

CONTACT INFORMATION
Mining Records Curator
Arizona Geological Survey
3550 N. Central Ave, 2nd floor
Phoenix, AZ, 85012
602-771-1601
http://www.azgs.az.gov
inquiries@azgs.az.gov

The following file is part of the Cambior Exploration USA Inc. records

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

Series C Nº 072655

DATE	_
LOCATION	_
	-
REMARKS STANDARD	_
ANALYSIS RRA	_
	_

WESTMONT MINING	SAMPLE RECORD N^2 48169
Project Name	Mothavier Wiash
Project ID #	·
Sampler's Initials	TIAIH
Date	89 21 616 (yr/day/mo)
	- LOCATION O
Quad/Map	SITIAIN DAIRIC IMASA
Twp./Rng./Sec.	TITIZINI IZITIZICA IDECI
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup #	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Label To Label
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate afrong saprolite
	ilean weak incodiate strong saprolle
	none minor moderate high breccia
Fracturing	none minor moderate high oreccia
Fracturing Media	none minor moderate high breccia SOIL Residual Colluvial Alluvial Till Regolith Saprolite
Fracturing Media Matrix	Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand
Fracturing Media Matrix Color	Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand
Fracturing Media Matrix Color Horizon	Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand A0 A1 A2 B C D A1
Fracturing Media Matrix Color Horizon Sample Depth	Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand Ao A1 A2 B C D A1 (inches) AO A2 AO A3 AO A4 AC A5
Fracturing Media Matrix Color Horizon Sample Depth Moisture	Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand Ao A1 A2 B C D A1 LLLL (Inches) A2 dry damp moist wet B
Fracturing Media Matrix Color Horizon Sample Depth Moisture Organics	Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand Ao A1 A2 B C D A1 LILL (inches) A2 Inches) A2 Inches B B B B B B B B B B B B B B B B B B B
Fracturing Media Matrix Color Horizon Sample Depth Moisture	Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand Ao A1 A2 B C D A1 Lull (inches) dry damp moist wet B Weathered Before Weathered Before Before to Berown to Red Brown Weathered Before Weathered Before Berown to Red Brown Weathered Before Weathered Before B

2' RICROP 100' Red / yellow strip

Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.)

J. L. DARLING COR

WESTMONT MINING	SAMPLE RECORD N^{ϱ} 48170
Project Name	MIOHANE WAShIII
Project ID #	
Sampler's Initials	த வும்
Date	Bill Zell Will (yr/day/mo)
Quad/Map	Stawdard wash
Twp./Rng./Sec.	II/3N RUBW DA
Grid N/E	
Line #/Station #	
Line #/Station #	
Ei678UJII	(rest)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From L.L.L. To L.L.L.
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	L. I. I. I. Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Grganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone
Organics	none minor moderate high C Weathered Bedroot Vestigial Structures
Float Type(s)	Bedrock
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WESTMONT MINING	SAMPLE RECORD Nº 48171
Project Name	MOHIAVICI WHISHIII
Project ID #	
Sampler's Initials	<u>Traiffi</u>
Date	追い ZLLI (OLCOI (yr/day/mo)
*****	— LOCATION —
Quad/Map	SITAINING RICH WASh
Twp./Rng./Sec.	TILISM RUBW WAS
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
-	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Label To Label
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Corganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Light Colored Light Colored
Moisture	dry damp moist wet B Rown to Red Brown
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Organics	
Float Type(s)	Bedrock
•	Bedrock

- COMMENTS

Location:

comment of the Comment of

WESTMONT MINING	SAMPLE RECORD N^2 48172
Project Name	mohave wash
Project ID #	
Sampler's Initials	I with
Date	<u> </u>
Quad/Map	Standard wash
Twp./Rng./Sec.	JILI3IN RUBICO Wile
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
BA - 41 -	— ROCK —
Media	Grab Chip Channel Cuttings Core Sludge
Source	From Little To Little
Source Lithology	Outcrop Float Dump Gossan Vein Fracture Fault
Color	
Alteration	intensity
Mineralization	LI HOLD IN MODERN
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
· iacuing	SOIL -
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	Ao Taranic Debris
Horizon	An An An B C D An Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Bedrock
5.00	* * * * * * * * * * * * * * * * * * * *

	PLANT
Species	
Part	Flower Leaf Stem Branch Root
Life Cycle	flowering active Δ colors dormant dead
Health	dead stunted healthy giantism regrowth
Height	L_L_L_ (inches)
Slope	Direction LLLL Angle LLL °
	SEDIMENT
Media	A B C D D hi water leve
Matrix	clay silt sand gravel
Color	B water level
Stream Width	0'-5' 5'-10' 10'-20' >20'
Stream Volume	dry damp stagnant slow moderate fast
Stream Gradient	shallow moderate steep
Organic Content	none minor moderate high
Surface Oxides	FeO MnO Both Other
Outcrop	no bedrock bedrock within 100' flows on bedrock
Float Type(s)	
	<u></u>
	<u> </u>
	COMMENTS

WESTMONT MINING	SAMPLE RECORD N^{ϱ} 48173
Project Name	mohave wash
Project ID #	
Sampler's Initials	Tially .
Date	(K19 Z4 LLG (yr/day/mo)
	— LOCATION —
Quad/Map	standard wash
Twp./Rng./Sec.	JI1314 1811810 1160
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lillian To Lillian
Source	Outcrop Float Oump Gossan Vein Fracture Fault
Lithology	
Color	L Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccla
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Grganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Bedrock
	<u> </u>

	PLANT
Species	
Part	Flower Leaf Stem Branch Root
Life Cycle	flowering active △ colors dormant dead
Health	dead stunted healthy giantism regrowth
Height	(inches)
Slope	Direction LLL
	SEDIMENT
Media	A B C D
Matrix	clay silt sand gravel
Color	B water leve
Stream Width	0'-5' 5'-10' 10'-20' >20'
Stream Volume	dry damp stagnant slow moderate fast
Stream Gradient	shallow moderate steep
Organic Content	none minor moderate high
Surface Oxides	FeO MnO Both Other
Outcrop	no bedrock bedrock within 100' flows on bedrock
Float Type(s)	
	<u> </u>
	<u> </u>
	COMMENTS
Location: c /	

Dump Site SAME AS 48172

WESTMONT MINING	SAMPLE RECORD Nº 48174
Project Name	mothatile wash
Project ID #	
Sampler's Initials	Fig.H
Date	தேடு பேட் (gr/day/mo)
	— LOCATION (
Quad/Map	SITANICARED WASh
Twp./Rng./Sec.	TUBN RIBBIA OR
Grid N/E	
Line #/Station #	
Elevation	Lill (feet)
Sample Type	(Rock) Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup #	
Contamination	absent weak moderate strong
	ROCK
Media	Chip Channel Cuttings Core Sludge
	From Label To Label
Source	Cutcrop Float (Paint) Gossan Vein Fracture Fault
Lithology	
Color	L_L_L_L_L_l_l Intensity
Alteration	L. Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor roderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Crganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Lached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone
Organics	none minor moderate high C Weathered Bedroc
Float Type(s)	Bedrock
	<u> </u>

WESTMONT MINING	SAMPLE RECORD $N^{\varrho} = 4.8175$
Project Name	mochave wash
Project ID #	
Sampler's Initials	NO.H.
Date	別り はこ 図仮 (yr/day/mo)
Quad/Map	SITE WEDGE WASK
Twp./Rng./Sec.	III 3 M RIBER DA
Grid N/E	
Line #/Station #	
Elevation	LLLL (feet)
Sample Type	(FOOK) Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
0	From LLLL To LLLL
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Greenic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Vesagai Structures Lily D Bedrock

WESTMONT MINING	SAMPLE RECORD N^2 48176
Project Name	MOININE WASH
Project ID #	
Sampler's Initials	JAH.
Date	(\$19) ZiZi LOLE (yr/day/mo)
	LOCATION
Quad/Map	CIROSISIMANI PROE
Twp./Rng./Sec.	<u> </u>
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
•	From Lilli To Lilli
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	L. L. L. L. L. L. Intensity
Alteration	LI LI LI LI LI LI LI LO Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Organic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus Leached Zoned
Sample Depth	Light Colored
Moisture	dry damp moist wet B Accumulation Zone Brown to Red Brown
Organics	none minor moderate high C Weathered Bedrock
Float Type(s)	Bedrock
	<u> </u>
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Jup 3 3" Du. Sample (1")

WESTMONT MINING	SAMPLE RECORD Nº 48177
Project Name	MOILANIE WASH
Project ID #	
Sampler's Initials	J.A.H
Date	BIG 1212 DIE (yr/day/mo)
	— LOCATION —
Quad/Map	CROSIS MAN PEAC
Twp./Rng./Sec.	TILIAN RUBU ZO
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	ingle Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
_	From Lill To Lill
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization Western	Li Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate night breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Grganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus Leached Zoned
Sample Depth	Light Colored
Moisture	dry damp moist wet
Organics	none minor moderate high C Weathered Bedrock
Float Type(s)	Bedrock
	
	

Aup 5-Left wall 2' sample

WESTMONT MINING	SAMPLE RECORD $N^{\varrho} = 48178$
Project Name	MICHANE WASH
Project ID #	
Sampler's Initials	JAH
Date	네 네 (yr/day/mo)
	LOCATION
Quad/Map	CIRIOISISMAN PIEAK
Twp./Rng./Sec.	TUYN RUBIN CO
Grid N/E	
Line #/Station #	
Elevation	L (feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lill To Lill
Source	Outcrop Float Oump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Le Mod Hi
Mineralization	Lo Mod HI
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Granic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone
Organics	none minor moderate high C Weathered Bedrock Vestiglal Structures
Float Type(s)	Bedrock
	<u> </u>
	<u></u>

+ cu

Project ID # Sampler's Initials Date LOCATION Quad/Map Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab G	WESTMONT MINING	SAMPLE RECORD Nº 48179
Sampler's Initials Date LOCATION Cuad/Map Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Grab Grab Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Sitt Sand Color Horizon Ao A1 A2 B C D A1 A1 BC D A2 BC D A3 A1 A2 B C D A4 A2 B C D A4 A3 BC D A5 A4 A4 BC D A6 A4 A5 BC D A6 A4 A5 BC D A7 BC D Corganics Humus Clay Loam Sitt Sand Color Horizon Sample Depth Moisture Organics Float Type(s)	Project Name	Molhiau e wash
Color Alteration Media Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Sitt Sand Color Horizon Sample Date LOCATION CROCATION CROCATION CROCATION CROCATION CROCATION CROCATION CROCATION CROCATION CROCATION ROCA ROCA ROCA Single See Composite Sites Duplicate Fracture Fracture Intensity Lo Mod Hi Intensity Lo Mod Hi Intensity And Hi Intensity	Project ID #	
Cuad/Map Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Depth Channel Cuttings Core Studge From Depth Color Intensity Lo Mod Hi Lo Mod Hi Mineralization Media Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Sitt Sand Color Horizon Sample Depth Moisture Organics Float Type(s) Lithology Cord Alluvial Till Regolith Saprolite Humus Clay Loam Sitt Sand Corganics Float Type(s)	Sampler's Initials	चाम्प
Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Dip Channel Cuttings Core Sludge From To	Date	නිව වැට (CAC (yr/day/mo)
Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Prom		
Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Studge From	•	
Line #/Station # Elevation Sample Type Sample Collection Std./ Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Studge From		
Sample Type Sample Collection Std./ Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From Lithology Color Lithology Color Mineralization Weathering Fracturing Residual Colluvial Alluvial Till Regolith Saprolite Murix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Float Type(s) ROCK Source Counce Sludge From Lithology Cotor Intensity Lo Mod Hi Lo Mod Hi Regolith Saprolite Murus Leached Zoned Humus Leached Zoned Humus Corganics Float Type(s) Soil Sediment Vegetation Standard Blank Standard Blank Sandard Blank Standard Blank Blank Standard Blank Fracturing Intensity Lo Mod Hi Lo Mod Hi Lo Mod Hi Regolith Saprolite Norganic Debris Humus Leached Zoned Light Colored Accumulation Zone Bown to Red Brow Weathered Bedrock Vestiglal Structures Bedrock		
Sample Type Sample Collection Std./Blank/Dup # Contamination Source Color Lithology Color Mineralization Weathering Fracturing Residual Colluvial Alluvial Till Regolith Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Float Type(s) Single Sile Composite Sites Duplicate Supplicate Single Sile Composite Sites Duplicate Supplicate		
Sample Collection Std./Blank/Dup # Contamination Absent weak moderate strong ROCK Media Grab Chip Channel Cuttings Core Studge From Lithology Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Altuvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics none minor moderate high Colludation Mineralization Media Residual Colluvial Altuvial Till Regolith Saprolite Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics none minor moderate high Colludation Zone Brown to Red Brown	Elevation	(feet)
Std./Blank/Dup # Contamination absent weak moderate strong ROCK Media Grab Chip Channel Cuttings Core Studge From	Sample Type	Rock Soil Sediment Vegetation Standard Blank
ROCK Media Grab Chip Channel Cuttings Core Studge From Lithology Color Lithology Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Horizon Ao A1 A2 B C D A1 A2 B C D A2 Colored Horizon Sample Depth Moisture Organics Horizon Ao A2 A2 B C D A1 A3 B C D A2 Colored A3 A4 A5 B C D A4 Colored A5 A4 A5 B C D A6 A4 A5 B C D A7 Colored A8 A5 A6 A6 A6 A7 A8 B C D A8 A6 A7 A8 B C D A9 A7 A9 B C D	Sample Collection	Single Site Composite Sites Duplicate
ROCK Grab Chip Channel Cuttings Core Studge From Lithology Cotor Cuttings Core Studge From Lithology To Lithology Cotor Intensity Alteration Mineralization Weathering Fracturing Intensity Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Lithology Intensity Agamp Moisture Intensity Organic Debris Humus Color Horizon Sample Depth Lithology Intensity Agamp Moisture Intensity Organic Debris Humus Leached Zoned Leached Zoned Leached Zoned Colored Accumulation Zone Brown to Red	Std./Blank/Dup#	
Grab Channel Cuttings Core Studge From To	Contamination	absent weak moderate strong
Source Outcrop Float Dump Gossan Vein Fracture Fault Lithology Color Alteration Mineralization Weathering Fracturing Intensity Lo Mod Hi Weathering Fracturing Intensity And Hi Weathering Fracturing Intensity And Hi Weathering Fracturing Intensity And Hi Weathering Fracture Intensity And Hi Weathering Fracture Fracture Intensity And Hi Weathering Fracture Intensity And Hi Weathering Fracture Fracture Fracture Intensity And Hi Weathering Fracture Intensity And Hi Weathering Fracture Fracture Intensity And Hi Weathering Fracture Fracture Fault Fracture Fault Fracture Fault Fracture Fault Fracture Fracture Fault F		ROCK
Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Noterop Float Dump Gossan Vein Fracture Intensity Lo Mod Hi Lo Mod Hi Lo Mod Hi Resolute I Till Regolith Saprolite Again Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand Color Horizon Again Color Horizon	Media	Grab Chip Channel Cuttings Core Studge
Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Intensity Intensity Lo Mod Hi Media High breccia Organic Saprolite An Organic Debrie Humus Leached Zoned Light Colored Accumulation Zone Brown to Red Brown to		From Lill To Lill
Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Intensity Lo Mod Hi Lo Mod Hi Lo Mod Hi III Regolith Saprolite Matrix Organic Debrie Humus Leached Zoned Light Colored Accumulation Zone Brown to Red Brown t	Source	Outcrop Float Dump Gossan Vein Fracture Fault
Alteration Mineralization Weathering Fracturing fresh weak moderate strong saprolite None minor sugarate high breccia SOIL Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Ao Ao Orgánic Debria Humus Leached Zoned Light Colored Accumulation Zone Brown to Red Brown to	Lithology	
Mineralization Weathering Fracturing fresh weak moderate strong saprolite none minor sederate high breccia SOIL Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture dry damp moist wet B Organics none minor moderate high Colored Accumulation Zone Brown to Red Bro	Color	Intensity
Fracturing fresh weak moderate strong saprolite fracturing SOIL Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics fresh weak moderate strong saprolite Saprolite Apple Saprolite Organic Debris Humus Leached Zoned Light Colored Accumulation Zone Brown to Red Brown to	Alteration	Lo Mod Hi
Fracturing none minor moderate high breccia SOIL Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Sample Depth Lill (inches) A ₂ Moisture Organics none minor moderate high C Bedrock Bedrock	Mineralization	Lo Mod Hi
Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Sample Depth L	Weathering	fresh weak moderate strong saprolite
Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Sample Depth Lill (inches) A ₂ Moisture Organics none minor moderate high C Bedrock Saprolite Organic Debris Humus Leached Zoned Light Colored Accumulation Zone Brown to Red Bro	Fracturing	none minor moderate high breccia
Matrix Humus Clay Loam Silt Sand Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Sample Depth Lill (inches) A ₂ Humus Leached Zoned Leght Colored Accumulation Zone Brown to Red Brown t		SOIL
Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Humus Leached Zoned Light Colored Light Colored Constitute Horizon Sample Depth Gry damp moist wet Humus Leached Zoned Light Colored Constitute High Colored Accumulation Zone Brown to Red Brow Organics none minor moderate high C Westignal Structures Float Type(s) Organic B B C D A ₂ Humus Humus Leached Zoned Light Colored Humus Leached Zoned Humus Leached Zoned Light Colored Humus Leached Zoned Humus Leached Zoned Light Colored Humus Leached Zoned Light Colored Humus Leached Zoned Humus Leached Zoned Light Colored Humus Leached Zoned Humus Leached Zoned Humus Leached Zoned Humus Leached Zoned Humus Humus Leached Zoned Humus	Media	Residual Colluvial Alluvial Till Regolith Saprolite
Horizon A ₀ A ₁ A ₂ B C D A ₁ Sample Depth Moisture dry damp moist wet Organics none minor moderate high C Granic Debris Humus Lacched Zoned Light Colored Accumulation Zone Row	Matrix	Humus Clay Loam Silt Sand
Sample Depth Lill (inches) A2 Leached Zoned Leached Zoned Leached Zoned Leached Zoned Leached Zoned Leached Zoned Accumulation Zone Brown to Red B	Color	Ao Cara Orgánic Debris
Moisture dry damp moist wet B Organics none minor moderate high C Float Type(s) Light Colored Accumulation Zone Weathered Bedrock Weathered Bedrock Weathered Bedrock	Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Organics none minor moderate high C Float Type(s) Erown to Red Brow Weathered Bedrock Prom to Red Brow Weathered Bedrock	Sample Depth	Light Colored Light Colored
Float Type(s) Vestigial Structures	Moisture	dry damp moist wet
	Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
<u> </u>	Float Type(s)	Bedrock
		<u> </u>

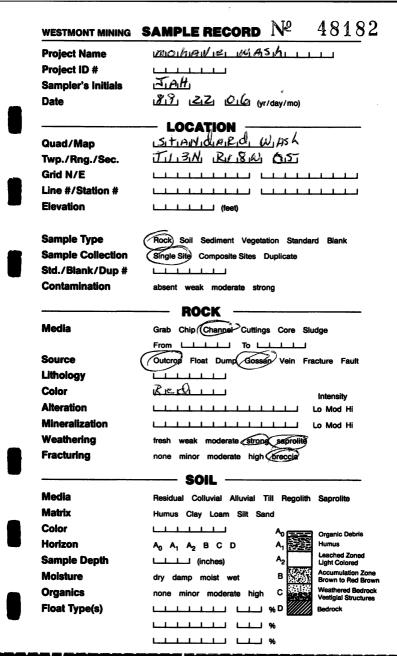
COMMENTS

Location: TUKNEL

Project Name	WAG HAIVISI INIAISIHI I I I
Project IV #	
Sampler's Initials	TI PIH
Date	SI EZ ICIG (yr/day/mo)
Date	COLUMN (yr/day/mo)
	- LOCATION -
Quad/Map	CIRIOISISIMAINI PEAK
Twp./Rng./Sec.	TINU RUBW 30
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	(Nocio Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lalla To Lalla
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Corganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus Leached Zonec
Sample Depth	Light Colored
Moisture	Brown to Red E
Moisture Organics Float Type(s)	none minor moderate high C Weathered Bed Vestigial Struct

26"

WESTMONT MINING	SAMPLE RECORD Nº 48181
Project Name	MOHANE WASh
Project ID #	
Sampler's Initials	STAH.
Date	(BLS) (고고 (CIĆ) (yr/day/mo)
	LOCATION —
Quad/Map	CIROSEMAN, PEAK
Twp./Rng./Sec.	JULYN RUSH 30
Grid N/E	
Line #/Station #	
Elevation	[
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grail Chip Channel Cuttings Core Sludge
	From LLLL To LLLL
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	L. Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Grganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁
Sample Depth	Lached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone Brown to Red Brown
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Bedrock
	<u> </u>


COMMENTS

Location:

High Brade Short #2

Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.)

PROOF TACO

5 channel

WESTMONT MINING	SAMPLE RECORD $N^2 - 48183$
Project Name	MOLHIAN EL WIASH
Project ID #	
Sampler's Initials	IIAH.
Date	BIG ZZ OLO (yr/day/mo)
	- LOCATION
Quad/Map	ISITIAN dIAIRICI INIASA
Twp./Rng./Sec.	TITIZM BIBIO 102
Grid N/E	
Line #/Station #	
Elevation	L
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination .	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From LLLL To LLLL
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	PIKIRIPICIE Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
	•
Matrix	A ₀ A ₁ A ₂ B C D A ₁ Organic Debris
Matrix Color Horizon	A ₀ Organic Debris
Matrix Color	A ₀ A ₁ A ₂ B C D A ₁ Canada Light Colored Light Colored Accumulation Zor
Matrix Color Horizon Sample Depth	A ₀ A ₁ A ₂ B C D A ₁ Human A ₀ A ₁ A ₂ B C D A ₁ Leached Zoned Light Colored Light Colored Unit Colored Colored Brown to Red Brown to Re
Matrix Color Horizon Sample Depth Moisture	A ₀ A ₁ A ₂ B C D A ₁ A ₁ A ₂ B C D A ₂ Lill (inches) A ₂ dry damp moist wet B A ₀ Organic Debris Humus Humus A ₂ Leached Zoned Light Colored Accumulation Zo Brown to Red Brown to Re

5 channel

Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.)

J. L. DARLING COR

COMMENTS

PLANT

Flower Leaf Stem Branch Root

- SEDIMENT -

(inches)

Direction L_____

clav silt sand gravel

shallow moderate steep

FeO MnO Both Other

0'-5' 5'-10' 10'-20' >20'

none minor moderate high

ABC

Location:

Outcrop

Species Part

Life Cycle

Health

Height

Slope

Media

Matrix

Color Stream Width

Stream Volume

Stream Gradient

Organic Content

Surface Oxides

Float Type(s)

D1	motharve wash
Project Name	
Project ID #	Tall
Sampler's Initials	JAH
Date	රිථි ැවිය වේෂ (yr/day/mo)
	- LOCATION
Quad/Map	SITIAN IDIARIDI MIASA
Twp./Rng./Sec.	IIIIIN RILIBE OB
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Little To Little
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate nigh breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Crganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zon
Organics	none minor moderate high C Weathered Bedroc
Float Type(s)	esagial structure

ELGOMPO MINE

WESTMONT MINING	SAMPLE RECORD Nº 48186
Project Name	mohave wash
Project ID #	
Sampler's Initials	JAH.
Date	見り は径 足山山 (yr/day/mo)
	LOCATION 1
Quad/Map	SITIANIDARD MUSS
Twp./Rng./Sec.	II,13N RU800 100
Grid N/E	
Line #/Station #	
Elevation	[
Sample Type	Rock Soll Sediment Vegetation Standard Blank
Sample Collection	Single Sits Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Country Cuttings Core Sludge
	From To
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh (reak) and saprolite
Fracturing	none minor roderal breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Greanic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zon
Organics	none minor moderate high C Weathered Bedroot Vestigial Structures
Float Type(s)	L_L_L
	<u> </u>
	<u></u>

WESTMONT MINING	SAMPLE RECORD Nº 48187
Project Name	MOhANZ WASh
Project ID #	
Sampler's Initials	याभाम
Date	ကြီးပြီး ငြေးငြီး (yr/day/mo)
0	Stendered Wash
Quad/Map	1131 R18W 117
Twp./Rng./Sec.	
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK —
Media	Grab Chip Channel Cuttings Core Sludge
	From Land To Land
Source	Outcrop Float Oump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Organic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus Leached Zoned
Sample Depth	Light Colored
Moisture	dry damp moist wet B Accumulation Zone Brown to Red Brow
Organics	none minor moderate high C Weathered Bedroot Vestigial Structures
Float Type(s)	Bedrock
	<u> </u>
	<u> </u>

PLANT .

COMMENTS

Location:

	SAMPLE RECORD Nº 4818
Project Name	miohave mash
Project ID #	
Sampler's Initials	I PH
Date	1819 1≥1€1 OLG (yr/day/mo)
	— LOCATION a
Quad/Map	sitianida Rid wash
Twp./Rng./Sec.	<u> </u>
Grid N/E	
Line #/Station #	
Elevation	L (feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lill To Lill
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
	Humus Clay Loam Silt Sand
Matrix	
Matrix Color	Ao (Sept) Organic Debris
Color	A ₀ A ₁ A ₂ B C D A ₁ Crganic Debris
Color Horizon	A ₀ A ₁ A ₂ B C D A ₁ Crganic Debris
Color Horizon Sample Depth	A ₀ A ₁ A ₂ B C D A ₁ Humus Light Colored Accumulation 2 Accumulation 2
	A ₀ A ₁ A ₂ B C D A ₁ Humus Light Colored dry damp moist wet B Companies and extend block Companies Congruing Congruing Colored Accumulation 2 Brown to Red E Weathered Bed Weathered Bed
Color Horizon Sample Depth Moisture	A ₀ A ₁ A ₂ B C D A ₁ Humus L_L_L (inches) A ₂ Leached Zonet Light Colored dry damp moist wet B Crganic Debris Humus Acached Zonet Light Colored Brown to Red E Brown to Red E

Location:

WESTMONT MINING	SAMPLE RECORD N^2 48189
Project Name	MOLANG WASh
Project ID #	
Sampler's Initials	JAIN
Date	819 122 10161 (yr/day/mo)
	Stiping ARD 1948b
Quad/Map	113N R18W 17
Twp./Rng./Sec.	
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup #	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lill To Lill
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	<u> </u>
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate figh breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	Organic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus Leached Zoned
Sample Depth	(inches) ⁷² Light Colored
Moisture	dry damp moist wet B Accumulation Zone Brown to Red Brow
Organics	none minor moderate high C Weathered Bedrock
Float Type(s)	Bedrock
	<u> </u>

WESTMONT MINING	SAMPLE RECORD N^{ϱ} 48190
Project Name	mohave wash
Project ID #	
Sampler's Initials	E AH
Date	යි.රි යියි ළුම (yr/day/mo)
Quad/Map	Standard wash
Twp./Rng./Sec.	T1310 RUBIO 117
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK —
Media	Gran Chip Channel Cuttings Core Sludge
0	From Lilli To Lilli
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology Color	
Alteration	Intensity
Mineralization	
Weathering	CO WING TH
	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Grganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone
Organics	none minor moderate high C Weathered Bedrock
Float Type(s)	Bedrock

WESTMONT MINING	SAMPLE RECORD Nº 48191
Project Name	mohave wash
Project ID #	
Sampler's Initials	JAIH
Date	(gr/day/mo)
	- LOCATION -
Quad/Map	Modificely is i Hepa
Twp./Rng./Sec.	17112N 18117W 1261
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	(Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Land To Land
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Organic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus Leached Zoned
Sample Depth	(inches) ⁷ 2 Light Colored
Moisture	dry damp moist wet B Accumulation Zone
Organics	none minor moderate high C Weathered Bedroot Vestiglal Structures
Float Type(s)	Bedrock
	
	<u> </u>

Location:

Dump Sample

Cd5 CAMP

WESTMONT MINING	SAMPLE RECORD Nº 48192
Project Name	MOHANE WASh
Project ID #	بينين
Sampler's Initials	JAH.
Date	819 22 66 (yr/day/mo)
	— LOCATION —
Quad/Map	MOINIKIEIXIS HEAD
Twp./Rng./Sec.	TIMEN R117W 19
Grid N/E	
Line #/Station #	
Elevation	L (feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lilling To Lilling
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Organic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone
Organics	none minor moderate high C Weathered Bedroc
Float Type(s)	Bedrock
•	<u> </u>
	L. L. L. L. L. 1 %

I sample foot wein

WESTMONT MINING	SAMPLE RECORD $N^\varrho = 48193$
Project Name	MOGRANE WASHILL
Project ID #	
Sampler's Initials	TAK
Date	යි.ටි <u>දුළු</u> (yr/day/mo)
	— LOCATION —
Quad/Map	monkeys, Hend
Twp./Rng./Sec.	ILIN BITW 19
Grid N/E	
Line #/Station #	
Elevation	L_L_L (feet)
Sample Type	(Rock) Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup #	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From To Lill
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	An Sea Organic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Bedrock
	<u></u>
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

COMMENTS

Location:

3' Vain

WESTMONT MINING	SAMPLE RECORD Nº 48194
Project Name	moballe wash
Project ID #	
Sampler's Initials	JAH
Date	18191 1231 1816 (yr/day/mo)
	LOCATION
Quad/Map	GILLERIS BASILW
Twp./Rng./Sec.	TU12N R1117W 16
Grid N/E	
Line #/Station #	
Elevation	[
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lili To Lili
Source	Outcrop Float Dump Gossan (Vein) Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Organic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone Brown to Red Brown
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Bedrock
	<u> </u>

COMMENTS

Location:

WESTMONT MINING	SAMPLE RECORD Nº 48195
Project Name	mohave wash
Project ID #	
Sampler's Initials	Just
Date	[819] (23] (yr/day/mo)
O	GUERS BASIN
Quad/Map	TUZN RICZEN 16
Twp./Rng./Sec.	
Grid N/E	
Line #/Station #	
Elevation	L_L_L_L_ (feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lill To Lill
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Corganic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone Brown to Red Brown
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Bedrock
	<u> </u>
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

l'SAMPLE HANGE WALL

WESTMONT MINING	SAMPLE RECORD Nº 48196
Project Name	mochanie washi
Project ID #	(0)0,3,51
Sampler's Initials	<u> Ziaihi</u>
Date	8ூ ட மிம் (yr/day/mo)
	— LOCATION —
Quad/Map	MIONIKIENISI HEAD
Twp./Rng./Sec.	II/12/1 R11.71W 1260
Grid N/E	
Line #/Station #	
Elevation	L (feet)
Sample Type	ROOD Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Light To Light
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak (noderate) strong saprolite
Fracturing	none minor moderate high breccia
	SOIL ———
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Greatic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zone Brown to Red Brown
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Bedrock
	<u> </u>

	•
	PLANT
Species	
Part	Flower Leaf Stem Branch Root
Life Cycle	flowering active Δ colors dormant dead
Health	dead stunted healthy giantism regrowth
Height	LIII (inches)
Slope	Direction Angle Angle Color
	SEDIMENT
Media	A B C D D hi water leve
Matrix	clay silt sand gravel
Color	B water level
Stream Width	0'-5' 5'-10' 10'-20' >20'
Stream Volume	dry damp stagnant slow moderate fast
Stream Gradient	shallow moderate steep
Organic Content	none minor moderate high
Surface Oxides	FeO MnO Both Other
Outcrop	no bedrock bedrock within 100' flows on bedrock
Float Type(s)	<u></u>
	<u> </u>

COMMENTS

Location:

Veinsample 3"-1" 4"with

Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.)

masive q- viewlets spee-

DATE SE NO AREA SO THE LOOP REMARKS TRANS REMARKS TRANS AND SE NO AREA CO THE LOOP REMARKS TRANS CO THE LOO	DATE 6/27/SAP AREA OF W Suggins DATE 6/27/SAP AREA DATE 6/27	Series C NO 072652 DATE LOCATION RE 1007 REMARKS Chip Sample Dig w Sw OF w/shaft
DATE G/22/STO AREA DOWP LED SLOGGE REMARKS 1006	DATE 6/22/84 NO	ANALYSIS Series C Nº 072653 DATE LOCATION (1008)
DATE 6/22/5 NO AREA REMARKS 8 OUNDS	DATE 6/21/SENO AREA	REMARKS Calcibe W/Black Districts ANALYSIS TAKEN BY
DATE 189 NO	Series C No 072651 DATE LOCATION (1006) REMARKS DOLLAP LUCST SLAFT	Series C Nº 072654 DATELOCATION REMARKS
	TAVENDY	TAKEN BY

Project Name Project ID #	SAMPLE RECORD Nº 48197
Project ID #	RED GRE
riojectio #	<u> 6351-125</u>
Sampler's Initials	NAW.
Date	ලිම ැයිථ වාර් (yr/day/mo)
	— LOCATION ————
Quad/Map	GLADDEM
Twp./Rng./Sec.	GWLL MOW US
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup #	KELLOGIL
Contamination	absent weak moderate strong
	ROCK
Media \Zead	Grab Chip Channel Cuttings Core Sludge
Act lo	From Lill To Lill
Source	Outcrop Float Dump Gossan (Vein) Fracture Fault
Lithology	
Color	£.E.D. Intensity
Alteration	Lo Mod Hi
Mineralization	UMAD Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
ITICUIA	Humus Clay Loam Silt Sand
Matrix	
	Ao Caranic Debris
Matrix	A ₀ A ₁ A ₂ B C D A ₁ Crganic Debris
Matrix Color	Organic Debris
Matrix Color Horizon	A ₀ A ₁ A ₂ B C D A ₁ Granic Debris
Matrix Color Horizon Sample Depth	A ₀ A ₁ A ₂ B C D A ₁ Humus Lacched Zoned Light Colored dry damp moist wet B Company money medicate bligh C Weathered Bedro Weathered Bedro
Matrix Color Horizon Sample Depth Moisture	A ₀ A ₁ A ₂ B C D A ₁ Humus Lill (inches) A ₂ Leached Zoned Light Colored dry damp moist wet B Sown to Red Brown to R

Sample 3'Le Un magned shaft - Sample from N side of Coller

WESTMONT MINING	SAMPLE RECORD N^{ϱ} 48198
Project Name	· REDIVEYELLI
Project ID #	035-12E
Sampler's Initials	<u>aah</u>
Date	(69, 21/, 06 (yr/day/mo)
	- LOCATION
Quad/Map	6N V_DW_ V.5
Twp./Rng./Sec.	
Grid N/E	
Line #/Station # Elevation	
Elevation	LILI (feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	RELIDIOIZI
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Lill To Lill
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	M_O_D_ Lo Mod Hi
Mineralization	(M ₁ O ₁ D ₁ 1 1 1 1 1 1 1 Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Greanic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus Leached Zoned
Sample Depth	Light Colored Light Colored
Moisture	dry damp moist wet B Accumulation Zone Brown to Red Brown
Organics	none minor moderate high C Weathered Bedrock Vestigial Structures
Float Type(s)	Bedrock
	<u></u>
	L_I_I

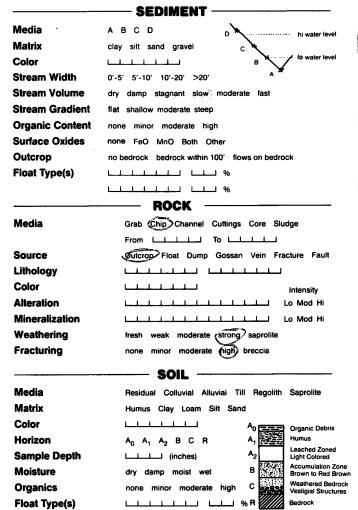
J. L. DARLING CORP. TACOMA, WA 98421

Project ID # Sampler's Initials Date LOCATION Quad/Map Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From	Project Name	RED EYE
Date LOCATION Guad/Map Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From To	Project ID #	•
Date LOCATION Quad/Map Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From Line To Line Fracture Fault Lithology Color Alteration Mineralization Weathering Fracturing Media Residuel Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Moderate Strong ROCK ROCK Intensity Lo Mod Hi Lo M	Sampler's Initials	MAI
Guad/Map Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From		\$ 21/1 (O16 (yr/day/mo)
Twp./Rng./Sec. Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From To		— LOCATION —
Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From Grab Chip Chip Channel Cuttings Core Sludge From Grab Chip Chip Channel Cuttings Co	Quad/Map	G/adden
Color Colo	Twp./Rng./Sec.	16/1 1/0W 1/5
Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From To	Grid N/E	
Sample Type Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From To To To To To Mod Hi Lithology Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Mod And And And And And And And And And An	Line #/Station #	
Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From To	Elevation	L_L_L (feet)
Sample Collection Std./Blank/Dup # Contamination ROCK Media Grab Chip Channel Cuttings Core Sludge From To	Sample Type	Rock Soil Sediment Vegetation Standard Blank
Std./Blank/Dup # Contamination absent weak moderate strong ROCK Media Grab Chip Channel Cuttings Core Sludge From To		
ROCK Media Grab Chip Channel Cuttings Core Sludge From To		
Source Lithology Color Alteration Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Colip Channel Cuttings Core Sludge From To	•	absent weak moderate strong
Source Outcrop Float Dump Gossan Vein Fracture Fault Lithology Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Note Intensity Lo Mod Hi Lo Mod Hi Lo Mod Hi Resolute Intensity Lo Mod Hi Resolute Fracturing Intensity Lo Mod Hi Resolute Fracture Fault Intensity Lo Mod Hi Resolute Fracture Fault Intensity Lo Mod Hi Weathering Fracture Fault Intensity Lo Mod Hi Would Till Regolith Saprolite Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organic Debris Humus Lached Zoned Light Colored Grown to Red B Weatheriad Bedry Wasthered Bedry Westlered Bedry West		ROCK
Source Lithology Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics From To Lithology Intensity Lo Mod Hi Lo Mod Hi Lo Mod Hi Residual Till Regolith Saprolite An A	Media	Grab (Chip) Channel Cuttings Core Sludge
Lithology Color Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Intensity Lo Mod Hi Lo Mod Hi Lo Mod Hi Lo Mod Hi Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand Organic Debris Humus Lached Zoned Light Colored Light Co		
Alteration Mineralization Weathering Fracturing Media	Source	Outcrop) Float Dump Gossan Vein Fracture Fault
Alteration Mineralization Weathering Fracturing Media Media Residual Colluvial Alluvial Till Regolith Saprolite Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Intensity Lo Mod Hi Lo Mod Hi Residual Till Regolith Saprolite Humus Clay Loam Silt Sand Organic Debris Humus Leached Zoned Light Colored Accumulation Zoned Light Colored Accumulation Zoned Light Colored Accumulation Zoned Light Colored Accumulation Zoned Light Colored Moisture Organics	Lithology	· · · · · · · · · · · · · · · · · · ·
Alteration Mineralization Weathering Fracturing Media Residual Colluvial Alluvial Till Regolith Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Organics Horizon Ao A1 A2 B C D A1 Humus Lached Zoned Light Colorable Horizon Sample Depth Moisture Organics Organic Debris Humus Lached Zoned Light Colorable Humus Lached Zoned Light Colorable Humus Lached Zoned Light Colorable Horizon Sample Depth Moisture Organics	Color	Red / Wh Le
Fracturing Fresh weak moderate strong saprolite Fracturing SOIL Media Residual Colluvial Alluvial Till Regolith Matrix Humus Clay Loam Silt Sand Color Horizon Sample Depth Moisture Gry damp moist wet B Weathered Bedreversigal Surveture Regolite Wathered Bedreversigal Surveture Regolite Moisture Organic Debris Humus Leached Zoned Light Colored Wathered Bedreversigal Surveture Regolite Wathered Bedreversigal Surveture Regolite Moisture Organic Debris Humus Leached Zoned Light Colored Wathered Bedreversigal Surveture Regolite Wathered Bedreversigal Surveture Regolite Moisture Organic Debris Humus Leached Zoned Light Colored Wathered Bedreversigal Surveture Regolite Wathered Bedreversigal Surveture Regolite Wathered Bedreversigal Surveture Organics	Alteration	M
Fracturing none minor moderate high breccia SOIL Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Humus Lached Zoned Light Colored Li	Mineralization	Lo Mod Hi
Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Humus Laached Zoned Light Colored Moisture dry damp moist wet B Organics Organic Debris Humus Laached Zoned Light Colored Accumulation Zoned Brown to Red B Weathered Bedr Weathered Bedr Weathered Bedr Weathered Bedr Weathered Bedr Westlight Structure Weathered Bedr Westlight Structure Westlig	Weathering	fresh weak moderate strong saprolite
Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Humus Lached Zoned Light Colored Moisture dry damp moist wet B Organics Organic Debris Humus Lached Zoned Light Colored Silt Sand Corganic Debris Humus Lached Zoned Light Colored Silt Sand Corganic Debris Humus Lached Zoned Light Colored Light Colored Weathered Bed Weathered Bed Weathered Bed Vestigial Structu	Fracturing	none minor moderate (high) breccia
Matrix Humus Clay Loam Silt Sand Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Humus Sample Depth L		SOIL
Color Horizon A ₀ A ₁ A ₂ B C D A ₁ Humus Sample Depth Lill (inches) A ₂ Light Colored Accumulation Z Brown to Red B Westhered Bedr Westhe	Media	Residual Colluvial Alluvial Till Regolith Saprolite
Horizon A ₀ A ₁ A ₂ B C D A ₁ Sample Depth L (inches) A ₂ Ueached Zoned Leached Zoned Under Colored Humus Leached Zoned Leached Zoned Leached Zoned Accumulation Zonen Colored A	Matrix	Humus Clay Loam Silt Sand
Horizon A ₀ A ₁ A ₂ B C D A ₁ Sample Depth	Color	An Garage Organic Debris
Moisture dry damp moist wet B Brown to Red Burners Organics none minor moderate high C Weathered Bedry Vestiglal Structure		
Organics none minor moderate high C Westlegial Structu	Horizon	∪0 ∪1 ∪5 p p v1 [525=52]
Vestigial Structu		Leached Zoned Light Colored
	Sample Depth	Leached Zoned Light Colored Accumulation Zo
	Sample Depth Moisture	dry damp moist wet B Leached Zoned Light Colored Accumulation Zone Brown to Red Bro

WESTMONT MINING	SAMPLE RECORD N^{ϱ} 48200
Project Name	RED EXE
Project ID #	035-RE
Sampler's Initials	JAH
Date	வடு பட மடி (yr/day/mo)
	LOCĂȚION
Quad/Map	Gil addian
Twp./Rng./Sec.	6M1 10M 15
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	Rock Soil Sediment Vegetation Standard Blank
Sample Collection	Single Site Composite Sites Duplicate
Std./Blank/Dup#	RELIONAL
Contamination	absent weak moderate strong
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From Land To Land
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	LED Intensity
Alteration	Lo Mod Hi
Mineralization	Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
	SOIL
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ GGG Organic Debris
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zon
Organics	none minor moderate high C Weathered Bedroo
Float Type(s)	Bedrock
	<u> </u>

Location: 400' M of 48197 6' cerec - chip

Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.)


J. L. DARLING CORP.

WESTMONT MINING	SAMPLE RECORD N^2 48074	
Project Name		
Project ID #		
Sampler's Initials	亚科	
Date	Bi9 Zil OG (yr/day/mo)	
	LOCATION —	
Quad/Map	Gladden	
Twp./Rng./Sec.	W LL LOW LS	
Grid N/E		
Line #/Station #		
Elevation	L_L_L_L (feet)	
Sample Type	Rock Soil Sediment Vegetation Standard Blank	
Sample Collection	Single Site Composite Sites Duplicate	
Std./Blank/Dup#	KE/1005	
Contamination	absent weak moderate strong	
	ROCK	
Media	Grab Chip Channel Cuttings Core Sludge	
	From Lill To Lill	
Source	Outcrop Float Dump Gossan Vein Fracture Fault	
Lithology		
Color	L. L. L. L. L. Intensity	
Alteration	Lo Mod Hi	
Mineralization	Lo Mod Hi	
Weathering	fresh weak moderate strong saprolite	
Fracturing	none minor moderate high breccia	
	SOIL	
Media	Residual Colluvial Alluvial Till Regolith Saprolite	
Matrix	Humus Clay Loam Silt Sand	
Color	A ₀ Organic Debris	
Horizon	A ₀ A ₁ A ₂ B C D A ₁ Humus	
Sample Depth	Leached Zoned Light Colored	
Moisture	dry damp moist wet B	
Organics	none minor moderate high C Weathered Bedro	
Float Type(s)	Lilia M.D. Bedrock	
	<u> </u>	

f

Location: Trench 300' NW of 48197

WESTMONT MINING	SAMPLE RECORD Nº 00601
Project Name Project ID # Sampler's Initials Date	Michiare Volashi Cibi 28 89 (mo/day/yr)
Quad/Min T/R/S/Qtrs Grid N/E Line #/Station # Elevation	LOCATION WASH
Sample Type Sample Collection Std./Blank/Dup # Contamination	Flock Soil Sediment Standard Blank Single Site Composite Sites Duplicate Replicate absent weak moderate strong COMMENTS
Description: (Lithology	Crop on Winds of wash Mineralization, Alteration, Structure, Contamination, etc.) (R) Wighly Structure,
on fractu	(P.7) - highly Starture Lite - mint notable Sections Fracturing (brecolations) + Febx - hen ± chl costing e sunfaces minor (probably licken- calcite Some Ulicken casted Smatture rundans

Slope

TACOMA, WA

9842

Angle LLL °

WESTMONT MINING	SAMPLE RECORD Nº 0060
Project Name	Mothane Wash
Project ID #	
Sampler's Initials	JAN
Date	(1)60 ZB 1891 (mo/day/yr)
	LOCATION
Quad/Min	Stendar Quinsite
T/R/S/Qtrs	TIBEL RIBELL OS SE
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	COMMENTS
Location: Sam	e as # 601
Description: /Lithology	Mineralization Alteration Structure Contamination etc.)

Angle L_____ °

WESTMONT MINING	SAMPLE RECORD Nº 0060
Project Name	mohave wash
Project ID #	
Sampler's Initials	
Date	<u> </u>
	LOCATION
Quad/Min	SHAWIDIARD WASH
T/R/S/Qtrs	TIZISH RIZISKU OS SE
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	COMMENTS -
Location: San	100 = 101

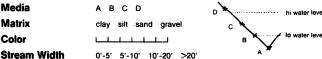
Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.)

SEDIMENT Media А В Matrix clay silt sand gravel lo water level Color Stream Width 0'-5' 5'-10' 10'-20' >20' Stream Volume dry damp stagnant slow moderate fast Stream Gradient flat shallow moderate steep **Organic Content** none minor moderate high Surface Oxides none FeO MnO Both Other Outcrop no bedrock bedrock within 100' flows on bedrock Float Type(s) ROCK Media Chip Channel Cuttings Core Sludge To L Source Outcrop Float Dump Gossan Vein Fracture Fault Lithology Color Intensity Alteration Lo Mod Hi Mineralization Lo Mod Hi Weathering fresh weak moderate strong saprolite minor moderate high breccia Fracturing SOIL Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clav Loam Silt Sand Color Organic Debris Horizon Humus An An An B C Leached Zoned Sample Depth Light Colored Accumulation Zone Moisture В dry damp moist wet Brown to Red Brown Weathered Bedrock C **Organics** none minor moderate Vestigial Structures Float Type(s) Bedrock

Angle L

Slope

J. L. DARLING


WESTMONT MINING	SAMPLE RECORD Nº 0060
Project Name Project ID #	Mohare wash
Sampler's Initials Date	1816 188 1891 (mo/day/yr)
	— LOCATION —
Quad/Min	Sitandard wash
T/R/S/Qtrs	TILISIN RIBW DIST SE
Grid N/E	
Line #/Station #	
Elevation	L
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	- COMMENTS -
Location: Jam.	e cin # 601

Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.)

J. L. DARLING

WESTMONT MINING	SAMPLE RECORD $N^{0} = 00605$
Project Name	Moshaine hagily
Project ID #	
Sampler's Initials	
Date	OL 28 39 (mo/day/yr)
	LOCATION
Quad/Min	BIRK BASININE
T/R/S/Qtrs	17113M R117W 32 5W
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	— COMMENTS —
Location: Oist	crop along wood Wof
Mohar	Sign sales
3 4	
	, Mineralization, Alteration, Structure, Contamination, etc.)
Gness - 1	eDx + q-veins · verlet
	uDx (chargeocalla?)
metamor	phics are ent by baself -
minor epid	ate alt of basalt - some
4 - William	Following lead Conti
teur (co	Felx-coated fracture to in metamorphics may be basaltic dixes
THE	to in metamorphic may be
LE NORTH TO	basalti dire
	or work over

WESTMONT MINING	SAMPLE RECORD Nº 00606
Project Name Project ID # Sampler's Initials Date	Marky March ETH, O.G. 29 Bi (mo/day/yr)
	LOCATION
Quad/Min T/R/S/Qtrs Grid N/E Line #/Station #	GUERS BASIN LA NW
Elevation	LL_L
Sample Type Sample Collection Std./Blank/Dup # Contamination	Rock Soil Sediment Standard Blank Single Site Composite Sites Duplicate Replicate absent weak moderate strong
	— COMMENTS ———
Location: Milia Approx Scal	+ main TV-C workings,
Description: (Lithology	, Mineralization, Alteration, Structure, Contamination, etc.)
	(3 in thick) in all
	nimetite (?)
Gness in a	argillized, highly fracture
	outed whem.
USBM sa	

Stream Volume dry damp stagnant slow moderate fast

Stream Gradient flat shallow moderate steep **Organic Content** none minor moderate high Surface Oxides none FeO MnO Both Other

Outcrop no bedrock bedrock within 100' flows on bedrock

Float Type(s)

ROCK

Media Grab Chip Channel Cuttings Core Sludge From To L_L Source Outcrop Float Dump Gossan Vein Fracture Fault Lithology Color Intensity Alteration Lo Mod Hi Mineralization Lo Mod Hi Weathering fresh weak moderate strong saprolite Fracturing minor moderate high breccia none

SOIL

J. L. DARLING TACOMA, WA

9842

Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Clay Loam Silt Sand Humus Color Organic Debris Horizon Humus An An An B C Leached Zoned A₂ Sample Depth Light Colored Accumulation Zone Moisture В dry damp moist wet

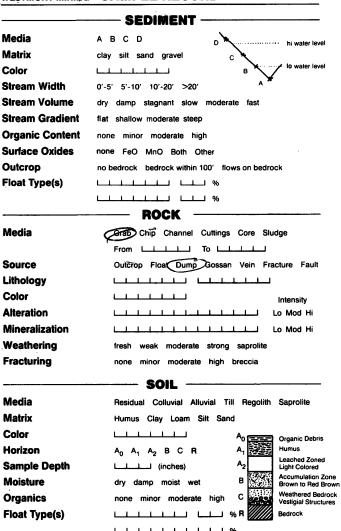
Brown to Red Brown Weathered Bedrock C Organics none minor moderate hiah Vestigial Structures Float Type(s) Bedrock

L

Slope Angle

WESTMONT MINING	SAMPLE RECORD $N^{o} = 0.060$
Project Name	Mighavie Wasis
Project ID #	
Sampler's Initials	H NV4
Date	OG DA EE (mo/day/yr)
	— LOCATION —
Quad/Min	GILERS BASSIN
T/R/S/Qtrs	TILZNI RIJON JIG XW
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
Location: Small	trench above diposer
	Mineralization, Alteration, Structure, Contamination, etc.)
Q/z vera	in mafic snews
Lom	inn py (Feox) tr.
	in min (azurite, tur.(?)),
mimetik (3)	,
Gnevis is	alt todiacent to vein

y . . .


1

Media Residual Colluvial Alluvial Till Regolith Saprolite Matrix Humus Clay Loam Silt Sand Color Organic Debris Horizon Humus An An Ap B C Leached Zoned A₂ Sample Depth (inches) لـــ Light Colored Accumulation Zone В Moisture dry damp moist wet Brown to Red Brown Weathered Bedrock С **Organics** moderate high none minor Vestigial Structures Float Type(s) Slope Angle LLL °

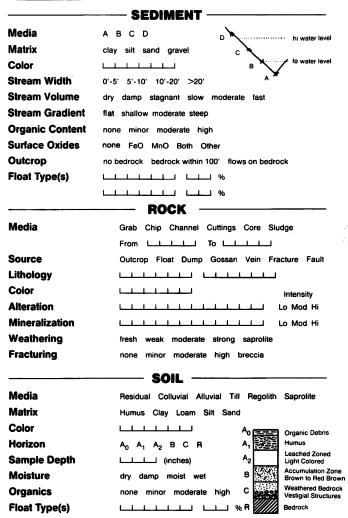
J. L. DARLING 9842

ERECORD Nº 00608 WESTMONT MINING Mahiana Mart **Project Name** Project ID # 12 5 id Sampler's Initials 0,6,29,89, (mo/day/yr) Date LOCATION Girers BASINI Quad/Min ITIIZNI RIJIW ZIGI NEN T/R/S/Otre Grid N/E Line #/Station # Elevation FOCK Soil Sediment Standard Blank Sample Type Sample Collection Single Site Composite Sites Duplicate Replicate Std./Blank/Dup # Contamination absent weak moderate strong Location: Outerop wany wash, Woff Mishane wash, wast leads to Joe Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Cheir- intensely Fractional + alt in some a 30 m wide that trends E-W . 30 N (detachment?) feld = clays, Felx Chem) to fractione purfaces, some vilvofication, q-Feax veinlas Gneir cut by basast dikes in faunt Zohri basalt appears less alt than great but besalt also practiced by minor

SAMPLE RECORD Nº 0060
Monave Masin
HARM
Ob 29 29 (mo/day/yr)
LOCATION RILERS BRISIN LE VIE TILZN RILIZE LE VIE
Biers Basin
7.1.2N RILIZE LE WE
(feet)
Plock Soil Sediment Standard Blank
Single Site Composite Sites Duplicate Replicate
absent weak moderate strong
- COMMENTS -
g. first imall treach "
, Mineralization, Alteration, Structure, Contamination, etc.)
- brecciated - comented
Vein in gners
G G
G G G
G T T T T T T T T T T T T T T T T T T T
Jan 19
J. J
J. J
•

Direction L

Angle LLL °


Slope

Project ID# Sampler's Initials Date LOCATION Quad/Min T/R/S/Qtrs T/L/ZM R17W Z16 SW	Project Name	Monave Wash
Date	•	
Quad/Min T/R/S/Qtrs Grid N/E Line #/Station # Elevation Rock Soil Sediment Standard Blank Sample Type Sample Collection Std./Blank/Dup # Contamination COMMENTS Location: Prefer Porring. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qt. Vein + FeDy (Fin Poly Contamination, etc.) Grid N/E Location: COMMENTS Location: Prefer Poly (Fin Poly Contamination, etc.) Grid N/E Location: COMMENTS Lo	•	EJH
Quad/Min T/R/S/Qtrs Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination COMMENTS Location: Property Dee porrowy Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qto vein + FeDy (Importation, Structure, Contamination, etc.)	Date	Ob 29 CT (mo/day/yr)
T/R/S/Qtrs Grid N/E Line #/Station # Elevation Rock Soil Sediment Standard Blank Sample Type Rock Soil Sediment Standard Blank Single Site Composite Sites Duplicate Replicate Std./Blank/Dup # Contamination COMMENTS Location: Pred porrying. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qto vein + FeDy (In - Poly House), be a few forms of the contamination of the contaminatio		,
Grid N/E Line #/Station # Elevation Sample Type Sample Collection Std./Blank/Dup # Contamination COMMENTS Location: Property Pee porring. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qto vein + FeD (In Party) A vein necessary In pit, a vein - I ft. thick vust extended due to leached for abundance.	Quad/Min	MOWKIEIVIS HEALTH LI
Elevation Sample Type Rock Soil Sediment Standard Blank Sample Collection Std./Blank/Dup# Contamination COMMENTS Location: Property Per working. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Property Per vein + FeDx (In Party) A vein vector (ID - 20 ft thick), be boild by Ininor FeDx Standard In pit, a vein - I ft, thick vustication, alteration, alteration, but the leached for about th	T/R/S/Qtrs	TIMEN RITION ZIG ISW
Sample Type Sample Collection Std./Blank/Dup# Contamination COMMENTS Location: Property plant of the property of the prop	Grid N/E	LILLIU HILI
Sample Type Sample Collection Std./Blank/Dup# Contamination COMMENTS Location: Property Dee porrowy. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qto vein + FeDy (Imp. Polythick), be a polythick of the polythick o	Line #/Station #	
Sample Collection Std./Blank/Dup# Contamination Single Site Composite Sites Duplicate Replicate Replicate Std./Blank/Dup# Contamination absent weak moderate strong COMMENTS Location: Property of My Outchop Dee Morring Dee Morring Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Of vein + FeDy (Improperty) Great weak moderate strong COMMENTS Location: Property of Chapter of Contamination, etc.) Of vein + FeDy (Improperty) Great was a february Location: Property of Close of Contamination, etc.) Great was a february Location: Property of Close of Contamination, etc.) Great was a february Location: Property of Close of Contamination, etc.) Great was a february Location: Property of Comments FeDy (Improperty) FeDy (Improperty) Location: Property of Comments Great was a february Location: Property of Comments FeDy (Improperty) Location: Property of Comments Great was a february Location: Property of Comments FeDy (Improperty) Location: Property of Comments Great was a february Location: Property of Comments Great was a february Location: Property of Comments Great was a february Location: Property of Comments Location: Prope	Elevation	[[feet]
Contamination absent weak moderate strong COMMENTS Location: Property pit of outcome. W Dee working. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.) Qto vein + FeDy (In po) - Horizon, Structure, Contamination, etc.)	Sample Type	Rock Soil Sediment Standard Blank
Contamination absent weak moderate strong COMMENTS Location: Property fit of outcome. W Dee poorting. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.) Qto vein + FeDx (fin p) - Horizon, Structure, Contamination, etc.)	Sample Collection	Single Site Composite Sites Duplicate Replicate
COMMENTS Location: Propert pit w outering. Dee working. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Otto vein + FeDx (Fin p) - Horizon, Structure, Contamination, etc.) Green nearly (10-20 ft thick), be built by minor FeDx staining. In pit, g-vein ~ I ft. thick vustices the pit.	Std./Blank/Dup #	
Location: Propert pit w outerup - W Dee working. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Ota vein + FeDx (Fm. pg) - Haring rein nearly (10-20 ft thick), be built by minor FeDx staining. In pit, g-vein ~ I ft thick vusterations of the pit, g-vein ~ I ft thick vusterations. Extended due to leached pg, abundance.	Contamination	absent weak moderate strong
Dee working. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qto vein + FeDx (Im po) - Horizon, Agreement nearly (10-20 ft thick), & build by minor FeDx stauring In pit, q-win ~ I ft. thick vugstextwood due to leached po, asunda. External due to leached po, asunda.		COMMENTS -
Dee Morring. Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) Qto vein + FeDx (Sm. pg) - Horizon, Agreement neverty (10-20 ft thick), & build my minor FeDx staining. In pit, quein ~ I ft. thick vugstextwised due to leached pg, abundance.	Location: Proper	t Pit my outerus - W =
Qto vein + FeDx (Sm. pg) - Horing- g-vein nearly (10-20 ft thick), be built by minor FeDx staining In pit, g-vein ~ I ft. thick vugs textured due to leached pg, abunda- eox		
givein nearly (10-20 ft thick), & builty by minor Febx staining In pit, givein ~ I ft. thick vust featured due to leached pop abunda-	Dec Wolls	- 47
givein nearly (10-20 ft thick), & builty by minor Febx staining In pit, givein ~ I ft. thick vust featured due to leached pop abunda-	•	neralization, Alteration, Structure, Contamination, etc.)
Enj by minor Feox staining In pit, given ~ 1 ft. thick vugs textured due to leached po, abundanted	Description: (Lithology, Mir	- m 1
In pit, given - 1 ft. thick, vugs textured due to leached pop abunda. Teax	Description: (Lithology, Mir	FeDx (flor Pa) - Hais
In pit, given ~ 1 ft. thick, vugs textured due to leached po, abunda.	Description: (Lithology, Mir Oty Vein + g-vein necer-	FeDx (fm. pg) - Hais , (10-20 f+ thick), bu
textured due to leached Po, abunda.	Description: (Lithology, Mir Oty Vein + g-vein necer-	FeDx (fm. pg) - Hais , (10-20 f+ thick), bu
ex	Description: (Lithology, Mir Oto vein + g-vein neurb only by Irino	FeDx (flor pg) - Hair (10-20 ft thick), but ir FeDx staining
eòx	Description: (Lithology, Mir Ota vein + g-vein necer-s buil by Inina In pit, g-1	FeDx (flow pg) - Hair (10-20 ft thick), but or FeDx staining nein ~ 1 ft. thick vuggs
,	Description: (Lithology, Mir Ota vein + g-vein necurbania by Inina In pit, g-1	FeDx (flow pg) - Hair (10-20 ft thick), but or FeDx staining nein ~ 1 ft. thick vuggs
	Description: (Lithology, Mir Ota vein + g-vein near-banks built by Inina In pit, g-1 textured die t	FeDx (flow pg) - Hair (10-20 ft thick), but or FeDx staining nein ~ 1 ft. thick vuggs

WESTMONT MINING	SAMPLE RECORD Nº 00611
Project Name	Mothave Wash
Project ID #	ETH.
Sampler's Initials	
Date	<u>06 26 89 (mo/day/yr)</u>
	LOCATION —
Quad/Min	MONKEYIS HEAD
T/R/S/Qtrs	III 3-14 R11710 26 SE
Grid N/E	
Line #/Station #	
Elevation	[[feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	- COMMENTS
	crop at Wend of trench
at Dee w	Orking
Description: (Lithology	, Mineralization, Alteration, Structure, Contamination, etc.)
-	+ chl wern in alt grains
	6" wide in religie of
mica (chili)	+ Feox zone bordering vein
	by 3-6" wide
Vein thend	5 Ε-W, 90°

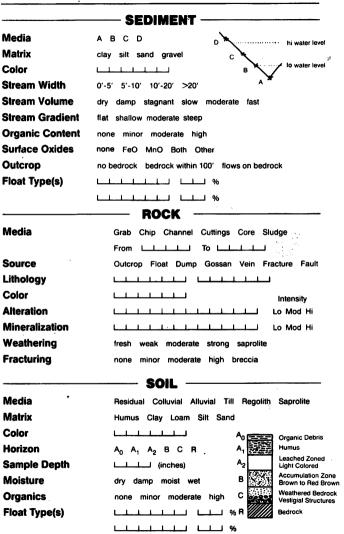
0

B

Angle LLL °

Slope

WESTMONT MINING	SAMPLE RECORD Nº 00612
Project Name	Mahave Weah
Project ID #	
Sampler's Initials	HMM
Date	DE 29 87 (mo/day/yr)
	— LOCATION —
Quad/Min	MONIKEYISI HIEADU LILLI
T/R/S/Qtrs	TI/12W 1R/17W 1260 5W
Grid N/E	
Line #/Station #	
Elevation	L (feet)
Sample Type	Flock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	— COMMENTS —
Location: West	end of French at Dee
	, Mineralization, Alteration, Structure, Contamination, etc.)
Gneise(?) -	highly alt feld - days
610+(3) -=	highly alt feld - clays, Feb, 2nd musicour.)
	,
	·


WESTMONT MINING	SAMPLE RECORD \mathbb{N}^{9} 0061
	SEDIMENT
Media	A B C D
Matrix	clay silt sand gravel
Color	B lo water level
Stream Width	0'-5' 5'-10' 10'-20' >20'
Stream Volume	dry damp stagnant slow moderate fast
Stream Gradient	flat shallow moderate steep
Organic Content	none minor moderate high
Surface Oxides	none FeO MnO Both Other
Outcrop	no bedrock bedrock within 100' flows on bedrock
Float Type(s)	<u></u>
	<u> </u>
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From L.J.J.J. To L.J.J.J
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	LI Intensity
Alteration	LI LI LI LI LI LI LO MODI HI
Mineralization	L. Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia

Residual Colluvial Alluvial Till	Regolith	Saprolite
Trooleda Condita Tinatia Tin	1.090	oup. oo
Humus Clay Loam Silt Sand	l	
	<u>م</u>	Organic Debris
A ₀ A ₁ A ₂ B C R	Α,	Humus
(inches)	A ₂	Leached Zoned Light Colored
dry damp moist wet	В	Accumulation Zone Brown to Red Brow
none minor moderate high	C	Weathered Bedrock Vestigial Structures
	Humus Clay Loam Silt Sand	dry damp moist wet B

Slope

Float Type(s)

WESTMONT MINING	SAMPLE RECORD Nº 00613
Project Name	Mohave Wach
Project ID #	
Sampler's Initials	HAM
Date	OL 29 BG (mo/day/yr)
	LOCATION
Quad/Min	MONKEYS HEAD
T/R/S/Qtrs	TIZN RITH I
Grid N/E	
Line #/Station #	
Elevation	[(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
Contamination Location: Treince	— COMMENTS —
Location: Trenc	— COMMENTS —
Location: Trenc Description: (Lithology, Brecourte	Mineralization, Alteration, Structure, Contamination, etc.) A g - FeOx Very Inc and
Location: Trenco Description: (Lithology, Brecourter Lascutt	Mineralization, Alteration, Structure, Contamination, etc.) L. g. Felly Very In all basalt dike cuts
Description: (Lithology, Brecoate basedt Shein; div	Mineralization, Alteration, Structure, Contamination, etc.) L. g. Felix Vern In all basalt dike cuts L. 2 m. 102", 75.1
Description: (Lithology, Brecolate basedt Shelin; div	Mineralization, Alteration, Structure, Contamination, etc.) L. g. Felix Vern In all basalt dike cuts L. 2 m. 102", 75.1
Description: (Lithology. Brecolates basalt - Gnew, dire	COMMENTS In Mineralization, Alteration, Structure, Contamination, etc.) If of Ferry Very In all basalt dike cuts In 2m, 102", 75.5 Impolitized, in vicinity of
Description: (Lithology. Brecolates Basalt - Ghair; dir Dike is p Ghair hein-	Mineralization, Alteration, Structure, Contamination, etc.) L. g. Felix Very In all basalt dike cuts

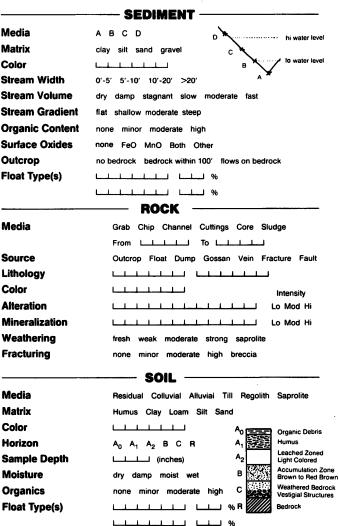
Direction L

Angle LLL °

Slope

J. L. DARLING

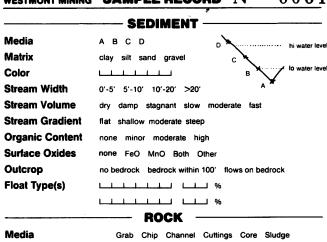
SAMPLE RECORD Nº 00614 WESTMONT MINING Mahawa Waster I I **Project Name** Project ID # Sampler's Initials DL 20 189 (mo/day/yr) Date LOCATION MONIKE VIS HIERIAL L Quad/Min JI/2 N RILIZED BBI NEW T/R/S/Otrs Grid N/E Line #/Station # Elevation (feet) Sample Type Rock Soil Sediment Standard Blank Sample Collection Single Site Composite Sites Duplicate Replicate Std./Blank/Dup# Contamination absent weak moderate strong Location: Small WDSKings W of Fasiona Wash, Whit see To Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.) QL, vein + FeOx + In 200 Cu min La highly brecciated by fragment of act (propylitized) basalty Otr vein + basist out green strein is mucherately act adjacent to bosalt a gts. to Ou in trem - tury (3), chry
From at least in part after PS

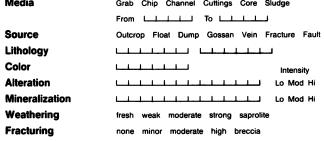

Direction L

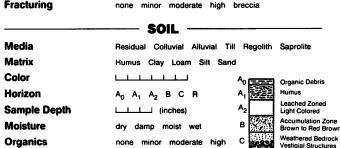
Angle LLL °

Slope

J. L. DARLING TACOMA, WA


WESTMONT MINING	SAMPLE RECORD Nº 0061
Project Name	Mohane hasibi
Project ID #	
Sampler's Initials	HAGM
Date	மி பி பி பி பி (mo/day/yr)
	— LOCATION —
Quad/Min	MONIKEYS HEAD
T/R/S/Qtrs	TILIZA RITU BIB NW
Grid N/E	
Line #/Station #	
Elevation	L_L_L_L_(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup #	
Contamination	absent weak moderate strong
Wach, White Description: (Lithology, Green; — a W/TaOx or	Mineralization, Alteration, Structure, Contamination, etc.) Li (avgillized) + Hacture Fractures, walling to G-121111 + 60-621
OT WE TAKE	




Angle L

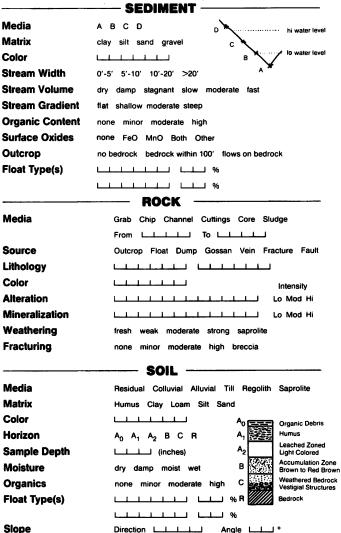
Slope

WESTMONT MINING	SAMPLE RECORD Nº 00616				
Project Name	Moliphine Wards				
Project ID #					
Sampler's Initials	运玩 H				
Date	PE 3D Bil (mo/day/yr)				
	LOCATION				
Quad/Min	MIDINIKIEIYISI HIEMIDI				
T/R/S/Qtrs	TILIZINI IRILIZINI 331 WE				
Grid N/E					
Line #/Station #					
Elevation	[
Sample Type	Rock Soil Sediment Standard Blank				
Sample Collection	Single Site Composite Sites Duplicate Replicate				
Std./Blank/Dup#					
Contamination	absent weak moderate strong				
Location: Prosp West	- COMMENTS - Jide of Palone				
~ I	Mineralization, Alteration, Structure, Contamination, etc.) Species Out minor chrygocolla, cpy act po fractured, breceinled in				
	.				

Angle L__L

Float Type(s)

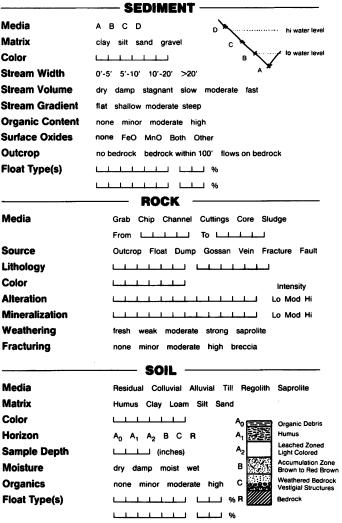
Slope


WESTMONT MINING	SAMPLE RECORD Nº 00617		
Project Name	Mohave Wash		
Project ID #			
Sampler's Initials	HIMM		
Date	DE 30 BS (mo/day/yr)		
	— LOCATION ————		
Quad/Min			
T/R/S/Qtrs	TILIZIN RILIZIN 13131 NIE		
Grid N/E			
Line #/Station #			
Elevation	L_L_L_L (feet)		
Sample Type	Rock Soil Sediment Standard Blank		
Sample Collection	Single Site Composite Sites Duplicate Replicate		
Std./Blank/Dup#			
Contamination	absent weak moderate strong		
	- COMMENTS -		
Location: Outcrop along tributary wash Wy Palima Wash			
V	Aineralization, Alteration, Structure, Contamination, etc.)		
Greiss - alt * minor g-veins			
4> feld -> class+ser,			
dine- p	>5 (-> Fe 0x)		
gneirs en	I by minor gto-Fellx-ser		
W 2007	assive at were		
	ices and snears nearly		

Angle L

Slope

J L DARLING

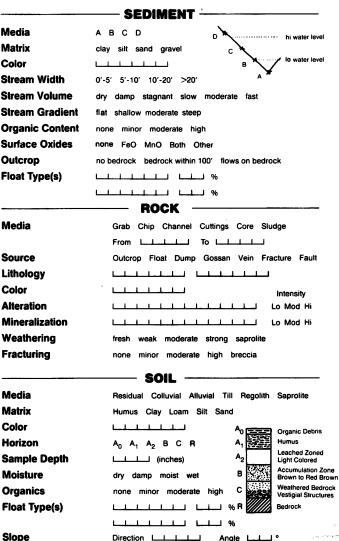

WESTMONT MINING	SAMPLE RECORD Nº 00618
Project Name	Mohame Warch
Project ID #	
Sampler's Initials	EJH
Date	OLA 3.0 B.S. (mo/day/yr)
	LOCATION
Quad/Min	
T/R/S/Qtrs	TILIZINI RILIZIN 13131 MIE
Grid N/E	
Line #/Station #	
Elevation	L (feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	- COMMENTS
Location: Out C	nop in tributary wash, the of
Palisma W	ash.
Description: (Lithology,	Mineralization, Alteration, Structure, Contamination, etc.)
_	abundant Felx along
Fracture s	curfaces in q, in pant
•	timed due to leached py,
q-FeDx-se	- fractures, quein (10ft.
thick!) in s	nein

J. L. DARLING

WESTMONT MINING	SAMPLE RECORD Nº 00619
Project Name	Moham West
Project ID #	
Sampler's Initials	EJE
Date	D.6, 39, 85, (mo/day/yr)
	LOCATION
Quad/Min	
T/R/S/Qtrs	TI'ZK RIJKW BB WIE
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
Location: Outo	crop of very in thench,
_	, Mineralization, Alteration, Structure, Contamination, etc.)
Qtz-rem	cutting snew
L> +	Feox, Feox ser culting
F	Lyin part, at levi, from
Py, Vussy	textured from leached
アン	
Vem tre	ndo 250°

WESTMONT MINING

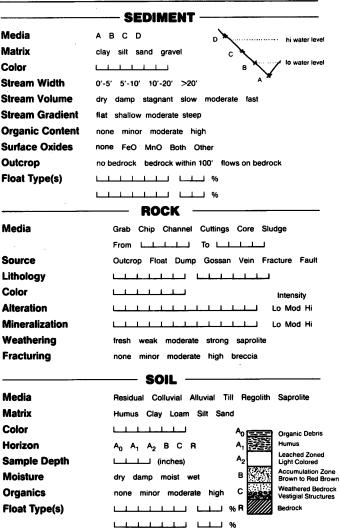
Direction L


Angle L

Slope

TACOMA WA

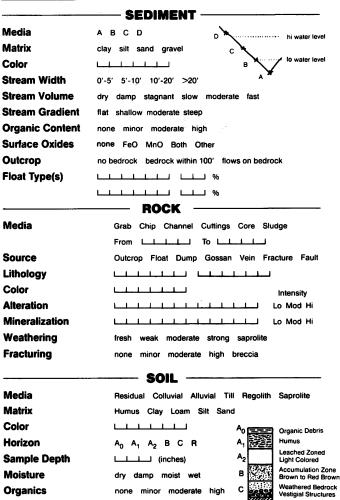
WESTMONT MINING	SAMPLE RECORD Nº 0062		
Project Name Project ID #	Mahare Mass		
Sampler's Initials Date	17,14/1 2,4 3,0 18,5 (mo/day/yr)		
LOCATION			
Quad/Min T/R/S/Qtrs	T1/2W 121/2W 1313 NE		
Grid N/E			
Line #/Station #			
Elevation	(feet)		
Sample Type	Rock Soil Sediment Standard Blank		
Sample Collection	Single Site Composite Sites Duplicate Replicate		
Std./Blank/Dup #			
Contamination	absent weak moderate strong		
Location: Same	COMMENTS ————————————————————————————————————		
Description: (Lithology	, Mineralization, Alteration, Structure, Contamination, etc.)		


Green - alt, similar to 617, cut by gfz voin

Angle LLL °

9843

Project Name Project ID # Sampler's Initials Date	EIIII Dib 30 88 (mo/day/yr)
Sampler's Initials	
_	
Date	DG 30 8A (mo/day/yr)
	- LOCATION
Quad/ Min	
T/R/S/Qtrs	Tuk Luk u
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
Location: Occtor	op on ridge
Description: (Lithology, M CQ fz vein Ls	in filiated green, + Minor Tella (hem + Rin)


Angle L____°

Slope

J. L. DARLING

9842

WESTMONT MINING	SAMPLE RECORD Nº 00622
Project Name Project ID # Sampler's Initials Date	Michaire March, HMX, S.G. B.D. B.S. (mo/day/yr)
	— LOCATION ————
Quad/Min	
T/R/S/Qtrs	
Grid N/E	
Line #/Station #	
Elevation	L (feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
Wash	propert pit, Paloma
	, Mineralization, Alteration, Structure, Contamination, etc.)
Otz-py	(-> FeOx) - ser, veins in sixtized) gners (?)

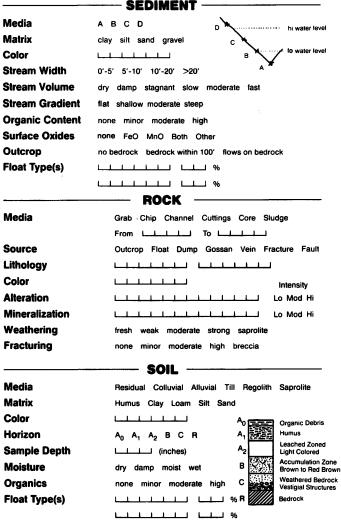
Float Type(s)

Slope

J. L. DARLING TACOMA, WA

Bedrock

Angle LLL °

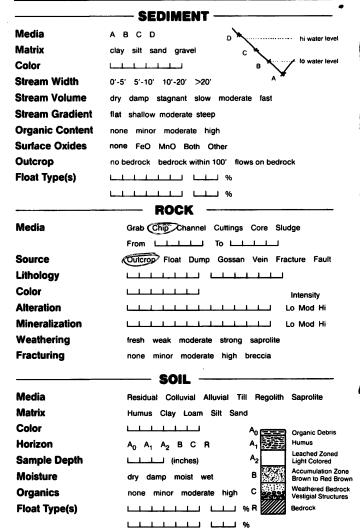

WESTMONT MINING	SAMPLE RECORD Nº 0062
Project Name	
Project ID #	
Sampler's Initials	EA14
Date	(mo/day/yr)
	LOCATION
Quad/Min	
T/R/S/Qtrs	
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	<u> </u>
Contamination	absent weak moderate strong
	- COMMENTS
Location:	

Description: (Lithology, Mineralization, Alteration, Structure, Contamination, etc.)

	SEDIMENT
Media	A B C D
Matrix	clay silt sand gravel C
Color	B to water level
Stream Width	0'-5' 5'-10' 10'-20' >20'
Stream Volume	dry damp stagnant slow moderate fast
Stream Gradient	flat shallow moderate steep
Organic Content	none minor moderate high
Surface Oxides	none FeO MnO Both Other
Outcrop	no bedrock bedrock within 100' flows on bedrock
Float Type(s)	<u></u>
	<u></u>
	ROCK
Media	Grab Chip Channel Cuttings Core Sludge
	From L.L.L.I To L.L.L.L
Source	Outcrop Float Dump Gossan Vein Fracture Fault
Lithology	
Color	Intensity
Alteration	Lo Mod Hi
Mineralization	L. L. L. L. L. L. Lo Mod Hi
Weathering	fresh weak moderate strong saprolite
Fracturing	none minor moderate high breccia
•	
	SOIL —
Media	Residual Colluvial Alluvial Till Regolith Saprolite
Matrix	Humus Clay Loam Silt Sand
Color	A ₀ Granic Debris
Horizon	A ₀ A ₁ A ₂ B C R A ₁ Humus
Sample Depth	Leached Zoned Light Colored
Moisture	dry damp moist wet B Accumulation Zon
Organics	none minor moderate high C Weathered Bedroot Vestigial Structure
Float Type(s)	Bedrock
	<u> </u>

Slope

WESTMONT MINING	SAMPLE RECORD Nº 0062
Project Name	mobale wash
Project ID #	
Sampler's Initials	IMH
Date	OTO OIL SI (mo/day/yr)
	LOCATION
Quad/Min	
T/R/S/Qtrs	
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std Blank/Dup #	Z.RD.
Contamination	absent weak moderate strong
	COMMENTS -
Location:	
Description: (Lithology	r, Mineralization, Alteration, Structure, Contamination, etc.)
Standar.	d
RD-D	-
KD->	14



Angle L

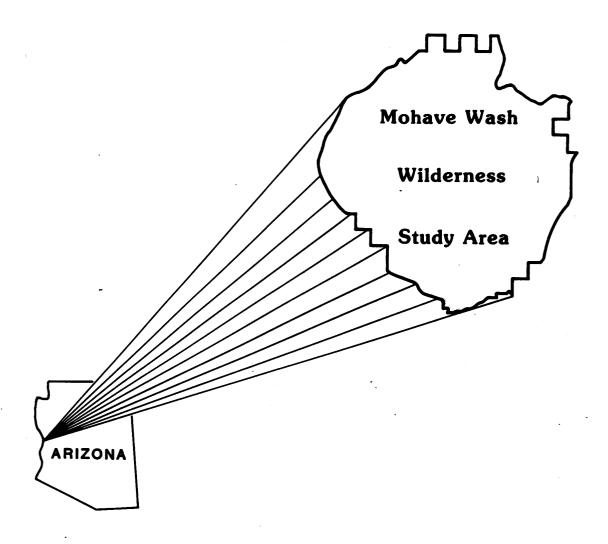
Slope

9842

Project Name	molhalle wash
Project ID #	
Sampler's Initials	TINH
Date	0.7 01 89 (mo/day/yr)
	LOCATION -
Quad/Min	modikieyisi Heraidi L
T/R/S/Qtrs	Tuzwi Ruju izili siw
Grid N/E	
Line #/Station #	
Elevation	(feet)
Sample Type	(Rock Soil Sediment Standard Blank
Sample Collection	Single Site Composite Sites Duplicate Replicate
Std./Blank/Dup#	
Contamination	absent weak moderate strong
	— COMMENTS —
Location:	
Description: (Lithology	Mineralization, Alteration, Structure, Contamination, etc.)
- A	
ved Class	2 along side of
Vein Spel	Red color iRon?
niverte St.	we shout with
mica a pin	a mous win
mich & pin	let gross falling

Angle L_____ °

Slope


J. L. DARLING TACOMA, WA

9842

Mineral Land Assessment Open File Report/1989

Mineral Resources of the Mohave Wash Wilderness Study Area (AZ-050-007C/048/020-052), Mohave County, Arizona

BUREAU OF MINES
UNITED STATES DEPARTMENT OF THE INTERIOR

MINERAL RESOURCES OF THE MOHAVE WASH WILDERNESS STUDY AREA (AZ-050-007C/048/ 020-052), MOHAVE COUNTY, ARIZONA

by

John R. McDonnell, Jr.

MLA 2-89 1989

Intermountain Field Operations Center Denver, Colorado

JUN 2 2 1989

UNITED STATES DEPARTMENT OF THE INTERIOR Manuel Lujan, Jr., Secretary

BUREAU OF MINES T S Ary, Director

PREFACE

The federal Land Policy and Management Act of 1976 (Public Law 94-579) requires the U.S. Geological Survey and the U.S. Bureau of Mines to conduct mineral surveys on certain areas to determine the mineral values, if any, that may be present. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results of a mineral survey of the Mohave Wash Wilderness Study Area (AZ-050-007C/048 020-052), Mohave County, Arizona.

This open-file report summarizes the results of a Bureau of Mines wilderness study. The report is preliminary and has not been edited or reviewed for conformity with the Bureau of Mines editorial standards. This study was conducted by personnel from the Resource Evaluation Branch, Intermountain Field Operations Center, P.O. Box 25086, Denver Federal Center, Denver, CO 80225.

CONTENTS

· ·	<u>Page</u>
Summary	1
Introduction	2
Location and access	3
Previous studies	5
Methods of investigation	5
Acknowledgments	6
Geographic and geologic setting	6
Mining history	7
Oil and gas	10
Mineral resource appraisal	10
Paloma district	10
JJ&C area	12 .
Mohave area	14
Placer gold	14
Perlite	15
Sand and gravel	15
Conclusions	16
Recommendations	17
References	18
ILLUSTRATIONS	
Plate 1. Mine and prospect map of the Mohave Wash Wilderness Study Area	at back
Figure 1. Index map of the Mohave Wash Wilderness Study Area	4
2. Mining and mineral districts in and near the Mohave Wash Wilderness Study Area	8

ILLUSTRATIONS--Continued

	•		<u>Page</u>
Figure	3.	Map showing oil and gas leases in the Mohave Wash Wilderness Study Area	. 11
	EXPL	ANATION, SYMBOLS, AND ABBREVIATIONS USED IN FIGURES 4-13	20
4	4-13.	Maps and sample data for:	
	4.	Main workings in the JJ&C area	21
	5.	Adit and decline west of main JJ&C workings	23
	6.	Adit and trench in Pacos area	24
	7.	Adit in Golden Slipper area	25
	8.	Adits in Rincon #1 area	26
	9.	Tunnel and adit in Mohave area	27
	10.	Workings and prospects on a quartz vein in Mohave area	28
	11.	Workings on the Dee claims	29
	12.	Workings near the Manitowoc Mine	30
	13.	Workings in the Evelyn Lode area	31
		TABLES	
	1.	Summary of mines, prospects, and mineral occurrences in and near the Mohave Wash Wilderness Study Area	32
	2.	Analytical data for samples not shown in figures 4-13 and table 3	36
	3.	Laboratory furnace test results of perlite sample	40
		UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT	
	o ft in. ppb ppm	part per billion oz/st troy ounce per short ton (2,000	1b)

MINERAL RESOURCES OF THE MOHAVE WASH WILDERNESS STUDY AREA (AZ-050-007C/048/ 020-052), MOHAVE COUNTY, ARIZONA

by

John R. McDonnell, Jr.

SUMMARY

The Mohave Wash Wilderness Study Area comprises 104,605 acres in Mohave County, Arizona. In 1987, the Bureau of Mines conducted a mineral investigation of the study area as requested by the Bureau of Land Management and authorized by the Federal Land Policy and Management Act of 1976 (Public Law 94-579). In April 1988, the area was recommended nonsuitable for wilderness by the Bureau of Land Management, due in part to land status problems and the identification of mineral resources by the Bureau of Mines. This report presents the results of the Bureau's investigation. The Bureau reviewed and assembled literature related to mineral resources and mining activity, and conducted a field examination of mines, prospects, and mineral occurrences inside and near the study area.

The Paloma mining district covers about 15 mi² in the south-central part of the study area and contains numerous quartz veins. Field observations and sample analyses indicate that some of the veins are gold-bearing and that gold resources are likely to exist throughout the district. Two mineralized veins had sufficient gold content and continuous extent to estimate resources; one contains 1,000 short tons of indicated resources averaging 0.06 ounces of gold per short ton and the other contains 250 short tons of indicated and 300 short tons of inferred resources averaging 0.16 ounces of gold per short ton. The low resource value of each vein (\$16,000-\$35,000 at \$400 per ounce of gold) would make commercial extraction subeconomic and any future mine development would probably be limited to individual small-scale operations.

An unpublished Arizona Department of Mineral Resources report and the presence of lode gold indicate that a placer gold deposit is likely to exist in drainages in the Paloma district. Information supplied by claimants shows prospecting results favorable for the occurrence of placer gold along the eastern flank of the study area, and Bureau analytical data suggest placer gold could occur along the eastern and western flanks.

Perlite occurs in the northeastern part of the study area and tests of a sample showed that the material was suitable for use in some expanded perlite end-products. The low quality, remoteness, and small exposure size, however, make the perlite not commercially competitive and it is not considered a resource.

Sand and gravel occurs in drainages and low-lying areas throughout the study area. A study in 1986-87 by the Arizona Department of Transportation concluded that material adjacent to the northwestern study area boundary is moderate road gravel quality and may be used for future highway rebuilding. Resources of sand and gravel of similar quality are likely to be present inside the study area, but sufficient material exists outside to meet current and near future needs.

As of 1987, Bureau of Land Management files show a checkerboard-like covering of the study area by oil and gas leases. No oil and gas discoveries or shows have been reported in the area, and an evaluation by the U.S. Geological Survey rated the study area as having "low to zero" potential.

INTRODUCTION

In February, March, and September 1987, the Bureau of Mines, in cooperation with the U.S. Geological Survey (USGS), conducted a mineral investigation of the Mohave Wash Wilderness Study Area (WSA), Mohave County,

Arizona. The WSA comprises 104,605 acres of public land managed by the Bureau of Land Management (BLM) Yuma District Office. In April 1988, the BLM changed the status of the study area to nonsuitable for wilderness, due in part to land status problems and the identification of mineral resources by the Bureau of Mines. The USGS and Bureau of Mines completed their studies in order to provide minerals information necessary to the Congressional wilderness process.

The Bureau surveyed and studied mines, prospects, and mineral occurrences to appraise reserves and identified subeconomic resources. The USGS assesses the potential for undiscovered mineral resources based on regional geological, geochemical, and geophysical surveys. This report presents the results of the Bureau's study, which was completed prior to the USGS assessment. The USGS will open file the results of their studies separately. A joint USGS-Bureau report, to be published by the USGS, will integrate and summarize the results of both studies.

Location and access

The WSA is in west-central Arizona, about 11 mi east to southeast of Lake Havasu City (fig. 1). The area boundary is irregular, commonly following improved and unimproved roadways, and section lines. About 17 sections in the interior of the study area are excluded from wilderness consideration because of railroad— and state—grant inholdings (pl. 1).

Primary access is from the west by the unimproved Dutch Flat Road, which exits State Highway 95 about 10 mi southeast of Lake Havasu City and follows Standard Wash. Nonmaintained roads in washes, and four-wheel-drive (jeep) and foot trails provide access within the WSA.

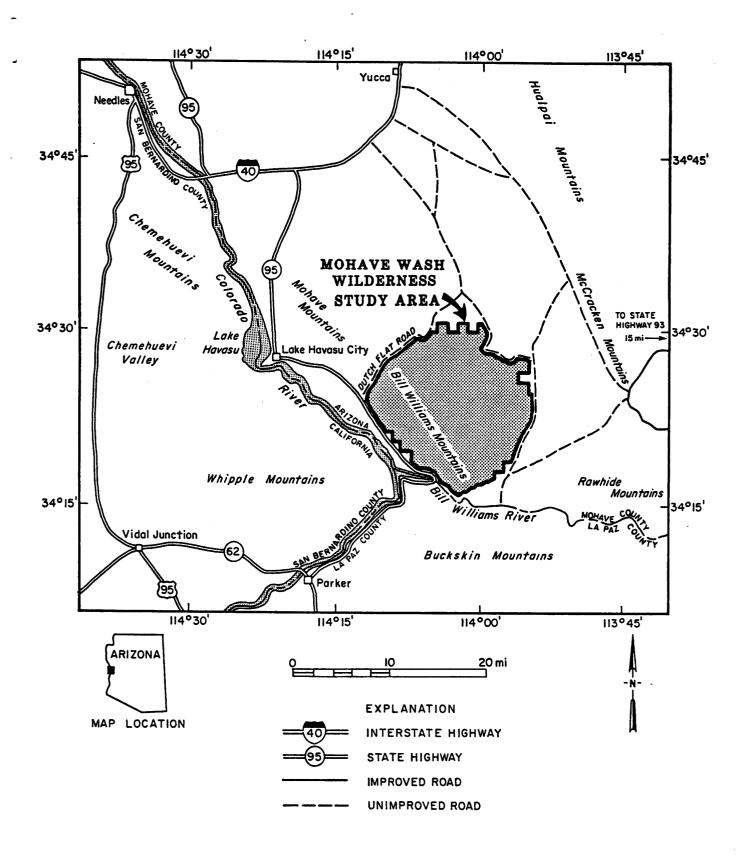


Figure 1.--Index map of the Mohave Wash Wilderness Study Area, Mohave County, Arizona.

Previous studies

Since the late 1970's, the region that includes the WSA has been the subject of numerous private, State, and Federal mineral related studies, conferences, and publications. A majority of the work was directed toward mineralization related to metamorphic core complexes and (detachment) faults. Much of the pre-1982 information was summarized and discussed in "Mesozoic-Cenozoic Tectonic Evolution of the Colorado River Region, California, Arizona, and Nevada" (Frost and Martin, 1982), which was published in conjunction with a symposium and field trips for the Geological Society of America. A more recent digest, "Frontiers in Geology and Ore Deposits of Arizona and the Southwest" (Beatty and Wilkinson, 1986), presented the proceedings of a symposium sponsored by the Arizona Geological Society, and updates and compliments some of the earlier information.

Mineral resource investigations of the Crossman Peak (Light and others, 1983; Light and McDonnell, 1983; 1987), and Aubrey Peak (Lane, 1988) WSA's, which respectively are near the northwestern and eastern sides of the Mohave Wash study area, were completed by the USGS and Bureau of Mines.

Methods of investigation

Background research included a review of literature related to the mineral resources and mining activity in and near the WSA. Mining claim information and land status records were obtained from the BLM State Office in Phoenix, Arizona. Minerals information and production data were assembled from Bureau files and other sources.

Four Bureau geologists spent 38 field-days examining mines, prospects, and mineral occurrences inside and near the WSA. The field work included examinations using helicopter, four-wheel-drive vehicle, and foot traverses of

the area. Mining claim locations and mineral occurrences were examined, and workings within the study area were surveyed by tape-and-compass method, mapped, and sampled.

A total of 188 samples was collected from workings and mineralized areas. Samples were analyzed for 34 elements by induced neutron activation and for bismuth, copper, lead, molybdenum, manganese, and silver by D. C. plasma emission spectrometry. Selected samples were also analyzed for gold by fire assay, mercury by cold vapor atomic absorption, and barium by X-ray fluorescence. Analyses were performed by Bondar-Clegg, Inc., Lakewood, Colorado. One sample was taken from a perlite outcrop and was tested for quality by The Perlite Corp., Chester, Pennsylvania. Sample data are summarized in this report and complete sample data are available for public inspection at the Bureau of Mines, Intermountain Field Operations Center, Building 20, Denver Federal Center, Denver, Colorado.

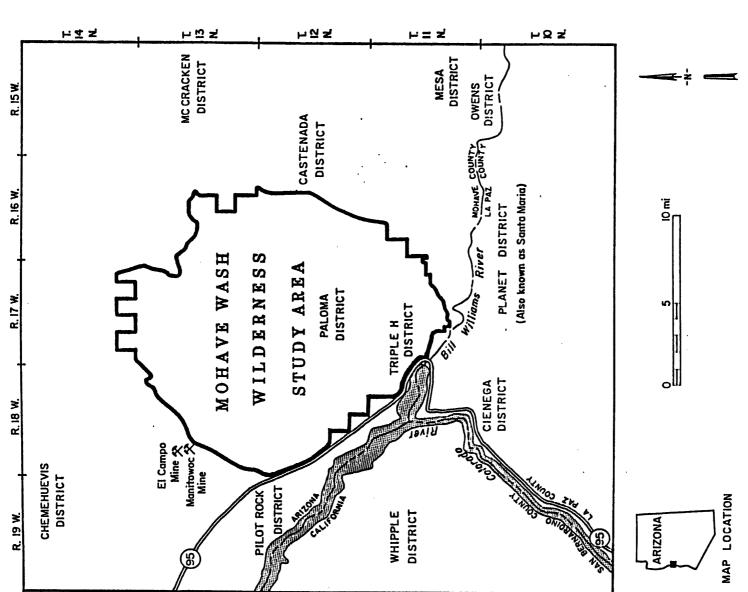
Acknowledgments

Appreciation is extended to claimants Milton Fuller, S. Everett Ashcraft, and D. E. and Elizabeth Row for prospecting and sampling information, and to R. W. Krohn, Arizona Department of Transportation for furnishing information concerning the sand and gravel evaluation in Standard Wash adjacent to the WSA.

Geographic and geologic setting

The Mohave Wash WSA is in the Sonoran Desert section of the Basin and Range physiographic province. Terrain consists of the rugged Bill Williams Mountains, flanking bajadas, and dissecting alluviated washes, which are as

^{1/} Ag, As, Au, Ba, Br, Cd, Ce, Co, Cr, Cs, Eu, Fe, Hf, Ir, La, Lu, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sn, Ta, Tb, Te, Th, U, W, Yb, Zn, and Zr.


wide as 1/2 mi. Elevations range from about 460 ft along the Bill Williams River at the southern end of the study area to 2,960 ft on Black Mountain at the northern end.

Rocks in the area consist mainly of Precambrian-age gneiss and schist that have been intruded by Cretaceous(?)-age diorite and granodiorite. The Precambrian and Cretaceous rocks were subsequently intruded by Tertiary-age dikes and are overlain nonconformably by Tertiary volcanic and sedimentary strata. Quaternary-age, poorly sorted, unconsolidated fanglomerates and fluvial sands and gravels cover the flanks of exposed older rocks and fill washes. (See Howard and others, 1982; and Pike and Hansen, 1982.)

The area is structurally complex and lies within a terrane characterized by Tertiary low-angle normal (detachment) faults. Detachment faults have been mapped to the southeast in the Rawhide-Buckskin Mountains, to the southwest in the Whipple Mountains, and to the northwest in the Chemehuevi Mountains. No detachment faults have been mapped in the study area, but Howard and others (1982, p. 378) projected the Whipple Mountains detachment fault beneath the range that includes the study area. High-angle faults in the study area are believed to be related to the detachment fault displacement. (See Howard and others, 1982.)

MINING HISTORY

Prospecting and mining have taken place intermittently in the vicinity of the WSA since the 1860's. There are, however, no formal mining districts or recorded production from inside the area. Figure 2 shows the locality of, and production data for, mining and mineral districts in the vicinity. The Paloma and Triple H districts are shown in the WSA, but respectively are a locally established name and a reported mineral occurrence, neither of which has had recorded production.

PRODUCTION DATA FOR MINING AND METALLIC MINERAL DISTRICTS IN AND NEAR THE MOHAVE WASH WILDERNESS STUDY AREA. [---, unknown. Data compiled from Ariz. BuHines, 1969; Keith, 1978; Keith and others, 1983; Moyle and Gabby, 1985; Ridenour and others, 1982b; and Wodzicki and others, 1982.] 3,000 10,000 24,606 3,364 699,000 Silver (oz) Manganese (1b) 40,000 to 80,000. 237,500 (minor) (minor) Commodity Lead M 63,000 27,000 288 3,031,000 , 000 L 12,000 9 1,128 5 Gold (oz) 10,000 500 1,834,000 3,000 45,350,000 Copper (1b) Ore tonnage (st) 1,500 19,000 Ξ 173,000 330 1,405,000 800 1913-1958 1870-1974 1911-1981 1862-1974 1921-1956 Year(s) Owens 19 (Includes Silver Streak Mine.) Planet (Also known as Santa Maria.) Chemehuevis Pilot Rock Mining or mineral district **McCracken** Castenada Cienega Pa Joma Hesa

Minerals in stringers, pods, and lenses in gneiss and schist near granite and dikes. Also produced: 148 st units tungsten and minor placer gold.

Minerals occur as replacement bodies associated with faults, fractures, and shear zones in metamorphosed limestones, shales, and quartzites.

Also minor placer gold production.

Minerals occur in fissure veins in diorite and pegmatite. Also produced: zinc, 43,000 lb; molybdenum, 100 lb.

Minerals occur in pods, seams, and veinlets in a shear zone and in limestone, sandstone, and basalt.

Manganese occurs in beds and fracture zones in sandstone in the Artillery Formation or similar strata.

districts in and near the Mohave Wash Wilderness Study Area, Mohave County, Arizona. Figure 2.--Mining and mineral

Minerals occur in small, irregular replacement bodies and veins along fault zones in carbonate rocks and gneiss. Also minor placer gold and silver production.

Minerals occur along hydrothermally altered low-angle fault system.

9,482

2,500

1,192

1,334

223,993

5,563

1906-1969

Whipple

Iriple H

(Includes Copper Basin Mine, 1930-1966.)

Uranium occurrence(?).

Manganese occurs in small en echelon fractures in veins and faults in basalt and sandstone near granite.

Gold, silver, and copper minerals occur in fissure veins in gneiss.

Minerals occur in fissure veins in complex of schistose diorite and pegmatite.

As shown in figure 2, copper, gold, lead, manganese, and silver are the primary metals produced from districts in the vicinity. The mineralization mainly occurred in veins or as replacement deposits associated with fault and fracture zones that have been attributed to regional tectonic activity. Mineral deposits in the Whipple and Buckskin Mountains have been related to detachment faulting. These deposits are the result of mineralizing fluids moving along fault conduits and brecciated zones serving as sites for deposition of the metals and gangue minerals. (See Lehman and others, 1987; Ridenour and others, 1982a; and Wilkins and Heidrick, 1982.)

The Manitowoc and El Campo Mines are just outside the northwestern WSA boundary (fig. 2). The Manitowoc Mine comprises three lode claims that were patented in 1910, but no production records were found. The main workings are inaccessible and the type of mineral occurrence is uncertain, but field observations suggest mineralized quartz veins. Light and McDonnell (1983, p. 96) reported that silver and gold, with minor lead and zinc were probably the metals recovered. The El Campo Mine was worked as a placer gold deposit during the 1930's. The workings were cut on a contact between a pebble conglomerate and Precambrian granodiorite in a paleochannel. No production is known, but Light and McDonnell (1983, p. 95) suggest some gold flakes and small nuggets may have been recovered. Field observations at the two mines revealed no evidence that the mineralized structures can be projected into the WSA.

Plate 1 shows the unpatented placer and lode mining claims that are located in the study area. No active mining operations were observed during the Bureau's field investigation, but Bureau data and correspondence with claimants indicate that prospecting and near-surface exploration (chiefly for gold) have been prevalent and are continuing in the WSA.

OIL AND GAS

No oil and gas discoveries or shows have been reported in or near the WSA, even though BLM files (as of 1987) show a checkerboard-like covering of the study area by oil and gas leases (fig. 3). The leasing was probably a response to speculation that the Idaho-Wyoming overthrust belt may extend into Arizona.

Ryder (1983) evaluated the petroleum potential of wilderness lands in Arizona on the basis of structural and petroleum geology derived from published literature. His evaluation (1983, p. C19) included the study area in a zone that was rated at "low to zero" potential because of the extensive exposures of metamorphic, plutonic, and volcanic rocks, which are not conducive to hydrocarbon accumulation.

MINERAL RESOURCE APPRAISAL

Mined and prospected localities in and near the WSA are shown on plate 1, and table 1 lists and summarizes the assessment of their physical and mineral resource characteristics. The Manitowoc and El Campo Mines were not reevaluated during this appraisal because they were examined previously by this author and are discussed by Light and McDonnell (1983). Localities that have identified resources or may be of special interest are further described in the following discussions.

Paloma district

Most of the mining activity in the study area has taken place in an area locally known as the Paloma district (pl. 1, samples 1-146). The district covers an area of about 15 mi² near the center of the WSA and predominantly consists of Precambrian gneiss and schist that have been broken by faulting. Some of the faults served as "conduits for hypogene siliceous gold-bearing"

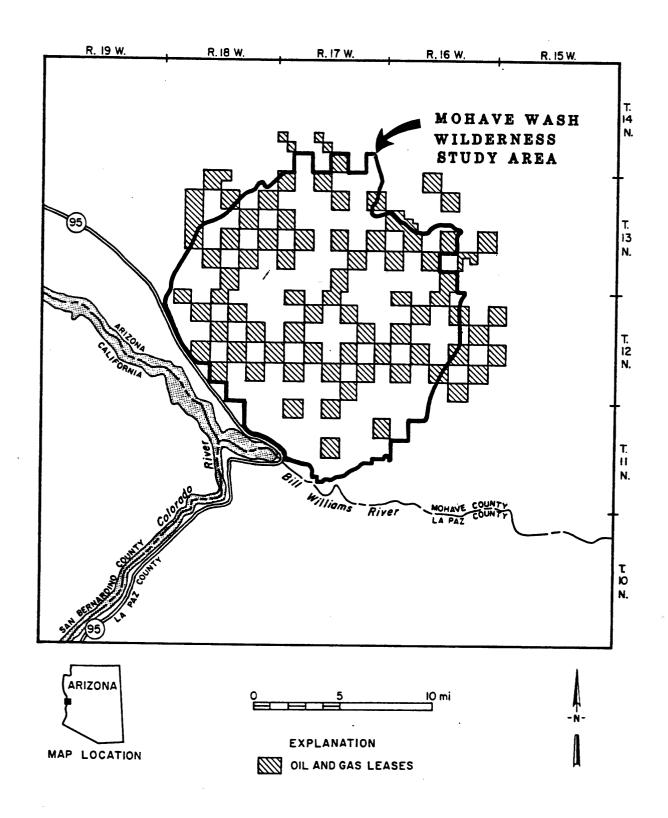


Figure 3.--Oil and gas leases in and near the Mohave Wash Wilderness Study Area, Mohave County, Arizona, as per Bureau of Land Management file data, 1987.

solutions, resulting in quartz fissure veins containing gold and some minor silver mineralization" (1975, unpublished Arizona Department of Mineral Resources file data, Phoenix, AZ). The veins are as thick as 12 ft and vary from massive white "bull" quartz, to vuggy, highly fractured quartz, to fracture-filling quartz veinlets. In reports on file with the Arizona Department of Mineral Resources (1975, unpublished file data) two 100-1b samples and a 300-1b sample of vein material from unspecified outcrops were submitted to the U.S. Bureau of Mines Research Center, Salt Lake City, Utah, for metallurgical testing. The tests showed that the veins are amenable to heap leaching for as much as a 96% gold recovery using a dilute cyanide solution and charcoal-in-pulp process.

Survey maps and sample data for workings and prospects in the Paloma district are presented in figures 4-11 and table 2. Pinpoint-size gold was seen at three localities (samples 93, 102, and 117) and gold concentrations from 6 to 28,100 ppb (0.820 oz/st) were detected in 127 of 146 samples taken in the district. Field observations and analytical results indicate that gold-mineralized quartz fissure veins occur throughout the district. Most of the veins pinch and swell, are discontinuous in exposure, and are intermittently mineralized. The irregular nature of the veins precluded making resource estimates in all but two mineralized areas, the JJ&C and Mohave, but the overall extent of mineralization suggests that gold resources are likely to exist in both lode and placer occurrences throughout the district.

JJ&C area

The JJ&C area is in sec. 16 and 17, T. 12 N., R. 17 W. (pl. 1, samples 1-46), and can be reached by following a wash about 1 mi westward from Mohave

Wash in sec. 15. As of April 1988, the area was not covered by mining claims and the name JJ&C was taken from past claim notices.

The main workings are two adits, one above the other (fig. 4), about 300 ft up the side of a ridge on the south side of the drainage. The upper adit was driven southwest on a fault zone that strikes N. 45° E. and dips 30°-75° SE. Quartz veins and veinlets pinch and swell to as thick as 2 ft and fill some fissures in the fault zone. Galena, pyrite, and minor malachite are visible along the vein system. The lower adit was driven basically parallel to, and about 30 ft (vertically) below the upper adit, apparently in an attempt to intercept the vein. As shown in figure 4, the vein dips at varying degrees to the southeast away from the lower adit. Although it appears in the surveyed plan view that the lower adit probably should intercept the vein, no similar structure is present in the adit. Assay data for samples taken in the workings (fig. 4) show gold and silver enrichment in the vein in the upper adit and trench, but notably lower concentrations in the lower adit, where no vein is exposed.

Gold concentrations for samples taken in the upper adit on the fissure vein range from 0.003 to 0.657 oz/st and are consistent enough to calculate grade and tonnage for a gold resource. Because the extent of the structure is questionable, projections were limited to 15 ft up and down dip and 30 ft beyond the face. About 1,000 st of indicated resources averaging 0.06 oz/st gold is estimated for the vein in the upper adit. The low resource value (about \$24,000 at \$400/oz gold) makes commercial extraction subeconomic, except for hand-sorted mining methods.

An adit and decline about 1/4 mi west of the main workings were driven on a massive quartz vein that strikes N. 28° E. and dips 30° NW. in diabase.

Although gold was detected in most of the samples, concentrations were insufficient to consider the gold a resource. (See fig. 5.)

Mohave area

The Mohave area covers workings and prospects in the NE. 1/4 sec. 28 and S. center sec. 21, T. 12 N., R. 17 W. (pl. 1, samples 82-98), and can be reached by a nonmaintained road in Paloma Wash. As of April 1988, no mining claims covered the workings and the name Mohave was taken from past claim notices.

A quartz fissure vein in the southern end of the Mohave area is of primary interest (samples 86-98). The vein is exposed by a 42-ft-deep shaft, a 30-ft-long decline, and several prospects. The vein can be traced through the workings and surface float in two separate segments, 180 ft and 100 ft long, and may be continuous for 600 ft. (See fig. 10.)

Analyses of vein samples 86 to 93 (fig. 10) show gold concentrations from 0.034 to 0.312 oz/st. Grade and tonnage calculations were made for the two traced segments (280 ft of length) and for the projected 600-ft-total length of the vein using an extension of 15 ft down dip. The average grade is estimated to be 0.16 oz/st gold. The traced segments are estimated to contain 250 st of indicated resources and the total 600-ft-long vein (two traced segments plus 320 ft projected in between) is estimated to contain an additional 300 st of inferred resources. The low resource value (\$16,000-\$35,000 at \$400/oz gold) makes commercial extraction of the vein material subeconomic, except for hand-sorted mining methods.

Placer gold

Desert weathering makes the accumulation of placer gold extremely erratic, but unpublished Arizona Department of Mineral Resources file data and

the presence of lode gold in the area indicate that a placer gold deposit is likely to exist in alluvium in the Paloma district. In addition, information supplied by claimants Milton Fuller (1988, written commun.) and S. Everett Ashcraft (1988, written commun.) show prospecting results favorable for the occurrence of placer gold and silver concentrations on the eastern side of the study area. Four panned-concentrate samples (table 2, nos. 183, 184, 187, 188) taken by Bureau personnel from drainages along the western and eastern flanks of the study area yielded minor (9-35 ppb) gold concentrations, and suggests that placer gold occurrences could exist along the eastern and western flanks of the study area.

Perlite

A 40-ft-long by 15-ft-wide exposure of perlite was found in SE. 1/4 sec. 18, T. 13 N., R. 16 W. (fig. 13, sample 173). Perlite is a glassy volcanic rock that is processed for use in construction, as insulation, concrete aggregate, plaster, tile, and wallboard; in industry as a filter and additive medium; and in agriculture as a soil conditioner and chemical carrier. A sample of the outcrop was tested for quality and was determined to be suitable for use in some expanded perlite end-products, but generally would not compete favorably with other commercially available perlite (table 3). The low quality, remote location, and small size exclude this perlite from being a resource.

Sand and gravel

Sand and gravel occurs in drainages and low-lying areas throughout the WSA. Material from Standard Wash along the northwestern study area boundary has been used in the construction, and was being considered for use in the rebuilding, of State Highway 95. The Arizona Department of Transportation

dug 61 test pits in N. 1/2 sec. 31 and SE. 1/4 sec. 30, T. 13 N., R. 18 W. in 1986 and evaluated the sand and gravel for possible use in the rebuilding project. The material was concluded to be of moderate road gravel quality and will be made available to the contractor that rebuilds the highway (R. W. Krohn, 1988, Ariz. Dept. of Transportation, Phoenix, AZ, oral and written commun.). Resources of sand and gravel of similar quality are likely to be present inside the study area, but sufficient material exists outside to supply current and near future needs.

CONCLUSIONS

The study area has identified subeconomic resources of gold in quartz fissure veins in the Paloma district. Indicated resources of about 1,000 st averaging 0.06 oz/st gold was estimated for the JJ&C area and 250 st of indicated and 300 st of inferred resources averaging 0.16 oz/st gold were estimated for the Mohave area. Gold-bearing quartz veins occur throughout the district, but they pinch and swell, are discontinuous in exposure, and are intermittently mineralized. The pervasiveness of the veins and overall extent of mineralization suggest that additional gold resources are likely to exist elsewhere in the Paloma district.

The presence of lode gold, prospecting information supplied by claimants, and supportive Arizona Department of Mineral Resources file data suggest that placer gold is likely to occur in the Paloma district and along the eastern and western flanks of the WSA.

Perlite was found in the study area, but was determined to be not commercially competitive and is not considered a resource.

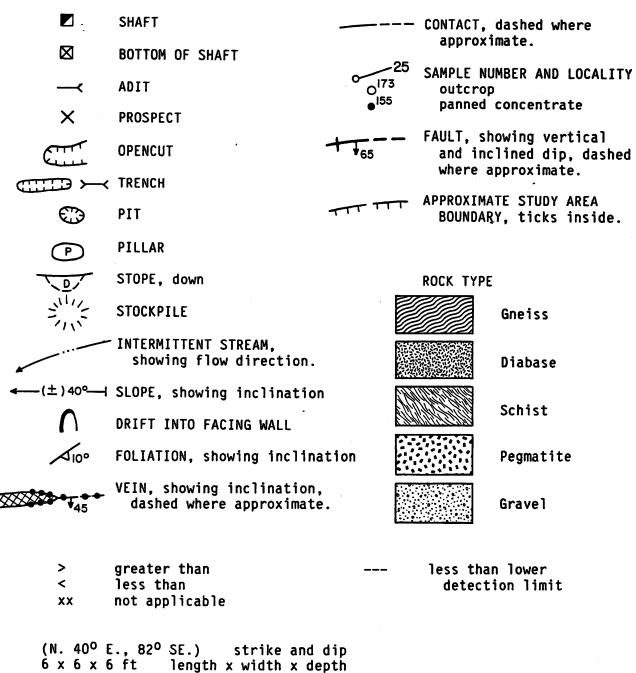
Sand and gravel is found in drainages and low-lying areas throughout the WSA. Material adjacent to the northwestern study area boundary was determined

to be moderate road gravel quality, and has been used in highway construction. Resources of similar quality sand and gravel are likely to be present inside the WSA, but sufficient material exists outside to supply projected needs.

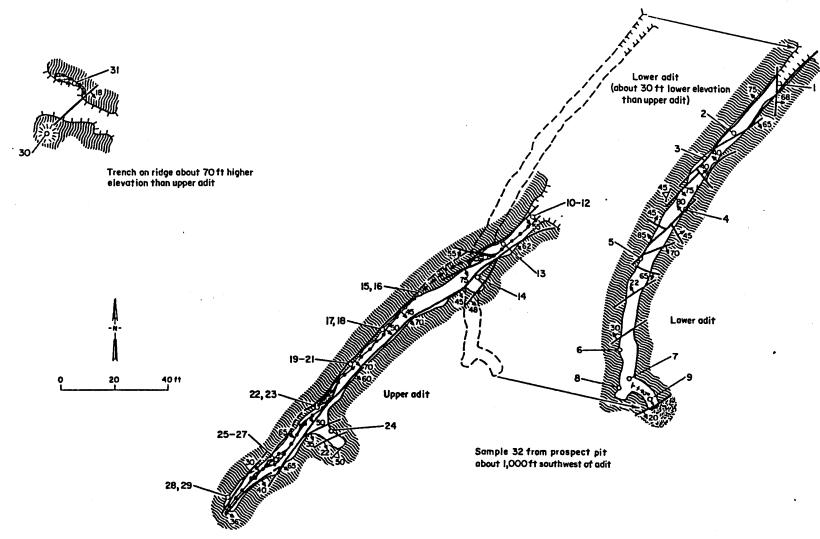
Oil and gas leases cover the study area in a checkerboard-like fashion and probably were in response to speculation that the Idaho-Wyoming overthrust belt may extend into Arizona. No hydrocarbon shows or discoveries are known in the area, and geologic evidence suggests that the study area has a "low to zero" potential for oil and gas resources.

RECOMMENDATIONS

The appraisal of the Paloma district was limited to prospected or mined vein exposures because an all-inclusive study was beyond the scope of this project. Many quartz veins in the district are undeveloped or disappear beneath alluvial cover and were therefore not appraised. The pervasiveness of gold in the quartz veins that were evaluated, and the extensiveness of unstudied quartz vein exposures suggest that other gold-bearing veins may be present and that a large-scale association is possible. A detailed appraisal (geological, mineralogical, geochemical, and geophysical) of all exposed quartz veins, followed by subsurface testing of significantly anomalous target areas is highly recommended.


REFERENCES

- Arizona Bureau of Mines, 1969, Mineral and water resources of Arizona: Bulletin 180, 638 p.
- Beatty, Barbara, and Wilkinson, P. A. K., eds., 1986, Frontiers in geology and ore deposits of Arizona and the Southwest: Arizona Geological Society Digest Volume XVI, 554 p.
- Frost, E. G., and Martin, D. L., eds., 1982, Mesozoic-Cenozoic tectonic evolution of the Colorado River Region, California, Arizona, and Nevada: San Diego, California, Cordilleran Publishers, 608 p.
- Howard, K. A., Goodge, J. W., and John, B. E., 1982, Detached crystalline rocks of the Mohave, Buck, and Bill Williams Mountains, Western Arizona; in Frost, E. G., and Martin, D. L., eds., Mesozoic-Cenozoic tectonic evolution of the Colorado River Region, California, Arizona, and Nevada: San Diego, California, Cordilleran Publishers, p. 377-390.
- Keith, S. B., 1978, Index of mining properties in Yuma County, Arizona:
 Arizona Bureau of Geology and Mineral Technology Bulletin 192, 185 p.
- Keith, S. B., Gest, D. E., DeWitt, Ed, Toll, N. W., and Everson, B. A., 1983, Metallic mineral districts and production in Arizona: Arizona Bureau of Geology and Mineral Technology Bulletin 194, 58 p.
- Lane, M. E., 1988, Mineral resources of the Aubrey Peak Wilderness Study Area (AZ-020-054), Mohave County, Arizona: U.S. Bureau of Mines Open-File Report MLA 39-88, 25 p.
- Lehman, N. E., Spencer, J. E., and Welty, J. W., 1987, Middle Tertiary mineralization related to metamorphic core complexes and detachment faults in Arizona and California: Littleton, Colorado, Society of Mining Engineers, Preprint 87-21, 9 p.
- Light, T. D., and McDonnell, J. R., Jr., 1983, Mineral investigation of the Crossman Peak Wilderness Study Area, Mohave County, Arizona: U.S. Bureau of Mines Open-File Report MLA 82-83, 203 p.
- 1987, Mine and prospect map of the Crossman Peak Wilderness Study Area, Mohave County, Arizona: U.S. Geological Survey Misc. Field Studies Map MF-1602-C, scale 1:48,000.
- Light, T. D., Pike, J. E., Howard, K. A., McDonnell, J. R., Jr., Simpson, R. W., Raines, G. L., Knox, R. D., Wilshire, H. G., and Pernokas, M. A., 1983, Mineral resource potential map, Crossman Peak Wilderness Study Area, Arizona: U.S. Geological Survey Map MF-1602-A, scale 1:48,000, summary text, 21 p.
- Moyle, P. R., and Gabby, P. N., 1985, Mineral resources of a part of the Whipple Mountains Wilderness Study Area, San Bernardino County, California: U.S. Bureau of Mines Open-File Report MLA 39-85, 50 p.


REFERENCES——Continued

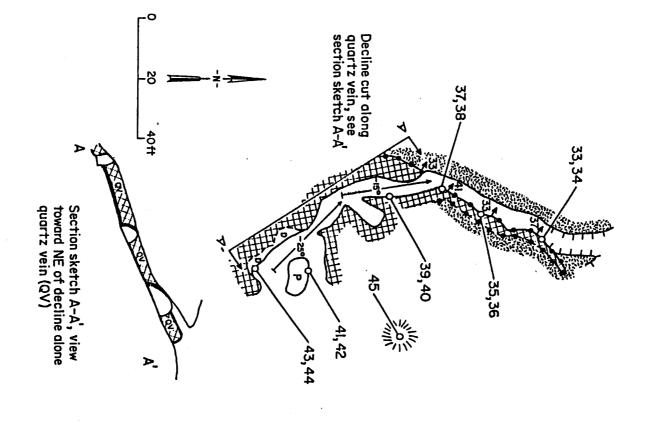
- Pike, J. E. N., and Hansen, V. L., 1982, Complex Tertiary stratigraphy and structure, Mohave Mountains, Arizona: A preliminary report; in Frost, E. G., and Martin, D. L., eds., Mesozoic-Cenozoic tectonic evolution of the Colorado River Region, California, Arizona, and Nevada: San Diego, California, Cordilleran Publishers, p. 91-96.
- Ridenour, James, Moyle, P. R., and Willett, S. L., 1982a, Mineral occurrences in the Whipple Mountains Wilderness Study Area, San Bernardino County, California; in Frost, E. G., and Martin, D. L., eds., Mesozoic-Cenozoic tectonic evolution of the Colorado River Region, California, Arizona, and Nevada: San Diego, California, Cordilleran Publishers, p. 69-75.
- _____ 1982b, Mineral resources of the Whipple Mountains Wilderness Study Area, San Bernardino County, California: U.S. Bureau of Mines Open-File Report MLA 29-82, 34 p.
- Ryder, R. T., 1983, Petroleum potential of wilderness lands in Arizona; in Miller, B. M., ed., Petroleum potential of wilderness lands in the western United States: U.S. Geological Survey Circular 902 A-P, p. C1-22.
- Wilkins, Joe, Jr., and Heidrick, T. L., 1982, Base and precious metal mineralization related to low-angle tectonic features in the Whipple Mountains, California and Buckskin Mountains, Arizona; in Frost, E. G., and Martin, D. L., eds., Mesozoic-Cenozoic tectonic evolution of the Colorado River Region, California, Arizona, and Nevada: San Diego, California, Cordilleran Publishers, p. 182-203.
- Wodzicki, Antoni, Krason, Jan, and Cruver, S. K., 1982, Geology, energy, and mineral resources assessment of the Bill Williams Area, Arizona: Denver, Colorado, Geoexplorers International, Inc., prepared for U.S. Dept. of the Interior, Bureau of Land Management, 130 p.

EXPLANATION, SYMBOLS, AND ABBREVIATIONS USED IN FIGURES 4-13.

Analytical methods (showing abbreviation and lower detection limit) for samples shown in figures and tables are: direct irradiation and instrumental neutron activation for gold (Au, 5 ppb), silver (Ag, 5 ppm), barium (Ba, 100 ppm), iron (Fe, 0.5 %); by D.C. plasma emission spectroscopy for copper (Cu, 1 ppm), lead (Pb, 5 ppm), and silver (Ag, 0.5 ppm); and by cold vapor atomic absorption for mercury (Hg, 5 ppb).

	Samp 1	e				Assay da	ta			
No.	Type	Length (ft)	Au (pyb)	(ppin)	Ba (ppm)	Cu (ppm)	Fe (%)	lig (ppb)	Pb (ppm)	Remarks
1123				I F E : I	AF EUI			adit		Nome, No
1	Chip	4.0	26		1,000	42	1.5	35	108	Fault in gneiss; pinching and swelling quartz vein in argillized gneiss with moderate hematite.
2	do.	3.7	65		970	45	3.9	80	12	Do.
3	do.	1.5	25	6 (<0.5) <u>1</u> /	830	9	2.9	115	10	Do.
4	do.	1.3	38	7 (<.5)1/	590	12	3.1	545	48	Do.
5	do.	1.3	6		730	8	1.5	420	31	Do.
6	do.	.8	59			13	.9	260	2,228	Fault in gneiss; pinching and swelling quartz vein in argillized gneiss with 1/2-inlong, red to yellow mimetite crystals in vugs.
7	do.	2.5	. 67		1,300	35	6.1	700	290	Fault in gneiss; quartz stringers, hemalite after pyrite (?).
8	do.	1.0	26		300	5	3.6	335	. 11	Do.
9	do.	1.5	12		360	19	5.2	535	9	Do.
							Upper	adit		
10	do.	.8	250 (0.006) <u>2</u> /	 (.7)1/	1,300	92	3.6	40	540	Fault gouge next to quartz vein; chloritized and iron-oxide coated.
11	do.	.6	3,690 (.064) <u>2</u> /	(1.8) <u>1</u> /	110	120	1.3	40	485	Quartz fissure vein; minor pyrite, calcite, and hematite after pyrite.
12	do.	2.3	110 (.003) <u>2</u> /		820	46	2.9	55	480	<pre>Fault gouge next to quartz vein; chloritized and iron-oxide coated.</pre>
13	do.	1.1	1,060 (.030) <u>2</u> /	(.8)1/		70	1.0	65	515	Fractured quartz fissure vein; pyrite, hematite after pyrite, and iron-oxide coating.
14	do.	.3	14,600 (.657)2/	(2.1)1/	280	820	2.8	295	4,100	Yuggy quartz fissure vein; galena, pyrite, minor malachite, and hematite after pyrite.
15	do.	1.3	5,520 (.133) <u>2</u> /	10 (6.4) <u>1</u> /	200	210	2.5	415	3,400	Do.
16	do.	1.3	815 (.019) <u>2</u> /	 (.7)1/	910	190	3.5	75	1,400	Fault gouge next to quartz vein; chloritized and iron-oxide coated.
17	do.	1.0	2,240 (.065) <u>3</u> /	(2.4) <u>1</u> /	130	111	3.0	110	951	Massive quartz fissure vein; hematite after pyrite.
18	do.	1.9	140 (.004) <u>3</u> /	(.6)1/	810	115	4.0	270	957	Sheared gneiss next to quartz vein; partly chloritized and iron-oxide coated.
19	do.	.3	1,150 (.003) <u>2</u> /		160	33	1.4	55	180	Sheared gneiss next to quartz vein; orange to red limonite.
20	do.	1.0	72 (.027) <u>2</u> /		690	85	2.8	65	490	Quartz fissure vein; minor pyrite and hematite after pyrite.
21	do.	. 5	250 (.004) <u>2</u> /		890	97	2.1	60	325	Sheared gneiss next to quartz vein; orange to red limonite.

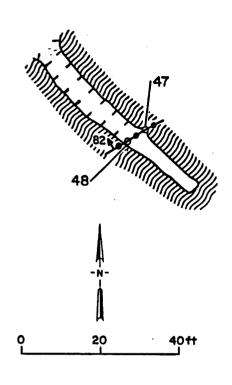
See footnotes at end of table.

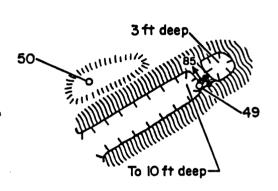

Figure 4.--Main workings in the JJ&C area.

Tabular data for fig. 4--Continued

	S ema S e	Quartz fissure vein; hematite after pyrite.	Sheared gneiss next to quartz vein; minor hematite.	Clayey gouge from intersection of two fault zones in gneiss; minor red to brown limonite.	Sheared gneiss next to quartz vein; limonite.	Vuggy quartz fissure vein; hematite after pyrite.	Sheared gneiss next to quartz vein; orange to red limonite.	Do.	Quartz fissure vein; disseminated pyrite and hematite after pyrite.		Stockpile; fractured quartz vein with pyrite, sphalerite, chalcopyrite, and hematite.	Fractured quartz vein; no mineralized zones noted.	Clayey, altered gneiss at contact with diabase dike; abundant yellow to dark red limonite.
	Pb (ppm)	290	112	33	170	06	180	230	56		4,200	11	5
	Hg (ppb)	125	235	330	100	70	820	285	09	Surface prospects	55	52	120
ata	Fe (%	1.3	2.9	3.1	3.0	1.3	8.4	3.7	1.4	irface pi	1.0	ļ	17.0
Assav data	Cu (ppm)	40	35	6	14	12	2,490	4	က	S	48	12	2,091
	Ba (ppm)	110	1,000	790	290	ł	200	1,100	1		1	1	420
	Ag (mqq)		1 ,	l		1		ŀ	l				(3.2)1/
	Au (PPb)	$^{3,230}_{(0.086)2}$	$\frac{340}{(.008)2}$	14	$\frac{729}{(.017)^{2/2}}$	7,180 $(.206)2$	872 (.003) <u>2</u> /	$\frac{130}{(.003)2}$	1,350 (.039) 3 /		3,980 (.095) <u>2</u> /	3,300	74
Je	Length (ft)	0.8	1.5	2.3	4.	2.2	5.6	€.	₩,		×	.	2.0
Sample	Туре	ch1p	.	do.	do.	do.	do.	do.	do.		Select	chip	do.
	8	22	23	24	52	56	12	28	53		30	31	32

1/ Reanalysis by D.C. plasma emission spectroscopy, result in ppm. $\frac{2}{2}/$ Reanalysis by fire assay, result in oz/st. $\frac{3}{4}/$ Determined by mathematical conversion from ppb to oz/st.

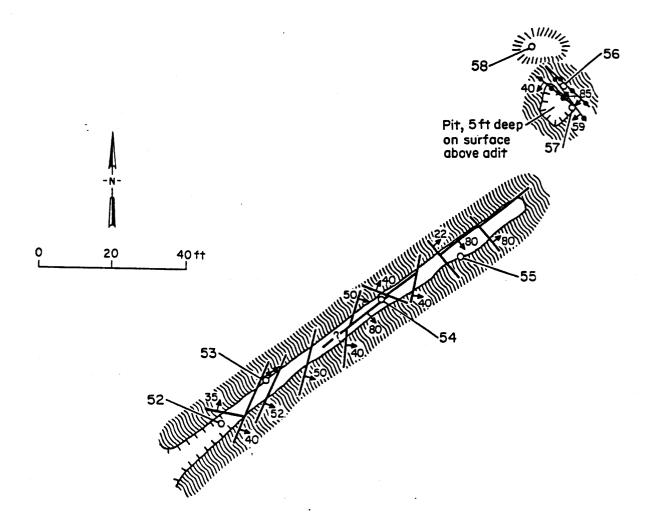

Figure 4.--Main workings in the JJ&C area--Continued



Outcrop, 50 ft NE. of adit portal; weathered and fractured quartz vein; minor iron and manganese oxide.	18	G	1.0	18	ļ			2.3	Chip	46
Stockpile, vuggy quartz vein with chrysocolla, malachite, and iron oxide.	2,950	270	1.3	14,000		19	490	×	Select	45
Clayey, sheared diabase next to quartz vein; abundant iron oxide.	1,400	20	5.4	80	490	1.	31	1.1	do.	44
Quartz fissure vein; galena, minor chrysocolla, malachite, and hematite.	6,000	40	1.4	835	1	(4.8) <u>1</u> /	150		do.	43
Clayey, sheared diabase next to quartz vein; abundant iron oxide and minor calcite veinlets.	360	3 5	5.4	3 3	680		42	1.3	do.	42
Quartz fissure vein; no mineralized zones noted.	285	25	!	31	1	1	27	2.5	do.	2
Clayey, sheared diabase next to quartz vein; abundant iron oxide.	255	80	5.2	72	!	1	66	.	do.	40
Quartz fissure vein; minor iron oxide along fractures.	119	80	. 9	10	ļ	1	9	1.4	do.	39
Clayey, sheared diabase next to quartz vein; abundant iron oxide.	107	50	5.6	25	i	1	24	4	do.	38
Quartz fissure vein; minor iron oxide along fractures.	39	မ ဟ	.7	IJ	1	1	1	2.4	d	37
Clayey, sheared diabase next to quartz vein; yellow to dark red limonite, and calcite veinlets.	920	50	5.4	150	1	•	10	.7	do.	36
Quartz fissure vein; minor iron oxide.	18	15	1.1	տ	1	į	.	3.0	do.	35
Clayey, sheared diabase next to quartz vein; abundant iron and manganese oxide.	64	30	8.4	33	520	. 1	ဖ	1.7	do.	34
Quartz fissure vein; minor iron oxide.	83	15	0.7	. 31	1	(0.8)1/	=	2.3	Chip	33
Remarks	(ppm)	(ddd) b H	Fe (%)	(ppm)	Ba (ppm)	Ag (ppm)	Au (ppb)	Length (ft)	Type Le	No.
	2		- 1	Assay data					Sample	

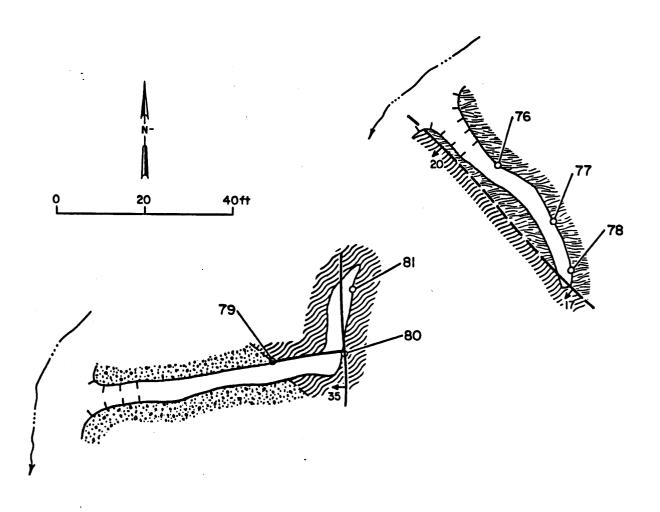
1/ Reanalysis by D.C. plasma emission spectroscopy, result in ppm.

Figure 5.--Adit and decline west of main JJ&C workings.

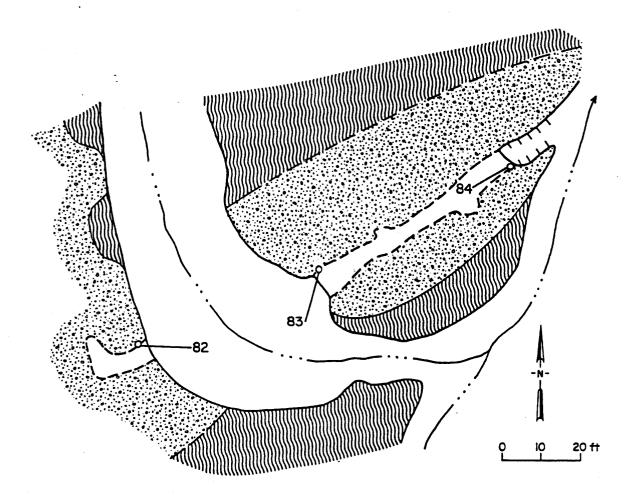


	Sample	:				Assay o	lata			
No.	Туре	Length (ft)	Au (dad)	Ag (mgg)	Ba (ppm)	Cu (ppm)	Fe (%)	Hg (ppb)	Pb (ppm)	Remarks
47	Chip	1.2	10,100 (0.402) <u>1</u> /		740	8	3.0	30	9	Adit, 25 ft long; fault zone (N. 62° E., B2° NW.) in gneiss; brecciated quartz and abundant limonite.
48	do.	.9	6,970 (.245) <u>1</u> /		720	6	4.0	35	12	Do.
49	do.	1.4	963 (.042) <u>1</u> /		130	5	.6	85	7	Trench, 30 x 8 x 10 ft; brecciated and recemented quartz vein (N. 60° E., 85° NW.); iron oxide along fractures.
50	Select	xx	2,960 (.125) <u>1</u> /		***	22	1.0	5	10	Stockpiles near trench; quartz vein material; vugs lined with quartz and calcite, and hematite after pyrite.
51	Chip	.8	16			3		10	9	Outcrop, 200 ft NE. of trench; quartz vein; minor limonite.

 $[\]underline{1}$ / Reanalysis by fire assay, result in oz/st.


Figure 6.--Adit and trench in Pacos area.

	Samp	<u>le</u>				Assay da	ta			
No.	Type	Length (ft)	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)	Fe (%)	Hg (ppb)	Pb (ppm)	Remarks
52	Chip	4.0	22	,===	1,400	430	7.4	20	14	Brecciated gneiss; chloritized, no mineralized zones noted.
53	do.	1.7	2,600 (0.113) <u>1</u> /	7 (3.8) <u>2</u> /	670	220	3.3	50	29	Massive quartz vein; hematite after pyrite, iron oxide along fractures.
54	do.	.9		(<.5) <u>2</u> /	1,500	35	6.8	25	16	Intersection of fractures in gneiss; iron-oxide staining.
55	do.	1.4	12	7 (<.5) <u>2</u> /	1,400	52	7.2	25	14	Do.
56	do.	3.8	1,980 (.058) <u>3</u> /	(2.7) <u>2</u> /	650	772	3.5	10	461	Quartz fissure vein; minor copper mineral coatings and iron oxide along fractures.
57	do.	.7	28,100 (.820) <u>3</u> /	13 (7.4) <u>2</u> /	350	3,000	2.5	10	715	Do.
58	Select	xx	10,200 (.298) <u>3</u> /	521 (>50) <u>2</u> /		>20,000	5.9	100	>10,000	Stockpile; high grade of mineralized quartz vein; galena and malachite.


Figure 7.--Adit in Golden Slipper area.

 $[\]underline{1}/$ Reanalysis by fire assay, result in oz/st. $\underline{2}/$ Reanalysis by D.C. plasma emission spectroscopy, result in ppm. $\underline{3}/$ Determined by mathematical conversion from ppb to oz/st.

	Samp'	le				Assay	data			
No.	Type	Length (ft)	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)	Fe (%)	Hg (ppb)	Pb (ppm)	Remarks
76	Chip	0.9	6		150	18	1.0	15	10	Quartz-rich zone; no mineralized zone noted.
77	do.	.9	5		510	18	6.5	55	7	Clayey fault gouge; iron and , manganese oxide.
78	do.	.8	***		230	15	2.3	30	15	Quartz-rich zone; no mineralized zone noted.
79	do.	1.4	7		310	16	7.2	35	12	Weathered gneiss below caliche; iron and manganese oxide.
80	do.	1.2			840	8	5.4	330	19	Fault gouge; minor quartz stringers and iron and manganese oxide.
81	do.	1.5			390	12	5.1	35	12	Do.

Figure 8.--Adits in Rincon #1 area.

	Sample	•				Assay	data			
No.	Type	Length (ft)	Au (ppb)	Ág (ppm)	Ba (ppm)	Cu (ppm)	Fe (%)	Hg (dqq)	Pb (ppm)	Remarks .
82	Chip	3.3	11		1,600	25	5.1	20	79	Adit, 15 ft long; weakly-cemented gravel in old stream channel.
83	do.	3.0	14	***	1,800	22	5.0	25	68	Tunnel, 65 ft long; weakly-cemented gravel in old stream channel.
84	do.	5.8	5	6	1,500	18	6.0	15	24	Do.
85	Pan cor	n xx			810	20	55.9	15	36	Panned concentrate of sediment taken about 100 ft down drainage from adit and tunnel.

Figure 9.--Tunnel and adit in Mohave area.

0

1/ Reanalysis by fire assay, result in oz/st.
2/ Determined by mathematical conversion from ppb to oz/st.

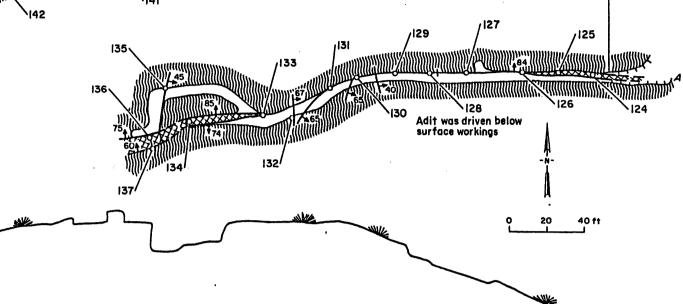
High-grade composite.from dumps; quartz vein material; visible gold, pyrite, galena, and limonite gossan.

260

145

2.8

250

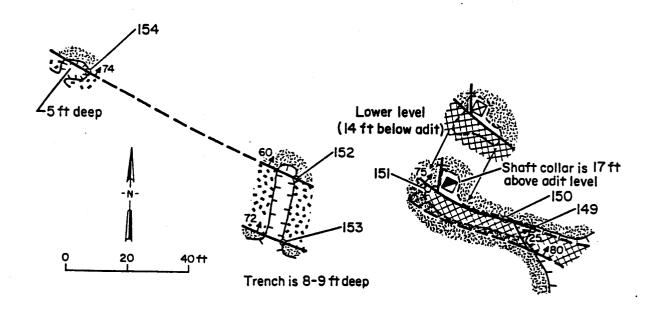

2

 $(234)^{1}$

×

93 Select

Figure 10.--Workings and prospects on a quartz vein in Mohave area.



Section sketch along strike of fault

	Samp	le				ssay dat				
No.	Type	Length (ft)	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)	Fe (%)	Hg (ppb)	Pb (ppm)	Remarks
							Ad1			HEME! NO
124	Chip	1.4	•		630	7	7.5	5	42	Gneiss, andesite, and quartz in fault zone gouge ; iron-oxide coating.
125	do.	1.6	16		2,100	3	6.9	30	32	Do.
126	do.	1.0	68		3,700	2	27.0	45	42	Do.
127	do.	.8	8		900	2	21.0	65	34	Do.
128	do.	.4	3,390 (0.063)1/		2,600	32	8.3	55	315	Quartz fissure vein; minor specular hematite.
129	do.	.6	2,890 (.088)1/	(0.5) <u>2</u> /	3,700	138	8.9	55	250	Do.
130	do.	1.2	130		16,800	3	12.0	80	51	Gneiss, andesite, and quartz in fault zone gouge; iron-oxide coating.
131	do.	1.6			11,400	1	6.2	60	178	Do.
132	do.	1.8	-	(.6)2/	7,100	1	5.4	40	35	Crosscutting fractures in gneiss; specular hematite and chalcedonic quartz.
133	do.	. 5	190		17,400	7	14.0	25	39	Gneiss gouge; abundant hematite and quartz veinlets.
134	do.	4.0	32		3,100	4	8.3	40	43	Do.
135	do.	1.7		*****	1,800	3	8.7	5	11	Crosscutting fractures in gneiss; specular hematite and calcite veinlets.
136	do.	.6	120	(.6)2/	10,000	4	12.0	55	66	Gneiss, andesite, and quartz in fault zone gouge; abundant hematite.
137	do.	1.0	11	(<.5) <u>2</u> /	1,800	5	6.0	10	10	Fault zone in gneiss; iron-oxide coating.
						Su	rface wo	rkings		
138	do.	5.3		(<.5) <u>2</u> /	1,800	2	6.6	30	22	Fault zone in gneiss; quartz pod and stringers, calcite veinlets, and iron-oxide coating.
139	do.	5.0	220		1,900	25	5.2	60	94	Do.
140	do.	1.0		40 40 40	1,600	4	11.0	15	27	Fault in gneiss; l-inthick quartz veinlet.
41	do.	.6	10,800 (.357)1/	11 (2.4) <u>2</u> /	4,000	121	4.0	65	167	Fault zone in gneiss; quartz and calcite stringers, iron-oxide coating.
42	do.	3.7	43		1,400	4	4.4	15	14	Fault zone in gneiss; minor specular hematite.
						Nea	arby pro	spects		
43	do.	2.0	6		160	10	3.4	10		Pit, 5 x 6 x 2 ft; vuggy, weathered quartz vein; iron- and manganese-oxide coating, hematite after pyrite.
44	do.	1.0	6		340	4		5		Pit, $7 \times 6 \times 3$ ft; same as sample 143.
45	do.	1.5	6	(<.5) <u>2</u> /	370	3	2.3	5		Pit, 7 x 6 x 5 ft; quartz fissure vein (N. 78° E., 74° NW.).
46	do.	3.7		(.5)2/	11,100	2	.8	25	7 °	Pit, 4 x 4 x 3 ft; massive quartz fissure vein (N. 60° E., 77° NW.).

 $[\]underline{1}/$ Reanalysis by fire assay, result in oz/st. $\underline{2}/$ Reanalysis by D.C. plasma emission spectroscopy, result in ppm.

Figure 11.--Workings on the $\ensuremath{\mathsf{Dee}}$ claims.

Sample		_		A:	ssay dat	а			
Туре	Length (ft)	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)	Fe (%)	Hg (ppb)	Pb (ppm)	Remarks
Chip	1.3	110		1,200	117	7.8	125	527	Fault zone in diabase; minor hematite.
do.	1.3	140	10	1,000	36	8.1	60	550	Do.
do.	2.9	87		1,200	8	6.6	70	270	Do.
do.	.8	22		840	7	3.3	50	109	Fault contact between diabase and pegmatitic granite dike.
do.	.8	778		670	5	7.6	250	18	Do.
do.	1.2	210		580	24	4.8	110	528	Do.
	1	-						2,0	0,0 0,0 2,0 10

Figure 12.--Workings near the Manitowoc Mine.

	500	1,000	2,000
C	ONTOUR	INTERAL	40 ft

	Sample					Assay da				
No.	Type	Length (ft)	Au (dgg)	Ag (ppm)	Ba (ppm)	Cu (mqq)	Fe (%)	lig (ppb)	Pb (ppm)	Remarks
155	Pan con	xx			1,200	48	12.0	20	221	Panned concentrate of basaltic stream sediment down drainage from prospects in Evelyn Lode area.
156	Chip	4.0		120	1,800	5,500	3.5	30	600	Pit, 8 x 6 x 5 ft; fault gouge (N. 24° W., 80° SW.) in basalt; chrysocolla and malachite coating, minor quartz-lined vugs, and iron and manganese oxide.
157	do.	2.8		8	700	3,524	2.2	15	195	Do.
158	do.	1.1			730	1,150	2.3	45	1,700	Trench, 40 x 4 x 4 ft; fault zone (N. 48° W., 83° SW.) in pegmatitic granite; sericitic alteration, chrysocolla, hematite, and minor galena.
159	Select	××	25	240	1,000	>20,000	1.9	650	1,850	Stockpile; silicified basalt; abundant chrysocolla and malachite.
160	Chip	1.0	22	654	1,100	>20,000	2.4	3,250	420	Opencut, 13 x 6 ft; silicified basalt; abundant chrysocolla and malachite.
161	do.	.8	15	120	1,200	10,500	2.0		1,100	Pit, 10 x 10 x 2 ft; silicified basalt fault gouge; abundant chrysocolla and malachite coating, and quartz veinlets.
162	do.	.9	. 7	59	2,100	4,200	3.0	110	1,700	Pit, 7 x 4 x 3 ft; fault zone (N. 40° W., 85° SW.) in silicified basalt; abundant chrysocolla and malachite coating.
163	do.	.6	7	80	1,300	15,000	3.3	80	1,500	Opencut, 15 ft long; fault zone (N. 30-45° W., vertical) in silicified basalt; abundant chrysocolla and malachite coating.
164	Grab	xx	6		1,400	12	5.0	40	21	Trench, $73 \times 6 \times 3$ ft; altered basalt from dump.
165	do.	xx			340	22	6.8	. 55	6	Pit, 5 x 4 x 3 ft; basaltic dump material; vesicular with calcite veinlets and hematite.
166	Chip	1.1			940	68	1.6	40	12	Opencut, 10 ft long; fault (N. 20° W., BO° NE.) cutting basalt/tuff contact; minor limonite and quartz veinlets.
167	do.	.9		400 401 400	1,700	28	3.7	25	15	Opencut, 10 x 5 ft; fault zone (N. 20° W., vertical to 70° NE.) in basalt; chloritized, and calcite veinlets.
168	do.	1.3		7	3,000	76	5.9	25	19	Do.
169	do.	1.2		64	4,200	>20,000	5.2	20	56	Adit, 9 ft long; fault (N. 47° W., 77° NE.) in basalt; chrysocolla, malachite, azurite, and hematite.
170	Select	xx		140	3,000	>20,000	4.8	40	69	Stockpile; high grade of copper mineralized basalt from adit.
171	Chip	1.5	6	110	4,000	9,400	5.1	130	171	Opencut, 15 x 5 ft; fault zone (N. 10° W., 18° NE.) in basalt; chrysocolla, malachite, azurite, and calcite veinlets.
172	do.	1.4		13	3,900	455	7.5	35	92	Opencut, 14 x 4 ft; contact between basalt and clayey, hydrothermally altered zone; malachite, azurite, and chrysocolla.
173	do.	Random	xx	xx	xx	xx	xx	xx	xx	Outcrop, 15 x 40 ft; perlite exposure. See table 3 for testing results.

Figure 13.--Workings in the Evelyn Lode area.

Table 1.--Summary of mines, prospects, and mineral occurrences in and near the Mohave Wash Wilderness Study Area.

[*, locality covered by unpatented lode claim(s) on file with BLM as of April 1988.]

Sample no.	Name and location	Description	Text fig. or table no.	Sample and resource data
		Paloma district		:
1-32	JJ&C W. center sec. 16, T. 12 N., R. 17 W.	Two adits, 160 and 140 ft long, driven subparallel, one above the other, and misc. prospects. Upper adit follows a pinching and swelling quartz fissure vein with minor pyrite, galena, malachite, and hematite after pyrite. Lower adit appears to be an unsuccessful attempt to intercept the same vein; has minor quartz vein exposed with mimetite crystals in vugs.	F. 9. 4	Thirty-one chip and one select sample taken. Gold detected in all 23 samples taken along vein, from 14 to 14,600 ppb (reanalysis = 0.657 oz/st); minor silver and some elevated lead concentrations. Resource estimate: 1,000 st averaging 0.06 oz/st gold.
33-46	JJ&C E. center sec. 17, T. 12 N., R. 17 W.	Adit, 50 ft long, with connecting decline and prospects, cut on a massive quartz vein with abundant iron oxide and minor chrysocolla and malachite.	F1g. 5	Thirteen chip and one select sample taken. Gold detected in 12 samples, from 9 to 490 ppb, average = 63 ppb. Some elevated lead concentrations.
47-51	Pacos SE. 1/4 sec. 17, T. 12 N., R. 17 W.	Adit, 25 ft long, and trench, 30 ft long. Adit crosscuts l-ft-wide fault zone; trench cut on quartz fissure vein. Minor hematite after pyrite.	F1g. 6	Four chip and one select sample taken. Two chip samples taken in adit on fault contained 0.402 and 0.245 oz/st gold. One chip sample taken on vein in trench contained 0.042 oz/st gold.
52-58	Golden Slipper NW. 1/4 sec. 19, T. 12 N., R. 17 W.	Adit, 100 ft long, and pit on discontinuous quartz vein with minor galena, copper-oxide minerals, and iron-oxide staining.	F1g. 7	Six chip and one select sample taken. Gold detected in 6 samples, from 12 to 28,100 ppb (reanalysis = 0.894 oz/st).
59-62	Golden Slipper Center sec. 19, T. 12 N., R. 17 W.	Bulldozer cut, opencut, and pits on massive quartz vein. Iron and manganese oxide along fractures and sparse pyrite.	Table 2	Gold detected in all 4 chip samples. Concentrations ranged from ll to 10,600 ppb (reanalysis = 0.363 oz/st).
63-67	Paloma prospect NW. 1/4 sec. 20, T. 12 N., R. 17 W.	Two adits, 12 and 20 ft long, on contact between gravel and gneiss, and prospect pits on quartz vein. No mineralized zone seen in adits. Minor malachite, chrysocolla, and iron oxide are associated with quartz vein.	Table 2	Three chip, one select, and one panned-concentrate sample taken. One chip sample of quartz vein in a pit contained 1,100 ppb (reanalysis = 0.041 oz/st) gold and a select of vein from dump at pit contained 4,470 ppb (reanalysis = 0.165 oz/st) gold.

Table 1.--Summary of mines, prospects, and mineral occurrences in and near the Mohave Wash Wilderness Study Area--Continued

Sample no.	Name and location	Description	Text fig. or table no.	Sample and resource data
68-70	SA W. center sec. 21, T. 12 N., R. 17 W.	Opencut, 20 ft long, on quartz vein. Galena, sparse chrysocolla, and hematite after pyrite.	Table 2	Two chip samples of vein contained 2,360 ppb (reanalysis = 0.148 oz/st) and 29 ppb gold, and a select of the dump contained 8,390 ppb (reanalysis = 0.445 oz/st) gold.
11-81	* Rincon #1 SE. 1/4 sec. 20, T. 12 N., R. 17 W.	Two adits, 65 and 40 ft long, driven in faulted gneiss and quartz-rich zones. Opencut and pits cut on massive quartz vein. Chrysocolla and chalcopyrite in the vein, iron oxide in fault gouge.	Fig. 8; table 2.	Ten chip and one select sample taken. Chip samples from adits contained minor gold, one chip sample of the quartz vein contained 2,150 ppb (reanalysis = 0.090 oz/st) gold, and the select of vein contained 2,260 ppb (reanalysis = 0.078 oz/st) gold.
82-85	Mohave S. center sec. 21, T. 12 N., R. 17 W.	Tunnel, 65 ft long, and adit, 15 ft long, driven in weakly-cemented gravel in old stream channel.	Fig. 9	Three chip and one panned-concentrate sample taken. Minor (5-14 ppb) gold and elevated barium concentrations detected in the chip samples.
8698	Mohave NE. 1/4 sec. 28, T. 12 N., R. 17 W.	Inaccessible shaft, 42 ft deep; decline, 30 ft long; and several pits and trenches dug on quartz fissure vein. Pinpoint-size visible gold, pyrite, galena, and hematite.	Fig. 10; table 2.	Ten chip, two select, and one panned-concentrate sample taken. Seven chip samples contained from 1,130 ppb (reanalysis = 0.034 oz/st) to 12,800 ppb (reanalysis = 0.312 oz/st) gold and one select sample contained 8,230 ppb (reanalysis = 0.234 oz/st) gold. Vein may be continuous for 600 ft. Resource estimate: 250-500 st, containing 0.14-0.16 oz/st gold.
99-104	* WA-1 SW. 1/4 sec. 28 and NW. 1/4 sec. 33, T. 12 N., R. 17 W.	Prospect pits and trenches dug on quartz fissure veins in gneiss. Veins are massive to fractured and vuggy. Pinpoint-size visible gold, galena, minor chrysocolla and chalcopyrite, and abundant iron oxide. A gouge zone in one pit has been hydrothermally altered and contained wulfenite.	Table 2	Two chip, three select, and one panned- concentrate sample taken, all contained gold except concentrate, samples averaged 0.12 oz/st. Elevated concentrations of lead, copper, and mercury also detected.
105-114	H&L NE. 1/4 sec. 33, T. 12 N., R. 17 W.	Bulldozer cut and 80-ft-long opencut with several smaller pits, cuts, and dogholes at two prospected localities. Massive to fractured and vuggy quartz vein in gneiss. Minor chrysocolla and abundant iron oxide.	Table 2	Seven chip and three select samples taken, all contained detectable gold from 6 to 5,820 ppb (reanalysis = 0.168 oz/st), averaging 1,485 ppb. Elevated barium and copper concentrations also detected.

Table 1.--Summary of mines, prospects, and mineral occurrences in and near the Mohave Wash Wilderness Study Area--Continued

andesite. Finpoint—Size gold, specular hematite, minor chrysocolla, and abundant iron oxide. Adit, 250 ft long, and several trenches and pits dug on a fissure quartz vein and fault zones in gneiss. Specular hematite and hematite after pyrite.
named (Near Manitowoc Mine) SW. 1/4 sec. 16 and NW. 1/4 sec. 21, T. 13 N., R. 18 W. elyn Lode Sec. 18 and W. center Sec. 17, T. 13 N., Ranganese-oxide coatings. Sec. 18, and on pegmatite. Iron- and manganese-oxide coatings. Several trenches, pits, and opencuts cut on altered basalt and fault zones in basalt. Copper-carbonate and -oxide minerals, miner galena,
Unnamed (Near Manitowoc Mi SW. 1/4 sec. 16 an NW. 1/4 sec 21, T. 13 N., R. 18 W. Evelyn Lode Sec. 18 and W. cen

Table 1.--Summary of mines, prospects, and mineral occurrences in and near the Mohave Wash Wilderness Study Area--Continued

Sample no.	Name and location	Description	Text fig. or table no.	Sample and resource data
182-188	Panned concentrate samples (different localities, see plate 1).	Panned-concentrate samples taken from drainages to evaluate placer claims along study area boundary.	Table 2	Two samples from east side and two from the west side contained detectable gold (9-35 ppb).
None	Manitowoc Mine SW. 1/4 sec. 16, E. center sec. 17, T. 13 N., R. 18 W.	Numerous inaccessible shafts. Dump material suggests several hundreds to thousands of feet of workings probably cut on mineralized veins in fractured granodiorite. (See Light and McDonnell, 1983.)	None	Analytical results presented by Light and Mc Donnell (1983) show silver and gold concentrations as high as 2.2 oz/st and 0.462 oz/st, respectively, and minor lead and zinc.
None	El Campo Mine SE. 1/4 sec. 8, T. 13 N., R. 18 W.	Tunnel, 85 ft long, cut on contact between a pebble conglomerate and granodiorite in paleochannel. Adit, 10 ft long, cut along a fault in diorite. (See Light and McDonnell, 1983.)	None	Analytical results presented by Light and Mc Donnell (1983) show one sample with 0.89 oz/st gold.

Table 2.— Analytical data for samples not shown in figures 4-13 and table 3. [Abbreviations and detection limits: gold — Au, 5 ppb; silver — Ag, 5 ppm; barium — Ba, 100 ppm; copper — Cu, 1 ppm; iron — Fe, 0.5 %; mercury — Hg, 5 ppb; lead — Pb, 5 ppm. <, less than; >, greater than; strike and dip $-(N. 40^{\circ} E., 82^{\circ} SE.)$; length by width by depth $-6 \times 6 \times 6$ ft.]

	Sample					Assay d	ata			-
No.	Type	Length (ft)	Au (ppb)	Ag	Ba	Cu	Fe	Hg	Pb	
	1300		נטעע)	(ppm)	(ppm)	(ppm)	(%)	(ppb)	(ppm)	Remarks
					Su	rface pros	pects i	n Golder	Slipper	area
59	Chip	2.8	11			13	0.5	10	14	Fractured quartz vein; iron and manganese oxide along fractures, and sparse pyrite.
60	do.	3.2	10,600 (0.363) <u>1</u> /	8 (3.6) <u>2</u>	/ 160	2		15	26	Do.
61	do.	2.9	110		310	176	1.4	25	38	Do.
62	do.	3.4	12		170	7	.7	5	85	Do. *
						Pa	loma pro	spect a	rea	
63	do.	.8	1,100 (.041) <u>1</u> /		530	35	2.0		6	Pit, 6 x 6 x 6 ft; fractured quartz vein (N. 50° W., 75° NE.); iron oxide along fractures.
64	Select	xx	4,470 (.165) <u>1</u> /		150	4,928	1.4	5	11	Stockpile; quartz vein material; minor malachite, chrysocolla, and hematite.
65	Pan con	xx			600	22	42.0	5	21	Panned concentrate of sediment in drainage at Paloma prospect.
66	Chip	1.9			1,700	18	6.7	10	18	Adit, 20 ft long; contact between gravel and granite gneiss bedrock; no mineralized zone noted.
67	do.	Random	6			17	.6	15	28	Outcrop, random chips of quartz pod; no mineralized zone noted.
							SA a	area		
68	do.	.6	2,360 (.14B) <u>1</u> /			133	1.0	15	1,114	Opencut, 20 ft long; quartz vein (S. 85° E., 65° SW.) between gneiss and diabase dike; hematite after pyrite, galena, and sparse chrysocolla.
69	do.	.8	29			21			35	Outcrop along strike of quartz vein; iron oxide along fractures.
70	Select	xx	8,390	11		1,635	1.7	300	>10,000	High grade of dumps; quartz vein material; galena, chrysocolla, and minor hematite.
					Su	rface pros	pects R	incon #	l claim ar	rea
71	Chip	3.1	18		170	19	.7	15	126	Massive quartz vein; no mineralized zones noted.
72	do.	1.8	91			8,314	1.5	30	51	Massive quartz vein; chrysocolla and chalcopyrite.
73	Select	xx	2,260 (.078) <u>1</u> /	10	120	>20,000	7.0	40	207	High grade of quartz vein; chrysocolla, chalcopyrite, and brochantite(?).
74	Chip	.6	2,150 (.090) <u>1</u> /		130	295	1.8	20	101	Quartz vein in contact between gneiss and diabase; minor hematite.
75	do.	1.0				57		15	12	Do.

See footnotes at end of table.

Table 2.--Analytical data for samples not shown in figures 4-13 and table 3--Continued

•••••		Length	Λu	Ag	Ba	Assay C		li e	D-	
No.	Type	(ft)	(ppb)	(ppm)	(ppm)	Cu (ppm)	Fe (%)	Hg (ppb)	Pb (ppm)	Remarks
									ave area	Nemar K3
						misc. p	ospect:	S III MON	ave area	
94	Chip	0.8	9		26,500	57	0.5	330	220	Trench, 15 x 3 x 2 ft; fault contact (N. 20° W., 55° NE.) between gneiss and mafic dike; barite.
95	do.	.7	20		1,100	>20,000	3.4	40	186	Trench, 19 x 4 x 2 ft; quartz fissure vein (N. 60° W., 40° NE.); drusy quartz, chrysocolla, fluorite(?), and hematite.
96	Select	××	120	16	400	>20,000	12.0	160	880	High grade of quartz vein; chrysocolla chalcocite(?), and hematite.
97	Chip	1.6	11		440	7,500	1.6	35	26	Opencut 13 x 5 ft; fault zone (N. 60° W., 55° NE.) in gneiss; chrysocolla, fluorite (?), and hematite.
98	Pan con	xx	**-		1,400	20	32.0	10	50	Panned concentrate of sediment down drainage from samples 86-93.
							WA-1 c1	aim are	3	
99	Select	xx	5,570 (0.189) <u>l</u> /	30	360 (24)2	/ ⁶²⁰	1.2	240	>10,000	Trench, 10 x 2 x 1 ft; fractured, vuggy quartz vein from dump; galena, minor chrysocolla and iron oxide.
00	Chip	.3	1,330 (.061) <u>1</u> /			240	.5	45	690	Pit, 10 x 7 x 4 ft; quartz vein (N. 86° E., vertical) between gneiss and andesite dike; minor chalcopyrite, chrysocolla, and galena.
01	Select	xx	2,530 (.017) <u>1</u> /	56	190 (48) <u>2</u> /	, 310	2.5	1,950	>10,000	Trench, 15 x 3 x 2 ft; quartz vein from dump; galena and iron oxide.
02	do.	xx	6,130 (.134) <u>l</u> /	78 (40.1)≧∕	, 310	6,127	1.9	20	1,126	Trench, 17 x 7 x 6 ft; quartz vein from dump; visible gold, azurite, chrysocolla, minor galena, and iron oxide.
03	Chip	.7	3,660 (.225) <u>1</u> /	36 (34.2) <u>2</u> /	, 790	2,025	4.5	3,400	>10,000	Pit, 12 x 4 x 5 ft; fault (N. 80° W., 80° SW.) in gneiss, hydrothermally altered; vuggy quartz, wulfenite, chrysocolla, and abundant limonite.
04	Pan con	xx			3,300	26	42.0	5	42	Panned concentrate of sediment from down drainage from trenches and pits.
							H&L	area		
05	Chip	1.5	6		210	1		. 5	11	Bulldozer cut, 50 x 10 ft; weathered pegmatite and quartz vein; no mineralized zone noted.
06	do.	4.0	1,670 (.045) <u>1</u> /		440 (1.2) <u>2</u>	495	1.9	10	75	Opencut, 80 ft long; fractured massive quartz pod; minor chrysocolla and abundant iron-oxide coating.
07	do.	4.3	87	 (.6) <u>2</u> /	610	175	1.8	5	55	Do.
80	do.	4.9	739 (.019) <u>1</u> /	12	190 (4.9) <u>2</u>	./ 21	1.1	5	27	Do.
09	do.	2.0	801 (.031) <u>1</u> /		1,300 (1.4) <u>2</u>	800	3.1	10	29	Do.
10	Select	xx	4,310 (.126) <u>1</u> /	6	350 (1.6)≧	10,500	2.7	15	65	High grade of quartz vein material

Table 2.--Analytical data for samples not shown in figures 4-13 and table 3--Continued

Type Chip Select Chip Select	3.8 xx 2.5	30 5,820 (0.168)1/ 350 (.010)1/	Ag (ppm)	Ba (ppm) 1,700 420 (10)	58 13	4.3	Hg (ppb) ontinued	Pb (ppm)	Remarks Opencut, 15 x 6 ft; fault (N. 23° E., 26° SE.) cutting gneiss and quartz
Chip Select Chip	3.8 xx 2.5	30 5,820 (0.168)1/ 350 (.010)1/		1,700	H&L 58	areaC	ontinued		
Select Chip	xx 2.5	5,820 (0.168)1/ 350 (.010)1/	19	420	58 13	4.3		12	
Select Chip	xx 2.5	5,820 (0.168)1/ 350 (.010)1/	19	420	13		15	12	
Chip	2.5	350 (.010)1/	19	420 (10)	<u>2</u> / 13				vein; no mineralized zones noted.
,		(.010)1/			_	2.4	250	39	Outcrop; grab of broken quartz vein material that appears blasted from outcrop; vuggy quartz and limonite.
Select	xx			160	10	1.7	30	7	Pit, 4 x 3 x 3 ft, in a 100 x 25 ft quartz outcrop; abundant iron oxide
		1,040 (.026) <u>1</u> /		110	10,500	2.5	40	64	High grade from dump of copper mineralized quartz vein material.
					Rad	#2 cla	im area		
Chip	.8	360		220	116	1.2	. 5	290	Opencut, 10 ft long with 5-ft-deep doghole; fractured quartz vein (N. 76° E., 75° SE.); iron oxide along fractures.
do.	.8	64		120	57	.7	5	78	Pit, 10 x 4 x 3 ft; fractured quartz vein (S. 88° E., 88° NE.); iron oxide along fractures.
Select	xx	5,560 (.266) <u>1</u> /		1,100	679	.8	10	240	High grade from pit dump; vuggy quart vein, visible gold, iron oxide alor fractures, minor chrysocolla.
Chip	1.3	52		140	15		5	60	Pit, 4 x 3 x 1 ft; broken quartz veir (N. 80° E., nearly vertical) betwee diabase and gneiss; vuggy, iron oxi along fractures.
Select	xx	430			11	.7	10	59	Pit, 6 x 3 x 3 ft; quartz vein poorly exposed in pit, grab sample of vein from dump; vuggy, iron oxide along fractures.
Chip	2.0	3,260 (.120) <u>1</u> /	9	2,500	440	12.0	20	900	Trench, 20 x 4 x 8 ft; fault zone (S. 80° E., 74° SW.) between gneis: and andesite; specular hematite and magnetite(?).
do.	1.3	300	7	1,200	162	11.0	45	225	Trench, 8 x 3 x 2 ft; fault zone (Due W., 74° S.) in andesite; specular hematite and minor calcite
do.	1.7	8			29	1.4	35	328	Pit, 6 x 6 x 2 ft; quartz vein (Due W 65° S.); specular hematite and hematite after pyrite.
Grab	xx	33		130	35	4.0	35	395	Random sample from pit dump; specular hematite.
					Mani	towoc M	ine area		
Chip	4.3	16		650	3	1.0	30	***	Outcrop; weathered, fractured rhyolitic dike; iron and manganese oxide along fractures.
do.	3.2	9		790	4	.7	30	66	Do.
s c c	do. elect hip do. do. irab	do8 elect xx hip 1.3 elect xx hip 2.0 do. 1.3 do. 1.7 rab xx hip 4.3 do. 3.2	do8 64 elect xx 5,560 (.266)1/ hip 1.3 52 elect xx 430 hip 2.0 3,260 (.120)1/ do. 1.3 300 do. 1.7 8 arab xx 33 ahip 4.3 16 do. 3.2 9	do8 64 elect xx 5,560 hip 1.3 52 elect xx 430 hip 2.0 3,260 9 (.120)1/ do. 1.3 300 7 do. 1.7 8 arab xx 33 thip 4.3 16	do8 64 120 elect xx 5,560 1,100 hip 1.3 52 140 elect xx 430 hip 2.0 3,260 9 2,500 do. 1.3 300 7 1,200 do. 1.7 8 irab xx 33 130 thip 4.3 16 650 do. 3.2 9 790	do8 64 120 57 elect xx 5,560 1,100 679 hip 1.3 52 140 15 elect xx 430 11 hip 2.0 3,260 9 2,500 440 do. 1.3 300 7 1,200 162 do. 1.7 8 29 arab xx 33 130 35 manifilp 4.3 16 650 3 do. 3.2 9 790 4	do8 64 120 57 .7 elect xx 5,560 1,100 679 .8 hip 1.3 52 140 15 elect xx 430 11 .7 hip 2.0 3,260 9 2,500 440 12.0 do. 1.3 300 7 1,200 162 11.0 do. 1.7 8 29 1.4 frab xx 33 130 35 4.0 Manitowoc Manito	do8 64 120 57 .7 5 elect xx 5,560 1,100 679 .8 10 hip 1.3 52 140 15 5 elect xx 430 11 .7 10 hip 2.0 3,260 9 2,500 440 12.0 20 do. 1.3 300 7 1,200 162 11.0 45 do. 1.7 8 29 1.4 35 irab xx 33 130 35 4.0 35 Manitowoc Mine area thip 4.3 16 650 3 1.0 30 do. 3.2 9 790 4 .7 30	do8 64 120 57 .7 5 78 elect xx 5,560 1,100 679 .8 10 240 hip 1.3 52 140 15 5 60 elect xx 430 11 .7 10 59 hip 2.0 3,260 9 2,500 440 12.0 20 900 do. 1.3 300 7 1,200 162 11.0 45 225 do. 1.7 8 29 1.4 35 328 trab xx 33 130 35 4.0 35 395 Manitowoc Mine area thip 4.3 16 650 3 1.0 30 do. 3.2 9 790 4 .7 30 66

Table 2.--Analytical data for samples not shown in figures 4-13 and table 3--Continued

	Samp 1	<u> </u>				Assay da	ta			
No.	Type	Length (ft)	Au (ppb)	Ag (ppm)	Ba (ppm)	Cu (ppm)	Fe (%)	Hg (ppb)	Pb (ppm)	Remarks
					T. P.	(29)		area	<u> </u>	Reliid F X S
174	Chip	3.5	28	14	1,100	1,600	2.8	35	28	Pit, 6 x 5 x 5 ft; fractures (N. 74° W., 83° NE.) in gneiss; chrysocolla, malachite, and quartz veinlets.
175	do.	1.7	17	6	610	3,600	3.1	25	11	Pit, 7 x 5 x 5 ft; fractures (N. 50° E., 15°-45° SE.) in gneiss; chrysocolla along fractures.
176	Select	xx	99	9	510	19,000	4.2	25	9	Stockpile next to pit; chrysocolla and iron oxide in gneiss.
177	Chip	1.5	13	9	480	3,700	2.6	35	23	Pit, 6 x 5 x 4 ft; fractures (N. 25° E., 40° SE.) in gneiss, chrysocolla and iron oxide along fractures, hematite after pyrite.
178	do.	Random	18	8	1,100	3,000	1.1	25	21	Pit, 4 x 4 x 4 ft; random chips of highly fractured gneiss; chrysocolla along fractures, and minor disseminated pyrite.
179	do.	4.6	81	45	720	8,800	5.5	50	38	Pit, 5 x 5 x 5 ft; highly fractured gneiss; quartz stringers, chrysocolla, malachite, and iron oxide.
							Rcla	itms		
180	do.	3.6	160	15	29,000	43	1,.6	550	1,050	Pit, 5 x 5 x 5 ft; fault zone (N. 48° W., vertical) in silicified and sericitized granite; vuggy and drusy quartz, adularia, and barite.
181	Select	xx	713	84	>30,000	795	.9	2,350	3,400	Opencut, 6 x 6 ft; highly fractured and silicified granite from around prospect; quartz veinlets, barite, minor chrysocolla, and a sinter-like material.
						Panned-	-concent	rate sam	ples	
182	Pan con	xx			760	8	3.5	20	20	Panned concentrate of sediment from eastern flank of study area.
183	do.	xx	35		720	50	8.0	30	74	Do.
184	do.	xx	9		990	41	6.3	20	96	Do.
185	do.	xx			900	44	12.0	5	19	Do.
186	do.	xx			470	19	51.2	20	36	Do.
187	do.	xx	11		660	28	18.0	30	45	Panned concentrate of sediment from western flank of study area.
188	do.	xx	<12		310	29	43.0	10	30	Do.

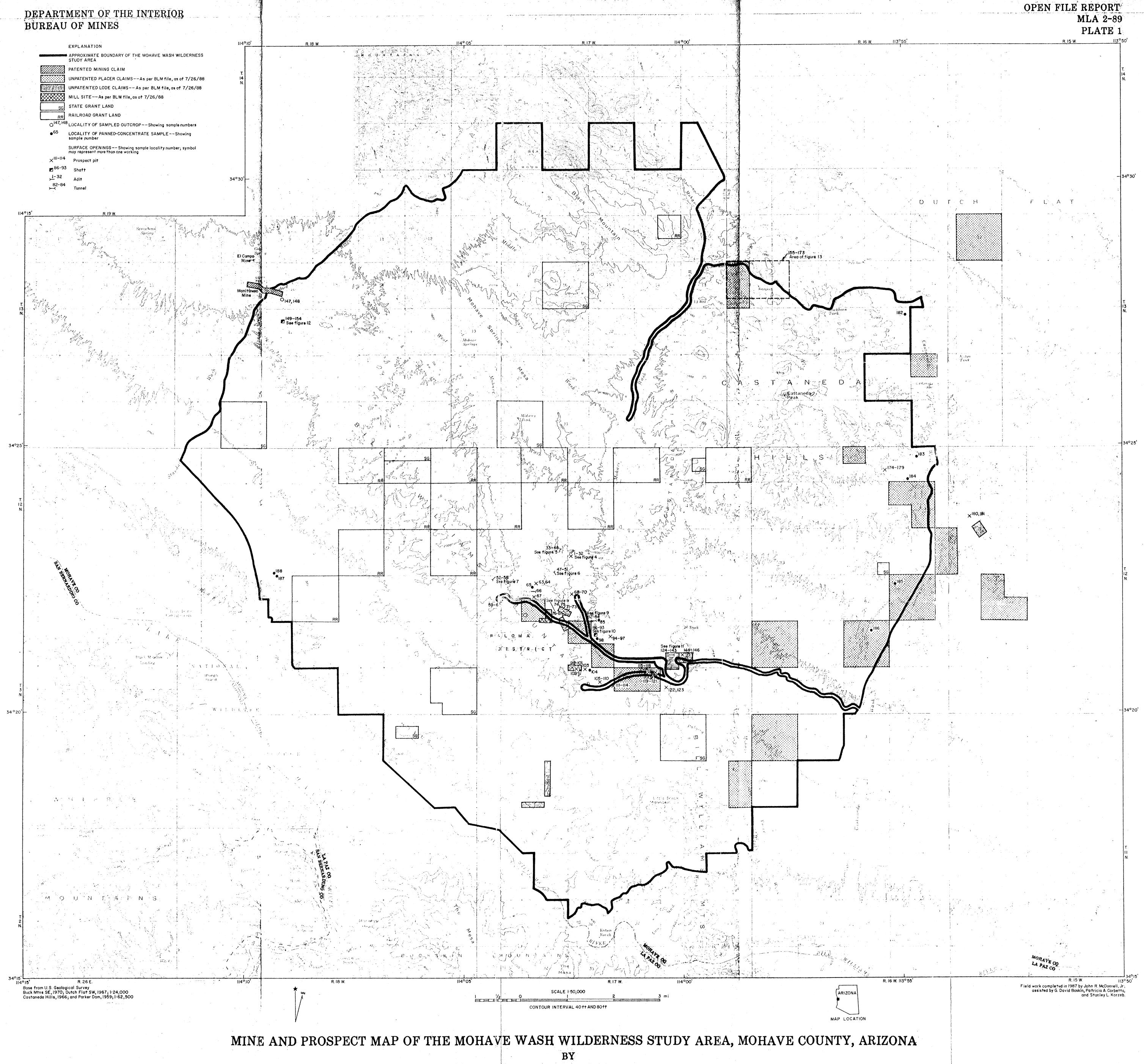
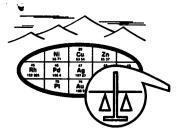

 $[\]underline{1}/$ Reanalysis by fire assay, result in oz/st. $\underline{2}/$ Reanalysis by D.C. plasma emission spectroscopy, result in ppm.

Table 3.--Laboratory furnace test results of perlite sample no. 173.

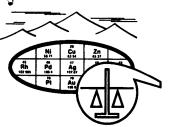
[°F, degree Fahrenheit; g, gram; cm 3 , cubic centimeter; kg/m 3 , kilogram per cubic meter.]


_	Preheat (°F)	Gross mass (g)	Net mass (g)	Volume (cm ³)	Calculated density (kg/m ³)	Comments
	0	141.1	8.6	62	139	Much drop-out, poor but uniform expansion.
	300	143.2	10.7	71	151	Much drop-out, little collected.
	600	141.2	8.7	98	89	50% well expanded, 50% poorly.

Sample expanded uniformly (either well or poorly) and could be used to make some expanded perlite end-products but generally would not compete favorably with other commercially available ores.

JOHN R. McDONNELL, JR., U.S. BUREAU OF MINES
1989

REPORT OF ANALYSIS


Wish

JOB NO. UGH 237 July 11, 1989 PROJECT NO.: 0035-MW 48169-48196, 072655 PAGE 1 OF 2

WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713

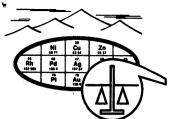
Analysis of 28 Rock Chip and 1 Pulp Samples

ITEM	SAMPLE NUMBER	Au (ppm)	-	As (ppm)		
1	48169	⟨.02	.15	6.5	á	0/
2	48170	⟨.02	.05	4.0	.4 .2	.06 .09
3	48171	⟨.02	.05		.2	
4	48172	⟨.02 ⟨.02	.05	1.4		.10
✓ 5	48173				.6	.14
7 3	401/3	4.70	2.00	. 4	.3	.09
6	48174	⟨.02	.05	2.4	.2	.16
7	48175	⟨.02		2.2	.2	.06
8	48176	.49	1.00	5.5	.3	.09
9	48177	⟨.02	.55	34.0	.6	.09
10	48178 *	.00	.00	.0	.0	.00
- 11	48179	3.10	5.40	46.0	2.6	.24
12	48180	.07	.10	2.8	.2	.11
13	48181	.22		4.6	.3	.03
14	48182		.05	11.0	.4	.07
15	48183	⟨.02	⟨.05	34.0	.2	.14
16	48184	⟨.02	.10	6.5	.9	.06
17	48185	⟨.02		18.0	1.0	.10
.18	48186		.05		.1	.08
V 19	48187	>10.00**			1.2	.13
20	48188			3.6	.7	.14

> JOB NO. UGH 237 July 11, 1989 PAGE 2 OF 2

ITEM	SAMPLE NUMBER	Au (ppm)	Ag (ppm)	As (ppm)	Sb (ppm)	Hg (ppm)	
 						144 ATT ATT AND THE ABOU WAS A	
21	48189	₹.02	.30	48.0	.3	.15	
22	48190	.89	.75	2.4	.2	.12	
23	48191	₹.02	1.10	265.0	4.7	.03	
24	48192	.31	1.20	2.2	. 1	.05	
1 25	48193	>10.00**	18.00	6.5	. 1	.07	
V 26	48194	1.90	1.70	2.2	. 4	.07	
27	48195	.07	.20	2.0	.1	.04	
28	48196	⟨.02	.25	4.6	<.1	.14	
29	072655	1.40	2,20				

*NOTE: Sample not received.


**NOTE: Greater than normal geochemical range. Please advise if fire assay is needed.

cc: Minex Co.

P.O. Box 1949

Glendale, AZ 85311

1775 W. Sahuaro Dr. • P.O. Box 50106 Tucson, Arizona 85703 (602) 622-4836

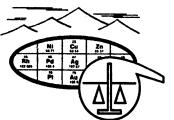
REPORT OF ANALYSIS

JOB NO. UGH 238
July 13, 1989
PROJECT NO.: 0035-RE
48197 TO 072654
PAGE 1 OF 1

WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713

Analysis of 8 Rock Chip and 1 Pulp Samples

ITEM	SAMPLE NO.	Au (ppm)	Ag (ppm)	As (ppm)	Sb (ppm)	Hg (ppm)	
	40407				_		
1	48197	⟨.02	.05	2.2	.5	.01	
2	48198	₹.02	.05	.6	.4	.01	
3	48199	⟨.02	.25	1.0	.2	.01	
4	48200	⟨.02	.15	1.2	. 1	.01	
5	48074	⟨.02	.35	2.0	.1	.01	
6	072651	>10.00	2.50	8.5	.2	.05	
7	072652	⟨.02	.10	1.2	. 1	.01	
8	072653	.14	.05	.8	.2	.01	
9	072654	1.40	51.00		• 6	•••	


*NOTE: Greater than normal geochemical range.

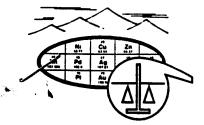
Please advise if fire assay is needed.

cc: Minex Co.

P.O. Box 1949

Glendale, AZ 85311

1775 W. Sahuaro Dr. ● P.O. Box 50106 Tucson, Arizona 85703 (602) 622-4836


REPORT OF ANALYSIS

JOB NO. UGH 242 July 28, 1989 301-322 PAGE 1 OF 3

WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713

Analysis of 22 Rock Chip Samples

II	EM	SAMF	PLE NO.	Au (ppm)	Ag (ppm)	Hg (ppm)
PALOMA Wash	1 + 2 + 3 *	301 302 303	Breecia - trend wall rows	(1.90 (.02 (.02	1.60 1.00 .90	.07 .09 .05
,Jash	5	^ 304 < 305 : 306	DUMP_	3.70 .04 .09	4.40 .35 .95	.07 .03 .04
Jan (8 ×	307 308 309	VEIN VEIN	<.02 <.02 <.02	3.00 .10	.04 .04 .02
70	11	311	DUMP PIT	.06 2.80 .63	.10 1.20 .25	.02 .06 .03
CCB-10	14		VEIN-ADIT		.05 .80 3.00	.01 .02 .05
CCR-200 Blank NGg		317		⟨.02		.06 .01 .02

1775 W. Sahuaro Dr. ● P.O. Box 50106 Tucson, Arizona 85703 (602) 622-4836

REPORT OF ANALYSIS

JOB NO. UGH 241 July 19, 1989 PROJECT NO. 0035-MW P.O. #226634236 00601 TO 00625 PAGE 1 OF 2

WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713

Analysis of 25 Rock Chip Samples

,	FIRE ASSAY						
ITEM	SAMPLE NO.	Au (oz/t)	Ag (oz/t)				
()	00401	.004	·				
STANDARD WITH	~ 00901	.004	<.01 <.01	:			
Trohave Wash STANDARD WASH	× 00603	.004	⟨.01				
	× 00604	.006	⟨.01				
5		.002	⟨.01				
GIERS BASIN 8 9 MONKEYS HEAD 10 (DEE) 11 12 MONKEYS HEAD 13	× 00608 × 00609 DUMP × 00610 PIT × 00611 VEIN 200612 WALL? D 00613 VEIN	.004 1.290 .002 .240 .002	.56 <.01 <.01 .51 <.01 <.01 <.01	(USBM # 14) -			
	* 00614 WORKING	.140	(.01				
16 17 18 19	× 00615 × 00616 Piv × 00617 × 00618 Qve - VEIN × 00619 Qve - VEIN × 00620 WALL? D	.010 .018 .010 .004 .002	.01 .05 <.01 <.01 <.01 <.01				

JOB NO. UGH 241 July 19, 1989 PAGE 2 OF 2

FIRE ASSAY
Au Ag
ITEM SAMPLE NO. (oz/t) (oz/t)

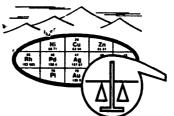
Palama - Monungs head 21 × 00621 972 - VEIN .004 (.01
22 × 00622 VEIN - PIT .055 (.01
23 × 00623 .580 .07
24 00624 STD - RRD .340 (.01

Monungs head 25 × 00625 clay hock .002 (.01

cc: Minex Co P.O. Box 1949 Glendale, AZ 85311

1775 W. Sahuaro Dr. ● P.O. Box 50106 Tucson, Arizona 85703 (602) 622-4836

REPORT OF ANALYSIS


JOB NO. UGH 237 July 11, 1989 PROJECT NO.: 0035-MW 48169-48196, 072655 PAGE 1 OF 2

WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713

MOHAUE WASH

Analysis of 28 Rock Chip and 1 Pulp Samples

	ITEM	SAMPLE	NUMBER	Au (ppm)	Ag (ppm)	As (ppm)	Sb (ppm)	Hg (ppm)	
_			opt	***************************************		**************************************	***************************************		
STANDAR		× 48169 × 48170		⟨.02 ⟨.02	.15 .05	6.5 4.0	.2	.06 .09	•
		× 48171 × 48172	DUMP(,280)	<.02 <.02	.05 .15	2.0 1.4	.6	.10 .14	
•	/ 5	× 48173	DUMP(,280)	4.70	2.00	-4	.3	.09	
_CROSSMAN	/ 7	√ 48174 √ 48175	UE (A)	⟨.02	.05	2.4 2.2	.2	.16 .06	
_CR035101410	9	48177	4 •	.49 (.02 .00	.55 .00	5.5 34.0 .0		.09 .09 .00	
/-	11 12 13	48179 F 48180 48181	RACTURÉ(.115 VEIN DUMP GOSSAN	3.10 .07 .22	5.40 .10 .65	46.0 2.8 4.6	.2 .3	.24 .11 .03	
SPANDARD	15	× 48183	GOSSAN	<.02	⟨.05	11.0 34.0	.4 .2	.07 .14	
	171819	×48184 ×48185 ×48186 ×48187 1	6055AN DUMP (1.57)> VEIN	<.02 <.02 10.00**	.10 <.05 .05 43.00	6.5 18.0 1.8 10.0 3.6	1.0		
	/ 20	~ AOTOO	VEIN	/	.00	5,0	• /	.14	

SKYLINE LABS, INC. 1775 W. Sahuaro Dr. • P.O. Box 50106 Tucson, Arizona 85703

(602) 622-4836

JOB NO. UGH 237 July 11, 1989 PAGE 2 OF 2

17	ΓEM	SAMPLE NUMBER	(ppm)	Ag (ppm)	As (ppm)	Sb (ppm)	(ppm)	
-	24	× 48189 × 48190 DUMP × 48191 DUMP × 48192 FOT WALL OF × 48193 3'VEIN (441	VEIN .31	1.20	48.0 2.4 265.0 2.2 6.5	.3 .2 4.7 .1	.15 .12 .03	
151N /	26 27	> 48194 & ATZ.VE .N × 48195 HANGING WA × 48196 VEIN	(.060) 1.90 .07 (.02	1.70 .20 .25 2.20	2.2 2.0 4.6	.4 .1 <.1	.07 .07 .04 .14	

*NOTE: Sample not received.

**NOTE: Greater than normal geochemical range.
Please advise if fire assay is needed.

cc: Minex Co.

P.O. Box 1949

Glendale, AZ 85311

SKYLINE LABS, INC. 1775 W. Sahuaro Dr. • P.O. Box 50106 Tucson, Arizona 85703

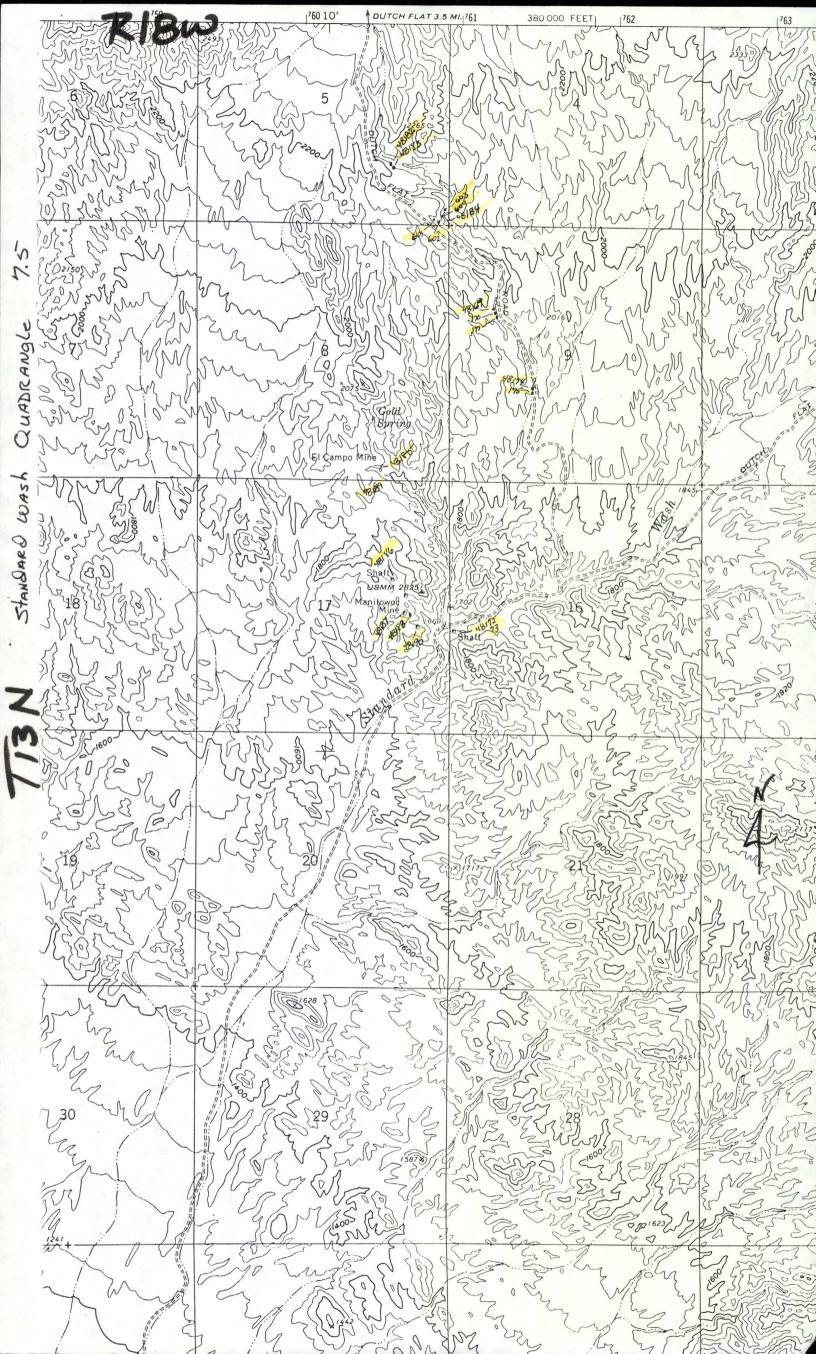
(602) 622-4836

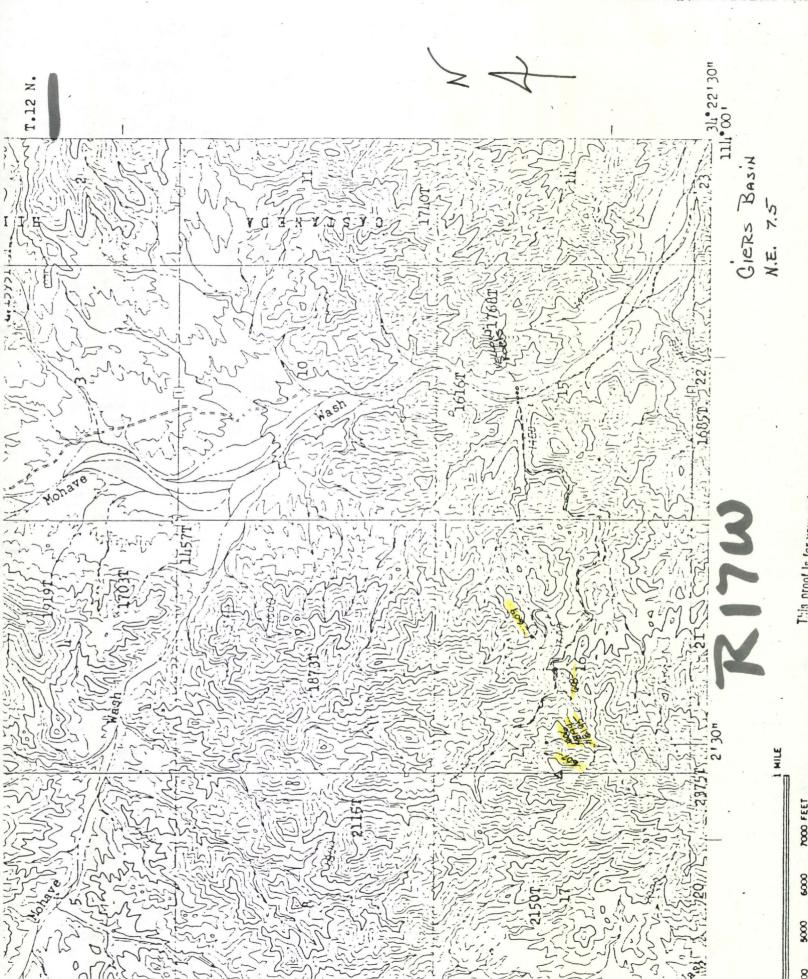
REPORT OF ANALYSIS

JOB NO. UGH 237A July 31, 1989 PROJECT NO.: 0035-MW 48169-48196, 072655 PAGE 1 OF 1

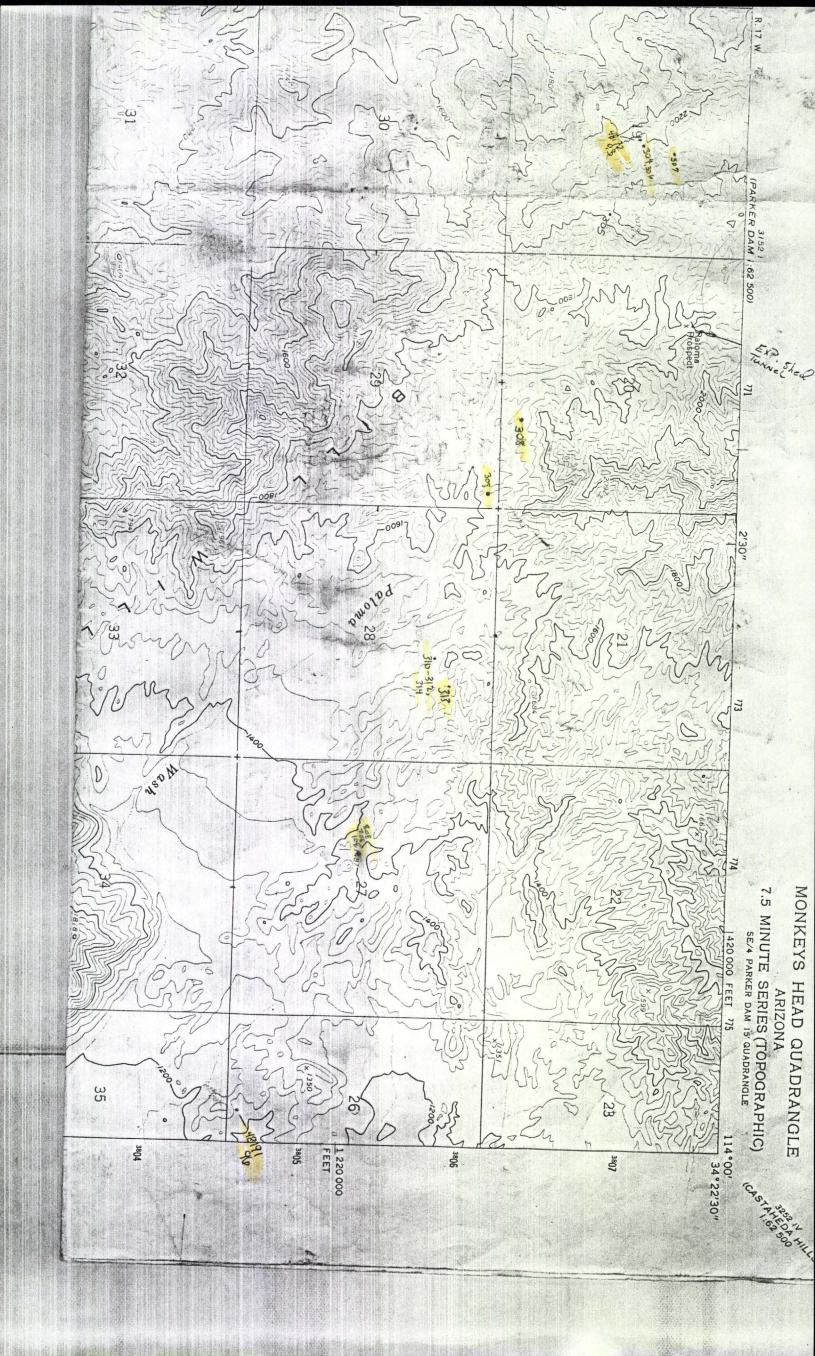
WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713

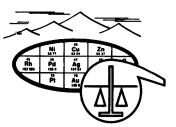
Analysis of 5 Pulp Samples


ITEM	SAMPLE NO.	FIRE ASSAY Au (oz/t)	
5	48173	.280	
11	48179	.115	
19	48187	1.570 <	
25	48193	.445	4
26	48194	.060	


cc: Minex Co. P.O. Box 1949 Glendale, AZ 85311

ph 931-1038

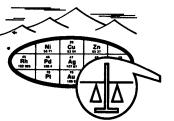

Fire assay of Mohave Wash hi-grade Samples.



This proof is for you

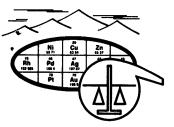
REPORT OF ANALYSIS

JOB NO. UGH 242 July 28, 1989 301-322


PAGE 1 OF 3

Molane 20

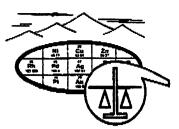
WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713


Analysis of 22 Rock Chip Samples

 ITEM	SAMPLE NO.	Au (ppm)	Ag (ppm)	Hg (ppm)
1	301	1.90		.07
2 3	302	<.02	1.00	.09
3	303	⟨.02	.90	.05
4	304	3.70	4.40	.07
5	305	.04	.35	.03
6	306	.09	.95	.04
7	307	<.02	.15	.04
8	308	⟨.02	3.00	.04
9	309	⟨.02	.10	.02
10	310	.06	.10	.02
11	311	2.80	1.20	.06
12	312	.63	.25	.03
13	313	⟨.02	.05	.01
14	314		.80	.02
15	315	1.60	3.00	.05
				-
16	316	1.80	2.50	.06
17	317		.05	.01
18	318	.76	11.00	.02
				Ora

> JOB NO. UGH 242 July 28, 1989 PAGE 2 OF 3

		ITEM	SAMPLE NO.	FIRE Au (ppm)	ASSAY Ag (ppm)	As (ppm)	Sb (ppm)	
perpendent beret	on from	19 20 21 22	319 320 321 322		6.40 6.70 14.00 .60	4.8 21.0	13.0 .9 9.0 24.0	Jaspevoid with visib galena + sphalerite. Banded exidot - mag skehn
_		ITEM	SAMPLE NO.	Cu (ppm)	Pb (ppm)	Zn (ppm)	Mo (ppm)	
_	\	19 20 21 22	319 320 321 322	2000. 4200. 990. 65.		1500. 48000. 20500. 95.	320. 55. 650. (2.	use use use dan use


> JOB NO. UGH 242 July 28, 1989 PAGE 3 OF 3

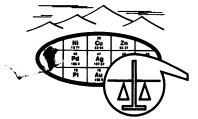
ITEM	SAMPLE NO.	Cd (ppm)	Co (ppm)	Ni (ppm)	Bi (ppm)	
19 20 21 22	319 320 321 322	.3 .9 .6	〈2. 2. 2. 135.	18. 14. 22. 36.	<.1 <.1 .1 1800.0	

ITE	:M	SAMPLE NO.	Ga (ppm)	T1 (ppm)	Te (ppm)	(ppm)
1	.9	319	1.0	⟨.5	3.5	.08
2	20	320	2.0	⟨.5	2.3	.09
2	21	321	<.1	<.5	8.6	.18
2	22	322	2.0	<.5	300.0	.02

cc: Mr. Ed Hasenohr Ms. Helen Mango

SKYLINE LABS, INC. 1775 W. Sahuaro Dr. • P.O. Box 50106 Tucson, Arizona 85703

Tucson, Arizona 85703 (602) 622-4836

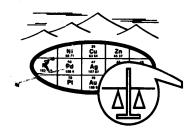

REPORT OF ANALYSIS

JOB NO. UGH 242 July 28, 1989 301-322 PAGE 1 OF 3

WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713

Analysis of 22 Rock Chip Samples ...

		ITEM	SAMPLE NO.	Au (ppm)	Ag (ppm)	(ppm)	
Mohare	lalash	1 2	301 302	1.90	1.40	.07 .09	
1 (Drage	VVVCS V	2 3	303	<.02	-90	.05	
		4 5 6	304 305 306	3.70 .04 .09	4.40 .35 .95	.07 .03 .04	
		7 8 9	307 308 309	<.02 <.02 <.02	.15 3.00 .10	.04 .04 .02	
		10 11 12	310 311 312	.06 2.80 .63	.10 1.20 .25	.02 .06 .03	
		13 14 15	313 314 315	<.02 .49 1.60	.05 .80 3.00	.01 .02 .05	
	<u> </u>	16 17 18	316 317 318	1.80 (.02 .76	2.50 .05 11.00	.06 .01 .02	


REPORT OF ANALYSIS

JOB NO. UGH 241 July 19, 1989 PROJECT NO. 0035-MW P.O. #226634236 00601 TO 00625 PAGE 1 OF 2

WESTMONT MINING, INC. Attn: Mr. Hugo Dummett 2341 S. Friebus, Suite 12 Tucson, AZ 85713

Analysis of 25 Rock Chip Samples

		FIRE ASSAY Au Ag					
		ITEM	SAMPLE NO.		(oz/t)		
. <i>X</i> 1		1	00601	.004	⟨.01	anter arter stars when while make super Name date	
V 000000	Wash	2	00602	.004	<.01		
(00 100 C	1000.1	2 3	00603	.004	⟨.01		
		4	00604	.006	⟨.01		
		5	00605	.002	⟨.01		
		6	00606	2.805	.56		
		7	00607	.320	<.01		
		8	00608	.004	<.01		
		9	00609	1.290	.51		
		10	00610	.002	<.01		
		11	00611	.240	⟨.01		
		12	00612	.002	<.01		
		13	00613	.010	<.01		
		14	00614	.140	<.01		
		15	00615	.010	<.01		
		16	00616	.018	.05		
		17	00617	.010	⟨.01		
		18	00618	.004	⟨.01		
		19	00619	.002	<.01		
		20	00620	.004	<.01		

> JOB NO. UGH 241 July 19, 1989 PAGE 2 OF 2

ITEM	SAMPLE NO.	FIRE Au (oz/t)	ASSAY Ag (oz/t)	
21 22 23 24 25	00621 00622 00623 00624 00625	.004 .055 .580 .340	<.01 <.01 .07 <.01 <.01	,

cc: Minex Co P.O. Box 1949 Glendale, AZ 85311