210		30	SH GN GY	Tween Verning & WK- locally strong Silicity incr diss py	10	Az CC	1-2% py EFeOx				1
	215	μ ¹ μ	30	11 17	H H As above	12	Oe Cl	·5%p				
215	280	н	30	пи	(silient, consistent- will)	12	CL Q2	•5 96 Pi	\checkmark			

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-26</u>

PAGE 3____OF_3___

FROM	то	פטריע חניי	CRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
FROM	10			CODE	COLOR		VN	TYPE	30LF3 %	%	Au (FA)	Au CN SOL	A. (F.
220	235	Tmp- H	w stKux Zone	30	LT PK -WH SEY + Blu-Arn	Local di Ky - trac - vrad. Az - inun Es. Coarse XIN Og - face bluarn CC. Y.YK.	R.	Qz cz +FL?	.5%	6000			
	230	je	v	30	Lt gn gy -Lt pt gy	Blached will sift	1.	UQU	1 6 AY				
	235	11	<i>ii</i>	30	ıı "	Deer. Silicit. /bieaching but still present.	5	Oz CC	.5%Py				
	2%	4	"	30	Lt-Md GNGY +PKGY	50 - 11	z	Oz er	ز 2.5% 19				
	245	11	, 1	30	LT GIIGI PH SY	Iner. reining, with- Mod silie of.	15	828	· 5% Pj				
243	250	ji	17	30	14 17	Decr. Mineralization	3	QZ CC	. 5%Py				
	255	h	¢	30	h 77	51. incr. silicif/bleach + VL+s.	8	Oz u	с.:Гру				
	260	11	17	30	$\mathbf{b}_{-H_{-1}}$	Hist As secore: Hist Mod bleaching, prop. alt. 1/18	8	04	2,5 py				
	265	11	11	30	ע וי	as =bere	8	Oz CL	6.5FY		·		
	270	þ	1,	30	V.LT GNGY .V.LT PKay	Mob-Str Provision Silicitication, INCO Azinveinivo-Littlechlorit	15	Ge cc	2.5 R,				
270	275	1.) •	30	+ WHT	Greatly ince, De/ce veining. Siliciti as about	50	Qz cz	2.5 Py				
	380			30	Lt-nd 34 gy + FR A	WE- Incarly interse Silicification Getting into Moss VEIN	30	Ge a	.5Ру				, <u></u>
	285	Moss	VEIN	20	WHT/ Biff	Very white & clean" looking. 3% oxidized Top chips I FeOr offer Py. TC down	100	() J2	Ξ Py Logfi FeOx				
	2.70	Moss	VEN	20	N HT - V. L+ GN TN	As above. Lt greenish trint.	100	C: Qz	Minor FeOn EMADA				
	295	Moss Mozs	VEIN	20	WHT + V. DKGN +0 BLACK	Un usual V. dKgN. HK & dR gry solfd-privitized Tmp inclusions in Valas ab		CC QZ	2%P				
295	300		Imp Bx?)	20	WHT + V. L MD GY GN	Top inclusions on Bx frags		CC Qz	·SIPY TEFEOX				
	305	Moss	S VEIN	20	WHT + LT-DK GN+6Y	INCR. VN/Tmp ratio, Local dK av si For mp		Q2 Ce	2.5A, E.F.O,				
	3/0	Moss	VEIN	20	WHT + ORGGN	Mostly oxidized now	75	Oz cc	E P. Local MD- STE RO.				
	315	Mus	S VEIN	20	WHT/RUA Warious GN & EN	Bascelly as above. E Brown Caleste.	85	Oz U	IN N EMaox				
	320	Mos	s Vein	20	LT GN GY WHT	Strongly Siltd Top + Vein Oz. TNoxidical incr. Ry. Locally of tuk silt	50.	Oz	1-2% IFEOx				
320	325	Moss	VEN	20	WHT LF GY	Very WHIT y clean logking cases to age. Imp trags V. Hay si Hd. Wry	90	CC Oz	2.5% REO,				
	<i>530</i>	Tmp-F	W VLT ZONE	10	MD-DK PKGY FGNGY	Oramatic decr. in UN Materialo Strongly siffd locally (adj. to UN). Str. Prop. alt.	5	CC Oz	2.5% FEFOR				
	डडर	- μ _ι	IJ	10	¥1 14	No silicification Mob prop. alt	Ē	Q2	R PY No Fedy				
	340	Tmp-	Moss Porph	90	PKGY FGNBY	WK. prop. alt. Quite fresh looking	Æ	() Q2	- 1j				
340	345	μ	IJ	90	6N 61 - 7K 61	wx-mod. prop. alt	1	CC Giz	2.5 PY				

ð

.

MOSS PROJECT, ARIZONA

(mP-36)

		<u>M96-27</u> co	ORDIN	NATES:	N,							
		Due North CO	RE/RV	$C \underline{R}$				(<u>J.K</u>				
	NATI	ON <u>-45°</u> HO <u>Z^{35'}DR</u>	LE SIZ	$E S_{A}$	Le folking CC	AR]	TED	3/25	196	5:30	pm	
PAGE		235 DR _OF_3 CO	ILLER		<u>le Adlini</u> Cl)MP	LETE	D <u>_z/z</u> ,	100	10:00	AM	
FAUE		OF CO		NIS: 1	lery fast drilling ; 100'/hour	94	100'	due t	6 S-1	ft arg	silie av	ternd a
FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC	1	ASSAYS (OP1	
			CODE			VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
0	5	Tmp - Moss Porphyn	90	ORC-Tan GN BN	Blocky, tractured is solly soft due to <u>Braillic</u> att St. FOX some	F	ce	mes- SEOx	Kair			
5	10	H 1]	90	GN BN ORG-TAN	As Above	-	-	WK-loc. Str. FeOp	fair			
10	15	и II	90	"GN BN	Generally hurder. Decr. clay & argillization. Prop. alt. A littlexing	21	Q2	wit-anad FEOst	fair			
15	20	a y	90	* 11 080-BN	Blocky - fractured. Clayey frac coatings, Pass local will silvert.	21	De cc	Mol FeOx	Fair			
20	25	FAULT IN TMP	r 501,		10% Clay (souse) Fractured bleached, araillized.	1	Oz LL		900			
25	30	14 11	150		Decr. clay going, but still quite clayty rin by and are alt. VLts inc.	1	Oz CC		and the second second	•		
30	35	Top - Moss Porph	90			1	de Cl					
35	40	, 11 11	90			3	Qz CL					
40	45	Tmp- poss fault	fau 1+? 50 ?		20% strongly limonition Chips. 43% cicy-goused Same Fo Ox hematitic	01	Oz CC	STR FEOX				
45	50	Tmp- Porphyry	90		Harder, greatly ton, decr. e by.	21	82 J	шк.п. FeOx				
50	55	11 1 1	90		Localized cilicit. Sto Fear, a sittle clayey	21	Cc Q r	STR FeOx				
55	60	11 I <i>J</i>	90		Soft argillie alt. Clayey freetwes locally Calcite commonly in for, 1:40		cc	MOD- Feox	1			
60	65	<i>'</i> , <i>y</i>	90		11 11	1	دد	мод. FeOx	-			
65	70	ب ر ار	90		11 11							*
70	75	и у/	90		וי וי							
75	80	<u>n</u> "	90		TE Drusy Az	1	CC Oz					
80	85	11 11	90		Tues druge to are	1-2	Oz CC					
85	90	11 11	90	CT GN BN	85% UNOXIdized. Bleached, Contraved angillic alt., Chlorite zones.	1	cc Gz	TE Py local mod FO.				
90	95	j+ 3/	90	4 11	, y /	1	(C Ø2					
95	100	<i>JI</i> IJ	90		80% Oxilicel again	21	CC Q2	TE Ry MORO;	V		sr'	

i

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-27</u>

÷

PAGE_2_0F_3___

.....

FROM	то	ROCK DES	CRIPTION	ROCK	COLOR	AL TED ATTON	%	VN	SULFS	REC		ASSAYS (OPT)	
FROM	10	ROCK DES	CRIPTION	CODE	COLUK	ALTERATION	VN	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)	
100	105	Tmp.	porphyry	90	Lt GNGY	95% Moxidized. Bleached - will argilicath, chiminad diss + factfill fy, chiminad sitissous material	∠ 1	CC Gaz Phainiling	FeOx and Frace.	Good				
	110	j)	1)	90	n 1/	Te hairline az vers, jaco Dece, Felan A	21	cc Az	ин					
	115	17	11	90	n 17	(10% 3×. " (incr. diss v.f.g. pr)	21	CC MNR BA	1% py Local STA Ecox					
	120	и	11	90	+ 6N BN	20% Oxidized, fractured a little clayey + bleacher Cofte.	(21	دد	•5% py	/				
	125	lı		90	C+gngy	Only 5% Oxidized. Deco. Clay & Gracs. 51. inco. carlino B. 124	<١	cc Oz	. She py Loca Dx s	+=,=+				
	130	h	v	90	Chime and Con Bal	Incr. O2 + Oxidation 90% RK is oxilized	Į.	Qz Ce	L.5 PY MOD-STA FEOX					
	135	4	y	90	Lt. Md PX BN + GN BN	Soft, mod pervacive argillic alt.	1	Q2 n	WK-Mod FeOx		:			
	140	11	•)	90	" " OFGBN	ii V	21	Q-7 61	Ta py MOD-STR FEOX	-				
	145	4	ij	90	'H U	n V	<1	0-2						
	150	Tap -	Hu Sthing	30	GNBN L+-MOGNGI	Mixed strong argillic GH + UR- 4 Str. SILICIFICATIONS IN UN	3	B2 CL	L.5 PY Loc. Mod. FeOx					FAL
	155	LI II	ソ 	30	LT GN GY T WHT TORO BN	Mob-Str Silicification Strong StKux Veining. 20% Oxidized	15	Øz ce	.5 PY loc. mod- sto Feor					
	160	lı	11	30	Lt gr gy	All Unporticized again. Decr. veining. WK Silicif. Mop prop. alt.	3	Oz ci	C.S. Py The FeOr					
	165	þ	"	30	Lt-md OliveGN tGNGY	Mod - locally Strong Silicit TMP w/ Strong StKux Veining, 90% ox	15	62 4	E Ay					
	170	и	**	30	lt Gu Gy +wht	95% UNOX. Softer decr. Silicif, bol Still Strong locally. Fargillik	15	Oz cc	·SPY					
	175	4		30	Lt grugy to Mgu EN	20% st. oxidized	20	62 CL	LS PY WK FERE					
	180	MOSS	Vein I: Hk 1+20)	20	WHT	Very Clean looking Oz + Calcite Vein	100	Q2 ec	TE Ma Ox Te felox					
	185	Moss	Vein	20	WHIT + MO ANGN	As above + 15%	85	Q2 CL	FZ Ry Local Fector					
	190	TMP- F	Vein 1: H/k 1420) Wein W ZONE	10	MD-DK GN BN+ GN BY	Greatly diminished VN & Eilich (mus) Mixed or & suff	3	Oz Cc	TE Py MOD.Str FEOR					
	195	jı	v	10	MD GN GY + PK gy	INC. VLTS. Occ. V. dk By Swhidic Chips, Str. Propy which alt.		Oz ej	1% A Local and- St- FEOr					
	200	84	V	10	Lt-md gn gy + wht	<u> </u>	25	Qe CC	is py Local FeOx sta					
	20 Š	h	10	10	MD-0K GNGY + PKGY	Much fresher looking Two. WK - Mod. prop. alt. Az calcito VLts commo	ł.,	Oz Cı	2.5py EFEOX					
	210	U _),	11	JI 4	2-34 V. dk gry-Bik strongly sutfidie chips of 62 VIII. Same tokalt asabara	5	O2/A	1% Ay E FeOx			27	1	
	215	LC	\ + I	10	h "	No blk sulfidic chips. WK alt + vets as above.	5	20	2.5 py Tr FeQx					
215	220	μ	11	10	u 1	H (]	3-4	O-Z CL		V				

DRILL HOLE LOG ADDWEST MINERALS, INC. HOLE NO. M76-27

MOSS PROJECT, ARIZONA

, mill.

PAGE_3___OF_3___

FROM	το	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE			UN	ТУРЕ	%	%	Au (FA)	Au CN SOL	Ag (FA)
220	225	Inp- FW Zowe	10	MD GNGY PH GY	WK-NO Frapy litic ait. A few Gz Calcite Mo bik Suthis chipe. Misson qz vars. WR proportizer ait.	2	82	4.5 ANDX				
225	230	Imp - Moss Perphury	90		No bik Suifidie chips. Minor q2 VETS. WR propristic a it.	1	Øz	F Py				
230	235	n	90	11 Y	;, N	1	Øz	Έp				
		<u>T.D</u> = 235'										
									-			
										•		
									-			
					/							
					· · · · · ·			Ň				

MOSS PROJECT, ARIZONA

(ma	53)
Mai	

HOLE NO. <u>// 96- Z8</u>	_COORDINATES:I	N,E ELEV
BEARING Ove North		LOGGED BY J. Keller
INCLINATION - 50°		STARTED 3/26/96 10:45 AM
LENGTH <u>325</u>	DRILLER Mike Halling	COMPLETED 3/26/96 6:00 pm
PAGEOF	COMMENTS: Strongly Fracture	d and Vuggy in Hanging wall portion

of Moss Vein, Several Samples w/poor or irregular recoveryo Caving caused come Samples to be very large.

and the other second and the second second second second

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)
			CODE			VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA)
0	5	Imp - Moss PORPHYAY	90	MD. ORG BRN	Limonitized Ac10-Leached, bleach	d		STROY	Poor			
5	10	11 1/	90	4	·· ·			18	fair			
10	15	n 11	90	"	80			4	fair			
15	20	11 11	90	"	a			"	good			
20	25	i) Ø	90	"	ע , ו			"				
25	30	1, U	90	"	34 20			"				
30	35). •	90	h	in 12			77				
35	40	y. 4	90	"	be by			V				
40	45	10 W	90	H " + Sony DK BRN	+ Marox Stain			STR FeOx +Mnby				
45	50	ly is	90	# 084- + 4+ 8N BN + 6N G- Y								
50	55	12 V .	90	GNGX gN BN . Org BN								
55	60	ð r 1 2	90	11 V					T			
60	65	,, 11	90	GNGY LEGNBN								
65	70	n h	90	Lt:-Med GN OY	Harder, slower drilling 98% UNOXidizad. Mob. 9. Propylitic att, R Silicif.	<1	QZ CC Hairfine Ga	L. Spy The Ba				
70	75	k 1)	90	10 M	AS ABOUC (-E sitief due to hair line back	21	Gz ec	L.SA TROJ				
75	80	h ^y j	90	n 11	·	21	er U	· SPI Fell				
80	85	и и	90	1. 11	(this May also have service)	21	1000 CC	•5 Py diss+frx				
85	90	H V	90	10 IJ	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	F.	Oz cc	1% py				
90	95	4 Y	90	11 1	а _6	Ē	ee Qz	270 PY	7			
95	100	n n	90	u 1)		E		27.07				

DRILL HOLE LOG ADDWEST MINERALS, INC. HOLE NO. <u>M96-28</u>

\$

ź

MOSS PROJECT, ARIZONA

PAGE_2_0F_3__

FROM	то	POCK	ESCRIPTION	BOCK	COL OD		a	-	CIT DO	DEC		ASSAYS (OP1)	1
FROM	10			ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	Au (FA)	Au CN SOL	Ag (FA)	
100	105	Tmp-	Noss Perphyg	90	15-110 GN H	E Silicit. due to haite @2 Vets. Poss. Serveit, chaite Less Py them above. "Both	*	Q2 LL	·S/s	Goog				
105	no	Ť7	<i>v</i> [′]	90	OKOBN	Silicif. increased to Moderate E Jerosite	2	Q2	LOCO' FOR					
•	115	Trop -	His sthue ZONE	30	ORGBA BLK GNGY	Duryey Vurgey XLD Or WW W/ Abund. Ma Ox 90% oxidized. Stain	Б	Qz	Stor Ry Mar Oca					
	120	e,	н	30	L+ g N gy L+ g N BN ORG BN	As above in decr. Qr. VM Oxidized. The mised Ox/suff. Madx in Qz Vugs	5	Oz	1-2% AY STR FOCK					
120	125	į,	V	30	L+ grg, otc BN	Ale UNON. Vac Materia) On however Imp in back	2	Q2 ised	• •	1				
	130	1,	V	30	n 11	IT JJ	3		11 10					
	135	**	V	30	" "	(Decr. VN)	1		n V					
	170	ار	y	30	LT ON ON BN GNL ORCEBN	\$ 80% UNOX , fuer , druss 12 (0)	4		ų V					
	145	4	y	30	org BN	As above, but deer. VN.	2	BZ MNR CL						
145		Tmp -	Moss Porphyry	90	<i>ctgng</i>	WK Silfed, bleached, Chloritized Maties, and Minimal Veining, 15% UNDX.	21	Oz	• 5% pr 2K FEO,					
	155	h	V	98	" " + 1098 GN BN	SI. incr. Oxidation	21	Øz	2.5% p Local Febr					
	160	h	<i>i</i> j	90	LT GNGY 10010 ORG DA		3	С Ог	· 5 PY Local MOD FEOS					
	165	11	١,	90	LT gN gy	Py. locclized in V. dk gw Vars (22%) v/az+cc. E Propylitized	1	cc Qz	. 5 PY					
	170	11	"	90	н т	INCr. Pytifie VLts + Diss py. Little Rearce. Propylitized.	21	Oz CC	/% PY					
170	175	li	l)	90	1. 11	Diminished pyritic zones. Court propylitic alt Moberate-str-	21	cc Qz	.5% py					
	180	li .	••	90	+ GN BN	56 Oxidized RK. Alittle tractured.	1	CC Øz	Lis py Local wk REOP					
	185	Trap - 1	TONE	30	27-M28 6-N 8N + 6-1 67 + 085 8 N	FRACTURED - MORE HED 70% RK Oxidized. WK to locally strong silicification. MINET OX/SOLF BAUNT LUNC	5	82 CL	1-2* A STR FEO,					
	190	H	ŋ	30	р U	INCR DENSE WHT BE	15	Oz CL	1-2% Py STR FROX					
	195	Lots A	F 1120 "	30	CH-MI GN BN MAN BN	Abund. V. DK BEN oxido (Maari), Str. Limonite stain Fractured, Douses common. 987 - 9870 asidi ud.	30% #.	Oz mna CL	STRUCK STR					
195	200		S NEIN to aving, big-sample	20	ORG BN + DK BN	Por deid id. Abund Octobs as obove. Yow blocks & fractured Caving. VOGY, Oz atta ce testores Mar Timp ut sitter, alund.or.	60	Or CC	н и					Caning
	205	Gemole lis	VEIN Street	20	L + GN BU + WHT + ORG BN	BUND OXIDES of above Very large chunks of 02 a Silveited Material played hose	50	Care and	B. B. B.	Bicz			•	ۍ بې ا
	210		Vein per samele, small	20	CH.Md BN: Org BN	MOD- Densely silfel TMP + XIN / W Gz. Abund Multrich Fines. Prob. contem	60	Q2	Contamit	Poor				
	215	Small sa	Vein mpk, poor circ.	20	Verious GN BANT	Blocky as abore betting setter cire tweed 215. B2 replaces BN Caleit	607		STR FED	POOR				Conth
215	220	Moss	Vein	20	W 4	Ge replaces BN Calcin Green, Ge+ ce Common, Mixed Vein & silled Topp 570 VNOR Topp	50	Oru	The so	BIS MPL	E		~	2

MOSS PROJECT, ARIZONA

HOLE NO. <u>M96-28</u>

6

. . .

PAGE____OF____

Т							<i>%</i>	VN	SULFS	REC		ASSAYS (OPT))
ROM	то	ROCK DES	CRIPTION	ROCK	COLOR	ALTERATION	% VN	TYPE	%	%	Au (FA)	An CN SOL	Ag (FA
20	Z25	Moss	Vein	20	L+ GN 62447 Earthy BN	Very Vuggy/poros. fractived: prephaning at celeite. Sime sicen	°B	On a sub	STR. CA	(isrey)			
	230	MOSS	Vein circ. occasionally	20	WHT LT ON TAN ETOTAY BN	"Byendencophie II	100	Q2	STRAF	1.5.05			
	235	Moss	s Vein	20	n 4	(Some Caloite now - Brown	100	Or U	STR Macon + FeOx	0005			
	240	Moss		20	WHET V. L+ TEN	White, Cleaner looking V. I. + 1/2 Calcite R clear or + colcite	po	Or way	Still Hum Montre Finds	יי, י			
	245	M055 *	Vein Fines Samp+	20	WHT V. LT TAN PKBN	As above. Sl. incr. Carthy DN Oz offer a & A Apple GN Silf porple.	1200	Ge	Loc. STR Maroxo FECX.	,,			
245	250	N/055	Vein	20	WHT V. LT TAN LOO. BKBU		100	<u> </u>	Loc Str Mulos TAPy Loc Str	*/			
	255	Mos Fore- Fr	w Zone -	20	4147. V. +L+. 9N L+ 8N + LT 6N 6Y	Getting off of Vein. Dec. apple gn silfed Tap The peach co	75	AZ MNR CC	FeCy + Mala ·5% Pr	11			
	260		FW VLT ZONE	10	MD GN GY +PK GY +NN	A few large Ge VN trags.	19	Q-Z MNR CL	HOD-STR FEOS				
	265	Imp.	FWVIT	10	MD GNGI PK GY	alt, a few VETS: 2% courted	3-4	Or cc	LIS M REDIX OF REVIXED REVIXED	~		·	
	270	h	11	10	L+ gN BN	Ox. dized RK, but little metal. WK prop. glt, pas WK sincif. tenves	1	Oz CC	Fear	<u>u</u>		<u> </u>	-
270	275	h	IJ	10		(Homogeneous)	1-2	Ce	H V Mod	<i>"</i>			
	280	11	11	10	LT GNG	then getting back	3	QZ MAR CL	FEON TE Py TE Py	· · ·			
250	285	,,	j)	10	LT GN GY L+ gN BN	dousy. WR. nod chlor.	1	Or cc	WK Fe Or			_	
	290	4	<i>))</i>	10	2+-MD GN GY + PX GY	Deer. beal silicit. Vel WE propylitic alt.	3 /-2	ae cc Qr	TE Py TE FED, TE Py	. ''		_	-
	295	· ···	<i>)</i>]	10	11 IJ	Distantial as above	1-2	Aure 4	Feet	- Fra	<u> </u>		
295	300	Il car Bissempte Co	nng? Il onthe w/ vein?	10	GN BN	CALSO INCAL Y, OK APPER PUN'S		Q2 Q2	Local mon FOR (5 PY	Contrant			-
	305	- h	11	10	GY GA	disspy. Hel Rech on	<u>,</u> 3	02	Sto AC	1			
	310		1	10	L+-Md GN BI + BE BN - ENOS	a Deer local Silicife			E Py	34 × ·			+
- 	315		¥	10	+ PK GY + BN AN	Propy litic alt.		CC Oz	wK kO				
	320		لا 	10	۲۰ ۱) ۲۲-МД64	ROXIdetion Dz CLVL	* /	23	L, SP WK-Mo logy Fe	á –			+
320	325) ;	10	+ PKB FGNO	N Que it continuel.	<u>,)</u>]3	er CL	× Py WE FEO	¥			+
	_	T.D).				+						+
									<u> </u>				

Į

MOSS PROJECT, ARIZONA

.

(MP-45)	,	-	
HOLE NO. 196-29	COORDINATES:	N,E ELEV.	
BEARING NØ3E		LOGGED BY J. Keller	
INCLINATION -45°		STARTED 3-27-76	7:25 AM
LENGTH 200'	DRILLER Mike Hokins	COMPLETED <u>3-27-96</u>	10:35 AM
PAGEOF	COMMENTS: Note porous	az after CL in FW, 180	-185. Any Aut

Note porous az after CC in FW, 180-185. Any AUP Probably post ore.

FROM	то	ROCK DESCRIPT	TION	ROCK	COLOR	ALTERATION	70	VN	SULFS	REC		ASSAYS (OPT)
				CODE			VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
0	5	Alluviai fill		-	BRN TAN DRY BN	Rubbly fill - Top frage			FeOx	Fair			
5	10	Tmp- Mosspor	RPHYRY	90	TANDG	Suff. Weathered, Supersone clay - FeOx,	1	вг сс	Str Limonite Stain	Gaad			
10	15	4 1	,	90	OLG BN + TANGRG	n 1j	21	دد	۰,				
15	20	11	y .	90	ORG BN MO GN BN		Z	G2 (1	ŋ				
20	25	14	17	90	MDGN BN ORG BN	Decr. ling nite stain, harder, less bleached. WK local siliciti + Libopoite adjuto wt	2	Or U	100.5++ Fellx (11)				
25	30	*1	11	Ъ	C+. MD GN BN	MOD. Propylitic ait. Hew yll az ylt. A little Macx	1	Gz Y	ink FEOx				
30	35	1)	11	90	,, ,,	" " (sl. inc. FEOx)	<i>∠</i> 1	OZ CL	WK-MD				
35	40	þ	11	90	MD GN ORG BN FGN GY	Mixed ox JUNOX Material, inc. FeOx stain	1	Q2 4	MOD- STR FOX	:			
40	45	н и		90	MD GN BN GN GY	Decr. Fe.Or stain. Where Nox., 1% disa py	1	Se ec	L.S. Pr L.KMaj FeOx	-			
45	50	н ч		90	GN GY ORG BN	60% UNOX. FK. Mod prof. olt- bleached auguromess. Limonitic zone	1	هر در	•5 Py Loc. Str Fe0x				
50	55	n y	1)	90	CH-ME gu gy GN BN EN	Mixed ox/UNOX RK AH. as above	1	Q2 44	LISPY MOD FEOX				
55	60	tı .	i)	90	1L V	h 11	<1	Qz U	11 V	•			
60	65	11	IJ	90	n V	(ince. oxidation of RK)	<١	Qz	n "				
65	70	3,	ν	90	Lt gn BN ORG BN	All successful fractured locally, WK arguiloc alt. FEOx on Frx.	<1	Qz	Mos- 100014 5to Feby				
70	75	4	גו	90	2+9N BN E+6N G- Y	Decr. FRX, a little harder the Mob-str proprince alt	<1	Q, ,	WHE MED FEON L.S.P.Y	ĺ			
75	80	N	11	90	Lt-md 9N 9y +0868N	RF 90% UNDer, MOD-ST Propyliticalt, E arollic, E dusy g2	1	Qz	· 5 AI Local str From				
80	85		stky one	30		Dense with + 1+ BN XLN OZ / Some large drusy Oz. Mixed Ox/wox. TZMAD,	10	Qz	(190) MODICAN + Monday				
85	90	ļi 1,	/	30	Enthy GNEN + Org BN	All oxistized. Strong Mon Ox + Fe Ox. Decr BZ, Vuray Doross	4	Qz	Str. Mag. +FeOx				
90	95	li li Jarosit	H ON FRX	30	MD GYGN 1 ORG BN	FUNOX. again. Str. prop. alt., local Silicit. , ferbairline Vers. WAT chalky ce	3	CC Qe	1% Py Low Str Feor - Mad				
95	100	h)j)	30	11 9	Decr. local Silicif. Str. prop. alt. 40% ox.	1-z	C(Q2	<u>n</u> N	\mathbf{V}			

MOSS PROJECT, ARIZONA

HOLE NO. <u>196 - 29</u>

PAGE_____OF____

FROM	то	ROCK DESCRIPTION	ROCK	COLOR	ALTERATION	%	VN	SULFS	REC		ASSAYS (OPT)			
			CODE			VN	TYPE	%	%	An (FA)	Au CN SOL	Ag (FA)		
100	<i>jos</i>	TMP. HW STRWX Alittle Hzol	30	LT-MD GN GY + OLG BN	WK Silicification locally Mod-st propylitic alti Diss - FRX Py, fracture oxide	1	Q2 (1)	2% py -scalstr Fels	Goal					
	110	11 11 WET NUMEROUS hairline Or 1	30	ORG BN GN SY	With to 1. Str Silicif. Coral dk gry-bik Ptotic Siliceous comes. Ry clot	4	Qz	2% PY STR FEOX + Mar X	j					
	115	11 1/	30	GY GN ORGEN	Decr. Silicif - WK. local. Coarser diss py. Cont. MIXED OX/WOX. AROF	5	Qz	1. Z % Loc. STE ROX						
	120	11 1)	30	Pt gy.	ONLY : 5% sxidized. Mg Alt. as above. Occ. hairline 1/2ts CONTINUE. wik pro	3	Q2 Miley							
	125	11 11	30	" "	15% OF fixed. Incr Oz, some drusy. RWAT XIN CC W/PY.	5	Q2 U	· 5 py Loc, Md. sm Felr + MaQr	n an			-		
	130	<u> </u>	30	ORG BN MB-BILON MHT/BUSH	FOGO on lized. VN all or. Tac usual, Local modelisof Some proville	15	QΖ	STP tebs	- Mar 100 - 110					
	135	MOSS VN Suge	20	V. L+BN + WHT	VN + intensely silfed & bleached Top. Str Mn Qr. A little down az	50	Qz	Ste Madr - Fedr						
	140	MOSS VN	20	r. 14-0¥ BN + WHT	# Found, Minda fines - totally silfed Top 2 VN, E oppe an az. some drusu	75	Qz	STR MNOX +Fe.G						
	145'	MOSSVN	20	₩HT + V.L+ 6N + Ê.K BN	C. Larror Minor UN. Bunded, Minor CC. BLOCKY. Dz sfrar Ca	100	дг сч	STR MNOx (fines)						
	150	Moss VN	:20	WHT: 2.1+ RN + DK BN	BLOCKY . Banded Be- DK BN - Clear drusy - L+ RN DK BN SILFD TAP (33)	90 10	642 (2	41 }j						
	155	Moss VN	20	WHT + V. (+TAN + L+ GN	Very Jean looking Jess clay. To greens druss Q2, 3% BAL-WATCC-GE	100	az	Ку						
	160	TMP - FW ZONE	10	MD PKGY	Out of Vein @ 158. Then weakly propylitized TMP. Berni fresh Linkter	,10	02 C l	1% dise Local Mi FLOX						
	165	1 ₁ //	10	, <i>V</i>	De-CC VLts in Top, local silicif, uK. loc. Str. prop. alt. diss py	5	Q2 22	1% py Tr FeOx, Erx only.						
	170	1×	10	MD GNGY	Mod -STR PROP ALT Calcite biebs. No fresh biotite Decv. disspy sor	3	Oz LL	2.5py E FeOx.			*			
	175	ji li	10	MB GN GY PK GY	WK-mod prop alt, ENCR. clean dense whit AZ. Looks Barren,	10	O-Z MEC	e.spy Fredx						
	180	k I	10	T LT T GN BN	bleached & oxidized Trop	15	Oz CC	2.5 Ry WK FeOx						
	185	ty 17	10		* Porous ; bleached Top . Appears to be late stage de ofter co	20	6	MODFOX						
	190	· B p	10	MD PKGY GN GY	Mainly out of porous &z zone. Into Buite fresh Top. WK prop alt	3	OZ MNR CL	Lis Py Loc Felt						
	195	Tmp - Mose Porph.	90	11 11	Fresher- hander E hairlize ge V2+0.	z	Gz MAR CL	C.SAI TEFEOX						
	200	ty D	90	- 4 -17	As obove	21	Q2 Ecc	τεpy	\checkmark					
	æ	T.D. = 200'												
								,		· · ·				
											\backslash			

DRILL HOLE LOG ADDWEST MINERALS, INC.

MOSS PROJECT, ARIZONA

(<i>MP</i> · 44) HOLE NO. <u>M96 - 30</u>	COORDINATES:N,E ELEV CORE/RVC &< LOGGED BY J. Keller	
BEARING <u>North</u> - Ø INCLINATION - 50° LENGTH 225'	CORE/RVC_RCLOGGED BY_J. XELLER HOLE SIZE_51/2" STARTED_3-27-96 11:30 A DRILLER_Mike AdKing - Hackworth COMPLETED_3-27-96 4:00 pt	
	COMMENTS: T. GHT NARROW VEIN. No OXIDE IN Hanging	Wall,

								VN	SULFS	REC		ASSAYS (OPT))
FROM	то	ROCK DESC	RIPTION	ROCK CODE	COLOR	ALTERATION	% VN	TYPE	%	%	Au (FA)	Au CN SOL	Ag (FA)
0	5	Tmp. Mo.	ss rphyry	90	ORG- BN	Supergene Fe-,Ox Oprichment.	1	Oz	- Strong Limosity Stalm	Fair			
5	10	h	y	90	lt.md gn Bn	Fairly Soft Weakly bleached - prob. What acid leach. Diss FCo., Macastein	e1	Qz	WK-MOD FeOx, MnOx	Good			
10	15	4	•	90	н у	t ₁ F	< ۱	Qz	ب				
15	20	41	łj	90	+ORG BN	(3% limonitized chips)	21	Qe	uk to Iocally St FeOx				
20	25	4	V	90	31 ¹⁴	(INCA. FOX)	21	62	MOD-STR FEOX +MADE				
25	30	ħ	Ŋ	90	org- Ben	(STRUNDER F.O.)	r	62 C47	,, v				
30	35	ų	y	90	ORG BRN	1. U	1	Øz	STR FROMMER				6
35	40	и	у	90	GN BN	Greatly reduced R. Ox. Blanched, chloritized. Looks barren	-	-	wk FeOx				
40	45	. 4	V	90	CHEN BN	(Locally Sto FEOx)	1	Qz	WK to loc. str GeOy				
45	50	11	1/	90	LH GRY OF GBN	50 % UNOX. Pyr. 4e ou FRX. A few heirling Oz VL+S. Str. FOX locally		Qz	2% R				
50	55		ע.	90	ทบ	80% UNOX. Pyrific bleached Tmp, Occ. heirline ge ucrs+ XW	1	Θz	3% Py) 572 FeOy				
55	60	ы	53	90	L+- Md GN BN + ORG BN + GN GY	90% Oxidized again, w/ some coarse wht to clear 92. Some large drusse	3	Q2	200 Fr 200 Fr 100- 5004				
60	65	¢¢	t,	70	(+ GA () + ON BA + ORC BN	5-070 UNON. WK Alt. os ebove: Bleached Chlonitized, pyritized.	<1	Qz	1-2 to Ay MOD - STR Felly				
65	70	ê Î	łi	90	L+GN BY	(decr. FeOx	-	-	1% F. WK FEO,				
70	75	ki .	47	90	Ltgngy	99% UNOX. Chloriticalt wK 6/2 chee diss py, heidine BZ W	<1	Oz ci	190 fg TaFeCy				
75	80	₹j`	//	90	11 11	(Hander, dec. py)	21	Q 2 co	•5%.p				
80	85	1.) ,	90	44 <i>61</i>	(deco. Hairline Or no	<1	CC G2	·5py				
85	90	н	Į,	90	GN BN	(500x, inc. py)	٤1	Or Ce	1 % fy				
90	95	4	1.	90	14 P	Harder, rother fresh 200 Ming. 10% all or disch	<u>,</u>	-	CISPY TREOX				
95	100	h	(/	90	CT.Md GN GY + PK GY	ONLY MOD Frop. alt. Occ. hairling Oc ners	21	B: a	·5py	V			

DRILL HOLE LOG ADDWEST MINERALS, INC.

MOSS PROJECT, ARIZONA

.

۴.

HOLE NO. <u>M96.</u> 30_

÷7

٤

PAGE_2_0F_2___

											ASSAYS (OP)	ח
FROM	то	ROCK DESCRIPTION	N ROCK CODE	COLOR	ALTERATION	% VN	VN TYPE	SULFS %	REC %	An (FA)	Au CN SOL	Ag (FA)
100	105	Tmp . Moss Front	shyry 90	UT-Med GAIGY + PH GY	WK. Mod propylitic CH., Cee fraisline 92 VLT. Maarel Quits. AS ABove	٤1	Q.2 CL	·SFY NOX.	Good			
	110	/- Д И	90	18 ty	11 aj	<1	Q2	C.S.PY FEFEDY				
	115	" "	WET 90		4 • I	21	Gr u	·5 PY F= F=Ox				
	120	34 IJ	90	., 1/	(Monotonous)	21	Qz «	.5 ру Га FeOx				
120	125	ty d	90	CT-Med ON GY	MOD-STR PROPYLitic HLT, locol bleached of with silect. Hein linguits	21	Gea	1% Fr T2 FeOr				
	130	11 V	90	°n 17	ע ,ו	21	Oz CL	1% A; No or				
	135	tj N	90	1, v	+ Local WK Silicification	1	cc Br	2% By	ŀ			
	140	Imp - HW STKI	wx 30	11 11 + L+ GY	WK - locally StR. silicif INCR. Veining & blecching. Not exidined.	4	Qz	2% PY Nº FEQ.				
	145	(j	30	",,	ч <i>и</i>	6	Øz	1-2-6 D No FeOr				
145	150	h 1/	30	n 17	Decr. Silicif, & Mining	Z	OZ MINE CE	1% PY				
	155	11 V	30	• 11	31. incr. Veining local pilicite bleaching	4	Qz α	2% fy				
	160	41 47	30		(Some Vuggy, prous Q2)	4	0: U	2% fy	$\left[\right]$			
	165	n ty	30	n; U	Besically as above. Local with mod silicification + bleaching, chiroitically disp	3	Or cc	1-2% ру				
	סדנ	h 1j	30	+"PK 67	B. Mod pervasive silient due to Incirvine VLTS. Deer. XLN B2		Q and	170 #7		· · · ·	-	
170	175	, i A1	30	Lt- Md ON GY	Localized WK Silicit., Mor' chloritic att.	1	02 2	•5ру				
	180	1 ₁ 1 ₁	30	n 1)	liner. diss py	1	CC QZ	1% py	11			
	185	11 1	11 30	MD-DK Gen	For Kor Color, strongly chloritized.	1	ci Oz	1-2%	'			
	190	MICSS SEIN	20	DK ON ON + WHT + COFFER	60% as above, becom silled new vein. 40% 64+- L+ tan Vein	540	Oz K					
	195	Moss VEIN	20	WHT TAN GRN	Forminently OZ, Some CC. Apple gran qZ present feech calcite	100	02 U					
195	200	MOSS VEI	N 20	WHT Miner The GN	Very what & clean look. Lead encer & Tan colon R FW Tap inclusions	2 100	Oz U					
	205			V. L+ Grigy	Lilicitied adj. to Veik becomine wK-Not prop. away: E arsillic	, 10	QZ MNG	•5ру				
	2 jo	ty ^r)		MD GNG + PKG	y Mob Propylitic alt.	5	Qu Mart K	2.5 p y				
	215	Imp. Mos. Por	s 90 PmyRy	MD-DK PKGY TGNGY	V. WK propylitic alt. Frest biotike Noted. Late stare vits	21	сс Фг	ΓP				
215	220	H 11	90	••• ¥	4	2	CC ar	τ.Py				

1016 Greg Street, Sparks. Nevada 89431 702 / 356-1300 FAX 702 / 356-8917

Bury Log to.

Report on Direct Agitated Cyanidation Tests - Drill Cuttings Samples MLI Job No. 2194 July 18, 1995

for

Mr. Alan Founie Addwest Minerals, Inc. 5460 Ward Road, Suite 370 Arvada, CO 80002

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
SAMPLE PREPARATION AND HEAD ANALYSES	1
Table 1 Head Assay Results and Head Grade Comparisons, Drill Cuttings Samples	2
Samples Table 2 Cyanide Shake Results, Drill Cuttings Samples	
DIRECT AGITATED CYANIDATION TEST PROCEDURES AND RESULTS	2
Table 3 Overall Metallurgical Results, Bottle Roll Tests, Drill Cuttings	
Samples, As Received Feed Size (Nominal 1/4 Inch)	4
Figure 1 Gold Leach Rate Profiles, Bottle Roll Tests, Drill Cuttings	
Samples, As Received Feeds	5
Figure 2 Silver Leach Rate Profiles, Bottle Roll Tests, Drill Cuttings	
Samples, As Received Feeds	6
Table 4 Tail Assay Results, Bottle Leached Residues, Drill Cuttings	
Samples, As Received Feed Size (Nominal 1/4 Inch)	7
CONCLUSIONS	7
RECOMMENDATIONS	8
APPENDIX	•

McCLELLAND LABORATORIES, INC.

1016 Greg Street, Sparks, Nevada 39431 702 / 356-1300 FAX 702 / 356-8917

Report

on **Direct Agitated Cyanidation Tests - Drill Cuttings Samples MLI Job No. 2194** July 18, 1995

for

Mr. Alan Founie Addwest Minerals, Inc. 5460 Ward Road, Suite 370 Arvada, CO 80002

EXECUTIVE SUMMARY

Direct agitated cyanidation (bottle roll) tests were conducted on drill cuttings samples MM-2A LOW, MM-2B HIGH, MM-7A LOW, MM-7B MED, MM-7C HIGH, and MM-14 at the as received (nominal 1/4 inch) feed size to determine precious metal recovery, recovery rate, and reagent requirements.

All samples were moderately amenable to direct agitated cyanidation treatment at the as received feed size. Gold recoveries achieved in 96 hours of leaching ranged from 52.5 to 66.7 percent. Silver recoveries ranged from 30.8 to 50.8 percent.

Gold recovery rates were fairly slow. Gold extraction was progressing at a slow rate for all samples except MM-2A LOW and MM-7A LOW when leaching was terminated at 96 hours. Silver recovery rates were also fairly slow, and silver extraction was progressing at a slow rate for all samples except MM-2B HIGH and MM-7A LOW when leaching was terminated.

Cyanide consumptions were low and did not exceed 0.43 pounds per ton of ore for any of the samples. Lime requirements were low and ranged from 2.2 to 3.5 pounds per ton of ore.

SAMPLE PREPARATION AND HEAD ANALYSES

A total of six drill cuttings samples were received for cyanidation testwork. Each sample was thoroughly blended and split to obtain about two kilograms for a bottle roll test and 500 grams for a single direct head assay. Hot cyanide shake analysis was performed on each head assay pulp.

Head samples were assayed using conventional fire assay fusion procedures to determine precious metal content. Head assay analysis results and head grade comparisons are provided in Table 1. Cvanide shake analysis results are presented in Table 2.

In association with H.J. Heinen

• <u>.</u>	Drill Cu	ttings Samples							
	Head Grade, oz/ton ore								
	Direct	Assav	Calc'd Bottle Test, As Received						
Sample	Au	Ag	Au	Ag					
MM-2A Low	0.022	0.15	0.018	0.13					
MM-2B High	0.095	1.35	0.100	1.40					
MM-7A Low	0.034	0.25	0.039	0.20					
MM-7B Med	0.034	0.58	0.036	0.59					
MM-7C High	0.101	1.29	0.102	1.36					
MM-14	0.053	0.60 -	0.059	0.55					

Table 1. - Head Assay Results and Head Grade Comparisons, Drill Cuttings Samples

Table 2. - Cyanide Shake Results, Drill Cuttings Samples

	Extracted,	oz/ton ore	Percent Recovery		
Sample	Au	Ag	Au	Ag	
MM-2A Low	0.019	0.10	86	67	
MM-2B High	0.088	1.30	93	96	
MM-7A Low	0.031	0.19	91	76	
MM-7B Med	0.029	0.57	85	98	
MM-7C High	0.077	1.20	76	93	
MM-14	0.049	0.57	92	95	

* Percent recoveries were calculated on head assays presented in Table 1.

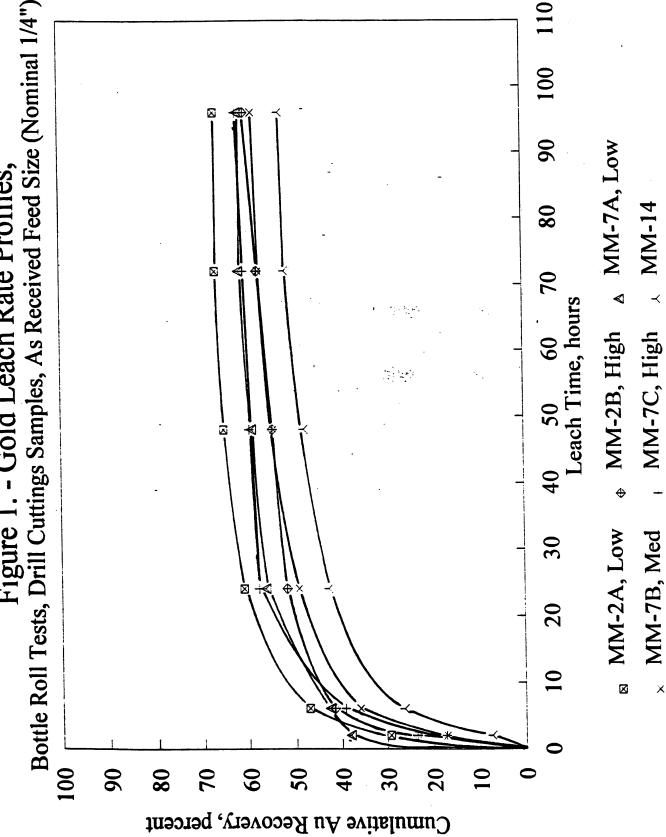
Bottle test calculated head grades and the direct head assays agreed closely for all drill cuttings samples.

DIRECT AGITATED CYANIDATION TEST PROCEDURES AND RESULTS

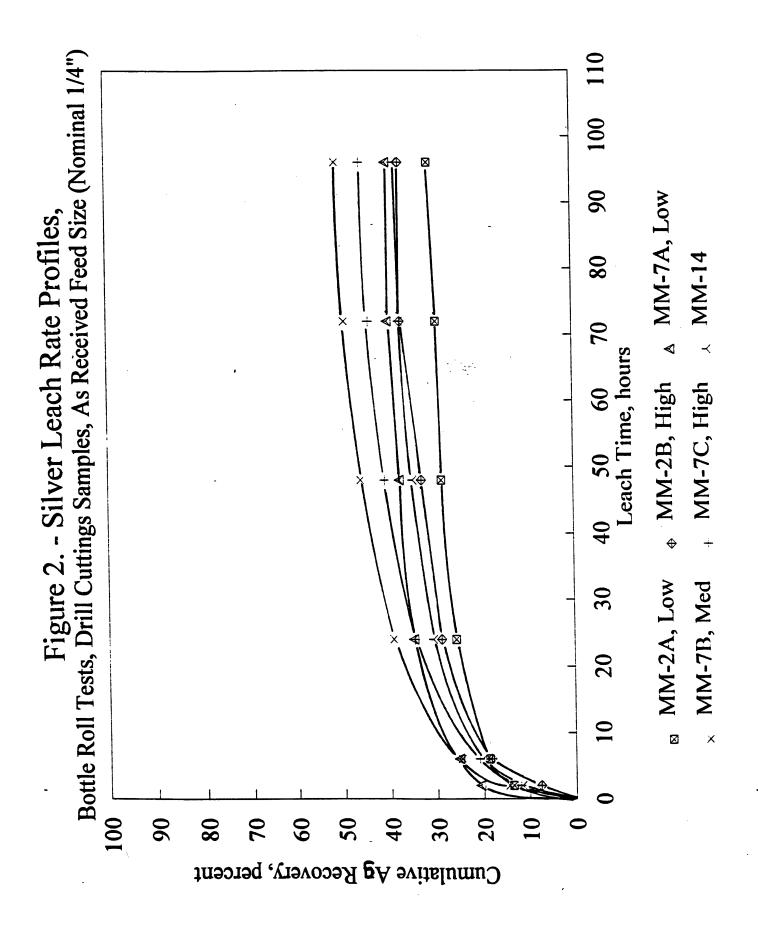
Direct agitated cyanidation (bottle roll) tests were conducted on drill cuttings samples MM-2A LOW, MM-2B HIGH, MM-7A LOW, MM-7B MED, MM-7C HIGH, and MM-14 at the as received (nominal 1/4 inch) feed size to determine precious metal recovery, recovery rate, and reagent requirements. Ore charges were mixed with water to achieve 40 weight percent solids. Natural pulp pHs were measured. Lime was added to adjust the pH of the pulps to 11.0 before adding the cyanide. Sodium cyanide, equivalent to 2.0 pounds per ton of solution, was added to the alkaline pulps.

Leaching was conducted by rolling the pulps in bottles on laboratory rolls for 96 hours. Rolling was suspended briefly after 2, 6, 24, 48, and 72 hours to allow the pulps to settle so samples of pregnant solution could be taken for gold and silver analysis by A.A. methods. Pregnant solution volumes were measured and sampled. Cyanide concen-

McCLELLAND LABORATORIES, INC.


to that withdrawn, was added to the pulps. Cyanide concentrations were restored to initial levels. Lime was added, when necessary, to maintain leaching pH at between 10.8 and 11.2. Rolling was then resumed.

After 96 hours, the pulps were filtered to separate liquids and solids. Final pregnant solution volumes were measured and sampled for gold and silver analysis. Final pH and cyanide concentrations were determined. Leached residues were washed, dried, weighed, and assayed in triplicate to determine residual precious metal content.


Overall metallurgical results from the bottle roll tests are provided in Table 2. Gold leach rate profiles are shown graphically in Figure 1. Silver leach rate profiles are shown graphically in Figure 2. Tail assay results are presented in Table 3. Bottle roll test raw data sheets are provided in the Appendix to this report.

Tahla 3 _ Overall N	Table 2 - Overall Metallurvical Results.	Bottle Roll Tests.	Bottle Roll Tests, Drill Cuttings Samples, As Received Feed Size (Nominal 1/4 Inch)	iples, As Received	l Feed Size (Nom	inal 1/4 Inch)
		MM-213	MM-7A	MM-7B	MM-7C	
	WW.			Med	Hieh	MM-14
Metallurgical Results	I.ow	UBIU				
E descrisses and of total	Au Ap					
in 2 hours						
in 6 hours						
in 48 hours						
in 72 hours						
	י ב	0.060 0.52	0.024 0.08	0.021 0.30	0.063 0.62	0.031 0.21
Extracted, oz/ton ore	-					
Tail Assav. oz/ton ¹⁾	-					
	0.018 0.13					
Assayed Head, oz/Ion ore		-	è	Ē	015	0.34
Cvanide Consumed. Ib/ton ore	0.20	0.43	00.0			
	1.5	2.2	3.0	2.5	2.4	5.5
Lime Audeu, jo/joji ole		10 5	10.8	10.9	10.7	11.1
Final Solution pl1	0.11			8.4	 	8.4
Natural p11 (40% solids)	8.3	9.4	2:0	1		
1) Average of three.						

5

6

Overall metallurgical results show that all six drill cuttings samples were moderately amenable to direct agitated cyanidation treatment at the as received feed size. Gold recoveries achieved from samples MM-2A LOW, MM-2B HIGH, MM-7A LOW, MM-7B MED, MM-7C HIGH, and MM-14 were 66.7, 60.0, 61.5, 58.3, 61.8, and 52.5 percent, respectively in 96 hours. Respective silver recoveries were 30.8, 37.1, 40.0, 50.8, 45.6, and 38.2 percent.

Gold recovery rates were fairly slow, and extraction was progressing at a slow rate for samples MM-2B HIGH, MM-7B MED, MM-7C HIGH, and MM-14 when leaching was terminated at 96 hours. Silver recovery rates were also fairly slow. Silver extraction was progressing at a slow rate for all samples except MM-2B HIGH and MM-7A LOW when leaching was terminated. Longer leaching cycles would improve precious metal recovery.

Cyanide consumptions were low and ranged from 0.15 to 0.43 pounds per ton of ore. Consumption rates were fairly constant throughout the leaching cycles.

Lime requirements were low and ranged from 2.2 to 3.5 pounds per ton of ore. Controlling the pH was not difficult, and over half of the total lime required was added during initial pH adjustment procedures for all samples except for MM-14.

Drill	<u>Cuttings</u>	<u>Sample</u>	<u>s, As Rec</u>	eived Fee	<u>d Size (No</u> i	<u>minal 1/4</u>	<u> Inch)</u>				
		Tail Assay	v. ozAu/to	1		Tail Assay, ozAg/ton					
Sample	Init.	Dup.	Trip.	Avg.	Init.	Dup.	Trip.	Avg.			
MM-2A LOW	0.005	0.005	0.007	0.006	0.06	0.08	0.12	0.09			
MM-2B HIGH	0.040	0.041	0.038	0.040	0.90	0.93	0.82	0.88			
MM-7A LOW	0.015	0.018	0.012	0.015	0.16	0.08	0.13	0.12			
MM-7B MED	0.015	0.016	0.015	0.015	0.28	0.30	0.29	0.29			
MM-7C HIGH	0.037	0.039	0.040	0.039	0.69	0.78	0.74	0.74			
<u>MM-14</u>	0.028	0.028	0.027	0.028	0.35	0.34	0.32	0.34			

 Table 4. - Tail Assay Results, Bottle Leached Residues,

 Cuttings Samples As Received Feed Size (Nominal 1/4 Integration)

CONCLUSIONS

• Drill cuttings samples were moderately amenable to direct agitated cyanidation treatment at the as received feed size.

- Gold and silver recovery rates were fairly slow.
- Reagent requirements were low.

7

McCLELLAND LABORATORIES, INC.

RECOMMENDATIONS

We recommend that column leach tests be conducted on representative core or bulk ore samples to determine amenability to heap leach cyanidation treatment.

Sam Matthews

Sam Matthews Project Manager

APPENDIX

McCLELLAND LABORATORIES, INC.

				Bottle R		4			
- 4 31	2104			Dome K		L			
ob No:	2194								
l'est No:	CY-01 MM-2A-LOW	, .							
Sample:									
Feed Size:	AS RECEIVE	DFEED							
	grams	tons	assay tons						
Ore Charge:	2041.90	0.0023	70.007		Weight %				
	mis	tons		Solids Density	40.0				
Solution Vol.:	3062.85	0.0034							
Natural pH:	<u>stu</u> 8.3			Cyanide Concer	ntration Main	ained at:	1b	NaCN/ton sol	,
				Raw Data					
Leach	Reagents A		Volume	Solution Withd NaCN Conc.	rawn and Sol	ution Analysis Au	A	Removed F	Contraction of Contract, or Con
Time, hours	gra lime	ums NaCN	voiume mls	NaCN Conc. lb/ton sol	pH	- PPM	Ag PPM	Au mg	Ag
Initial	2.00	3.06							mg
2	******	********	100	2.0	11.3	0.12	0.40	0.012	0.040
6	0.00	0.10	100	2.0	11.2	0.19	0.54	0.019	0.054
24	0.00	0.10	100	2.0	10.9	0.24	0.73	0.024	0.073
48	0.20	0.10	100	1.9	10.7	0.25	0.79	0.025	0.079
72	0.50	0.25	100	2.0	10.8	0.25	0.79	0.025	0.079
96	0.50	0.00	•	1.9	11.0	0.25	0.79	0.000	0.000
	•		•	Metallurgical	Results				
•				_				Reagent Re	
Loook		mlative An F	vtraction	Cum	ulative Ao Ex	traction		Cumulativa	
Leach	Cun	ulative Au E		Cum	ulative Ag Ex		-	<u>Cumulative</u> Cyanide	
Time,			percent of			traction percent of total	_	Cyanide	Line
Time, hours	Cun	oz/ton ore		Cum mg	ulative Ag Ex oz/ton ore	percent of			Lime Added
Time, hours Initial	mg	oz/ton ore	percent of total			percent of		Cyanide Consumed	Lime Added 2.0
Time, hours Initial 2	mg0.368	oz/ton ore 0.0053	percent of total 29.2	mg	oz/ton ore	percent of total		Cyanide Consumed -0.00	Lime Added 2.0 2.0
Time, <u>hours</u> Initial 2 6	mg 0.368 0.594	oz/ton ore 0.0053 0.0085	percent of total 29.2 47.1	mg 1.225 1.694	oz/ton ore 0.0175 0.0242	percent of total 13.5 18.6		Cyanide Consumed -0.00 -0.00	Lime Added 2.0 2.0 2.0
Time, hours Initial 2 6 24	mg 0.368 0.594 0.766	oz/ton ore 0.0053 0.0085 0.0109	percent of total 29.2 47.1 60.8	mg 1.225 1.694 2.330	oz/ton ore 0.0175 0.0242 0.0333	percent of total 13.5 18.6 25.6		Cyanide Consumed -0.00 -0.00 -0.00	Lime Added 2.0 2.0 2.0 2.2
Time, hours Initial 2 6 24 48	mg 0.368 0.594 0.766 0.821	0.0053 0.0085 0.0109 0.0117	percent of total 29.2 47.1 60.8 65.1	mg 1.225 1.694 2.330 2.587	oz/ton ore 0.0175 0.0242 0.0333 0.0369	percent of total 13.5 18.6 25.6 28.4		Cyanide Consumed -0.00 -0.00 -0.00 0.15	Lima Addoc 2.0 2.0 2.0 2.0 2.2 2.6
Time, hours Initial 2 6 24	mg 0.368 0.594 0.766	oz/ton ore 0.0053 0.0085 0.0109	percent of total 29.2 47.1 60.8	mg 1.225 1.694 2.330	oz/ton ore 0.0175 0.0242 0.0333	percent of total 13.5 18.6 25.6		Cyanide Consumed -0.00 -0.00 -0.00	Lime Added 2.0 2.0 2.0
Time, hours Initiai 2 6 24 48 72	mg 0.368 0.594 0.766 0.821 0.846	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012	percent of total 29.2 47.1 60.8 65.1 66.7	mg 1.225 1.694 2.330 2.587 2.666	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381	percent of total 13.5 18.6 25.6 28.4 29.3		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initiai 2 6 24 48 72	mg 0.368 0.594 0.766 0.821 0.846	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 Au	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 66.7	mg 1.225 1.694 2.330 2.587 2.666	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 Ag	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initiai 2 6 24 48 72	mg 0.368 0.594 0.766 0.821 0.846 0.871	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 <u>Au</u> 0.012	percent of total 29.2 47.1 60.8 65.1 66.7 66.7	mg 1.225 1.694 2.330 2.587 2.666	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04	percent of total 13.5 18.6 25.6 28.4 29.3 30.8		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96	mg 0.368 0.594 0.766 0.821 0.846 0.871	0.0053 0.0085 0.0109 0.0117 0.012 0.012 <u>Au</u> 0.012 0.012 0.006	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 66.7	mg 1.225 1.694 2.330 2.587 2.666	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz	mg 0.368 0.594 0.766 0.821 0.846 0.871	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 <u>Au</u> 0.012	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 66.7	mg 1.225 1.694 2.330 2.587 2.666	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz Calculated Ho Cyanide Com	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore z/ton ore ead, oz/ton ore sumed, lb/ton or	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.012 0.012 0.006 0.018	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 % of total 66.7 0.20	mg 1.225 1.694 2.330 2.587 2.666	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz Calculated He	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore z/ton ore ead, oz/ton ore sumed, lb/ton or	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.012 0.012 0.006 0.018	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 <u>% of total</u> 66.7	mg 1.225 1.694 2.330 2.587 2.666	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz Calculated Ho Cyanide Com	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore z/ton ore ead, oz/ton ore sumed, lb/ton or	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.012 0.012 0.006 0.018	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 % of total 66.7 0.20	mg 1.225 1.694 2.330 2.587 2.666 2.745	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz Calculated He Cyanide Com Lime Added,	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore z/ton ore ead, oz/ton ore sumed, lb/ton or	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.006 0.018 re	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 66.7 0.20 3.1 Leached R	mg 1.225 1.694 2.330 2.587 2.666 2.745	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 		Cyanide Consumed -0.00 -0.00 -0.00 0.15 0.15	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz Calculated He Cyanide Com Lime Added,	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore ead, oz/ton ore sumed, lb/ton ore	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.012 0.018 re	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 66.7 0.20 3.1 Leached R 3 1998.75	mg 1.225 1.694 2.330 2.587 2.666 2.745	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 <u>% of total</u> 30.8	ozAw/ton	Cyanide Consumed -0.00 -0.00 0.15 0.15 0.20	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz Calculated He Cyanide Com Lime Added,	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore ead, oz/ton ore sumed, lb/ton ore	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.012 0.006 0.018 re Veight, grams Tail Assay	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 % of total 66.7 0.20 3.1 Leached R s 1998.75 ozAu/ton	mg 1.225 1.694 2.330 2.587 2.666 2.745 esidue	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 		Cyanide Consumed -0.00 -0.00 0.15 0.15 0.20	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz Calculated He Cyanide Com Lime Added,	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore ead, oz/ton ore sumed, lb/ton ore	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.006 0.018 re Veight, grams <u>Tail Assay</u> Initial	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 66.7 0.20 3.1 Leached R 3 1998.75 02Au/ton 0.005	<u>mg</u> 1.225 1.694 2.330 2.587 2.666 2.745 esidue esidue	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 <u>% of total</u> 30.8	ozAu/ton 0.022	Cyanide Consumed -0.00 -0.00 0.15 0.15 0.20	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz Tail assay, oz Calculated He Cyanide Com Lime Added,	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore ead, oz/ton ore sumed, lb/ton ore	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.006 0.018 re Veight, grams <u>Tail Assay</u> Initial Duplicate	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 % of total 66.7 0.20 3.1 Leached R 3 1998.75 0ZAu/ton 0.005 0.005	mg 1.225 1.694 2.330 2.587 2.666 2.745 esidue esidue ozAg/ton 0.06 0.08	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 <u>% of total</u> 30.8		Cyanide Consumed -0.00 -0.00 0.15 0.15 0.20	Lime Added 2.0 2.0 2.0 2.2 2.6 3.1
Time, hours Initial 2 6 24 48 72 96 Extracted, oz T'ail assay, oz Calculated He Cyanide Com Lime Added,	mg 0.368 0.594 0.766 0.821 0.846 0.871 /ton ore ead, oz/ton ore sumed, lb/ton ore	oz/ton ore 0.0053 0.0085 0.0109 0.0117 0.012 0.012 0.012 0.006 0.018 re Veight, grams <u>Tail Assay</u> Initial	percent of total 29.2 47.1 60.8 65.1 66.7 66.7 66.7 0.20 3.1 Leached R 3 1998.75 02Au/ton 0.005	<u>mg</u> 1.225 1.694 2.330 2.587 2.666 2.745 esidue esidue	oz/ton ore 0.0175 0.0242 0.0333 0.0369 0.0381 0.04 <u>Ag</u> 0.04 0.09	percent of total 13.5 18.6 25.6 28.4 29.3 30.8 <u>% of total</u> 30.8		Cyanide Consumed -0.00 -0.00 0.15 0.15 0.20	Lima Addec 2.0 2.0 2.0 2.0 2.2 2.6 3.1

Bottle Roll Test

Job No:2194Test No:CY-02Sample:MM-2B-HIGHFeed Size:AS RECEIVED FEED

8.4

Ore Charge:	<u>grams</u> 2021.65	tons 0.0022	assay tons 69.313	
Solution Vol.:	<u>mls</u> 3032.48	tons 0.0033		Weight %Solids Density40.0
	stu			

Natural pH:

Cyanide Concentration Maintained at:

2.0 lb NaCN/ton sol

Leach	Reagents A	pplied		Solution Withdr	awn and Soluti	ion Analysis		Removed F	rom Pulp
Time,	grai	ms	Volume	NaCN Conc.		Au	Ag	Au	Ag
hours	lime	NaCN	mis	lb/ton sol	pH	PPM	PPM	mg	mg
Initial	2.00	3.03				*******			
2		********	100	2.0	11.5	0.54	2.39	0.054	0.239
6	0.00	0.10	100	2.0	11.5	0.93	5.75	0.093	0.575
24	0.00	0.10	100	1.9	11.2	1.13	8.92	0.113	0.892
48	0.00	0.24	100	1.9	10.7	1.16	9.92	0.116	0.992
72	0.10	0.24	100	1.9	10.8	1.19	11.10	0.119	1.110
96	0.10	0.24		2.0	10.5	1.20	10.60	0.000	0.000

			1	Metallurgical	Results				
· · · ·	-							Reagent Re	
Leach		nulative Au Ex		Cum	ulative Ag Ex			Cumulative	
Time,			percent of			percent of		Cyanide	Lime
hours	mg	oz/ton ore	total	mg	oz/ton ore	total	**	Consumed	Added
Initial									2.0
2	1.638	0.0236	23.6	7.248	0.1046	7.5		-0.00	2.0
6	2.874	0.0415	41.5	17.676	0.2550	18.2		-0.00	2.0
24	3.574	0.0516	51.6	27.864	0.4020	28.7		0.15	2.0
48	3.778	0.0545	54.5	31.788	0.4586	32.8		0.29	2.1
72	3.985	0.0575	57.5	36.359	0.52	37.1		0.43	2.2
96	4.134	0.060	60.0	35.952	0.52	. 37.1		0.43	2.2
- - -		Au	% of total		Ag	% of total			
Extracted, oz/to	n ore	0.060	60.0		0.52	37.1			
Tail assay, oz/t		0.040			0.88				
Calculated Hea		0.100			1.40		·		
Cyanide Consu	med, lb/ton or	re	0.43						
Lime Added, lb		i	2.2		1				
			Leached Resid	due					
Fi	nal Residue V	/eight, grams	1992.60						
		Tail Assay	ozAu/ton	ozAg/ton		Head Assay	ozAu/ton	ozAg/ton	
		Initial	0.040	0.90	•		0.095	1.35	
		Duplicate	0.041	0.93					
		Triplicate	0.038	0.82					
		Average	0.040	0.88	1				

				Bottle F	Roll Tes	st			
lob No:	2194			- •		-			
l'est No:	CY-03								
Sampic:	MM-7A-LOV							•	
Feed Size:	AS RECEIVE	ed feed							
	grams	tons	assay tons						
Ore Charge:	2199.20	0.0024	75.400						
					Weight %				
Solution Vol.:	<u>mls</u> 3298.80	<u>tons</u> 0.0036		Solids Density	40.0				
Solution vol		0.0050							
Natural pH:	<u>stu</u> 8.3			Cyanide Conce	ntration Main	tained at:	<u>2.0</u> lt	NaCN/ton sol	
Looph	Descents	miliod		Raw Data Solution Withd	leave and Sal	ution Analysia			
Leach Time,	Reagents A	ams	Volume	NaCN Conc.	uawii ang 501	ution Analysis Au	Ag	Removed Fi	
hours	lime	NaCN	mls	lb/ton sol	pH	- PPM	PPM	Mg	Ag ng
Initial	2.00	3.30		*******	********				
2			100	2.0	11.5	0.34	0.95	0.034	0.095
6	0.00 0.00	0.10 0.10	100 100	2.0	11.1 10.7	0.37	1.13	0.037	0.113
24 48	0.00 0.40	0.10	100	1.8 2.0	10.7	0.48 0.49	1.53 1.61	0.048	0.153
48 72	0.40	0.42	100	2.0	10.8	0.49	1.61	0.049 0.050	0.161
96	0.00	0.10	100	2.0	10.8	0.30	1.67	0.050	0.167 0.000
-	•		•	Metallurgical	Results				
Leach	Cum	nulative Au E	vention	Cum	ulative Ag Ex	tenation		Reagent Rea	quirement
Time,		Iulauve Au L	percent of	Cull	utative Ag EA	percent of	-	Cumulative Cyanide	16/ton ore Lime
hours	mg	oz/ton ore	total	mg	oz/ton ore	totai		Consumed	Added
Initial									1.8
2	1.122	0.0149	38.1	3.134	0.0416	20.8		0.00	1.8
6	1.255	0.0166	42.7	3.823	0.0507	25.3		0.00	1.8
24	1.654	0.0219	56.3	5.255	0.0697	34.8		0.30	2.2
48	1.735	0.0230	59.0	5.672	0.0752	37.6		0.30	2.7
72	1.817	0.024	61.5 61.5	6.031	0.08	. 40.0		0.30	3.0
96	1.834	0.024	01.3	6.231	0.08	40.0		0.30	3.0
		Au	% of total		Aa	% of total			
Extracted, oz/	ton ore	<u>Au</u> 0.024	<u>% of total</u> 61.5		<u>Ag</u> 0.08	<u>% of total</u> 40.0			
Extracted, oz/ Tail assay, oz									
Tail assay, oz		0.024			0.08				
Tail assay, oz Calculated He Cyanide Cons	/ton ore ad, oz/ton ore umed, lb/ton or	0.024 0.015 0.039	61.5		0.08 0.12				
Tail assay, oz Calculated He	/ton ore ad, oz/ton ore umed, lb/ton or	0.024 0.015 0.039	61.5		0.08 0.12				
Tail assay, oz Calculated He Cyanide Cons	/ton ore ad, oz/ton ore umed, lb/ton or	0.024 0.015 0.039	61.5	sidue	0.08 0.12				
Tail assay, oz Calculated He Cyanide Cons Lim <u>e Added,</u>	/ton ore ad, oz/ton ore umed, lb/ton or	0.024 0.015 0.039 re	61.5 0.30 3.0 Leached Ro	sidue	0.08 0.12				
Tail assay, oz Calculated He Cyanide Cons Lim <u>e Added,</u>	/ton ore ad, oz/ton ore umed, lb/ton or lb/ton ore	0.024 0.015 0.039 re	61.5 0.30 3.0 Leached Ro 2187.35		0.08 0.12	40.0	0ZAU/ton	ozAo/ton	
Tail assay, oz Calculated He Cyanide Cons Lim <u>e Added,</u>	/ton ore ad, oz/ton ore umed, lb/ton or lb/ton ore	0.024 0.015 0.039 re	61.5 0.30 3.0 Leached Ro 2187.35 ozAu/ton	ozAg/ton	0.08 0.12		ozAu/ton 0.034	ozAg/ton 0.25	
Tail assay, oz Calculated He Cyanide Cons Lim <u>e Added,</u>	/ton ore ad, oz/ton ore umed, lb/ton or lb/ton ore	0.024 0.015 0.039 re /eight, grams <u>Tail Assay</u> Initial	61.5 0.30 3.0 Leached Ro 2187.35		0.08 0.12	40.0	ozAu/ton 0.034	ozAg/ton 0.25	
Tail assay, oz Calculated He Cyanide Cons Lime Added,	/ton ore ad, oz/ton ore umed, lb/ton or lb/ton ore	0.024 0.015 0.039 re Veight, grams Tail Assay	61.5 0.30 3.0 Leached Ro 2187.35 ozAu/ton 0.015	<u>ozAg/ton</u> 0.16	0.08 0.12	40.0			

				Bottle F	coll Tes	st			-
lob No:	2194								
Test No:	CY-04								
Sample:	MM-7B-MEI	DIUM							
l'eed Size:	AS RECEIVI	ED FEED							
	grams	tons	assay tons						
Ore Charge:	2013.10	0.0022	69.020						
	mls	tons		Solids Density	<u>Weight %</u> 40.0				
Solution Vol.:	3019.65	0.0033							
Natural pH:	<u>stu</u> 8.4			Cyanide Conce	ntration Mair	ntained at:	<u> </u>	NaCN/ton sol	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Raw Data	10				
Leach Time,	Reagents A	Applied	Volume	Solution Withd NaCN Conc.	rawn and Sol	lution Analysis Au	A -	Removed F	
hours	lime	NaCN	mls	lb/ton sol	pН	- PPM	Ag PPM	Au mg	Λ
Initial	2.00	3.02			*******	********			m
2			100	2.0	11.3	0.14	1.94	0.014	0.194
6	0.00	0.10	100	2.0	11.3	0.29	3.27	0.029	0.327
24	0.00	0.10	100	1.9	11.0	0.39	5.11	0.039	0.511
48	0.00	0.25	100	2.0	10.7	0.42	5.86	0.042	0.586
72	0.20	0.10	100	2.0	10.7	0.43	6.10	0.043	0.610
96	0.35	0.10		2.0	10.9	0.42	6.17	0.000	0.000
				Metallurgical	Results	•		1	
Leach	Cun	nulative Au E	xtraction	Cum	ulative Ag Ex	traction		Reagent Re Cumulative	quirement
Time,		····	percent of			percent of		Cyanide	Lim
hours	mg	oz/ton ore	total	mg	oz/ton ore	total		Consumed	Adde
Initial	-						······		2.0
2	0.423	0.0061	17.0	5.858	0.0849	14.4		0.00	2.0
6	0.890	0.0129	35.8	10.068	0.1459	24.7		0.00	2.0
24	1.221	0.0177	49.1	15.951	0.2311	39.2		0.15	2.0
48	1.350	0.0196	54.3	18.727	0.2713	· 46.0		0.15	2.0
72	1.422	0.0206	57.2	20.038	0.2903	49.2		0.15	
96	1.435	0.021	58.3	20.859	0.30	50.8		0.15	2.5 2.5
			·						
		Au	% of total		Ag	% of total			
Extracted, oz/to	on ore	0.021	58.3		0.30	50.8			
Tail assay, oz/t	on ore	0.015			0.29				
Calculated Hea	d, oz/ton ore	0.036			0.59				
Culoutanea 11ea		re	0.15						
Cyanide Consu								· · · · · · · · · · · · · · · · · · ·	
			2.5						
Cyanide Consu		an a	2.5 Leached Re	sidue					
Cyanide Consu Lime Added, lt			Leached Re	sidue					
Cyanide Consu Lime Added, lt	o/ton ore		Leached Re	sidue ozAg/ton		Head Assav	ozAu/ton	ozA¤/ton	
Cyanide Consu Lime Added, lt	o/ton ore	/eight, grams	Leached Re 2001.80			Head Assay	ozAu/ton0.034	<u>ozAg/ton</u> 0.58	
Cyanide Consu Lime Added, lt	o/ton ore	/eight, grams Tail Assay Initial	Leached Re 2001.80 ozAu/ton 0.015	ozAg/ton 0.28		Head Assay	ozAu/ton 0.034	<u>ozAg/ton</u> 0.58	
Cyanide Consu Lime Added, lt	o/ton ore	/eight, grams Tail Assay Initial Duplicate	Leached Re 2001.80 ozAu/ton 0.015 0.016	<u>ozAg/ton</u> 0.28 0.30	•	Head Assay			·
Cyanide Consu Lime Added, lt	o/ton ore	/eight, grams Tail Assay Initial	Leached Re 2001.80 ozAu/ton 0.015	ozAg/ton 0.28	-	<u>Head Assay</u>			·

•

				Rottle D	OIL Too	4			
ob No:	2194			Bottle R)L			
	Y-05	17							
	1M-7C-HIG								
l'eed Size: A	S RECEIVE	CD FEED							
	grams	tons	assay tons						
Ore Charge:	2032.55	0.0022	69.687		Weight %				
	mls	tons		Solids Density	40.0				
Solution Vol.:	3048.83	0.0034							
Bonution + of									
Natural pH:	<u>stu</u> 8.3			Cyanide Conce	ntration Main	tained at:	<u>2.0</u> 1b	NaCN/ton sol	
	Deserves		ka daga sa ka na sa sa sa	Raw Data	manum and Cal	antion Amelanta			
Leach Time,	Reagents A	ams	Volume	Solution Withd NaCN Conc.	амп япа 201	- Au	Ag	Removed Fr Au	Contraction of the local division of the loc
hours	lime	NaCN	mls	lb/ton sol	pH	PPM	PPM	Au mg	A
Initial	2.00	3.05	********	*******			070000ag		
2			100	2.0	11.5	0.40	3.70	0.040	0.370
6	0.00	0.10	100	2.0	11.5	0.90	6.36	0.090	0.636
24	0.00	0.10	100	1.9	11.2	1.30	10.40	0.130	1.040
48	0.00	0.25	100	2.0	10.9	1.30	12.00	0.130	1.200
72	0.10	0.10	100	2.0	10.7	1.28	12.60	0.128	1.260
96	. 0.30	0.10		2.0	10.7	1.28	12.70	0.000	0.000
	and the second		•	Metallurgical	Results				
Leach	Cun	nulative Au E	xtraction	Cum	ulative Ag Ex	traction		Reagent Rea Cumulative	
Time,			percent of			percent of		Cyanide	Lim
hours	mg	oz/ton ore	total	mg	oz/ton ore	total		Consumed	Adde
Initial								Consumed	2.0
	1.220	0.0176	17.2			11.0			2.0
2		0.01/5		11.281	0.1619	11.9		0.00	4, ب
2		0.0175 0.0399		11.281 19.761	0.1619 0.2836	11.9 20.9		0.00	20
6	2.784	0.0399	39.2	19.761	0.2836	20.9		0.00	
6 24	2.784 4.093	0.0399 0.0587	39.2 57.6	19.761 32.714	0.2836 0.4694	20.9 - 34.5		0.00 0.15	2.0
6 24 48	2.784 4.093 4.223	0.0399 0.0587 0.0606	39.2 57.6 59.4	19.761 32.714 38.632	0.2836 0.4694 0.5544	20.9 - 34.5 40.8		0.00 0.15 0.15	2.0 2.1
6 24	2.784 4.093	0.0399 0.0587	39.2 57.6	19.761 32.714	0.2836 0.4694	20.9 - 34.5		0.00 0.15	2.0 2.1 2.4
6 24 48 72	2.784 4.093 4.223 4.293	0.0399 0.0587 0.0606 0.0616	39.2 57.6 59.4 60.4	19.761 32.714 38.632 41.661	0.2836 0.4694 0.5544 0.5978	20.9 - 34.5 40.8 44.0		0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72	2.784 4.093 4.223 4.293	0.0399 0.0587 0.0606 0.0616 0.063	39.2 57.6 59.4 60.4 61.8	19.761 32.714 38.632 41.661	0.2836 0.4694 0.5544 0.5978 0.62	20.9 34.5 40.8 44.0 45.6		0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96	2.784 4.093 4.223 4.293 4.421	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u>	39.2 57.6 59.4 60.4	19.761 32.714 38.632 41.661	0.2836 0.4694 0.5544 0.5978 0.62	20.9 34.5 40.8 44.0 45.6 <u>% of total</u>		0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to	2.784 4.093 4.223 4.293 4.421	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063	39.2 57.6 59.4 60.4 61.8	19.761 32.714 38.632 41.661	0.2836 0.4694 0.5544 0.5978 0.62	20.9 34.5 40.8 44.0 45.6		0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96	2.784 4.093 4.223 4.293 4.421 n ore	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u>	39.2 57.6 59.4 60.4 61.8	19.761 32.714 38.632 41.661	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62	20.9 34.5 40.8 44.0 45.6 <u>% of total</u>		0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to Calculated Head	2.784 4.093 4.223 4.293 4.421 n ore on ore d, oz/ton ore	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102	39.2 57.6 59.4 60.4 61.8 <u>% of total</u> 61.8	19.761 32.714 38.632 41.661	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u>		0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to	2.784 4.093 4.223 4.293 4.421 n ore n ore i, oz/ton ore ned, lb/ton o	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102	39.2 57.6 59.4 60.4 61.8	19.761 32.714 38.632 41.661	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u>		0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to Calculated Head Cyanide Consur	2.784 4.093 4.223 4.293 4.421 n ore n ore i, oz/ton ore ned, lb/ton o	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102	39.2 57.6 59.4 60.4 61.8 <u>% of total</u> 61.8	19.761 32.714 38.632 41.661 43.226	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u>	· · ·	0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to Calculated Head Cyanide Consur Lim <u>e Added, Ib</u>	2.784 4.093 4.223 4.293 4.421 n ore on ore d, oz/ton ore ned, lb/ton or	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102	39.2 57.6 59.4 60.4 61.8 <u>% of total</u> 61.8 0.15 2.4 Leached R	19.761 32.714 38.632 41.661 43.226	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u>		0.00 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to Calculated Head Cyanide Consur Lim <u>e Added, Ib</u>	2.784 4.093 4.223 4.293 4.421 n ore on ore d, oz/ton ore ned, lb/ton or	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102 re	39.2 57.6 59.4 60.4 61.8 <u>% of total</u> 61.8 0.15 2.4 Leached R 2024.80	19.761 32.714 38.632 41.661 43.226	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u> 45.6	07 A 11/top	0.00 0.15 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to Calculated Head Cyanide Consur Lim <u>e Added, Ib</u>	2.784 4.093 4.223 4.293 4.421 n ore on ore d, oz/ton ore ned, lb/ton or	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102 re Veight, grams Tail Assay	39.2 57.6 59.4 60.4 61.8 <u>% of total</u> 61.8 0.15 2.4 Leached R 2024.80 ozAu/ton	19.761 32.714 38.632 41.661 43.226 esidue	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u>	ozAu/ton	0.00 0.15 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to Calculated Head Cyanide Consur Lim <u>e Added, Ib</u>	2.784 4.093 4.223 4.293 4.421 n ore on ore d, oz/ton ore ned, lb/ton or	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102 re Veight, grams <u>Tail Assay</u> Initial	39.2 57.6 59.4 60.4 61.8 <u>% of total</u> 61.8 0.15 2.4 Leached R 2024.80 ozAu/ton 0.037	19.761 32.714 38.632 41.661 43.226 esidue ozAg/ton 0.69	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u> 45.6	<u>ozAu/ton</u> 0.101	0.00 0.15 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to Calculated Head Cyanide Consur Lim <u>e Added, Ib</u>	2.784 4.093 4.223 4.293 4.421 n ore on ore d, oz/ton ore ned, lb/ton or	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102 re Veight, grams <u>Tail Assay</u> Initial Duplicate	39.2 57.6 59.4 60.4 61.8 <u>% of total</u> 61.8 0.15 2.4 Leached R 2024.80 ozAu/ton 0.037 0.039	19.761 32.714 38.632 41.661 43.226 esidue <u>ozAg/ton</u> 0.69 0.78	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u> 45.6		0.00 0.15 0.15 0.15 0.15	2.0 2.1 2.4
6 24 48 72 96 Extracted, oz/to Tail assay, oz/to Calculated Head Cyanide Consur Lim <u>e Added, Ib</u>	2.784 4.093 4.223 4.293 4.421 n ore on ore d, oz/ton ore ned, lb/ton or	0.0399 0.0587 0.0606 0.0616 0.063 <u>Au</u> 0.063 0.039 0.102 re Veight, grams <u>Tail Assay</u> Initial	39.2 57.6 59.4 60.4 61.8 <u>% of total</u> 61.8 0.15 2.4 Leached R 2024.80 ozAu/ton 0.037	19.761 32.714 38.632 41.661 43.226 esidue ozAg/ton 0.69	0.2836 0.4694 0.5544 0.5978 0.62 <u>Ag</u> 0.62 0.74	20.9 34.5 40.8 44.0 45.6 <u>% of total</u> 45.6		0.00 0.15 0.15 0.15 0.15	2.0 2.0 2.1 2.4 2.4

·

				Bottle R	oll Tes	t			
ob No:	2194								•
	CY-06								
	MM-14								
ced Size:	AS RECEIVE	D FEED							
	grams	tons	assay tons						
Dre Charge:	1941.70	0.0021	66.572		Weight %				
	mis	tons		Solids Density	40.0				
Solution Vol.:	2912.55	0.0032							
	stu			a a		- . .	• • •		
Natural pH:	8.4			Cyanide Concer	tration Main	ained at:	<u> </u>	NaCN/ton sol	
- <u></u>				Raw Data	10.1				
Leach	Reagents A		Volume	Solution Withd NaCN Conc.	rawn and Soli	ition Analysis Au	Ag	Removed Fr Au	
Time, hours	lime	ams NaCN	mls	lb/ton sol	pН	PPM	PPM	mg	Ag mg
Initial	1.50	2.91			*******		·		**************************************
2			100	2.0	10.7	0.10	1.46	0.010	0.146
6	0.40	0.10	100	2.0	10.9	0.35	2.49	0.035	0.249
24	0.35	0.10	100	2.0	10.9	0.56	3.70	0.056	0.370
48	0.40	0.10	100	1.8	10.9	0.61	4.10	0.061	0.410
72	0.40	0.38	100	2.0	10.9	0.64	4.29	0.064	0.429
96	0.30	0.00		1.9	11.1	0.64	4.35	0.000	0.000
				Metallurgical	Results				
	-							Reagent Rea	quirement
Leach	Cun	nulative Au Ex	percent of		ilative Ag Ex	percent of		Cumulative Cyanide	
Time, hours	mg	oz/ton ore	total	mg	oz/ton ore	total		Consumed	Lime Addee
Initial				B				Companied	1.5
2	0.291	0.0044	7.4	4.252	0.0639	11.6		-0.00	2.0
6	1.029	0.0155	26.2	7.398	0.1111	20.2		-0.00	2.0
24	1.676	0.0252	42.7	11.171	0.1678	30.5		-0.00	2.7
48	1.878	0.0282	47.8	12.706	0.1909	. 34.7		0.30	3.1
72	2.026	0.0304	51.6	13.670	0.2053	37.3		0.30	3.5
96	2.090	0.031	52.5	14.274	0.21	38.2		0.34	3.5
						.			
		Au	% of total		Ag	% of total			
	ton ore	0.031	52.5		0.21	38.2			
Extracted, oz/		0.028			0.34				
Tail assay, oz									
Tail assay, oz	/ton ore ead, oz/ton ore	0.059			0.55				
Tail assay, oz Calculated Ho Cyanide Cons	ead, oz/ton ore	0.059	0.34		0.55				
Tail assay, oz Calculated Ho	cad, oz/ton ore sumed, lb/ton o	0.059	3.5	neidua	0.55				
Tail assay, oz Calculated Ho Cyanide Cons Lime Added,	ead, oz/ton ore sumed, lb/ton or lb/ton ore	0.059 re	3.5 Leached Re	esidue	0.55				
Tail assay, oz Calculated Ho Cyanide Cons Lime Added,	cad, oz/ton ore sumed, lb/ton o	0.059 re Veight, grams	3.5 Leached Re 1916.65		0.55				
Tail assay, oz Calculated Ho Cyanide Cons Lime Added,	ead, oz/ton ore sumed, lb/ton or lb/ton ore	0.059 re Veight, grams Tail Assay	3.5 Leached Re 1916.65 ozAu/ton	ozAg/ton	0.55	Head Assay	ozAu/ton	ozAg/ton	
Tail assay, oz Calculated Ho Cyanide Cons <u>Lime Added,</u>	ead, oz/ton ore sumed, lb/ton or lb/ton ore	0.059 re Veight, grams <u>Tail Assay</u> Initial	3.5 Leached Re 1916.65 <u>ozAu/ton</u> 0.028	ozAg/ton 0.35	0.55	Head Assay	ozAu/ton 0.053	<u>ozAg/ton</u> 0.60	
Tail assay, oz Calculated Ho Cyanide Cons <u>Lime Added</u> ,	ead, oz/ton ore sumed, lb/ton or lb/ton ore	0.059 re Veight, grams <u>Tail Assay</u> Initial Duplicate	3.5 Leached Ro 1916.65 ozAu/ton 0.028 0.028	ozAg/ton 0.35 0.34	0.55	Head Assay			
Tail assay, oz Calculated Ho Cyanide Cons Lime Added,	ead, oz/ton ore sumed, lb/ton or lb/ton ore	0.059 re Veight, grams <u>Tail Assay</u> Initial	3.5 Leached Re 1916.65 <u>ozAu/ton</u> 0.028	ozAg/ton 0.35	0.55	Head Assay			

•

- .

PREPARED FOR:

BILLITON MINERALS U.S.A., INC.

CYANIDE LEACH TESTS AND MINERALOGICAL CHARACTERIZATION OF GOLD ORE SAMPLES FROM THE MOSS MINE PROJECT

. By

Wolfgang Baum & Louis W. Lherbier, Jr.

Project O M 33

December 17, 1990

TABLE OF CONTENTS

	<u>Page</u>
BACKGROUND AND OBJECTIVE OF WORK	1
SAMPLES RECEIVED AND METHODS OF STUDY	2
DISCUSSION OF RESULTS	3
Chemical Characterization Mineralogical Characterization Gold Mineralogy Gravity Separation Tests Cyanide Leach Tests Leach Results Mineralogy of Unleached Gold	3 3 5 7 10 11 18
CONCLUSIONS	20
RECOMMENDATIONS	22
APPENDIX	23
Photomicrographs	24

BACKGROUND AND OBJECTIVE OF WORK

On November 15, 1990, Billiton Minerals requested a proposal for bottle roll cyanide leach tests and a mineralogical characterization of two gold ore samples from the Moss Mine project.

The objective of the work was outlined by Mr. Michael Lucid and was summarized in a PMET quotation of November 15, 1990. It included the following work objectives:

- Perform bottle roll cyanidation tests on three selected size fractions of a high-grade gold ore composite.
- Determine the gold mineralogy, quantitatively, in order to evaluate and interpret the results of the cyanidation tests.
- Determine the pertinent mineralogical characteristics of the ore which would impact feasible metallurgical treatment options and the gold recovery.
- Determine the reason(s) for unrecovered gold in the cyanide leach residues.
- Determine the mode of occurrence of gold and the gold size distribution in a low(er)-grade composite in order to evaluate if there is a bimodal gold mineralogy between high- and low-grade ore feed causing differences in cyanide leach amenability.

1.

SAMPLES RECEIVED AND METHODS OF STUDY

Three ore zone interval samples were received from Billiton on November 20, 1990, at the PMET laboratories. The samples were designated as shown in Table 1.

Table 1

Samples Received

PMET NO.	Billiton	Designation	Billiton Assay	Weight
444-1	MM-8-46	225-230'	0.229 oz/ton Au	6.55 lbs.
444-2	MM-8-48	235-240'	0.236 oz/ton Au	4.10 lbs.
444-3 '	MM-1-49	Coarse Rej.	0.622 oz/ton Au	2.0 lbs.

An equal-weight composite was prepared from samples 444-1 and 444-2 for the cyanide leach tests. Due to small sample size, sample 444-3 was used for mineralogical work only.

The laboratory work included sample preparation, bottle roll cyanidation tests, fire assays of head samples and leach residues, chemical analyses of filtrates and wash water, bulk X-ray diffraction analyses, heavy liquid separations with assays and mineralogical characterization of separation products, optical microscopy with modal analysis, particle size analysis by screening and microscopy and photomicrography.

This work was performed under Billiton purchase order number VAM 901 105.

2.

DISCUSSION OF RESULTS

Chemical Characterization

Well-blended assay pulps were split out from the head samples and subjected to fire assays for gold. The assay results are summarized in Table 2.

Table 2

Gold Assays of Head Samples

(oz/ton)
220
270 .
•

The pH of the ore samples was determined using Method ASA 12-2 (Methods of Soil Analysis). The results of this work are summarized in Table 3.

•	Ta	bl	e	3
---	----	----	---	---

pH Measurements

Sample	рн
444-1-2	7.90
444-3	8.23

Mineralogical Characterization

Prior to the ore blending, a megascopic characterization was prepared of the three samples.

Sample 444-1

White-yellow gray, coarse-grained ferruginous carbonate-rich quartz vein(?) material. The calcite is intimately associated with hydrated iron oxides, jarosite, hydrated

Syonide consurvers ?

manganese oxides and clay minerals. Most of the iron/manganese hydrated oxides appear to represent a former disseminated iron sulfide mineralization. The sample contains 5-8% of chloritic-siliceous rock fragments which contain large amounts of relatively fresh, well-crystallized and coarse-grained pyrite. The sample contains an estimated quartz content of 40-50% and a carbonate content of 25-35%.

Sample 444-2

White to light gray, carbonate-bearing quartz vein material which is distinctly less ferruginous than the first sample. The sample contains an estimated quartz content of 40-60% and a carbonate content of 10-20%. Both the quartz as well as the carbonates contain a weak, disseminated and strongly oxidized sulfide mineralization. In addition, there are also noticeable amounts of manganese oxides and hydroxides.

Sample 444-3

White-yellow gray, carbonate-bearing siliceous vein material. The overall mineralogical sample characteristics are very similar to sample 444-1. Ferruginous and weakly chloritic. Contains considerable amounts of wellcrystallized quartz and calcite.

Subsequently, the blended composite and sample 444-3 were subjected to a bulk X-ray diffraction analysis. The XRD work confirmed the optical microscopy, i.e. that the dominating <u>ore-forming minerals</u> are quartz (with minor silica modifications such as opaline silica and chalcedony) and calcite. In addition, minor amounts of <u>swelling clay</u> minerals were identified. The XRD analyses are summarized in Table 4.

Table 4

Bulk XRD Analyses of Moss Mine Gold Ore Samples

		Minerals & Concentra	tion
Sample	Major	Minor	Trace
444-1-2	Quartz Calcite	Muscovite Montmorillonit	Chlorite e
444-3	Quartz	K-feldspar Calcite Montmorillonit	Muscovite e
			~~~~~~~~

4.

The bulk XRD analysis represents crystallized minerals present in concentrations above 2%. Extremely fine-grained, poorly crystalline and/or amorphous mineral phases such as alteration products and clay minerals may not be detectable or may be under-represented.

Concentration Ranges: Major = 20 - >50% Minor = 5 - 20% Trace = <5%

Representative split portions of each sample were subjected to optical microscopy with modal analysis in order to quantify pertinent mineralogical characteristics. The results of the modal analysis are summarized in Table 5.

#### Table 5

Microscopic Modal Analysis of Head Samples

Mineral	Sample 444-1-2	Sample 444-3
Silica/Feldspar Groundmass	49% vol.	63% vol.
Carbonates	41	20
Clay Minerals	7	15
Opaque Minerals	3	2

#### Gold Mineralogy

The gold mineralization in the Moss Mine samples is characterized by the presence of mostly silver-rich native gold which frequently may approach electrum composition. The silver content in this gold shows an average concentration of 27% according to semiquantitative SEM-EDX analyses. Intimately associated with the silver-rich gold is native gold with extremely low silver concentrations (<5%).

The gold is primarily associated with siliceous gangue and hydrous iron oxides. These iron oxide minerals represent alteration products of gold-bearing pyrite and/or are the result of hydrothermal iron mobilization and reprecipitation. Minor amounts of the gold are associated with small concentrations of pyrite, some of which occurs as the spheroidal variety. Approximately 20 - 30% of the total pyrite mineralization consists of spheroidal fine-grained iron sulfides. The spheroidal pyrite exhibits particles sizes of <1 to 50 micron in diameter.

In addition to the iron sulfides there are minor to trace amounts of sphalerite, chalcopyrite, bornite and galena. Most of these sulfide minerals occur as inclusions in the pyrite.

Some of the liberated gold particles observed in these samples exhibit surface coatings of (hydrous) iron oxides and/or silica clay slimes. Approximately 30% of the gold displays rapid surface tarnishing. In composite sample 444-1-2, 64% of the gold is associated with hydrous iron oxides. Most of the remaining gold (30%) is intergrown with silica gangue. Minor amounts of gold (<10%) occur as refractory gold associated with pyrite. Many pores and fractures in the gangue particles are filled with silica-carbonate-clay slimes.

As indicated by the microscopic analysis of the head samples, the gold mineralogy in the composite 444-1-2 differs distinctly from sample 444-3 with regard to particle size and mineralogical residence:

- The gold in the PMET cyanide leach composite contains distinctly more fine-grained (-25 micron) gold than sample 444-3.
- In the cyanide leach composite, the majority (64%) of the gold is locked with hydrous iron oxides; whereas in sample 444-3, gold association with silica gangue is dominating.

The gold particle sizes range from <1 micron to 300 micron with the majority of the gold occurring in the coarser (+400 mesh) sizes. The microscopic work indicates that the native gold present in sample 444-3 shows distinctly coarser particle sizes than the gold observed in composite 444-1-2. Table 6 summarizes a microscopic gold particle size analysis for both samples.

#### Table 6

Microscopic Gold Particle Size Analysis of Moss Mine Samples

# Size of Gold Particles (Approximate Diameter)

		Samples		
	<u>Size(micron)</u>	444-1-2	444-3	
	< 5	60%	21%	
· >	. 5 – 20	21%	15%	
	> 20 - 50	10%	24%	
	> 50 100	78	22%	
	>100	2%	18%	
		100%	100%	

6.

Both samples contain noticeable amounts of tramp iron shavings (from drilling?) and fragments of copper wire. Trace concentrations of organic/carbonaceous material were observed in sample 444-1-2.

#### Gravity Separation Tests

50% of Value 400 Mesh Shines

The gravity testwork was performed on 800-gram splits from samples 444-1-2 and 444-3 by way of heavy liquid separation at a S.G. of 2.95. Prior to separation, the samples were carefully stage-crushed to -48 mesh and deslimed at 400 mesh.

• The gravity separation tests confirmed the conclusions made from the optical microscope analysis, i.e. that the gold mineralogy of composite 444-1-2 and sample 444-3 exhibits significant differences in particle size and gold occurrence. Both of these factors will impact gold ore processing and precious metal recovery.

In composite 444-1-2, almost half of the gold reported to the -400 mesh slimes fraction. This fraction represents 30% of the sample weight. Less than one third (26.8% distribution) of the gold was recovered in an extremely small (0.12% of the weight) gravity concentrate assaying 38 oz/ton gold. The remainder (28.7% distribution) of the gold occurred in the gravity tailings (float fraction) due to encapsulation in (light) silica gangue. The gravity tailings account for the majority of the sample weight (69%).

In sample 444-3, the majority of the contained gold (69.4% distribution) was recovered in a high-grade (71.8 oz/ton Au) gravity concentrate which represents 0.29% of the sample weight. Eighteen percent of the gold reported to the float fraction. This fraction accounts for 75% of the sample weight. Only 12% of the gold occurred in the -400 mesh slimes.

The reasons for the high gold recovery by gravity methods in this particular sample are a) distinctly coarse gold particle sizes and b) good liberation of gold at the 48 mesh grind.

The results of the gravity separation tests are summarized in Table 7 and Figure 1.

# Table 7

# Gravity Separation Tests

÷

# Sample 444-1-2

Product	Weight(%)	Assay Gold(oz/ton)	Distribution ( % )
Assay Head Calc. Head	100.0	0.220 0.173	100.0
Grav. Conc. Grav. Tails -400 Slimes	0.12 69.16 30.72	38.70 0.072 0.250	26.82 28.79 44.39
		Sample 444-3	
Assay Head Calc. Head	100.0	0.270 0.299	100.0
Grav. Conc. Grav. Tails -400 Slimes	0.29 75.13 24.58	71.80 0.073 0.150	69.43 18.27 12.30

8.

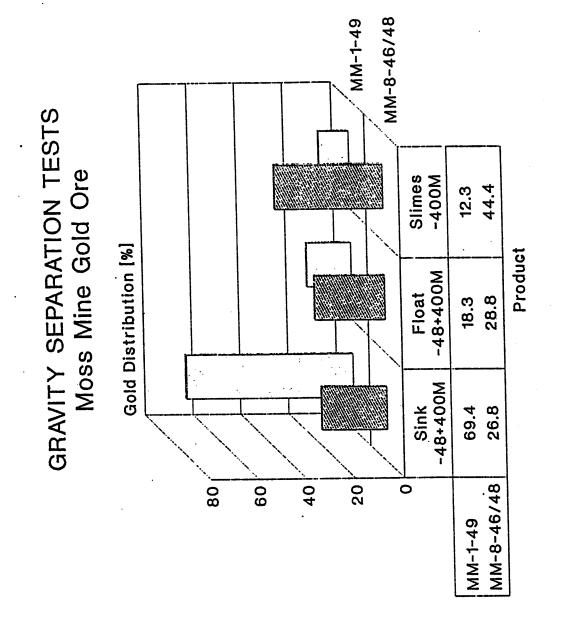



Figure 1

72 Hour Bottle Rolls

Cyanide Leach Tests

Well-blended split portions of three different size fractions were prepared from the head sample by stage crushing and grinding. The sample splits were then subjected to bottle roll cyanidation tests using the following conditions.

Samples:

Composite 444-1-2

1. As-received 2. -10 mesh 3. -200 mesh Amount of Sample: 300 grams % Solids: 23.08% NaCN Concentration:  $3 \alpha/1 NaCN$ pH: 10.5 - 11Temperature: Ambient Leach Time: 72 hours with solution samples taken at 6, 24, 48, and 72 hours.

- A total of 300 grams of sample was slurried in an aqueous solution containing 3 g/l NaCN at a pH of 10.5 to 11. Solution pH was adjusted using hydrated lime, i.e. Ca(OH)₂.
- Tests were initiated and conducted for a total time of 72 hours. Solution pH was measured and adjusted to target levels after 0.5, 2, 6 and 24 hours of total target levels using hydrated lime additions. Free lime concentrations were also measured via acid titration after 2, 6, 24, 48 and 72 hours.
- NaCN concentrations were also measured after 2, 6, 24, 48, and 72 hours. If required, NaCN additions were made following the 2-, 6-, 24- and 48-hour measurements to bring the solution NaCN concentration to the target of 3 g/l. NaCN concentrations were measured via titration with AgNO₂ solutions.
- After 72 hours, the samples were filtered and the leach residues were washed. The first wash was performed with 500 ml of DI water containing low levels of cyanide. This was followed by two additional washing steps with 500 ml DI water each. Total water used amounted to 1500 ml.

10.

Samples of leach solution were collected after 6, 24, 48 and 72 hours of leaching for gold analysis. In addition, gold fire assays were done on splits of the head sample and leach residue. The final wash water was also analyzed for gold.

Gold extractions were calculated in two fashions: one being based on the head sample assays and the solution assays and one being based on the leach residue assays and the solution assays. In the former case, a solution volume of 1000 ml was assumed, and solution aliquots removed for assay and titration were included in the calculations to account for all the gold. Extractions calculated from head sample assays in all cases differ from those calculated from residue assays. This reflects both sampling and analytical error.

#### Leach Results

H2C9 E000149

.

The leach results indicate that gold liberation appears to be the most significant factor for high gold recovery. The gold extraction was lowest in the as-received material (59.7%) and increased with crushing to -10 mesh to 73.7%. Almost complete gold extraction was achieved in the sample material ground to -200 mesh. The lime consumptions are negligible whereas the cyanide consumptions were equally high in all tests (21.6 - 22.9 lbs. NaCN/ton).

A potential for preg robbing is indicated for this sample material. It is tentatively concluded that preg robbing could be caused by spheroidal pyrite, hydrous iron oxides and oxidizing tramp iron, as well as minor amounts of carbonaceous matter occurring in the ore. The cyanide consumption is affected by natural cyanicides present such as iron oxidation minerals, ferruginous clays and sulfides. In addition, artificial cyanicides such as tramp iron shavings from drilling and copper wire fragments were also present.

A summary of the leach test results is presented in Table 8. Details of the cyanidation tests and the complete mass balance information are presented in Table 9. The solution pH measurements are listed in Table 10. Figure 2 provides a graphic presentation of the NaCN leach tests based on solution and head sample assays.

Ta	bl	e	8
----	----	---	---

Cyanide	Leach	Extractions of Gold
and	Reagen	t Consumptions

Sample	Gold Extractions(%) after 72 hours	NaCN Consumption (lbs/ton)	Lime Consumption (lbs CaO/ton)
444-1-2 As-is	59.7	22.9	< 1
444-1-2 -10 Mesh	73.7	22.7	< 1
444-1-2 -200 Mesh	100.0*	21.6	< 1
* Based o	n outputs		

.

.

.

.

•

.

•

•

# ACN LEACH TEST RESULTS

#### 10-Dec-90

• ••

ample: 444-1 As-Is				Analyses		600	NaCN	Au	Au Dist
inputs	Mass [g]	Volume [ml]	Ca0	NaCN	Au	Ca0 [mg]	[g]	[mg]	[%]
	300.00		<del>-</del>		0.220 oz/t	0.0	0.00	2.263	100.0
)re	-	1000	23.8 mg/l	3.0 gpl	-	23.8	3.00	-	0.0
Solution	-	20	23.8 mg/l	3.0 gpl	-	0.5	0.06	-	0.0
Sin - 2 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
SLN - 6 Krs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln – 24 Hrs Sln – 48 Hrs	-	35	23.8 mg/L	3.0 gpl	-	0.8	0.11	-	0.0
	1.47	-		100 %	-	-	1.47	-	0.0
Nacn - 2 Hrs	0.80	-	-	100 %	-	<b>-</b> '	0.80	-	0.0
Nacn - 6 Hrs	0.48	-	-	100 %	-	-	0.48	-	0.0
NaCN - 24 Hrs	0.31			100 %	-	-	0.31	-	0.0
NaCN - 48 Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Ca(OH)2 (T) - XX Hrs Wash Water	-	1500		. –	-	· -		-	0.0
 Total	303.06	2625		~~~~~~~~~~		26.7	6.44	2.263	ʻ <b>100.0</b>

Sample: 444-1 As-Is				Analyses		•			Au
· · · ·	Mass	Volume		, a a a # a # <b>a a</b> a a a a a a a a a a a a a a a a a		CaO	NaCN	Au	Dist
Outputs	[9]	[mi]	CaO	NaCN	Au	[mg]	[g]	[mg]	[%]
2 Hr Sample	-	20	140 mg/l	1.50 gpl	mg/l	2.8	0.03	0.000	0.0
•	-	35	64 mg/l	2.18 gpl	0.990 mg/l	2.2	0.08	0.035	1.6
6 Hr Sample		35	32 mg/l	2.50 gpl	1.130 mg/l	1.1	0.09	0.040	1.9
24 Hr Sampie	-		. •		1.180 mg/l	1.8	0.09	0.041	2.0
48 Hr Sample	-	35	51 mg/l	2.68 gpl	-	148.4	2.64	0.970	46.1
NaCN Filtrate	-	970	153 mg/l	2.72 gpl	1.000 mg/l	• • • • •			
Wash Filtrate	-	1430	3 mg/l	0.06 gpl	0.120 mg/l	4.6	0.08	0.172	8.2
Dry Residue	301.71	-	-	-	0.082 oz/t	-	-	0.848	40.3
-									
Total	301.71	2525		•		160.9	3.01	2.105	100.0

Au Accountability:

93.0 %

59.7 % Final Au Extraction: NaCN Consumption: 22.9 lbs/ton

Lime Consumption: <1.0 lbs CaO/ton

. .N LEACH TEST RESULTS

# . 10-0ec-90

. -

.

Sample: 444-1 -10H				Analyses					Au
Inputs	Mass [g]	Volume [ml]	Ca0	NaCN	Au	CaO [mg]	NaCN [g]	Au [mg]	Dist [%]
Ore	300.00	-	•	-	0.220 oz/t	0.0	0.00	2.263	100.0
Solution	-	1000	23.8 mg/l	3.0 gpi	-	23.8	3.00	-	0.0
Sln - 2 Hrs	-	10	23.8 mg/l	3.0 gpl	-	0.2	0.03	-	0.0
Sln - 6 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 24 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 48 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
NaCN - 2 Hrs	1.50	-	-	100 %	-	-	1.50	-	0.0
NaCN - 6 Hrs	0.75	-	-	100 %	-		0.75	-	0.0
NaCN - 24 Hrs	0.48	-	-	100 %	-	_	0.48	-	0.0
NaCN - 48 Hrs	0.31	-	-	100 %	-	-	0.31	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	<b>-</b> ·	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Wash Water	-	1500	-	-	-	-	-	-	0.0
Total	303.04	2615	······			26.5	6.39	2.263	100.0

.mple: 444-1 -10M				Analyses					Au
	Mass	Volume	*********	**********		CaO	NaCN	Au	Dist
Outputs	(g)	[ml]	CaO	NaCN	Au	[mg]	[g]	[mg]	<b>[%]</b>
********						******			
2 Hr Sample	-	10	280 mg/l	1.49 gpl	mg/l	2.8	0.01	0.000	0.0
6 Hr Sample	-	35	89 mg/l	2.23 gpl	1.250 mg/l	3.1	0.08	0.044	2.2
24 Hr Sample	-	35	32 mg/l	2.50 gpl	1.390 mg/l	1.1	0.09	0.049	2.4
48 Hr Sample	-	35	45 mg/l	2.68 gpl	1.420 mg/l	1.6	0.09	0.050	2.5
NaCN Filtrate	-	950	102 mg/l	2.70 gpl	1.220 mg/l	[.] 96.9	2.57	1.159	57.3
Wash Filtrate	-	· 1458	3 mg/l	0.09 gpl	0.130 mg/l	5.1	0.14	0.190	9.4
Dry Residue	298.50	-	-	-	0.052 oz/t	-	-	0.532	26.3
******									
Total	298.50	2523				110.6	2.97	2.023	100.0

• .

Au Accountability: 89.4 %

. •

Final Au Extraction: 73.7 %

•

...

٠

NaCH Consumption: 22.7 Lbs/ton

Lime Consumption: <1.0 lbs CaO/ton

#### LEACH TEST RESULTS

#### 10-Dec-90

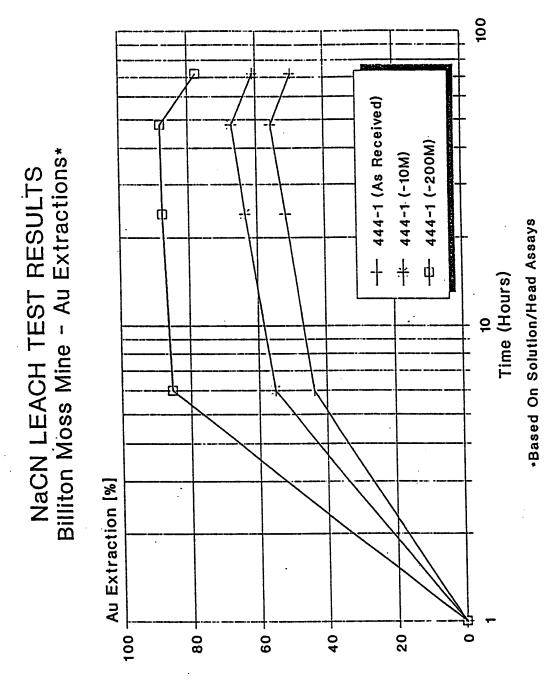
. -

Sample: 444-1 -200M				Analyses					Au
	Mass	Volume	******			CaO	NaCN	Au	Dist
Inputs	[g]	[mi]	CaO	NaCN	Au	[mg]	[g]	[mg]	[%]
	******								
Ore	300.00	-	-	-	0.220 oz/t	0.0	0.00	2.263	100.0
Solution	-	1000	23.8 mg/l	3.0 gpl	-	23.8	3.00	-	0.0
Sin - 2 Hrs	-	10	23.8 mg/l	3.0 gpl	-	0.2	0.03	-	0.0
Sln - 6 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 24 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 48 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
NaCN - 2 Hrs	1.54	-	-	100 %	-	-	1.54	-	0.0
NaCN - 6 Hrs .	0.77	-	-	100 %	-	-	0.77	-	0.0
NaCN - 24 Hrs	0.43	-	-	100 %	. –	-	0.43	-	0.0
NaCN - 48 Hrs	0.28	-	-	100 %	-	-	0.28	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Wash Water	-	1500	-	-	-	-	-	-	0.0
 Total	303.02	2615		<del>*****</del> ****		26.5	6.36	2.263	100.0

le: 444-1 -200M				Analyses					Au
	Mass	Volume				CaO	NaCN	Au	Dist
Outputs	[g]	[ml]	CaO	NaCN	Au	[mg]	[g]	[mg]	[%]
2 Hr Sample	-	10	280 mg/l	1.45 gpl	mg/l	2.8	0.01	0.000	0.0
6 Hr Sample -	-	35	51 mg/l	2.20 gpl	1.930 mg/l	1.8	0.08	0.068	3.5
24 Hr Sample	-	35	32 mg/l	2.55 gpl	1.900 mg/l	. 1.1	0.09	0.067	3.5
48 Hr Sample	-	35	38 mg/l	2.71 gpl	1.830 mg/l	. 1.3	0.09	0.064	3.4
NaCN Filtrate	-	960	76 mg/l	2.85 gpl	1.520 mg/l	73.4	2.74	1.459	76.4
Wash Filtrate	-	1410	2 mg/l	0.08 gpl	0.180 mg/l	3.1	0.11	0.254	13.3
Dry Residue	297.28	-	-	-	<0.005 oz/t	-	-	0.000	0.0
					د د د د د د د د د د د د				
Total	297.28	2485				83.5	3.13	1.911	100.0

Au Accountability: 84.5 %

Final Au Extraction: 100.0 % (Based on Outputs) NaCN Consumption: 21.6 lbs/ton Lime Consumption: <1.0 lbs CaO/ton Table 10


. -

Billiton - Moss Mine NaCN Leach Tests - Solution pH

	Elapsed	Slurry pH	l Data
Sample	Time [hrs]	Initial	Adjusted
 444-1 (As-Is)	0.0	10.94	NA
	0.5	10.84	NA
	2.0	10.82	NA
	6.0	10.83	NA
	24.0	10.81	NA
	48.0	10.69	NA
	72.0	10.65	NA
	Avg.	10.82	
**********			
444-1 (-10M)	0.0	10.94	NA NA
	0.5	10.82	NA
	2.0	10.75	
	6.0	10.81	NA
	24.0	10.88	NA
	48.0	10.85	NA
	72.0	10.86	NA 
	Avg.	10.84	-
444-1 (-200M)	0.0	10.72	
	0.5	10.67	
	2.0	10.62	
•	6.0	10.65	NA NA
	24.0	10.69	) NA
	48.0	10.65	5 NA
	72.0	10.69	9 NA
**********	 Avg.	10.6	 7 -

NA = No Adjustment

Figure 2



17.

#### Mineralogy of Unleached Gold

Following the cyanide leach tests, a split portion of the leach residue from sample 444-1-2 (-10 mesh) was used to determine the mode of occurrence of unleached gold in order to assist in the interpretation of gold extraction rates.

Due to the small sample size, it was decided to perform a wet screen analysis followed by fire assays of the screen size fractions. Concurrently, the screen fractions were examined by microscopic methods for the mineralogical residence of the gold.

The screening indicates that the major reason for the presence of unleached gold in the -10 mesh composite (as well as coarser-grained material) is <u>locking of native gold</u> in iron oxide/hydroxide and siliceous host minerals all of which are impervious to the <u>lixiviant</u>. From the unleached gold in the -10 mesh cyanide leach residue, 64% distribution of the gold occurs in the +48 mesh screen fraction. This fraction represents half of the sample weight. Most of the remaining gold (30%) occurs in the -400 mesh fraction, also primarily caused by locking and slimes coatings. The results of the screen analysis are summarized in Table 11.

#### Table 11

#### Screen Analysis and Gold Distribution in -10 Mesh Cyanide Leach Residue (Sample 444-1-2)

Weight (%)	Gold Assay oz/ton	Gold Distribution (%)
		· .
	0.052	·
100.0	0.062	100.0
49.15	0.081	64.61
11.14	0.022	3.90
10.14	0.006	0.97
	0.004	0.49
20.99	0.088	30.03
	(%)  100.0 49.15 11.14 10.14 8.58	(%) oz/ton 0.052 100.0 0.062 49.15 0.081 11.14 0.022 10.14 0.006 8.58 0.004

Based on the mineralogical work of head samples, gravity separation products and leach residues as well as the results of the bottle roll tests, the following Table 12 quantifies the mode of occurrence of gold in the Moss Mine samples.

#### Table 12

Mineralogical Mode of Occurrence of Gold in Moss Mine Gold Ore Samples

Type of Gold Occurrence	Frequency <u>444-1-2</u>	
Native gold associated with hydrous iron oxides*	64	7
Native gold associated with quartz or other gangue minerals	30	89
Native gold associated with partially oxidized pyrite	6	4
Total	100	100

* This includes gold associated with hydrous iron oxides which are pseudomorphous after pyrite as well as gold remobilized during alteration/oxidation and reprecipitated in (layered) iron hydroxides.

It is pointed out that the gold mineralogy established in Table 12 is based on the sample material investigated. Fluctuations and deviations of the mode of occurrence of gold may occur throughout the deposit.

Pertinent mineralogical features of the Moss Mine samples are shown in Figures 3 to 12 in the Appendix.

#### CONCLUSIONS

- The Moss Mine gold ore samples examined during this study contain a fine- to coarse-grained mineralization of silver-rich native gold some of which may be equivalent to electrum. Minor amounts of gold with low silver contents are also present. It is indicated that the ore may contain a bimodal occurrence (mineralogical residence) of gold as well as a bimodal gold particle size distribution:
  - 1. In the composited samples MM-8-46/48, the majority of the gold is associated with iron oxidation minerals and the gold is primarily of ultrafine particle size.
  - In the MM-1-49 sample, most of the gold is associated with siliceous gangue and exhibits distinctly coarse particle sizes.
  - The characteristics of the gold mineralogy described above have a distinct impact on ore processing and gold recovery. The fine gold intergrown/encapsulated by iron oxides will require a sufficiently fine grind to become amenable to direct cyanidation. The coarser gold mineralization found in sample MM-1-49, however, showed a good response to gravity concentration, i.e. almost 70% of this gold can be recovered into a small-volume, high-grade concentrate by physical preconcentration.
  - The bottle roll cyanidation tests and subsequent mineralogical analyses of a leach residue confirmed the mineralogical characteristics identified in the head samples. The leach tests revealed a particle size-dependent refractoriness to direct leaching. Based upon the recent work, it is also concluded that in ore samples similar to the composite MM-8-46/48, 10-15% of the gold occurs encapsulated in pyrite and may require oxidation prior to cyanidation.
    - It is concluded that losses encountered during cyanide leaching are primarily due to partial or complete locking (encapsulation) of gold in iron oxidation minerals, siliceous gangue and/or middlings particles of these minerals.
  - The very coarse gold particle sizes observed in sample MM-1-49 could become troublesome in sampling, sample preparation and assaying by causing severe nugget effects. In addition, extremely coarse gold may not be

entirely leached during short bottle roll tests. The resultant poor gold extraction could be erroneously interpreted as being caused by locking. Routine gravity separation tests are therefore of critical importance during further development work.

- Due to the presence of spheroidal pyrite, sorptive clay minerals, and traces of carbonaceous matter, the ore may exhibit minor preg-robbing effects. Considerably more follow-up work is required to confirm these conclusions.
- Increased cyanide consumption is caused by cyanicides such as soluble iron oxidation products, spheroidal pyrite, tramp iron and copper wire contamination and cyanide-consuming ferruginous gangue in the slimes fraction.



Figure 3: Photomicrograph showing the typical occurrence of fine native gold (see arrows) locked in hydrous iron oxides (gray). Scale = 100 micron

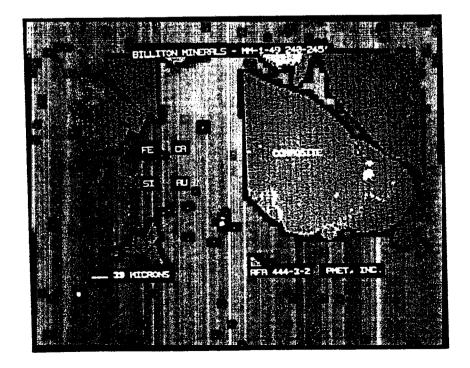



Figure 4 SEM digital X-ray map of the particle shown in Figure 3 outlining the gold encapsulation.



Figure 5

Photomicrograph showing encapsulated and partially liberated native gold (see arrows) in a hydrous iron oxide particle which is attached to a larger quartz grain (Q). Scale = 100 micron

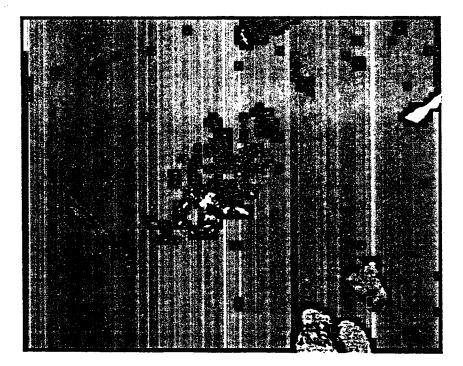



Figure 6 Detail of Figure 5. Fine native gold (yellow) intimately associated with hydrous iron oxides. Scale = 50 micron

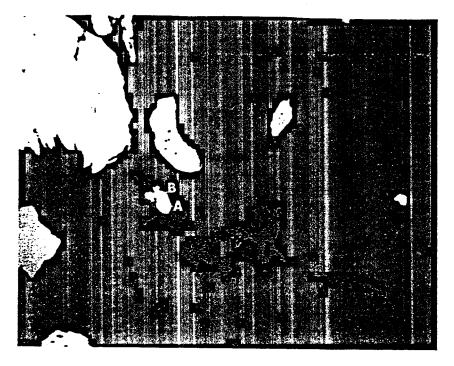



Figure 7 Photomicrograph showing the presence of silver-rich (A) and silver-poor (B) gold particles both of which are encapsulated by hydrous iron oxides. Scale = 50 micron

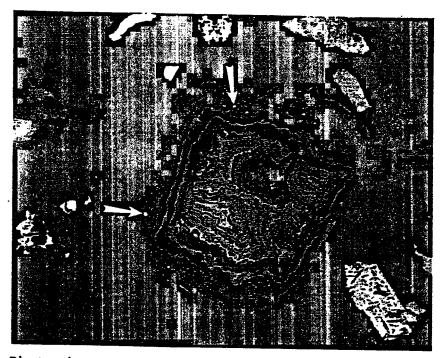



Figure 8

Photomicrograph showing rhythmic iron precipitation with ultrafine gold formation (see arrows). It is tentatively concluded that this gold has been remobilized from a primary mineralization during alteration and was thereafter co-precipitated with the iron. Scale = 50 micron



Figure 9 Photomicrograph showing a liberated particle of coarse native gold (G). Scale = 100 micron

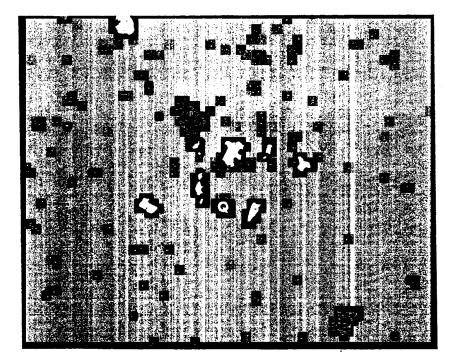



Figure 10 Photomicrograph showing a larger quartz grain (Q) with partially as well as completely locked native gold (yellow). Scale = 100 micron

27.

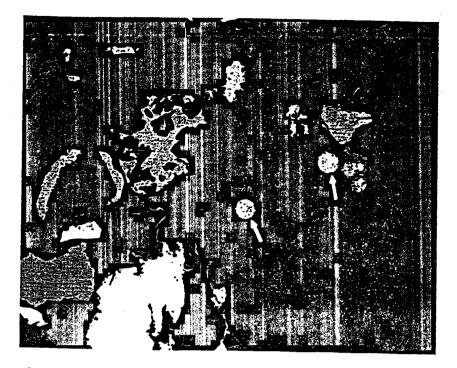



Figure 11 Photomicrograph showing the occurrence of spheroidal pyrite (see arrows) which may exhibit preg-robbing potential. Scale = 100 micron

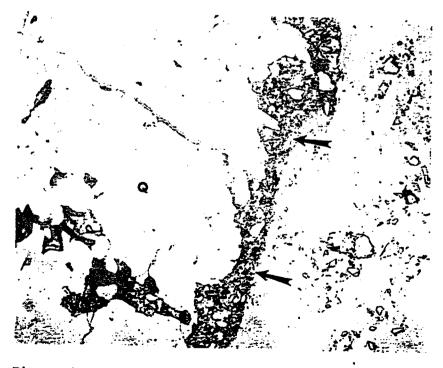



Figure 12 Photomicrograph showing a large quartz grain (Q) coated by clay and silica slimes (see arrows). These slimes coatings may retard or prevent lixiviant penetration. Scale = 100 micron

ł

ittsburgh ineral & nvironmental

echnology, Inc.

. .--

December 17, 1990

Mr. Michael F. Lucid Billiton Minerals U.S.A., Inc. 200 N. Dairy Ashford Woodcreek, Room 3496 Houston, Texas 77079

Dear Mike:

and concludes our attached report summarizes The mineralogical laboratory work on the Moss Mine gold ore samples. Please contact us if we can be of any further service.

Sincerely,

Wolfgang Baum Manager, Process Mineralogy

WB/mkf

Attachment

cc: Messrs. Jeff Schafer & Ed Hanley (Reno)  $\nu$ 

700 Fifth Avenue New Brighton, PA 15066 (412) 843-5000 FAX: (412) 843-5353



1016 Greg Street, Sparks, Nevada 89431 702 / 356-1300 FAX 702 / 356-8917

May 29, 1991

Mr. Mark Sander MAGMA COPPER COMPANY 7400 North Oracle Road, Suite 200 Tucson, AZ 85704

Dear Mark:

Enclosed is our report concerning metallurgical results obtained from direct agitated cyanidation testwork conducted on the Moss bulk ore sample, and cuttings intervals. An original of this report was sent to Mr. Richard Jeanne.

Enclosed also is our invoice (MLI Job No. 1615/1631) for the testwork.

Thank you for allowing us the opportunity to serve you on the Moss project.

Sincerely,

Frank A. Macy Project Manager

FAM:aah Enclosure



#### McCLELLAND LABORATORIES, INC.

1016 Greg Street, Sparks, Nevada 89431 702 / 356-1300 FAX 702 / 356-8917

#### Report

on Direct Agitated Cyanidation Testwork Moss Bulk Ore and Cuttings Samples MLI Job No. 1567 May 29, 1991

for

Mr. Mark Sander Magma Copper Company 7400 North Oracle Road Suite 200 Tucson, AZ 85704

#### **EXECUTIVE SUMMARY**

Direct agitated cyanidation (bottle roll) tests were conducted on 1 bulk ore sample, and 14 cuttings intervals from the Moss project to determine gold recovery, recovery rate, and reagent requirements. The bulk ore sample was evaluated at a 100 percent minus 1 inch feed size.

Metallurgical results show that the bulk ore sample was not readily amenable to direct agitated cyanidation treatment at a minus 1 inch feed size. A gold recovery of 42.1 percent was achieved in 96 hours of leaching. Gold recovery rate was fairly slow and extraction was progressing at a slower, but fairly constant rate, when leaching was terminated at 96 hours. Reagent requirements were low.

Metallurgical results show that the cuttings intervals were amenable to direct agitated cyanidation treatment at the as received feed size. Gold recoveries ranged from 51.9 to 78.1 percent, and averaged 62.4 percent in 96 hours of leaching. Gold recovery rates were fairly rapid and extraction was substantially complete in from 6 to 24 hours. Additional gold was extracted after 24 hours, but at a slow rate. Cyanide and lime requirements were low to moderate.

#### SAMPLE PREPARATION AND HEAD ASSAYS

One bulk ore sample, and 14 cuttings intervals from the Moss project were received for the testing program. The bulk ore sample was stage crushed to 100 percent minus 1 inch in size, and was thoroughly blended and split to obtain 3 kilograms for a bottle roll test, and samples for triplicate direct head assay. Cuttings intervals were thoroughly blended and split to obtain 1 kilogram for a bottle roll test. Cuttings intervals from hole MM-2 were split further to obtain a 300 gram sample for direct head assay.

Head samples were assayed directly using conventional fire assay fusion procedures to determine gold content. Head assay results and head grade comparisons for the bulk ore sample are provided in Table 1. Head assay results for cuttings intervals are provided with overall metallurgical results from the bottle roll tests later in this report.

Determination Method	Head Grade, ozAu/ton
Direct Assay: Initial	0.250
Duplicate	0.254
Triplicate	0.325
Calculated, Bottle Test	0.214
Arithmetic Average	0.261
Maximum Deviation from Average	0.064
Precision, percent	80.3

## Table 1. - Head Assay Results and Head Grade Comparisons, Moss Bulk Ore Sample

Head grades determined by the various methods did not agree closely. Gold occurrence was somewhat "spotty". The cause of "spottiness" was not established. The calculated head grade determined from the bottle roll test is considered more reliable than direct head assays because of the quantity of sample evaluated.

#### **DIRECT AGITATED CYANIDATION TEST PROCEDURES AND RESULTS**

Direct agitated cyanidation (bottle roll) tests were conducted on 1 bulk ore sample, and 14 cuttings intervals from the Moss project to determine gold recovery, recovery rate, and reagent requirements. The bulk ore sample was evaluated at a 100 percent minus 1 inch feed size. Cuttings intervals were evaluated at the as received feed size. Ore charges

-2-

were mixed with water to achieve 40 weight percent solids. Natural pulp pHs were measured. Lime was added to adjust the pH of the pulps to 11.0 before adding the cyanide. Sodium cyanide, equivalent to 2.0 pounds per ton of solution, was added to the alkaline pulps.

Leaching was conducted by rolling the pulps in bottles on the laboratory rolls for 96 hours. Rolling was suspended briefly after 2, 6, 24, 48, and 72 hours to allow the pulps to settle so samples of pregnant solution could be taken for analysis by A.A. methods. Pregnant solution volumes were measured and sampled. Cyanide concentration and pH were determined for each pregnant solution. Make-up water, equivalent to that withdrawn, was added to the pulps. Cyanide concentrations were restored to initial levels. Lime was added, if necessary, to maintain the leaching pH at between 10.8 and 11.2. Rolling was then resumed.

After 96 hours, the pulps were filtered to separate liquids and solids. Final pregnant solution volumes were measured and sampled for analysis. Final pH and cyanide concentrations were determined. Leached residues were washed, dried, weighed, and assayed in triplicate to determine residual gold content.


Overall metallurgical results for the bottle roll tests are provided in Tables 2 through 7. Gold leach rate profiles are shown graphically in Figures 1 through 6. Triplicate gold tail assay results for the cuttings intervals are provided in Table 8. A summary of bottle roll test results conducted on the cuttings intervals is provided in Table 9.

Metallurgical Results	Feed Size
Extraction: pct. total Au	1"
in 2 hours	10.2
in 6 hours	18.4
in 24 hours	29.0
in 48 hours	34.7
in 72 hours	38.6
in 96 hours	42.1
Extracted, ozAu/ton ore	0.090
Tail Grade, ozAu/ton ¹⁾	0.261
Calculated Head, ozAu/ton ore	0.214
Head Grade, ozAu/ton ore ²⁾	0.261
Cyanide Consumed, lb/ton ore	0.15
Lime Added, lb/ton ore	3.4
Final Solution pH	11.0
<u>Natural pH (40% solids)</u>	7.1
1) Amongo of three (0.122, 0.110, and 0.121, and	- as cold - an tan)

Table 2 Overall Metallurgical Results,	Bottle Roll 7	Test,
Moss Bulk Ore Sample		

Average of three (0.132, 0.119, and 0.121 ounce gold per ton).
 Average of all head grade determinations.

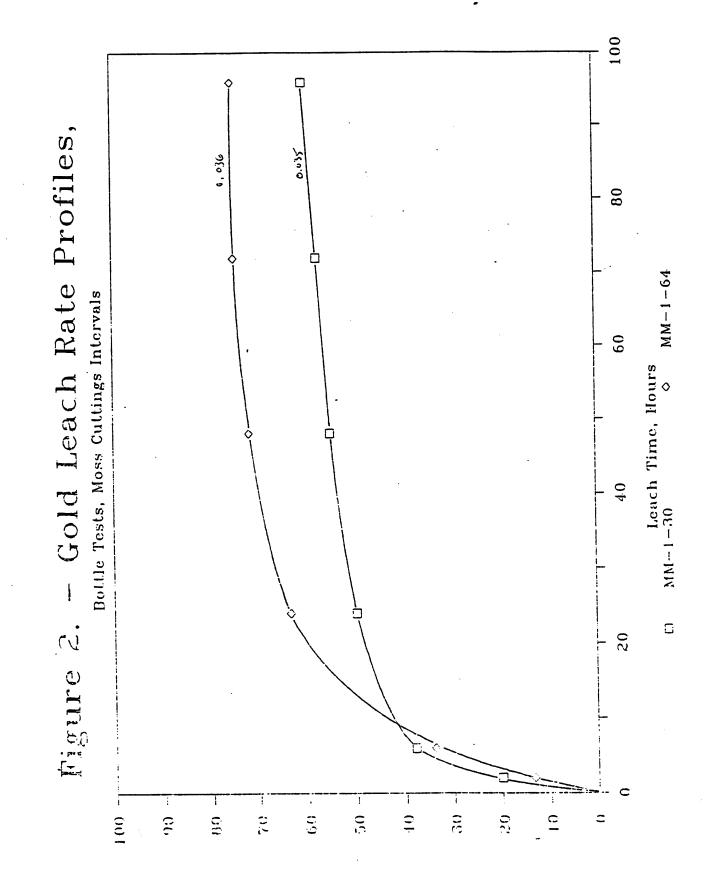
-4-



Juenzay , vravebáñ uA avdeiumuù

-5-

Metallurgical results show that the bulk ore sample was not readily amenable to direct agitated cyanidation treatment at a 100 percent minus 1 inch feed size. A gold recovery of 42.1 percent was achieved in 96 hours of leaching. Gold recovery rate was fairly slow and extraction was progressing at a slower, but fairly constant rate, when leaching was terminated at 96 hours. Additional gold values would be extracted with a leaching cycle longer than 96 hours, but at a slow rate.


Cyanide consumption was low at 0.15 pounds per ton of ore. The lime requirement was low at 3.4 pounds per ton of ore.

<u>Moss Cuttings Interval</u>	s, As Received reeds		
Metallurgical Results	Sample		
Extraction: pct total Au	<u>MM-1-30</u>	<u>MM-1-64</u> ,	
in 2 hours	20.0	13.3	
in 6 hours	38.0	33.9	
in 24 hours	49.7	63.3	
in 48 hours	54.9	71.7	
in 72 hours	57.4	74.7	
in 96 hours	60.0	75.0	
Extracted, ozAu/ton ore	0.021	0.027	
Tail Assay, ozAu/ton ¹⁾	0.014	0.009	
Calculated Head, ozAu/ton ore	0.035	0.009 0.036 \ married	
Predicted Head, ozAu/ton ore ²⁾	0.029	0.046 - '	
Cyanide Consumed, lb/ton ore	0.24	0.10	
Lime Added, lb/ton ore	4.3	5.9	
Final Solution pH	11.1	11.1	
Natural pH (40% solids)	7.8	7.8	

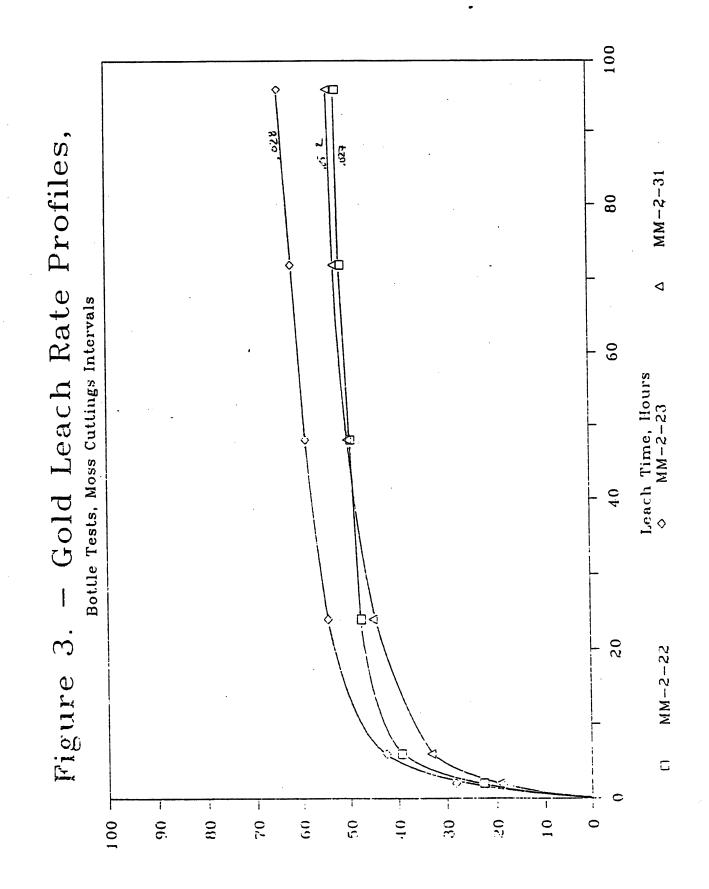
### Table 3. - Overall Metallurgical Results, Bottle Roll Tests, Moss Cuttings Intervals, As Received Feeds

1) Average of three.

2) Provided by Magma Copper personnel.



Cumulative Au Recovery, Percent


-7-

Moss Cuttings Intervals, As Received Feeds				
Metallurgical Results		Sample		
Extraction: pct total Au	<u>MM-2-22</u>	<u>MM-2-23</u>	<u>MM-2-31</u>	
in 2 hours	22.6	28.2	19.4	
in 6 hours	39.3	42.5	33.1	
in 24 hours	47.4	54.3	45.0	
in 48 hours	49.3	58.9	50.0	
in 72 hours	51.1	61.8	52.7	
in 96 hours	51.9	64.3	53.8	
Extracted, ozAu/ton ore	0.014	0.018	0.028	
Tail Assay, ozAu/ton ¹⁾	0.013	0.010	0.024	
Calculated Head, ozAu/ton ore	0.027	0.028	0.052 - yused	
Head Assay, ozAu/ton ore	0.028	0.026	0.046	
Predicted Head, ozAu/ton ore ²⁾	0.052	0.032	0.055 - ,	
Cyanide Consumed, lb/ton ore	0.14	0.27	1.29	
Lime Added, lb/ton ore	5.9	4.6	5.1	
Final Solution pH	10.9	10.8	10.9	
Natural pH (40% solids)	7.8	7.6	7.7	

Table 4 Overall Metallurgical	Results, Bottle Roll Tests,
Moss Cuttings Intervals.	As Received Feeds

1) Average of three.

2) Provided by Magma Copper personnel.



Cumuletive Au Recovery, Percent

-9-

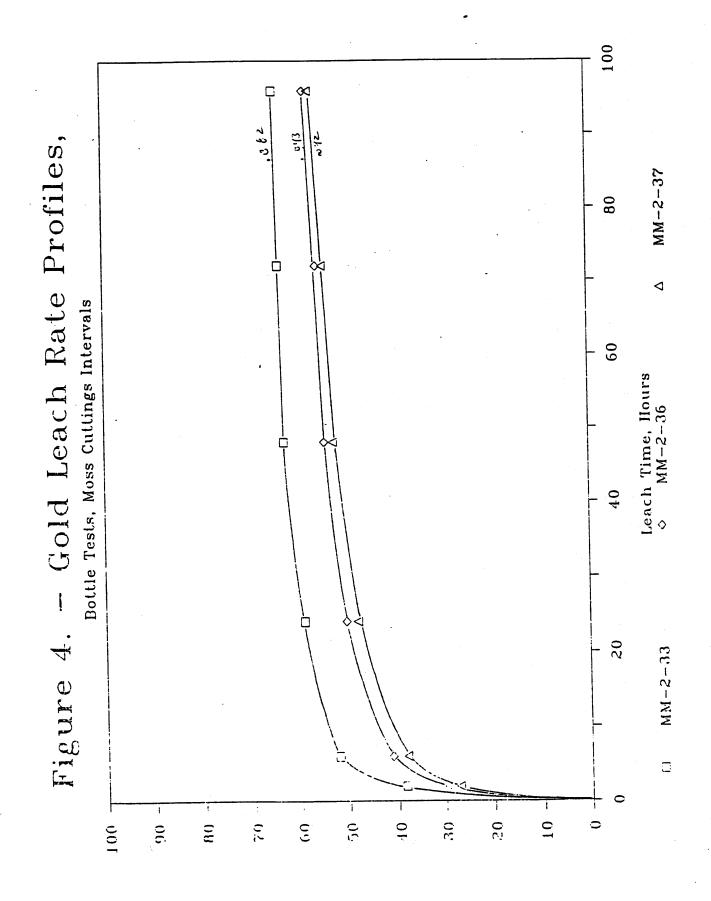

	vais, As neceive	<u>cu recus</u>		
Metallurgical Results		Sample		
Extraction: pct total Au	<u>MM-2-33</u>	<u>MM-2-36</u>	<u>MM-2-37</u>	
in 2 hours	38.4	29.5	27.1	
in 6 hours	52.0	41.2	38.1	
in 24 hours	59.0	50.2	47.9	
in 48 hours	63.0	54.4	52.6	
in 72 hours	63.9	55.8	54.5	
in 96 hours	64.6	58.1	57.1	
Extracted, ozAu/ton ore	0.053	0.025	0.024	
Tail Assay, ozAu/ton ¹⁾	0.029	0.018	0.018	
Calculated Head, ozAu/ton ore	0.082	0.043	0.042	hab ^l ener low
Head Assay, ozAu/ton ore	0.093	0.038	0.038	
Predicted Head, ozAu/ton ore ²⁾	0.071	0.038	0.039	,
Cyanide Consumed, lb/ton ore	0.86	0.46	0.32	
Lime Added, lb/ton ore	4.6	4.2	3.9	
Final Solution pH	10.9	10.9	10.8	
Natural pH (40% solids)	7.7	7.7	7.7	

 Table 5. - Overall Metallurgical Results, Bottle Roll Tests,

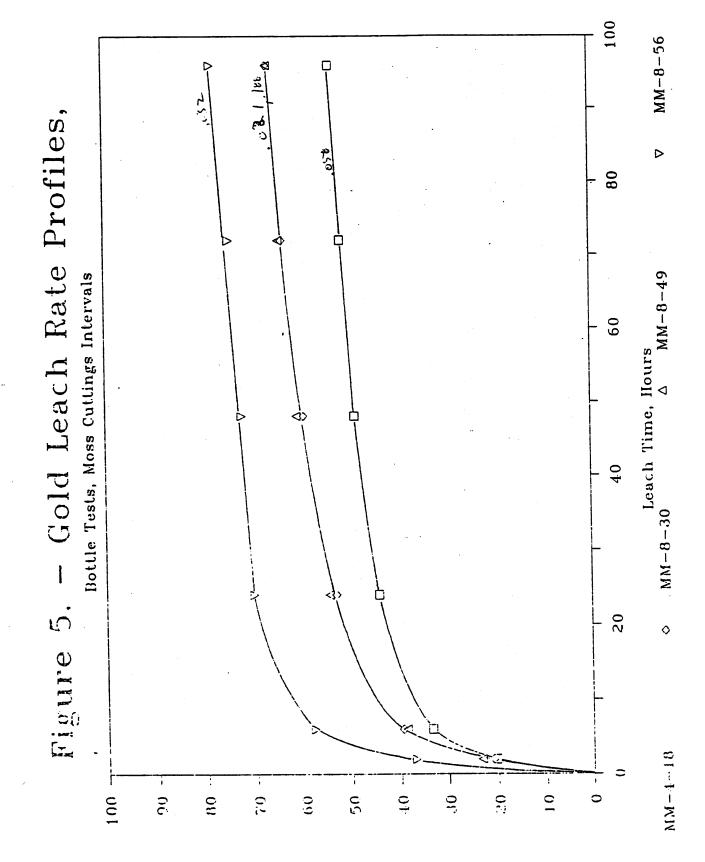
 Moss Cuttings Intervals, As Received Feeds

1) Average of three.

2) Provided by Magma Copper personnel.



Cumulative Au Recovery, Percont


-11-

	<u>igs intervals, A</u>	s <u>Received</u> re	eus	
Metallurgical Results			nple	
Extraction: pct total Au	<u>MM-4-18</u>	<u>MM-8-30</u>	<u>MM-8-49</u>	<u>MM-8-56</u>
in 2 hours	20.3	21.0	23.3	36.9
in 6 hours	33.3	39.5	38.7	57.8
in 24 hours	44.1	52.9	54.3	70.3
in 48 hours	48.8	59.5	61.0	72.5
in 72 hours	51.4	63.8	64.5	74.7
in 96 hours	53.4	66.7	66.5	78.1
Extracted, ozAu/ton ore	0.031	0.014	0.125	0.025
Tail Assay, ozAu/ton ¹⁾	0.027	0.007 <	0.063	0.007
Calculated Head, ozAu/ton ore	0.058	0.021 🧲		0.032 ]
Predicted Head, ozAu/ton ore ²⁾	0.056	0.016	0.185	0.028
Cyanide Consumed, lb/ton ore	0.47	0.28	Fietur 0.73	0.75
Lime Added, lb/ton ore	3.8	4.3	3.6	5.0
Final Solution pH	10.7	10.8	10.8	10.9
Natural pH (40% solids)	8.0	8.2	8.1	8.3
1) Arrange of these				

Table 6 Overall Metallurgical	Results, Bottle Roll Tests,
Moss Cuttings Intervals,	As Received Feeds

.

Average of three.
 Provided by Magma Copper personnel.



**Job No. 1615 - May 29, 1991** 

Cumulative Au Recovery, Percent

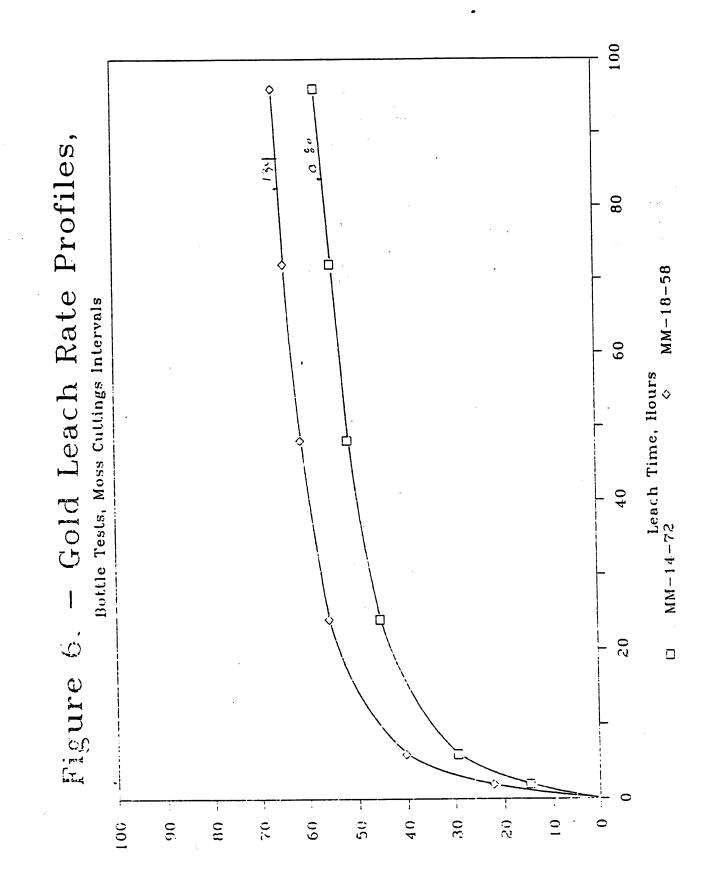

-13-

Table 7 Offer Intomole	as Received reeas	
Moss Cuttings Intervals, A	Samp	le
Metallurgical Results	<u>MM-14-72</u>	<u>MM-18-58</u>
Extraction: pct total Au	14.8	22.2
in 2 hours	29.4	40.4
in 6 hours	45.4	55.7
in 24 hours	51.5	61.2
in 48 hours	54.6	64.4
in 72 hours	57.5	66.4
in 96 hours	0.046	0.089
Extracted, ozAu/ton ore	0.034	0.045
$T_{ail} \wedge c_{ai} \sim (7A)/(101^{-7})$	0.080	0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134
Calmilated Head, 0ZAU/1011 010	0.077	0.127 - 50
Dredicted Head, OZAU/101 010	0.61	0.44
Cyanide Consumed, 10/1011 ore	5.0	3.9
Lime Added, lb/ton ore	11.1	10.9
Final Solution pH	8.3	8.4
Natural pH (40% solids)		

 Table 7. - Overall Metallurgical Results, Bottle Roll Tests,

 Moss Cuttings Intervals. As Received Feeds

Average of three.
 Provided by Magma Copper personnel.



Cumulative Au Recovery, Percent

-15-

		Tail Assavs, o	zAu/ton	
Interval	Initial	Duplicate	Triplicate	Average
MM-1-30	0.013	0.015	0.014	0.014
MM-1-64	0.012	0.010	0.006	0.009
MM-2-22	0.014	0.009	0.015	0.013
MM-2-23	0.008	0.008	0.014	0.010
MM-2-31	0.028	0.027	0.018	0.024
MM-2-33	0.030	0.027	0.030	0.029
MM-2-36	0.018	0.019	0.018	0.018
MM-2-37	0.018	0.018	0.018	0.018
MM-4-18	0.029	0.025	0.028	0.027
MM-8-30	0.007	0.008	0.007	0.007
MM-8-49	0.063	0.070	0.057	0.063
MM-8-56	0.006	0.007	0.009	0.007
MM-14-72	0.035	0.031	0.036	0.034
MM-18-58	0.047	0.044	0.045	0.045

 Table 8. - Tail Assay Results, Bottle Leached Residues,

 Moss Cuttings Intervals, As Received Feeds

Table 9 Summary	of Bottle	<b>Roll Test</b>	Results,
Moss Cuttings Inte	ervals. As	Received	Feeds

woss Cuttings Intervals, As Received Feeus						
		Calculated	Au	Cyanide	Lime	
	Extracted,	Head,	Recovery,	Consumed,	Added,	
Interval	ozAu/ton	ozAu/ton	percent	lb/ton	<u>lb/ton</u>	
MM-1-30	0.021	0.035	60.0	0.24	4.3	
MM-1-64	0.027	0.036	75.0	0.10	5.9	
MM-2-22	0.014	0.027	51.9	0.14	5.9	
MM-2-23	0.018	0.028	64.3	0.27	4.6	
<b>MM-2-31</b>	0.028	0.052	53.8	1.29	5.1	
MM-2-33	0.053	0.082	64.6	0.86	4.6	
MM-2-36	0.025	0.043	58.1	0.46	4.2	
MM-2-37	0.024	0.042	57.1	0.32	3.9	
MM-4-18	0.031	0.058	53.4	0.47	3.8	
MM-8-30	0.014	0.021	66.7	0.28	4.3	
MM-8-49	0.125	0.188	66.5	. 0.73	3.6	
MM-8-56	0.025	0.032	78.1	0.75	5.0	
MM-14-72	0.046	0.080	57.5	0.61	5.0	
<u>MM-18-58</u>	0.089	0.134	66.4	0.44	3.9	

Metallurgical results show that the Moss cuttings intervals were amenable to direct cyanidation treatment at the as received (cuttings) feed size. Gold recoveries ranged from 51.9 (MM-2-22) to 78.1 (MM-8-56) percent, and averaged 62.4 percent in 96 hours of leaching. Gold recovery rates were fairly rapid and extraction was substantially complete in from 6 to 24 hours. Additional gold values were extracted between 24 and 96 hours, but at a slow rate.

Cyanide consumptions were low to moderate and ranged from 0.10 (MM-1-64) to 1.29 (MM-2-31) pounds per ton of ore. Consumption rates were more rapid early in the leaching cycles. Lime requirements were low to moderate and ranged from 3.4 to 5.9 pounds per ton of ore. Controlling pH was not difficult even though lime addition was required at various sampling intervals to maintain leaching pH at between 10.8 and 11.2. An average of 82.5 percent of the total lime required was added during initial pH adjustment procedures. The remaining 17.5 percent was added during the leaching cycles.

#### CONCLUSIONS

- The Moss bulk ore sample was not readily amenable to direct agitated cyanidation treatment at a 100 percent minus 1 inch feed size.
- Gold recovery rate was fairly slow. Additional gold values would be extracted with a longer leach cycle, but at a very slow rate.
- The Moss cuttings intervals were amenable to direct cyanidation treatment at the as received feed size.
- Gold recovery rates were fairly rapid.
- Reagent requirements were low to moderate.

#### RECOMMENDATIONS

We recommend that column percolation leach tests be conducted on core or representative bulk ore samples from the Moss project to determine gold recovery, recovery rate, reagent requirements, and sensitivity to feed size under simulated heap leaching conditions.

Trank

Frank A. Macy Project Manager

-17-



#### McCLELLAND LABORATORIES, INC.

1016 Greg Street, Sparks, Nevada 89431 702 / 356-1300 FAX 702 / 356-8917

Report on Direct Agitated Cyanidation Testwork - Moss Cuttings Intervals MLI Job No. 1727 January 29, 1992

for

#### Mr. Mark Sander Magma Copper Company 7400 North Oracle Road - Ste 200 Tucson, AZ 85704

#### TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
SAMPLE PREPARATION AND HEAD ASSAYS	1
DIRECT AGITATED CYANIDATION TEST PROCEDURES AND RESULTS Table 1 Overall Metallurgical Results, Bottle Roll Tests,	2
Moss Cuttings Intervals, As Received Feeds Figure 1 Gold Leach Profiles, Bottle Roll Tests,	3
As Received Feeds	4
Table 2 Tail Assay Results, Bottle Leached Residues,         Moss Cuttings Intervals, As Received Feeds	5
CONCLUSIONS	6
RECOMMENDATIONS	6



#### McCLELLAND LABORATORIES, INC.

1016 Greg Street, Sparks, Nevada 89431 702 / 356-1300 FAX 702 / 356-8917

Report on Preliminary Direct Agitated Cyanidation Testwork - Moss Cuttings Intervals MLI Job No. 1727 January 29, 1992

for

Mr. Mark Sander Magma Copper Company 7400 North Oracle Road - Ste 200 Tucson, AZ 85704

#### EXECUTIVE SUMMARY

Direct agitated cyanidation (bottle roll) tests were conducted on two Moss cuttings intervals at the as received (nominal 10 mesh) feed size to determine precious metal recovery, recovery rate, and reagent requirements.

Metallurgical results show that Moss cuttings intervals were amenable to direct agitated cyanidation treatment at the as recieved feed size. Gold recoveries of 87.9 and 78.7 percent were achieved from intervals MC-6 (56) and MC-14 (28), respectively, in 96 hours of leaching. Respective silver recoveries were 70.0 and 59.4 percent. Gold recovery rates were fairly rapid and extraction was substantially complete in 24 hours. Additional gold values were extracted between 24 and 96 hours, but at a very slow rate. Reagent requirements were low.

#### SAMPLE PREPARATION AND HEAD ASSAYS

Two cuttings intervals from the Moss project were received for the preliminary testing program. Each interval was thoroughly blended and split to obtain one kilogram for a bottle roll test, and a sample for single direct head assay.

Head samples were assayed directly using conventional fire assay fusion procedures to determine precious metal content. Head assay results are provided with overall metallurgical results from bottle roll tests later in this report.

#### DIRECT AGITATED CYANIDATION TEST PROCEDURES AND RESULTS

Direct agitated cyanidation (bottle roll) tests were conducted on two Moss cuttings intervals at the as received (nominal 10 mesh) feed size to determine precious metal recovery, recovery rate, and reagent requirements. Ore charges were mixed with water to achieve 40 weight percent solids. Natural pulp pHs were measured. Lime was added to adjust the pH of the pulps to 11.0 before adding the cyanide. Sodium cyanide, equivalent to 2.0 pounds per ton of solution, was added to the alkaline pulps.

Leaching was conducted by rolling the pulps in bottles on the laboratory rolls for 96 hours. Rolling was suspended briefly after 2, 6, 24, 48, and 72 hours to allow the pulps to settle so samples of pregnant solution could be taken for gold and silver analysis using A.A. methods. Pregnant solution volumes were measured and sampled. Cyanide concentration and pH were determined for each pregnant solution. Make-up water, equivalent to that withdrawn, was added to the pulps. Cyanide concentrations were restored to initial levels. Lime was added, when necessary, to maintain the leaching pH at between 10.8 and 11.2. Rolling was then resumed.

After 96 hours, the pulps were filtered to separate liquids and solids. Final pregnant solution volumes were measured and sampled for analysis. Final pH and cyanide concentrations were determined. Leached residues were washed, dried, weighed, and assayed in triplicate to determine residual precious metal content.


Overall metallurgical results for the bottle roll tests are provided in Table 1. Gold leach rate profiles are shown graphically in Figure 1. Triplicate tail assay results are provided in Table 2.

		Sample			
Metallurgical Results	MC-6	MC-6 (56)		MC-14 (28)	
Extraction, pct. of total	Au	Ag	Au	Ag	
in 2 hours	41.2	35.0	31.7	15.2	
in 6 hours	78.2	50.0	59.6	26.8	
in 24 hours	83.0	62.0	73.4	43.6	
in 48 hours	85.5	67.0	76.8	51.3	
in 72 hours	87.0	69.0	78.1	55.8	
in 96 hours	87.9	70.0	78.7	59.4	
Extracted, oz/ton ore	0.029	0.07	0.037	0.41	
Tail Assay, oz/ton*	0.004	0.03	0.010	0.28	
Calculated Head, oz/ton ore	0.033	0.10	0.047	0.69	
Assayed Head, oz/ton ore	· 0.034	0.13	0.051	0.56	
Cyanide Consumed, lb/ton ore	0	0.58		0.46	
Lime Added, lb/ton ore	2	2.8		3.7	
Final Solution pH	11	11.1		11.0	
Natural pH (40% solids)	8	8.4		8.4	

Table 1 Overall Metallurgical Res	ults, Bottle Roll Tests,
Moss Cuttings Intervals, As	Received Feeds

* Average of three.

-3-



Cumulative Au Recovery, Percent

-4-

	Tail Assays, oz/ton				
	MC-6 (56)		MC-14 (28)		
	Au	Ag	Au	Ag	
Initial	0.004	0.03	0.011	0.24	
Duplicate	0.004	0.03	0.010	0.45	
Triplicate	0.003	0.03	0.010	0.15	
Average	0.004	0.03	0.010	0.28	

## Table 2. - Tail Assay Results, Bottle Leached Residues, Moss Cuttings Intervals, As Received Feeds

-5-

Metallurgical results show that the Moss cuttings intervals were amenble to direct agitated cyanidation treatment at the as received (nominal 10 mesh) feed size. Gold recoveries of 87.9 and 78.7 percent were achieved from intervals MC-6 (56) and MC-14 (28), respectively, in 96 hours of leaching. Respective silver recoveries were 70.0 and 59.4 percent. Gold recovery rates were fairly rapid and extraction was substantially complete in 24 hours. Additional gold values were extracted between 24 and 96 hours, but at a very slow rate.

Cyanide consumptions were low for both intervals and averaged 0.52 pounds per ton of ore. Consumption rates tended to increase slightly after 48 hours of leaching. Lime requirements were low for both intervals and averaged about 3.3 pounds per ton of ore. Controlling pH was not difficult for either interval even though lime was added to interval MC-14 (28) at various sampling intervals to maintain leaching pH at between 10.8 and 11.2. About 80.0 percent of the total lime required for that interval was added during initial pH adjustment procedures. The remaining 20.0 percent was added during leaching.

#### McCLELLAND LABORATORIES, INC.

#### CONCLUSIONS

- The Moss cuttings intervals were amenable to direct agitated cyanidation treatment at the as received (nominal 10 mesh) feed size.

-6-

- Gold recovery rates were fairly rapid.
- Reagent requirements were low.

#### RECOMMENDATIONS

We recommend that additional testwork be conducted on representative cuttings composites from various areas of the Moss ore deposit to determine if these metallurgical results are representative of the entire mineable ore body. We recommend also that column percolation leach tests be conducted on representative core or bulk ore composites to determine gold recovery, recovery rate, and reagent requirements under simulated heap leaching conditions.

PLANLE Minur

Frank A. Macy Project Manager

#### McCLELLAND LABORATORIES, INC.

ittsburgh -

ineral &

•

2

nvironmental

echnology, Inc.

December 17, 1990

Mr. Michael F. Lucid Billiton Minerals U.S.A., Inc. 200 N. Dairy Ashford Woodcreek, Room 3496 Houston, Texas 77079

Dear Mike:

The attached report summarizes and concludes our mineralogical laboratory work on the Moss Mine gold ore samples. Please contact us if we can be of any further service.

Sincerely,

Mun Wolfgang Baum

Manager, Process Mineralogy

WB/mkf

Attachment

cc: Messrs. Jeff Schafer & Ed Hanley (Reno)

700 Fifth Avenue New Brighton, PA 15066 (412) 843-5000 FAX: (412) 843-5353

# PREPARED FOR:

# BILLITON MINERALS U.S.A., INC.

CYANIDE LEACH TESTS AND MINERALOGICAL CHARACTERIZATION OF GOLD ORE SAMPLES FROM THE MOSS MINE PROJECT

.

Ву

Wolfgang Baum & Louis W. Lherbier, Jr.

Project O M 33 December 17, 1990

	<u>Page</u>
BACKGROUND AND OBJECTIVE OF WORK	1
SAMPLES RECEIVED AND METHODS OF STUDY	2
DISCUSSION OF RESULTS	3
Chemical Characterization Mineralogical Characterization Gold Mineralogy Gravity Separation Tests Cyanide Leach Tests Leach Results Mineralogy of Unleached Gold	3 5 7 10
CONCLUSIONS	20
RECOMMENDATIONS	22
APPENDIX	23
Photomicrographs	24

# SAMPLES RECEIVED AND METHODS OF STUDY

Three ore zone interval samples were received from Billiton on November 20, 1990, at the PMET laboratories. The samples were designated as shown in Table 1.

### Table 1

# Samples Received

PMET No.	Billiton	Designation	Billiton Assay	Weight
444-1	MM-8-46	225-230'	0.229 oz/ton Au	6.55 lbs.
444-2	MM-8-48	235-240'	0.236 oz/ton Au	4.10 lbs.
444-3	MM-1-49	Coars'e Rej.	0.622 oz/ton Au	2.0 lbs.

An equal-weight composite was prepared from samples 444-1 and 444-2 for the cyanide leach tests. Due to small sample size, sample 444-3 was used for mineralogical work only.

The laboratory work included sample preparation, bottle roll cyanidation tests, fire assays of head samples and leach residues, chemical analyses of filtrates and wash water, bulk X-ray diffraction analyses, heavy liquid separations with assays and mineralogical characterization of separation products, optical microscopy with modal analysis, particle size analysis by screening and microscopy and photomicrography.

This work was performed under Billiton purchase order number VAM 901 105.

# Chemical Characterization

Well-blended assay pulps were split out from the head samples and subjected to fire assays for gold. The assay results are summarized in Table 2.

### Table 2

Gold Assays of Head Samples

Sample No.	Gold (oz/ton)
Composite	
444-1-2	0.220
444-3	0.270

The pH of the ore samples was determined using Method ASA 12-2 (Methods of Soil Analysis). The results of this work are summarized in Table 3.

### Table 3

### pH Measurements

Sample	рН 
444-1-2	7.90
444-3	8.23

# Mineralogical Characterization

Prior to the ore blending, a megascopic characterization was prepared of the three samples.

### Sample 444-1

-----

White-yellow gray, coarse-grained ferruginous carbonate-rich quartz vein(?) material. The calcite is intimately associated with hydrated iron oxides, jarosite, hydrated

manganese oxides and clay minerals. Most of the iron/manganese hydrated oxides appear to represent a former disseminated iron sulfide mineralization. The sample contains 5-8% of chloritic-siliceous rock fragments which contain large amounts of relatively fresh, well-crystallized and coarse-grained pyrite. The sample contains an estimated quartz content of 40-50% and a carbonate content of 25-35%.

### Sample 444-2

-----

White to light gray, carbonate-bearing quartz vein material which is distinctly less ferruginous than the first sample. The sample contains an estimated quartz content of 40-60% and a carbonate content of 10-20%. Both the quartz as well as the carbonates contain a weak, disseminated and strongly oxidized sulfide mineralization. In addition, there are also noticeable amounts of manganese oxides and hydroxides.

# Sample 444-3

White-yellow gray, carbonate-bearing siliceous vein material. The overall mineralogical sample characteristics are very similar to sample 444-1. Ferruginous and weakly chloritic. Contains considerable amounts of wellcrystallized guartz and calcite.

Subsequently, the blended composite and sample 444-3 were subjected to a bulk X-ray diffraction analysis. The XRD work confirmed the optical microscopy, i.e. that the dominating ore-forming minerals are quartz (with minor silica modifications such as opaline silica and chalcedony) and calcite. In addition, minor amounts of swelling clay minerals were identified. The XRD analyses are summarized in Table 4.

### Table 4

Bulk XRD Analyses of Moss Mine Gold Ore Samples

Sample	Mir Major 	nerals & Concent Minor 	ration Trace
444-1-2	Quartz Calcite	Muscovite Montmorillor	Chlorite Nite
444-3	Quartz	K-feldspar Calcite Montmorillor	Muscovite nite

The bulk XRD analysis represents crystallized minerals present in concentrations above 2%. Extremely fine-grained, poorly crystalline and/or amorphous mineral phases such as alteration products and clay minerals may not be detectable or may be under-represented.

Concentration Ranges: Major = 20 - >50% Minor = 5 - 20% Trace = <5%

Representative split portions of each sample were subjected to optical microscopy with modal analysis in order to quantify pertinent mineralogical characteristics. The results of the modal analysis are summarized in Table 5.

### Table 5

Microscopic Modal Analysis of Head Samples

Mineral	Sample 444-1-2	Sample 444-3
Silica/Feldspar Groundmass	49% vol.	63% vol.
Carbonates	41	20
Clay Minerals	7	15
Opaque Minerals	3	2

### Gold Mineralogy

The gold mineralization in the Moss Mine samples is characterized by the presence of mostly silver-rich native gold which frequently may approach electrum composition. The silver content in this gold shows an average concentration of 27% according to semiquantitative SEM-EDX analyses. Intimately associated with the silver-rich gold is native gold with extremely low silver concentrations (<5%).

The gold is primarily associated with siliceous gangue and hydrous iron oxides. These iron oxide minerals represent alteration products of gold-bearing pyrite and/or are the result of hydrothermal iron mobilization and reprecipitation. Minor amounts of the gold are associated with small concentrations of pyrite, some of which occurs as the spheroidal variety. Approximately 20 - 30% of the total pyrite mineralization consists of spheroidal fine-grained iron sulfides. The spheroidal pyrite exhibits particles sizes of <1 to 50 micron in diameter.

In addition to the iron sulfides there are minor to trace amounts of sphalerite, chalcopyrite, bornite and galena. Most of these sulfide minerals occur as inclusions in the pyrite.

Some of the liberated gold particles observed in these samples exhibit surface coatings of (hydrous) iron oxides and/or silica clay slimes. Approximately 30% of the gold displays rapid surface tarnishing. In composite sample 444-1-2, 64% of the gold is associated with hydrous iron oxides. Most of the remaining gold (30%) is intergrown with silica gangue. Minor amounts of gold (<10%) occur as refractory gold associated with pyrite. Many pores and fractures in the gangue particles are filled with silica-carbonate-clay slimes.

As indicated by the microscopic analysis of the head samples, the gold mineralogy in the composite 444-1-2 differs distinctly from sample 444-3 with regard to particle size and mineralogical residence:

- 1. The gold in the 'PMET cyanide leach composite contains distinctly more fine-grained (-25 micron) gold than sample 444-3.
- 2. In the cyanide leach composite, the majority (64%) of the gold is locked with hydrous iron oxides; whereas in sample 444-3, gold association with silica gangue is dominating.

The gold particle sizes range from <1 micron to 300 micron with the majority of the gold occurring in the coarser (+400 mesh) sizes. The microscopic work indicates that the native gold present in sample 444-3 shows distinctly coarser particle sizes than the gold observed in composite 444-1-2. Table 6 summarizes a microscopic gold particle size analysis for both samples.

#### Table 6

Microscopic Gold Particle Size Analysis of Moss Mine Samples

<u>Size of Gold Particles (Approximate Diameter)</u>

	Samples			
<u>Size(micron)</u>	444-1-2	444-3		
< 5	60%	21%		
5 - 20	21%	15%		
> 20 - 50	10%	24%		
> 50 - 100	78	22%		
>100	28	18%		
	100%	100%		

Both samples contain noticeable amounts of tramp iron shavings (from drilling?) and fragments of copper wire. Trace concentrations of organic/carbonaceous material were observed in sample 444-1-2.

### Gravity Separation Tests

The gravity testwork was performed on 800-gram splits from samples 444-1-2 and 444-3 by way of heavy liquid separation at a S.G. of 2.95. Prior to separation, the samples were carefully stage-crushed to -48 mesh and deslimed at 400 mesh.

- The gravity separation tests confirmed the conclusions made from the optical microscope analysis, i.e. that the gold mineralogy of composite 444-1-2 and sample 444-3 exhibits significant differences in particle size and gold occurrence. Both of these factors will impact gold ore processing and precious metal recovery.
  - In composite 444-1-2, almost half of the gold reported to the -400 mesh slimes fraction. This fraction represents 30% of the sample weight. Less than one third (26.8% distribution) of the gold was recovered in an extremely small (0.12% of the weight) gravity concentrate assaying 38 oz/ton gold. The remainder (28.7% distribution) of the gold occurred in the gravity tailings (float fraction) due to encapsulation in (light) silica gangue. The gravity tailings account for the majority of the sample weight (69%).
  - In sample 444-3, the majority of the contained gold (69.4% distribution) was recovered in a high-grade (71.8 oz/ton Au) gravity concentrate which represents 0.29% of the sample weight. Eighteen percent of the gold reported to the float fraction. This fraction accounts for 75% of the sample weight. Only 12% of the gold occurred in the -400 mesh slimes.

The reasons for the high gold recovery by gravity methods in this particular sample are a) distinctly coarse gold particle sizes and b) good liberation of gold at the 48 mesh grind.

The results of the gravity separation tests are summarized in Table 7 and Figure 1.

# Table 7

# Gravity Separation Tests

# Sample 444-1-2

Product	Weight(%)	Assay Gold(oz/ton)	Distribution (%)
Assay Head Calc. Head	100.0	0.220 0.173	100.0
Grav. Conc. Grav. Tails -400 Slimes		38.70 0.072 0.250	26.82 28.79 44.39
		Sample 444-3	
Assay Head Calc. Head	100.0	0.270 0.299	100.0
Grav. Conc. Grav. Tails -400 Slimes		71.80 0.073 0.150	69.43 18.27 12.30

-----

----

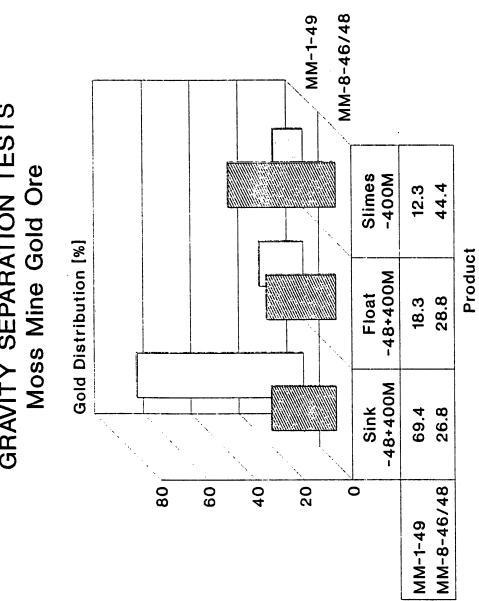





Figure 1

### Cyanide Leach Tests

Well-blended split portions of three different size fractions were prepared from the head sample by stage crushing and grinding. The sample splits were then subjected to bottle roll cyanidation tests using the following conditions.

Samples:	Composite 444-1-2					
	1. As-received 210 mesh 3200 mesh					
Amount of Sample:	300 grams					
<pre>% Solids:</pre>	23.08%					
NaCN Concentration:	3 g/l NaCN					
pH:	10.5 - 11					
Temperature:	Ambient					
Leach Time:	72 hours with solution samples taken at 6, 24, 48, and 72 hours.					

- A total of 300 grams of sample was slurried in an aqueous solution containing 3 g/l NaCN at a pH of 10.5 to 11. Solution pH was adjusted using hydrated lime, i.e. Ca(OH)₂.
- Tests were initiated and conducted for a total time of 72 hours. Solution pH was measured and adjusted to target levels after 0.5, 2, 6 and 24 hours of total target levels using hydrated lime additions. Free lime concentrations were also measured via acid titration after 2, 6, 24, 48 and 72 hours.
- NaCN concentrations were also measured after 2, 6, 24, 48, and 72 hours. If required, NaCN additions were made following the 2-, 6-, 24- and 48-hour measurements to bring the solution NaCN concentration to the target of 3 g/l. NaCN concentrations were measured via titration with AgNO₂ solutions.
- After 72 hours, the samples were filtered and the leach residues were washed. The first wash was performed with 500 ml of DI water containing low levels of cyanide. This was followed by two additional washing steps with 500 ml DI water each. Total water used amounted to 1500 ml.

1

Samples of leach solution were collected after 6, 24, 48 and 72 hours of leaching for gold analysis. In addition, gold fire assays were done on splits of the head sample and leach residue. The final wash water was also analyzed for gold.

Gold extractions were calculated in two fashions: one being based on the head sample assays and the solution assays and one being based on the leach residue assays and the solution assays. In the former case, a solution volume of 1000 ml was assumed, and solution aliquots removed for assay and titration were included in the calculations to account for all the gold. Extractions calculated from head sample assays in all cases differ from those calculated from residue assays. This reflects both sampling and analytical error.

### Leach Results

The leach results indicate that gold liberation appears to be the most significant factor for high gold recovery. The gold extraction was lowest in the as-received material (59.7%) and increased with crushing to -10 mesh to 73.7%. Almost complete gold extraction was achieved in the sample material ground to -200 mesh. The lime consumptions are negligible whereas the cyanide consumptions were equally high in all tests (21.6 - 22.9 lbs. NaCN/ton).

A potential for preg robbing is indicated for this sample material. It is tentatively concluded that preg robbing could be caused by spheroidal pyrite, hydrous iron oxides and oxidizing tramp iron, as well as minor amounts of carbonaceous matter occurring in the ore. The cyanide consumption is affected by natural cyanicides present such as iron oxidation minerals, ferruginous clays and sulfides. In addition, artificial cyanicides such as tramp iron shavings from drilling and copper wire fragments were also present.

A summary of the leach test results is presented in Table 8. Details of the cyanidation tests and the complete mass balance information are presented in Table 9. The solution pH measurements are listed in Table 10. Figure 2 provides a graphic presentation of the NaCN leach tests based on solution and head sample assays. Table 8

Cyanide Leach Extractions of Gold and Reagent Consumptions

Sample	Gold Extractions(%) after 72 hours	NaCN Consumption (lbs/ton)	Lime Consumption (lbs CaO/ton)
444-1-2 As-is	59.7	22.9	< 1
444-1-2 -10 Mesh	73.7	22.7	< 1
444-1-2 -200 Mesh	100.0*	21.6	< 1
* Based o	on outputs	N.	
		(	copper Linive?

# NaCN LEACH TEST RESULTS

10-Dec-90

. -

Sample: 444-1 As-Is				Analyses					Au
	Mass	Volume				CaO	NaCN	Au	Dist
Inputs	[g]	[mi]	CaO	NaCN	Au	[mg]	[g]	[mg]	[%]
Ore	300.00				0.220 oz/t	0.0	0.00	2.263	100.0
Solution	-	1000	23.8 mg/l	3.0 gpl	-	23.8	3.00	-	0.0
Sln - 2 Hrs	-	20	23.8 mg/l	3.0 gpl	-	0.5	0.06	-	0.0
Sin - 6 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sin - 24 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 48 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
NaCN - 2 Hrs	1.47	-	-	100 %	-	-	1.47	-	0.0
NaCN - 6 Hrs	0.80	-	-	100 %	-		0.80	-	0.0
NaCN - 24 Hrs	0.48	-	-	100 %	-	-	0.48	-	0.0
NaCN - 48 Hrs	0.31	-	-	100 %	-	-	0.31	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Wash Water	-	1500	-	-	-	-	-	-	0.0
Total	303.06	2625				26.7	6.44	2.263	100.0

Sample: 444-1 As-Is				Analyses					Au
	Mass	Volume		به خه که بره خه به به بند چو چه ده خه که که		CaO	NaCN	Au	Dist
Outputs	[g]	[mi]	CaO	NaCN	Au	[mg]	[g]	[mg]	[%]
							******		
2 Hr Sample	-	20	140 mg/l	1.50 gpl	mg∕l	2.8	0.03	0.000	0.0
6 Hr Sample	-	35	64 mg/l	2.18 gpl	0.990 mg/l	2.2	0.08	0.035	1.6
24 Hr Sample	-	35	32 mg/l	2.50 gpl	1.130 mg/l	1.1	0.09	0.040	1.9
48 Hr Sample	-	35	51 mg/l	2.68 gpl	1.180 mg/l	1.8	0.09	0.041	2.0
NaCN Filtrate	-	970	153 mg/l	2.72 gpl	1.000 mg/l	148.4	2.64	0.970	46.1
Wash Filtrate	-	1430	3 mg/l	0.06 gpl	0.120 mg/l	4.6	0.08	0.172	8.2
Dry Residue	301.71	-	-	-	0.082 oz/t	-	-	0.848	40.3
			*********	********					
Total	301.71	2525				160.9	3.01	2.105	100.0

Au Accountability: 93.0 %

,

Final Au Extraction:	59.7	%
NaCN Consumption:	22.9	lbs/ton
Lime Consumption:	<1.0	lbs CaO/ton

# Table 9 (Continued)

### NaCN LEACH TEST RESULTS

### 10-Dec-90

-

Sample:	444-1	-10M
---------	-------	------

Sample: 444-1 -10M				Analyses					Au
	Mass	Volume	*****			CaO	NaCN	Au	Dist
Inputs	[g]	[ml]	CaO	NaCN	Au	[mg]	[g]	[mg]	[%]
Ore	300.00	-			0.220 oz/t	0.0	0.00	2.263	100.0
Solution	-	1000	23.8 mg/l	3.0 gpl	-	23.8	3.00	-	0.0
Sin - 2 Hrs	-	10	23.8 mg/l	3.0 gpl	-	0.2	0.03	-	0.0
Sln - 6 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 24 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 48 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
NaCN - 2 Hrs	1.50	-	-	100 %	-	-	1.50	-	0.0
NaCN - 6 Hrs	0.75	-	-	100 %	-	<b>-</b> '	0.75	-	0.0
NaCN - 24 Hŕs	0.48	-	-	100 %	-	-	0.48	-	0.0
NaCN - 48 Hrs	0.31	-	-	100 %	-	-	0.31	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Wash Water	-	1500	-	-	-	-	-	<b>-</b> , ·	0.0
Total	303.04	2615				26.5	6.39	2.263	100.0

Sample: 444-1 -10M				Analyses					Au
	Mass	Volume				CaO	NaCN	Au	Dist
Outputs	[g]	[ml]	Ca0	NaCN	Au	[mg]	[g]	[mg]	באם
2 Hr Sample		10	 280 mg/l	 1.49 gpl	mg/l	2.8	0.01	0.000	0.0
6 Hr Sample	-	35	89 mg/l	2.23 gpl	1.250 mg/l	3.1	0.08	0.044	2.2
24 Hr Sample	-	35	32 mg/l	2.50 gpl	1.390 mg/l	1.1	0.09	0.049	2.4
48 Hr Sample	-	35	45 mg/l	2.68 gpl	1.420 mg/l	1.6	0.09	0.050	2.5
NaCN Filtrate	-	950	102 mg/l	2.70 gpl	1.220 mg/l	96.9	2.57	1.159	57.3
Wash Filtrate	-	1458	3 mg/l	0.09 gpl	0.130 mg/l	5.1	0.14	0.190	9.4
Dry Residue	298.50	-	-	-	0.052 oz/t	-	-	0.532	26.3
*******									******
Total	298.50	2523				110.6	2.97	2.023	100.0

• . •

Au Accountability: 89.4 %

•

Final Au Extraction:	73.7 %
NaCN Consumption:	22.7 lbs/ton
Lime Consumption:	<1.0 lbs CaO/ton

.

### NACN LEACH TEST RESULTS

### 10-Dec-90

. --

### Sample: 444-1 -200M

Sample: 444-1 -200M				Analyses					Au
	Mass	Volume				CaO	NaCN	Au	Dist
Inputs	[g]	[ml]	CaO	NaCN	Au	[mg]	[g]	[mg]	[%]
Ore	300.00				0.220 oz/t	0.0	0.00	2.263	100.0
Solution	-	1000	23.8 mg/l	3.0 gpl	-	23.8	3.00	-	0.0
Sln - 2 Hrs	-	10	23.8 mg/l	3.0 gpt	<u> </u>	0.2	0.03	-	0.0
Sln - 6 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 24 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
Sln - 48 Hrs	-	35	23.8 mg/l	3.0 gpl	-	0.8	0.11	-	0.0
NaCN - 2 Hrs	1.54	-	-	100 %	-	-	1.54	-	0.0
NaCN - 6 Hrs	0.77	-	-	100 %	-	-	0.77	-	0.0
NaCN - 24 Hrs	0.43	-	-	100 %	-	-	0.43	-	0.0
NaCN - 48 Hrs	0.28	-	-	100 %	-	-	0.28	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Ca(OH)2 (T) - XX Hrs	0.00	-	75.7 %	-	-	0.0	-	-	0.0
Wash Water	-	1500	-	-	-	-	-	-	0.0
Total	303.02	2615				26.5	6.36	2.263	

Sample: 444-1 -200M				Analyses					Au
0	Mass	Volume				CaO	NaCN	Au	Dist
Outputs	[g]	[ml]	Ca0	NaCN	Au	[mg]	[g]	[mg]	[%]
2 Hr Sample	-	10	280 mg/l	1.45 gpl	mg/l	2.8	0.01	0.000	0.0
6 Hr Sample	-	35	51 mg/l	2.20 gpl	1.930 mg/l	1.8	0.08	0.068	3.5
24 Hr Sample	-	35	32 mg/l	2.55 gpl	1.900 mg/l	1.1	0.09	0.067	3.5
48 Hr Sample	-	35	38 mg/l	2.71 gpl	1.830 mg/l	1.3	0.09	0.064	3.4
NaCN Filtrate	-	960	76 <b>mg</b> /l	2.85 gpl	1.520 mg/l	73.4	2.74	1.459	76.4
Wash Filtrate	-	1410	2 mg/l	0.08 gpl	0.180 mg/l	3.1	0.11	0.254	13.3
Dry Residue	297.28	-	-	-	<0.005 oz/t	-	-	0.000	0.0
		******			*********			******	
Total	297.28	2485				83.5	3.13	1.911	100.0

Au Accountability: 84.5 %

•

Final Au Extraction:	100.0	% (Based on Outputs)
NaCN Consumption:	21.6	lbs/ton
Lime Consumption:	<1.0	lbs CaO/ton

ł

.

Table 10

# Billiton - Moss Mine NaCN Leach Tests - Solution pH

.

۰.

	Elapsed	Slurry p	oH Data
Sample	Time [hrs]	Initial	Adjusted
444-1 (As-Is)	0.0	10.94	NA
	0.5	10.84	NA
	2.0	10.82	NA
	6.0	10.83	NA
	24.0	10.81	NA
	48.0	10.69	NA
	72.0	10.65	NA
	Avg.	10.82	
 444-1 (-10M)	0.0		
444-1 (-108)	0.5	10.94	
	2.0	10.02	NA
	2.U 6.0	10.75	NA NA
	24.0	10.81	
	24.0 48.0		NA NA
	72.0	10.85 10.86	NA
	 Avg.	 10.84	
444-1 (-200M)	0.0	10.72	NA
	0.5	10.67	NA
	2.0	10.62	NA
	6.0	10.65	NA
	24.0	10.69	NA
	48.0	10.65	NA
	72.0	10.69	NA
	Avg.	10.67	

NA = No Adjustment



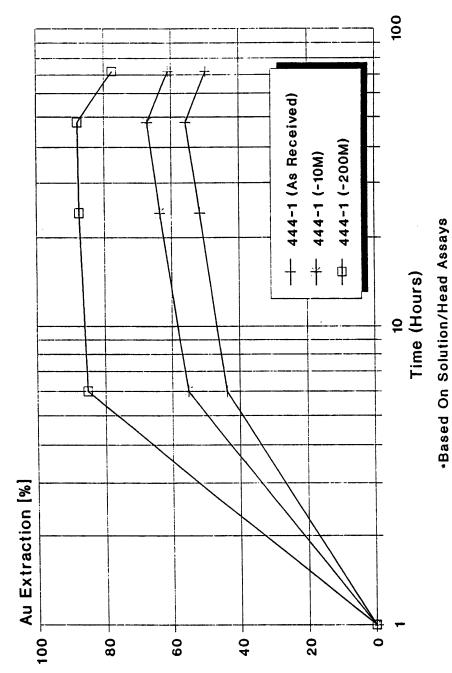



Figure 2

### Mineralogy of Unleached Gold

Following the cyanide leach tests, a split portion of the leach residue from sample 444-1-2 (-10 mesh) was used to determine the mode of occurrence of unleached gold in order to assist in the interpretation of gold extraction rates.

Due to the small sample size, it was decided to perform a wet screen analysis followed by fire assays of the screen size fractions. Concurrently, the screen fractions were examined by microscopic methods for the mineralogical residence of the gold.

The screening indicates that the major reason for the presence of unleached gold in the -10 mesh composite (as well as coarser-grained material) is locking of native gold in iron oxide/hydroxide and siliceous host minerals all of which are impervious to the lixiviant. From the unleached gold in the -10 mesh cyanide leach residue, 64% distribution of the gold occurs in the +48 mesh screen fraction. This fraction represents half of the sample weight. Most of the remaining gold (30%) occurs in the -400 mesh fraction, also primarily caused by locking and slimes coatings. The results of the screen analysis are summarized in Table 11.

#### Table 11

### Screen Analysis and Gold Distribution in -10 Mesh Cyanide Leach Residue (Sample 444-1-2)

Product (Mesh)	Weight (%)	Gold Assay oz/ton	Gold Distribution (%)
Head Assay		0.052	
Head Calc.	100.0	0.062	100.0
+48	49.15	0.081	64.61
-48+100	11.14	0.022	3.90
-100+200	10.14	0.006	0.97
-200+400	8.58	0.004	0.49
-400	20.99	0.088	30.03

Based on the mineralogical work of head samples, gravity separation products and leach residues as well as the results of the bottle roll tests, the following Table 12 quantifies the mode of occurrence of gold in the Moss Mine samples.

### Table 12

Mineralogical Mode of Occurrence of Gold in Moss Mine Gold Ore Samples

Type of Gold Occurrence	Frequency <u>444-1-2</u>	(%) 444-3
Native gold associated with hydrous iron oxides*	64	7
Native gold associated with quartz or other gangue minerals	30	89
Native gold associated with partially oxidized pyrite	б.	4
Total	100	100

* This includes gold associated with hydrous iron oxides which are pseudomorphous after pyrite as well as gold remobilized during alteration/oxidation and reprecipitated in (layered) iron hydroxides.

It'is pointed out that the gold mineralogy established in Table 12 is based on the sample material investigated. Fluctuations and deviations of the mode of occurrence of gold may occur throughout the deposit.

Pertinent mineralogical features of the Moss Mine samples are shown in Figures 3 to 12 in the Appendix.

3

### CONCLUSIONS

- The Moss Mine gold ore samples examined during this study contain a fine- to coarse-grained mineralization of silver-rich native gold some of which may be equivalent to electrum. Minor amounts of gold with low silver contents are also present. It is indicated that the ore may contain a bimodal occurrence (mineralogical residence) of gold as well as a bimodal gold particle size distribution:
  - 1. In the composited samples MM-8-46/48, the majority of the gold is associated with iron oxidation minerals and the gold is primarily of ultrafine particle size.
  - In the MM-1-49 sample, most of the gold is associated with siliceous gangue and exhibits distinctly coarse particle sizes.
- The characteristics of the gold mineralogy described above have a distinct impact on ore processing and gold recovery. The fine gold intergrown/encapsulated by iron oxides will require a sufficiently fine grind to become amenable to direct cyanidation. The coarser gold mineralization found in sample MM-1-49, however, showed a good response to gravity concentration, i.e. almost 70% of this gold can be recovered into a small-volume, high-grade concentrate by physical preconcentration.
- The bottle roll cyanidation tests and subsequent mineralogical analyses of a leach residue confirmed the mineralogical characteristics identified in the head samples. The leach tests revealed a particle size-dependent refractoriness to direct leaching. Based upon the recent work, it is also concluded that in ore samples similar to the composite MM-8-46/48, 10-15% of the gold occurs encapsulated in pyrite and may require oxidation prior to cyanidation.
- It is concluded that losses encountered during cyanide leaching are primarily due to partial or complete locking (encapsulation) of gold in iron oxidation minerals, siliceous gangue and/or middlings particles of these minerals.
- The very coarse gold particle sizes observed in sample MM-1-49 could become troublesome in sampling, sample preparation and assaying by causing severe nugget effects. In addition, extremely coarse gold may not be

entirely leached during short bottle roll tests. The resultant poor gold extraction could be erroneously interpreted as being caused by locking. Routine gravity separation tests are therefore of critical importance during further development work.

- Due to the presence of spheroidal pyrite, sorptive clay minerals, and traces of carbonaceous matter, the ore may exhibit minor preg-robbing effects. Considerably more follow-up work is required to confirm these conclusions.
- Increased cyanide consumption is caused by cyanicides such as soluble iron oxidation products, spheroidal pyrite, tramp iron and copper wire contamination and cyanide-consuming ferruginous gangue in the slimes fraction.

### RECOMMENDATIONS

- 1. The ore samples analyzed during this study indicate differences in gold mineralogy and particle size distribution. Therefore potential variations in metallurgical amenability within the ore body can be anticipated. It is recommended that future assessment work should continue to monitor the mode of occurrence of gold as well as its particle size characteristics.
- Bottle roll leach tests should be performed on several size fractions of a test sample (e.g. as-is, -10 mesh, -100 mesh).
- 3. Routine gravity separation tests are recommended in order to assess the preconcentration potential of the gold and control nugget effects.
- 4. The alteration minerals (specifically iron oxidation phases) and the clay mineralogy warrant further attention.
- 5. Representative ore zone samples should be subjected to periodic Total Carbon and Organic Carbon analyses.

WB/mkf

# Photomicrographs

Figures 3 to 12

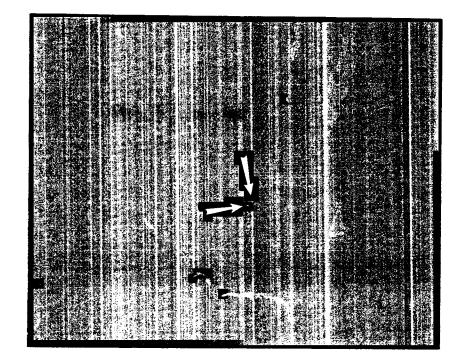



Figure 3: Photomicrograph showing the typical occurrence of fine native gold (see arrows) locked in hydrous iron oxides (gray). Scale = ______ 100 micron

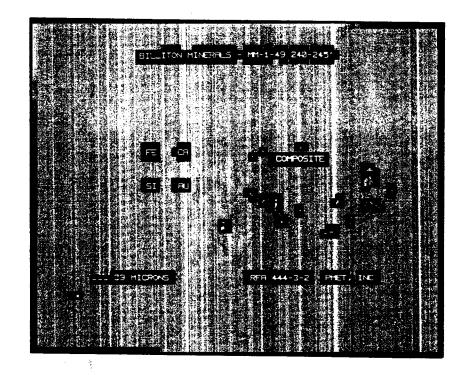



Figure 4 SEM digital X-ray map of the particle shown in Figure 3 outlining the gold encapsulation.

Q

Figure 5

Photomicrograph showing encapsulated and partially liberated native gold (see arrows) in a hydrous iron oxide particle which is attached to a larger quartz grain (Q). Scale = 100 micron

	語のと
	a section
	B-145-166
	52 B
	20.00
	日日設置
·····································	100.5
	128.00
	152.8
	4 . A . A .
	1.1.1.1.1.1
	1.000
	1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C
	1.121.53
	1.1
	100
	19. K
	Sec. Allow
	<b>新台橋</b>
	1.00
	171 4
	ALC: UNDER CAL

Figure 6 Detail of Figure 5. Fine native gold (yellow) intimately associated with hydrous iron oxides. Scale = 50 micron

25.

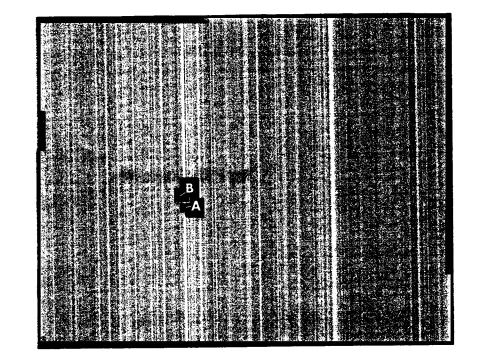



Figure 7 Photomicrograph showing the presence of silver-rich (A) and silver-poor (B) gold particles both of which are encapsulated by hydrous iron oxides. Scale = 50 micron

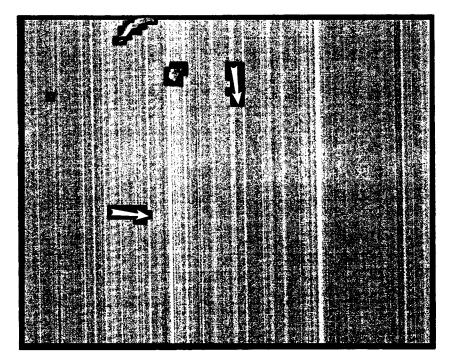



Figure 8

Photomicrograph showing rhythmic iron precipitation with ultrafine gold formation (see arrows). It is tentatively concluded that this gold has been remobilized from a primary mineralization during alteration and was thereafter co-precipitated with the iron. Scale = ______ 50 micron

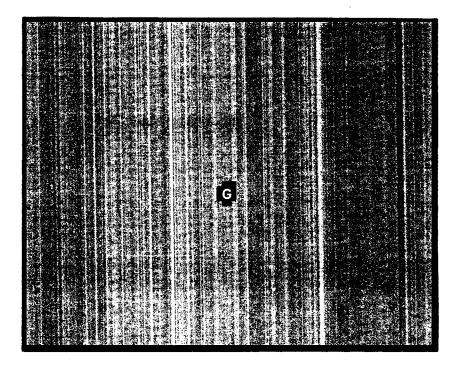



Figure 9 Photomicrograph showing a liberated particle of coarse native gold (G). Scale = 100 micron

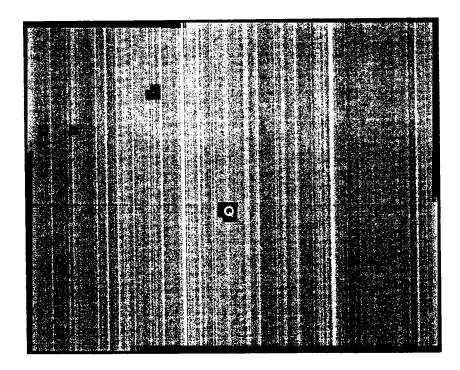



Figure 10 Photomicrograph showing a larger quartz grain (Q) with partially as well as completely locked native gold (yellow). Scale = 100 micron

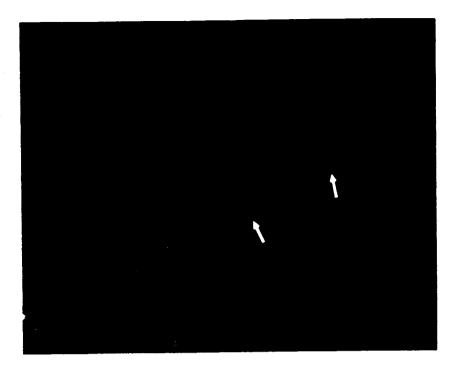



Figure 11 Photomicrograph showing the occurrence of spheroidal pyrite (see arrows) which may exhibit preg-robbing potential. Scale = 100 micron



Figure 12 Photomicrograph showing a large quartz grain (Q) coated by clay and silica slimes (see arrows). These slimes coatings may retard or prevent lixiviant penetration. Scale = 100 micron