

CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 3550 N. Central Ave, 2nd floor Phoenix, AZ, 85012 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the Cambior Exploration USA Inc. records

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

property file

DEPCO, Inc.

MINERALS DIVISION

DATE: January 14, 1981

мемо то: J. B. Imswiler

FROM: N. L. Archbold

SUBJECT: Reconnaissance of Gold Basin District, Mohave County, Arizona

Location:

In White Hills about ten miles northeast of the White Hills mining district. See southeast corner of Senator Mountain 15' quad and southwest corner of Garnet Mountain 15' quad.

Reference:

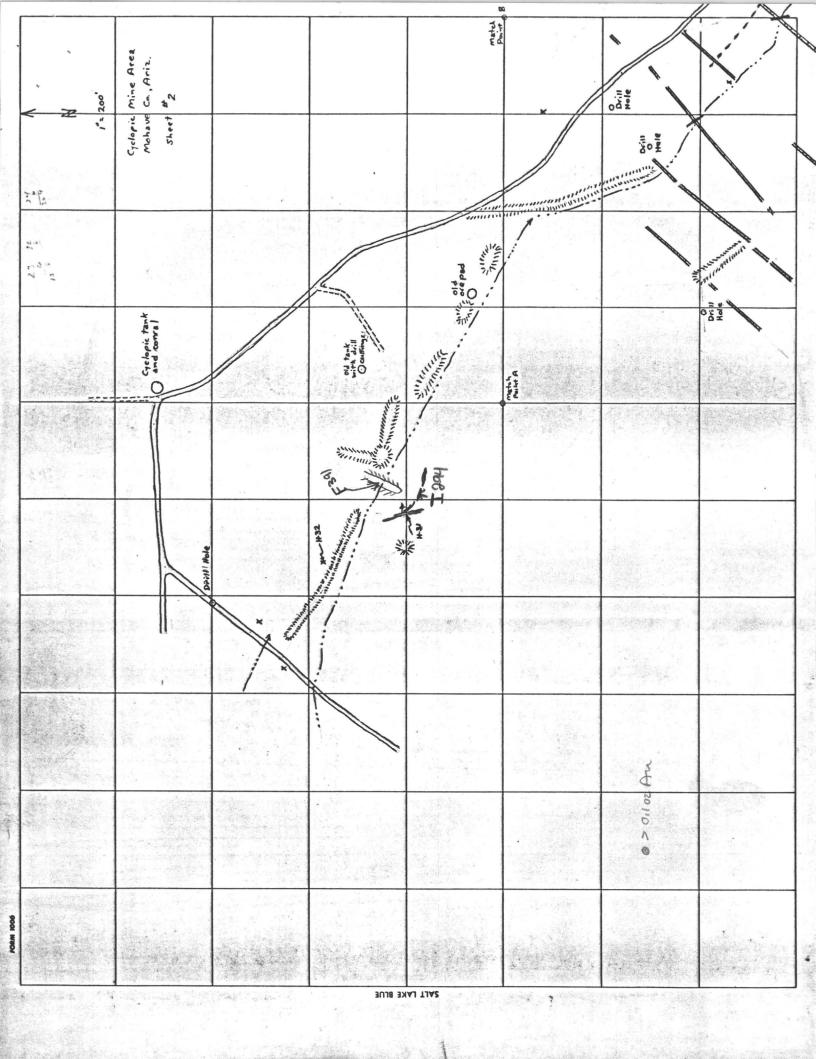
U. S. Geological Survey Bulletin 397, p. 118-127.

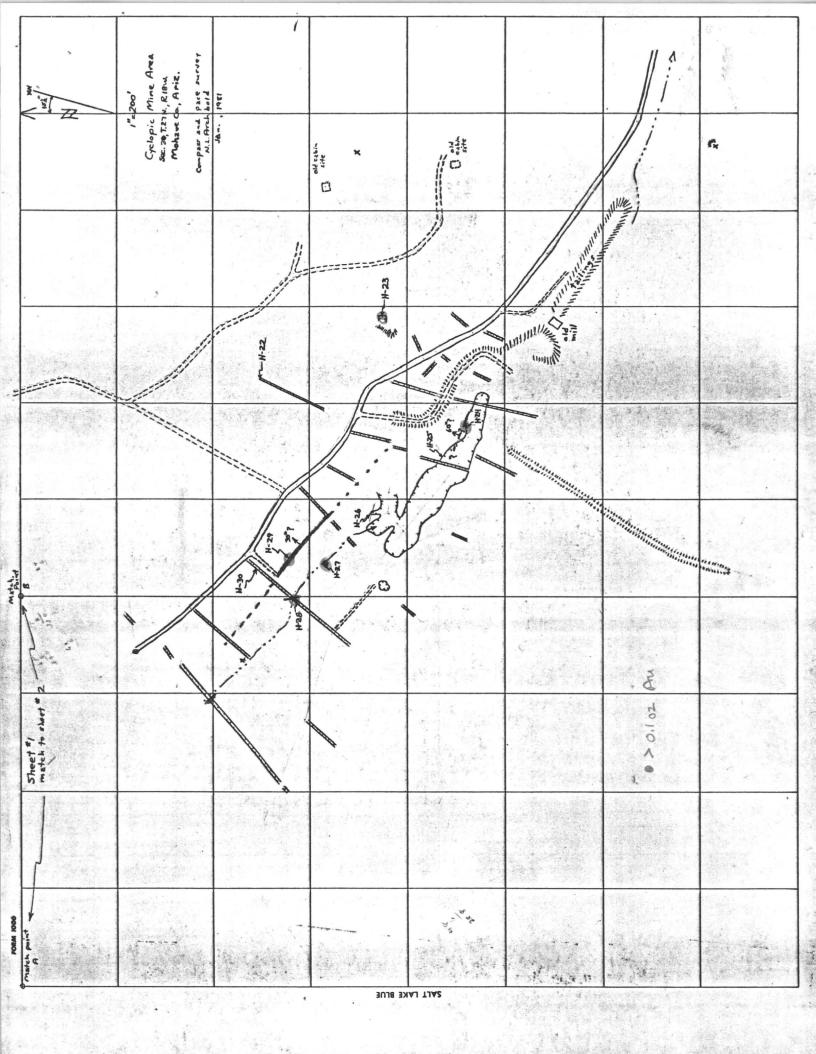
Notes On My Investigations (see numbers on accompanying sheets):

1. <u>Senator Mine</u>, NW¹/₄ sec. 14, T. 28 N., R. 19 W. Two parallel bodies of brecciated quartz about 300 feet long and 100 feet wide trend northward on the surface. Lowest tunnel on east side trends about S 60° W for 300 feet and passes through quartz body into sheared, chloritized granite in the footwall. Brecciated quartz body lies in hanging wall of fault that dips about 30° east. The quartz body probably lies along a thrust fault. Down-dip extension might present a drilling target if my samples show any gold or silver values.

SAMPLE NO.	DESCRIPTION	Au	Ag
H-8	Chloritized granite off dump of lower tunnel on east side of mines. Somewhat cheared with minor coatings of hematite.	1	-1
H-9	Red, stained brecciated quartz and granite from dump of small pit just south of H-8.	.1	-1
H-10	Red, stained, brecciated quartz from dump just above H-8.	1.7	1

2. <u>Owens Mine</u>, NW¼ sec. 1, T. 28 N., R. 19 W. Several pits and shallow shafts. Geology is not immediately obvious, but it looks like a system of mafic dikes cutting Precambrian gneiss with argillic alteration and brecciation. Minor veins of specularite and some secondary copper minerals. Possible intrusive center that should be mapped and sampled if values show up in my one sample.


			APM		
SAMPLE NO.	DESCRIPTION	Au	BUNCES-	Ag	
H-11	Argillized, brecciated gneiss with limonitic stockworks and traces of Cu minerals. From pit at north end of ridge.	.2	2 T	-1	
	3. Fry Mine, NE ¹ / ₄ sec. 25, T. 28 N., R. 29 W. shaft without much exposed. Probably a N 20° W zone	in gra	anite.		
SAMPLE NO.	DESCRIPTION	Au	oution of	Ag	
H-12	Brecciated granite with limonitic coatings and shears at mouth of prospect adit in wash southeast of main shaft.	.1		-1	


4. <u>Name Unknown</u>, SE corner sec. 19, T. 28 N., R. 18 W. Mine with mill. Brecciated quartz body trends easterly in gneiss. Does not appear to hold much potential.

5. <u>Name Unknown</u>, NW¹/₄ sec. 5, T. 28 N., R. 18 W. Minor quartz lenses in gneiss strike about north-south and dip east.

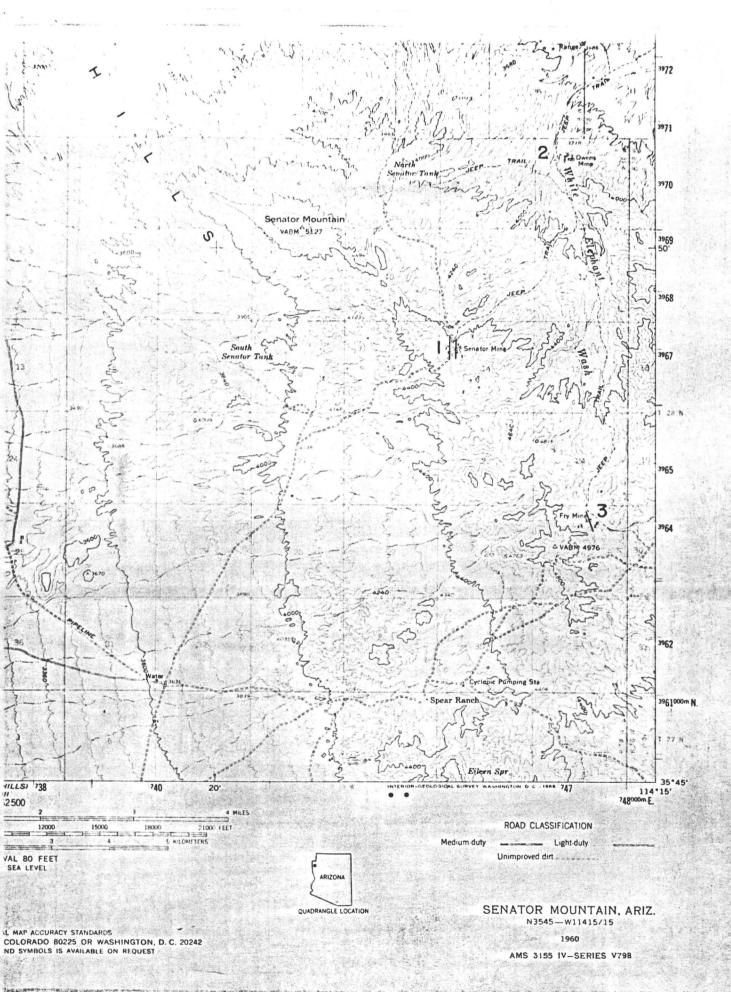
6. <u>Cyclopic Mine</u>, sec. 30, T. 27 N., R. 18 W. This area appears to have some potential for an open-pit precious metal deposit. Most previous work looks to have been open-pit mining for placer gold and trenching to test for placer gravels. I did, however, note four drill holes to test bed rock. Schrader (USGS Bull. 397) reports shafts and drifts to a depth of 70 feet with 1,000 feet of underground work, but none of this is evident today. Schrader reported that "The altered granite for a width of 100 feet or more bordering the deposit is also said to contain \$2 to \$4 a ton in gold, ..."

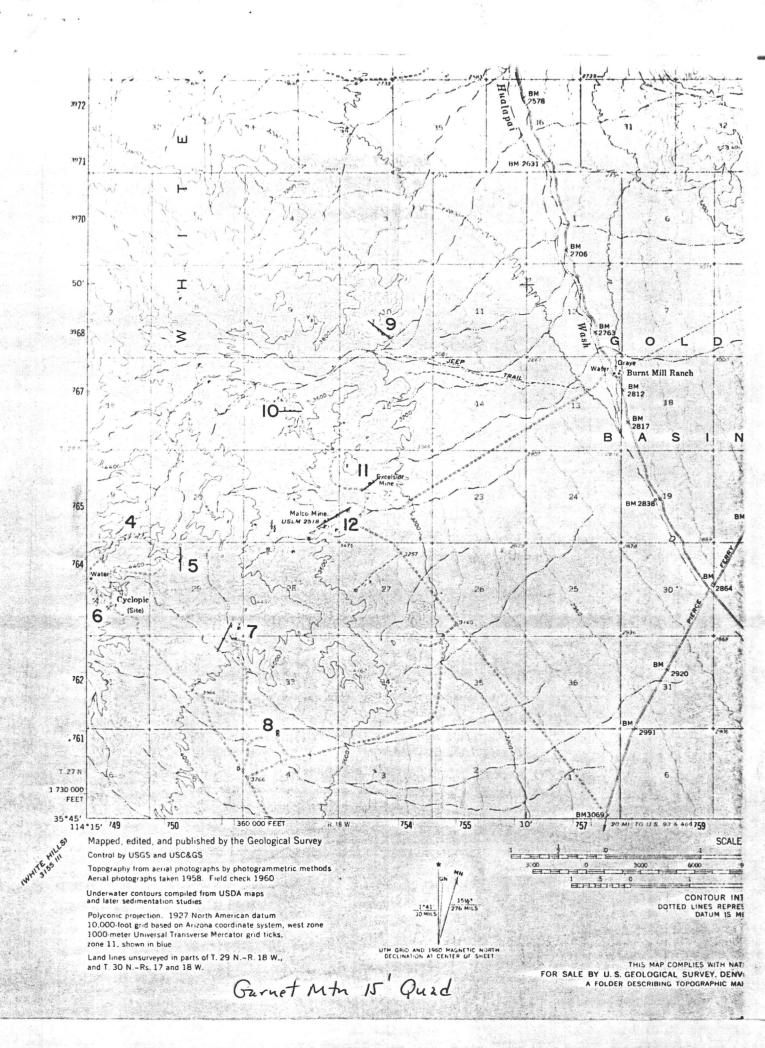
My investigation and sketch map (attached) indicate a zone, at least 1500 feet long, that trends about N 50° W along the course of a wash. The zone seems to be at least 100 feet wide, but exposures are very poor and it is difficult

to distinguish between weathered rock and caliche-cemented gravel. The zone might widen to the northwest, and float indicates that it extends farther northwest from the map area. Fundamentally, the "ore" zone looks to be a fault that dips about 30° northeast and contains sporadic lenses of thoroughly brecciated guartz that has been re-cemented with silica and Fe oxides. Neither the hanging wall nor the footwall is well exposed, but rocks a short distance northeast of the vein zone are sheared, red granitic gneiss that is probably cut by one or more mafic dikes. There have been numerous backhoe cuts across the zone. I assume these were to test for placer values, because virtually none of them expose bedrock. If my samples show any values, the district should be examined in closer detail. In any event, the owners of the property should be contacted to obtain more data about the property. Signs on the property indicate the current owners are T. King and R. Wyman in Boulder City, phone (702) 293-4178. Records in the Clark County Courthouse should be checked to ascertain the true ownership. Numerous "Yucca" claims were staked by King and Wyman in 1975. A 1971 report by J. Tingley (in DEPCO files) reports one sample that contained 0.248 ounces of gold per ton.

nnm

SAMPLE NO.	DESCRIPTION	ppm Au	Ag
H-22	Sheared, weathered granite from end of trench. Looks argillized and chloritized. Some lim- onite and hematite films.	-0.1	1
H-23	Brecciated granite gneiss. Somewhat sheared and chloritized. Minor veinlets of limonite.	7.0	4
H-24	Crushed quartz from hematite-stained zone in pit (subcrop of vein?).	3.4	2
H-25	Partly weathered, sheared and altered gran- ite(?) and mafic dike(?) with quartz in face of pit.	-0.1	-1
H-26	Argillized, hematite-stained material from fault(?). This is C-horizon material.	0.2	-1
H-27	Brecciated quartz and Fe-oxide from bottom of wash. This looks like vein material, but could be "float" in gravel or ferricrete.	4.4	6
H-28	Vein material. Highly brecciated quartz re- cemented with silica and Fe oxides.	7.4	7


SAMPLE NO.	DESCRIPTION	Au	ppm	Ag	
H-29	Vein material. Very hard, brecciated quartz re-cemented with quartz and Fe oxides. Random chips from vein that looks to be about six feet thick. This is best outcrop.	3.4		2	
H-30	Sheared, argillized and chloritized granite gneiss. Sample from backhoe trench. This is in hanging wall of vein zone.	-0.1		-1	
H-31	Vein material and mylonite. Probably rep- resents quartz lense in fault zone.	2.8		2	
H-32	Red granite gneiss and bleached(?) equiva- lent. Sheared, with minor quartz and Fe oxide veinlets.	-0.1		-1	
Three-fo potentia	7. <u>Evan Mines</u> , SE corner sec. 29, T. 28 N., R. ot wide quartz vein in gneiss strikes N 25° E, d 1.	18 W. ips 60	-	partic	cular
Area mos [.] No obvio	8. <u>Lee, P</u> , and <u>LM</u> Mine, NW½ sec. 4, T. 27 N., I tly covered. Brecciated, iron-stained granite w us single structure.	R. 18 ith so	W. me quartz	mater	ial.
SAMPLE NO.	DESCRIPTION	Au	OUNCES	Ag	
H-13	Silicified, brecciated and iron-stained granite off dumps. Some vein quartz.			'ng	
	9. Covered by <u>Crutch</u> claims, sec. 10, T. 28 N., wide fracture zone with minor quartz in gneiss. 55-70° northeast.	R. 18 Vein	W. strikes	N 50°	W
10 Minor mill	0. <u>Name Unknown</u> , sec. 16, T. 28 N., R. 18 W. ky quartz in shear zone that strikes easterly and	d dips	25° sout	h.	


11. <u>Excelsior Mine</u>, NW¹/₄ sec. 22, T. 28 N., R. 18 W. Mine is well described by Schrader in USGS Bull. 397. Vein appears to strike N 50° E, dip 45° northwest.

12. Eldorado Mine, SE¹ sec. 21 and SW¹ sec. 22, T. 28 N., R. 18 W. Mine is described by Schrader. Currently the site of a small heap-leaching operation. I talked with Bob Toporowski, who is a partner in the operation. He tells me they are attempting to work a flat-lying vein (25°). This is probably the structure called the "blanket" vein by Schrader.

Recommendations:

The district appears to hold little promise for a large tonnage operation. The Cyclopic Mine might be the single exception. The reason is not clear to me, but in February of 1980, much of the area was covered by the "Crutch" group of claims. I saw at least 250 claims in the group. The claims were located by a contract staker but reportedly belong to Santa Fe Mining Company. Inspiration Development Company staked a number of claims in 1978 and 1979.

ciated with lead or copper ores, copper stain being a good indication of the gold values. Pyrite. chalcopyrite. galena. molybdenite. and wolframite are found, but the ore is largely oxidized, the water level The deposits occur mainly in fissure veins in the pre-Cambrian mainly ut angles of 40° or 70°. The gangue is quartz, in places with siderite, and the metal is gold, mostly free milling, but it is assocrystalline rocks. The veins dip southeastward or northwestward. made and much ore has been produced and worked in arrastres and of fuel and water, renders operations expensive and has materially retarded developments. Nevertheless, considerable progress has been 119 which connection is made by stage line. Colorado River lies 16 miles to the north. Mineral was first discovered here early in the seventies, but remoteness from the base of supplies, together with scarcity several deep transverse washes, of which the principal ones are nearest railway station is Hackberry, 40 miles to the south, with Banker, O. K., and Cyclopic, situated about 2 miles apart. FIGURE 18.-Sketch map of Gold Basin district. GOLD BASIN DISTRICT. CONTOUR INTERVAL APPROXIMATELY 100 FEE ISUER GET mills. rugged, being marked by longitudinal fault carps and scored by

MINERAL DEPOSITS OF MOHAVE COUNTY, ARIZONA.

V118

It is said to be less rich in the sulphide zone in the lower part of the mine than in the oxide zone near the surface. Its run of mine, roughly computed from a record of the output from October 10, 1885, to March 6, 1901, is about as follows: Silver 160 ounces and gold 2 ounces to the ton; lead, 12 to 20 per cent.

Production .- The production is reported to be \$1,300,000, that of dollars' worth of medium-grade ore are said to now lie on the dump. The output was mostly made between the autumns of 1885 and 1892. During this period 3,687 tons of ore are reported, according to smelter return sheets, to have contained about 402,000 ounces of silver, 1,180 ounces of gold, and 515,760 pounds of lead. Later, about 1900 to 1902, about 17,550 ounces of silver, 180 ounces of gold, and 114,360 pounds of lead are said to have been obtained from 330 tons of consilver alone amounting to about \$1,000,000; and several thousand centrates.

MINES OF CANYON STATION WASH.

In Canyon Station Wash, about a mile north of C. O. D. Wash, portant seem to be the Baden-Baden, King, and Queen mines, said there are reported to be several small mines, of which the most imto be owned by Lewis Davidson, of Kingman.

MINES IN "TOP OF STOCKTON HILL" AREA.

of the district, at the crest of the range, between the northern part The "top of Stockton Ifill" is situated in the northwestern part of the Cerbat district on the west and the heads of I. N. L. and Miner's Hope, Blue Bell, Fountain Head, Brown, and others, the most important of which seems to be the Cincinnati. It is situated near the crest of the range about midway between Lane Springs and I. X. L. basins. It has not been worked for many years, but is O. D. washes on the east. The mines include the Cincinnati, regarded as a good property.

JOLD BASIN DISTRICT.

DENERAL FEATURES.

The northeastern portion, where most of the mines are situated, is The Gold Basin mining district, of which Basin is the post-office, is situated in the eastern part of the White Hills (fig. 18). It extends over a hilly area about 6 miles in diameter, sloping to Hualpai Wash on the east, and ranges from 2,900 to 5.000 feet in elevation.

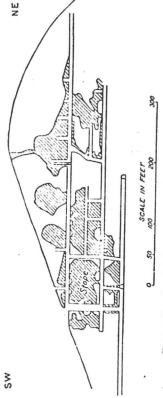
suld to contain no copper above the 200-foot level, but in an opening west of the mine and about 500 feet above it, on what is thought to be nins chiedy bornite and chalcopyrite, with some zinc blende, and about \$20 in gold to "The mine is said to contain no copper above the 200-foot level, but in O. D. vein, the ore, which here occurs in a milk-white quartz about half a mile the same C.

not having been reached. Among the oxidized products are limonite.

malachite, cerusite, and vanadinite.

U.S. Geol. Survey Bull 397

120 MINERAL DEPOSITS OF MOLLAVE COUNTY, ARIZONA.


the state of the second se

The district contains about half a dozen small mines and about an equal number of good-looking prospects. The relative location of the most important is shown in the small sketch map (fig. 18). The principal mines are the Eldorado, Excelsior, Golden Rule, Jim Blaine, Never-get-left, O. K., and Cyclopic. The production of the district is given as more than \$100,000, most of which came from the Eldorado mine.

ELDORADO MINE.

Location and history.—The Eldorado mine is located in the high foothills in the eastern part of the district, at about 4,000 feet elevation and 1,000 feet above Hualpai Wash, which is about 2 miles distant. The mine is reached by wagon road, over which most of the ore was hauled to the Basin or O. K. mill, 4 miles distant in Hualpai Valley. This mill, which was burnt while in operation in August, 1906, contained 10 stamps and a cyanide plant.

Pleure 19.-Longitudinal section of Eldorado mine, showing stopes.

The mine was discovered late in the seventies and produced the first bullion taken from the district, much of its ore being at first worked in arrastres. It is owned by the Arizona-Minnesota Gold Mining Company, of Minneapolis. The production is reported to be \$65,000, of which \$5,000 was produced prior to 1902.

Developments.—The mine is developed principally by about 2,000 feet of tunnels and drifts and 40,000 cubic feet of stopes on three levels, aggregating probably about 90,000 cubic feet of underground work and distributed approximately as shown in the accompanying diagram (fig. 19). The lower tunnel trends about N. 33° E. and strikes the vein at about 200 feet in from the mouth. From this point the drift extends about 200 feet to the norther.

Geology.—The country rock is a reddish schistose medium-grained gramite. On the northeast, however, as shown at the surface and in the bottom of the mine, this rock gives way to a dark friable biotite gramite. The contact between the two rocks dips about 30° W. It

GOLD BASIN DISTRICT.

is usually sharp and is probably a fault plane, which seems to cut off the vein on the northeast.

Trins and ores.—The deposit is a fissure vein, which strikes about N. 50° E. and dips 65° SE. It is continuous from the apex at the crest of the ridge to the contact in the lower tunnel of the mine and is stoped out through most of this extent. The walls are fair, but not regular. The vein averages several feet and the ore shoot about 20 inches in width. It contains iron-stained, free-milling goldquartz ore, and is reported to average from \$12 to \$15 a ton in gold. The other associated minerals are maiarbite, lead carbonate, and vanadinite, the last occurring locally as incrustations of crystals onefourth inch in maximum length. The principal mill treatment given to the ore was crushing, plate analgamation, and evanidation.

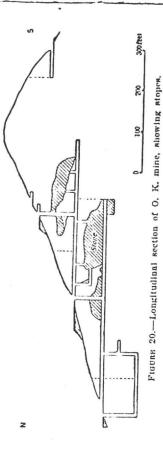
Just northwest of the apex of the vein above described and about 50 feet above it is the blanket vein, which is exposed for a length of 600 feet and a width of about 100 feet and which has contributed largely to the output of the mine. It dips about 25° E.

O. K. AND EXCELSION MINES.

The O. K. and Excelsior mines were discovered and located by three prospectors, Patterson, Rowe, and Fox, early in the eighties. They worked the ores in arrastres and hauled some to the 4-stamp mill at Grass Springs. In 1886 the O. K. was sold to a Kansas City company, which at once put up the O. K. mill in Hualpai Valley and ran it intermittently from 1887 to 1890. The mill burned down in 1893, but was rebuilt in 1896 and operated by lessees for a time, and then again shut down. It started once more early in 1902 and ran intermittently until 1906, when it burned down while in operation. The water used at the mills was piped from the springs or water tunnels in the upper part of Grand Wash Cliffs, 7 miles to the northeast. The mines are now owned by the Arizona-Minnesota Gold Mining Company.

0. K. mine.—The O. K. mine is about half a mile south of the O. K. mine.—The O. K. mine and about 100 feet below it, on the opposite side of O. K. Wash. The mine is developed mainly by addit drifts. winzes, and stopes on four levels. There is about 1,600 feet of underground work, distributed approximately as shown in the section (fig. 20). The production is reported to be about \$25,000.

The country rock is a dark biotite gramite, about the same as that which occurs in the bottom of the Eldorado mine. The strike is N. 30° E., with dip vertical. Slickensides pitch northeast-east toward the mouth of the drifts at angles of about 35°.


The vein trends N. 65° E., but curves to the north in its course and dips about 75° NW. It averages about 18 inches in width and is

121

MINERAL DEPOSITS OF MOHAVE COUNTY, ARIZONA.

composed mainly of seamed, gold-bearing limonite-stained quartz, said to average about \$1° in gold to the ton. The hanging wall of the fissure is regular, but rough. Small faults 2 to 6 feet in throw occur, locally accompanied by overlap and enlargement of the vein. The ore favors the hanging wall, but where the vein overturns on the third level and the hanging wall becomes the foot wall the ore, nearly 1 foot thick, occurs in the foot-wall side.

The ore is free milling, but not so much so as the Fldorado ore, the gold being associated with cerusite. The principal other associated minerals are limonite, hematite, siderite, galena, molybdenite, and wolframite.

Excelsior mine.—The Excelsior mine is about a mile northeast of the Eldorado and O. K. mines, in the low foothills near the edge of Hualpai Valley and about 500 feet above it, on the north side of O. K. Wash. The mine is developed to a depth of about 100 feet, principally by inclined shafts, drifts, and stopes, aggregating 500 feet of underground work. The production is reported to be \$5,000.

The country rock is a course reddish granite associated with black amphibolite schist. The vein dips about 45° NW. It is from 1 to 4 feet in width and is locally occupied by gouge only. The ore shoot contains deeply iron-stained gold-bearing quartz or ore. It varies from three-fourths to 1 foot in width and occurs mainly on the hanging wall. The ore is said to be cyaniding ore, only a small percentage of the values yielding to amalgamation.

MASCOT MINE.

The Mascot, formerly the Old Homestake mine, is situated north of the Excelsior mine in the foothills at the edge of Hualpai Wash, and is said to contain a vein only 3 inches in width, which, however, is reported to be very rich. It is owned by the Arizona-Minnesota Gold Mining Compuny.

GOLD BASIN DISTRICT.

MANIN LAWF-DAD-REAMIN

The Never-get-left mine is located in the upper part of a cliff or fault scarp that overlooks the Eidorado mine on the east, from which it is but a few hundred yards distant. It is situated at about 4.500 feet elevation, or 1.600 feet above Hundpai Valley. It is owned by Henry Paully, of Basin, and is developed principally by an adit drift, shallow shafts, and open cuts, aggregating several hundred feet of work.

The country rock is dark greessoid schist. The structure dips about 50° W., but the principal deposit dips about 50° N. It has a width of 6 or 8 feet and contains mainly iron-stained or copperstained crushed gold-bearing quartz. The country rock is greatly disturbed by jointing, fracturing, and faulting, and its true character is somewhat doubtful. The mine has been a small producer for some years and was shipping ore in April, 1906.

GOLDEN RULE MINE.

Location and history.—The Golden Ruie mine is about 1 mile west of the Never-get-left mine, at the extreme head of O. K. Wash, at about 4,550 feet elevation. It was discovered in the early eighties by Robert Patterson and Saul Rove, who hauled some of the ore to the Grass Springs mill. Subsequently they leased the mine to Mr. Quackenback, and in 1900 sold it to the present owner, the Arizona-Minnesota Gold Mining Company. This company did but little development work on it till 1906. From Mäy 15 to November 1 it was operated with a force of ten men, but was closed on the latter date. The production of the mine is estimated to be about \$5,000, most of which came from the blanket vein.

Derelopment.—The mine is developed by a 75-foot shaft, about 300 feet of drift, stopes, and a 25° incline about 100 feet long and 20 to 40 feet in width, the incline being on the south, where the deposits occur in the form of a blanket vein. The workings are contained within a horizontal distance of about 700 feet and a vertical distance of about 100 feet. The mine is handicapped by lack of water, which has to be hauled from the Cyclopic mine or from Basin, in Hualpai Valley.

Geology and ore deposits.—The country rock is the pre-Cambrian gneiss and schist. The fissure vein containing the principal part of the deposits strikes N. 20° E. and dips about 70° ESE. The croppings, which in part are prominent, form a reef of iron-stained, firmly cemented quartz breccia. The vein is best exposed in the north drift. It is about 2§ feet in average width and contains gold-bearing normal vein quartz. locally crushed, recemented, and iron-stained. Associated with it on either side is a sheet of pale grayish or whitish

123

MINERAL DEPOSITS OF MOHAVE COUNTY, ARIZONA.

1.24

gouge. The vein is said to yield good values throughout, the average being about \$10 in gold to 'he ton, but the honeycombed quartz is the

richest part of it.

At 120 feet in from the mouth of the drift the vein is abruptly cut off by a fault, immediately beyond which occurs a dark schistose rock that may be an intrusive. Near the fault the vein enlarges to about 12 feet in width, the enlargement being mainly on the foot-wall side and containing much honeycombed quartz, and the ore, greatly increased in quantity, is said to contain higher values. Some of it averaged about \$100 a ton in a large chamber, from which much ore has been removed.

The fault hades north at an angle of about 10°. It is a normal one and the lost portion of the vein has risen toward the southeast. The amount of throw was not determined, but it is probably not very great. Beyond the fault the drift extends about 100 feet on the projected course of the vein which, however, has not been found.

On the south the deposits occur in a blanket vein, which is 3 to 5 feet thick, dips about 25° SE, and is probably a portion of the vein in the north drift, for it straightens up in that direction toward the top of the hill. The blanket portion has been mined over an area of about 100 feet along the strike and a brendth of 35 feet down the dip, and it probably produced good values.

CYCLOPIC MINF.

Location and history.—The Cyclopic mine is located in the southeastern part of the district, about 5 miles southwest of the Eldorado mine, near the head of Cyclopic Wash, at about 4,500 feet elevation, on open ground. It was discovered in the early eighties by Patterson, Rowe, and Glen, and about 1896 it was leased to a Seattle company. In 1901, with the Golden Rule mine, it was sold to Robbins & Walker, of Minneapolis, who milled some ore. The coarse tailings still on the ground are said to contain about %7 in gold to the ton. Since 1904 the mine has been owned by the Cyclopic Gold Mining Company, of Denver. A considerable amount of bullion is said to have been produced, but the exact amount was not ascertained.

Developments.—The mine is developed mainly by shallow, mostly inclined shafts, drifts, and crosscuts to a maximum depth of about 70 feet, but most of the workings do not extend below 30 feet. The developments probably aggregate about 1.000 feet of work.

As the mine is located in a broad wash, ~~e of the workings have become filled with wash débris at times of flood. The principal equipments are an Ellspass mill, operated by a 26-horsepower engine, and a cyanide plant. The water supply is pumped by a small gasoline plant from the west side of the range, several miles distant.

GOLD BASIN DISTRICT.

Cleology.—The country rock is a medium-grained coarsely porphyritic gramite. It outcrops in association with the deposits and forms the foothills immediately on the southwest. Paralleling this rock, the wash, and the deposits on the northeast, and constituting the ridge on which the office and other buildings stand, is a fine-grained reddish gramitic rock, with which is associated some of the same biotite granite that underlies the Eidorado mine. In contact with the deposits, particularly to the northwest, there is also a coarse red permatite.

below the surface give way to less firm material having an imperfect synclinal structure. In the northern part, the pseudovein croppings dip toward each other and their attitude suggests that they may be in width outcrop several feet above the surface. They are in practically all respects identical with the croppings of the Golden Rule as a rule, continue in depth in the manner of a fissure vein, nor seem to have any definite fissure wall, but usually at a short distance quartz, in a few places somewhat resembling conglomerate. This material is cemented by silica and iron oxide, but is in part loosely coherent. It trends from a point near the mill N. 57° W. up the wash and is contained in, and for the most part seems to occupy, an area Prominent reefs of silicified iron-stained breecia several or more feet and other veins that have been described. They do not, however, They consist of goid-bearing iron-stained breccias and sunds of vein three-fourths of a mile in length by about 260 feet or more in width. Deposits -The deposits are ill defined and not well understood. synclinal limbs of the same vein deposit.

From the principal openings near the mill in the southeastern part of the deposit the croppings representing the main or Cyclopic vein extend N. 57° W. They are continuous for the first 400 feet and are accompanied by some underlying vein quartz or ore and show ore in sight at both ends of the 400-foot excavation. Between this vicinity, however, and the northwest limits of the deposits, the croppings of the vein are interrupted, and some pits and cuts have failed to find ore there.

The croppings of the other vein extend without interruption from a point about one-fourth of a mile northwest of the principal opening for a distance of 350 feet to the northwest. They are nearly parallel with the main vein, from which they are about 350 feet distant.

The ore thus far has been derived mostly from these veins, but The ore thus far has been derived mostly from these veins, but crosscuts 80 feet or more in length have been run in a considerable portion of the deposits between them and report fair values. which, however, seem to occur in lines or zones paralleling the deposit. Practically no mining has been done below a depth of about 30 feet. Near this level there is reported to occur a bed of red clay or gouge. which was formerly supposed to mark the lower limit of the ore. but

125

WHITE HILLS DISTRICT.	 a larger body. The ore is said to be similarly low in grade, a about \$3 in gold to the ton. According to Constock, the exhibit structural features resembling those of "brecciated and " cooling lamination" and in origin seem to be associated igneous intrusion. 	The Salt Springs mine is about 7 miles northeast of th mine and several miles south of Colorado River, in the fir west of Hualpai Wash. It is owned by the Sait Spring		1 limit is usually indicated by copper-statined quarks. 1 Other properties in this district are the Smuggler-Unit the Eureka mine, and the Lutley group.		GENERAL DESCRIPTION.			vation. It comprises an area about 2 miles in unimeted in at the Tudim Second minimer district, so named because the
-96 MINERAL DEPOSITS OF MOHAVE COUNTY, ARIZONA.	ore is said to have been found below it. The altered granite for a width of 100 feet or more burdering the deposit is also said to contain \$2 to \$4 a ton in gold. The ore is of low grade, and is said to mill on the average from \$7 to \$8 a ton in gold, and to cyanide well. It contains also a little silver and a trace of copper, the latter occurring chiefly as malachite	and not in sufficient amount to interfere with the evanidation. The company is reported to have recently computed about 1,000,000 tons of ore in sight.	The Gold Belt mine is located on the southeast side of Banker Wash, at about $\tilde{\lambda}_{000}$ feet elevation. It is owned by Henry Paully. The country rock is an annihilate solution of the sound of the solution of the solutio	the western of the two principal openings the deposits are contained in a blanket vein of quartz 15 feet thick, inclining gently eastward,	but thinning out in a distance of about 30 feet. The eastern opening shows two quartz blanket veins, each 2 to 6 feet in thickness, dipping	gently westward and separated by a 4-foot dike of some volcanic rock that seems to be basalt, but is altered beyond identification.	The ore is said to be of two grades, the lower grade yielding from \$4 to \$7 in rold to the tee and the bottom mail for any second	the ton and some as high as several hundred dollars a ton, that occur- ring in the porous or honeycombed quartz being the best. The deposit	is reported to have produced a few hundred dollars' worth of ore.

SENATOR MINE.

The Senator mine is located some distance beyond the border of the Gold Basin district, about 7 miles northwest of the Eldorado and Golden Rule mines and about 7 miles south of Colorado River, on a ow round hill at the southeast base of a prominent landmark known is " Senator Mountain." The mine was discovered late in the eighties by John Burnett, who in 1892 sold it for \$14,000 to Senator Page, of pany at once installed a 10-stamp mill on Colorado River, 2 miles and then suspended. Later the property was acquired by or leased to n 1903 and shut down, the ore being of too low grade to pay for its los Angeles, who in turn sold it to a Colorado company. The combelow Salt Springs, operated the mine and mill for about six months, haulage to the mill. 7 miles distant, and for beinging supplies from Iackberry and Kingman, 50 and 60 miles distant, respectively. The the Salt Springs Mining Company, which operated it about a month inine is reported to have been abandoned since then.

The mine is developed principally by open work, cuts, and adit drifts. The deposits are said to be nearly flat lying and similar in character to those of the Cyclopic mine (p. 125), but they form a

ed fusion " ciated with he deposits averaging

ngs Mining irst canyon ona-Minne-. The gold downward he Senator

nion group.

of the Indian Secret mining district, so named because the knowledge of the presence of its mineral was for a long time withheld from the nd is a part 000 feet eleth of Chlo-IL COMPLISES and whites by the Indians. vation.

The first discovery of mineral in the district by white men was made by Henry Shafter in May, 1892, through the aid of an Indian known as II ualpai Jeff, who exhibited a piece of rich silver ore at Gold Basin and showed Shaffer its source, where the Indians procured the supply of red iron oxide with which they adorned their faces. The locality is at the site of the Hidden Treasure mine.

a short time the camp was owned by one company, the White Hills After making several locations, Shaffer reported the discovery at who also located what later proved to be some of the best mines. 'I'he trio began work and were soon shipping very rich ore, some averaging \$1.000 a ton. The camp soon became the largest in the region and reached its zenith in 1894, with a population of 1.200. Within Mining Company, of which the chief men were R. T. Root and D. H. Moffatt, of Denver. A 10-stamp mill was built early in 1904; in Gold Basin and was soon joined by John Burnett and John Sullivan.

Comstock, Theodore B., Geology and vein phenomena of Arizona : Trans. Am. Inst. Min. Fing., vol. 30, 1000, pp. 1048-1049.

127

propercy fell

DEPCO, Inc.

MINERALS DIVISION

DATE: January 22, 1981

MEMO TO: J. B. Imswiler

FROM: D. F. Simpson

SUBJECT: Reconnaissance of Mines in the Lost Basin Range. Garnet Mountain 15' Quadrangle. Mohave County, Arizona.

Réferences:

Arizona Bureau of Mines Bulletin 137. State of Arizona Bureau of Geology and Mineral Technology Bulletin 168

On January 5, 1981 and on January 6, 1981 I made a brief reconnaissance of mines and prospects in the Lost Basin Range, Mohave County, Arizona. These include the Golden Mile mine, Bluebird mine, Climax mine, and the King Tut placer mine. These small mines explored quartz veins in granitic gneiss. The Lost Basin Range is approximately 50 miles north of Kingman, Arizona and can be reached via high-way 93 out of Kingman.

Golden Mile Mine

The geology consists of quartz veins in schists and gneiss. Three shallow shafts and four adits explore a north-trending quartz vein and vein system. The quartz vein was poddy and up to five feet in thickness. There were inclusions of chlorite-schist wall rock in some zones of the quartz vein. Locally, pyrite cubes were observable in both the quartz vein and the wall rock. The vein system can be traced for approximately 1200 feet but mineralization is not apparent along its total length. Unless mineralization of the wall rock is indicated by my sampling, this property probably has little economic value.

SAMPLE	#	DESCRIPTION

- I 65 Fe-stained white quartz and chloritic schist. 10' chip sample crosses 6' quartz vein and 4' of wall rock with numerous white quartz veinlets.
- I 66

, 10' vertical chip sample across white, poddy quartz vein. Minor sulfide-some cubes to $\frac{1}{2}$ ".

I 67

68

Sample of wall rock at I 66 location. Fe-stained chloritic schist and white quartz vein material. Some minor sulfides. 5' chip sample across outcrop.

10' vertical chip sample across 6' quartz pod and 4' of chloritic schist wall rock. There are schist inclusions in the white quartz pod. Lost Basin Range D. F. Simpson 1/22/81 Page 2

I 69

Sample across series of intersection 6" to 3' quartz veinlets. Wall rock is chloritic schist with minor sulfides.

Bluebird Mine

The geology of the Bluebird mine is similar to that of the Golden Mile mine and consists of quartz veins in granitic gneiss. A tunnel of approximately 200 feet explores a quartz vein which trends N 30° W and dips 61° SW. The vein is up to 5 feet thick and sulfides are visible in the vein material and the gneissic wall rock. Numerous prospects in the hills around the Bluebird also explore small quartz veins and veinlets. Approximately one mile east of the mine a rhyolite dike intrudes the granitic gneiss. Most of the area is covered and could be of interest if my sampling shows any mineralization. The quartz veins of the area probably have little value to DEPCO.

SAMPLE	#	DESCRIPTION

- White quartz vein material and siliceous "schisty" material I 70 1.28 pp Au which contains talc and chlorite. Both have visible pyrite cubes. 5' horizontal chip sample across outcrop.
- 400 per & Sample off small ore pile (?) of quartz vein material with I 71 major Fe-stains. Some pyrite casts and cubes.
- Sample of gneiss and schist country rock with minor dissem-I 72 inated pyrite. 200' away from mine workings. Random grab sample of float.
- Random grab sample across bulldozer cut. Gneiss, schist, and I 73 white quartz vein material. All have minor Fe-stains.
- White quartz vein material and Fe-stained chloritic schist. I 74 Also some coarse crystalline granite.
- I 75 5' chip sample across outcrop of white, rhvolite dike. Minor sulfides and slight argillic alteration. Contains fragments of granitic country rock.
- Random sample of quartz pod and country rock. White quartz I 76 with minor sulfides and Fe-stained schist with white quartz veinlets.
- White quartz, gossan, and gneissic material with white quartz 1.49 ppm A I 77 veinlets. Brown, purple, and Fe-stains. Random grab sample of chips near prospect.
- Random grab sample off dump has mostly Fe-stained white quartz I 78 with some gneiss country rock.
- Talcos and chloritic fault zone material with minor Fe-stain I 79 and pyrite cubes. 5' horizontal chip sample across adit roof.

Lost Basin Range D. F. Simpson 1/22/81 Page 3

Climax Mine

The Climax mine workings explored shear zones and quartz veins in granite gneisses. The major structure trends N 15° E and dips 65° W into the hillside. A major zone of gouge material and white quartz can be traced for approximately 500 feet along strike. There has been minor argillic alteration and pyrite and copper stains are very minor. Unless gold and/or silver values could be proven to increase down dip, the Climax mine doesn't have the size to be a major ore body. There has been recent bulldozer work around the mine and there are two small heap-leaching pads within one mile of the mine.

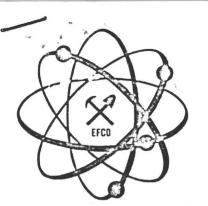
- SAMPLE # DESCRIPTION
- I 90 10' chip sample across fractured zone of white quartz vein material and silicified granite country rock. Pink-red-Fe-stains.
- I 91 Sheared and brecciated intrusive and highly altered quartz and country rock. Argillic alteration. Major red stains and minor copper stains.
- I 92 Random grab sample of country rock float. Pale green to white medium crystalline, quartz rich, meta-granitic rock. Very minor disseminated pyrite.

King Tut Placer Mine

The King Tut placer mine produced gold valued at \$23,510 from 1934 to 1942. The gold deposits were reportedly less that two to three feet thick and were found in arroyo bottoms. The gold nuggets were very ragged and carried attached quartz, indicating a local origin. For this reason I walked up some of the streams above the placer mine looking for a possible source of the gold. Approximately ½ mile above the mine I found a hill of highly fractured and iron stained granitic-gneiss country rock. There were several shallow shafts and prospects on the more intensely altered rock. There was also major copper staining of the rock. Intruding the gneiss were several bodies of white, coarse crystalline granite. Off one of these bodies I got a reading of 300 c.p.s. on my scintillometer. Southward, along the range front, I found more of the iron stained and brecciated granite indicating a structure of considerable length. This structure was traceable for at least ½ of a mile. At one location there were four recent drill holes and major bulldozer work. The land also has many lode and placer claims on it. If my sampling indicates any gold mineralization, this prospect would be of high interest.

SAMPLE # DESCRIPTION

I 80


- Stream sediment sample.
- I 81 1.70 pm A Very dark brown, vuggy, aphanitic, Fe-stained jasperoid. Sample 1 20 pm Au
- I 82 (249 pr-

5' chip sample across contact between 20' quartz pod with dis-

Lost Basin Range D. F. Simpson 1/22/81 Page 4

seminated pyrite and green chlorite schist with major Cu-stains.

- I 83 (28 ppm A Jasperoid and green to brown schist with major Fe-stains and Garpen A minor Cu-stains. 300 c.p.s. on scintillometer. Random grab 202 pm A sample from dumps and ground on hillside.
- I 84 7.5 pm By 5' chip sample across zone of altered schist, jasperoid, and 36 pm As clay. All are Fe-stained with minor Cu-stains.
- I 85 3.1pp-B; Altered schist and jasperoid with clay and Cu-stains. Random 344 pp-B; grab sample of chips across bulldozer cut.
- I 86 Fe-stained diabase with some pyrite cubes. Also minor white quartz veinlets. Random grab sample across bulldozer cut.
- I 87 Stream sediment sample.
- I 88 Stream sediment sample.
- I 89 Stream sediment sample.

property file: S. ariz & Nevada general recon OFS

EFCO LABORATORIES

2819 W. Ruthrauf Road TUCSON, ARIZONA 85703 Phone (602) 887-4241

P. O. Box 5526

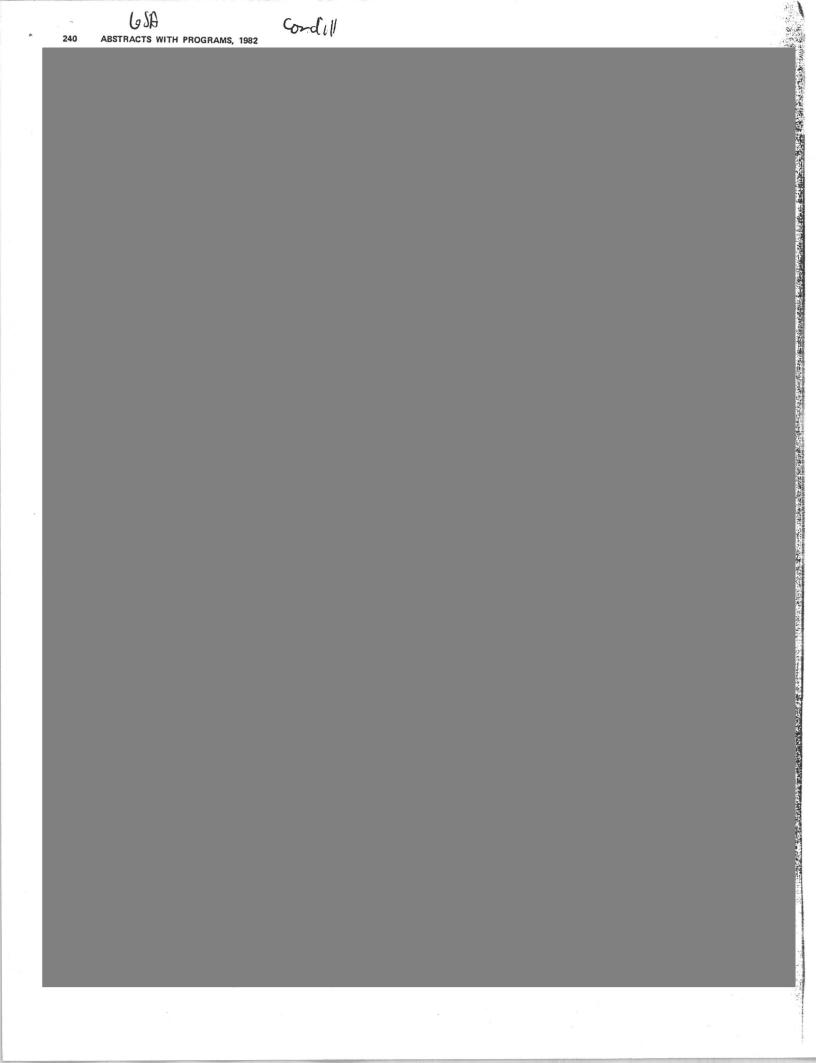
achut de these anouslies represent ?

Laboratory Analysis Report

DEPCO, Inc. 390 Freeport Blvd. Suite 12 Sparks, Nevada 89431 REPORT NO.____810421 DATE SUBMITTED____1/8/81____ DATE REPORTED____1/20/81____

David Simpson

.


Sample Number	PPM	PPM	PPM	PPM
	<u>Silver</u>	Gold	Arsenic	<u>Antimony</u>
I - 53	<1.0	<0.10	45	73
54	<1.0	<0.10	39	69
55	<1.0	<0.10	3	72
56	<1.0	<0.10	7	54
57	<1.0	<0.10	16	55
58	<1.0	<0.10	11	57
59 60 61 62 63 64 65	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	6 6 1 <1 5 5 7	61 37 38 45 29 53 54
66 67 68 69 - 70 - 71 72	<1.0 <1.0 <1.0 1.5 1.4 1.2 <1.0	<0.10 <0.10 <0.10 <0.10 1.282 4.90) <0.10	5 5 7 2 2 2 3 9 4 4	36 54 50 52 41 38 32
73	<1.0	<0.10	<1	42
74	<1.0	<0.10	2	34
75	<1.0	<0.10	4	47
76	<1.0	<0.10	10	34
- 77	1.4	1.493	1	43
- 78	<1.0	<0.10	3	37
79	1.9	<0.10	5	35
80	<1.0	<0.10	9	37
- 81	20.	1.70 ²	2499	36
82	<1.0	<0.10	18	23

A Division of Arizona Feeds

Sample Number	PPM <u>Silver</u>	PPM Gold	PPM Arsenic	PPM <u>Antimony</u>
- I - 83 84 85 86 87 88 89 90 91 92	9.0 2.5 3.1 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	1.28) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	202 36 344 8 3 4 4 5 4 2	42 36 28 32 31 39 12 28 22

Marey June Signed

Page 2

THE MINING RECORD

-

•

DEPCO, Inc.

MINERALS DIVISION

DATE: January 14, 1981

MEMO TO: J. B. Imswiler

FROM: N. L. Archbold

SUBJECT: Reconnaissance of Gold Basin District, Mohave County, Arizona

Location:

In White Hills about ten miles northeast of the White Hills mining district. See southeast corner of Senator Mountain 15' quad and southwest corner of Garnet Mountain 15' quad.

Reference:

U. S. Geological Survey Bulletin 397, p. 118-127.

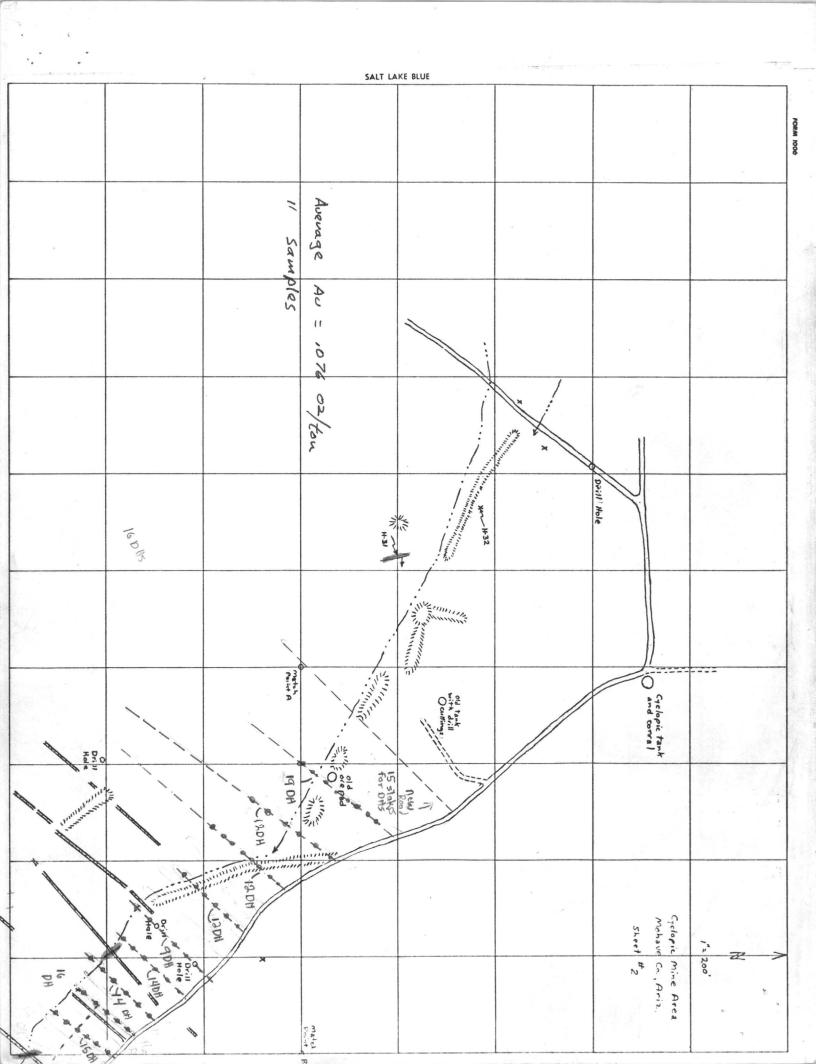
Notes On My Investigations (see numbers on accompanying sheets):

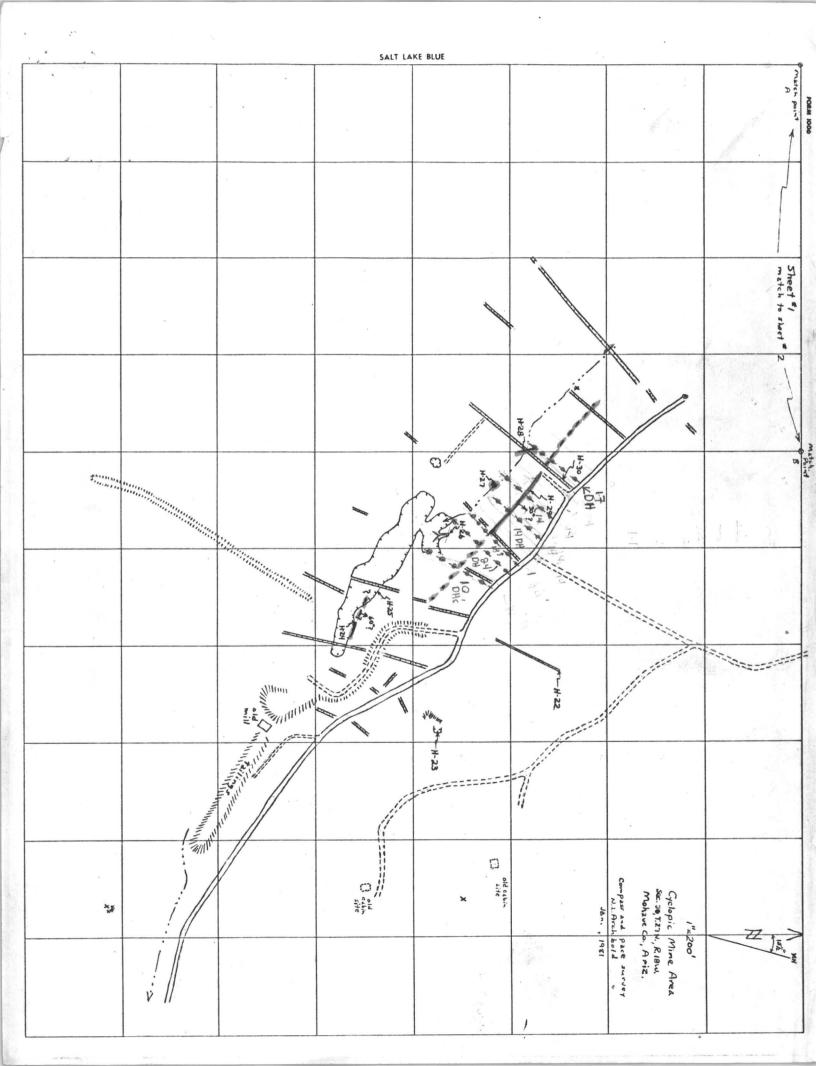
1. <u>Senator Mine</u>, NW¹ sec. 14, T. 28 N., R. 19 W. Two parallel bodies of brecciated quartz about 300 feet long and 100 feet wide trend northward on the surface. Lowest tunnel on east side trends about S 60° W for 300 feet and passes through quartz body into sheared, chloritized granite in the footwall. Brecciated quartz body lies in hanging wall of fault that dips about 30° east. The quartz body probably lies along a thrust fault. Down-dip extension might present a drilling target if my samples show any gold or silver values.

NO.	DESCRIPTION	Au	Ag
H-8	Chloritized granite off dump of lower tunnel on east side of mines. Somewhat cheared with minor coatings of hematite.	1	-1
H-9	Red, stained brecciated quartz and granite from dump of small pit just south of H-8.	.1	-1
H-10	Red, stained, brecciated quartz from dump just above H-8.	1.7 = ,05	0 1

2. Owens Mine, NW1 sec. 1, T. 28 N., R. 19 W. Several pits and shallow shafts. Geology is not immediately obvious, but it looks like a system of mafic dikes cutting Precambrian gneiss with argillic alteration and brecciation. Minor veins of specularite and some secondary copper minerals. Possible intrusive center that should be mapped and sampled if values show up in my one sample.

SAMPLE NO.	DESCRIPTION	Au	OUNCES PPM Ag
H-11	Argillized, brecciated gneiss with limonitic stockworks and traces of Cu minerals. From pit at north end of ridge.	.2	-1
Vertic	3. <u>Fry Mine</u> , NE ¹ / ₄ sec. 25, T. 28 N., R. 29 W. al shaft without much exposed. Probably a N 20° W zone	e in gra	nite.
SAMPLE NO.	DESCRIPTION	Au	OUNCESPAM Ag
H-12	Brecciated granite with limonitic coatings and shears at mouth of prospect adit in wash southeast of main shaft.	.1	-1


4. Name Unknown, SE corner sec. 19, T. 28 N., R. 18 W. Mine with mill. Brecciated guartz body trends easterly in gneiss. Does not appear to hold much potential.


5. Name Unknown, NW1 sec. 5, T. 28 N., R. 18 W. Minor quartz lenses in gneiss strike about north-south and dip east.

6. Cyclopic Mine, sec. 30, T. 27 N., R. 18 W.

This area appears to have some potential for an open-pit precious metal deposit. Most previous work looks to have been open-pit mining for placer gold and trenching to test for placer gravels. I did, however, note four drill holes to test bed rock. Schrader (USGS Bull. 397) reports shafts and drifts to a depth of 70 feet with 1,000 feet of underground work, but none of this is evident today. Schrader reported that "The altered granite for a width of 100 feet or more bordering the deposit is also said to contain \$2 to \$4 a ton in gold, ..."

My investigation and sketch map (attached) indicate a zone, at least 1500 feet long, that trends about N 50° W along the course of a wash. The zone seems to be at least 100 feet wide, but exposures are very poor and it is difficult

to distinguish between weathered rock and caliche-cemented gravel. The zone might widen to the northwest, and float indicates that it extends farther northwest from the map area. Fundamentally, the "ore" zone looks to be a fault that dips about 30° northeast and contains sporadic lenses of thoroughly brecciated quartz that has been re-cemented with silica and Fe oxides. Neither the hanging wall nor the footwall is well exposed, but rocks a short distance northeast of the vein zone are sheared, red granitic gneiss that is probably cut by one or more mafic dikes. There have been numerous backhoe cuts across the zone. I assume these were to test for placer values, because virtually none of them expose bedrock. If my samples show any values, the district should be examined in closer detail. In any event, the owners of the property should be contacted to obtain more data about the property. Signs on the property indicate the current owners are T. King and R. Wyman in Boulder City, phone (702) 293-4178. Records in the Clark County Courthouse should be checked to ascertain the true ownership. Numerous "Yucca" claims were staked by King and Wyman in 1975. A 1971 report by J. Tingley (in DEPCO files) reports one sample that contained 0.248 ounces of gold per ton.

SAMPLE		ppm		
NO.	DESCRIPTION	Au	Ag	
H-22	Sheared, weathered granite from end of trench. Looks argillized and chloritized. Some lim- onite and hematite films.	-0.1	1	
H-23	Brecciated granite gneiss. Somewhat sheared and chloritized. Minor veinlets of limonite.	7.0 =,204	4	
H-24	Crushed quartz from hematite-stained zone in pit (subcrop of vein?).	3.4 = , 699	2	
H-25	Partly weathered, sheared and altered gran- ite(?) and mafic dike(?) with quartz in face of pit.	-0.1	-1	
H-26	Argillized, hematite-stained material from fault(?). This is C-horizon material.	0.2	-1	
H-27	Brecciated quartz and Fe-oxide from bottom of wash. This looks like vein material, but could be "float" in gravel or ferricrete.	4.4 - ,128	6	
H-28	Vein material. Highly brecciated quartz re- cemented with silica and Fe oxides.	7.4 = ,216	7	

SAMPLE	DECEDIDITION	۸.,	ppm	۸a
NO.	DESCRIPTION	Au		Ag
H-29	Vein material. Very hard, brecciated quartz re-cemented with quartz and Fe oxides. Random chips from vein that looks to be about six feet thick. This is best outcrop.	3.4	= ,099	2
H-30	Sheared, argillized and chloritized granite gneiss. Sample from backhoe trench. This is in hanging wall of vein zone.	-0.1		-1
H-31	Vein material and mylonite. Probably rep- resents quartz lense in fault zone.	2.8	= ,081	2
H-32	Red granite gneiss and bleached(?) equiva- lent. Sheared, with minor quartz and Fe oxide veinlets.	-0.1		-1

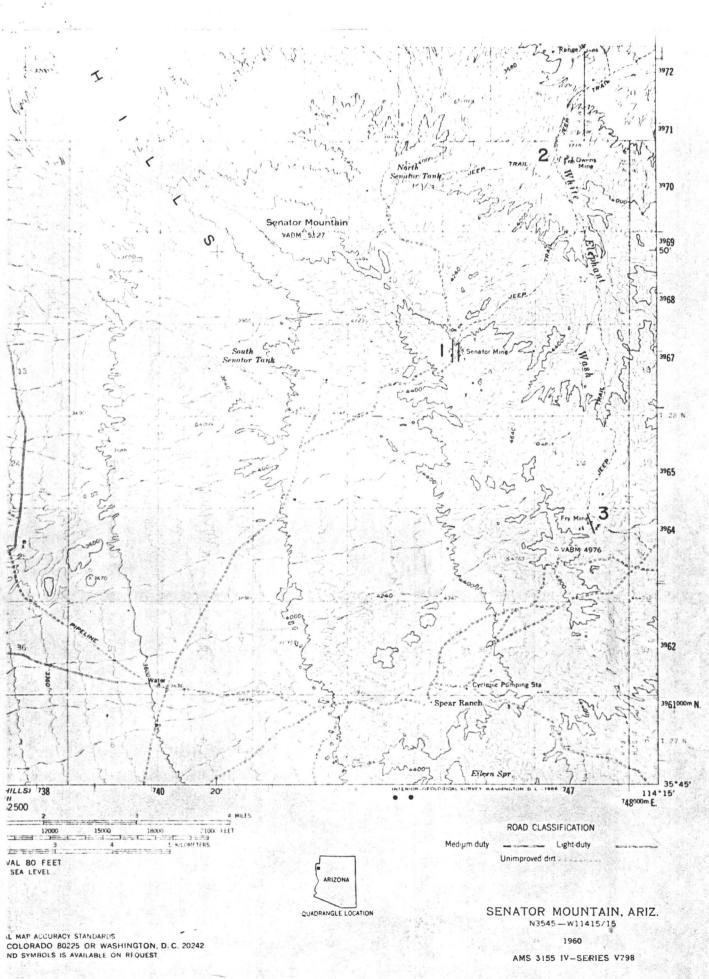
7. <u>Evan Mines</u>, SE corner sec. 29, T. 28 N., R. 18 W. Three-foot wide quartz vein in gneiss strikes N 25° E, dips 60° E. No particular potential.

8. <u>Lee</u>, <u>P</u>, and <u>LM Mine</u>, NW¹ sec. 4, T. 27 N., R. 18 W. Area mostly covered. Brecciated, iron-stained granite with some quartz material. No obvious single structure.

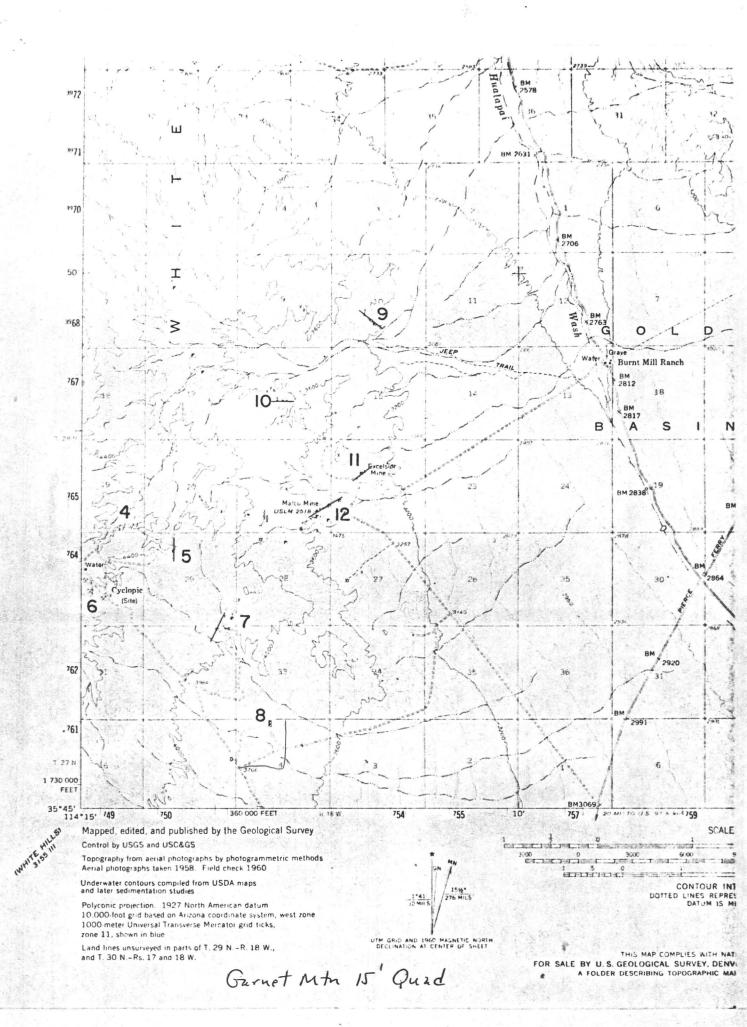
SAMPLE NO. DESCRIPTION p.p.m. OUNCES Au Ag 1.9 = .055 1

H-13 Silicified, brecciated and iron-stained granite off dumps. Some vein quartz.

9. Covered by <u>Crutch</u> claims, sec. 10, T. 28 N., R. 18 W. Five-foot wide fracture zone with minor quartz in gneiss. Vein strikes N 50° W and dips 55-70° northeast.


10. <u>Name Unknown</u>, sec. 16, T. 28 N., R. 18 W. Minor milky quartz in shear zone that strikes easterly and dips 25° south.

11. Excelsior Mine, NW¹/₄ sec. 22, T. 28 N., R. 18 W. Mine is well described by Schrader in USGS Bull. 397. Vein appears to strike N 50° E, dip 45° northwest.


12. Eldorado Mine, SE¹/₄ sec. 21 and SW¹/₄ sec. 22, T. 28 N., R. 18 W. Mine is described by Schrader. Currently the site of a small heap-leaching operation. I talked with Bob Toporowski, who is a partner in the operation. He tells me they are attempting to work a flat-lying vein (25°). This is probably the structure called the "blanket" vein by Schrader.

Recommendations:

The district appears to hold little promise for a large tonnage operation. The Cyclopic Mine might be the single exception. The reason is not clear to me, but in February of 1980, much of the area was covered by the "Crutch" group of claims. I saw at least 250 claims in the group. The claims were located by a contract staker but reportedly belong to Santa Fe Mining Company. Inspiration Development Company staked a number of claims in 1978 and 1979.

and in generate Sector

118 MINERAL DEPOSITS OF MOHAVE COUNTY, ARIZONA.

rite.[•] It is said to be less rich in the sulphide zone in the lower part of the mine than in the oxide zone near the surface. Its run of mine, roughly computed from a record of the output from October 10, 1885, to March 6, 1901, is about as follows: Silver 160 ounces and gold 2 ounces to the ton; lead, 12 to 20 per cent.

Production.—The production is reported to be \$1,300,000, that of silver alone amounting to about \$1,000,000; and several thousand dollars' worth of medium-grade ore are said to now lie on the dump. The output was mostly made between the autumns of 1885 and 1892. During this period 3,687 tons of ore are reported, according to smelter return sheets, to have contained about 402,000 ounces of silver, 1,180 ounces of gold, and 515,760 pounds of lead. Later, about 1900 to 1902, about 17,550 ounces of silver, 180 ounces of gold, and 114,360 pounds of lead are said to have been obtained from 330 tons of concentrates.

MINES OF CANYON STATION WASH.

In Canyon Station Wash, about a mile north of C. O. D. Wash, there are reported to be several small mines, of which the most important seem to be the Baden-Baden, King, and Queen mines, said to be owned by Lewis Davidson, of Kingman.

MINES IN "TOP OF STOCKTON HILL" AREA.

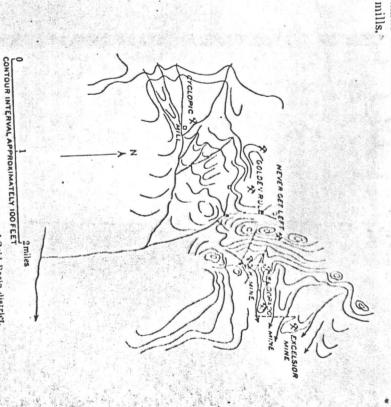
The "top of Stockton Ifill" is situated in the northwestern part of the district, at the crest of the range, between the northern part of the Cerbat district on the west and the heads of I. X. L. and C. O. D. washes on the cast. The mines include the Cincinnati, Miner's Hope, Blue Bell, Fountain IIcad, Brown, and others, the most important of which seems to be the Cincinnati. It is situated near the crest of the range about midway between Lane Springs and I. X. L. basins. It has not been worked for many years, but is regarded as a good property.

GOLD BASIN DISTRICT

GENERAL FEATURES.

The Gold Basin mining district, of which Basin is the post-office, is situated in the eastern part of the White Hills (fig. 18). It extends over a hilly area about 6 miles in diameter, sloping to Hualpai Wash on the east, and ranges from 2,900 to 5.000 feet in elevation. The northeastern portion, where most of the mines are situated, is rugged, being marked by longitudinal fault carps and scored by

• The mine is said to contain no copper above the 200-foot level, but in an opening about haif a mile west of the mine and about 500 feet above it, on what is thought to be the same C. O. D. vein, the ore, which here occurs in a milk-white quartz gangue, contains chiefly bornite and chalcopyrite, with some zine blende, and about \$20 in gold to the ton.


GQLD BASIN DISTRICT

119

several deep transverse washes, of which the principal ones are Banker, O. K., and Cyclopic, situated about 2 miles apart. The Banker, O. K., and Cyclopic, situated about 2 miles apart. The nearest railway station is Hackberry, 40 miles to the south, with which connection is made by stage line. Colorado River lies 16 miles to the north. Mineral was first discovered here early in the seventies, to the north. Mineral was first discovered here early in the seventies, but remoteness from the base of supplies, together with scarcity but remoteness from the base of supplies, together with scarcity of fuel and water, renders operations expensive and has materially retarded developments. Nevertheless, considerable progress has been made and much ore has been produced and worked in arrastres and

Geu

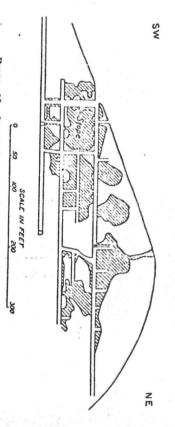
·S

16

The deposits occur mainly in fissure veins in the pre-Cambrian crystalline rocks. The veins dip southeastward or northwestward, mainly at angles of 40° or 70°. The gangue is quartz, in places with siderite, and the metal is gold, mostly free milling, but it is associated with lead or copper ores, copper stain being a good indication of the gold values. Pyrite, chalcopyrite, galena, molybdenite, and wolframite are found, but the ore is largely oxidized, the water level wolframite are found. but the ore is largely oxidized products are limonite, malachite, cerusite, and vanadinite.

FIGURE 18 .--- Sketch map of Gold Basin district.

120 MINERAL DEPOSITS OF MOLLAVE COUNTY, ARIZONA.


オーションショ

A Start Start Start

The district contains rbout half a dozen small mines and about an equal number of good-looking prospects. The relative location of the most important is shown in the small sketch map (fig. 18). The principal mines are the Eldorado, Excelsior, Golden Rule, Jim Blaine, Never-get-left, O. K., and Cyclopic. The production of the district is given as more than \$100,000, most of which came from the Eldorado mine.

ELDORADO MINE.

Location and history.—The Eldorado mine is located in the high foothills in the eastern part of the district, at about 4,000 feet elevation and 1,000 feet above Hualpai Wash, which is about 2 miles distant. The mine is reached by wagon road, over which most of the ore was hauled to the Basin or O. K. mill, 4 miles distant in Hualpai Valley. This mill, which was burnt while in operation in August, 1906, contained 10 stamps and a cyanide plant.

PIGURE 19,-Longitudinal section of Eldorado mine, showing stopes,

The mine was discovered late in the seventies and produced the first bullion taken from the district, much of its ore being at first worked in arrastres. It is owned by the Arizona-Minnesota Gold Mining Company, of Minneapolis. The production is reported to be \$65,000, of which \$5,000 was produced prior to 1902.

Developments.—The mine is developed principally by about 2,000 feet of tunnels and drifts and 40,000 cubic feet of stopes on three levels, aggregating probably about 90,000 cubic feet of underground work and distributed approximately as shown in the accompanying diagram (fig. 19). The lower tunnel trends about N. 33° E. and strikes the vein at about 200 feet in from the mouth. From this point the drift extends about 200 feet to the northenet Geology.—The country rock is a reddish schietose medium emited

Geology.—The country rock is a reddish schistose medium-grained granite. On the northeast, however, as shown at the surface and in the bottom of the mine, this rock gives way to a dark friable biotite granite. The contact between the two rocks dips about 30° W. It

GOLD BASIN DISTRICT.

is usually sharp and is probably a fault plane, which seems to cut off the vein on the northeast.

Veins and ores.—The deposit is a fissure vein, which strikes about **N**, 50° **E**, and dips 65° S.E. It is continuous from the apex at the crest of the ridge to the contact in the lower tunnel of the anine and is stoped out through most of this extent. The walls are fair, but not regular. The vein averages several feet and the ore shoot about 20 inches in width. It contains iron-stained, free-milling gold-quartz ore, and is reported to average from \$12 to \$15 a ton in gold. The other associated minerals are malachite, lead carbonate, and vanadinite, the last occurring locally as incrustations of crystals one-fourth inch in maximum length. The principal mill treatment given to the ore was crushing, plate amalgamation, and cyanidation.

Just northwest of the apex of the vein above described and about 80 feet above it is the blanket vein, which is exposed for a length of 600 feet and a width of about 100 feet and which has contributed largely to the output of the mine. It dips about 25° E.

O. K. AND EXCELSION MINES.

The O. K. and Excelsior mines were discovered and located by three prospectors, Patterson, Rowe, and Fox, early in the eighties. They worked the ores in arrastres and hauled some to the 4-stamp mill at Grass Springs. In 1886 the O. K. was sold to a Kansas City company, which at once put up the O. K. mill in Hualpai Valley and ran it intermittently from 1887 to 1890. The mill burned down in 1893, but was rebuilt in 1896 and operated by lessees for a time, and then again shut down. It started once more early in 1902 and ran intermittently until 1906, when it burned down while in operation. The water used at the mills was piped from the springs or water tunnels in the upper part of Grand Wash Cliffs, 7 miles to the northeast. The mines are now owned by the Arizona-Minnesota

Gold Mining Company.
O. K. mine.—The O. K. mine is about half a mile south of the Eldorado mine and about 100 feet below it, on the opposite side of O. K. Wash. The mine is developed mainly by adit drifts, winzes, and stopes on four levels. There is about 1,600 feet of underground work, distributed approximately as shown in the section (fig. 20). The production is reported to be about \$25,000.

The country rock is a dark biotite granite, about the same as that The country rock is a dark biotite granite, about the same as that which occurs in the bottom of the Eldorado mine. The strike is N. 30° E., with dip vertical. Slickensides pitch northeast-east toward the mouth of the drifts at angles of about 35°.

The vein trends N, 65° E, but curves to the north in its course and dips about 75° NW. It averages about 18 inches in width and is

2 MINERAL DEPOSITS OF MOHAVE COUNTY, ARIZONA.

(Train

composed mainly of seamed, gold-bearing limonite-stained quartz, said to average about \$10 in gold to the ton. The hanging wall of the fissure is regular, but rough. Small faults 2 to 6 feet in throw occur, locally accompanied by overlap and enlargement of the vein. The ore favors the hanging wall, but where the vein overturns on the third level and the hanging wall, but where the foot wall the ore, nearly 1 foot thick, occurs in the foot-wall side.

The ore is free milling, but not so much so as the Eldorado ore, the gold being associated with cerusite. The principal other associated minerals are limonite, hematite, siderite, galena, molybdenite, and wolframite.

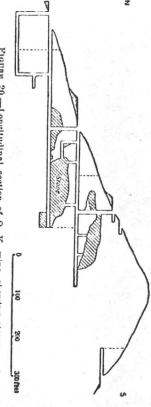


FIGURE 20.-Longitudinal section of O. K. mine, showing stopes.

Excelsior mine.—The Excelsior mine is about a mile northeast of the Eldorado and O. K. mines, in the low foothills near the edge of Hualpai Valley and about 500 feet above it, on the north side of O. K. Wash. The mine is developed to a depth of about 100 feet, principally by inclined shafts, drifts, and stopes, aggregating 500 feet of underground work. The production is reported to be \$5,000.

The country rock is a coarse reddish granite associated with black amphibolite schist. The vein dips about 45° NW. It is from 1 to 4 feet in width and is locally occupied by gouge only. The ore shoot contains deeply iron-stained gold-bearing quartz or ore. It varies from three-fourths to 1 foot in width and occurs mainly on the hanging wall. The ore is said to be cyaniding ore, only a small percentage of the values yielding to amalgumation.

MASCOT MINE.

The Mascot, formerly the Old Homestake mine, is situated north of the Excelsior mine in the foothills at the edge of Hualpai Wash, and is said to contain a vein only 3 inches in width, which, however, is reported to be very rich. It is owned by the Arizona-Minnesota Gold Mining Company.

GOLD BASIN DISTRICT.

NEVER-GET-LEFT MINE.

The Never-get-left mine is located in the upper part of a cliff or fault scarp that overlooks the Eidorado mine on the east, from which it is but a few hundred yards distant. It is situated at about 4,500 feet elevation, or 1,600 feet above Hualpai Valley. It is owned by Henry Paully, of Basin, and is developed principally by an adit drift, shallow shafts, and open cuts, aggregating several hundred feet of work.

The country rock is dark gneissoid schist. The structure dips about 50° W, but the principal deposit dips about 50° N. It has a width of 6 or 8 feet and contains mainly iron-stained or copperstained crushed gold-bearing quartz. The country rock is greatly disturbed by jointing, fracturing, and faulting, and its true character is somewhat doubtful. The mine has been a small producer for some years and was shipping ore in April, 1906.

GOLDEN BULE MINE.

Location and history.—The Golden Rule mine is about 1 mile west of the Never-get-left mine, at the extreme head of O. K. Wash, at about 4,550 feet elevation. It was discovered in the early eighties by Robert Patterson and Saul Rove, who hauled some of the ore to the Grass Springs mill. Subsequently they leased the mine to Mr. Quackenback, and in 1900 sold it to the present owner, the Arizona-Minnesota Gold Mining Company. This company did but little development work on it till 1906. From May 15 to November 1 it was operated with a force of the men, but was closed on the latter date. The production of the mine is estimated to be about \$5,000, most of which came from the blanket vein.

Development.—The mine is developed by a 75-foot shaft, about 300 feet of drift, stopes, and a 25° incline about 100 feet long and 20 to 40 feet in width, the incline being on the south, where the deposits occur in the form of a blanket vein. The workings are contained within a horizontal distance of about 700 feet and a vertical distance of about 100 feet. The mine is handicapped by lack of water, which has to be hauled from the Cyclopic mine or from Basin, in Hualpai

Valley. Geology and ore deposits.—The country rock is the pre-Cambrian gneiss and schist. The fissure vein containing the principal part of the deposits strikes N. 20° E. and dips about 70° ESE. The croppings, which in part are prominent, form a reef of iron-stained, firmly cemented quartz breccia. The vein is best exposed in the north drift. It is about 2½ feet in average width and contains gold-bearing normal vein quartz, locally crushed, recemented, and iron-stained. Associated with it on either side is a sheet of pale grayish or whitish

123

MINERAL DEPOSITS OF MOHAVE COUNTY, ARIZONA.

24

gouge. The vein is said to yield good values throughout, the average being about \$10 in gold to 'he ton, but the honeycombed quartz is the richest part of it.

At 120 feet in from the mouth of the drift the vein is abruptly cut off by a fault, immediately beyond which occurs a dark schistose rock that may be an intrusive. Near the fault the vein enlarges to about 12 feet in width, the enlargement being mainly on the foot-wall side and containing much honeycombed quartz, and the ore, greatly increased in quantity, is said to contain higher values. Some of it averaged about \$100 a ton in a large chamber, from which much ore has been removed.

The fault hades north at an angle of about 10°. It is a normal one and the lost portion of the vein has risen toward the southeast. The amount of throw was not determined, but it is probably not very great. Beyond the fault the drift extends about 100 feet on the projected course of the vein which, however, has not been found.

On the south the deposits occur in a blanket vein, which is 3 to 5 feet thick, dips about 25° SE, and is probably a portion of the vein in the north drift, for it straightens up in that direction toward the top of the hill. The blanket portion has been mined over an area of about 100 feet along the strike and a breadth of 35 feet down the dip, and it probably produced good values.

CYCLOPIC MINE.

Location and history.—The Cyclopic mine is located in the southeastern part of the district, about 5 miles southwest of the Eldorado mine, near the head of Cyclopic Wash, at about 4,500 feet plevation, on open ground. It was discovered in the early eighties by Patterson, Rowe, and Glen, and about 1896 it was leased to a Seattle company. In 1901, with the Golden Rule mine, it was sold to Robbins & Walker, of Minneapolis, who milled some ore. The coarse tailings still on the ground are said to contain about \$7 in gold to the ton. Since 1904 the mine has been owned by the Cyclopic Gold Mining Company, of Denver. A considerable amount of bullion is said to have been produced, but the exact amount was not ascertained.

Developments.—The mine is developed mainly by shallow, mostly inclined shafts, drifts, and crosscuts to a maximum depth of about 70 feet, but most of the workings do not extend below 30 feet. The developments probably aggregate about 1,000 feet of work.

As the mine is located in a broad wash, ~~e of the workings have become filled with wash débris at times of flood. The principal equipments are an Ellspass mill, operated by a 26-horsepower engine, and a cyanide plant. The water supply is pumped by a small gasoline plant from the west side of the range, several miles distant.

このないにない いたいいない うめつい しんち

GOLD BASIN DISTRICT.

Geology,—The country rock is a medium-grained coarsely porphyritic granite. It outcrops in association with the deposits and forms the foothills immediately on the southwest. Paralleling this rock, the wash, and the deposits on the northeast, and constituting the ridge on which the office and other buildings stand, is a fine-grained reddish granitic rock, with which is associated some of the same biotite granite that underlies the Eldorado mine. In contact with the deposits, particularly to the northwest, there is also a coarse red pegmatite.

and is contained in, and for the most part seems to occupy, an area coherent. It trends from a point near the mill N. 57° W. up the wash material is cemented by silica and iron oxide, but is in part loosely quartz, in a few places somewhat resembling conglomerate. This They consist of gold-bearing iron-stained breecias and sands of vein and other veins that have been described. They do not, however, tically all respects identical with the croppings of the Golden Rule in width outcrop several feet above the surface. They are in practhree-fourths of a mile in length by about 200 feet or more in width. synclinal structure. In the northern part, the pseudovein croppings below the surface give way to less firm material having an imperfect seem to have any definite fissure wall, but usually at a short distance as a rule, continue in depth in the manner of a fissure vein, nor Prominent reefs of silicified iron-stained breecia several or more feet synclinal limbs of the same vein deposit, dip toward each other and their attitude suggests that they may be Deposits .-- The deposits are ill defined and not well understood.

From the principal openings near the mill in the southeastern part of the deposit the croppings representing the main or Cyclopic vein extend N. 57° W. They are continuous for the first 400 feet and are accompanied by some underlying vein quartz or ore and show ore in sight at both ends of the 400-foot excavation. Between this vicinity, however, and the northwest limits of the deposits, the croppings of the vein are interrupted, and some pits and cuts have failed to find ore there.

The croppings of the other vein extend without interruption from a point about one-fourth of a mile northwest of the principal opening for a distance of 350 feet to the northwest. They are nearly parallel with the main vein, from which they are about 350 feet distant.

The ore thus far has been derived mostly from these veins, but crosscuts 80 feet or more in length have been run in a considerable portion of the deposits between them and report fair values, which, however, seem to occur in lines or zones paralleling the deposit. Practically no mining has been done below a depth of about 30 feet. Near this level there is reported to occur a bed of red clay or gouge. Which was formerly supposed to mark the lower limit of the ore, but

-9,6 MINERAL DEPOSITS OF MOHAVE COUNTY, ARIZONA.

ore is said to have been found below it. The altered granite for a width of 100 feet or more *Lordering* the deposit is also said to contain \$2 to \$4 a ton in gold.

The ore is of low grade, and is said to mill on the average from \$7 to \$8 a ton in gold, and to cyanide well. Tt contains also a little silver and a trace of copper, the latter occurring chielly as malachite and not in sufficient amount to interfere with the cyanidation. The company is reported to have recently computed about 1,000,000 tons of ore in sight.

GOLD BELT MINE.

The Gold Belt mine is located on the southeast side of Banker Wash, at about 5,000 feet elevation. It is owned by Henry Paully. The country rock is an amphibolite schist, dipping about 30° W. At the western of the two principal openings the deposits are contained in a blanket vein of quartz 15 feet thick, inclining gently eastward, but thinning out in a distance of about 30 feet. The eastern opening shows two quartz blanket veins, each 2 to 6 feet in thickness, dipping gently westward and separated by a 4-foot dike of some volcanic rock that seems to be basalt, but is altered beyond identification. The ore is said to be of two grades, the lower grade vielding from

The ore is said to be of two grades, the lower grade yielding from \$4 to \$7 in gold to the ton and the better grade from \$16 to \$20 to the ton and some as high as several hundred dollars a ton, that occurring in the porous or honeycombed quartz being the best. The deposit is reported to have produced a few hundred dollars' worth of ore.

SENATOR MINE.

The Senator mine is located some distance beyond the border of the Gold Basin district, about 7 miles northwest of the Eldorado and Golden Rule mines and about 7 miles south of Colorado River, on a low round hill at the southeast base of a prominent landmark known as "Senator Mountain." The mine was discovered late in the eighties by John Burnett, who in 1892 sold it for \$14,000 to Senator Page, of Los Angeles, who in turn sold it to a Colorado company. The company at once installed a 10-stamp mill on Colorado River, 2 miles below Salt Springs, operated the mine and mill for about six months, and then suspended. Later the property was acquired by or leased to the Salt Spring Mining Company, which operated it about a month in 1903 and shut down, the ore being of too low grade to pay for its haulage to the mill. 7 miles distant, and for hering supplies from Hackberry and Kingman, 50 and 60 miles distant, respectively. The mine is reported to have been abandoned since them.

The mine is developed principally by open work, cuts, and adit drifts. The deposits are said to be nearly flat lying and similar in character to those of the Cyclopic mine (p. 125), but they form a

WHITE HILLS DISTRICT.

larger body. The ore is said to be similarly low in grade, averaging about \$3 in gold to the ton. According to Comstock,^a the deposits exhibit structural features resembling those of "brecciated fusion" and "cooling lamination" and in origin seem to be associated with igneous intrusion.

DEPOSITS AT SALT SPRINGS.

The Salt Springs mine is about 7 miles northeast of the Senator mine and several miles south of Colorado River, in the first canyon west of Hualpai Wash. It is owned by the Salt Springs Mining Company, which is said to include members of the Arizona-Minnesota Gold Mining Company. The country rock is granite. The gold ore is said to occur sporadically in quartz bodies, and its downward limit is usually indicated by copper-stained quartz.

Other properties in this district are the Smuggler-Union group, the Eureka mine, and the Lutley group.

WHITE HILLS DISTRICT,

GENERAL DESCRIPTION.

LOCATION AND HISTORY.

The White Hills district is located about 28 miles north of Chloride, in the western border of the White Hills, at about 3,000 feet elevation. It comprises an area about 2 miles in diameter and is a part of the Indian Secret mining district, so named because the knowledge of the presence of its mineral was for a long time withheld from the whites by the Indians.

The first discovery of mineral in the district by white men was made by Henry Shaffer in May, 1892, through the aid of an Indian known as Hualpai Jeff, who exhibited a piece of rich silver ore at Gold Basin and showed Shaffer its source, where the Indians procured the supply of red iron oxide with which they adorned their faces. The locality is at the site of the Hidden Treasure mine.

After making several locations, Shaffer reported the discovery at Gold Basin and was soon joined by John Burnett and John Sullivan, trio began work and were soon shipping very rich ore, some averaging \$1,000 a ton. The camp soon became the largest in the region and reached its zenith in 1894, with a population of 1,200. Within a short time the camp was owned by one company, the White IIIIIs Mining Company, of which the chief men were R. T. Root and D. H. Moffatt, of Denver, A 10-stamp mill was built early in 1904; in

 Comstock, Theodore B., Geology and vein phenomena of Arizona : Trans. Am. Inst. Min. Fng., vol. 30, 1000, pp. 1048-1049.

4.B.M. Bull 137

ARIZONA LODE GOLD MINES AND MINING

77

11 m ton

O. K. MINE100

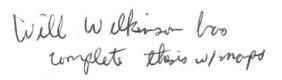
The O. K. mine, about ½ mile south of the Eldorado, was located in the early eighties. In 1886, a Kansas City company bought the property and built the O. K. mill in Hualpai Valley. This mill was operated intermittently until 1906, when it was destroyed by fire. Its ten stamps and cyanide plant were operated on water that was piped from springs in the Grand Wash Cliffs, 7 miles farther northeast. The O. K. Mine is reported to have produced \$25,000 worth of gold.

The country rock is dark biotite granite. The vein strikes northeastward, dips about 75° NW., and averages about 18 inches in width. It is composed mainly of iron-stained quartz with cerussite, siderite, galena, and molybdenite. The gold is commonly associated with cerussite.

Underground workings include about 1,600 feet of adit drifts, winzes, and stopes on four levels.

CYCLOPIC MINE

The Cyclopic mine is near the head of Cyclopic Wash, about 40 miles from Chloride. It was located during the eighties and has been intermittently worked by several concerns. In 1901, Robbins and Walker milled some of the ore. In 1904, the Cyclopic Gold Mining Company acquired the mine and later produced considerable bullion. During several years prior to 1921, intermittent production was made with a small cyanide mill. For some years after early 1923, the property was held by the Gold Basin Exploration Company. Intermittent production was made during 1932-1934.


The deposit occurs within a gently dipping brecciated zone in granite. This zone, as explored, extends to depths of 15 to 80 feet below the surface, and occurs discontinuously within an irregular northwestward-trending area about a mile long by 200 feet wide. In places, it is overlain by 5 to 15 feet of sand and gravel. The ore consists of brecciated fragments of coarse-textured grayish vein quartz and country rock, more or less firmly cemented by iron oxide and silica. In places, it is cut by irregular stringers of quartz. About 1,000 tons of ore that were recently mined are reported to have contained \$4 in gold per ton. The gold is very fine grained.

Developments on the property include several open cuts and a 55-foot shaft; several old shafts from 40 to 50 feet deep; an old 300-foot incline that passed through the ore zone; and several hundred feet of old drifts and stopes, mostly within 30 feet of the surface.

OTHER PROPERTIES

The Excelsior, Mascot, Never-get-left, Golden Rule, Gold Belt,

¹⁶⁰ Abstracted from Schrader, work cited, pp. 121-22.

GEOLOGIC INVESTIGATION OF THE APACHE ORC MINING CLAIMS, LOST BASIN RANGE, MOHAVE COUNTY, ARIZONA

C

by

Alfred J. Deaderick

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology

New Mexico Institute of Mining and Technology

Socorro, New Mexico

May, 1980

TABLE 1

Quaternary

Alluvium

Pliocene (?)

Basalt and conglomerate

Listric faulting-----

Late Miocene (?)

Sandstone

Rhyolitic tuff

Fanglomerate

Gold Mineralization

Listric faulting------GOLD BASIN CRUSHED ZONE-----

Miocene (USGS dates on similar Middle Tertiary volcanics and intrusives are 10-20 my) Quartz latite welded tuff

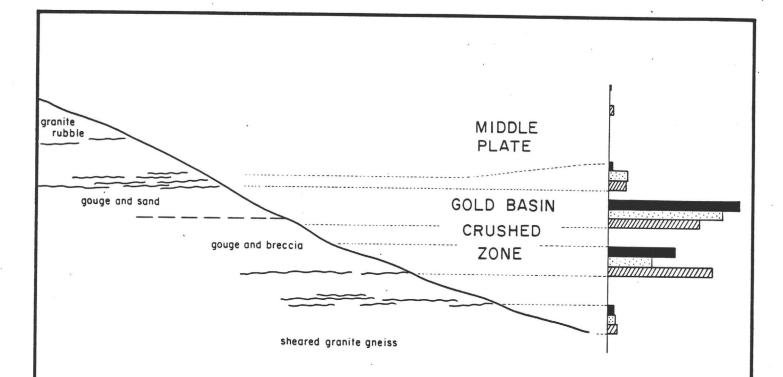
Andesite

Lamprophyre

Porphyritic granite

Cretaceous

Granite, alaskite


Precambrian

Granite, gneissic granite and granodiorite, granite gneiss, amphibolite, gneiss.

Table 2

Generalized Sequence of Rock Units at Gold Basin

Lithotectonic Unit	Structural Features	Rock Units Affected				
Upper Plate	structurally rotated cohesive	Fanglomerate				
	fault blocks and slivers.	Ryolitic tuff				
		Sandstone				
		Andesite				
		Porphyritic biotite granite				
		Layered gneiss				
	Sub-horizontal zone of Shear	ing				
Middle Plate	thoroughly shattered and	Lamprophyre				
	sheared rocks.	White Hills granite				
		Fine-grained quartz-biotite granite				
		Porphyritic biotite granite				
		Granite gneiss				
	:	Layered gneiss				
	-	Gneissic granodiorite				
		Gneissic granite				
Crushed Zone	crushed rock material and gou	ige				
Majo	or Sub-horizontal Zone of Shearin	ng and Coalesced Faults				
Lower Plate	competent unsheared rocks.	Lamprophyre and Latite porphyry				
	-	White Hills granite				
		Alaskite				
	1	Leucogranite				
		Porphyritic biotite granite				
		Layered gneiss				
		Gneissic granite				

EXPLANATION

BAR GRAPH OF RELATIVE ASSAYS

VALUES ARE AN AVERAGE OF 2 or 3 SAMPLES TAKEN AT SIMILAR STRATIFORM POSITIONS

Au, 1^{''}= 5.0 ppm Hg, 1^{''}= 1.0 ppm W, 1^{''}= 50.0 ppm

FIGURE 2

DIAGRAMMATIC SECTION ILLUSTRATING THE DISTRIBUTION OF GOLD IN THE GOLD BASIN CRUSHED ZONE MOHAVE COUNTY, ARIZONA DIAGRAM IS BASED ON GENERALIZED GEOLOGIC AND SAMPLE DATA FROM THE NE 1/4 OF SECTION 25, T. 28 N., R. 19 W.

SCALE: |" = ~ 50'

APPENDIX A

ROCK UNITS GOLD BASIN DISTRICT MOHAVE COUNTY, ARIZONA

Quaternary

Alluvium (Oal)

Tertiary

Fanglomerate and conglomerate (Tfg)

Rhyolitic tuff (Tr)

Andesite (Ta)

Sandstone (Ts)

Lamprophyre (Tl)

Latite porphyry (Tl)

White Hills granite (Twgr)

Unsorted bouldery fanglomerate made up dominantly of cobbles and boulders of gneiss and granite set in a coarse sandy matrix. The unit includes a similar conglomerate that was derived from eroded and disintegrated fanglomerate.

White, unwelded, fine-to-medium-grained rhyolitic ash flow tuff intimately associated with the fanglomerate.

Medium-grained, dark grey hornblende andesite.

Fine-grained, light grey bedded arkosic sandstones.

Fine-to medium-grained, dark brown or greenish brown, intrusive dikes and sills characterized by phenocrysts and fragments of hornblende and plagioclase in a fine-grained matrix with a roughly equivalent content of amphibole and plagioclase. The rock is commonly fragmental or brecciated, exhibiting outlines of milled fragments or angular fragments of amphibole, and is generally altered to chlorite and siderite.

Light gray intrusive porphyry exhibiting small phenocrysts of feldspar (20%) in a dense gray aphanitic groundmass.

Light-gray to white coarse-grained leucocratic biotite granite (5% biotite) characterized by prominent one to two inch long feldspar crystals. This granite is <u>not</u> foliated, cut by pegmatites, or lamprophyre and is common south and west of the Cyclopic Mine.

Cretaceous

Leucogranite (Kg)

Precambrian

Quartz-Biotite granite (PC-fgr)

Biotite granite (PC-bgr)

Gneissic granodiorite (PC-gd)

Gneiss (PC-gn)

Gneissic biotite granite (PC-gngr) Medium to coarse-grained, light gray or white, biotite and biotite-muscovite granite that contains numerous pegmatite and aplite dikes over a large area adjacent to the low-angle shear zone at Gold Basin. The granite is altered to an alaskite (Kagr) which exhibits numerous quartz veinlets and muscovite as the only mica.

Fine-grained, dark gray-green, quartzrich holocrystalline biotite granite. Quartz (30%) and biotite (10%) are prominent constituents.

Coarse-grained, equigranular biotite granite containing 10 to 15% biotite. The granite has been weakly metamorphosed and varies from non-foliated to severely foliated.

Medium to coarse-grained, dark-colored gneissic granodiorite with 30% or more former ferro-magnesian minerals.

Layered gneissic metasedimentary and meta-volcanic rocks that exhibit epidoteamphibolite to amphibolite rank metamorphism. Included in the mapped unit are fine-grained quartz-biotite-feldspar gneiss, coarse-grained garnetfeldspar-amphibole gneiss and medium to coarse-grained granitic gneiss.

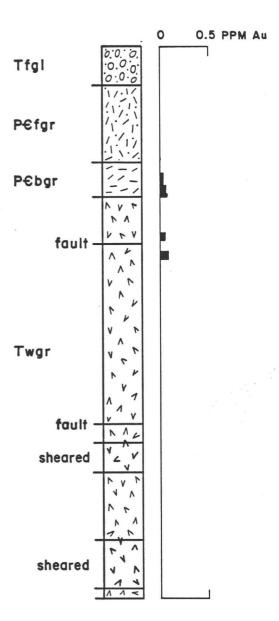
Coarse-grained, gneissic, intensely foliated tan to pink granite characterized by prominent K-feldspar, biotite and quartz.

APPENDIX B.

SCREEN TEST GOLD BASIN PROJECT MOHAVE COUNTY, ARIZONA

A bulk sample weighing over twenty-five pounds was collected from an exposure of the "Crushed Zone" prospect pit in the NE NW of Section 25, T. 28 N., R. 19 W. Several previous samples of the crush and gouge zone from this prospect ran 3.5 ppm to 7 ppm gold.

The bulk sample was crushed and ground in a pulping mill and screened into three size fractions, coarse (+20 mesh), middle (<20:+60 mesh) and fine (<60 mesh). Assay results for gold, silver and several pathfinder elements on these fractions are shown on the following table. Detailed examinations of each size fraction did not disclose any gold particles, but gold was observed during microscopic examination of the panned heavies from the fine fraction. The gold observed consisted of a delicate crystalline particle in a soft white clay matrix. The panned heavy concentrate from 6 pounds of fines consisted of a few grams of hematite and goethite after fine-grained pyrite, too little to assay.

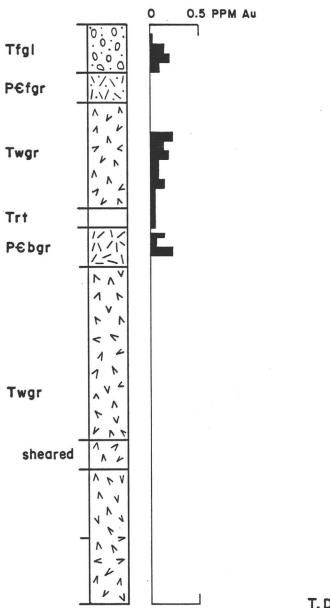

The analytical data show that gold and silver are slightly concentrated in the more siliceous coarse (+20 mesh) screen fraction with 60-percent of the total gold in this fraction. The data indicates that gold permeates the gouge and crushed material, probably occurring as free gold and/or auriferous pyrite and the mineralization has resulted from pervasive soaking of the crushed zone by epigenetic hydrothermal fluids.

Screen Test, Bulk Sample From Crushed Zone*

Sample Number	Screen Mesh	% Fraction	% Total Au in Fraction	Au ppm	Ag ppm	₩ ppm	As ppm	Sb ppm	Hg ppm
2799	-	-		2.13	1.1	79	20	2	2.03
2799A	+20	49.7	61%	3.02	3.5	43	18	2	1.66
2799G	<20 +60	32.4	26%	1.95	1.4	54	23	2	1.04
2799C	<60	17.9	13%	1.78	0.7	61	23	2	1.65

⁷-Testing results from USBRC, Anaheim, California

RDH GB-I Elevation 4640'

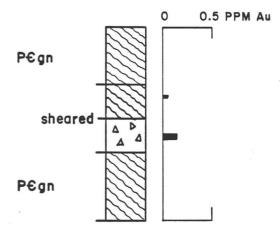


155-160 quartz-rich fault breccia

LOWER PLATE

T.D. 570'

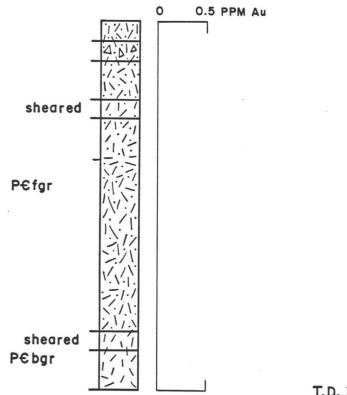
RDH GB-2 Elevation 4800'



LOWER PLATE

530' water 5gpm

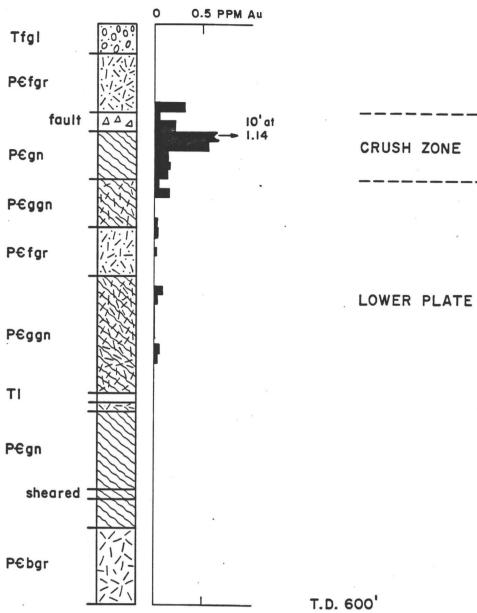
T.D. 600'


RDH GB-3 Elevation 4480'

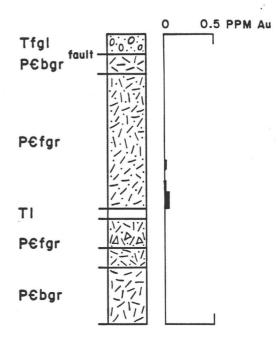
CRUSH	ZONE
LOWER	PLATE

T.D. 200'

RDH GB-4 Elevation 4420'



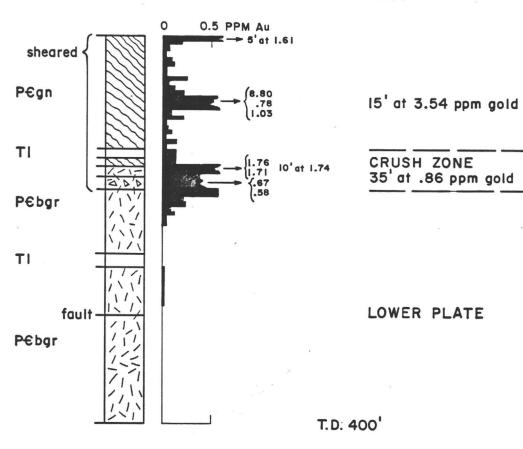
CRUSH ZONE


140' chloritic alteration

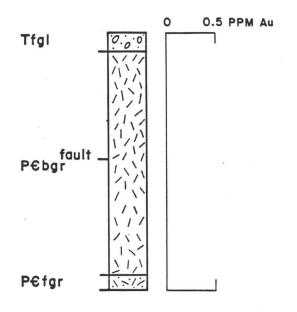
T.D. 380'

RDH GB-5 Elevation 4560'

RDH GB-6 Elevation 4550'



CRUSH ZONE


LOWER PLATE

T.D. 300'

RDH GB-7 Elevation 4500'

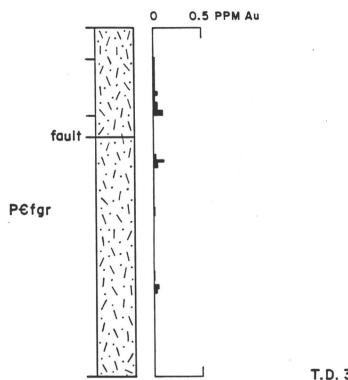
RDH GB-8 Elevation 4450'

CRUSH ZONE

fine-grained black alteration in feldspars

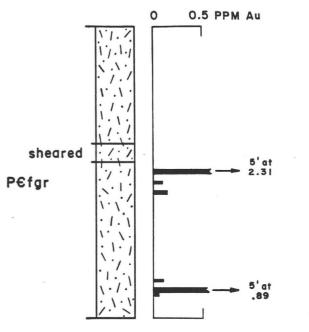
LOWER PLATE

T.D. 265


RDH GB-9 Elevation 4450'

T.D. 240'

RDH GB-10 Elevation 4600'

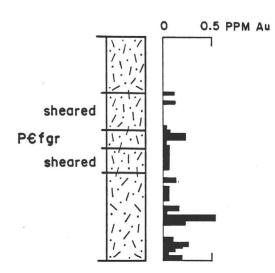


LOWER PLATE

CRUSH ZONE

T.D. 360

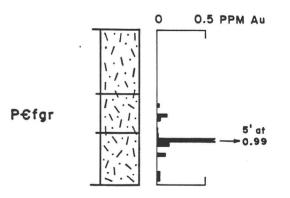
RDH GB-11 Elevation 4560'



LOWER PLATE

T.D. 300'

RDH GB-12 Elevation 4550'

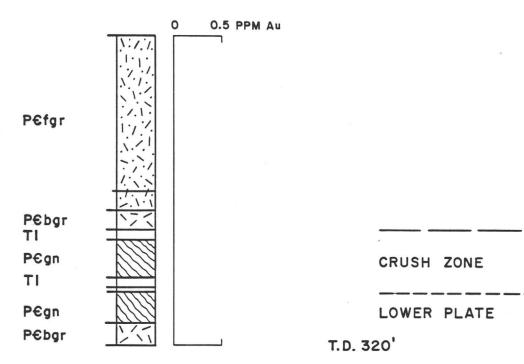

CRUSH ZONE

chloritic alteration with purple fluorite

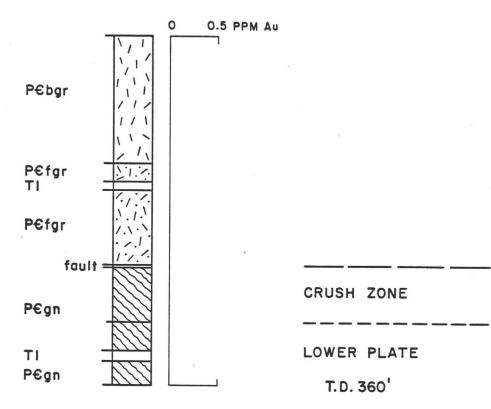
LOWER PLATE

T.D. 230'

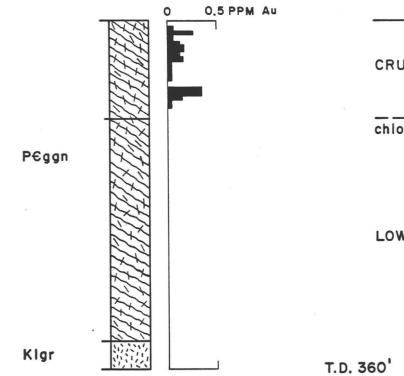
RDH GB-13 Elevation 4480'



CRUSH	ZONE


LOWER PLATE

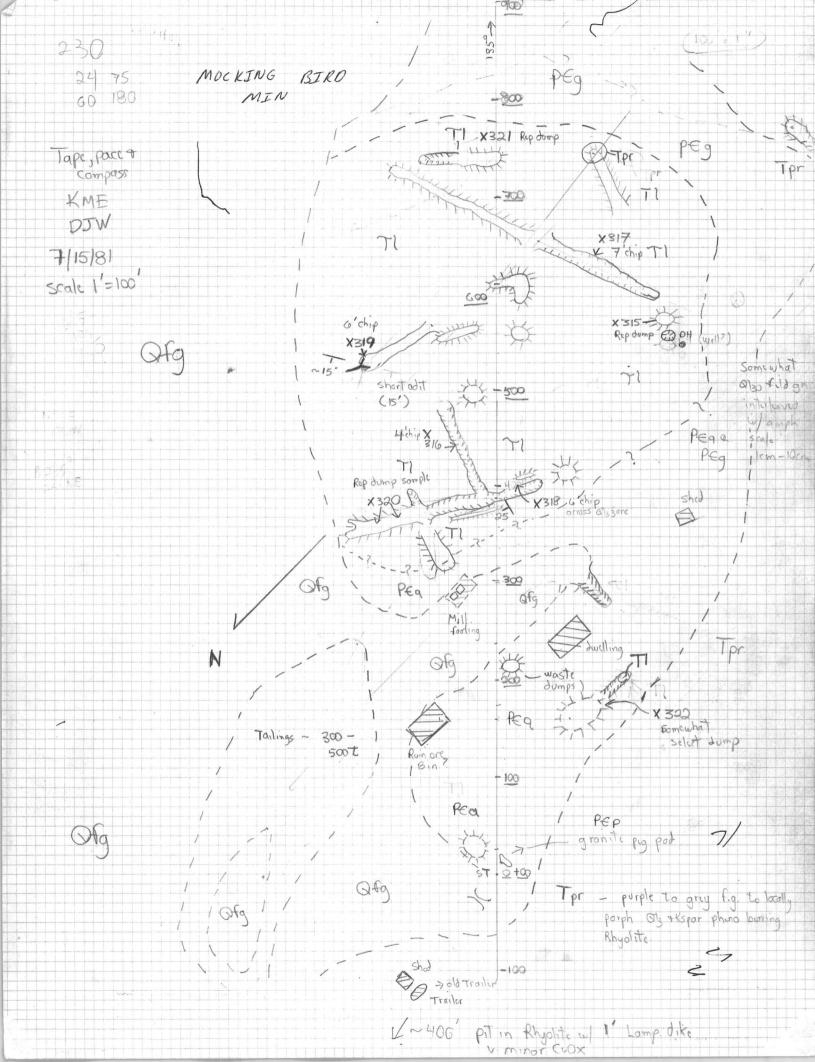
T.D. 160'

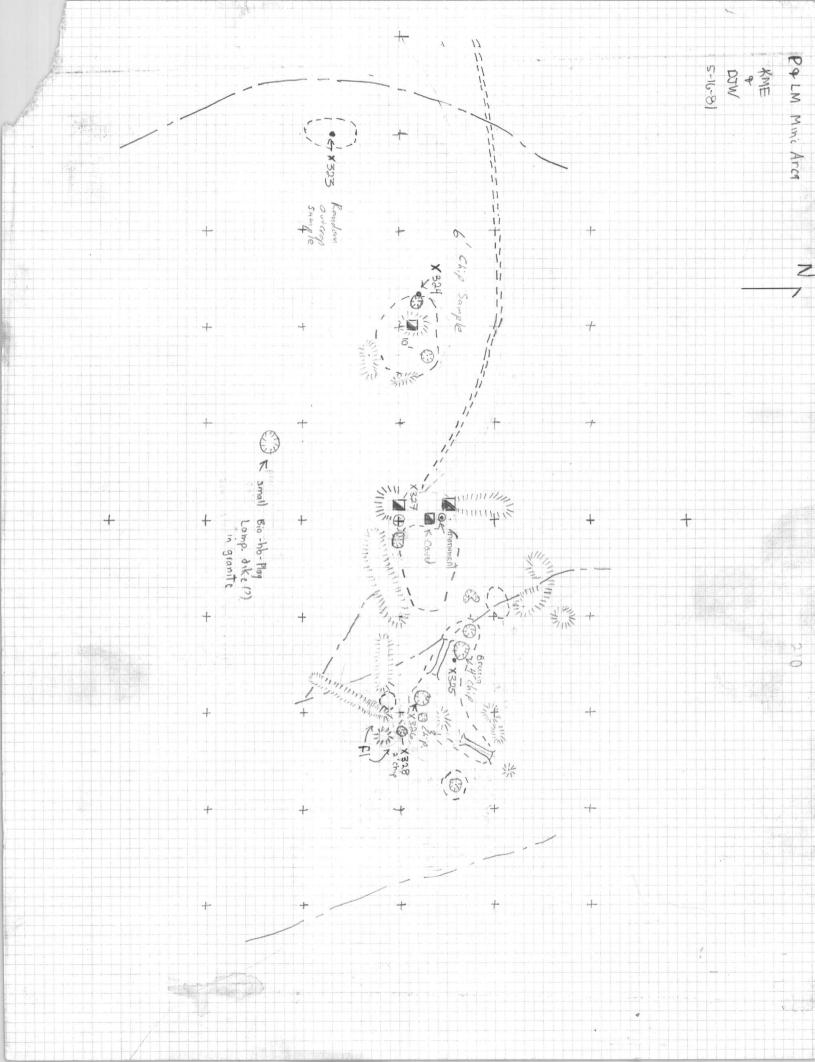

RDH GB-14 Elevation 4700'

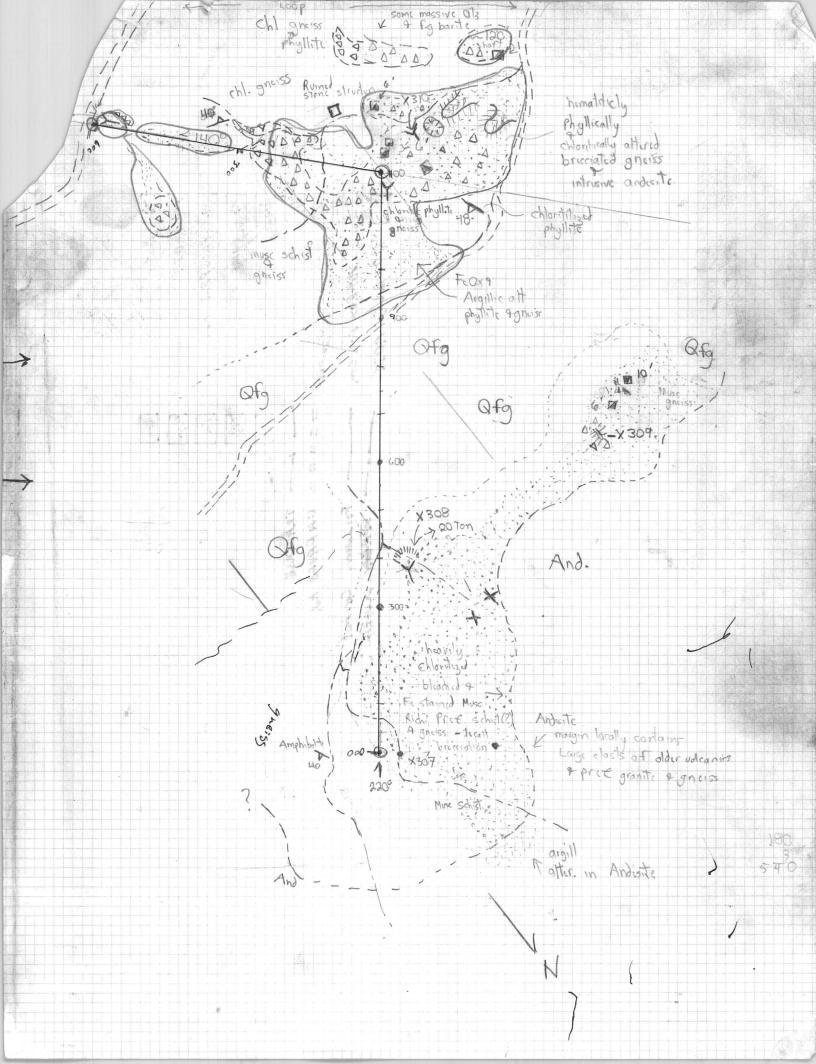
RDH GB-15 Elevation 4780'

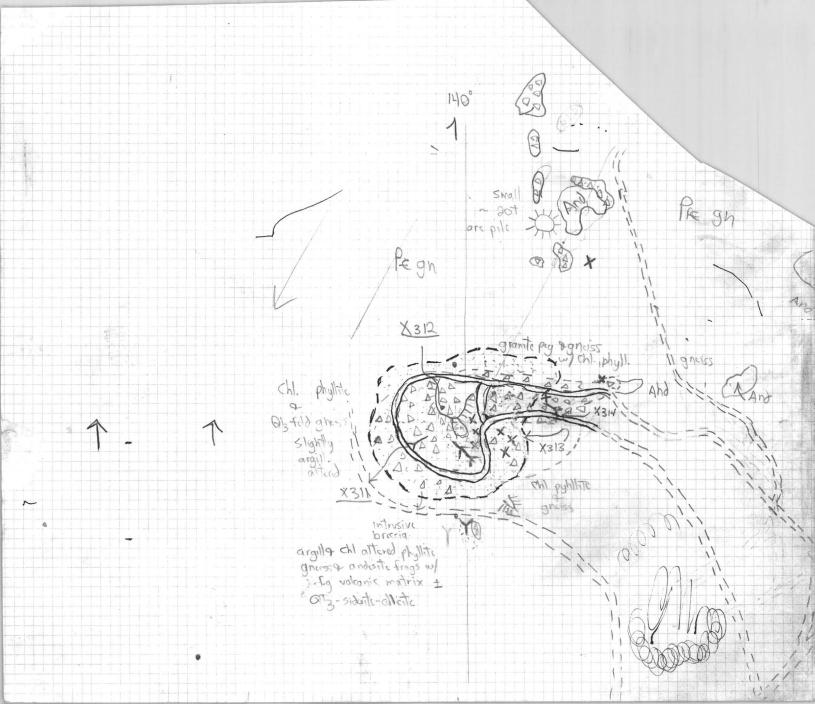
RDH GB-16 Elevation 4780'

CRUSH ZONE ?


chloritic alteration


LOWER PLATE


- X-315 Representative dump sample CN 1/2 Sec 22 T26N R21W Dark greyish green aphanitic to locally micro porphyritic plasioclase biotite(3) hornblende - pyroxane rock. Larger Xlalls are typically blocky (1/2-2mm) pyrox? Rocks locally exhibit slight Soliation. Stringers of white massive gtz that locally is comb structured, occur (0.1-10 cm) w/ abundant hematile small veinlets & irrig patches of gtz hemitite occur sporadically through rock .
- X-316 4° chip sample taken along brek hoe trench (see map for locality). Light graggreen to light gragned colored, microcrystalline, appanitic rock . Probably andesite ? Sample contains small calcite sub to anhedral. crystals which occor along structure sillings. («10 mm, ave 1-2 mm) Irregular black splotches (~ 2 mm) occur throughout the sample (pyroxene?)
- X-317 7 chip in open trench same as (X-315) dk greenish aphanitic rock w/ less tendency to be porphyritic, n5-10% of rock composed of irreg patches of atz, -hem & stringers of atz (</mm). some minor shearing & brecciation noted The matrix appears to be hemitite rich
- X-318 6 chip sample taken along trench (see map Sor locality) Light gray-graen to light gray-red color, microcrystalline, apphanitic rock. Probably anderste? Irregular black splotched (pyroxene?) (a 2 man) occur throughout the sample. Parts of the sample contain some minor breeciation, as well as nemerous while to hemitike red. stained gt2 voidets and gt2. blobs.
- X-319 & Chip in open trench at portal of small adit. Same as X-315 Somewhat grandlar S.g. green to redish brown rock w/ a sew 70 prex. phenos. (:1-2 mm); 10 02 570 (0 02 570 Conal & chrys.) Shearing & minor breccintion noted. Stringers of gtz. occur throughout rock w I have a chrys.) Shearing & minor breccintion noted. Stringers of gtz. occur throughout rock w I have a chrys.) Shearing & minor breccintion noted. Stringers of gtz. occur throughout rock w I have a chrys.) Shearing & minor breccintion noted. Stringers of gtz. occur throughout rock w I have a chrys.) Shearing & minor breccintion noted. Stringers of gtz. occur throughout rock w I have a chrys.) Shearing & minor breccinted host & white mussive to comb struct. gtz. as abund earthy hem & some coor's (chrys) minor blk phase noted w/ cook's (Tetrahedrite?) X-320 Representive Oump Sample (see map for locality) 50.80 of sample is same as X-316 Similar rock type as X-316 also hosts CuOX bearing 2me which comprises 30.20 of sample Cooccers as messly chrysocolla and some malachite. Cuminerals make up 3-5% of ore bearing Sample partin. 20.70 of sample is perphyridic with runerous biotite & muscaule phenos (48 mm 3-4 mm are) and altered mica veialeds which von throughout the sample. The groundmass in this
 - X-321 Same as X 315 Representative dump sample. Dk green to redish brown mottled rock; contains prox (11-2 mm) phenos & felted hb or mica (?) rich matrix. Irreg. partches of hem atz form 3-4 To af sample, white glassy to fig. patches of gtz. also accur, general sub-parallel to a faint foliation exhibited by host. Some zones (710 cm) composed of mixture of brecciated host & white gtz. Cemented by gtz-calcite and Felx's some of calcite is black & from U.f.g. to 4mm.
 - X-322 Some what select dump (see map for location) Latite perphy Mumerous small (1-3mm and) phenos of K and plugiocluse feldspars. Graundmass composed of green gray and black aphanidic material. Some minor Fells staining well cemented Qtz precein in part : also few calcite filled fracture filling veinlets.

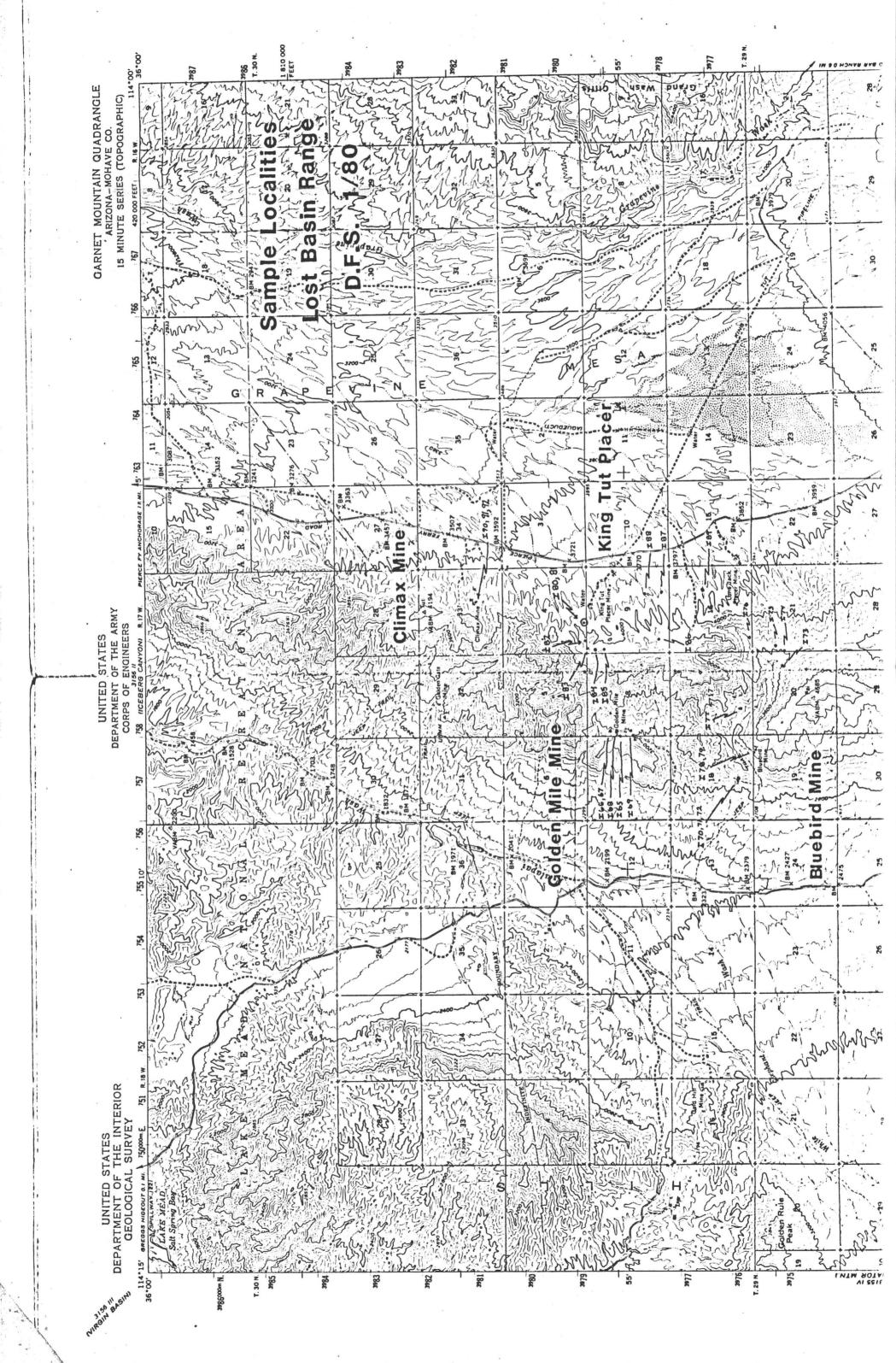

Macking Bird Mini.

- X-323 NW14 Sec 4 727 R18W (Wend map aren) Redish V.S.g. hematite stained granite intruded by coarse grained propyllitized granite small veinlets of gtz & Feox Eut across this Sn. gr lithology. Irregular masses of very coarse gn. granite Cyp to 20mm grains gtzi & t-spar) intrude this rock.
- X-324 6' vert. Chip in prospect pit, same local as X-323 (see Map) Breaciated coarse gr. granite and white gtz. W/ clasts from 2-20 cm; matrix is V.S.g. gtz.-hem mass; some of granite frag appear propylitized altered; argillic alteration (kaolinite) is common W/ hen along fractures & as bulk alterations of granite rock;
- X-325 6 chip in prospect pit (see map for locality) Autobrecinted coarse grip propyllized granite and white massive at w/ <176 sulfide limenitic psudomorphs. Matrix of breccia is afe and hematite. Much of granite is shot through w/ semall veinlets of atz. timenite is abundant along fractures and on surfaces; and most of rock is hematite flooded. Masses of white massive atz are up to 8 cm across; locally rocks are taolinized
- X-326 3' chip sample see map for locality Moderate to well commented breeciated (grande w/ gtz veinlets running through Clasts composed mostly of white Qtz plus for masic minerals, Grandmass composed of In grained material stained Remititic red. The highly altered moderatly commented areas contain high To as propalitized green minerals and have limonitic staining.
- X-327 Representative dump sample-See map for location. Breeciated granite shot through w/ (<10 mm) white gtz. veinlets. Moderate alteration to kaolinile and some propalization minerals. Minor Fellx staining.
- X-328 2' chip in prospect pit (see map for locality) Auto breached propyllitized granite Sungments of propyllized granite up to 2 cm long are surrounded by matrix of glassy clear gtz., Purple flourise & limonise & hematiste. Hemistite - atz. - Fluorise also accurs bulk replacement & disseminations & as ucinlets fillings. FIN370
- X-329 1 chip N side main incline partal N/2 SW 1/2 Sec 26 TION RSW Yarnel 7:5 & Congress 7:5 Arizona Composite sample ~50% white massive oft2. W/ spongey zones & surfaces locally; contains py 2-3% Sob to anhedral pyrite (1-7 mm, 2mm ave) FeOx staining on Stractures & poreus zones. ~50% sample sheated (1-5 mm) against vein eklonie-sericite granite containing ~2-5% py (1-4mm) ev - subhedral · FeOx stain preminent zone 1-3" thick X-330 Rep domp sample - spoils piles near old shaft (location marked on map) Massive to glassy white oft2. W/ irreg pyrite content from 0-5% Cave =1% (0:1.-15 mm); minor specularite generally associated W/ limonitized py & a few large (1-4cm) rhombs of brownish white calcite; FeOx on Structures; jarosite stain near masses of pyrite
- X-331 2 chip sample See map for location . Vesicular basalt, highly UNalteral with abundant FeOx staining. Abundant amygdules Silled w/ secondary CaCOz; Elverite?, and Mg Oxide.
- X 332 1 mile N of Crown King (unsurveyed) 1 mile SE of Crown King Mine, Grown King 7.5 Arizona Select grab sample - Glassy white Qtz W/ intergrown brown calcite which locally forms banded comb structures up to 8 mm in leingth (calcite) 60% massive calcite-py - arseno py (?) - sph(?) impregnated wall rocts. These aggregates are U.S.g. Clargest calcites & sph ~ 2mm, py - arseno py = 0.1mm Epy i arseno py 2:1]

all samples from Van Decmen Mine W1/2 Sec 29 (unsur) TOFN Rahw MT Perkins 15° Ariz K-307 Random Chip Sample from outerop just below Andesite Fear Stained & argill altered Chlorite phyllite and Muse Schiel - Matrix is rich in Kadlin - Montmonth (2), 9 Homatite & limonite

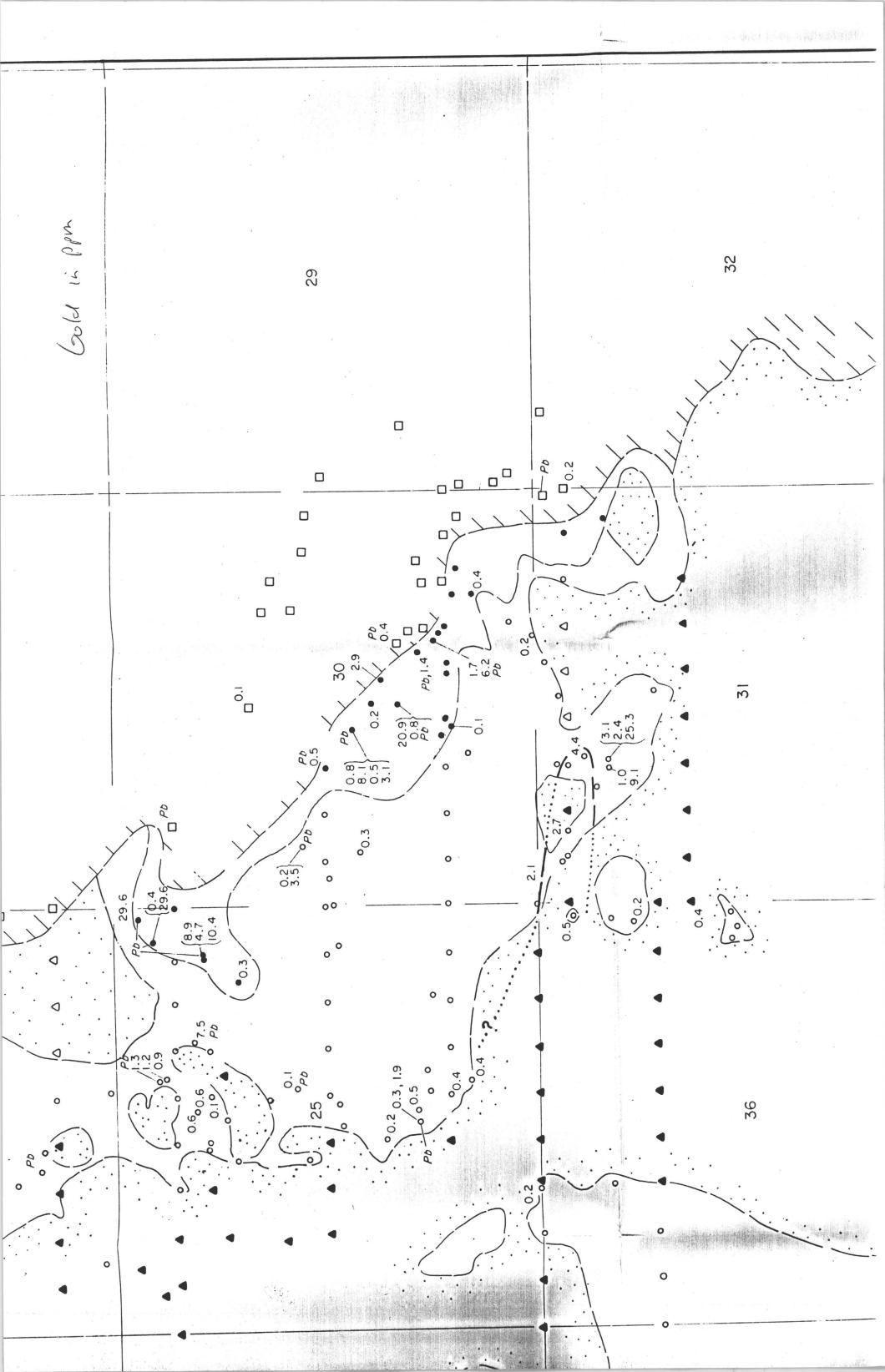
×-308 Random Onip from small adit ~100 ft below Andesite contact - Acavity Kaplinized Music schist 9 chl. phyllite; locally brecciated on fine schale. Hematite, limonite rgtz (Tocally instringus) form matrix in brecciated areas, 9 contains small eyes of green altered phyllitic? (possibly Ksparr).

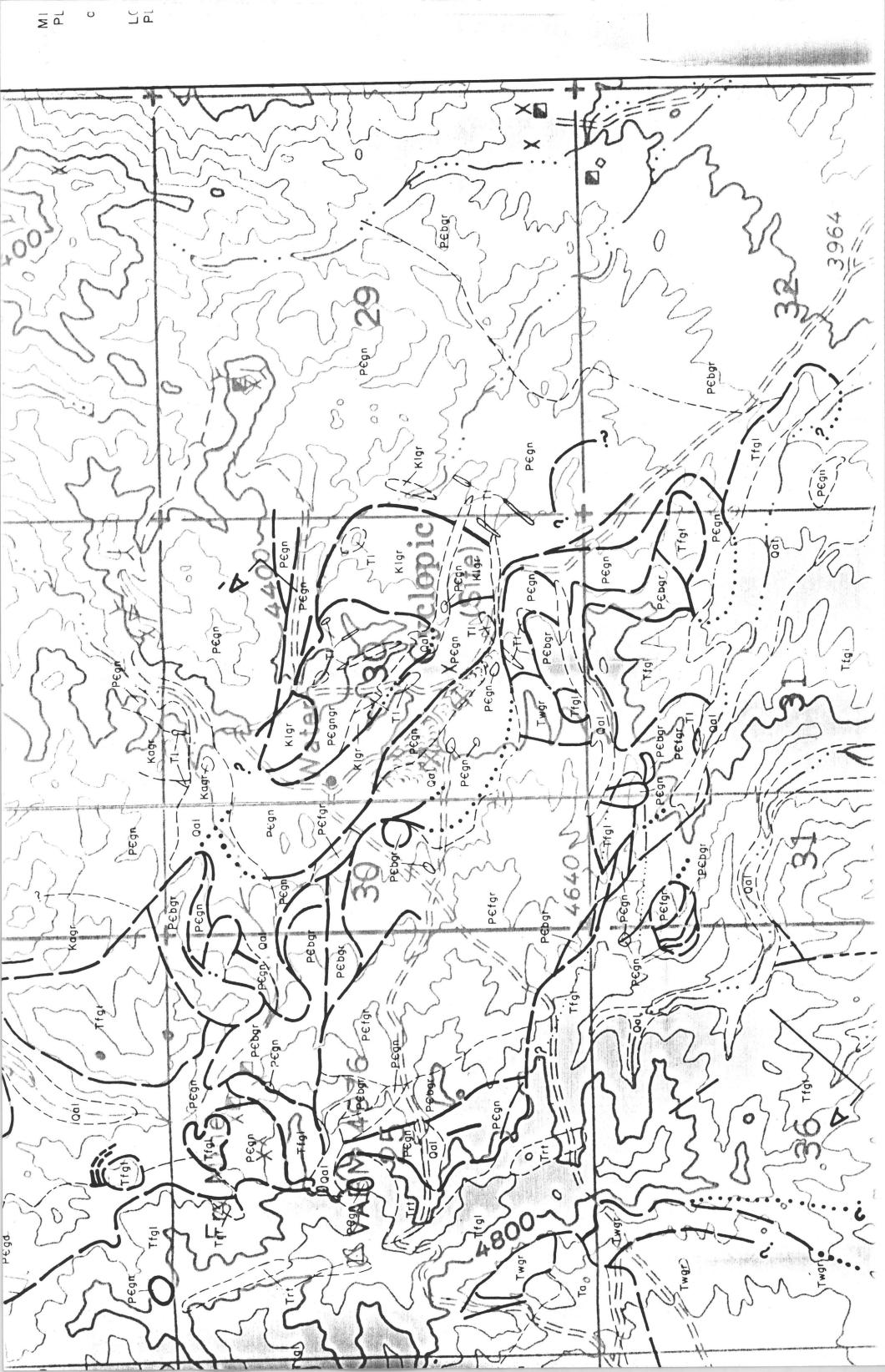
X-309 Same locality (see map) Random sample srow dump. 60 to sample compared of a (3)-service notice natural phonos (= 5 min, 1-2 mm ave). Alt. in part w/ servicite. 40 to of sample compared of broccinted rock w/ and to sub and servicite, kaol, or gt2, dosts between 1-20 mm (2-4 mm ave.) Also contains Sew gtz stringers. Matrix contains aburd hom.

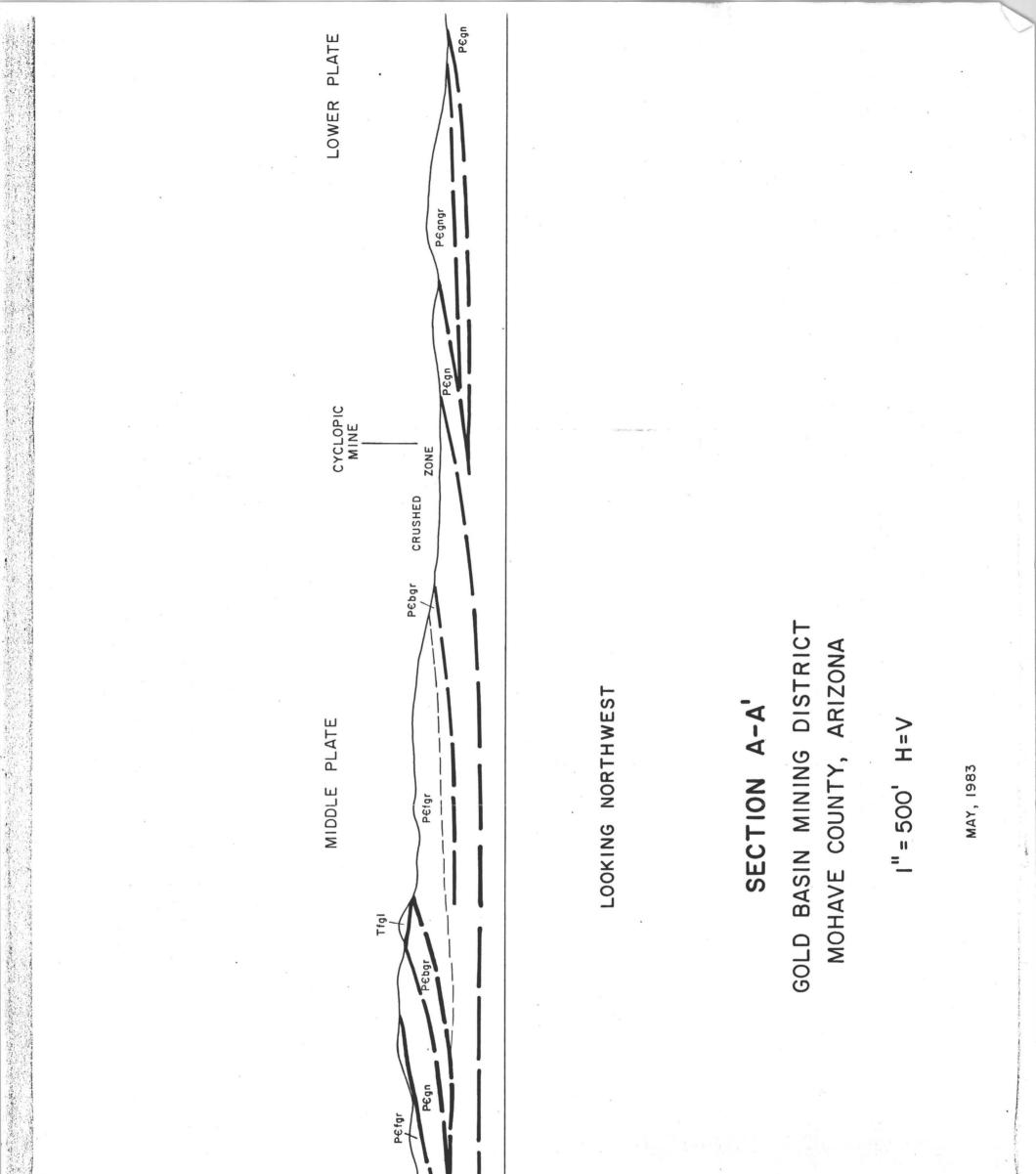

x-310 Random Chip across adit near main Von Decmen Shaft - Chloritically attend Phyllite and Chloritic rargill. attend Andesite - prominant Direction of matrix of u.f.g. hematite, chl., Kaolin & Seriette P) Somic of hem. matrix material appiars intrusive (altered Andesite?)

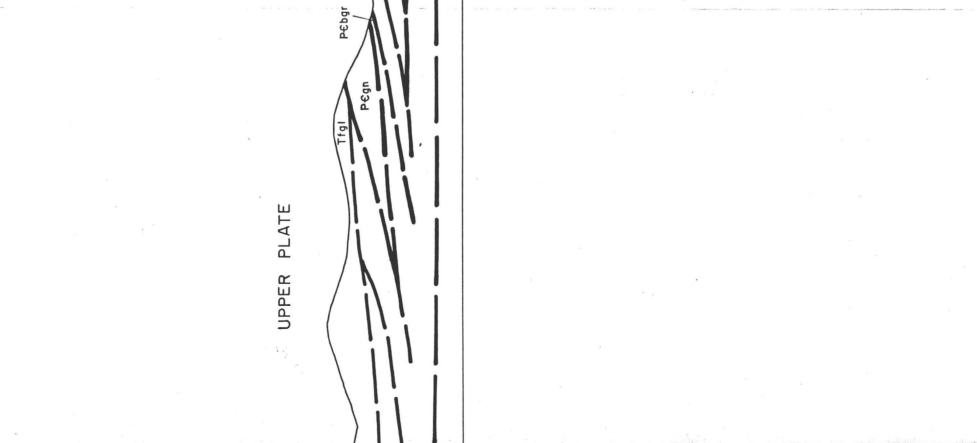
X-311 Same locality (see map) Chip sample from partal. Sample composed mastly of a fine ga (hemitite?) red to green gray work, moderally to highly altered into blue green and yellow rust colored clays. Contains see gtz stringers. Also contains a greensh gtz-Seldspatoid, Sa gay equigranular gaeissic rock composing ~ STo of sample

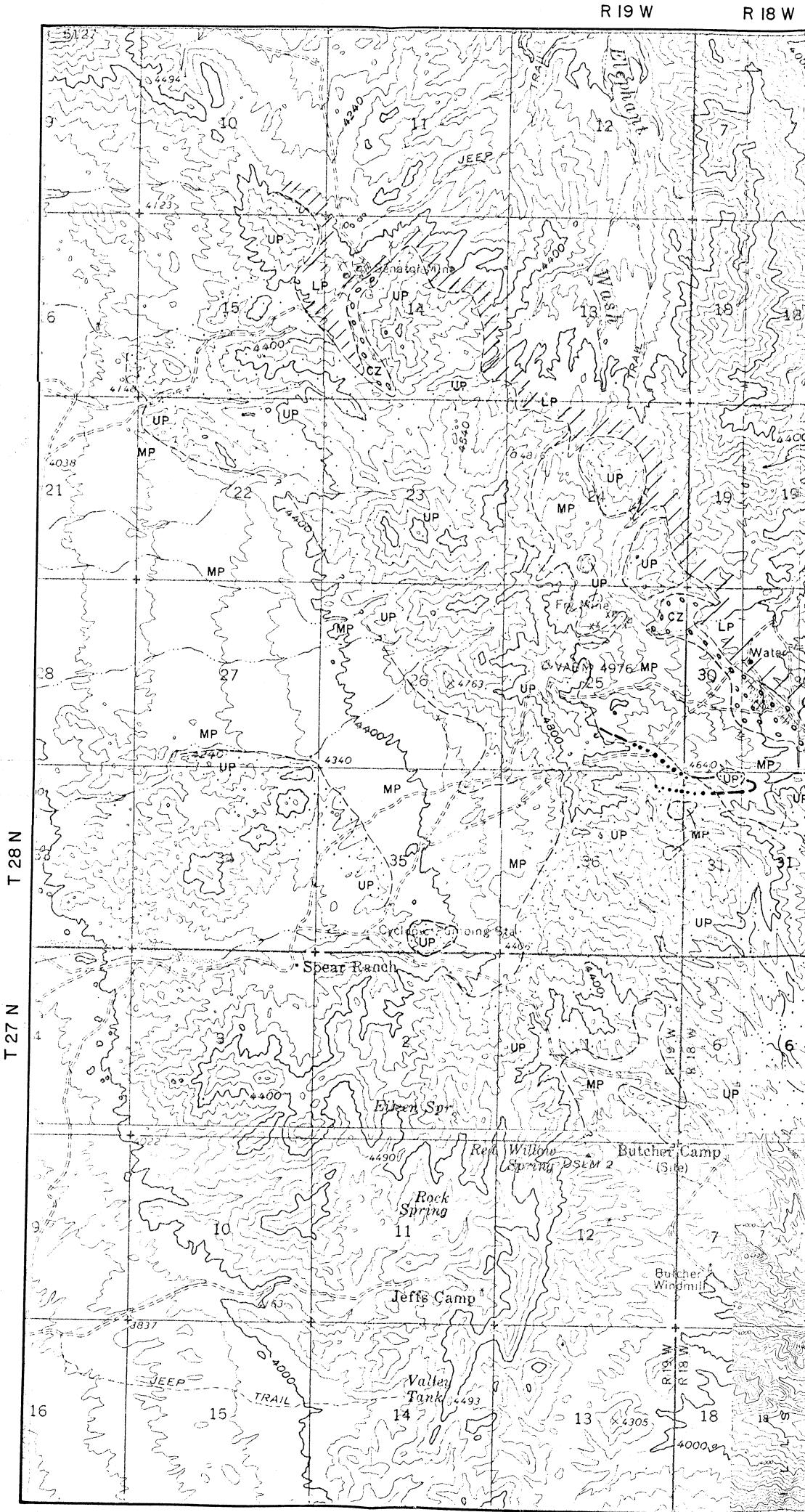
X-312 Rep. dump sample from large Pit nor SE end of workings - Bricciated Chl. phyllite of muse - Otz-Kspor ginciss; extensive brecciation; Comented by fig. hem of limonite, Qtz of locally by altered andesite. Actinotite needles locally prosent. FeOX stain is common in protectated zones.

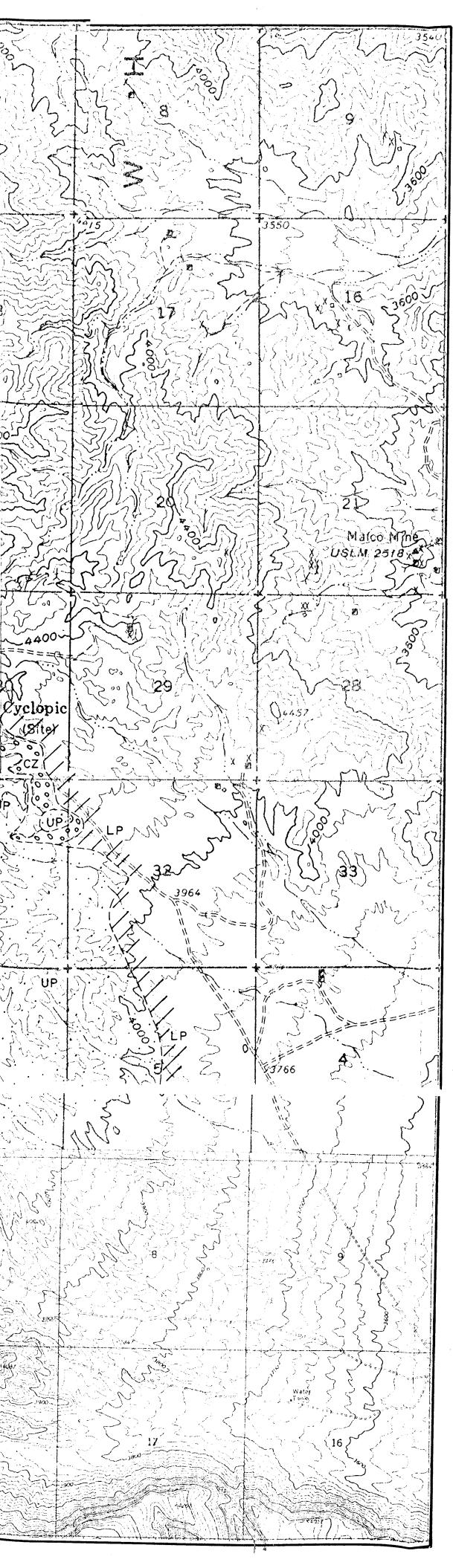

X313 Some locality (see map) Random sample 5rom dump. Dump sample contains mostly 9t2 occurring as vein and breach materials. Qtg. is mostly smoken white in cuter, but is also often FeOx stained and accessmally is clear, grien, and yellow tinted color. Qt2 contains numerous crossional cavaties of inregular and cubic Skapesy w/ some producing intergrantics of small prismatic gt2 crystals. Approx. 15% of sample is composed of attered servicite clays.


X 314 - Sam Random Chip across small portal nor. SE end of workings. Extensively bracciated and Argillizid Andrisite (?) + phyllite. Very FeOx stained well stringer + inclusions of white Obs (20-60%) up to 8 mm across. Rock appears granulated; f.g. Obs & hom commonly commont braccia closils & are found in veintes; minor CuOxs noted; Rock is spongey & limonite rich.




(AVX)


いちのここ



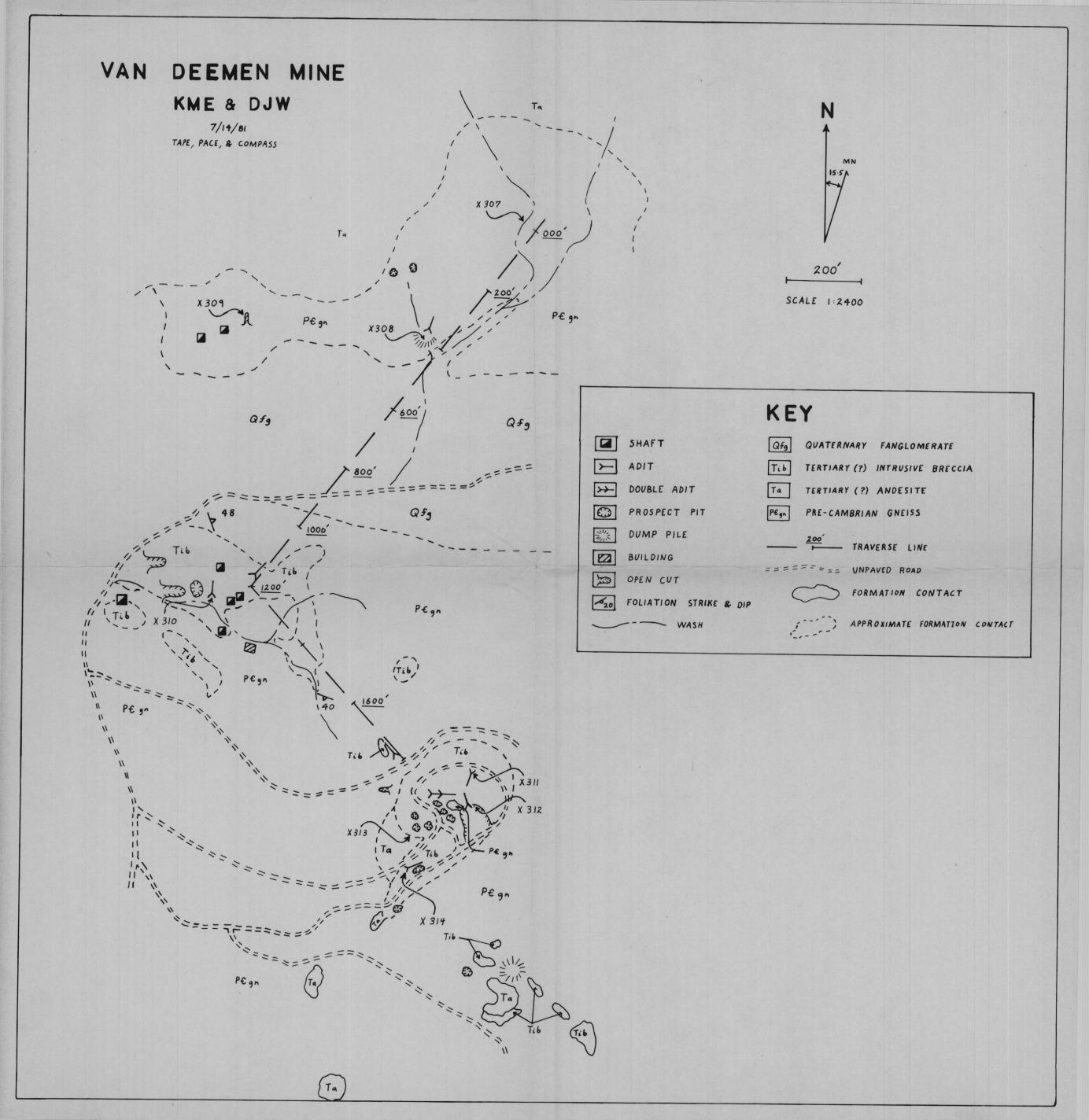
27

--

C

LITHOTECTONIC UNITS UPPER PLATE

____. MP MIDDLE PLATE and CZ CZ CRUSHED ZONE _____ LP LOWER PLATE UPPER MARGIN OF LOWER PLATE


····· D PYRITIZED AREA

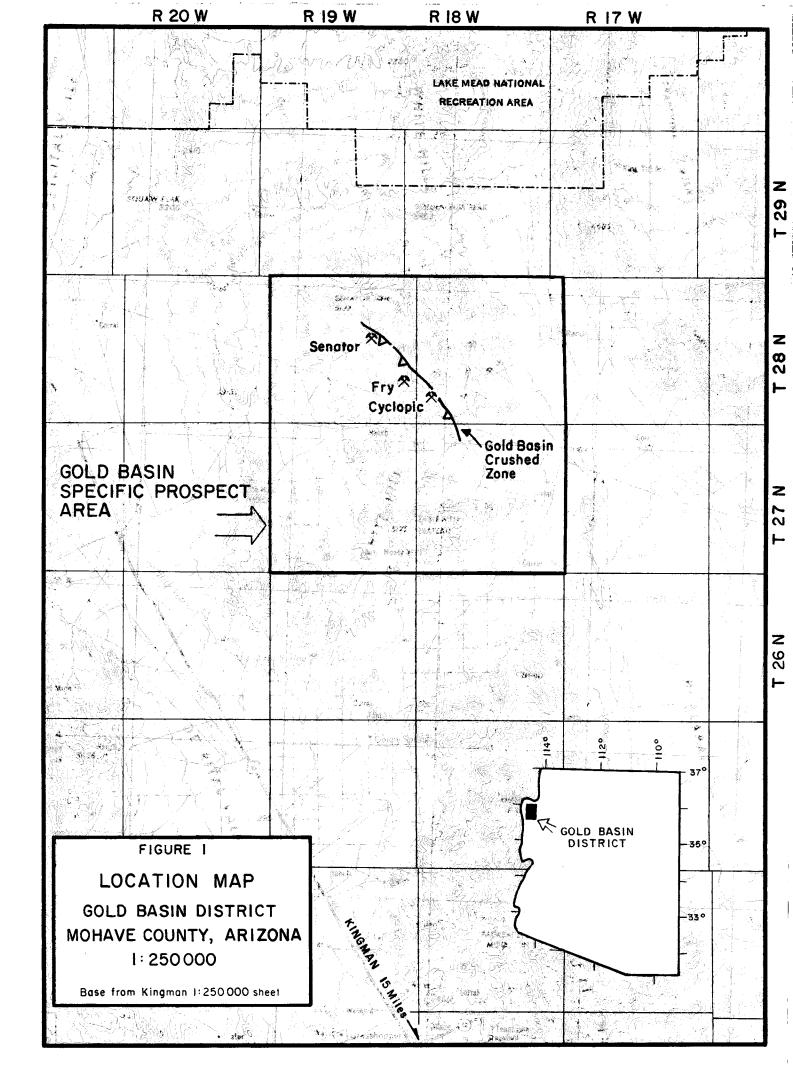
PROPOSED DRILL HOLE

LITHOTECTONIC MAP GOLD BASIN DISTRICT MOHAVE COUNTY, ARIZONA

l" = 2 000'

Please Return this data procease to nesser Officer for files. the how

Az Mohave Cunt Gold Basin District

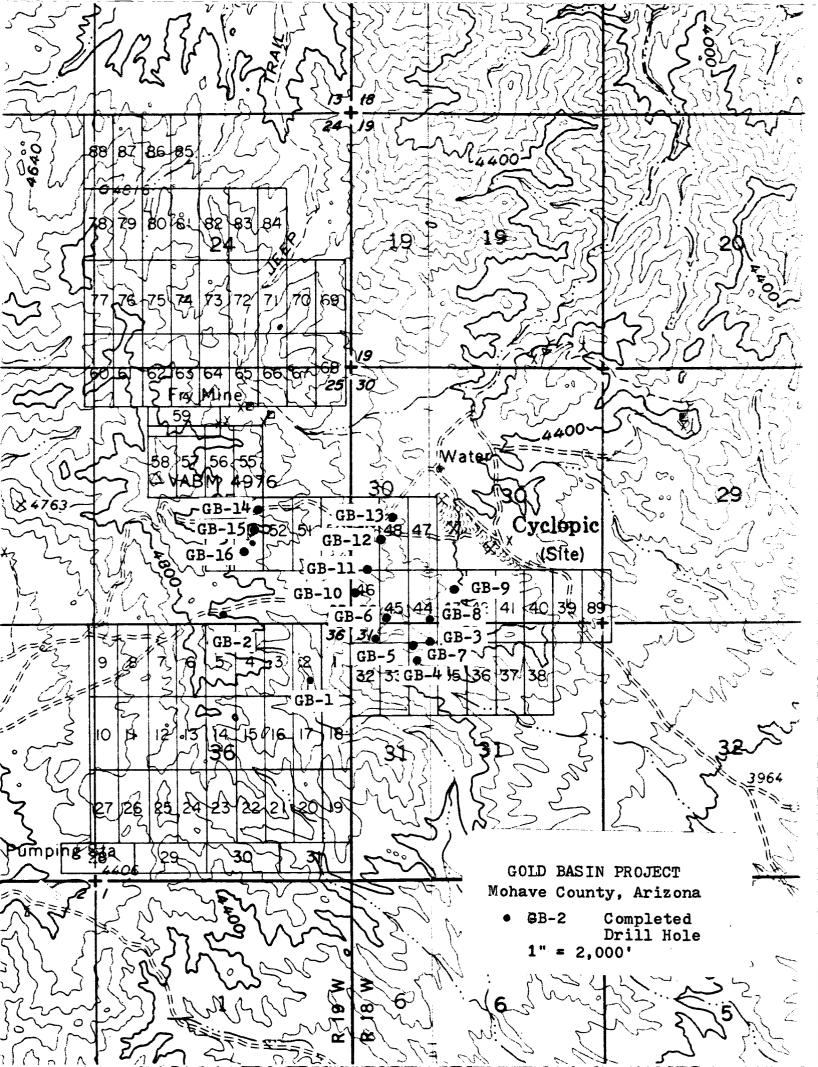

GOLD BASIN PROJECT DATA PACKAGE

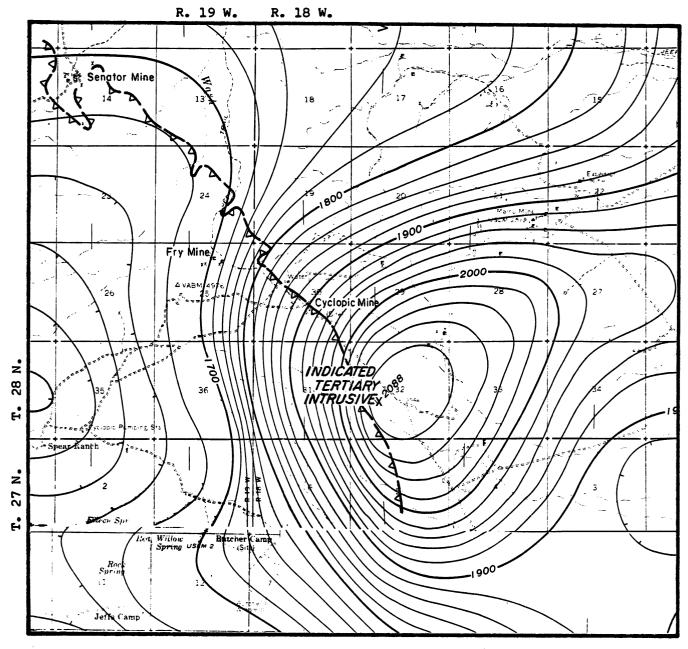
. . .

Gold Basin Index Map (8½"x11") 1:250,000 Drill Hole Locations on Gold Basin Claim Map $(8\frac{1}{2}"\times 11")$ 1" = 2000' Aeromagnetic Map (8½"x11") December 1981 Diagramatic Section (8¹/₂"x11") Geologic Section June 1983 Generalized Sequence of Lithotectonic Units Lithologic Descriptions June 1983 June 1983 Screen Test of Surface Sample June 1983 Sample Logs June 1983 Sieve Test, Gold Basin Drill Cuttings Drill Hole Logs for RDH GB-1 through GB-16 Descriptive Log Assay Log Graphic Log

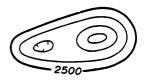
GOLD BASIN MAPS

Lithotechtonic Map Geologic Map X Sections Land Status Sample Index Map Gold Distribution Gold and Mercury	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PI. I PI. II PI. III PI. IV PI. V PI. VI	May 1983 May 1983 May 1983 May 1983 May 1983 May 1983
Distribution Gold and Lead	1" = 1000'	PI. VII	May 1983
Distribution	1" = 1000'	PI. VIII	May 1983
Drill Hole Plan Map	1" = 2001	Max. 100h	


SUMMARY OF DRILLING RESULTS


In the recent drill holes, erratic gold values are associated with clay, limonite after pyrite, and anomalous mercury and tungsten values. Drill hole intercepts with more than .3 ppm gold include:

Drill Hole	Intercept	Interval	PPM Gold	
GB-5	80-90	10'	.31	
	110-130	20'	. 85	
GB-7	0-5	5'	1.61	
	60-75	15'	3.54	
	130-165	35'	.86	
GB-11	145-150	5'	2.31	
	270-275	5'	.89	
GB-12	185-190	5'	. 56	
GB-13	110-115	5'	. 99	
GB-16	55-75	20'	.48	


Drill holes 5, 7, and 16 are positioned on and near an elongate west-northwest trending zone of mineralization. These vertical holes do not adequately define the grade of the gold mineralization but do indicate the relative intensity and extent of mineralization. Representative surface samples taken along a road cut across this zone show a 60 foot width that averages 1.66 ppm gold with an adjacent 60 feet that averages .27 ppm gold. Additional surface samples show that the mineralized zone continues westward for several thousand feet through hole GB-5 and toward hole GB-16. This data and the drilling results indicate that the better gold mineralization is restricted to an elongate 50 to 100 foot wide zone with a probable potential of less than one million tons averaging .03 to .05 oz. gold. Mineralization at the Cyclopic Mine is similarly localized in an elongate, west-northwest zone of limited width with a probable tonnage potential of only several million tons.

The drilling results at Gold Basin indicate that better-grade gold mineralization occurs in elongate, west-northwest trending zones of limited width and tonnage potential. The mineralized zone indicated by PCMI's drilling has an estimated potential for several hundred thousand tons of .03 to .05 oz. gold.

EXPLANATION

Magnetic contours Showing total intensity magnetic field of the earth in gammas relative to arbitrary datum. Hachured to indicate closed areas of lower magnetic intensity. Contour intervals 20 and 100 gammas

x²⁸⁶³

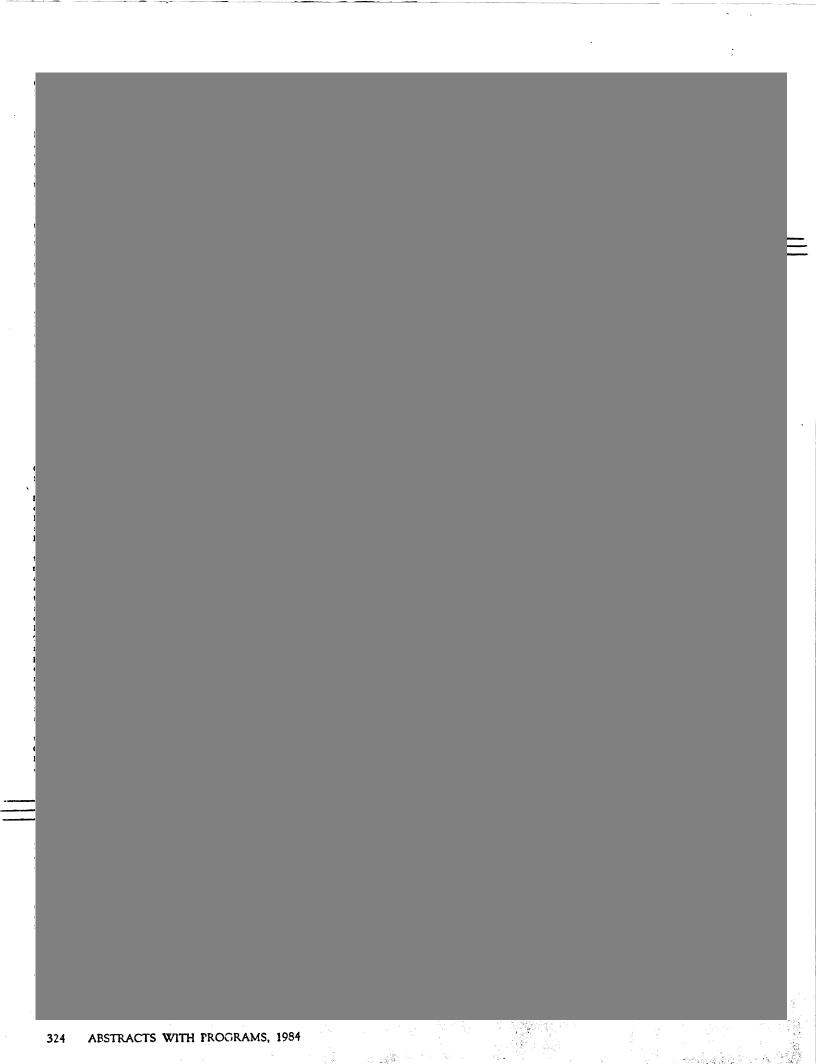
Location of measured maximum or minimum intensity within closed high or closed low

Flight path Showing location and spacing of data

.

٠.

۰. ۱ Figure 2


AEROMAGNETIC MAP OF GOLD BASIN AREA

Mohave County, Arizona

1:62,500

From: USGS Aeromagnetic Map of the Gold Butte -Chloride Quadrangle, GP-757

> Approximate location of the eastern edge of the Gold Basin Crushed Zone

REFERENCES

- Anderson, R.E. Geologic map of the Black Canyon 15' quadrangle, Mohave County, Arizona and Clark County, Nevada, U.S.G.S. Map GQ-1394, 1978.
- Blacet, P.M. Preliminary geologic maps of the Garnet Mountain quadrangle, Mohave County, Arizona, U.S.G.S. Open-File Report OF-75-93, 1975.
- Myers, I.A., et al. Relationship of mineralization to detachment faulting at the Cyclopic Mine, Mohave County, Northwestern Arizona, G.S.A. Abstracts, 1984.
- Schrader, F.C. Mineral deposits of the Cerbat Range, Black Mountains, and Grand Wash Cliffs, Mohave County, Arizona, U.S.G.S. Bulletin 397, 1909.
- Theodore, T.G., et al. Preliminary report on the geology and gold mineralization of the Gold Basin-Lost Basin Mining districts, Mohave County, Arizona, U.S.G.S. Open-File Report OF-82-1052, 1982.
- U.S.G.S. Aeromagnetic map of the Gold Butte-Chloride quadrangle, U.S.G.S. Map GP-757, 1972.
- Wilson, E.D., et al. Arizona lode gold mines and gold mining, Arizona Bureau of Mines Bulletin 137, 1934.

TABLE 1

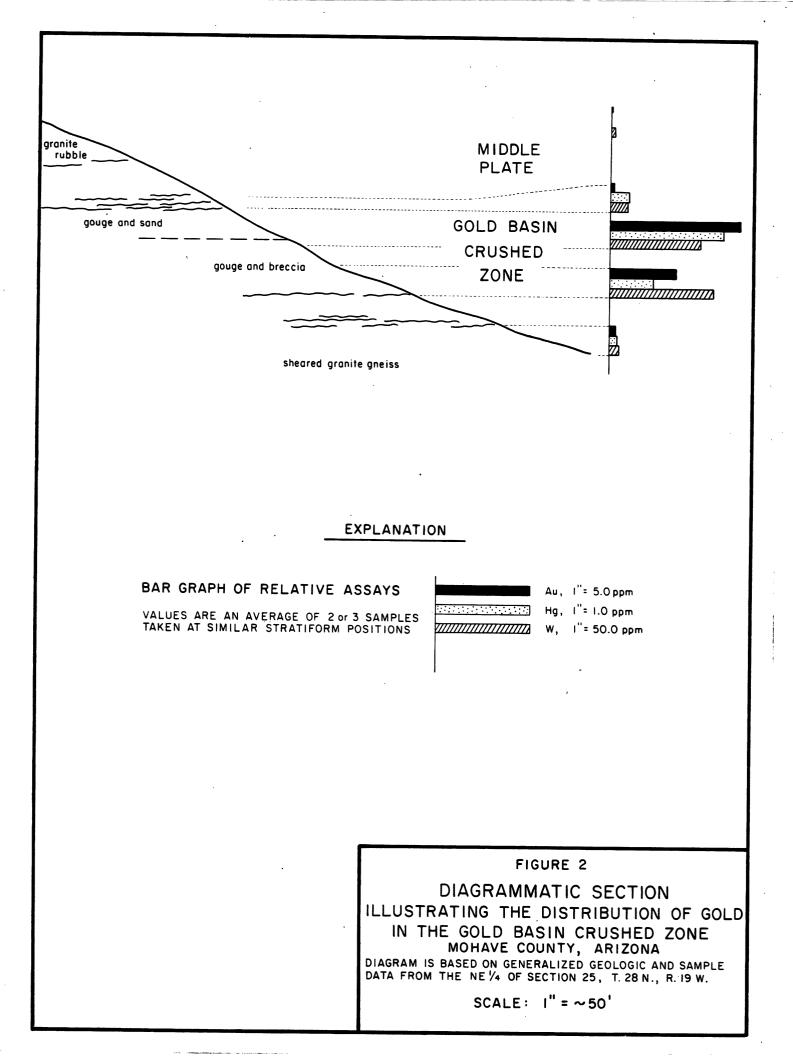

Quaternary	Alluvium
Pliocene (?)	Basalt and conglomerate
Listric faulting	
Late Miocene (?)	Sandstone
	Rhyolitic tuff
	Fanglomerate
Gold Mineralization	
Listric faulting	-GOLD BASIN CRUSHED ZONE
Miocene	Quartz latite welded tuff
(USGS dates on similar Middle Tertiary volcanics	Andesite
and intrusives are 10-20 my)	Lamprophyre
	Porphyritic granite
Cretaceous	Granite, alaskite
Precambrian	Granite, gneissic granite and granodiorite, granite gneiss, amphibolite, gneiss.

Table 2

Generalized Sequence of Rock Units at Gold Basin

Lithotectonic Unit	Structural Features	Rock Units Affected
Upper Plate	structurally rotated cohesive	Fanglomerate
	fault blocks and slivers.	Ryolitic tuff
		Sandstone
		Andesite
		Porphyritic biotite granite
		Layered gneiss
	Sub-horizontal zone of Shearir)g
Middle Plate	thoroughly shattered and	Lamprophyre
	sheared rocks.	White Hills granite
		Fine-grained quartz-biotite granite
		Porphyritic biotite granite
	· ·	Granite gneiss
	:	Layered gneiss
		Gneissic granodiorite
		Gneissic granite
Crushed Zone	crushed rock material and goug	e
Major	Sub-horizontal Zone of Shearing	g and Coalesced Faults
Lower Plate	competent unsheared rocks.	Lamprophyre and Latite porphyry
		White Hills granite
		Alaskite
		Leucogranite
		Porphyritic biotite granite
		Layered gneiss
		Gneissic granite

.

Appendix C Sample Logs

.

	1 VALUE	1894	1893	1892	1891	1889	1888	1887	1886	1885	1884	1883	1882	1881	1880	1671	1669	1668	1667	1666	1665				1661	1659		SAMPLE	COUNTY
ORAX RESEARCH CENTER,	VALUES IN PPM EXCEPT "TOTAL BARIUM" COPPER STATE ANALYTICAL, TUCSON	2	2	=	2	-	=	2			NW/SE Section 30, 28 N, 18 W	4		=	NE/NW Section 4, 27 N, 18 W	NW % Section 1 28 N 19 W	NE ¼ Section 25 28 N 19 W		NW ¼ Section 30, 28 N, 18 W	•	=		NW ½ Section 1 28 N, 19 W	-	NW ¼ Section 14, 28 N, 19 W	Center of 25, 28 N. 20 W	LEGAL	LO	MOHAVE
ANAHE IM.	IL BARIUM" WHICH IS IN % .	North end Cyclopic pit.	Cyclopic pit.	Prospect pit.	Slit trench.	Dozer cut.	In main pit.	Outcrop on road.	=	Cyclopic Mine, old mill site.	Cyclopic Mine.	East of headframe.	=	=	3 shafts; PLM claim.	Owens Mine.	Fry Mine.	=	West of Cyclopic Mine	=	2	2	Owens Mine.	2	Senator Mine.	Hidden prospect.	GEOGRAPHIC	LOCATION	STATE
Analytical (SWAC).	ticapon :	Quartz-granite breccia in low-angle fault.	Silicified gneissic granite breccia.	Mylonitic granite with quartz-sericite-	Unconsolidated gravels.	Red-brown unconsolidated gravel.	Red mudstone gouge and and fault breccia.	Leucogranitewith black FeOx on fractures.	Cemented quartz-granite breccia.	Spill of mill feed; leucogranite.	Red-brown coarse tailings.	Silicified gneissic granite with quartz yeinlets.	Drill cuttings, argillic altered Pre- cambrian granite with pyrite & guartz.	Grab of argillic altered Precambrian granite with pyrite and quartz.	Selected quartz vein on dump.	High grade copper with nematite, specularite, siderite alteration.	Pliocene fanglomerate on dump.	Upper edge of flat fault gneiss.		FeMnOx in fault breccia.	Silicified brecciated gneiss with coppe quartz siderite veinlets.	Amphibolite dike with chlorite, . siderite veinlets.	Fresh gneiss, quartz K-spar, biotite, amphibolite.	Bleached earthy breccia with siderite and clay.	<pre>\$heared leucogranite with siderite- chlorite.</pre>	Quartzite gneiss from fault•	LITHOLOGY AND MINERALIZATION	DESCRIPTION	ARIZONA
).	ples 1659 thr			pyrite.																							U3 ⁰ 8 eU eTh	RADIOACTIVE	I
	ough 1	5	10	8	6	8	=	ы	<u>^</u> 1	л Л	6	ω	σ	б	2		+										a BeO		
		14	59	9	14	17	18	ω	6	4	18	10	19	20	10										-		² L1	PATH	
	confirmed by at Conner St	64	3	9	8	23	E	ω	16	4	56	23	21	140	۲	î	18	28	15	2	-	ч	າ	î	н	î	¥ "	THFINDER	
	med b	255	455	610	1000	665	410	340	65	345	195	520	375	250	110	20	720	610	1200	910	1100	1200	445	520	680	275	, Ba	1	
	by State	.081	.15	•15	•18	.15			•12	.10	.27	• 29	.24	•23	.18	.21	.14	• 30	.28	•16	.98	,17	•20	.14	•15	.16	Ba %	ELEMENTS	
		940	1 300	310	1200	660	18 1200	350	280	450	1 300	760	3500	23 2700	.18 1100												~	INTS	
		1.03	.475	.070	.100	.075	• 360	.065	• 480	.070	• 910	• 205	.240	1.08	•910	36											۳ų		
		182	112	29	13	13	102	16	116	20	274	7	22	14	168	36,400	46	274	85	429	8480	1 384	144	44	25	32	"C"	BA	
		12	7	ŝ	-5	\$	10	\$ 5	11	ŝ	27	^ 5	8	^ 5	u	\$	6	56	^ 5	ŝ	< 5	<5	~ 5	\$5	^5	6	Mo	BASE N	
	CON	2077	167	526	29	80	1169	24	1140	179	6490	7	55	38	108	60	514	2038	311	13	46	15	8.	7	17	25	Pb	METALS	
i ucsow,	CORN 8	7 216	7 262	63	67	50	193	28	108	51	780	25	36	7	12	31	123	562	148	27	43	47	33	32	41	43	Zn] S	
	N N N N N N N N N N N N N N N N N N N	43	17	4	^2	2	16	^2	15	ω	37	2	ω	N	E	2	œ	7	6	7	15	6	6	6	6	≥	3 ³ As	SULFO-	PAGE
ARIZONA	AHERN GEOLOGISTS	11	6	ŝ	4	w	^2	^2	ۍ	^2	9	ŝ	^2	^2	ω	5	4	თ	4	4	თ	6	ω	σ	-	·ω	зp		
	70 76/51	8.1	.80	• 39	• 03	• 05	.21	.03	6.15	• 08	1.65	•18	• 05	2.31	8.40	2.82	1.22	4.65	.07	.21	1.41	.87	.11	• 02	•03	•12	βAυ	MET	្ទុ
	S.	3•2	1.1	0.2	0.2	0.4	1.5	~. 2	1.6	0.3	1.8	*• 2	0.5	1.3	2.0	2.2	1.0	2.6	1.4	1.6	2.2	2.0	0.9	0.9	0.7	6•0	зAg	PRECIOUS METALS	16

STATE ARIZONA

PROSPECT ____

MOHAVE

GOLD BASIN DISTRICT

PROSPECT	
GOĻD	
BASIN	
DISTRICT	

COUNTY _

MOHAVE

_ STATE _____ARIZONA

SAMPLE LOG

PAGE 2 OF 16

I VALUE 2 COPPE 3 U.S. B	2293	2292	1622	2290	2289	0027	3388	2287	2214	2213	2212	2210	6022		2208	2207	2206	2205		2203	2202	2201	1899	1898	1897	1896	1895		SAMPLE
VALUES IN PPM EXCEPT "TOTAL BARIUM" Copper State Analytical, Tucson U.S. Borax research center, Anaheim.	NE/NE Section 23, 28 N, 19 W	28 N, 19 W				NW/NW Section 25,	NE/SW Section 25,	S ¹ ₅ /NW Section 25, 28 N. 19 W	=	NW/SE Section 33, 30 N, 17 W	East ½ Section 24, 30 N, 19 W	3	SW Section 18	SE/NW Section 11,	SW/SE Section 24, 28 N, 19 W		=	=	NE/NE Section 25 28 N, 19 W	=	-	28N, 19W		SE/SE Section 19, 28 N, 18 W		=	NW/SE Section 30, 28 N, 18 W	LEGAL	ГОС
BARIUM" WHICH IS IN % . SON NAHEIM.	stock tank.	of ros	North of saddle.	crest road.		MIL FOOD OC DEDIO.	President house	VABM 4976.	-	Climax Mine.	Salt Spring wash.	Salt Spring Prospect.	bonanza Mine area.		Cyclopic well.		-	=	Fry Mine.	=	Prospect pit north of tank.		Digs at end of ridge.	Adit on fault.	Cyclopic pit.	Percussion hole.	North end Cyclopic pit.	GEOGRAPHIC	LOCATION
	Biotite granite gneiss.	Leucogranite with pegmatite stringers.	2	Weathered granite.	Bedded rhyolite ash flow.		=	Light grav unaltered lithic tuff.	Sludge from mud pit.	Conglomerate with magnetite in drill cuttings.	Fault breccia with amphibolite and granite.	breccia.	Feor muartz rich coord omerate/		Cuttings 0-375' (½ gpm).	Mine dump sample, conglomerate.	Sandy conglomerate with altered granite fragments.	Sandy conglomerate with granite and quartz.	Hematitic granite with quartz veinlets.	Granite and conglomerate at fault contact.	Quartz breccia - fault (?).	Clay-quartz gneissic granite conglomerate or breccia.	Leucogranite with amphiholite.	Altered gneissic granite with sericite and limonite.	Argillized gouge beneath fault.	5' to 10' "wash fill", no bedrock.	Gneissic granite below fault.	LITHOLOGY AND MINERALIZATION	DESCRIPTION
																												U308 eU eTh	RADIOACTIVE
						_			2	2	~1	2	^	J	4	6	6	ω	4	6	1	6	4	4	10	7	5	BeO	P
				<u> </u>		_			32	17	21	8	14	:	17	22	26	25	4	15	7	16	و	42	292	28	24	L1 3	PATHF INDER
	2 5	UN N	19 4	2	-	+		N 	3	25	2 11	10 12	^		6 10	36	5	45 8	22	80	74	5	ω	4	51 6	38	18 11	× Ac	NDER
	910 .	280 .	470 .	350 .	200 .			220	405 .	. 065	1100 .	1200 .			8	520 .	550 .	835 .	430 .	340 .	95	670 .	145 .	310 .	675 .	665 .	1100 .	AcidSol Total 2 Ba Ba %	ELE
	17 1600	,07 1900	.16 1700	,08 2500	10 1400	0.30 210	10 20	.09 2100	•23 6	•17 3	.24 4	66 6	~ /		.23 2300	53 1900	,21 1300	20 1800	.22 1100	.14 1200	22 3	20 8	•10 2	•16 3	23 7	18 17	•13 1300	² г	ELEMENTS
	60 • 00	• 11	00 - 17	00 -14	00 - 16		11	00 .14	680 .055	310 .920	490 .135	620 .790	100 - 030	<u>,</u>	00 - 250	00 .475	00 • 066	00 • 2 3 5	00 .870	00 .970	380 -175	840 .070	280 .030	350 .055	790 - 130	1700 .210	00 • 065	₽Hg	S
	10	. 27	20	^ 5	53	+		101	33	67 Di	8	0 484		17	<u>ة</u> ۲	15 1 35	6 17	5 65	70 59	0 219	15 97	10	0 125	5 47	412	53		ູດ	æ
	^5	ŝ	ŝ	ŝ	^ <u>5</u>	-+-		ŝ	7	35	ŝ	6	-+-	, ,	ŝ	10	ŝ	H	υ	6	80	- ت	ŝ	<u>^</u> 5	8	u.		Mo	BASE
CON	27	157	393	21	25	-	27	31	40	83	10	83	10	71	19	1364	38	260	292	11,86	1127	41	13	44	2307	606	45	Ъ	METALS
CORN 8 CONSULTING TUCSON,	54	53	43	60	73	+		20	67	69	43	180	T	45	86	431	46	158	74	11,860)1400	429	96	102	65	551	160	97	βZn	LS .
N N N N N N N N N N N N N N N N N N N	^2	~2	~2	~2	^ N		٨	^ 2	9	H	~2	207	:		^2	8	<u>^1</u>	4	~2	0 17	ω	~2	~2	~2	17	8	13	3 As	SUL
AHERN GEOLOGI ARIZONA	^ 2	~2	^2	~ 2	~2	ŀ	S	^2	^2	~2	ω	8		7	~2	4	ω	2	2	~2	4 2	~2	4	~2	~2	-2	<2	3SP	SULFO-
AHERN GEOLOGISTS ARIZONA	•03	•03	• 05	•03	• 03		503	\$ 02	•12	.03	2.39	• 05	20.02	S S	\$ 02	.92	\$ 02	• 56	•63	10.35	•03	• 30	• 05	• 05	3.12	•54	• 05	ч	PRECIOUS
, , ,	~. 2	0.3	0• 3	~. 2	0.9		Ś	0.2	0.8	0.4	1.2	2.3	•	2	0.4	7.3	0.4	1.1	0.5	4.5	1.9	0.9	2.1	~. 2	1.0	0_8	0.3	βĄ	10US

.

- VALU	2	м	۲	×	د.	I	н	G	Ę	त्व	g	n	œ	2296 A	~	ų	н	Ŧ	G	raj	m	Ð	n	œ	2295 A		SAMPLE
VALUES IN PPM EXCEPT "TOTAL BARIUM"	•											 Cyclopic #1 traverse		NE/NE Section 14, 28 N, 19 W									{ Senator Mine travers		NW% Section 14, 28 N, 19 W	LEGAL	гос
BARIUM" WHICH IS IN %		800'south of hilltop	700' south of hilltop.	600' south of hilltop.	550' south of hilltop.	500'south of hilltop	450' south of hilltop	400' south of hilltop.	350" south of hilltop.	300' south of hilltop.	250' south of hilltop.	200' south of hilltop.	150' south of hilltop.	(south of # 2293) 100' south of hilltop	300' south of saddle.	200' south of saddle.	100' south of saddle.	Saddle.	50' north of saddle.	100' north of saddle.	150° north of saddle.	200' north of saddle.	Senator Mine traverse 300' north of saddle.	400 ⁴ north of saddle.	500° north of saddle.	GEOGRAPHIC	LOCATION
	-	-		Precambrian granite.					Prospect exposing fault.						-	-	Leucogranite outcrop.	Amphibolite granite outcrop.				Fine grained, true dirt quartz breccia.	•		Alluvium below quartz breccia outcrop.	LITHOLOGY AND MINERALIZATION	DESCRIPTION
•																								sample	-80 Mesh soil	U308 eV eTh	RADIOACTIVE
• 006 40 40 064	09 4500	5 530 .12 1500 .25	16 500 .15 3200 .16	4 300 .10 1900 .19	7 350 .11 930 .15	6 490 .11 1100 .13	6 420 .11 1600 .14	15 360 .19 1100 .13	10 390 •10 1000 • 38	6 570 .23 2300 .22	5 340 .10 1100 .13	5 300 .13 1000 .13	2 500 .11 1300 .14	2 430 .08 1300 .12	2 410 .08 545 .17	2 510 .09 505 .13	2 440 .08 1100 .12	9 510 .11 930 .15	7 530 .10 1100 .12	12 890 -21 1600 -14	379 520 .13 835 .20	4 450 .10 590 .12	5 560 .09 1100 .11	3 330 .07 1200 .22	11 288 450 .09 1100 .17	W AcidSol Total 3 W 2 Ba 2 Ba % 2 F 2 Hg	PATHF INDER
Cowsu Cowsu		5 20 <5 58 82	5 48 <5 57 86	16 < 5 45 65	5 20 ~5 50 83	3 19 ~5 40 80	21 <5 48 90	3 22 <5 74 81	3 27 <5 164 125	2 13 <5 30 66	3 26 <5 46 112	18 5 32 88	1 23 <5 25 102	21 <5 44 92	18 <5 53 64	23 < 5 49 75	24 <5 61 67	86 <5 34 101	55 < 5 37 85	47 < 5 34 78	6 <5 24 18	· 58 <5 39 72	54 <5 40 84	57 < 5 33 92	64 < 5 34 87	Cu Mo Pb Zn	BASE METALS
9 b F	4 <2	4 <2 .	4 <2 .	2 <2 .	3 ~2	7 <2 .	3 <2 .	5 ~2 .	4 < 2 .	3 ~2 .	6 ~2 .	6 ^2	5 ~2 .	4 ~2 .	6 42 .	5 <2 .	4 <2 .	5 <2 .	4 <2 .	4 <2 .	<2 <2 .	6 ~2 .	4 <2 .	8	4 ~ 2 .	AS 35 A	SULFO- PRECIOUS SALTS METALS
2 N I.		06	6	• 06	.09	.12	•06	•09	8	6	.03	12	.03	.03<0.2	• 03 <0• 2	.03<0.2	.03<0.2	• 03 0• 3	03	.05	• 05 <0• 2	.06 0.5	•15	•05	•24	P	in al

PROSPECT GOLD BASIN DISTRICT

SAMPLE LOG

C	9	D	n	8	2299 A	~	L,	H	H	G	, i	59	Ð	C	8	2298 A	H	G	la,		۵	n	œ	2297 A		SAMPLE		COUNTY	PROSPECT
VALUES IN DEM EVERET "TOTAL BABINA" WHICH IS IN 9/			r Cyclopic #1 traverse.		NE NE Section 25, 28 N, 19 W									ا Senator Mine traverse		Center of NW ¼ Sec 14 28 N, 19 W 4	-					I Cyclopic #2 traverse.		NE NE Section 25, 28 N, 19 W	LEGAL	LOC		MOHAVE	GOLD BASIN DISTRICT
	300'south of # 2293.	250' south of # 2293.	200' south of # 2293.	150'south of # 2293.	100'south of # 2293	300' south of saddle.	200' south of saddle.	100' south of saddle.	Saddle.	50' north of saddle.	100' north of saddle.	150' north of saddle.	200' north of saddle.	300' north of saddle.	400' north of saddle.	1 500° north of saddle.	450' south.	400' south.	350' south.	300' south.	250' south.		150' south.	Hilltop east of Line 1.	GEOGRAPHIC	LOCATION		STATE	DISTRICT
					Line 1.				Amphibolite granite outcrop.				Fine-grained "true dirt".			Alluvium below quartz breccia outcrop.	-	-	-	Thicker alluvial cover.	At prospect pit in Tertiary fanglomerate.	2	-	. Thin cover.	LITHOLOGY AND MINERALIZATION	DESCRIPTION		ARIZONA	
															screened	-20 to							Samples	-80 -80	8₀€n	RADIOACTIVE			I
			<u> </u>		<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>			P -	0 +80	 <u> </u>					<u> </u>			eU e	MENT			
-															soil									soll	eTh	°.⊌			
ŀ																										PATH			
	8	ъ	ω	ω	ω	2	N	ω	9	7	13	8	6	6	ω	A	ω	N	ω	4	ω	5	л	4	w	ATHF INDER			
																	460	440	650	440	370	440	320	340	AcidSol 2 Ba				
																	.11	•12	•16	•12	• 08	•11		E	Total Ba %	ELEMENTS			ų
																	1500	1500	2400	2600	1 300	1900	1000	1 300	Ĩ	ENTS			SAMPLE
																	.14	•15	.17	•16	•15	•16	•12	.13	ĎН				F
	Ħ	15	12	15	16	10	12	11	83	52	53	63	64	58	61	55	19	19	15	20	24	22	33	31	'n٦	v 8			
ſ	5	^ 5	<u>, s</u>	^ 5	л Сл	ŝ	\$5	^ 5	^ 5	^ 5	л	\$5	^ 5	ŝ	ŝ	л	ŝ	ŝ	۸ 5	ŝ	^ 5	^. 5	л 5	\$ 5	ow	BASE I			u
	з	59	48	29	52	47	65	44	42	34	38	S	38	52	49	44	41	38	31	43	42	43	42	40	βď	METALS			
3	53	103	75	87	95	40	46	43	94	80	77	80	62	72	97	66	93	16	75	104	92	113	100	94	۳Z	٦S			
CUBN B	2	5	ω	4	4	u	æ	4	ω	6	u	4	7	7	و	u	7	4	N	ω	8	7	4	6	As	SAL	PAGE		
אנה	ŝ	^2	4	~2	4	ŝ	~2	^2	AN N	ŝ	~2	2	^2	2	ω	^ N	^2	~2	^2	^2	^2	~2	^ N	^2		SULFO-	4		
AHERN	• 05 0	.03 0	<• 02 0	~. 02 (.05 (*. 02	*. 02	<.02 (* 02 (< <u>.02</u>	• 05 0• 8	.03 1.1	.06	.08	.03 0	.12 (.06 0	.06 0	.06 1.2	.06 1	• 06 0	• 06 0	• 06 0	. 09 0	μ ³ Αυ	PRECIOUS	Р Г		
	0.5	0.2	0.2	0.03	0.04	~. 2	<u>^.2</u>	0.2	0.6	0.8	9. 8	F	0,8	0.7	0.6	6•0	6 0	6*0	2	1.1	0.7	6•0	6•0	0 •9	δų	S S N O	16		

PROSPECT

GOLD BASIN DISTRICT

RET LOCATION DESCRIPTION REDUCT NUMBER ELEMENTS NUMER ELEMENTS NUMER ELEMENTS NUMER ELEMENTS NUMER ELEME
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
PELEMENTS PATHFINDER ELEMENTS BASE METALS SALTS
ELEMENTS BASE METALS SALTS 100^{80} $_{\rm r}$ $_{\rm r}$ $_{\rm g}$
BASE METALS Sulfo- Salfs $_3$ $_5$ $_{12}$ $_{165}$ $_{61}$ $_{8}$ $_{8}$ $_{20}$ $_{5}$ $_{117}$ $_{89}$ $_{50}$ $_{69}$ $_{69}$ $_{69}$ $_{12}$ $_{55}$ $_{51}$ $_{59}$ $_{58}$ $_{4}$ $_{2}$ $_{11}$ $_{55}$ $_{49}$ $_{59}$ $_{58}$ $_{4}$ $_{2}$ $_{11}$ $_{55}$ $_{49}$ $_{54}$ $_{3}$ $_{11}$ $_{16}$ $_{5}$ $_{41}$ $_{41}$ $_{71}$ $_{7}$ $_{68}$ $_{114}$ $_{55}$ $_{47}$ $_{71}$ $_{5}$ $_{42}$ $_{19}$ $_{55}$ $_{47}$ $_{71}$ $_{5}$ $_{22}$ $_{19}$ $_{55}$ $_{46}$ $_{76}$ $_{3}$ $_{2}$ $_{16}$ $_{5}$ $_{39}$ $_{74}$ $_{4}$ $_{2}$ $_{20}$ $_{5}$ $_{172}$ $_{78}$ $_{4}$ <

PROSPECT GOLD BASIN DISTRICT

SAMPLE LOG

- VALUE	2449	2448	2447	2446	2445		2444	2443	2442		2441	2440			2437	2436		2435	2434	2433	2432	2431	2430	2399	2 3 9 8	2 397	2396	2 3 9 5	4603	7020			
COPPER STATE ANALYTICAL, TUCSON	2	3.	SW SE Section 30, 28 N, 18 W	N, 18 W	28 N, 18 W	SE NW Section 31,	NW NW Section 31, 28 N. 18 W	Center NW% Section 31 28 N, 18 W	N, 18 W	NE NE Section 32.	SW SW Section 29,	28 N, 18 W	Section	NW SE Section 26,	28 N, 18 W		NE SE Section 1,	NW SE Section 1,	SE SE Section I, 27 N, 19 W		SW Section	Section 19 W	Center of W ¹ 3 Sec 12, 27 N, 19 W	NE NE Section 25, 28 N, 19 W		28 N, 19 W		4	N 01 (N	NW SE Section 30, DR N_ 1A W	LEGAL	гос	
BARIUM" WHICH IS IN % .	Hillside above wash.	Ridge south of Cyclopic.	North side of wash.	Hillside.	Shaft dump.		Prospect pit.	On old road.	-	On ridge southeast	Bunnant on video	Lower Cyclopic wash	erospect bree	Droepert oft	Wash below powerline.	Ridge north of road.	• Pope north of road	class south of south	Hillside near wash.	200'north of #2432.	Bluff adjacent to wash.	-	Ridge crest.	of road.	of Fry Mine.	4 ¥	deeper pit.	edge of deeper pit.	NW corner and at upper	Exposed in old mill	GEOGRAPHIC	LOCATION	
	Quartz breccia.	Hematite-chlorite granite.	Biotite K-spar porphyry.	granite with minor quartz.	Hematized siliceous granite.	geniere as course	Siderite, specularite, quartz altered granite breccia.	Altered andesite float.	chlorite.	Altered alaskite with specularite-clay-	Hematite-chlorite quartz altered	granite.	Quartz enemilariteachlorite altered		aplite.	Poorly cemented sandstone.			Non-hematitic conglomerate.	Silicified granite pebble conglomerate.	Limonitic granite pebble conglomerate.	Hematitic sandstone with chalcedony veinlets.	Hematitic sandstone with chalcedony.	Sheared fanglomerate & fault gouge.	<pre>fanglomerate?</pre>	mp at shaft.	clays are heav		_	Sheared chlorite-siderite altered	LITHOLOGY AND MINERALIZATION	DESCRIPTION	
																															U308 eU eTh	RADIOACTIVE	
	3 335	3 370 1.50	2 980	64 1200	24 1100		15 940	1 335	14 335		10	5 780]		1 2B-700	L.	2	1 100	1 3700	5 1100	2 310	1 720	9 225	3 230	6 3300 - 200	43 3100.	49 2600 .	28 2200 • 440	26 11001		11 1200	W 2B0 2B0 % F 2	PATHF INDER ELEMENTS	
	. 7 19 7	1.50 <5 <5	.23 11 < 5	.20 < 5 < 5	1.60 66 7 3		•41 6 < 5	•80 54 < 5	•44 62 <5		22 00 05	780 1.46 719 6 3	-	,08 ~ ,		+-	= :	ng 14 6	•20 14 <5	.10 6 <5	•12 9 <5	.38 168 33 10	.26 17 <5	200 14 <5	•240. 9 5	•625 570 <u>13</u> 58	112 6	1.13 71 15 11		265 24 <5	Hg Cu Mo F	BASE ME	
CORN A	252 74 <2	12 51 <2	34 75 <2	41 389 <2	295 7 10		55 12 <2	23 84 <2	50 57 < 2		47 71 <2	364 288 19		57 16 <2		-	1 65	45 12 3	32 33 29	22 25 7	47 47 14	1050 800 3	30 26 9	64 94 <2	72 56 3	5870 467 51	1290 465 25	1130 170 44		47 99 3	Pb Zn As 3	METALS SULFO-	PAGE _
NN 106151	< 2 .38 11.	< 2 .05 0.9	<2 .03 0.9	<2 .09 1.2	7 3.09 3.3		< 2 4.35 0.6	<2 .06 2.0	<2.05.0.5		<2 .05 1.0	<2 .15 3.4		<2 _05 1.0			2 .03	<2 .03 4.6	<2 .03 1.0	<2 .05 0.6	<2 .06 0.	< 2 1.02 1.6	< 2 .03 1.0	<2 .03 1.0	<2 .08 0.7	9 7.50 3.5	5 .78 1.4	4 20.85 6.6		<2 .05 1.4	Sb Au Ag	-O- PRECIOUS	6 OF 16

PROSPECT GOLD BASIN DISTRICT

STATE ARIZONA

COUNTY

MOHAVE

	2560	2559	2558	2557	2552	2551		2549		2548	2547	2546		2545	2544	2543	2542	. 2541	2539	2505	2504	2503	2502	2501		SAMPLE
	NW NE Section 25, 28 N. 19 W	-	NW NW Section 31, 28 N, 18 W	SE NW Section 31, 28 N, 18 W		NW NW Section 30, 28 N, 18 W		NE NW Section 25, 28 N, 19 W		76 36 Section 23, 28 N, 19 W	28 N, 19 W	18 W		2	NW NW Section 31, 28 N, 18 W		2	NE NW Section 31, 28 N, 18 W	Center Section 25, 28 N, 20 W		-	=	=	NE NE Section 25, 28 N, 19 W	LEGAL	LOC
	Prospect west of Frv headframe.	Copper prospect dump.	Copper prospect.	Prospect pit in wash.	In wash trending ENE through NW4 of section.	Below lower fault zone at small prospect.		On hill at head of gulch SW of Fry Mine.			prospect on fault zon	Coarse Cyclo		From (old) adit; dump sample.	In old road west of shaft & buried ladder	Prospect dump.	~10° above adit level below top of faultzor	Zone above old prospect.	Shallow shaft.	Prospect No. 2, at dump ~1,000' n.of roa		en dump.	Prospect No. 2 ∼1,000' north of road	Prospect No. 1 north of road.	GEOGRAPHIC	LOCATION
	FeMnOx stained zone with altered and weathered tuff in fanciomerate.	Sheared granite with abundant hematite, limonite and pyrite.	Pervasively silicified granite gneiss with pyrite and copper.	Altered fine-grained andesite or amphi- bolite-siderite & chlorite from lower	Sample of siderite-chlorite altered n. dike in lower plate.	Chip sample; ~6' hematitic and tic gouge with guartz breccia.	fanglomerate; hematite and limonite.	Chip sample; ~6' sheared argillized Precambrian at upper contact with	alteration to hematite with siderite and quartz veinlets.	fine-grained, quartz-rich vrecambrian granite with minor disseminated pyrite	e exposed, minor siderite& argillic alt.	S	chalcocite in rock with hematite- limonite.	Pyritic altered red zone with some cap- ping indicating pyrite, chalcopyrite and	Limonitic and argillized sheared material and fault gouge.	Sheared limonitic and argillized Precambrian and fanglomerate below faul	Chip sample of sheared argillic and e. limonitic Precambrian fragments& clay	Chip sample;~5' limonitic and argillized sheared fanglomerate.	Limonitic & jarositic fault breccia, fault is under quartz gneiss rubble.	 Recrystallized quartz breccia, grey sheen suggests some cerussite in rx. 	Hematitic and limonitic sheared gneiss ~20' below fault.	Chip sample; ~6' below fault, hematitic chips-quartz fragments & hematitic gneiss.		Sheared limonitic clay and gouge in fit.	LITHOLOGY AND MINERALIZATION	DESCRIPTION
																	×s•					\$ 5			U3 ⁰ 8 eV eTh	RADIOACTIVE ELEMENTS
	4	13	<1	 4	<1	33		30	•	30	67	16		19	54	118	123	54	9	53	12	17	5	45	W AcidSol Total	PATHFINDER ELEMENTS
	9800 .27 <	1800 .95	22001.60	1200 .40	890 - 535	3600 •400 1		2900 .175		5200 .160	1700 - 520	2000 1.07 2		1900 - 560 2	3300 •265	1200 .265	.175	1400 .225	2400 1.25	420 1.33 1	1600 .120	1300 .185	840 .215	2500 1.21 5	F Hg	ENTS
	< 5 < 5 17	116 19 80	66 < 5 215	18 <5 27	41 < 5 52	163 10 427		9 7 23		23 5 127	31 6 97	281 18 4840		214 10 150	14 6 32	14 <5 73	<5 <5 37	32 < 5 263	77 8 162	134 213 21, 200) 205	43 <5 29	74 <5 553	24 <5 44	509 34 4100	Cu Mo Pb	BASE METALS
	33	0 ~ 5 ~ 2	8 <2	 7 47 <2	200 < 2	368 33		55 ~2		69 < 2	99 < 2	830 20		111 7	44 <2	506	568 < 2	780 < 2	28 6	11	81 <2	383 2	60 6	970 21	Zn As 3	LS SULFO-
CORN A	Å N				1.1	1.	1	1	1	1	1		1	~			ŝ	ŝ	21	σ	~2			i I	٩S	νġ
AHFRN	~2 14 08	7 9.60	2 1.04	 <2 .03	<2 `. 02	<2 .03		3.08		3 .03	5 .17	5 1.44	-	2 2.40	4 .02	2 .03	•^		10.50	5 29.55	• 06	2 . 35	3 .06	2 8.85	b JAU	- PRECIOUS METALS

PROSPECT _____ GOLD BASIN DISTRICT

SAMPLE LOG

- VALUE	2581	2579	2578	2577		2576		2575		2574		2573		2572		2570	2568	2567		2566	2565	2564		2563	2562	2561		SAMPLE
VALUES IN PPM EXCEPT "TOTAL BARIUM"	=	Center NW4 Sec 14, 28 N, 19 W	9 W	7		-		Center SW4 Sec 14, 28 N, 19 W		28 N, 19 W	NW SW Section 14,	28 N, 19 W	Center SW4 Section 14	NW NW Section 22, 28 N. 19 W		SW NW SECTION 22, 28 N, 19 W	28 N, 19 W	27 N, 19 W	Contras only contribut 1	2	Center Section 12, 27 N, 19 W	SW SE Section 12, 27 N, 19 W [.]		NE NW Section 24, 28 N, 19 W	=	SE NW Section 24, 28 N, 19 W	LEGAL	LOC
BARIUM" WHICH IS IN %	Prospect east of Senator Mine.) O	On ridge northwest of Senator Mine.	Short adit, 200' east of shaft.		Cut 30' above shaft.		Shallow cut.		Mine.	Shallow pit, SW of	Senator Mine.		South of road.		Lower plate ?	qtz by	south of road.	On anoth back of the	In gulch.	Outcrop in gulch.	SE of windmill.		Gulch bottom, north of fanglomerate.	Dump of short adit.	East wall mouth of short adit.	GEOGRAPHIC	LOCATION
	Hematitic & argillized gouge and quartz breccia.		Sheared hematitic amphibolite at base of fanglomerate.	Sheared argillized and limonite faulted fanglomerate.	argillic alteration.	ranglomerate, chlorite-siderite altera- tion, limonite stain and some shearing,	possible tetrahedrite.	Quartz vein material; quartz, coarse pyrite, minor galena, chalcopyrite, and	granite below.	between fanglomerate above and leuco-	quartz and pyrite. Hematitic and sideritic argillized crush	chlorite altered coarse granite with som	Rubble with limonite-stained & siderite-	Red clay matrix & pebbles in sheared fandlomerate. maybe near or in basal flt	fracture; chlorite and clay.	grained granite-earthy hematite on		Angular granite and guartz fragments. Hematific and limonific dirt with some		Weakly altered andesite with clay and hematite, biotite with scattered	Red and orange-red altered conglomerate bed beneath andesite or within andesite.	Bedded conglomerate-granite cobbles in sandy matirx with orange siderite.	quartz veinlets.	Sheared alaskite, fangLomerate exhibits chlorite-siderite alteration and white	Hematitic, sheared granite gneiss and dirt.	Hematitic, clay-altered sheared gr gneis	LITHOLOGY AND MINERALIZATION	DESCRIPTION
-														- 	•												U ₃ 0 ₈ eU eTh	RADIOACTIVE
	15	23 9	3 . 560	29 2100		9 1400 • 2		8 475 1.75		13 1000 -15		20 1300 -25		7 1300 .22		3 3000 • 31	1 890 • 31	<1 270 .14		5 610 .10	<1 540 .12	<1 775 .26		<1 975 .11	9 1900 .12	30 1500 .10	W 2 Ba Ba % F 2 Hg	PATHFINDER ELEMENTS
	570 1.9	900 1.8				21										٨	38	18		17	18	17		00	64	8	ີດ	œ
LUWS	570 1.93 15 <5 20	00 1.85 18 5 25	0 •95 84 5 49	.23 24 6 26		21 39 5 91		5 109 20 1090		37 <5 57		21 5 23		20 < 5 28		:5 <5 38	8 < 5 30	3 < 5 22		< 5 13	<5 18	<5 17		6 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	< 5 39	<5 24	Mo Pb 3	BASE METAL
CONSULTING GEOLOGISTS	1.93 15 <5	1.85 18 5	•95 84 5	•23 24 6		39 5		109 20		^ 5		U		^ ح		5 ^ 5	^ 5	۸ ت		<u>л</u>	UT	S		U	0	S.		ASE METALS SULFO- PRECIOUS

GOLD BASIN DISTRICT

_ STATE ARIZONA

PROSPECT_

MOHAVE

- VALU		2599	2598		2597	2596	2595	2594	2593	2592	2591	2589	2588	2587	2586	2585	2584	2583	2582		SAMPLE	COUNTY	
VALUES IN PPM EXCEPT "TOTAL BARIUM"		•	-		NW SE Section 25, 28 N, 19 W	=	SE SW Section 24, 28 N, 19 W	2	NW NW SECTION 14, 28 N, 19 W	NE SE Section 15, 28 N, 19 W	NW SW Section 15, 28 N, 19 W	-	Center SW4 Sec 24, 28 N, 19 W	SW SW Section 24, 28 N, 19 W	SW SW Section 13, 28 N, 19 W	=	SW SW Section 13, 28 N, 19 W	2	Center NW% Section 14 Prospect east of 28 N, 19 W Senator Mine.	LEGAL	Гос	MOHAVE	
BARIUM" WHICH IS IN %.		Shallow shaft.	Shallow shaft.		Prospect pit.	Prospect pit.		Cut on top of west ridge.	Dozer cut on ridge.	Toe of road cut.	In gulch, west of windmill.	Top of dump from 2588.	3' at adit mouth.	Gulch, northwest of Fry Mine.	1,000' south of #2584	South of # 2584	Exposure in gulch.	East side of Senator.	1 Prospect east of Senator Mine.	GEOGRAPHIC	LOCATION .	STATE	
-		Quartz breccia with abundant hematite-limonite.	Milled granite on dump carries abundant purple fluorite.	chalcedony veinlets.	Shattered hematized amphibolite 7 and amphibolite gneiss with guartz or	Sheared amphibolite gneiss with siderit dark hematite, and manganese stain.	Fanglomerate or amphibolite gneiss, argillized, some red hematite streaks.	Milled quartz breccia, recemented and stained with jarosite.	and hematite seams.	Sheared and bleached leucogranite, siderite-chlorite and sericite alteration.	Diorite rubble below fault, clay seams and hematite stain.	Sorted quartz breccia, fair hematite stain, druzy quartz in Vugs.	Hematitic and sideritic alteration, amphibolite gneiss? quartz bx on dump.	~40° sheared fanglomerate ? and granite, dip south to north.		Fine-grained diorite ? cut by thin siderite and guartz veinlets.	Crushed alaskite with siderite and chlorite alteration of lower plate.	Quartz breccia from sheared quartz vein with dark brown goethite.	Quartz breccia associated with fault gouge, cemented by quartz-CO3 .	LITHOLOGY AND MINERALIZATION	DESCRIPTION	ARIZONA	
																		2		U ₃ 0 ₈ eV eTh	RADIOACTIVE ELEMENTS	Ι	
-		5	o		24	5	5	S	4	15		15	8	4	B	4	w	v	3	W AcidSol Total	PATHFINDER ELEN		
-		 1 300 .43	1.98% .75		1200 1.76	1700 .17	870 .14	350 .16	290 .28	745 1.80	600 .25	255 .14	2900 .22	3500 - 35	930 .19	670 .10	585 .12	245 .27	205 1.90	, F Hg	ELEMENTS		•
	 	 14	115		20	^ 5	26	54	36	10	8	8	249	18	16	23	43	250	18	ی ۳	BASE		
2	 	 26	7 23		ŝ	^5]	Λ σ	л Ст	5	< 5 177	^ <u>5</u>	9 122	7	5 1	s 1	^ 5 2	^ 5 2	^5 1	σ	Mo ^o P	1 1		
		 639 <	2330 5		29 7	17 7	76 4	23 14	5 ^	1	12 3	+	72 80	16 53	15 72	25 61	22 10	14 20	9 20	Pb Zn	METALS		
CO		 J	52 12		78 3	79 2	49 < 2	4	5 5	39 4	33 2	7 2	0 5	3 ~ 2	2 < 2	1 < 2	0 ^ 2	0 7	0 12	λ As	SA SA	PAGE	
CORN 8 DNSULTING	_	 6 ^	11		3 ^ 2	2 ~ 2	2 ~ 2	A ^2	5 ^ 2	A 2	^ N	~ 2	٥. ^ N	~2	^ 2	^ 2	^2	^2	^ 2	as "	SULFO-	1	
CORN 8 AHERN CONSULTING GEOLOGI		N	P				1	1	1		1	1	1	1	I	1	1	1	1			v	
CORN & AHERN DNSULTING GEOLOGISTS		2 1.94	1 .51		• 26	• 03	.03	• 05	• 05	• 05	.12	6.45	• 05	• 02	• 06	• 05	• 06	•41	12.15	3 ^{Au} 3 ^{Ag}	PRECIOUS	OF	

.

•

SAMPLE
LOG

PAGE 10 OF 16

.

3 2 - 3 CO	3024	3023	3022 B	3022 A	3022	3021 B	3021 A	3021	3019	3018	3017	3016	3015	3014	3013	3012	3010	3009	3008	3007	3006	3005	3004	3003	3002		SAMPLE
ALUES I OPPER S S. BORA	SM	-	8	>	SE	B SW	>	SE	SE	:	2	SW	=	-	:	:	SE	=	SE	NW	SW	2	=	=	SM		
VALUES IN PPM EXCEPT "TOTAL BARIUM" COPPER STATE ANALYTICAL, TUCSON U.S. BORAX RESEARCH CENTER, ANAHEIM.	SW Sec 30				SW Sec 30	SE Sec 30		SE Sec 30	NW Sec 30			SW Sec 29					SE Sec 30		NE Sec 30	SW Sec 29	NW Sec 29				NE Sec 30	LEGAL	ГО
AL BARIUM" WHICH IS IN % . ICSON ANAHEIM.	NE Cor GB 44.	NE Cor GB 43.	NE Cor GB 43.	east of GB 42.	GB 42.	NE Cor GB 41.	NE Cor GB 40.	NE Cor GB 39.	Flat between roads.	Gulch bottom, east of road.	-	Shaft dump.	road.		South of Cyclopic road.	400 ft. north of Cyclopic road.	North of Cyclopic road.		South of gulch.	=	Major gulch.	2	=	Gulch bottom.	Exposure in cut 100 ft. from road.	GEOGRAPHIC	LOCATION
•Township 28 North, Range	Middle Plate; shattered fine-grained granite.	-		-	2	Surface debris near crushed zone.	-	Lower Plate; layered gneiss and lamprophyre.	Lower Plate; shattered, coarse leucogranite.	Breccia in lower part of crush.	-	Lower Plate; sheared gneiss and lamprophyre.	sheared layered gneiss.	-	Lower Plate; sheared gneissic granite.	Lower Plate; sheared coarse-grained leucogranite.	Lower Plate; layered gneiss.	Lower Plate; sheared coarse leucogranite.		Lower Plate; siderite-hematite altered lamprophyre.	Lower Plate; medium-grained biotite granite.	•	Lower Plate; sheared lamprophyre and granite.	Lower Plate; sheared lamprophyre.	Lower Plate; sheared coarse granite.	LITHOLOGY AND MINERALIZATION	DESCRIPTION
18 West								 									-									υ ₃ 08	RADIO
st												+	~													eUe	RADIOACTIVE ELEMENTS
					 								<u> </u>													eTh	S H
	1	10	13	1	3	8	7	1	13	ω	2	2	9	12	27	25	44	131	P	4	00	15	ω	77	26	W 2 Ba 2 Ba % 2	PATHFINDER ELEMENTS
	• 08	• 06	• 59	•09	• 06	• 09	•09	•18	•42	• 06	18	•12	-14	• 90	•12	•11	•12	•11	•			•	•.		•	F Hg	NTS
)8 11)6 11	i9 17)9 5)6 27)9 85	9	8	12 36)6 7	.8 37	.2 294	4 10	0 12	.2 7	1 6	2 < 5	1 ^ 5	•24 18	<u>,11 SI</u>	. 11 13	01 71.	•17 51	•23 6	•23 32	lg ³ Cu	-
	5	6	7 < 5	٥ ٨ 5	7 ~ 5	٥ ٨ 5	01 1 1 1 1 1	8	٥, ٨ 5	7 < 5	7 < 5	** ^ 5	6	A 5	7 < 5	٥. ٨ 5	٥. ۲	٥. ٨	۸ 5	^ 5	۸ 5	۸ 5	۸ ت	A S	۸ ت	Mo	BASE
CON	28	40	107	15	20	28	171	21	40	46	25	15	33	189	72	9	17	16	32	9	15	26	19	19	37	۳b	METALS
CORN A CONSULTING TUCSON,	60	61	355	63	60	60	1 6	73	75	151	116	66	37	96	79	54	72	88	194	17	70	51	85	113	57	" " "	۲s
	۸ 2	^ 2	۸ ۲	۸ N	^ 2	N N	^ N	^ 2	۸ N	۸ 2	۸ ې	^ 2	۸ N	N	^ 2	A 2	۸ 2	^ 2	N	۸ 2	Å N	ω	N	2	2	³ As	SULFO-
AHERN GEOLOGISTS ARIZONA	AN A	^ N •	^ >	Λ Ν	^ N N	N	N N	^ 2	A N	^ N ^	A N N	A 2 4	^ > •^	^ 2	A N	A 2	~	< 2 .(^ <u>></u> ^	^ >	^ <u>></u>	~ ~ ~	^ 2 ^	N N	^ <u>></u>	, 9S	
ISTS	< <u>-</u> 02 1	ຊ	.11 2	<.02 1	02 1	.03 1	.06 1	- 06 - 1	•11 1	< <u>02</u> 1	<.02 1	<.02 1	8	•05 1	•04 1	.06 1	<.02·1	•03 1	8	.03	•03 1.	•03	<.02 1.	<.02 1	•02	Au 3Ag	METALS
	1.3	1.3	2.3	1.3	1.4	1.4	1.4	1.7	1.7	1.3	1.9	1.3	••	1.1	1.0	1.1	1.9	1.1	1.4	6	1.0	•9	1.8	1.3	•9	ف	۵C

•

-

_ STATE _ ARIZONA

PROSPECT GOLD BASIN COUNTY MOHAVE

- VALUE	3048 A	3048	3047	3046	3045	3044	3043	3042		3039	3038	3037	3036	3035 A	3035		3033	3032	3031	3030 A	3029	3028	3027	3026	3025		SAMPLE
VALUES IN PPM EXCEPT "TOTAL BARIUM"	-	NE NW 25, 28N., 19W.	=	NW NE 25, 28N., 19W.	SW NW 25, 28N., 19W.	=	SE NW 25, 28N., 19W.	=	SW NE 25, 28N•, 19W•	=	=	SE NE 25, 28N., 19W.	=		SW NW 30, 28N., 18W.	28N	SE SW 25, 28N., 19W.	-	SW SE 25, 28N., 19W.	SE SE 30, 28N., 18W.	=	-	SE SE 25, 28N., 19W.	-	SW SW 30, 28 N., 18 W	LEGAL	רסכי
BARIUM" WHICH IS IN %		SE Cor GB 59.	NE Cor GB 56.	NE Cor GB 55.	SW Cor GB 58.	SE Cor GB 58.	NW Cor GB 54.	NE Cor GB 54.	Cor GB	NE Cor GB 52.	NE Cor GB 51.	NE Cor GB 50.	NE Cor GB 49.	Road cut.	NE Cor GB 48.	NE Cor GB 47.	SW Cor GB 54.	SE Cor GB 54.	SE Cor GB 53.	NE Cor GB 89.	SE Cor GB 52.	SE Cor GB 51.	SE Cor GB 50.	NE Cor GB 46.	NE Cor GB 45.	GEOGRAPHIC	LOCATION
	Upper part of crushed zone.		Debris near crushed zone.	Middle Plate; coarse porphyry biotite granite.	-	Upper Plate; fanglomerate.	-		Middle Plate; coarse porphyry biotite granite.	=	-	=	Middle Plate; fine-grained granite.	Middle Plate; sheared fine-grained granite.	Middle Plate; fine-grained granite.	Debris near crushed zone,	Upper Plate (?); fanglomerate debris.	Middle Plate; coarse quartz feldspar gneiss.	Middle Plate; coarse porphyritic biotite granite.	Lower Flate; sheared quartz-feldspar gneiss.	=	•	-	Middle Plate; fine-grained granite.	Middle Plate; fine-grained granite.	LITHOLOGY AND MINERALIZATION	DESCRIPTION
											6															U3 ⁰ 8 eU eTh	RADIOACTIVE
-	15 .19	11 .56	5 .22	4 .10	2 .10	5 .13	20 .15	.19		10 .08	10 .10	11 .10	10 .10	13 .13	3	56 .27	18	10 .14	7	5 .12	4 .12	6 .16	10 2.18	6	5 .08	W AcidSol Total 3 W 2 Ba Ba % F 49	PATHFINDER ELEMENTS
соя	6 6 10 39	11 < 5 20 41	26 < 5 18 51	9 <5 31 59	9 < 5 25 41	12 <5 29 51	7 5 11 38	6 5 27 22	12 ~5 21 57	12 < 5 24 56	12 <5 19 53	13 < 5 24 60	11 6 21 58	13 < 5 103 51	10 <5 25 47	121 7 1990 524	13 5 21 45	^ 5	23 < 5 28 47	28 < 5 20 74	10 < 5 36 48	13 <5 43 58	25 6 762 60	12 5 18 46	11 < 5 26 50	3 ^{Cu} 3 ^{Mo} 3 ^{Pb} 3 ^{Zn}	BASE METALS
CORN & AHERN	^ 2 2	3 < 2	2 < 2	<2 <2	∧ 2 ∧ 2	× 2 × 2	< 2 < 2 < 2	< 2 < 2	A 2 A 2	×2 ×2	A 2 A 2	×2 ×2	< 2 < 2	4 ~ 2	×2 ×2	18 2	2 <2	<2 <2	^ 2 ^ 2	2 < 2	A 2 A 2	< 2 < 2	~ ~ ~	2 < 2	< 2 < 2	,As ,Sb	SULFO- SALTS
: S		•12	• 05	• 03	• 02	·.02	~. 02	• 02	1.	• 02	· 02	•03	• .02	• 28	• 02	• 54	^.02	•03	.02	^. 02	^ . 02	^. 22	^. 02	^• 02	~. 02	Åυ	PRECIOUS METALS

. . ____

......

SAMPLE LOG

GOLD BASIN

MOHAVE STATE _ ARIZONA

PROSPECT

-

SAMPLE	
506	

PROSPECT MOHAVE GOLD BASIN _ STATE __ ARIZONA

PAGE 12 OF 16

	ISTS	AHERN GEOLOGISTS ARIZONA	CONSULTING TUCSON,	NSUL TUCS	,00								AARIUM" WHICH IS IN % ON AHEIM.	VALUES IN PPM EXCEPT "TOTAL BARIUM" Copper State Analytical, Tucson U.S. Borax Research Center, Anaheim.	I VALU
	2				5	1			13			•	Cor GB		3076
	2	N	+	+	5	1	+		w			Plate;	Cor GB	NE 31, 28N., 18W.	3075
	8	N	1	+	+	18	+		2			coarse biotite	Cor GB		3074
	2	2	+	+		_			9			Plate;	Cor GB	NE 31, 28N., 18W.	3073
	_	+			+	33			7				Cor GB	Cor 31, 28N., 18W.	3072
	8	N			σ ·	-	+		1	<u> </u>			Cor GB		3071
	8	N	٨	+	S S				3				Cor GB		690£
	8	N	٨	+	5	L	+					sheared	Cor GB	NE 25, 28N., 19W.	3068
	8	N	٨		J	ļ	1		4			-	Cor GB		3067
$ \begin{array}{ $	02 1.	1				12			2			-	Cor GB	NE 25, 28N., 19W.	3066
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	2	1		J		8		y y			-	Cor GB		3065
	8	N	+	+	J		60		2			Plate; sheared	Cor GB	NW 25, 28N., 19W.	3064
	8	N	٨	+	σ				2			-	Cor GB		3063
	8	N	^	+	S	ļ	+		2			-	Cor GB		3062
LOCATIONDESCRIPTIONRADIOACTIVE RADIONPATHFINDER RADIOACTIVEPATHFINDER RADIOACTIVEPATHFINDER RADIOACTIVEBASE METALSSULFO- SULFO- SULFO- SULFO-SULFO- SULFO- SULFO-SULFO- SULFO- SULFO-SULFO- SULFO- SULFO-SULFO- SULFO- SULFO-SULFO- SULFO- SULFO-SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- SULFO- 	8	2				1	•09		9			-	Cor GB		3061
LOCATIONDESCRIPTIONRADIOACTIVE RADIOACTIVEPATHFINDER RADIOACTIVEPATHFINDER RADIOACTIVEBASE METALSALFO- SALFO- SALFO-LEGALGEOGRAPHICLITHOLOGY AND MINERALIZATION $3'0''_8$ eVeTh y''_8	8	2	٨		σ	+	•07		1			-	Cor GB		3059
LOCATIONDESCRIPTIONPADIDACTIVE PATHFINDERPATHFINDER ELEMENTSBATHFINDER MADAGENTALSBASE METALSSULFO- SALFO- SALFO-LEGALGEOGRAPHICLITHOLOGY AND MINERALIZATION $3^{\circ}0_{1}^{\circ}$ $1^{\circ}0_{1}^{\circ}$ 1° $1^{\circ}0_{1}^{\circ}$ $1^{\circ}0_{1}^{$	2				σ ·	٨	•09		5			Plate;	Cor GB	NW 25, 28N., 19W.	3058
LOCATIONDESCRIPTIONRADIOACTIVE ELEMENTSPATHFINDER ELEMENTSBASE METALSSULFO- SALSLEGALGEOGRAPHICLITHOLOGY AND MINERALIZATION J_3O_8 eVeTh,WAcidsol Total 		2	٨	+	S	A	•07		35			-	=	=	3057
LOCATIONDESCRIPTIONRADIOACTIVE ELEMENTSPATHFINDERELEMENTSBASE METALSSULFO- SALTSLEGALGEOGRAPHICLITHOLOGY AND MINERALIZATION U_3O_8 vI vI_3O_8 vI vI_3O_8 vI vI_3O_8 vI vI_3O_8 <t< td=""><td>8</td><td>N</td><td>٨</td><td>+</td><td><u>л</u></td><td>+</td><td>• 05</td><td></td><td>Q</td><td></td><td></td><td>Middle Plate; coarse quartz-feldspar gneiss.</td><td>8</td><td>, 28N., 19W.</td><td>3056</td></t<>	8	N	٨	+	<u>л</u>	+	• 05		Q			Middle Plate; coarse quartz-feldspar gneiss.	8	, 28N., 19W.	3056
LOCATIONDESCRIPTIONRADIOACTIVE ELEMENTSPATHFINDER ELEMENTSPATHFINDER ELEMENTSBASE 	8	N	٨		+	13	.07		ω				8		3055
LOCATIONDESCRIPTIONRADIOACTIVE ELEMENTSPATHFINDER ELEMENTSELEMENTSBASE METALSSULFO- SALTSLEGALGEOGRAPHICLITHOLOGY AND MINERALIZATION J_30 eU eTh J_3W $Acdsol$ Totol $Acdsol$ Totol $B0$ F Hg GU Mo Pb Zn S_{LTS} NE NW 25, 28N., 19W.NE Cor GB 57.Middle Plate; sheared fine-grained granite. J_30 II G J_30 II G J_3 J_5 J_2 <	ຂ	2	٨		5	٨	•09		3			granite.	Prospect pit.	SW 30, 28N., 18W.	3054
LOCATION DESCRIPTION RADIOACTIVE ELEMENTS PATHFINDER ELEMENTS BASE METALS SULFO- SALTS LEGAL GEOGRAPHIC LITHOLOGY AND MINERALIZATION U308 eU eTh JW AcidSol Toroi F Hg Cu Mo Pb ZALTS NE NW 25, 28N., 19W. NE Cor GB 57. Middle Plate; sheared fine-grained granite. J <t< td=""><td>2</td><td>N</td><td>٨</td><td></td><td>σ</td><td>٨</td><td>•07</td><td></td><td>28</td><td></td><td></td><td>2</td><td></td><td>SE 25, 28N.,</td><td>3053</td></t<>	2	N	٨		σ	٨	•07		28			2		SE 25, 28N.,	3053
LOCATION DESCRIPTION RADIOACTIVE ELEMENTS PATHFINDER ELEMENTS ELEMENTS BASE METALS SULFO- LEGAL GEOGRAPHIC LITHOLOGY AND MINERALIZATION U308 eU eTh M AcidSol Torol F Hg GU Mo JB JA JA JS NE NW 25, 28N., 19W. NE Cor GB 57. Middle Platej sheared fine-grained granite. Image: Solution of the solu	2	N	٨	+	+	œ	• 36		35			ĥ		SE 25, 28N.,	3052
LOCATION DESCRIPTION RADIOACTIVE PATHFINDER ELEMENTS BASE METALS SULFO- SALTS LEGAL GEOGRAPHIC LITHOLOGY AND MINERALIZATION U308 eU eTh JW Acidsol Totol Toto		A 2	٨		1		• 30		20			Middle Plate; sheared fine-grained granite.		SE 25, 28N.,	3051
LOCATION DESCRIPTION RADIOACTIVE PATHFINDER ELEMENTS BASE METALS SULFO- ELEMENTS PATHFINDER ELEMENTS BASE METALS SALTS	+			<u> </u>	5	٨	•29		5			Middle Plate; debris near crushed zone•	Cor GB	NW 25, 28N., 19W.	3049
LOCATION DESCRIPTION RADIOACTIVE PATHFINDER ELEMENTS BASE METALS SULFO-			(10		(M	Ca4	(Total Ba % 2 F	٤	eth	0308 eu	AND MINERALIZATION	GEOGRAPHIC	LEGAL	
	METALS		SUL	TALS		BAS			PATHF INDER	INTS	ELE ME	DESCRIPTION	FION	LOCAT	SAMPLE

:

3104		3103	3102	31 01	660£	3098	3097	3096	3095	3094	3093	3092	3091	680£	3088	3087		3085	3084	3083 1	3082	3081	3079 1	3078	3077 1	NOMBER	SAMPLE
14 " INE COR	and a second second second second	NE SE 24, 28N., 19W.	NW Cor 24, 28N., 19W.	₹,	SE NE 36, 28N., 19W.	2	SW NE 36, 28N., 19W.	SE NW 36, 28N., 19W.	=	=	SW NW 36, 28N., 19W.	SE NW 36, 28N., 19W.	NW NW 36, 28N., 19W.	NE NW 36, 28N., 19W.	2	2	NW NE 36, 28N., 19W.		2	NE NE 36, 28N., 19W.	=	=	NW NW 31, 28N., 18W.	-	NE NW 31, 28N., 18W.	LEGAL	LOC
NE Cor GB 70,		• NE Cor GB 69.	NW Cor GB 88.	SW Cor GB 1	SW Cor GB 2.	SW Cor GB 3.	SW Cor GB 4.	SW Cor GB 5.	SW Cor GB 9.	Cor GB	SW Cor GB 7.	SW Cor GB 6.	NE Cor GB 8.	NE Cor GB 7	NE Cor GB 6.	NE Cor GB 5.	NE Cor GB 4.	NE Cor GB 3.	NE Cor GB 2.	NE Cor GB 1.	SW Cor GB 46.	SE Cor GB 46.	SE Cor GB 45.	SE Cor GB 44.	SE Cor GB 43.	GEOGRAPHIC	LOCATION
deptis in vicinity of clusi zones		Lower Plate; alaskitic altered leucogranite.	Middle Plate; chlorite-CO3 rock.				-	Upper Plate; fanglomerate.			Middle Plate (7); crushed granite-	Lomerate.	Middle Plate; crushed granite.		-			2	=	Upper Plate; fanglomerate.	Upper Plate; fanglomerate.	Middle Plate; fine-grained granite.	Middle Plate rocks.	fanglomerate & quartz-feldspar gneiss.	Upper Plate; fanglomerate.	LITHOLOGY AND MINERALIZATION	DESCRIPTION
-			-			•			•	-		ç				-		-	1						· · · · · · · · · · · · · · · · · · ·	U ₃ 0 ₈ eU eTh	RADIOACTIVE
	2	3	2								.09	, , , , , , , , , , , , , , , , , , ,	4	1	9.	4 .16	8	3	2	.11	2 - 11	8	4	-18	3	W Ba Ba % F Hg	PATHFINDER ELEMENTS
CORN 8	17 7 <5 12 41	12 <5 22 52	10 22 C> 8 T			1 15 5 74 47		30 < 5	1 10 5 33 37	7 8	8 7 32	1 14 <5 17 44		15 < 5 33	17 < 28	17 <5 28	15 <5 31	17 < 5 30	24 < 5 29	13 5 38	10 5 30 41	12 5 27 41	12 5 30	15 5 35	10 7 24	Cu Mo Pb Zn J	
V 8 AHERN NG GEOLOGISTS	< 2 < 2 .03	4 <2 <.02			\$ \$	2 < 2 < 02	+	^ <u>></u>	3 < 2 < 02	12 < 2 < 02	10 < 2 <.02	N 1	л Со г Л	CO 2 C 2 4			N	۸ 2	^ > N	۸ N	۸ N			^ 2	۸ N	As Sb Au Ag	MEI

:

GOLD BASIN

MOHAVE

PROSPECT

SAMPLE LOG

s	
AMP	
Ē	
LOG	
G	

GOLD BASIN MOHAVE ARIZONA

PAGE 14 OF 16

- VALU	3143	3142	3141	3140	31 38	31.37	31 36	31 35	31 34	31 3 3	31 32	31 31	3129	3128	3127 A	3127	3126 A	3126	3122	3121	3116	3115	3114	3112	3111		SAMPLE
VALUES IN PPM EXCEPT "TOTAL BARIUM" Copper State Analytical, Tucson U.S. Borax Research Center, Anaheim.	=		SW NW 31, 28N., 18W.	NE NE 36, 28N., 19W.	3	3	SE NE 36, 28N., 19W.	NE NW 36, 28N., 19W.	SE SW 25, 28N., 19W.	NE NE 31, 28N., 18W.	NW NE 25, 28N., 19W.	NW NW 25, 28N., 19W.	-	=	3	SE NW 25, 28N., 19W.	=	NW NW 24, 28N., 19W.	=	-	NE NW 24, 28N., 19W.	-	=	3	SW NW 24, 28N., 19W.	LEGAL	ГО
L BARIUM" WHICH IS IN %. CSON ANAHEIM.	SE Cor GB 33.	SE Cor GB 32.	SW Cor GB 32.	SE Cor GB 1.	2	=	3	Road-cut power line road.	100 ft. north of NW Cor GB 6.		Fry Mine.	South end GB 60 & 61.	=	South of Fry.	=	Saddle on ridge 700° southwest of Fry	100 ft. south of NM Cor GB 86.	NW Cor GB 86.	NE Cor GB 86.	NE Cor GB 85.	NW Cor GB 81.	NW Cor GB 80.	NW Cor GB 79.	NW Cor GB 78.	SW Cor GB 78.	GEOGRAPHIC	LOCATION
	-	Upper Plate; fanglomerate.	Middle Flate - Upper Flate (7); Crush and fanglomerate debris.	Upper Plate; fanglomerate.	Middle Flate; sheared fine-grained granite.		Middle Plate; hematite-siderite stained shear zone.	Middle Plate; hematite stained crushed zone at lower ødge of fanglomerate.	Middle Plate; two feet of crushed mate base of fanglomerate.	sheared coarse quartz-feldspar gneiss.	shear zone and gouge at raise.	-	siderite but no limonite or hematite st	Middle Plate; sheared coarse quartz- feldspar below quartz breccia.	Middle Plate; sheared coarse quartz- feldspar gneiss with siderite & quartz			Middle Plate; sheared lamprophyre and fanglomerate.	2	Lower Plate; sheared leucogranite.	Middle Plate; layered gneiss.		=	=	Upper Plate; fanglomerate.	LITHOLOGY AND MINERALIZATION	DESCRIPTION
											-				seams.		-								· · · · · · · · · · · · · · · · · · ·	U308 eV eTh	RADIOACTIVE
	3	4	5	4	3	10	16	14	16	15	67	4	4	26	44	y	ω	2	2	5	· · · · · · · · · · · · · · · · · · ·	7	2	4	4	W AcidSol Total	PATHFINDER ELEMENTS
	•09	•11	•=	•13	•16	•45	• 32	•23	•25	•23	•80	•18	•13	•25	• 38	•09	•23	•16	-48	.14	•12	•14	•16	•21	.17	۶ Hg	ITS
CORN 8 CONSULTING TUCSON,	14 5 38 50	24 <5 28 59	20 < 5 32 49	22 <5 26 65	9 7 22 37	57 6 114 55	20 5 73 47	10 6 29 39	14 7 30 54	7 <5 120 220	317 17 9460 2000	6 < 5 13 48	< 5 < 5 7 16	5 5 12 43	14 6 102 36	10 < 5 26 45	7 < 5 11 51	17 <5 15 70	13 < 5 15 27	20 < 5 42 40	15 < 5 43 71	11 <5 14 44	27 <5 14 73	23 < 5 19 61	16 < 5 23 54	,Cu Mo Pb Zn	BASE METALS
	з	2	ω	ω	۸ ۲	6	۸ N	3	6	0 < 2	0 13	6	^ 2	^ 2	^ <u>></u>	≥ ∧	^ 2	^ >	^ N	^2	2	A N	2	2	3	³ As	SULFO-
AHERN GEOLOGISTS ARIZONA	~2 502	~ 2 .02	< 2 .44	<2 .02	~ 2 ~ 02	~ 2 ~ 02	< 2 <.02	2 .07	2 .21	2 <.02	8 1.34	~ 2 ~ 02	~ 2 ~ 02	< 2 .05	~ 2 .03	< 2 < 02	< 2 <.02	~ 2 ~ 02	< 2 .03	~ 2 • 03	<2 .04	~ 2 <.02	< 2 < 02	~2 ~02	~ 2 5 02	sb ,Au	
<i>TS</i>	1.1	1.0	1.6	1.7	3.1	3.9	4.9	8.8	6.8	17.6	41.3	2.7	2.0	1.3	1.3	1.3	•9	•4	1.0	ů,	•6	•6	1.3	1.0	1.0	зАд	PRECIOUS

.

ì _ STATE 1

COUNTY ____ PROSPECT

.

•

MOHAVE	STATE	ARTZQVA	I							70	AGE 1	יט
LOC/	ATION	DESCRIPTION	RADIOACTI	S KE	PATHF IND		UTS	BAS			SULFO-	METALS
LEGAL	GEOGRAPHIC	LITHOLOGY AND MINERALIZATION	U308 eU	T F	3 ¥	N	۶ Hg	۲ n ³	ю ³ Рb	³ Zn 3	As ₃ Sb	
28N•,	SE Cor GB 34.	Plate;			4		• 09	12	5 29	43	ω ^	2 <. 02
		2			<1		A 05	> 61	5 27	-	2	2 <.02
	SE Cor GB 36.	-			1		•09	21	5 37	65	N A	2 <.02
	SE Cor GB 37.	Fanglomerate debris.			6		•09	14 <	5 37	78	2	2 <.02
	SE Cor GB 38.	Debris in vicinity of crush.					•20	23 <	5 55	72	ω ۸	2 <.02
ືອີ	NW Cor GB 8.	Upper Plate; andesite.			-		• 09	23 <	თ —	41	ω ^	2 < 02
	NW Cor GB 9.	-			~1		• 05	94 <	5 26	86	, r	2 ~ 02
SE 24, 28N., 19W.	NE Cor GB 68.	Lower Plate; leucogranite.			<1		•09	149 <	5 28	93	2 ^	2 ~ 02
	SW Cor GB 69.	Fanglomerate debris near crush.			~1		• 05	28	5 33	69	ω ۸	N •^
	SW Cor GB 70.	Upper Plate; fanglomerate.			<1		• 05	23 <	u	57	2	2 ~ 02
SE 24, 28N., 19W.	SW Cor GB 71.	Upper Plate; fanglomerate.			<u>^1</u>		• 05	13 <	5 25	53	∾ ∧	2 502
	SW Cor GB 72.	Middle Plate; poorly exposed sheared layered gneiss.			~ 1		.07	29	+	38	4	2 5.02
SW 24, 28N., 19W.	SW Cor GB 73.	Upper Plate; fanglomerate.			^1		• 05	25 <	5 29	57	ω ^	2 ~ 02
	SW Cor GB 74.	2			1		•09	21 <	5 31	88	ω ^	2 < 02
SW 24, 28N., 19W.	SW Cor GB 75.	=			^ 1		• 05	20 <	5	58	∾ ^	2 < 02
	SW Cor GB 76.	=			^1		•07	16 <	5 37	62	4	2 502
											+	
							+		+			+
		· · ·										
	MOHAVE LEGAL 31, 28N., 11 31, 28N., 11 33, 28N., 11 36, 28N., 11 24, 28N., 11 24, 28N., 11 24, 28N., 11 24, 28N., 11 24, 28N., 11	Incation Legal Location 31, 28N*, 18W* SE cor GB 3 32, 28N*, 19W* NW cor GB 3 34, 28N*, 19W* SW cor GB 3 24, 28N*, 19W* SW cor GB 7 35 SW cor GB 7 36 SW cor GB 7 37 SW cor GB 7 38 SW cor GB 7 39 SW cor GB 7 30 SW cor GB 7	NDIAVE STATE ARIZONA LOCATION DESCRIPTION LEGAL GEOGRAPHIC LITHOLOGY AND MINERALIZATION 31, 28N*, 18M, SE Cor GB 34. Upper Plate; fanglomerate. 31, 28N*, 18M, SE Cor GB 35. " 31, 28N*, 18M, SE Cor GB 36. " 32, 28N*, 19M, SE Cor GB 36. Upper Plate; fanglomerate debris. 32, 28N*, 19M, SE Cor GB 66. Lower Plate; 1 eucogranite. 32, 28N*, 19M, NE Cor GB 61. Lower Plate; fanglomerate. 32, 28N*, 19M, NE Cor GB 71. Upper Plate; fanglomerate. 34, 28N*, 19M, SM Cor GB 72. Praglomerate debris near crush. 35, 28N*, 19M, SM Cor GB 73. Upper Plate; fanglomerate. 34, 28N*, 19M, SM Cor GB 75. " 34, 28N*, 19M, SM Cor GB 76. " 34, 28N*, 19M, SM Cor GB 75. " 34, 28N*, 19M, SM Cor GB 76. " 34, 28N*, 19M, SM Cor GB 76. " 34, 28N*, 19M, SM Cor GB 76. " 34, 28N*, 19M, SM Cor	NHAVE STATE NEICON REICON NJON REICON NJON REICON MIRERALIZATION NJON NUERRALIZATION NJON NJON NUERRALIZATION Value NJON NUERRALIZATION NJON NUECO GB 36. NUECO GB 36. NUECO GB 36. NIGON NIGON NIGON NIGO	NORMATE STATE NELCONION DESCRIPTION RELOWNENTION LEGAL GEOGRAPHIC LITHOLOGY AND MINERALIZATION Value PADOACTIVE 31, 28N, 190, SC or GB 34, " " Panglamerate, fanglamerate, and start, and	NONNE STATE NELCONIN RECOMPLIC DESCRIPTION RELOMENTS LEGAL GEOGRAPHIC LITHOLOGY AND MINERALIZATION y_0^0 eV en 31, 28N, 19M, SE Cor GB 35, n n I I I 31, 28N, 19M, SE Cor GB 35, n n I<	NTATE NEXCUL LOCATION DESCRIPTION REDUNCTIVE DESCRIPTION PATHF INDER IELEMENTS PATHF INDER 11 CGC GG 34. Upper Flates fanglomerete. 1 1 1 1 31, 284, 184, SC Cor GB 35. " " 1	STATE ANX201/ SCOC 00 Prime Plates fangionentes Prime Plates fangionentes Prime Plates fangionentes Plates fangionentes Plates fangionentes Plates fangionentes Plates fangionentes Plates fangionentes Plates fangionentes <td>NONLY STATE NEXCON OSSCRIPTION RADIOATIVE RADIOATIVE SC COLUMAL NEXTIFICATION No. No. No. No. No. No. No. No. No. No.</td> <td></td> <td></td> <td></td>	NONLY STATE NEXCON OSSCRIPTION RADIOATIVE RADIOATIVE SC COLUMAL NEXTIFICATION No. No. No. No. No. No. No. No. No. No.			

SAN
Ð
Ē
m
_
5
Ğ

GOLD BASIN STATE ARIZONA

PROSPECT

GEOGRAPHIC LITHOLOGY AND MINERALIZATION Northwest of Altered fine-grained granite Cyclopic Mine. (Middle Plate) near fluorite prospe Prospect pit, north- Middle Plate. Brecclated quartz with west of Cyclopic Mine fluorite on dump. m west of Cyclopic Mine fluorite on dump. guartz with hemailtic limonite-no " quartz with hemailtic limonite. Middle Plate. Altered coarse- Fry Mine. grained leucocratic granite.	Altered fine-grained granite a. (Middle Plate) near fluorite prospect. , north- Middle Plate. Brecciated quartz with opic Mine fluorite on dump. 4-6" vein of fluorite-cerusite-no quartz with hematitic limonite. Middle Plate. of Middle Plate. Altered coarse- grained leucocratic granite.	HIC LITHOLOGY AND MINERALIZATION U308 eU eTh W e. Altered fine-grained granite 37 e. (Middle Plate) near fluorite prospect. 37 , north- Middle Plate. Brecciated quartz with 32 opic Mine fluorite on dump. 32 opic Mine fluorite on dump. 32 opic Mine fluorite on fluorite-cerusite-no 32 quartz with hematitic limonite. 116 of Middle Plate. Altered coarse- 41 widdle plate. Altered mediae 41	HIC LITHOLUGY AND WINERALIZATION '3'8 ev ev ''''''''''''''''''''''''''''''''''''	HIC LITHOLOGY AND MINERALIZATION U308 eU eTh W W B0 B0% F H9 Cu M e. Altered fine-grained granite northe 37 37 .09 42 e. (Middle Plate) near fluorite prospect. 37 .09 42 north- Middle Plate. Brecciated quartz with 32 5.86 36 30 opic Mine fluorite on dump. 4-6" vein of fluorite-cerusite-no 32 5.86 37 48 5 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37 48 5 46 41 48
		U308 eU eTh 37 37 116 116 48		U308 eU eTh W Bo Ba% F Hg Cu 37 37 37 .09 42 .09 42 32 5.86 36 .09 42 .09 42 116 238 238 .84 5 .84 5 48 48 .31 .5 .27 .5

	3847-C															 -	3847-F "	3847-E "	" 3847-D	3847-C "	3847-B "			3847 NE/NW/31, T 28N, R 18W	3227-B SW/NW/30,	LEGAL	SAMPLE	COUNTY <u>Mohave</u>	PROSPECT
																140' SW of 3847	120' SW of 3847	100' SW of 3847	80' SW of 3847	60' SW of 3847	40' SW of 3847	20' SW of 3847		On rd. 50' SW of RDH CB-13	PR above Fry stock	GEOGRAPHIC	LOCATION	STATE _	Cold Basin
GEOGR GEOGR rd. 50 rd.										-		-				Cse. grained granite w/minor	=	Cse. gr. granite w/limonite stained fractures		Hem. lim. stained cse. gr. granite	Coarse grained granite, limonite and hematite staining	Coarse grained granite, fractured and limonite stained	limonite staining	test Fault, coarse grained granite w/no	2799 from crush zone used for screen	LITHOLOGY AND MINERALIZATION	DESCRIPTION	Arizona	
Arizona DESCRIPTIO LITHOLOGY AND MINI Panned heavy concentra 2799 from crush zone us test Fault, coarse grained granite Fault, coarse grained granite Coarse grained granite, limonite stained Coarse grained granite Hem. Ilm. stained cse. g Hem. Ilm. stained granite Cse. gr. granite w/limor fractures " " " "		ļ																								0308 (RADIO	I	1
Arizona DESCRIPTION LITHOLOGY AND MINERALIZATION Panned heavy concentrate sample no. 2799 from crush zone used for screen test Fault, coarse grained granite fractured and limonite stained Coarse grained granite, fractured and hematite staining Hem. Tim. stained cse. gr. granite Sample from roadbed across adit limonite stained granite fractures " " " " " " "			 		+-	_										 										9U e1	ACTIV		•
Arizona DESCRIPTION LITHOLOGY AND MINERALIZATION Panned heavy concentrate sample no. 2799 from crush zone used for screen test Fault, coarse grained granite for screen limonite stained Coarse grained granite, fractured and hematite staining Hem. Ilm. stained granite, limonite and hematie stained Sample from roadbed across adit limonite stained granite fractures " " " " " " "		_	 		+	+										 										5			
Arizona DESCRIPTION LITHOLOGY AND MINERALIZATION Panned heavy concentrate sample no. 2799 from crush zone used for screen test Fault, coarse grained granite w/no limonite staining Coarse grained granite, fractured and hematite staining Hem. Tim. stained cse. gr. granite and hematite stained granite, limonite and fractures " " " " " " "			 		+	+																					PATH		
Arizona RADIOACTIVE ELEMENTS LITHOLOGY AND MINERALIZATION V3O8 eU Panned heavy concentrate sample no. 2799 from crush zone used for screen test Fault, coarse grained granite w/no limonite staining V3O8 eU Coarse grained granite, fractured and hematite staining Imonite stained coarse grained granite, fractured and hematite staining Imonite stained fractures Sample from roadbed across adit limonite stained granite w/limonite stained fractures Imonite stained fractures Imonite w/limonite stained fractures " " " Imonite tained	•	\neg				+										 =	9	=	28	33	34	29		17	930	¥	FINDE		
Arizona RADIOACTIVE ELEMENTS PATHF INDB UITHOLOGY AND MINERALIZATION U3 ⁰ 8 eU eTh w Panned heavy concentrate sample no. 2799 from crush zone used for screen 930 eU eTh w Coarse grained granite staining Imonite staining 11 12 12 Coarse grained granite, fractured and Imonite staining Imonite and Hem. Ilm. stained cse. gr. granite 11 12 Sample from roadbed across adit Imonite stained granite w/limonite stained fractures 11 11 11 Se. grained granite w/limonite stained fractures 11 11 11 Se. grained granite w/limonite stained fractures 11 11 11					\uparrow	1																				AcidSol 2 Ba			
Arizona Arizona DESCRIPTION RADIOACTIVE ELEMENTS PATHF INDER LITHOLOGY AND MINERALIZATION U3 ^O 8 eU eTh JW Acids 2799 from crush zone used for screen Imonite staining Imonite staining 17 17 Fault, coarse grained granite w/no Imonite staining Imonite stained 17 17 Coarse grained granite, fractured and Imonite stained granite, imonite and Imonite stained granite 17 33 Sample from roadbed across adit Imonite stained Imonite stained 11 28 "" " " Imonite stained 11 11 Sample from roadbed across adit Imonite stained 11 11 11 "" " " Imonite stained 11 11 " " " Imonite stained Imonite 11																		[_			Pa %	LEME		SA
Arizona Arizona RADIOACTIVE ELEMENTS PATHF INDER ELE LITHOLOGY AND MINERALIZATION U308 eU eTh JW AcidSol pathologic Panned heavy concentrate sample no. 2799 from crush zone used for screen U eTh JW AcidSol pathologic Fault, coarse grained granite w/no I I I 17 pathologic							_											<u> </u>								г ~	NTS		MPL
Arizona Arizona Arizona Arizona Conscription Ration (1)C PATHFINDER ELEMENTS LITHOLOGY AND MINERALIZATION U308 eU eTh W Arizona Invoit 2739 from crush zone used for screen Imple from crush zone used for screen 930 930 1 1 East Fault, coarse grained granite, fractured and limonite stained Coarse grained granite, fractured and hematite stained granite, limonite and hematite stained cores adit 1 1 29 1 1 Imonite stained granite w/inionite stained 21 23 33 23 1 Imonite stained granite w/inionite stained 1 1 28 1 1 Sample from roadbed across adit 1 1 28 1 <																.63	43		55	95	.82	.42		.24					
Arizona Arizona Arizona Arizona DESCRIPTION RADIOACTIVE PATHFINDER ELEMENTS LITHOLOGY AND MINERALIZATION U3 ^O 8 eU eTh M M M Acidsol Total F Hg Panned heavy concentrate sample no. 239 from crush zone used for screen 930 test coarse grained granite w/no 117 12 29 Coarse grained granite, fractured and 117 29 .42 Coarse grained granite, fractured and 33 29 .42 Coarse grained granite, finonite and 33 34 .82 Hem. Ilm. stained cse. gr. granite 11 .82 .82 Fractures 11 .93 .82 .95 Cse. grained granite w/limonite stained 11 .91 .13 .93 .93 .93 "" " " 11 .91 .91 .94 .93 .93 .93 .93 .93 .93 .93						_	-									 56	34	104	41	2	Ξ	37					BAS		<u>-</u> 06
Arizona Arizona Arizona Arizona Concentrate sample no. Z799 from crush zone used for screen 930 933 930 933 <td></td> <td>∞</td> <td>8</td> <td>7</td> <td>15</td> <td>1</td> <td>9</td> <td>7</td> <td></td> <td><u></u>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>																∞	8	7	15	1	9	7		<u></u> -					
Arizona Arizona Arizona A classes DESCRIPTION RADIOACTIVE Panned heavy concentrate sample no. PATHFINDER ELEMENTS BASE Tealt, coarse grained granite w/no Internet is and feast for screen PATHFINDER ELEMENTS BASE Panned heavy concentrate sample no. Coarse grained granite w/no 17 17 17 29	ļ															 <u> </u>	58	186	31	21		35		28	1	8	ETAL		
Arizona Panned heavy concentrate sample no. Coarse grained granite, fractured and Imonite staining Banple from roadbed across adit Imonite stained granite Imonite and Aries and Sample from roadbed across adit Imonite stained Imonite stained Imonite stained Cse. grained granite w/innor Imonite stained Imonite stained <thimonite stained<="" th=""> Imonite stained</thimonite>																 61	32	92	<u>34</u>	37	42	36		4 6		u	·		
Arizona Arizona Arizona RADIOACTIVE DESCRIPTION RADIOACTIVE Panned Reavy concentrate sample no. RATHF INDER ELEMENTS BASE METALS Panned heavy concentrate sample no. gained for screen																7	=	σ —	ω	2	თ 	σ				(4	SULF	AGE	
Arizona Arizona Arizona RADIOACTIVE DESCRIPTION RADIOACTIVE Panned Neavy concentrate sample no. Carise Structured and LITHOLOGY AND MINERALIZATION Ay08 eU eTh Macrosol Societation Panned Neavy concentrate sample no. Carise grained granite, fractured and limonite staining Factured and limonite staining Carise grained granite, fractured and limonite staining All A diagonal d				_				1	1	1	1	1	1	1	1.	=	=	11	ω	2	σ	6		N		4S	ျပာတို	11	
Arizona PAIRINGE RELEMENTS DESCRIPTION RADIOACTIVE RADIOACTIVE PAINFINDER ELEMENTS BASE METALS SULFO- SALTS Panned heavy concentrate sample no. u u u katsol total total u u total u total u total u u total u u total u <thu< th=""> u u</thu<>											ļ			ļ				÷			4	+		<u> </u>	+	100			
Arizona PAINOACTIVE DESCRIPTION RADIOACTIVE RELEMENTS PAINER ELEMENTS BASE METALS SULFO- TOP CONCENTRALIZATION U308 eU eTHFINDER ELEMENTS BASE METALS SULFO- TOP CONCENTRALIZATION U308 eU eTHFINDER ELEMENTS BASE METALS SULFO- TOP CONSE grained granite, sample no. Coarse grained granite, fractured and limonite staining 17 1 29 1 21 3 4 2 2 Coarse grained granite, fractured and limonite stained coarse grained granite, limonite and coarse grained granite, limonite and coarse grained granite w/monite and coarse grained cse. gr. granite 1 1 28 42 37 7 35 46 2 2 Sample for roadbed across adit inonite stained cse. gr. granite w/limonite stained reactures 11 11 11 11 11 11 31 34 35 41 15 14 3 Cse. gr. granite w/limonite stained reactures 11 11 11 11 11 11 11 13 34 35 41 15 14 1 14 14	COPN A ANERN															. 24	.25	+	1.26		2.82	.65		•		"P			

•

SIEVE TEST Gold Basin Drill Cuttings Mohave County, Arizona

Sieve tests were run on selected samples representing the anomalous and mineralized intervals in the two best holes from the recent drilling at Gold Basin. The results, summarized on Table 1 suggest that the gold values contained in the more readily captured coarse fraction (>80 mesh) are equal to or sometimes greater than the gold content of the fine fraction (<80 mesh), which is more readily lost from the sample collection system.

The improved recovery of fines by a reverse circulation drill is illustrated by comparing the percentage of fines to coarse from the Gold Basin drilling to that from other projects where conventional drilling methods were used. The reverse circulation drill at Gold Basin produced samples containing from 10% to 30% <80 mesh material where as samples from a conventional rig on another project contained from 2.6% to 17% <80 mesh material. The suggestion here is that the conventional drilling system lost from 10% to 20% of the fines.

The above comments and the data on Table 1 indicate that while loss of fines was not a problem at Gold Basin, it would not have significantly affected the results if fines had been lost. Mohave County, Arizona **Gold Basin Drill Cuttings** I **Sieve Test** Table 1.

Assay Head PPM Au .50 .06 .21 .55 1.61 2.69 .78 .78 1.03 .13 .13 .13 .13 .76 .58 .58 **Total Gold** Calc. Head PPM Au 0.07 0.05 0.61 0.48 0.54 1.03 8.80 1.59 1.11 1.11 1.73 1.73 1.73 1.58 0.40 0.40 § Total 47.5 2.0 4.1 20.8 11.2 10.2 3.8 6.6 6.6 5.7 5.7 5.7 8.4 8.4 23.8 < 80 PPM Au . 11 . 05 . 14 . 44 1.0 2.31 .54 .47 .17 .17 .38 .38 .02 **Gold Distribution** § Total 52.5 98.0 95.9 88.8 89.8 96.2 93.4 88.7 68.0 68.0 94.3 94.3 80.8 80.8 91.6 91.6 >80 PPM Au .05 <.02 .72 .47 .63 1.05 10.2 1.86 1.86 1.26 .08 2.21 1.34 1.77 1.77 Size Distribution § >80 % <80 29.0 18.6 18.0 18.6 23.2 111.9 116.9 220.1 221.5 118.0 118.0 225.8 221.6 18.2 31.7 71.0 81.4 82.0 81.4 76.8 88.1 83.1 79.9 78.5 82.0 74.2 74.2 78.4 81.8 81.8 110-120 120-130 90-100 00-110 130-135 135-140 140-145 125-130 145-150 60-65 65-70 70-75 Interval 80-90 0-2 **Drill Hole CB-5 GB-7**

APPENDIX A

DESCRIPTIVE LOGS GB-1 through GB-16

.

.

Image: New Press Nock Type: Nock Discupation Altivium Complete builders Altivium Complete builders 12 Ing. Altivium Complete builders -	CORN & AHERN				CA.	ANAHEIM,	U.S. BORAX RESEARCH CORPORATION, ANAHEIM, CA	X RESEARCH	U.S. BORA	(1) ASSAYS by		
Interpret Noci iver Noci iter Noci iter Noci iter Noci iter Allivium Canalite & boulders Allivium Munchallitie Munchallitie </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>. 09</td> <td>GB-1 210-220</td> <td></td> <td> </td> <td></td>						. 09	GB-1 210-220		 			
Inference Nack Type Nack Type Nack Distantion Altrinion Autrinion				1	Γs]	<u>۸</u>	GB-1 200-210					
Procession A 111 vium Rock Victor Pictor A 111 vium Rock Victor Pictor A 111 vium Rock Victor Pictor A 111 vium A 1111 vium A 1111 vium			olor with increasing	=		. 08	GB-1 190-200					
Procession All Nilvian Not NEE A boulders All Nilvian Colspan="2" All Nilvian Colspan="2" All Nilvian <th all="" colspan="2" nilvian<<="" td=""><td></td><td>Very veak chloritic alt</td><td></td><td></td><td></td><td>. 04</td><td>GB-1 180-190</td><td></td><td></td><td></td></th>	<td></td> <td>Very veak chloritic alt</td> <td></td> <td></td> <td></td> <td>. 04</td> <td>GB-1 180-190</td> <td></td> <td></td> <td></td>			Very veak chloritic alt				. 04	GB-1 180-190			
Image:		Argillia alteration	granite			. 03	GB-1 170-180			170 - 220		
Image NOCK TYPE NOCK DESCRIPTION Altarian Altarian Cannite & boulders 2 Pail Allarian Granite & boulders and Gebris	Complete Oxidation	Hematite_stain		Granite (?)		. 03	GB-1 160-170		10	1		
PMW NOCK TYPE NOCK DESCRIPTION AltEnATION AltEnATION MINEFALIZATION 2 Val. Alluvium Greenite & boulders and debris and debris and debris 2 Ifgl. Panglomerate Cemented granite Unaltered and debris 2 Patter Fille Doulders & debris No indicated mineralization 2 Patter Distrite Granite Minor hematite & sider. No indicated mineralization 3 Ifgl. Ifgl. Pattered Ifgl. No indicated mineralization 3 Ifgl. Ifgl. Ifgl. Ifgl. Ifgl. 4 Ifgl.			1	Probable Fault		<.02	GB-1_155-160		5	155 - 160		
PMP NOCK IVPE NOCK DESCRIPTION Alteration Alteration 1 A1 Alluvium Granite & builders Alteration MNREALIZATION 2 A1 Alluvium Granite & builders MNREALIZATION MNREALIZATION 2 Arg.] Panglomerate Cemented granite Unaltered MNREALIZATION 2 Panglomerate Cemented granite Unaltered MINOR MNREALIZATION 2 Pergr. Biotite Granite Differ Ite noted on fracture MINOR MINOR 3 Arg. Granite Granite Ite noted on fracture MINOR MINOR 3 Arg. Fracture MINOR MINOR MINOR MINOR MINOR	68					. 08	GB-1 150-155		5	150 - 155		
PPM INMe A NOCK TYPE NOCK DESCRIPTION Altenation NUMERALIZATION 2 A1 Alluvium Granite & boulders and debris Cenented granite Unaltered Cenented granite 2 Frg1 Panglomerate Cenented granite Unaltered Cenented granite Ceneted granite Cenented granite Ce						. 07	3B-1 140-150					
PPM (NHe) NOCK TYPE NOCK DESCRIPTION ALTERATION ALTERATION MINERALIZATION 2 A1 A11uvium Granite & boulders and debris Canite & boulders MINERALIZATION MINERALIZATION 2 Frg1 Fanglomerate Cemented granite boulders & debris Unaltered Unaltered 2 Frg2 Fine-gr. qtZ-FICh biolite Granite Dik gray & red qtZ-FICh biolite Minor hematite & sider- ite noted on fracture No indicated mineralization 2 Frg2 Fine-gr		weak hematite stain				. 04	GB-1 130-140					
PPM (1)Hq NOCK TYPE NOCK DESCRIPTION ALTERATION ALTERATION MINERALIZATION 2 Aal Alluvium Granite & boulders and debris Granite Doulders Head		Minor clays	gray med.	1		<.02	3B-1 120-130		30	120 - 150		
PPM (I)Me NOCK TYPE NOCK DESCRIPTION ALTERATION ALTERATION MINERALIZATION 2 4a1 Alluvium Granite boulders and debris Granite boulders Infell Panglomerate Cemented granite Inaltered Inalt												
PPM (I)H4 NOCK IVPE NOCK DESCRIPTION ALTERATION ALTERATION MINERALIZATION 2 Pal Alluvium Granite & boulders and debris minerate minerate minerate minerate minerate minerate minerate minerate maltered maltered minerate						. 03	3B-1 110-120					
PPM (I)M NOCK IVPE NOCK DESCRIPTION ALTERATION ALTERATION MINERALIZATION 2 Aal Alluvium Granite & boulders and gebris Image: Commente granite and gebris Image: Commente granite boulders & debris Unaltered Image: Commente granite boulders & debris						. 03	3B-1 100-110					
PPM (1)Hg ROCK TYPE ROCK DESCRIPTION ALTERATION ALTERATION MINERALIZATION 2 2a1 Alluvium Granite & boulders and debris Granite Unaltered HEALINA MINERALIZATION 12 Ifgl Panglomerate Cemented granite Unaltered Healine Healine Healine Healine 12 Ifgl Panglomerate Cemented granite Unaltered Healine						. 03	3B-1 90-100					
PPM (1)Hg ROCK TYPE ROCK DESCRIPTION ALTERATION ALTERATION MINERALIZATION 2 21 Alluvium Granite & boulders and debris and debris 1 12 Ifgl Panglomerate Cemented granite Unaltered 1 1 1 12 Ifgl Panglomerate Cemented granite Unaltered 1 1 1 12 Ifgl Panglomerate Cemented granite Unaltered 1 1 1 12 Ifgl Panglomerate Cemented granite Unaltered 1 1 1 12 Ifgl Panglomerate Cemented granite Unaltered 1 1 1 12 Petgr Biotite Granite Didgray & red qtz-rich Minor hematite & sider- No indicated mineralization 12 Petgr Biotite Granite Sranite Ite noted on fracture 1 13 Imager State Imager State Imager State Imager State 1 13 Imager State Imager State Imager State Imager State Imager State 13 Imager State Imager State						. 02	3B-1 80-90					
PPM (1)Hq ROCK TYPE ROCK DESCRIPTION ALTERATION ALTERATION MINERALIZATION 21 Pal Alluvium Granite & boulders and debris Granite MINERALIZATION MINERALIZATION 22 Ifgl Panglomerate Cemented granite boulders & debris Unaltered Granite Intered 22 Ifgl Panglomerate Cemented granite boulders & debris Unaltered Intered Intered 22 Pfgr Pinte-gr.qtz-rich blotite Dk gray & red qtz-rich blotite Minor hematite & sider- ite noted on fracture No indicated mineralization 3 I I Image: Service of the servic						. 03	GB-1 70-80					
PPM (1)Hq ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION 2 21 1 Alluvium Granite & boulders MINERALIZATION MINERALIZATION 2 1 Alluvium Granite & boulders MINERALIZATION MINERALIZATION 2 1 Alluvium Granite & boulders MINERALIZATION MINERALIZATION 2 1 Fgl Panglomerate Cemented granite Unaltered MINERALIZATION 2 1 Fgr Biotite Granite Doulders & debris Unaltered Minor hematite & sider- 2 PEfgr Biotite Granite Distite granite Ite noted on fracture No indicated mineralization						. 03	3B-1 60-70					
PPM (1)Hg ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION 2 21 21 411uvium Granite & boulders and debris 411uvium MINERALIZATION 12 1 411uvium Granite & boulders and debris 411uvium MINERALIZATION 12 1 11 11 11 11 11 12 1 11 11 11 11 11 12 1 11 11 11 11 11 12 1 11 11 11 11 11 12 1 11 11 11 11 11 11 12 1 11 11 11 11 11 11 11 12 1 11		ite noted on iracture	granite			<.02	3B-1 50-60					
PPM (1)Hq ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION (1)Hq al Alluvium Granite & boulders and debris Granite Mineration Mineration [2] Ifgl Panglomerate Cemented granite Unaltered Unaltered Mineration [2] Iffgl Panglomerate Cemented granite Unaltered Mineration	No indicated mineralization	Minor hematite & sider-	Dk gray & red biotite	Fine-gr. qtz-rich Biotite Granite	Peter	. 02	3B-1 40- 5 0		8	40 - 120		
PPM (1)Hg ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION 2 2 4 11uvium Granite & boulders and debris 3 4 MINERALIZATION MINERALIZATION 2 1 1 11uvium Granite & boulders 4 4 4 2 1 1 11uvium Granite & boulders 4 4 4 2 1 1 1 1 4												
PPM (1)Hg ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION (1)Hg al Alluvium Granite & boulders MINERALIZATION [2] al Alluvium and debris MINERALIZATION [2] Figl Fanglomerate Cemented granite Unaltered			Ro									
PPM ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION (1) Hg Qa1 Alluvium Granite & boulders MINERALIZATION 12 1 Alluvium and debris MINERALIZATION		Unaltered		Fanglomerate	ltel	<.02	3B-1 20-30	_	20	20 - 40		
PPM ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION (1)Hg 2a1 Alluvium Granite & boulders Granite %												
PPM ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION (1) Hg ROCK TYPE ROCK DESCRIPTION ALTERATION MINERALIZATION			and debris			<.02	GB-1 10-20	<				
PPM ROCK TYPE . ROCK DESCRIPTION ALTERATION MINERALIZATION			Granite & boulders	Alluvium	2a1			Good	20	.0 - 20		
•	MINERALIZATION	ALTERATION	ROCK DESCRIPTION	ROCK TYPE .	ΗġΥ	PPM PF (1) Au (1)	RECOVERY SAMPLE NUMBER	RECOVERY	INTERVAL	HOLE DEPTH		
						·	IDIAL DEFIN					

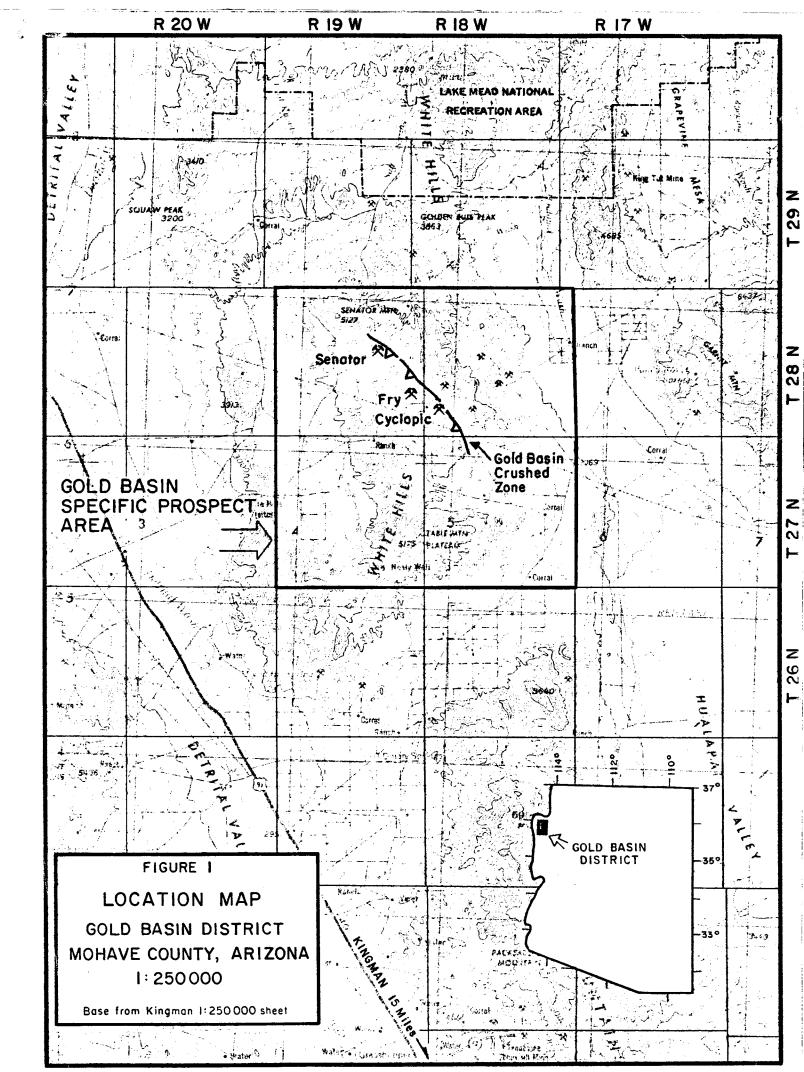
____PROSPECT___Gold_Basin CLAIM GB #2 _____SECTION_NE36_T. 28N_____R. 19W_____COLLAR_COORCS. __655'S., 925'W. of N.E. Cor. Sec. 36 _ COUNTY Mohave STATE Arizena l

DRILL HOLE DESCRIPTIVE LOG

دد مم יוטא <u>אסא</u>ט Hole Size <u>5 1/8"</u> <u>Reverse Circulation</u> Hole ANGLE <u>Vertical</u> Spudded <u>10/24/83</u> completed <u>10/30/83</u> driller<u>drile.Co</u> Logged By <u>W. Szyma</u>ns LOGGED BY W. Szymanski

HOLE NO. GB - 1

(1) ASSAYS by	0(+ - 0 44					410 - 440	400 - 410				-		350 - 400					300 - 350								220 - 300	HOLE DEPTH
U. S. BORA	71	10				30	10						50					50								80	INTERVAL
X RESEAF																									Recov.	Good	RECOVERY
U.S. BORAX RESEARCH CORPORATION, ANAMEIM, CA		CR-1 440-450	 	GB-1 430-440 <.02	GB-1 420-430	GB-1 410-420 <	GB-1 400-410 <	•	GB-1 390-400	GB-1 380-390	GB-1 370-380 <. 02	GB-1 360-370 C	GB-1 350-360	GB-1 340-350	GB-1 330-340	GB-1 320-330	GB-1 310-320	GB-1 300-310	GB-1 290-300	GB-1 280-290	GB-1 270-280	СВ-1 260-270	GB-1 250-260	GB-1 240-250 <	GB-1 230-240<.02	GB-1 220-230 <.02	RECOVERY SAMPLE NUMBER (1)
NAHEIM.		3	 	.02	.03	<.02	. 02		. 02	<. 02	. 02	. 02	,02	.02	. 02		.03	.03	<. 02	.03	.06	.03	.05	. 02	.02	02	PPM. PPM (1) Au (1) Hg
CA.			 			ъ	Iwgr		F																	Twgr.	ō -
					Shearing	410-440-Zone of	r Granite		Fault									-								White Hills C. Granite (?)	ROCK TYPE
			tered feldspars	red'stain & lighter al-	characterized by darker	Granite as above, but	2											-							piotite granite	Wassive coarse-grained	ROCK DESCRIPTION
					& siderite	410-440 Increased clay			Minor clay & siderite noted						330-350 increased clay alteration										feldspars No indicated miner	Nematitic stain and mino	ALTERATION
CORN & AHERN						Complete oxidation																			No indicated mineralization	r Complete oxidation	MINERALIZATION


PAGE 2 OF 3

•

HOLE NO. <u>GB-1</u> PROSPECT <u>Gold Basin</u>

COUNTY Kohave

_STATE _Arizona

PROSPECT Gold Basin COUNTY Mohave

HOLE NO. GB-1

STATE Arizona

PAGE 3 OF 3

MINERALIZATION								Orange-red stain suggests minor	limonite after pyrite.															CORN & AHERN
ALTERATION	Hematite stain & minor	clay alt. of feldspars				-	Feldspars are altered to	clay. Winor siderite. Little biotite is evi-	dent; most has been alt to chlorite.			Hematitic stain				Minor clay & chlorite	alteration							\∫ I
ROCK DESCRIPTION	Massive coarse gr., lt red porphyritic biotite						Cuttings were wet; dom-	y rock flour w∕on± ew coarse frag-	ments.							Massive coarse-gr. pro-	phyritic granite							
ROCK TYPE	White Hills Granite (?)						510-560 sheared	grani te	Major sheared	2 one					Granite & granu- late rock	White Hills	Granite (?)							
	Twer						 2				:				2	Twgr	:					 	 	CA.
PIL PPM	1 2	. 02	. 02	<.02	.02	.06	 .03	60.	.03	<.02	 <!--</td--><td>.02</td><td>6</td><td>222344444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444<l< td=""><td>0.2</td><td><. 02</td><td>×.02</td><td></td><td> </td><td></td><td> </td><td>┝</td><td>+</td><td></td></l<></td>	.02	6	222344444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444<l< td=""><td>0.2</td><td><. 02</td><td>×.02</td><td></td><td> </td><td></td><td> </td><td>┝</td><td>+</td><td></td></l<>	0.2	<. 02	×.02		 			┝	+	
RECOVERY SAMPLE NUMBER (1) Au	GB-1 450-460	GB-1 460-470	GB-1 470-480		GB-1 490-500 <.02	GB-1 500-510	 GB-1 510-520	GB-1 520-525	GB-1 525-530		535-540	GB-1 540-545<.02	GB-1 545-550 < 02	GB-1 550-555	555-560	GB-1 560-565 <.02	GB-1 565-570							(1) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM,
RECOVERY 5	Good	1																GT.						1X RESEAR(
INTERVAL	60			-			10	v	~ ~	~	~	~ ~		~ ~	\ \	•	\ ~	i.						U. S. BORJ
HOLE DEPTH							510 - 520	1	525 - 530		•	1 1		•	•	292 - 092 29		670						(I) ASSAYS by

-

Arizona STATE___ Mohave COUNTY PROSPECT Gold Basin HOLE NO. GB- #2

SECTION 25 T. 28N R. 19M COLLAR COORDS. 315'N., 2840'W. of S.E. Cor. Sec. 25 LOGGED BY W. Szymanski HOLE ANGLE Vertical Reverse Circ. DRILLER Comors SPUDDED 11-1-83 COMPLETED ELEVATION 4800 CLAIM___

TOTAL DEPTH 600'

PAGE 1 OF 2

DRILL HOLE DESCRIPTIVE LOG

HOLE DEPTH	INTERVAL	RECOVERY	SAMPLE NUMBER	(1) Au	eH (1)	ROCK TYPE	HOLK DESCRIPTION	ALTERATION	MINERALIZATION
0-10	10,	NO			Qal	Alluvium			
							10-40 weak clay and siderite alt.	10-40 weak clay and siderite alt.	Variable limonite stain
10-50	40,	000	CB-2 10-20 CB-2 20-30	49. 21.	Tfg1	Fanglomerate and	Mixed frags. of Cse feld, bio and some chips of		
		RECOV.	GB-2 30-40 GB-2 40-50	.10	و الالت	Fgr. Granite	dark fine-grained granite	•	
50-80	30,		CB-2 50-60 CB-2 60-70	 <!--</td--><td></td><td>-</td><td></td><td></td><td></td>		-			
			GB-2 70-80	<.02					
			1						
80-110	30'		80-90			White Hills Granite	Cse gr. reddish granite chips of Otz. minor.	80-100 Interval shows hematite stain but feldsp.	
			GB-2 90-100 GB-2 100-110				biotite & fresh feldspr	are not altered.	
110-190	, 08		GB-2 110-120 GB-2 120-130		PEber	Cse gr. Biotite Granite	Cse gr. medium gray biotite granite	Weak clay, chlorite	Minor siderite and weak limonite stain.
			GB-2 130-140 GB-2 140-150				Chips are qtz, gray feldspr and wkly	alteration with minor	
			GB-2 150-160 GB-2 160-170				chloritized biotite	siderite on fracts.	
			CB-2 170-180 CB-2 180-190	કંક					
190-210	20,		GB-2 190-200	·07	PEbgr	Biotite Granite	Mixed frags of granite as above and white tuff.	Weak clay alteration	
			GB-2 200-210	.03	8 دترا	Rhyolitic Tuft.			
210-250	40.		GB-2 210-215 GB-2 215-220		PCbgr	Biotite Granite	Cse gr. biotite granite	Weak clay, chlorite	Minor siderite and limonite stain.
			GB-2 220-225 GB-2 225-230				similar to granite above	alteration	
			GB-2 230-240 GB-2 240-250	.24 < .02					
			CB-7 250-260						
250-300	50,	•	GB-2 260-270		Twer	Whitehills	Cse gr. reddish gray	Feldsp. is unalt.	No indicated mineralization.
			GB-2 270-280 GB-2 280-290	×× ××		Granite	Gramite with minor biotite	Minor hematite stain	
			GB-2 290-300				and dom. Kspar.	on fracts.	

COUNTY Mohave STATE Arizona

HOLE NO. CB-2 PROSPECT Gold Basin

PAGE 2 OF 2

MINERALIZATION	alization.								-						E										
MINER	No indicated mineralization.													Driller estimated	5-10 gpm water from	shear zone.									
ALTERATION	Hematite stain on fracts.	Minor clay alt. of plag.							Increased hematitc stain						Increased hematitic stain	and clay alt. in sheared	zone.			Fragments show weak hematite	stain and appear relatively	fresh.			
ROCK DESCRIPTION	Reddish-gray cse gr.	granite. Chips are qtz,	and minor biotite.						430-460 Indicated shear	. Some					530-580 Sheared granite					Reddish-gray cse gr. granite					
ROCK TYPE	White Hils Granite							White Hills Granite							White Hills Gramite					White Hills Granite					
	Twgr							Twgr							Twgr					Twgr					
0H (I) Ndd (I)	00	.02	×10.2	-02 -02	.02	× .02 × .02	×<	8.0 v v	88 V	.02	.02	22 22	-04		8.0	.02	.02	200 VV	88 vv	.02	2.52 VV				
SAMPLE NUMBER (1)	CB-2 303-310 <								GB-2 443-450			GB-2 503-510 <			CB-2 533-535			CB-2 56)-565			CB-2 59)-595				
RECOVERY	l		TVENACOCAN																						
INTERVAL	1001	8					130'								5					20.					
HOLE DEPTH	007-006	004-000					100 530	000-004				,			530-580					580-600		600 is TD.			

STATE <u>Arizona</u>	οινικου Δηλι εεστιολιλη 31 τουν ο 40μ σοι τοι νο σουσε 275/2. 1500/Ε. ο Ν.Ν. σον 31
	5'S.]
	c 27
	Cocco Cocco
have	
UNTYLO	Ľ
Ō	1000
	NO
	34 7 0
	IOMNIA!
asin	1030
PROSPECT Gold Basi	11
PECT	# a
PROSI	
2	
CB-	
NO.	
HOLE	

HOLE ANGLE vertical _ COLLAR COORDS._ SECTIONNW 31 T.28N R.18W ELEVATION 4480' HOLE SIZE 5 1/8" CLAIM GB #44

LOGGED BY R. M. Corn ELEVATION 4480° HOLE SIZE <u>5 1/8</u> Reverse Circularion Connors SPUDDED <u>11/10/83</u> COMPLETED11/11/83 DRILLERDril.Co. ~

TOTAL DEPTH 200"

PAGE 1 OF 1

DRILL HOLE DESCRIPTIVE LOG

MINERALIZATION								Siderite. hematite & some limonite	after former f <i>e</i> r, ovrite														CORN & AHERN
ALTERATION	0 - 20 wk limonite	Stain & some clay		20-60 Minor hematite & siderite stain on frag-	ments			creased hematite e stain on			85 & 95	100-130 Limonite & sider- ite coat cse frags & in			130-200 weak siderite &	hematite stain. Biotite & feldspars are only	slightly altered.						U
ROCK DESCRIPTION	Med. gray colored granitic rock	Fragments show qtz feld- spar & minor wispy bio-	tite			.		Lighter colored fragments of granitic material		Frags are small & cutt- ings dominantly fines		Cse frags are med. gray colored while fines are	tan & limonitic		Med. gray colored frags of cse granitic material	w/minor biotite							
ROCK TYPE	Gneissic <i>e</i> ranite					E 8		 b0-130 (crushed zone?)							Gneissic granite								
	Pegn					-		 							 Lega -							 _	
PPM PPM (1) AU (1)	20	02		.03	<.02 <.02	.02 .02	.02 .02	<.02 <.02	.04 .02	.02	 4.02 02 02 	.02	11.	 .02 .02 .02 	02	.02	 03 02 	.02	02	.02	<.02 <.02	_	ІАНЕІМ, СА
SAMPLE NUMBER	0-5 5-10	18-3 10-15 < 18-3 15-20 <		20-25 25-30	· · · · · · · · · · · · · · · · · · ·	40-45	50-55 55-60	60-65 65-70	±B-3 70-75 ±B-3 75-80 €	80-85 85-90	<u>90-95</u> 95-100	105-110	115-115	tB-3 120-125 4	130-135	140-145	150-155	160-165	170-175 175-180	180-185 185-190	¢B-3 190-195 < ¢B-3 195-200 <		ORPORATION, A
RECOVERY SA	GB GB GB					ġġ	ĊB CB CB CB		ġġ	ġġ ġġ						ġ ġ			ËË		ф ф ф ф ф	IJ	ESEARCH C
INTERVAL RE	20 60			0†				0†				Q.E			20							is	S. BORAX R
HOLE DEPTH	0 - 20			20 - 60				60 - 100				100 - 130			130 - 200							200	(I) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM,

-

DRILL HOLE DESCRIPTIVE LOG	PAGE 1 OF 2	MINERALIZATION		15-20 Prominent limonite stain on frommate Some of limonite may be after	pyrite						80-90 Prominent limonite after siderite	
Arizona W. Cor. Sec. 31 Vertical		ALTERATION	Chlorite, clay and minor siderite		Clay alteration of fines only	KFeld. is fresh	Minor siderite on fractures. Black chloritic alteration	evident in granite.			Chlorite, clay and siderite alt.	
Mohave STATE Arizona COLLAR COORDS. <u>560'S., 1290'E. of N.W. Cor. Sec. 31</u> <u>Reverse Circ.</u> HOLE ANGLE <u>Vertical</u> Commors LOGGED BY		ROCK DESCRIPTION	Medium gray fgr. qtz-rch granite		Cse fresh feldsp. & qtz. mixed with frags of fine	gr granite	Medium gray fgr granite with fgrs of black qtz & biotite				Light gray to tan color from limonite and siderite	stain
VTY_		ROCK TYPE	Fgr. biotite granite	20 - Fault	Mixed frags of Fgr granite and cse gr.	granite 40 - Fault	Fgr biotite granite			80 - Fault	Sheared granite	
28N 5 1/8" 11-12-E			PEfgr		PEfgr		PEfgr				PEfer	
W NW 31 1		PPM 0H(1)										
<u>1 Basin</u> EECTION _ HOLE _ COMPI	-1	PPM (1) Au	<.02	< .02	 .02 	<.02	<.02	02		$<_{.02}$	 <.02	
34	ЕРТН380'	INTERVAL RECOVERY SAMPLE NUMBER (1) AU	GB-4 0-10	GB-4 10-20	GB-4 20-30	GB-4 30-40	GB-4 40-50	GB-4 50-60	GB-4 60-70	GB-4 70-80	GB-4 80-90	
PROSPECT CLAIM34_ ELEVATION{1 SPUDDED1	TOTAL DEPTH	RECOVERY	000	RECOV.								
		INTERVAL	20,		20'		40,				20'	ľ
HOLE NO		HOLE DEPTH	0-20		20-40		40-80				80-100	222 22

after								siderite													
15-20 Prominent limonite stain on frommate Some of limonite may be after	pyrite							80-90 Fromment Linonice arter siderice					No indicated mineralization.								
		KFeld. is fresh	Minor siderite on fractures. Black chloritic alteration	evident in granite.				Chlorite, clay and siderite alt.		Moderate clay and siderite alteration intensifying in	shear zones at 130-150 and 170-180			Rock exhibits dark chlorite	alteration and some chips appear black.						
	Cse fresh feldsp. & qtz. mixed with frags of fine	gr granite	Medium gray fgr granite with fgrs of black qtz & biotite				•	Light gray to tan color from limonite and siderite	stain	 Medium gray fgr granite	as above with variable	shearing at 130-150 and	170-180								
20 - Fault	Mixed frags of Fgr granite and cse gr.	granite 40 - Fault	Fgr biotite granite			80 - Fault		Sheared granite		Fgr biotite granite	•										
	PEfgr	6 IWGT	PEfgr					PEfgr		 PEfgr											
< .02	<.02	<.02	<.02	<.02	< 02	<.02		<.02	<.02	 <. 02	< .02	<.02	<.02	<.02	<.02	<.02	<.02	<.02	<. ₀₂		
GB-4 10-20	GB-4 20-30		GB-4 40-50	GB-4 50-60		GB-4 70-80		GB-4 80-90	GB-4 90-100	GB-4 100-110				GB-4 140-150		GB-4 160-170	GB-4 170-180	GB-4 180-190	GB-4 190-200		
RECOV.																•					
	20'		40,					20'		1001											
	50-40	2	40-80					80-100		100-200											

STATE Arizona
Mohave
COUNTY
T Gold Basin
PROSPECT

HOLE NO. GB-4

PAGE 2 OF 2

		T	1	<u> </u>	r	-		γ	r	<u> </u>	T	T	 <u> </u>		 	<u> </u>					 _	 		
MINERALIZATION													320-330 Limonite stain on frags and clay. Suggests former pyrite.											CORN & AHERN
ALTERATION	Moderate clay and siderite with black chlorite	Lu Lu	Hematite stain increases with depth.		Clay and hematite alteration. Biotite	is altered to light colored chlorite and sericite.	Black chloritic alteration noted above 240' is absent.						320-340 Clay and chlorite altn with limonite st. on	clays	Feldspar frags. show minor hematite stain and partial	alt. to clays.	Minor siderite noted on fractures.							U
ROCK DESCRIPTION	Dark reddish gray chips with hematite stain mixed with	medium gray chloritized grani to a denth of 240'		-	240 - Color changes to reddish grav	Granite appears to be a fine to medium grained holo-	crystalline rock coarser gr.	less biotite					Sheared granite with chips of cse qtz, fspr and biorite		Medium to light gray granite Chips are otz. feldspar and	minor biotite								
ROCK TYPE	Fgr Biotite Granite				240 - Fault (?)							320 - Fault	Cse grained Biotite	320-340 Shear zone	-									
	PCfgr												 P£bgr		PEber									 Ä
PM PPM	<.02	<.02	<.02	<.02	<.02	. 02	<.02	<.02	<.02	<.02	<.02	<.02	 < .02	<.02	 .02	<.02	<.02	<.02				 	1	ANAHEIM, CA
INTERVAL RECOVERY SAMPLE NUMBER (1) AU	GB-4 200-210 <		GB-4 220-230 <	GB-4 230-240 <	GB-4 240-250 <	GB-4 250-260 <.02	GB-4 260-270 <	GB-4 270-280 <	GB-4 280-290 <	CB-4 290-300 <	GB-4 300-310 <	GB-4 310-320 <	GB-4 320-330 <	GB-4 330-340 <	GB-4 340-350			-						(I) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM,
RECOVERY	600	RECOV.																						X RESEARC
INTERVAL	120'												20,		,07									U. S. BORA
HOLE DEPTH	200-320												320-340		340-380				380 is TD					(I) ASSAYS by

	1		
g	. Sec. 31	HOLE ANGLE Vertical	LOGGED BY Russell M. Com
STATE Arizona	f N.W. Cor	JOLE	BY Russe
_ STATE_	, 555'E. c	- HOLE A	- LOGGED
	s. 280'S.	ŗ	
Mohave	COLLAR COORD	Reverse Circ.	Cornors
COUNTY	18W		DRILLER
	28N R.	5 1/8"	11-16-83
Basin	CLAIM GB# 46 SECTION 31 T. 28N R. 18W COLLAR COORDS. 280'S., 555'E. of N.W. Cor. Sec. 31	ELEVATION 4560 HOLE SIZE 5 1/8"	SPUDDED_ <u>11-13-83</u> COMPLETED_ <u>11-16-83</u> DRILLER_COTTOTS
T Gold Basin	8# 46 \$	4560	11-13-83
_ PROSPECT_	CLAIM G	ELEVATION	SPUDDED
GB-5			
HOLE NO. GB-5			

DRILL HOLE DESCRIPTIVE LOG

•

PAGE <u>1</u> 0F <u>3</u>	MINERALIZATION				Limonite after siderite on fractures. Minor hematite stain.		60-90 Increased hematite stain.				Limonite stain after siderite.	125' - Scattered chips of limonite stained clay - and orz orains	Clay is probably from a fault.		Miror hematite.				Commlete oxidation							CORN & AHERN
	ALTERATION	-			Weak clay and siderite alteration	chloritic altn					Increased clay alteration.	limonite stain	б	fractures.	Clay, chlorite and siderite	altn.				Kfspar relatively fresh.					-	0.
	ROCK DESCRIPTION	Tan and light brown chips of pranite and sandy matrix			Medium brown to dark brown pranite. Chips show fine-	grained black qtz. and lt. feldspar.					Mixed light and dark brown oramite chins and dark brown	cse oranitic oneiss	coarse chips of qtz and dark brown altered feldemar						Medium tan colored frags. of qtz and altered fspar.	Chips of qtz and alt. fsper are coarse grained.		•				
	ROCK TYPE	Fanglomerate			Fine-grained qtz rich biotite	granite					90-110 FIT zone	Mixed Fgr and cse gr. gneiss	Sheared gneiss						granite gneiss							
		Tfgl.			PEfgr						_		PEgn						PEggr							
	M PPM Au (I) Hg		<.02	✓.02	<.02	 ✓.02 	<.02	 ✓.02 	<.02	.31	.06	.21	1.14	.55		.11	.13	.12	.03	.13	.02	✓.02	-04			AHEIM, CA.
PTH 600*	INTERVAL RECOVERY SAMPLE NUMBER (1) Au	GB-5)-10 🗸	GB-5 1)-20 ▼	GB-5 2)-30 <		GB-5 4)-50 ▼	CB-5 5)-60 <	cB-5 6)-70 🗸	GB-5 7)-80 <	GB-5 8)-90	GB-5 9)-100	GB-5 130-110	GB-5 110-120	GB-5 120-130		GB-5 130-140	GB-5 140-150	GB-5 150-160	GB-5 160-170	GB-5 170-180	GB-5 180-190 <	CB-5 190-200 ◀	GB-5 200-210			(I) ASSAYS by U.S. BORAX RESEARCH COPPORATION, ANAHEIM, CA
TOTAL DEPTH	RECOVERY		RECOV.										-			•										RESEARCH
	INTERVAL	30			60'						20,		20'			30,			50'							U.S. BORAX
	HOLE DEPTH	0-30			30-90						90-110		110-130			130-160			160-210							(I) ASSAYS by

.

PAGE 2

Arizona

STATE

Mohave

COUNTY

Limonite stain is widespread, but is Increased hematite stain. & AHERN **WINERALIZATION** dominantly after siderite. Complete oxidation CORN 430-440 ¢ر) Increase in dark fgr chlorite alteration. Black chlorite is masked by siderite and limmite stain Siderite, clay and minor Ъ substantial amounts Clay, siderite and ALTERATION = 1= chlorite hematite -: : Mottled lt. brown and gray chips of cse altd. fspar and qtz Lamprophyre mixed with chips from gneiss. gramite consisting of dark grains of quartz and altered fspar. with cse frags`of qtz and fspar. Medium brown, fine-grained Mottled lt. brown and gray chips of cse. altd fspar and qtz gneiss similar to above. Light colored zones 420-430 and 440-450 indicate zones of shearing ROCK DESCRIPTION biotite granite shear zones (?) ROCK TYPE Granite gneiss Granite gneiss " 380-390 lamprophyre Fine-grained 420-430 440-450 gneiss ß PEgren PEen PEfgr & EE E Š PPM 9H (1) (I) ASSAYS by U.S.BORAX RESEARCH CORPORATION, ANAHEIM, ✓ ₹ 102 × 102 ✓ $\mathbf{A}_{.02}$ ✓ ₹ 102 20 V ₹ 207 ど **v**. ▲.02 8 ✓.02 **V √**.02 **v**.02 10 2 8 8 .93 .04 50 PPW VA(I) SAMPLE NUMBER GB-5 360-370 GB-5 370-380 GB-5 400-410 GB-5 420-430 GB-5 430-440 CB-5 440-450 GB-5 260-270 GB-5 290-300 GB-5 310-320 GB-5 320-330 GB-5 350-360 GB-5 380-390 GB-5 390-400 GB-5 410-420 GB-5 250-260 GB-5 280-290 GB-5 300-310 **CB-5 330-340** GB-5 340-350 GB-5 220-230 GB-5 240-250 GB-5 270-280 GB-5 210-220 GB-5 230-240 RECOVERY RECOV. 80 INTERVAL 140' 3 3 HOLE DEPTH 210-260 260-400 400-450

·

GE 2 OF 3

HOLE NO. GB-5 PROSPECT Gold Basin

COUNTY MODAVE STATE

Gold Basin

___ PROSPECT___

HOLE NO. GB-5

Arizona

PAGE 3 OF 3

											-													
MINERALIZATION		alization.								alization.														& AHERN
MINE		No indicated mineralization.								No indicated mineralization.														CORN
										 Й		ense												04
ALTERATION	lay and	strong bla	ţ,	lay						ite and	ite.	is less int	on to gneis											
ALT	Siderite, clay and chlorite	Relatively strong black chlorite altm	bleached with	increased clay						Clay, siderite and	minor chlorite.	Alteration is less intense	in comparison to gneiss.				i.							
N	and d				ove but	ð				chips with	a.													
ROCK DESCRIPTION	Mottled light brown and grav chips of qtz and	ц.			gneiss similar to above but	exhibiting a variable	lor	•		Medium gray colored chips of cse qtz and fspar with	of biotit													
ROC	Mottled li grav chips	altd. fspa			gneiss sin	exhibiting	lighter color			Medium gra of cse qtz	cse grains													
ROCK TYPE											מודרב													
ROCH	gneiss	,			sheared	gneiss				Cse gr	מיטרירה לי	2												
	PEpn							,		PEbgr														
рРМ МР																						 		 IEIM, CA
R PPM	· · ·				<.02		88 VV	88 VV		88 VV	00 VV	v	29 V	vv			▲.02	.03			 			 N, ANAF
SAMPLE NUMBER	GB-5 450-460	GB-5 460-470	GB-5 470-480		GB-5 480-490		38-5 490-495 38-5 495-500	B-5 500-505 B-5 505-510	CB-5 510-515 CB-5 515-520	B-5 520-525 B-5 525-530	38-5 530-535 38-5 535-540	3-5 540-545	GB-5 550-555 CB-5 555-560	38-5 560-565 38-5 565-570	38-5 570-575 38-5 575-580	8	GB-5 580-590	GB-5 590-600						U.S.BORAX RESEARCH CORPORATION, ANAHEIM,
RECOVERY										50														r RESEARC!
INTERVAL	.0E				10'		30,			60'														U. S. BORA)
HOLE DEPTH	450-480				480-490		490-520			520-580		•					580-600		600 is TD					(I) ASSAYS by L

	30		
STATE Arizona	f S.W. Cor. Sec.	HOLE ANGLE vertical	LOGGED BY R. M. Corn
STATE_	. 865'E. o	- HOLE AI	LOGGED
COUNTYMohave	COLLAR COORDS. 210'N.	Reverse Circulation	ER Dril.Co
	CLAIM <u>GB-45</u> SECTION ³⁰ T. <u>28 N R. 18 W</u> COLLAR COORDS. <u>210'N. 865'E. Of S.W. Cor. Sec. 30</u>	HOLE SIZE <u>5 1/8"</u>	SPUDDED11/16/83 COMPLETED 11/17/83 DRILLER Dril.Co
PROSPECT Gold Basin	CLAIM GB-45 SEI	ELEVATION ⁴ 550' HOLE SIZE 5 1/8"	SPUDDED11/16/83
HOLF NO GB-6			

TOTAL DEPTH 300'

DESCRIPTIVE LOG

PAGE 1 OF 1

C.02 F C.02 C.02 C.02 C.02 C.02 C.02 C.02 C.02	merate ult sheared css io. granite	ed Irags of grantue in 1y matrix . & sid. stained gran-	Not altered or mineralized	
C.02 Febgr C.02 Febgr C.02 Fefgr C.02 C.02 C.02 C.02 C.02		m. & sid. stained gran-W		
 C.02 Febgr C.02 Pefgr C.02 Pefgr C.02 C.03 C.04 C.04	0 sheared c%s Me			
C.02 C.02 Fefer C.02 C.02 C.02				
 C.02 Pefer C.02 C.02 C.02 C.02 C.02 C.02 	qtz-rich		Ominant cse frags	
 <a>K.02 <a>K.02 <a>K.02 <a>K.02 <a>K.02 	e granite	g. dk grey to blk gtz- w	w/little fines	
 <. 02 <. 02 <. 02 <. 02 		rıch granıte W/ Igr. biotite		
 <.02 <.02 				
C . 02				
		some shearing ? - 50% fines	90-100 Increased 11m., S1 hematite & sid. coat. frags	derite & hematite common
			110-120 increased hema- tite	but no limonite after sulfides is evident.
C 02 &	d gneissic e orgran.gr	Qtz-rich - fine to cse (er. granitic rock w/in-	Cuttings & fragments all exhibit hematite	
	otite	creased feldspar cont. & S lineated biotite or alt.	Stain & some siderite & limonite coating frac-	
< 02		material .	tures	
. 03	150-160 Gouge & clay noted			-
.07		υ	150-220 Substantial hem- atite & siderite	150-220 Substantial hem- Zone of substantial clay.cuttings atite & siderite are almost all fines. Siderite &
. 07		fine sand & clay sized material	Minor limonite stain	hematite are fairly abundant in fines and as stain on frags.
	190			
190-200 <.02 200-210 <.02 Pefgr				
210-220 <.02 FEF.	qtz-rich			
230 < 02 biotite	granite		Little or no alt. evi- dent	No evidence of limonite or cther
230-240 <.02	\square	qtz grains & blk stained feldspar		indication of mineralization
250 <.02 Pebgr granite	biotite	Med. gray to dk gray col-Moderate hematite & ored cse grained granite erite on frags	Moderate hematite & sid- erite on frags	
<.02 02		black stain or colora-		
270-280 <.02 280-290 <.02	A.I.I.	intense.		
290-300 <. 02				

.

STATE Arizona	COLLAR COORDS. 287'S., 1370'E. of N.W. Cor. Sec. 31	HOLE ANGLE Vertical
Mohave	COLLAR COORDS. 283'	Reverse Circ.
COUNTY	NE NM SECTION 31 T. 28N R. 18W	HOLE SIZE 5 1/8"
Gold Basin	144 SECTION	4530 HOLE S
PROSPECT	CLAIM GB#44	ELEVATION 4530 H
HOLE NO. GB-7		

,

LOGGED BY Russell M. Corn HOLE ANGLE Vertical Reverse Circ. Cornors __ DRILLER___ SPUDDED 1-18-83 COMPLETED 1-20-83

ТОТАL DEPTH 400'

PAGE 1 OF 2

DRILL HOLE DESCRIPTIVE LOG

HOLE DEPTH	INTERVAL	RECOVERY	SAMPLE NUMBER	PPM (1) Au	РРМ (I) Нg	ROCK TYPE	ROCK DESCRIPTION	ALTERATION	MINERALIZATION
0-5	5'	00D	GB-7	1.61	PEgn	Sheared gneiss	Tan & lt brown frags of cse qtz & alt fspar.	Clay	Limonite after fgr pyrite on fracts & in clay
		RECOV.							
5-40	35'		GB-7 5-10	.20		Ξ		Clays and siderite with	
				.08 .05				variable limonite st. after	Most of limonite stain is after.
				.09 .11				siderite	siderite. Minor limonite after pyrite.
			GB-7 30-35 GB-7 35-40	.05 .04		35-40 Fault	Chips are small and bleached.		
40-60	20,		GB-7 40-45 GB-7 45-50	. 26	PEgn	Gneiss	Cse It and dark brown chips of qtz and altd. fspar.	Dark coloration suggest	
			GB-7 5)-55 GB-7 55-60	.12					
			GB-7 60-65	(8.80)	(value from	screen test <u>å såv</u> sk			
60-115	55		GB-7 65-70	. 78	PEgn	Sheared gneiss	Color varies		
			GB-7 70-75 GB-7 75-80	1.03 .09			60-90 Lighter colored		
			GB-7 80-85 GB-7 85-90	. 21			and small chips		
			GB-7 95-100	50.				Clay and siderite	
			GB-7 100-105 GB-7 105-110	.04 .14				increase below 105	105-115 Limonite stain after siderite
-			CB-7 110-115	.05					
115-125	10,		GB-7 115-120	.14	T1	Sheared gneiss &	Altd gneiss as above with	Clay and siderite, lamp. chips are completely altd to	chips 115-120 Prominent limonite stein- mostly after siderite but some fiter
			GB-7 120-125	.14		lamprophyre	40% sideritized lamprophyre	siderite	pyrite. Diminished limonite with increasing depth to 130.
			WC 1 361 6 84	F					
125-135	10.		GB-7 130-135	1.76	PEgn	Sheared gneiss			
135-145	1		GB-7 140-145	1.71 .67	PEbgr	Use grained blotite granite	Use chups of cse gr. qtz, fspar and biotite	Slight altn.	
						Fault			Complete oxidation.
145-160	15'		GB-7 145-150	.58		-	Fgr chips similar to above	Clay & limonite stain	140-150 Limonite after pyrite on fractures.
			GB-7 150-155	.30					
			GB-7 155-160	.50					155-160 Prominent limonite after vfg pvrite.
(I) ASSAYS by	U.S. BORA)	K RESEARCI	U.S. BORAX RESEARCH COPPORATION, ANAHEIM, CA	ANAHEIM	. ca.			0	CORN & AHERN

μ	
STATE	
S	
Mohave	
۲	
OUNT	
20	
õ	
	ļ
-	
ısin	
Basin	
old Basin	

PROSPECT

HOLE NO. GB-7

.

Arizona

PAGE 2 OF 2

HOLE DEPTH	INTERVAL	RECOVERY	Y SAMPLE NUMBER	PPM (1) Au	РРМ (1) Нg	ROCK TYPE	- ROCK DESCRIPTION	ALTERATION	MINERALIZATION
160-225	65'	800	CB-7 16)-165	.50	PEbgr	r Cse grained	Cse chips of cse grained	160-190 Weak to moderate	
		RECOV.		1		F			No indicated mineralization
			CB-7 183-180	.12					
			GB-7 19)-195					190-225 little or weak indicated alteration Fresh	Minor limonite stain after siderite.
			GB-7 20)-205 GB-7 20)-205					fspar and biotite. Some biotite altd to chlorite.	
			CB-7 21)-215 CB-7 21)-215					Minor limonite after siderite	
			GB-7 22)-225	V.					
225-240	12		(B-7 225-230) (B-7 231-235)	 ▲.02 06 06 	E	lamprophyre	Fgr speckled - salt and nemner orav rock. 302	clay, siderite and chlorite	
			CB-7 235-240				chlorite and 70% clay and siderite	altn.	
240-300	60'		GB-7 240-245 GB-7 245-250	1	Febgr	Cse - grained biotite granite	cse chips of cse gr. granite as above	weak chloritic altn of biotite	Minor limonite stain.
			GB-7 250-255 GB-7 255-260						
			CB-7 260-265 CB-7 265-265						
			CB-7 270-275 CB-7 275-280	A .03					
			CB-7 280-285 CB-7 285-290					•	
			CB-7 290-295 CB-7 290-295						
			2027 7/2 I m						
300-400	,001		(B-7 300-305 (B-7 305-310		PEbgr	:	=		
ł			CB-7 310-315 CB-7 315-320				Rock is dark gray - darker than above 300'	Darker color suggests some	No indicated mineralization.
			GB-7 320-325 CB-7 325-330		 			black chloritic alteration.	
	•		CB-7 330-335 CB-7 330-335						
		 	CB-7 340-345 CB-7 345-345						
			CB-7 350-355 CB-7 355-360						
			CB-7 360-365 CB-7 365-370						
			370-375 38-7 375-375			-			
			CB-7 380-385 CB-7 385-390						
			GB-7 390-395 GB-7 395-400	<.02 .02 .02					
400 is TD.									
(I) ASSAYS by		VX RESEAF	U.S. BORAX RESEARCH CORPORATION, ANAHEIM,	N, ANAHEIM	1, CA.				COBN & AHERN

	DRILL HOLE		
COUNTY Mohave STATE Arizona	r. 28N R. 18W COLLAR COORDS. 275'N., 1855'E. of S.W. Cor. Sec. 30	Reverse Circ. HOLE ANGLE Vertical	Connors LOGGED BY Russell M. Corn
HOLE NO. CB-8 PROSPECT Gold Basin COUNTY.	CLAIM GB/ 43 SECTION 31 T. 280 R. JB/	ELEVATION 4450 HOLE SIZE 5 1/8"	SPUDDED 11-20-83 COMPLETED 11-28-83 DRILLER COTTORS
HOLE NO.			

PAGE 1 OF 2	MINERALIZATION			No indicated mineralization.								Limonite stain on fractures.	Limonite probably after vfg pyrite.							160-170 Limonite stained.				CORN & AHERN
	ALTERATION			Biotite and fspar are fresh and unaltered.								Clay and chlorite altn.	siderite is not present.				Darker color of granite due	to fgr black chlorite altn	in fspars.	Variable alth of fspars to	clay.			U
	ROCK DESCRIPTION			Medium gray colored Cse to med er.	foliated biotite gr.	fspar with foliated fine to med or biotite	Ð				Similar to above but	limonite stained and bleached				Dark gray foliated biotite eranite	5							•
	ROCK TYPE	Alluvium and	weathered granite.	Biotite granite				-			90-130 Shear zone	Sheared biotite	0			Biotite granite								
		Qal.		 PEbgr							 PEhor					PCbgr								
	РРМ МЧ	22	12	 02 02	02 02	22	22	22	22	03 02	 22	22	12	02 02		02	02 07	02	02 02	02	02 02	02 02	 	EIM, CA.
1	C m	∠ 0.07					K 0.02 K 0.02					0.0 V V 0.0	₹ 0.0	5 <0.02	•	5 < 0.02	5 < 0.02	0.0 VV V0	5 < 0.0	5 40.0	5 0.0 0 0	5 A 0.		 I, ANAH
ЕРТН 265'	4.4	GB-8.0-5 GB-8 5-10		GB-8 20-25 GB-8 25-30	GB-8 30-35 GB-8 35-40	GB-8 40-45 GB-8 45-50	GB-8 50-55 GB-8 55-60	CB-8 60-65 CB-8 65-70	GB-8 70-75 GB-8 75-80	GB-8 80-85 GB-8 85-90	GB-8 90-95 GB-8 95-100	GB-8 100-105 GB-8 105-110	CB-8 110-11	GB-8 120-125 GB-8 125-130		GB-8 130-135 GB-8 135-140	GB-8 140-145 GB-8 145-150	GB-8 150-15 GB-8 155-16	GB-8 150-16 GB-8 155-17	GB-8 170-17 GB-8 175-18	GB-8 130-18 GB-8 135-19	GB-8 130-195 GB-8 135-200		I CORPORATION
TOTAL DEPTH	RECOVERY	800	RECOV.																					RESEARCH
·	INTERVAL	50		8							40					8								.S. BORAX
	HOLE DEPTH	0-20		20-90							90-130					130-200								(1) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM, CA

COUNTY Mohave STATE

PROSPECT Gold Basin

HOLE NO. GB-8

Arizona

PAGE 2 OF 2

	MINERALIZATION	200-250 Limonite stained	Limonite partly alter.	siderite; minor limonite alter ufo nurite																			CORN & AHERN	
	ALTERATION	Fspars altered to clays. Biotite altered to	chlorite (light color)	Rock appears bleached.				Fresh appearing with dark color									-							
		Bleached light gray - tan foliated	med to cse gr. granite as above.			.•		Med to dark gray fine er biotite eranite	Chips exhibit 30-40% fine atz grains. 15% fine gr.	biotite and fine to med gr fspar.										-				
1000 T		Sheared	Biotite granite.					Fine-grained biotite granite																
		PEbgr	_					Pefgr					 	 					 		 			
Mqq N	- 6	60	83 13	02	02 02	02 02		02	02	0.03	 			 _				 	 				HEIM, CI	
Mdd	~ .	205 0.03 210 0.02	215 0.03 220 0.03	225 <0.02 230 0.02	235 < 0. 240 < 0.	245 <0.02 250 <0.02		255 <0.02	260 <0.02		 		 					 	 		 		ION, ANA	
		GB-8 230- GB-8 235-	GB-8 210-215 GB-8 215-220	CB-8 220- CB-8 225-	CB-8 230- CB-8 235-	GB-8 240-245		GB-8 230-255	CB-8 235-260	CB-8 250-265													I CORPORAT	
ecover o	ערלעבהז	000 000	RECOV.					1			Ê				-								RESEARCH	
		50		•			·	15			265 is 1												J. S. BORAX	
		200-250						250-265								1							(I) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM, CA	

HOLE NO. GB-9	PROSPECT_	Gold	Gold Basin		COUNTY	Mojave	STATE AT	Arizona
	CLAIM	GB #43	SECTION 30	T. 28N	. 18W	GB #43 SECTION 30 T 28N R. 18W COLLAR COORDS. 780'N., 2125'E. of S.W. Cor. Sec. 30	N., 2125'E. of S.V	W. Cor. Sec. 30
	ELEVATION	4450	ELEVATION 4450 HOLE SIZE 5 1/8"	5 1/8"	1	Reverse Circulation	HOLE ANGLE	90°
	SPUDDED 11/28/83	1/28/83	COMPLETED	11/29/83		COMPLETED 11/29/83 DRILLER Corrors Drilling	LOGGED BY	LOGGED BY M.H. Rauschkolb
	TOTAL DEPTH 240'	TH 240'	1					

PAGE 1 OF 3

DRILL HOLE DESCRIPTIVE LOG

.

0-10* 10* 0-10* 0-2 0-3 10-3 REgr Comparison of a status and the status an	HOLE DEPTH	INTERVAL	L RECOVERY	_	SAMPLE NUMBER	Mdd (1)	рРМ (I) Нg	ROCK	ROCK TYPE	ROCK DESCRIPTION	ALTERATION	MINERALIZATION
Intergrade black blotter, Granter also Intergrade black blotter, Granter also Diade black black Diade black black Diade black	0-10'	10'	Excllnt		0-5			gr Granite (f		Medium grey fine grained granite consisting of ½-1 mm		Grey: None Orange: Wk to mod orange-brown limonite-
Refer Diack bhotite. Granite also contains N2 choure grey granite is mixed bhowe grey granite is mixed bhowe grey granite is mixed with lesser quantities of lt provinial grey to corarge med. grained granite consisting of bhotite. Bhotite corrars in bhotite. Bhotite corrars in bhotite. Bhotite corrars in bhotite in the grey granite. Refer Gamite Sample contained link Fer Bhotite corrars in bhotite. Mute to bhotite in the grey granite. Fer Bhotite corrars in bhotite in the grey granite. Mute to bhotite in the grey granite. Fgr Bhotite corrars in bhotite in the grey granite. Black bho istributed fine granite. Fgr Bhotite corrars in bhotite in the grey granite. Black bho istributed fine granite. Fgr Bhotite fram the grey granite. Black bho istributed to inter- comected chains of crystals. Fgr Bhotite fram the grey granite as above. Black bho istributed to inter- contrasts with darker grey- brown. Medium grey fine-grun granite as above, sample dust is no- contrasts with darker grey- brown. Ffre Nedium grey fine-grun granite as above, sample dust is no- contrasts with darker grey- brown. Medium grey fine-grun granite as above or below Ffre Nedium grey fine-grun granite as above or below Medium grey fine-grun granite as above or below Ffre Na above, sample dust is no- contrasts with darker grey- brown. Na above or below Ffre Na above, samble for inter- brown. Na above or below S			•	6-89	5-10	.06				intergrown quartz, opaque white feldspar, and dark grn-		clay on joints. Some local hematite aft. biotite.
Image: state of the state o							•			black biotite. Granite also contains 1% euhedral (2 mm x		
Refer Above grey frantie is and twith less quantities of Let prained with best quantities of Let prained with less quantities of Let prained with respending and biotite. Biotite occurs in Diotite. Biotite occurs in Diotite. Biotite occurs in Diotite. Biotite occurs in Diotite in the grey different from the eventy distributed from the event distributed from the event the event distributed from the event the event of the flopenes. reamite As above, sample dust is no from events and the event of the flopenes. reamite As above, sample dust is no the event the event. reamite As above, sample dust is no the events from from the event the event. reamite As above, sample dust is no the event the event. reamite As above, sample dust is no the event reamite </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>4 mm rectangular) clear to cloudy white feldspar crystls</td> <td></td> <td></td>									-	4 mm rectangular) clear to cloudy white feldspar crystls		
Production Proving grant Fig Fig Biotite Sincific occurs in biotite in the gray Distribution Distributed fine Distributed fine Distributed Distributed fine Distributes Distributed Distributed fine Distributes Distributed Distributed fine Distributes Distributed Distributed fine Distributes Distributed Distribute Distributes Distributed Distributes Distributes Distributed Distributes Distributes Distributed Distributes Di										Above grey granite is mixed with lesser quantities of lt		
12.2 Intergret and interesting and biorite. Biorite occurs in the another of the sourcy distributed fine distance in the gradient of the eventy distributed fine gradient biorite in the gradient in the gradient in the gradient of the gradien								•		brownish grey to orange med. grained granite consisting of		
Distriction Distriction 1 1										1-2 mm intergrown quartz, opaque white feldspar and		
also as vispy segregations also as vispy segregations distributed fine the eventy distributed fine Egrained biotite in the grey grained biotite in the grey grained biotite in the grey grained biotite alt of artibuted fine Refer Sample contained 12 white to Ingut brown calidele. grained biotite alt of cartity or ange Fgr Blottite Grantte forms elongate crystals Ingut brown calidele. biotite alt to earthy or ange Fgr Blottite Grantte forms elongate crystals Ingut brown calidele. biotite alt to earthy or ange Fgr Blottite Grantte forms elongate crystals Ingut brown calidele. biotite alt to earthy or ange Fgr Blottite Grantte rather than enhecher Induction brown biotite up to 50% replacement Inductie is above Grantte inductie up to 50% replacement Inductie biotite up to 50% replacement Inductie inductie up to 50% replacement Inductie for any glater Grantte inductie up to 50% replacement Inductie biotite up to 50% replacement Inductie biotite up to 50% replacement Inductie biotite up to 50% replacement Inductie for an intervals above and be										biotite. Biotite occurs in 2 mm euhedral crystals and		
Refer Ite evenly distributed fine grained biotite in the grey grained biotite in the grey granute. Earnie granute. Freign Bandie contained biotite in the grey granute. Bandie contained biotite. 37 of granute as above. Black bio forms elongate crystals. Diotite altd to earthy orange biotite altd to earthy orange trather than endedral housen. Fgr Biotite Grantte Reting fight brown calidate. Diotite altd to earthy orange trather than endedral housen. Fgr Biotite Grantte Reting fight brown limonite, especially or earthy tighter colored of fight stributed to inter- tice biotite colored fight intervals above and be by golden yol. Minor fight brown calidate. Cranite " connected chains of crystals. Noderate chlorifization of trom firm joints. Carnite " connected chains of crystals. Noderate chlorifization of trom firm joints. Carnite " sabove, sample dust is no- biotite. Joint surfaces. Minor firm joints. Carnite " sabove, sample dust is no- biotite. Noderate chlorifization of trom firm joints. Carnite " sabove, sample dust is no- tite staining of rook 1-5 mm to or film intervals. Noderate chlorifization of trom joints. Fifty " sabove, sample dust is no- tite stainting or film. Noderate chlorifization of trom joints. Carnite " sabove, sample dust is no- trom intervals. Noderate chlorifization of trom joints. Fifty " sabove, sample dust is no- trom intervals. Noderate chlorific stai										also as wispy segregations distinctly different from		
Refer Sample contained 1% white to Ight brown caliche. Isgnt brown caliche. Refer Isgnt e arber water argent in grained biotite. % of fragmained biotite. % of fragmained biotite. % of a grained figure. % of a grained fig										the evenly distributed fine grained biotite in the grey		
Ilght brown caliche. Ilght brown caliche. Refgr Grantte Medium grey fine grained frace golden chlorite alt no Fgr Biotite Grantte Forms elongete crystals Diont surfaces. Mr red hema- Fgr Biotite Grantte Iathon te, especially or Iathon te, especially or Fgr Biotite Grantte Iathon te, especially or Interviewer than enhedral hexagen- Fgr Biotite Grantte Iathon te, especially or Interviewer than enhedral hexagen- Anow, Sample dust is no Moerate choritization of Interviewer transition of crystals Joint surfaces. Mr red hema- commected chains of crystals Dut from Joints. Interviewer transition of crystals Joint surfaces. Mr red hema- commected chains of crystals Dut from Joints. Trace greenish Joint surfaces from to dreger than enhedrad hexagen- formatie " As above and be- by golden yellow to dreger than enhedrad hexagen- formatie " Trace pale greenish Joint surfaces for theorem formatie " " Trace pale greenish formatie " " Trace pale greenish formatie " " " formatie " " " formatie " " " formatie " " " <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>granite. Sample contained 1% white to</td> <td></td> <td></td>		 								granite. Sample contained 1% white to		
REfer Gamite Medium grey fine grained Trace golden chlorite alth or grained biotite. ¾ of granite alphane elongate crystals Diotite alth to estite. ¾ of granite figuration the sepecially or all plates. Biotite occurs as joint surfaces. Mared hema-evenly distributed to inter-tite staining of rock 1-5 mm Ranite "al plates. Biotite occurs as joint surfaces. Mared hema-evenly distributed to inter-tite staining of rock 1-5 mm Carnite "an obve, sample dust is no-Moderate chloritization of transitiente." Carnite "intervals above and be-by golden yellow to dk-grn low." Carnite "intervals above and be-by golden yellow to dk-grn low." Dow. "intervals above and be-by golden yellow to dk-grn low." Dow. "intervals above and be-by golden pellow to dk-grn low." Dow. "intervals above and be-by golden pellow to dk-grn low." Dow. "intervals above and be-by golden pellow to dk-grn low." Dow. "intervals above." "intervals above." Dow. "intervals." "intervals."										light brown caliche.		
Fgr Biotite Granite forms elongate crystals biotite altd to earthy orarge Fgr Biotite Granite rather than eukedral hexagon-brown limonite, especially or alt of alt of an enter of the sumple dust is mo- even by dist. Biotite up to 50% replacement Carmite " As above, sample dust is mo- brown limonite, replacement Carmite " Distributed to inter- even by dist. Biotite. Up to 50% replacement Carmite " Liceably lighter colorr Corrante biotite. Up to 50% replacement Corrante Disotite. Up to 50% replacement Corrante Corranter greet Corrante Disotite. Up to 50% replacement Corrante Corranter greet Corrante Minor red length Corrante Minor red length Provn. Disotite. Up to 50% of dispare Solden yellow	10-20'	10,	=	6-8	10-15	.07	HEI	G, ani		Medium grey fine grained granite as above. Black bio	Trace golden chlorite alth of fine grained biotite. $\frac{1}{20}$ of	Occ 칠 때m limonite vnlt.
al plates. Biotite occurs as joint surfaces. Wk red heña- evenly distributed to inter- tite staining of rock 1-5 mm connected chains of crystals, out from joints. Camite Is above, sample dust is no- biotite. Up to 50% replacement than intervals above and be by golden yellow to dk-grn low. 25-35°. Lt bnn color brown. Contrasts with darker grey- brown. Contrasts with darker grey- replacing feldspars. PEfer Cranite PEfer Cranite Redium grey fine-grn granite 50% of chips are strongly of groundnass. PEfer Stronger or blow or chipte is alth to brow. Minor red hemetitic staining of from the color frace pale grn chloritic staining of groundnass. PEfer Cranite Minor red hemetitic staining of groundnass. May be fault (?) or bedrock/ titic alth May be fault (?) or bedrock/ titic alth May be fault (?) or bedrock/ titic alth				6-8	1	.04			e Granite	forms elongate crystals rather than enhedral hexagon-		
PEER Out from joints. commected chains of crystals, out from joints. cranite 'a shove, sample dust is no. Moderate chloritization of them intervals above and be-by golden yellow to dt-grn low. 25-35'. Lt brn color chain 'and the state above and be-by golden yellow to dt-grn low. 25-35'. Lt brn color chain 'and the state above and be-by golden yellow to dt-grn low. 25-35'. Lt brn color chain 'and the state above and be-by golden yellow to dt-grn low. 25-35'. Lt brn color chain 'and the clay fillow of above brown. 'and the clay fillow of above brown. 'ite clay fillow of above brown. 'ite clay fillow of above 'ite clay fillow of above 'ite clay fillow of above 'fift 'ite clay fillow of above			-					1		al plates. Biotite occurs as evenly distributed to inter-		
Reference As above, sample dust is no- Moderate chloritization of tranite Cranite ticeably lighter colored biotite up to 50% replacement Ithan intervals above and be- biotite.up to 50% replacement Ithan intervals above and be- biotite.up to 50% replacement Ithan intervals above and be- biotite.up to 50% replacement Ithan intervals above biotite.up to 50% replacement Ithan intervals filling voids or brown. contrasts with darker grey- brown. brown. brown. brown. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>connected chains of crystals.</td> <td></td> <td></td>										connected chains of crystals.		
PEEtgr than intervals above and be- by golden yellow to dd-grn blow. 25-35'. Lt brn color contrasts with darker grey- white clay filling woids or brown. connasts with darker grey- white clay filling woids or replacing feldspars. brown. Trace pale grn chlorit: allow oids or provide of the structure allow oids or provide of the structure allow oids or the structure allow oids or the structure and the structure of grown of the structure allow of grown of the structure allow of grown of the structure o	20-30' -	10,	:	6-8		0,		Granite	:	As above, sample dust is no- ticeably lighter colored	Moderate chloritization of biotite.up to 50% replacemenu	6 mm milky white quartz vein with red hematite and yellow-orange-brown earthy
Prefer Contrasts with darker grey- White clay filling voids or replacing feldspars. prown reace ale grn chloritic alt of feldspars. prese non red hematilic staining of feldspars. non red hematilic staining of feldspars. non red hematilic staining of feldspars. non red hematilic staining of fill contact (?) non red hematilic staining of feldspars. non red hematilic staining of fill contact (?) non red hematilic (50%). Hematilic foldspare. non red hematile to orange-brown pad fill contact (?) nut white to orange-brown on the low of the non red hematile foldspare.				6-89		.03				tham intervals above and be- low. 25-35'. Lt brn color	by golden yellow to dk-grn chlorite. Trace greenish	limonite selvages. 1 mm limonite cubes after py on some
Ref Trace pale grn chloritic altripars. If feldpars. Ninor feldpars. Rifer (ramite Ninor feldpars. Rifer (ramite Altripa are strongly Rifer (ramite altd. Biotite is altd to 30-35-much less sand-size Bioting and to Rifer (ramite altd. Biotite (30%) Rifer (ramite altd. Contact (7) Rifer (ramite (30%) thematite (30%) Right (ramite (20%) thematite (30%)										contrasts with darker grey- brown.	white clay filling voids or replacing feldspars.	joint surfaces. (See chipboard)
PEfer Minor red hematific staining PEfer " PEfer " Minor red hematific staining PEfer " PEfer " Medium grey fine-grn granite " Solution " Perceion " Pad fill contact " Medium adove " May be fault (?) " Date of Diss of all Diack Medic minerals.											Trace pale grn chloritic altr of feldspars.	
PEfgr (ramite " Medium grey fine-grn granite 50% of chips are strongly nas above. as above. altd. Biotite is altd to 30-35-much less sand-size goldan yellow dhorite (50%) fraction than above or below, or red hamatite (50%). Hema- May be fault (?) or bedrock/ titic altn causes rock to pad fill contact (?) turn white to orange-brown mafic minerals. mafic minerals.											Minor red hematitic staining of groundmass.	
PEfer Image: Cramite Medium grey inne-grn granite Jug, of chips are strongly as altor to as above. as above. 30-35 [*] -much less sand-size golden yellow chlorite (50%) fraction than above or below or red hematite (50%). Hema- May be fault (?) or bedrock/ titic altn causes rock to pad fill contact (?) inter white to orange-brown												
30-35'-much less sand-size golden yellow chlorite (50%) fraction than above or below or red hematite (50%). Hema- May be fault (?) or bedrock/ titic alth causes rock to pad fill contact (?) turn white to orange-brown mafic minerals. mafic minerals.	30-40	10.	:	6-80		.03	PÊı	(:ran	=	Medium grey fine-grn granite as above.	-	Wk to mod orange-brn earthy <u>limonite</u> on joints.
May be fault (?) or bedrock/ titic altn causes rock to pad fill contact (?) tuter white to orange-brown due to loss of all black mafic minerals.				6-80	35	. 04				30-35'-much less sand-size fraction than above or below.		
due to loss of all black mafic minerals.										May be fault (?) or bedrock/ pad fill contact (?)		
CORNE											due to loss of all black mafic minerals.	
	(I) ASSAYS EY	U.S. BOR	AX RESEARI	СН СОРРО	P.ATION,	ANAHEIM	, CA.					CORN & AHERN

STATE	
Mojave	
COUNTY	

Gold Basin

_ PROSPECT_

HOLE NO. GB-9

Arizona

PAGE 2 OF 3

MINERALIZATION	 Mod orange-brn earthy limonite on con- joints cutting the altd chips (5% 	i 1	_				Wk orange-brn earthy limonite on jts. Tr euhedral ½ mm hematite aft	_		<pre>ce td Occ limonite microveinlets (crackle vnlt cut through bleached rock.</pre>			As Above				z Above			I of Wk orange-brn earthy limmite on jts. te Occ limonite crackle microveinlets cut	through lighter colored gramite chips. ite	pars	As Above		Pink chips are highly fractured and cut te by limonite microveinlets.		nite ps a) CODN & ALEBN
ALTERATION	<pre>5% chlorite/hematite altd chips. Orange-brn chips con-</pre>	tain hematite and/or golden chlorite after biotite.	-	3 % hematite > chlorite altd chips. Altn as above.	5% of feldspar in medium grey granite are altd to cloudy	white clay. Minor chloritic altn in some chips.	5% hematite altd chips	Tr yellowish white clay altr of feldspar adjacent to	limonite coated jts.	5% overall altm of biotite grn chlorite			As Above	•			As above-med. gy granite Pink granite: biotite 50%	H 70	feldspars are pink-purple due to hematite staining.	Grey: wk 5% chlorite repl of W) biotite. Tr yellowish-white 0	clay repl. feldspar. Pink: Mod selective chlori	green stain in some felds	As Above e		10% altn as above. 90% hematitic altn: biotite	altd completely to dk grn chlorite or red hematite.	Loss of biotite plus limoni & hema. staining give chips	pink or orange color.
ROCK DESCRIPTION	Medium grey fine grained granite as above.			Granite as above. Possible fault 55-60'. Few large 4%''	chips. Abundant silty mater- ial - slightly more orange.		Granite as above						As above; Possible wk fault 90-95' - few large chips.	(No change noted in cutting sample.)	Occ megacrystal (6x10 mm) of orthoclase in sample.	•	Medium grey granite as above plus 2% coarse grained pink	granite w/.3 mm biotite clusters 2-3 mm qtz and fspr	and occ 10 mm fspr.	Medium grey fine grained granite (70%) mixed w/ (30%)	pink medium grained granite.		Medium grey granite as above As Above 5% pink med grained granite		Fine grained granite in Fault zone.	Abundant orange clay-sized material. Increased altn.		
ROCK TYPE	r Granite -	Fgr Biotite Granite		Granite "			Granite "						Cranite "				Granite "			 Two Granites			Granite _	Fgr Biotite Granite	Granite (Fault)			
	PEfggr																			PEfer	Twgr.							CA.
PPM PPM (1) Ng	<. 02	. 03		<. 02	<. 02		<.02	<.02	<.02	<.02	<.02	.05	.06	<.02	. 03	.03	.03	.03		60.	.06		.04	. 03	.03	.06		ANAHEIM, C
RECOVERY SAMPLE NUMBER (1)	CB-9 40-45 <	GB-9 45-50		GB-9 50-55 <	CB-9 55-60 <		GB-9 60-65 <	GB-9 65-70 <	GB-9 70-75 <	GB-9 75-80 <	GB-9 80-85 <	GB-9 85-90	GB-9 90-95	CB-9 95-100 <	GB-9 100-105	GB-9 105-110	GB-9 110-115	GB-9 115-120		GB-9 120-125	GB-9 125-130		GB-9 130-135	GB-9 135-140	CB-9 140-143	GB-9 145-150		(1) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM,
	Excl1nt			:			:		:		:		:		=		-			:			:		:			X RESEARC
INTERVAL	10,			.9			10'		10,		.o		10,		10,		10,			10,			10,		9			U. S. BOR
HOLE DEPTH	40-50'			.50-60			.02-09		70-80'		0-6-00		90-100		100-110'		110-120'	!		120-130'			130-140.		140-150'			(I) ASSAYS by

COUNTY Mojave STATE Arizona

Gold Basin

__ PROSPECT__

HOLE NO. GB-9

PAGE 3 OF 3

HOLE DEPTH	INTERVAL	- RECOVERY	INTERVAL RECOVERY SAMPLE NUMBER (1) AU	PPM (1) Au	PPM (1) Hg	-	ROCK TYPE	ROCK DESCRIPTION	ALTERATION	MINERALIZATION
150-160'	10'		GB-9 150-155	.02		Grani	Granite (Fault)	Fine grained granite in fault	10% grey granite w/ mod. repl of biotite by chlor All chine	Thin hematite or limonite microvein- ders cut all chine
			GB-9 155-160	.08					microfractured and "bleached" along veinlets.	Tr MOX
160						FAULT			90% hematite altd chips with destruction of biotite; either	
									replacement by chlorite or more commonly repl. by limon-	
									ite and/or hematite.	
160-170'	101		GB-9 160-165	.12	PEfggr	ggr. Granite	•	Medium grey fine grained granite (as above).	90% of chips w/ wk golden chlorite altn of biotite.	90% of chips w/ wk golden Moderate hamatite and limonite on jts in chlorite altn of biotite. strongly hematite altd gramite.
			GB-9 165-170	.06		Fgr Bi	Biotite Granite		10% pink hematitic altn w/loss of biotite.	Ir. black mineral w/ rectangular to an square cross-section, black metallic
										Juster, and red streak: Henatite (?) aft pyr.
										Mineral occurs w/ (calcite) on grey granite. (See chipboard 160-170).
170-180'	10		GB-9 170-175	.10		Granit	uite "	Greenish grey fine grained granite. (same rock as above,	90% greenish grey chips. Biotite 100% altd to dk-grn	Wk limonite on jts. Tr hem in micro-
			GB-9 175-180	.05						iractures.
180-190'	101		GB-9 180-185	.03					iracturing. Minor hematite on a few fracs, stains.	
			GB-9 185-190	.05					Some feldspars purkish orange 10% pink hematitic altn as in	
190-200'	101		CB-9 190-195	.03		Granite	=	Fine grained greenish grey to Predominantly hematitic alth orange granite.		Moderate orange-brn limonite on abdt jts. Tr hematite on microfractures.
			GB-9 195-200	.05					rsprs slightly yellowish due to limonite staining and deve	
200			200			FAULT			of yellow clay around bloy chlor crystals.	
200-210'	10,		GB-9 200-205	.03	PEfegi Tuor		Granite (breccia?)	rine grained gramite; sample predominantly crs sand-size	ntense removal of biotite. sprs pale grn due to incipi-	Moderate limonite on joints.
:			GB-9 205-210	60.	5 +1(?)		(Two Granites?)	2 mm chlor crystals and 4 mm b	4 um biotite altd to dk grn chlor.	
210-220'	.9		GB-9 210-215	.10			Lamprophyre	tive of medium gr granite.	Strong Limonte staining.	
			GB-9 215-220	.03				A tew chips of dk gy to black diabase occur at 210-220'.		
220-230'	.01		GB-9 220-225	Ć. 02						
			GB-9 225-230	.02						
230-240'	10,		GB-9 230-235	.02	PEfg	OWL	Granites	Predominantly time grained grey granite w/ lesser pink	WK Chloritization of fine grained biotite. Wk repl. by	wk limonice on jcs.
			GB-9 235-240	.03					nematite or Limonite.	
240 is	A.									
(I) ASSAYS by	U.S. BOR	IAX RESEARC	(I) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM, CA	, ANAH	EIM, CA.				v	CORN & AHERN

•

.

Arizona	Cor. Sec. 30 0
STATE	05'N., 85'E. of S.W. Cor. Sec. 30 0
Mohave	COLLAR COORDS. 705'
COUNTY	T. 28N R. 184
Gold Basin	B# 46 SECTION 30 1
PROSPECT	CLAIM
HOLE NO. GB-10	

Reverse Circ. ELEVATION 4600 HOLE SIZE 5 1.8"

SPUDDED 11-29-83 COMPLETED 12-1-83 DRILLER Comports Drilling Co. LOGGED BY Mike Rauschkolb

TOTAL DEPTH 360'

.

PAGE 1 OF 3

DRILL HOLE DESCRIPTIVE LOG

MINERALIZATION	ion Moderate limonite on joints			limonite re/ local tr hematite (usually alth of hiorite)	+			ite Weak limonite, occ. hematite on joints		wk.				limonitic joint faces	ti- As above.		te la	As above.							
ALTERATION	Strong hematite altn of biotite Tr chloritization		Moderate alth of biotite to polden vellow to dark freen	chlorite. Weak alth of hintite/	hematite.			Wk. chlorite altn of biotite	alth in a few feldspars	1.4	overatt yettowish rear	Moderate chloritization of the fine orained biorite-wk	but increased clay alth of feldsmars. Wk. hematite	altn. of biotite.	Moderate to strong chloriti-	zation of biotite. Wk-med clay alth of feldspar	Increasing overall hematite staining	As above.	-						
ROCK DESCRIPTION	Fine-grained reddish brown granite and weathered	debris.	Medium gray fine-grained pranite consisting of	intergrown ½-1 mm qtz feldsnar and biotite with	1% larger euhedral 2-4 mm	Fine grained biotite	really occurs as chains of crystals.	As above.				As above, increased	Feox staining		As above.			As above, with very large	chips V Cee card-cize chine are	lithic fragments (not non-	well fractured, but probably			-	
ROCK TYPE	Granite debris		Fine grained Bio-									30-165' sheared	"Crushed Zone"		Fgr. Biotite Granite As above.							-			
			HE for) 											PEfgr										
PPM PPM (1) us (1)	<.02	<.02	90	70				 .03	<.02			.02	.03		.02	. 03		.03		20.2					VAHEIM, CA
RECOVERY SAMPLE NUMBER 1	G8-10 0-5 <	A 01-2 01-10	CR-10 10-15	GB-10 15-20				GB-10 20-25	GB-10 25-30 <			GB-10 30-35	GB-10 35-40		CB-10 ;0-45	CB-10 45-50		GB-10 30-55	GB-10 35-60						(1) ASSAVS (1) I S BOBAX RESEARCH CORPORATION. ANAHEIM - CA
		LENT RECOV.																							C RESEARCH
INTERVAL	10,		20,									50'													
HOLE DEPTH	0-10		10-30									30-80													II ASSAYS by

PAGE 2 OF 3

•

IPPM ROCK TYPE .06 As abc. .03 FEfgr .03 Fefgr .03 Fefgr .03 Fefgr .03 Fefgr .03 Fefgr .04 Fer .05 Fefgr .05 Fefgr .06 Fer .07 Fefgr .08 Fefgr .09 Fefgr .010 Fefgr .02 Fefgr .03 Fefgr .04 Fer .02 Fefgr .03 Fer .04 Fer .05 Fefgr .06 Fer .07 Fer .08 Fer .09 Fer .010 Fer .02 Fer .03 Fer .04 Fer .05 Fer .06 Fer .07 Fer .08 Fer .09 Fer .010 Fer .02 Fer .03 Fer .04 Fer .02 Fer <th>SameLe NUMBER PPM IM IMM NOCK TYPE ROCK OF ESC INTION GB-10 $60-65$ $.06$ As above, $30-40'$ abundant GB-10 $60-55$ $.03$ PEE/gr Fgr. Biotite Granite As above, $30-40'$ abundant GB-10 $70-75$ $.02$ PEE/gr Fgr. Biotite Granite As above, $30-40'$ abundant GB-10 $75-80$ $.03$ P E PE PE GB-10 $75-80$ $.02$ PE PE PE PE GB-10 $85-90$ $.10$ P PE PE PE GB-10 $85-90$ $.10$ P PE PE PE GB-10 $85-90$ $.10$ PE PE PE PE GB-10 $95-90$ $.10$ PE PE PE PE GB-10 $95-90$ $.10$ PE PE PE PE GB-10 $95-90$ $.02$ PE PE PE PE</th> <th>IPPM FPM ROCK TYPE ROCK OESCRNPTON .06 A As above. 30-40' abundant .03 PEEgr Fgr. Biotite Granite As above. 30-40' abundant .03 PEEgr Fgr. Biotite Granite As above. 30-40' abundant .03 PEEgr Fgr. Biotite Granite As above. 30-40' abundant .03 PEEgr Fgr. Biotite Granite As above. 30-40' abundant .04 P PEEgr Fgr. Biotite Granite As above. 30-40' abundant .04 P P P P P .05 PEEgr Fgr. Biotite Granite After Chips of megacrystic P .02 PEEgr Fgr. Biotite Granite After Chips of megacrystic After Chips of megacrystic .02 P P After Chips of megacrystic After Chips of megacrystic .02 P P After Chips of megacrystic After Chips of megacrystic .03 .04 After Chips of megacrystic After Chips of megacrystic After Chips of megacrystic .04 .05 .04<!--</th--></th>	SameLe NUMBER PPM IM IMM NOCK TYPE ROCK OF ESC INTION GB-10 $60-65$ $.06$ As above, $30-40'$ abundant GB-10 $60-55$ $.03$ PEE/gr Fgr. Biotite Granite As above, $30-40'$ abundant GB-10 $70-75$ $.02$ PEE/gr Fgr. Biotite Granite As above, $30-40'$ abundant GB-10 $75-80$ $.03$ P E PE PE GB-10 $75-80$ $.02$ PE PE PE PE GB-10 $85-90$ $.10$ P PE PE PE GB-10 $85-90$ $.10$ P PE PE PE GB-10 $85-90$ $.10$ PE PE PE PE GB-10 $95-90$ $.10$ PE PE PE PE GB-10 $95-90$ $.10$ PE PE PE PE GB-10 $95-90$ $.02$ PE PE PE PE	IPPM FPM ROCK TYPE ROCK OESCRNPTON .06 A As above. 30-40' abundant .03 PEEgr Fgr. Biotite Granite As above. 30-40' abundant .03 PEEgr Fgr. Biotite Granite As above. 30-40' abundant .03 PEEgr Fgr. Biotite Granite As above. 30-40' abundant .03 PEEgr Fgr. Biotite Granite As above. 30-40' abundant .04 P PEEgr Fgr. Biotite Granite As above. 30-40' abundant .04 P P P P P .05 PEEgr Fgr. Biotite Granite After Chips of megacrystic P .02 PEEgr Fgr. Biotite Granite After Chips of megacrystic After Chips of megacrystic .02 P P After Chips of megacrystic After Chips of megacrystic .02 P P After Chips of megacrystic After Chips of megacrystic .03 .04 After Chips of megacrystic After Chips of megacrystic After Chips of megacrystic .04 .05 .04 </th
PPW FPW .06 NOCK TYPE .03 FEF .03 FEF .03 FEF .03 FEF .03 FEF .04 FEF .05 FEF .06 FEF .07 FEF .08 FEF .09 FEF .01 FEF .02 PEF .02 FE .02 FE .02 FE .03 FE .04 Fe .05 FE .06 Fe .07 FE	samele Numeen (1)Au (1)Hy PPM (1)Hy ROCK TYPE (1)Au (1)Hy ROCK TYPE (2B-10 6D-65 .06 (1)Hy Figr. Biotite Granite (2B-10 70-75 .02 (2FEgr Figr. Biotite Granite (2B-10 85-90 .10 (2B-10 90-95 .02 (2FEgr Figr. Biotite Granite (2B-10 90-95 .02 (2FEgr Figr. Biotite Granite (2B-10 100-105 < .02 (2FEgr Figr. Biotite Granite (2B-10 100-105 < .02 (2FEgr Figr. Biotite Granite (2B-10 100-105 < .02 (2FEgr Figr. Biotite Granite (2B-10 100-115 < .02 (2FEgr Figr. Biotite Granite (2B-10 100-115 < .02 (2FEgr Figr. Biotite Granite (2B-10 100-115 < .02 (2FEgr Figr. Biotite Granite (2B-10 110-115 < .02 (2FEgr Figr. Biotite Granite (2FEgr Figr. Biotite Granite (2B-10 110-115 < .02 (2FEgr Figr. Biotite Granite (2B-10 110-115 < .02 (2FEgr Figr. Biotite Granite (2B-10 110-115 < .02 (2FE Figr. Figr. Biotite Granite (2B-10 110-115 < .02 (2FE Figr. Figr. Biotite Granite (2FE-10 110-115 < .02 (2FE Figr. Figr. Biotite Granite (2FE-10 110-115 < .02 (2FE Figr. Figr. Biotite Granite (2FE-10 110-115 < .02 (2FE Figr. Figr. Biotite Granite (2FE-10 110-115 < .02 (2FE Figr. Figr. Biotite Granite (2FE-10 110-115 < .02 (2FE Figr.	RECOVERY SAMPLE <number< th=""> IPAM PAM ROCK TYPE CB-10 $60-65$ 0.6 0.6 10.4 10.4_{00} 10.4_{00} CB-10 $60-65$ 0.6 $PEEFE$ Fgr. Biotite Granite CB-10 $70-75$ 0.2 $PEEFE$ Fgr. Biotite Granite CB-10 $75-80$ 0.5 $PEEFE$ Fgr. Biotite Granite GB-10 $80-85$ 0.4 $PEEFE$ Fgr. Biotite Granite S0X of CB-10 $80-95$ 0.2 $PEEFE$ Fgr. Biotite Granite S0X of CB-10 $90-95$ 0.2 $PEEFE$ Fgr. Biotite Granite S0X of CB-10 100 0.2 $PEEFE$ Fgr. Biotite Granite S0X of CB-10 100 0.2 $PEEFE$ Fgr. Biotite Granite S0X of CB-10 $100-105 < 0.2$ $PEEFE$ Fgr. Biotite Granite CB-10 $100-105 < 0.2$ $PEEFE$ $PEEFE$ Fgr. Biotite Granite CB-10</number<>
IPPM PPM .06 .05 .03 .05 .02 PEEEgr .03 .05 .04 .05 .05 PEEEgr .02 PEEgr .03 .03	SAMPLE NUMBER IPAM IDAU IPAM IDAU CB-10 60-65 .06 PEEF Fgr. CB-10 50-75 .02 PEEF Fgr. CB-10 70-75 .02 PEEF Fgr. CB-10 70-75 .02 PEEF Fgr. CB-10 80-85 .04 PEEF Fgr. CB-10 80-95 .02 PEEF Fgr. CB-10 80-95 .02 PEEF Fgr. CB-10 95-90 .10 (10 PEEF Fgr. CB-10 95-90 .02 PEEF Fgr. Fgr. CB-10 95-100 <.02	RECOVERY SAMPLE <number< th=""> (1)Au FPM CB-10 60-65 .06 PEE Fgr CB-10 65-70 .03 PEE Fgr CB-10 75-80 .05 PEE Fgr CB-10 75-80 .05 PEE Fgr CB-10 75-80 .05 PEE Fgr CB-10 80-85 .04 PEE Fgr 50% CB-10 80-85 .04 PEE Fgr 50% CB-10 80-95 .02 PEE Fgr Fgr 50% CB-10 80-95 .02 PEE Fgr Fgr 50% CB-10 90-95 .02 PEE Fgr Fgr Fecory CB-10 100-105 <.02</number<>
(1)AW (1)H9 .03 .03 .02 .02 .02 .02 .02 .02 .02 .02	амисте ичивея (1) м (1) ну савание ичивея (1) м (1) ну сав-10 60-6506 сав-10 65-7003 сав-10 70-7502 сав-10 80-8504 сав-10 80-8504 сав-10 80-9502 сав-10 85-9010 сав-10 95-100 <.02 сав-10 95-100 <.02 сав-10 95-100 <.02 сав-10 10-115 <.02 сав-10 10-115 <.02 сав-10 115-120 <.02 сав-10 11	RECOVERY SAMPLE NUMBER FM FM CB-10 65-70 .06 .01140 CB-10 70-75 .02 .02 CB-10 70-75 .02 .02 CB-10 70-75 .02 .02 CB-10 70-75 .02 .02 CB-10 75-80 .05 .04 CB-10 85-90 .10 .02 50% CB .02 .02 .02 50% CB-10 85-90 .10 .02 50% CB-10 95-100 <.02
(1)Aw .03 .03 .05 .05 .05 .02 .02 .02 .02 .02 .02 .02 .02	SAMPLE NUMBER (1)AU GB-10 60-65 .06 GB-10 65-70 .03 GB-10 75-80 .05 GB-10 80-85 .04 GB-10 85-90 .10 GB-10 93-95 .02 GB-10 93-95 .02 GB-10 93-95 .02 GB-10 93-95 .02 GB-10 135-110 <.02 GB-10 135-110 <.02 GB-10 115-120 <.02 GB-10 115-120 <.02 GB-10 115-120 <.02 GB-10 115-120 <.02	RECOVERY SAMPLE NUMBER IDM GB-10 65-70 .06 GB-10 75-80 .03 GB-10 75-80 .05 S0Z of GB-10 85-90 .10 FOCMAL GB-10 93-95 .02 FOCMAL GB-10 93-95 .02 Frecov GB-10 93-95 .02 Frecov GB-10 100-105 <.02
		RECOVERY S 50% of 0 50% of 0 50% of 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mohave

COUNTY

Arizona

STATE___

Gold Basin _ PROSPECT___

HOLE NO. GB-10

Arizona
STATE
Mohave
COUNTY
Gold Basin
PROSPECT
GB-10
HOLE NO.

PAGE 3 OF 3

MINERALIZATION	Wk jointing - limonite coated fractures		joints				 	Rock is well fractured, but limonite coats only a few of the joints.				220 clay zone and 220-225 is light tan with minor limonite st.							No indicated mineralization.	5										CORN & AHERN
ALTERATION	Decreased altn similar to 140-150' Wk chloritization	of biotite Wk repl of biotite/chlor by	limonite and/or lesser hematite.	Large feldspar crystals are fractured but 75% are clear	Some cloudy yellowish white alth of feldspars. Wk.	limonitic staining.	Very weak chloritization of fine grained biotite.	Feldspars are occasionally cloudy.	165-200 Black chloritic altn. noted			Weak chlorite & clay alteration. Rock is	lighter colored than						255- Variable increase in black chlorite and hematitic	stain. Rock gets denser with less intense alteration	with increasing depth.			Prominent hematitic	stained zone 290-305 ft.					
ROCK DESCRIPTION	As above						Medium gray fine grained	Granite must be well shattered since sample	consists of 1/2-3/4" coarse pebbles	Only 1 tablespoon of sand and silt /cup of sample.	(Hole is caving and packing around bit.)	Medium gray fgr biotite	Bramte						Granite is similar to above but is darker and exhibits	a variable dark grayish red	30-50% of granite is fine									
ROCK TYPE	For Biotite Granite	- Fault	1				For Biotite Cramite					Fer Biotite Granite	þ						Fgr Biotite Granite					For Biotite Granite						
							DEfor					PEfer					_		PEfgr					PEfor						CA.
рР (1) Ма Ач (1) На	2	20.0		< 23	< 0.2	. 02	< 02	.03	.		<.02	6	20.2	260.	×:02	-04	(. 02 02	.02	.03 02	90.	.02	× 02 × 02	.02	<.02 .02	5.02 5.02	<. 02 <. 02	<.02 <.02	<.02 .02	ر: 20 02	
SAMPLE NUMBER (1) Au									C6T-06T 0T-99		GB-10 195-200 <	CB-10 200-205 €	CB-10 205-210 <			30-230-235 30-235-240		B-10 245-250 4	10 255-260	10 265-270	CB-10 275-280 <	(B-10 285-290 <	GB-10 295-300 <				CB-10 330-335			U.Š. BORAX RESEARCH CORPORATION, ANAHEIM,
RECOVERY					and a	NCCUV.		RECOV.																						AX RESEAR
INTERVAL					8								8	 					151	;			_	103	8		_			
HOLE DEPTH					002-CQT							200 011	CC2-002						765-300	200017				020 000	000-000				The is The	SAV

1	1		1
Arizona	CLAIM CB/ 49 SECTION 30 T. 28N R. 18M COLLAR COORDS. 1175'N., 350'E. Of S.W. Cor. Sec. 30	HOLE ANGLE Vertical	LOGGED BY Russell M. Corn
STATE	350'E. of	HOLE ANG	LOGGED BY
	1175'N.,		
COUNTY Mohave	COLLAR COORDS.	Reverse Circ.	Comors
COUNTY) <u>181</u>		- סאוררבא
	- 28N R.	5 1/8"	12-5-83
Gold Basin	SECTION 30 T	ELEVATION 4560 HOLE SIZE 5 1/8"	SPUDDED 12-2-83 COMPLETED 12-5-83 DRILLER CONDUS
r Gold	1 49	N 4560	12-2-83
_ PROSPECI	CLAIM G	ELEVATIC	SPUDDED
GB-11			
HOLE NO. GB-11			

DRILL HOLE DESCRIPTIVE LOG

LOGGED BY Russell M. Corn

PAGE 1 0F 2	MINERALIZATION	Weak limonite stain	in shear zone 0-25 ft.		25-120' No indicated mineralization.											120-135' Considerable limonite after Menurite			Minor limonite after	vfg pyrite.			Camplete oxidation.			CORN & AHERN
	ALTERATION	Rock is bleached	with fspars altd to clays & biotite to light chlorite	and minor ciderite.	Dark color is caused by	black chlorite alteration	as well as dark qtz. Minor clav and siderite	alteration.								Clay, chlorite and siderite	alteration.		Variable clay	siderite and hematite	siderite and hematite	localized on fracts.				0
	ROCK DESCRIPTION	light gray to tan fine-er. biotite granite			Med. to dark gray fine-grained equi.gr.	granite chips exhibit 40% fine gr.	dark colored qtz, 10% vfg biotite and some segrega-	tions of cser qtz and white fspar.			-					Fine chips only	of bleached limonite stained	fgr. granite	Chips are mixed light and dark prav and tan	fine-grained granite as						
	ROCK TYPE	Fine-grained biotite oranite			Fine-grained biotite granite										•	120-135' Prominent	shear zone		Fine-grained biotite granite	variable	shearing from	135-240'				
		PEfer			PEfgr											PCfgr			 PEfgr							·
	PPM PPM (1) Au (1)	.02	∧. 02 ∧. 02	. 02	 <.02 <.02	.02	.04 .02	.02	. 02 . 02	.02 .02	. 02 . 02	.06 07	<.02 6.02	. 02		<· 02	<. 02	<.02	 <. 02	:.02 2.31	.02 .02	.07 .02	<.15 <.02	.02 .02	≺.02 <.02	АНЕІМ, СА
TOTAL DEPTH 300'	SAMPLE NUMBER		GB-11 10-15 <		(⊞-11 25-30 < (⊞-11 30-35 <			55-60 60-65				ע ו		GB-11 115-120 <		GB-11 120-125 <	Œ-11 125-13¢ <	GB-11 130-13\$<	135-140		GB-11 150-155 < GB-11 155-160 <	GB-11 150-165 < GB-11 155-170 <	CB-11 170-175 CB-11 175-180 <	CB-11 130-185 < CB-11 135-190 <	CB-11 130-195 < CB-11 135-200 <	(I) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM, CA
TOTAL	L RECOVERY	000 000	RECOV.																							AX RESEAR
	INTERVAL	25'			951											15'			65'							y U.S. BORI
	HOLE DEPTH	0-25			25-120											120-135			135-200							(I) ASSAYS b

40' 0000 Ga-11 200-205 < 0.2		VTERVAL	RECOVERY	INTERVAL RECOVERY SAMPLE NUMBER (1) AU		РРМ (I) Нg	ROCK TYPE	ROCK DESCRIPTION	ALTERATION	MINERALIZATION
Image: statute of statute variable of statute variable variable <td< td=""><td>00-240</td><td>40,</td><td>800</td><td>GB-11 200-205</td><td>2</td><td></td><td>Fine- biot:</td><td>Fine-gr. equigran. granite with 40% dark qtz and</td><td>Variable clay</td><td>Minor limonite after.</td></td<>	00-240	40,	800	GB-11 200-205	2		Fine- biot:	Fine-gr. equigran. granite with 40% dark qtz and	Variable clay	Minor limonite after.
Image: Statuting in the			RECOV.	205-210	<.02			variable vfg biotite.	siderite and hematite	vfg pyrite
Image: black in the state of the state				GB-11 210-215	<.02		200-240 Variable		siderite and hematite	calcite noted as
ctope integratined bloch integration integration r integratined bloch integration integration r integratined bloch integration integration r integration integration integration r integration integration integration r integration integration integration integration integration integration integration							Shearing		along fracts.	a fracture coating
Cige Fine-grained blottie Med. to dark gray Moderate black Minor 1 Cige Fine-grained blottie Fine-grained blottie Minor 1 Image: Standard equiperation of the standard equiperation				GB-11 220-225	<.02				Biotite altd. to light colored chlorite	
Cóger Fine-grained blottle Medi Minor 1 Cóger Fine-grained blottle Medi Minor 1 I Proper Medi Medi Medi I Propei				CB-11 225-230	<.02					
Criper Fine-grained blotte Medic to dark gray fine-grained blotte Minor 1 P P P P P Brantte Fine-grained substration Minor 1 P P P P P P P				GB-11 230-235	<.02					
Cfgr Fine-grained blotte Medi. to dark gray Moderate black Minor 1 Cfgr Fine-grained blotte file-grained equigram. Moderate black Minor 1 P Eranite In-13X blotte chloritic altn. after. P P Eranite In-13X blotte chloritic altn. after. P P P Eranite Minor 1 after. P P P P Brante Minor 1 P P P P Brante Minor 1 P P P Brante Minor 1 after. P P P P Brante Minor 1 P P P Brante Minor 1 after. P P P Brante Brante Brante P P P Brante Brante Brante P P P Brante Brante Brante P P P P Brante Brante P P P P Brante Brante P P P P Brante Brante P P P				GB-11 235-240	<.02					
Prigr Fine-graited biotite Wieo cast gray fine to cast gray grante Winor 1 1 1 10-135 biotite Minor 1 1 1 1 10-135 biotite Minor 1 1 1 1 10-135 biotite Minor 1 1 1 1 1 Minor 1 Minor 1 1 1 1 1 1 Minor 1 Minor 1 1 1 1 1 1 1 Minor 1 Minor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <										
grante grante du duzi du duzi du duzi entre grante grante du duzi entre du durite. No intil entre du durite econverted to dark durite du durite econverted to dark du	0-300	•09		GB-11 240-245		PCfgr	Fine-grained biotite		Moderate black	Minor limonite
minor siderite minor siderite and hematite No indi Separa are freeh with No indi result No indi				GB-11 245-250	<.02		granite	gramte. 40% qtz; 10-15% biotite	chloritic altn.	after. siderite
and hematite. and hematite. Image:		-		GB-11 250-255	<. 02			•	minor siderite	
Fights are fresh with Fights are fresh with bittite connected to dark ohloritie. ohloritie. <t< td=""><td></td><td></td><td></td><td>GB-11 255-260</td><td><. 02</td><td></td><td></td><td></td><td>and hematite.</td><td>No indicated mineralization.</td></t<>				GB-11 255-260	<. 02				and hematite.	No indicated mineralization.
biotite converted to dark				CB-11 260-265	.11				Fspars are fresh with	
cylotte:				GB-11 265-270	<.02				biotite converted to dark	
				GB-11 270-275					chlorite.	
				GB-11 275-280						
				GB-11 280-285	<.02					
	1			GB-11 285-290	<. 20 20					
				GB-11 290-295						
				GB-11 295-300						
	OT si 00									
v										
(
U										
5										
	ASSAYS by I	U. S. BORI	AX RESEA!	RCH CORPORATION	, ANAHE	IM, CA.				CORN & AHERN

PAGE 2 OF 2

HOLE NO. GB-11 PROSPECT Gold Basin

COUNTY Mohave

Arizona

STATE

STATE Arizona	1810'N., 615'E. of S.W. Cor. Sec. 30	HOLE ANGLE Vertical
COUNTY Mohave	COLLAR COORDS. 1	Reverse Circ.
HOLE NO. GB-12 PROSPECT Gold Basin COUNTY	NM 5M 50 12 NM 5W 5W R. 18W CLAIM GB#12 SECTION 30 T. 28N R. 18W	ELEVATION 4550 HOLE SIZE 5 1/8"

DRILL HOLE DESCRIPTIVE LOG

LOGGED BY Russell M. Corn

TOTAL DEPTH 230'

SPUDDED____12-5-83__ COMPLETED__12-6-83__ DRILLER . CONDIS

PAGE _____ OF _____

MINERALIZATION	lization.							exhibits hematite and limonite stain with	70-75 purple fluorite noted in cuttings.	1.10 to .20 inch	the fluorite.								imonite after vfg				
WINER	No indicated mineralization.						55-90 Shear zone			Fluroite occurs as a .10 to .20 inch	not associated with the fluorite.									shearing.			(
ALTERATION	Weak clay altn.	dark color indicates vgf		-			Fspars altered to clays, hiorite to 1t colored	chlorite. Siderite is both disseminated	and on fractures.						95-115 Mark alteration				Clay, chlorite and	and biotite			
ROCK DESCRIPTION	Fine-gr, med to dark	gray equigranular granite	with 40% dark colored qtz. 50% fspars &	10% biotite			Light gray, tan & pink colored altered	fine-grained granite sheared with most	of sample as fines.						Med. to dk. gray fine gr. granite that is	not sheared			Light gray and tan sheared fine-grained	granite as above.			
- к ТҮРЕ	Fine-grained biotite	granite					55-95 Shear zone	Fine-grained biotite	0						Fine-grained biotite granite				115-140 Sheared biotite	granite			
- 9	PEfgr						PEfgr								PEfgr				 Refer				
PPM PPM (1) Au (1)	<. 02 02	5.02	.02	<.02 03	v 02	.05	.10	.02	0.11	<.02	.03	<.02	<.02	.06	. 08	. 22	.04	.07	.02				NAHFIM. CA
æ			1		GB-12 40-45 4 GB-12 45-50	1	CB-12 55-60	GB-12 60-65	cB-12 65-70	GB-12 70-75 <	GB-12 75-80	GB-12 80-85 <	CB-12 85-90 <	GB-12 90-95	GB-12 95-100	GB-12 100-105	GB-12 105-110	GB-12 110-115	GB-12 115-120				(1) ASSAYS by U.S. BORAX RESEARCH CORPORATION - ANAHEIM - CA
RECOVERY	000																						C RESEARCH
INTERVAL	55'						40°								20'				25'				U S RORAX
HOLE DEPTH	0-55						55-95								95-115-				115-140				ASSAYS U

. Gold Basin
PROSPEC1
NO. GB-12
HOLE

COUNTY Mohave STATE Arizona

.

PAGE ____ OF ____

HOLE DEPTH	INTERVAL	RECOVER	INTERVAL RECOVERY SAMPLE NUMBER (1) AU		РРМ (1) Нg		ROCK TYPE	ROCK DESCRIPTION	ALTERATION	MINERALIZATION
140-165	25'	600	GB-12 140-145	5 <. 02	H	PEfgr 1	Fine-grained biotite	Variably sheared fine- grained granite as above.		[[cmm]ete_nvidation
		RECOV.	GB-12 145-150	.11			granite	Chips are a mixture of light and dark gray colored		Limonite after vfg pyrite
			GB-12 150-155	5 <. 02				altered granite		Most of limonite is on fractures. Some
			GB-12 155-160	. 07						
			GB-12 160-165	. 07						
165-120	5		CB-12 160-165	0.7			165-170 Sheared Zone	Dominantly yellow limonite stained clay	Clay alteration	165-170 Limonite stain after. vfg pyrite
						Ť	sheared	Mixed light to med. or av	Feldenare are altered to	Purple fluorite noted in cuttings. Minor limmite after the
170-230	•09		GB-12 170-175	5 < .02	9E	PEfgr 1		altered fine-grained granite	clays and biotite is altered	
			GB-12 175-180	.15			e granite	40% dark colored qtz., 50% light altd. fspar.	to sericite or light colored chlorite.	
			GB-12 180-185	. 05				and 10% altd. biotite		
			GB-12 185-190	. 56						
			GB-12 190-195	. 22						
			GB-12 195-200	<.02						
			GB-12 200-205	<.02						
			GB-12 205-210	.10					Chips indicate that clry	
			GB-12 210-215	. 25					alteration is more intense	210-230 Fracture surfaces are coated
			GB-12 215-220	.12					than in the interval alove	with prominent bright red hematite.
			GB-12 220-225	. 05					100 feet.	
			GB-12 225-230	.18						
230 is TD.										
(I) ASSAYS by	U. S. BOR/	AX RESEAI	(I) ASSAYS by U.S. BORAX RESEARCH CORPORATION, ANAHEIM, CA	, ANAHEI	M, CA.				v	CORN & AHERN

1		1	1
a	Sec. 30	al	LOGGED BY Russell M. Corn
Arizona	S.W. Cor.	Vertio	Russel
STATE	00'E. of	HOLE ANGLE Vertical	GGED BY_
ST	2410'N., 8	웃	ده
Mohave	AR COORDS.	Reverse Circ.	nors
COUNTY Mohave	C0LL/	R	ERCON
COUN	R. 18W	-	DRILL
	. 28N I	5 1/8"	12-8-83
d Basin	NM SW NM SW CLAIM <u>GB448</u> SECTION <u>30</u> T. 28N R. 18W COLLAR COORDS. 2410'N., 800'E. of S.W. Cor. Sec. 30	ELEVATION 4480 HOLE SIZE 51/8"	SPUDDED <u>12-7-83</u> COMPLETED <u>12-8-83</u> DRILLER Comore
OSPECT Gold Basin	148	4,40	12-7-83
PROSPECT	CLAIM GB	ELEVATION	SPUDDED
GB-13			
HOLF NO CB-13			

DRILL HOLE DESCRIPTIVE LOG

TOTAL DEPTH 160'

PAGE 1 OF 1

HOLE DEPTH	INTERVAL REC	RECOVERY SA	SAMPLE NUMBER	PPM [1] Au	РРМ (1) Нg	ROCK TYPE	ROCK DESCRIPTION	ALTERATION	MINERALIZATION
0-65	65' 00	000	GB-13 0-5 GB-13 5-10	<.02 .04	PEfer	Fine-grained biotite granite	Med. to dark gray equigr. fire-gr. granite with 40%	Relatively weak alteration.	Variable, relatively weak siderite and hematite on fractures.
			GB-13 10-15 GB-13 15-20				drk. qtz grains, 50% fspar, and approx. 10% altd.	Dark color is caused by	
			GB-13 20-25 GB-13 25-30	1			biotite	vfg black chlorite.	
			CB-13 30-35 CB-13 35-40	V					
			CB-13 40-45 CB-13 45-50						
			CB-13 50-55 CB-13 55-60	<.02 <.02					
			GB-13 60-65	<.02					
65-105	,07		GB-13 65-70	<.02	PEfgr	65-105 "Crushed Zone"	Bleached light gray to lt. tan fine grained granite	All feldspars are altered to white clays. Siderite	Disseminated vfg limonite after pyrite. Disseminated siderite.
			GB-13 70-75	.03		Intense shearing	that is intensely sheared and thoroughly altered to	replaces clay and former	Limonite noted on fracture surfaces
			GB-13 75-80	<.02			clays	biotite.	
		Ť	GB-13 80-85	<.02					
			GB-13 85-90	.10					
			GB-13 90-95	.04					
			GB-13 95-100	0 <.02					
			GB-13 100-10	5 . 02				•	
105-160	55'	Ť	GB-13 105-11	10	PEfgr	Variably sheared	Grayish pink colored fine-	Feldspars are altered to white clays. Biotite is	 Minor limonite after. vfg dissem. pyrite.
			CB-13 110-11 CB-13 115-12	20 . 12 20		fine-grained granite	grained granite as above.	altered to sevicite or lt green chlorite.	Siderite occurs as thin seams and veinlets.
			CB-13 120-12 CB-13 125-130	27 AA.02			Alteration is variable and	Chips show hematite stain on fractures.	Minor fine-grained diesem. hematite.
			CB-13 130-135 CB-13 135-140	35 - 08 0 < 0 2			indicates variable shearing.	Alteration intensity decreases with increasing	
			GB-13 140-14 3B-13 145-15	10.04			Color darkens to med. gray	depth.	
			CB-13 150-155 CB-13 155-16q<	55 .03 50 .02			toward bottom of hole.		
160 is TD									
(1) ASSAYS by	U.S. BORAX RE	ESEARCH	U.S. BORAX RESEARCH CORPORATION, ANAHEIM,	, ANAHEIM,	CA.			V	CORN & AHERN

•

.

STATE Arizona	l. of S.E. Cor. Sec. 25	HOLE ANGLE Vertical	ΒΥ
STATE	1.0181	HOLE A	LOGGED BY
COUNTY Mohave	N. 2430'N	Reverse Circ.	
COUNTY	19W C		DRILLER
	. 28N R.		12-19-83
Gold Basin	SECTION 25 T	LEVATION 4700 HOLE SIZE 5 1/8"	UDDED <u>12-8-83</u> COMPLETED <u>12-19-83</u> DRILLER <u>Cornors</u>
ECT Go	GB#53	TION 4700	ED 12-8-83
PROSP	CLAIM	ELEVA	SPUDD
DIF ND GB-14			
HOI F NO			

•

TOTAL DEPTH 320'

DRILL HOLE DESCRIPTIVE LOG PAGE 1 OF 2

MINERALIZATION			Minor siderite on fractures.			r. rite					Siderite is mostly on fractures.								160-180 Prominent limonite stair after siderite and vfg purite. Siderite is	both dissem. and on fracts. throughout sheared interval.	to clay.			8	(
ALTERATION	Clays & chlorite may be weathering		Black chloritic alt. of biotite			Weak clay altn. of fspar. biotite altered to chlorite	and siderite.		Feldspars altd. to clay near fractures										160-180 Intense clay & chlorite alteration.		180-250 Plag. altd. to o Kenar is unaltered			Partial altn. of biotite to chlorite.	
ROCK DESCRIPTION	Light brown weathered fine-grained granite		Dark gray fine-gr. granite 402 dark quartz. Some	segregations of cse white feldspar		Light-gray, med to cse grained biotite granite.	Some shearing suggested		Med. gray to light brown fine-grained granite.	40-50% qtz. and fspar with 10% hiotite		-							Prominent shearing		180-200 Cse-grained Dark gray & brown cse gr. Miorite granite granite	cse Kspar and biotite	Lamprophyre and granite frags	210-250 Mixed fragments of cse-gr. biotite granite &	gneiss
ROCK TYPE	Fine-grained biotite granite		Fine-grained biotite pranite	1		Cse grained biotite granite			Fine-grained biotite granite with variable	shearing indicated.									160-250 "Crushed Zone"	Fine-grained granite	180-200 Cse-grained		Lamprophyre	Cse-grained biotite granite and gneiss	
¥ B	PEfgr		Æfgr			 PEbgr			PEfgr										REEgr		PEbgr		ц	PEbgr	A.
PPM PPM (1) Au (1) Hg	<.02 <.02	-	<.02 .07	<.02 032	∧.02 ∧.02	< 02< 02	<.05 <.02		02 02 VV	02 V V V V	00 VV	66 V V	22 V V	03 V	A.02	005 VV		-11 <.02	92 7.7	0 0 0 0 0 0 0 0	20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20	20 V V	A. 02	ANAHEIM.
Y SAMPLE NUMBER	CB-14 0-5 CB-14 5-10		GB-14 10-15 GB-14 15-20	GB-14 20-25 GB-14 25-30	GB-14 30-35 GB-14 35-40	 GB-14 40-45 GB-14 45-50	CB-14 50-55 CB-14 55-60		CB-14 60-65 CB-14 65-70	GB-14 70-75 GB-14 75-80	CB-14 80-85 CB-14 85-90	GB-14 90-95 GB-14 95-100	GB-14 100-105 GB-14 105-110	CB-14 110-115 CB-14 115-120	GB-14 120-125 GB-14 125-130	CB-14 130-135 CB-14 135-140	CB-14 140-145 CB-14 145-150	GB-14 150-155 GB-14 155-160	CB-14 160-165	CB-14 170-175 CB-14 175-180	GB-14 180-185 GB-14 185-190	GB-14 190-195 GB-1/ 195-700	GB-14 200-205	CB-14 210-215 CB-14 215-220	(1) ASSAYS by U.S. BORAX RESEARCH CORPORATION. ANAHEIM. CA
AL RECOVERY	8000	RECOV.																							AX RESEAR
TH INTERVAL	10,		30,			20,		-	100'										-06						by U.S. BOF
HOLE DEPTH	0-10		10-40			40-60			60-160						!				160-250						(1) ASSAYS

PAGE 2 OF 2

MINERALIZATION			-					Siderite is relatively abundant and occurs both disseminated and as thin	seams and veinlets. Miror limonite after vfg pyrite.						ineralization.									IN & AHERN
		0													No indicated mineralization.									CORN
ALTERATION		230-250 Prominent Timonite	inters		Granite is only weakly altered.	Lamprophyre is altered to		Rock is bleached with substantial alt. of fspars	to clay					-	Little or no alteration is evident.	Darker color may be caused	by black chlorite.							
ROCK DESCRIPTION					Mixed frags, of dark gray-	with cse-gr. biotite granite		Med. gray to pinkish tan chips of coarse fspar and	qtz.						Med to dark gray coarse- grained granite.	Chips show .20 inch & larger grains of gtz &	fspär.							
ROCK TYPE		230-250 More intense chearing	911 10010			gr. biotite granite		Gneiss							Cse-grained biotite granite							-		
					E	e PEber)	PEgn							PEbgr						 	 	•	 •
M99 PPM	20	100	100	2	9	2	2	2	2	3	5	2	2		2	12	12	12	12	 	 	 		инеім, са
	-225 < . 0	-235 .0	-245 0.0	1. V UC2-	250-255 . 06	V	260-265 <.02	 265-270 <.02	270-275 <. 02	-280 .03	-285 . 05	-290 <. 02	290-295 <.02		295-300 <.02	300-305 <. 02	j-310 <. 02)-31\$<.02	-320 <. 6	 	 			TION, ANA
SAMPLE NUM	CB-14 220	GB-14 230-235 03	CB-11 240	Ch7 +T-99	CB-15 250.	GB-14 255-	GB-14 260	CB-14 265	GB-14 270	CB-14 275-28	GB-14 280-28	GB-14 285-290	GB-14 290		GB-14 295	GB-14 300	GB-14 305-310	CB-14 310-315	CB-14 315-320 <.02					U.S. BORAX RESEARCH CORPORATION, ANAHEIM,
RECOVERY						RECOV.																		(RESEARC
INTERVAL					151			30,							25'									U. S. BORAN
HOLE DEPTH					7EA. 7EE	CN7-007		265-295							295-320			I		320 is TD				(I) ASSAYS by

Arizona

STATE___

HOLE NO. GB-14 PROSPECT Gold Basin

.

COUNTY Mohave

	DRILL HOLE	UESCHIFIIVE LUG		PAGE
STATE Arizona	, 2010'W. of S.E. Cor. Sec. 25	HOLE ANGLE 90°	LOGGED BY	
COUNTY Mohave	T. 28N R. 19W COLLAR COORDS. 2010'N., 2010'W. of S.E. Cor. Sec. 25	5 1/8" Reverse Circulation	SPUDDED 12/14/83 COMPLETED 12/15/83 DRILLER Connors	
HOLE NO. GB #15 PROSPECT Gold Basin NJ SF	CLAIM GB #53 SECTION 25	ELEVATION 4780 HOLE SIZE 5 1/8"	SPUDDED 12/14/83 COMPLETED	TOTAL DEPTH 360'
HOLE NO. GB #15				

PAGE 1 OF 2

MINERALIZATION	No mineralization noted.															drough granite.										CORN & AHERN
ALTERATION	Weak hematite and siderite stain on fracts. Biotite is	chloritized and some dk.			40-60' some yellowish limon- itic clay noted		60-130' variable chlorite altn. Wk hematite and siderite		K Feldspars are generally fresh and unalt'd.					_	130'- increased siderite and hematite alt. biotite & fspr				Less intense siderite and clay alt below 200'. Bio is	alt. to dk chlorite. Rock darkens from chloritic alt'n.						
ROCK DESCRIPTION	Cse gr. Biotite granite, 10- Neak hematite and siderite 15% biotite-Feld and qtz $\frac{3}{2}$, stain on fracts. Biotite is	or larger xls. Mottled grn-gr color w/ siderite and hematit	stain.									-			Grey to dk grayish red fine- grained granite, qtz and	alt. biot and ispr. Chlorite and siderice have repl. any	biotite.		With increasing depth, the granite darkens in color.							
ROCK TYPE	0-130' Cse grained gneissic Biotite	granite								-					130' - Fine grained qtz rich bio granite		Fault.	150-160'. As above w/ frags lamp.	160'. Fine gr. qtz rich biotite granite							
	FEbgr														Refer			ц	PEfgr					 		
PPM PPM (1) AU (1) Hg		<.02 <.02	<.02 <.02	<.02 <.02	<.02 <.02	<.02 <.02	 < 02 < 02 < 02 	 ✓.02 ✓.02 ✓.02 	∧.02 ∧.02	∧.02 ∧.02	5 ξ .02 ⁻ 02	5 <. 02	V	0 <.02	× 03	140-145 <. 02 145-150 <. 02		5 <.02 0 <.02	5 < .02	5 02 0 02	5<.02 <.02	5.02 6.02	5 <. 02 0 <. 02			АМАНЕІМ, СА.
SAMPLE NUMBER	ទ	" 10-15 " 15-20		" 30-35 1	ភ	" 50-55 " 55-60	5				" 100-105		" .120-125	GB-15 125-130	2	140-14		CB-14 150-155 < " 155-160 <			" 180-18 " 185-19		" 200-20		" 230-23	U.S. BORAX RESEARCH CORPORATION, ANAHEIM,
RECOVERY	-																									RESEARCH
INTERVAL	40.				20'		70'							201				85'							_	U.S. BORAX
• НОГЕ ДЕРТН	0-40				40-60'		60-130'							130-150'		1	150'	150-235'								(I) ASSAYS by L

Arizona
STATE
Mohave
COUNTY

Gold Basin

__ PROSPECT___

HOLE NO. GB #15

PAGE 2 OF 2

20.0 Nucl (2010) Energy (2010) Energy (2010) </th <th>1 2 1</th> <th>RECOVERY S</th> <th>z</th> <th></th> <th>врм вн (1)</th> <th></th> <th>ROCK TYPE Failt</th> <th>ROCK DESCRIPTION</th> <th>ALTERATION</th> <th>MINERALIZATION</th>	1 2 1	RECOVERY S	z		врм вн (1)		ROCK TYPE Failt	ROCK DESCRIPTION	ALTERATION	MINERALIZATION
REfer Fine gr. article Oldor: Fine gr. article is fr. bio gran bio gran if fr. bio gran oldor: Fine gr. art to clay, sid and biorite: in " " in "		ا ت	GB-15 235		~		_		AL 4	
the crushed and fer bio gran & bio gran for bio gran for bio gran for bio gran for bio gran for bio gran for bio gran bio gran for bio gran for bio gran bio gran for bio gran for bio f		· ن	B-15 235-24		2		Fine gr. qtz-biotite granite. 235-300'	dix frags of med gry to tan color. Fine gr qtz & former	Abdt. Limonite alter siderite and subst siderite. All fract	Limonice arter siderice and some milky dtz frags. Bright red earthy
n. "" "" "" "" "" "" "" 280-295' Fault Zone "" "" 280-295' Fault Zone "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "" "							crushed zone. Mixed fgr bio gran &	fspr. alt to clay, sid and chlorite;	show sid. and hem. stain. Biotite conv. to chlorite.	hematite noted on some iract. Some limonite after pyrite noted on fracts.
" " " " " " <td></td> <td><u></u></td> <td></td> <td>45 × 02</td> <td>0101</td> <td></td> <td>Nixed f.gr. bio gran & granite gneiss</td> <td></td> <td></td> <td></td>		<u></u>		45 × 02	0101		Nixed f.gr. bio gran & granite gneiss			
				55 A. 02	0 0					
" " " " ":80-295" Fault Zone 280-295". Kock is completely tools. " ":80-295" Fault Zone 280-295". Kock is completely tools. " ":80-295" Fault Zone tools. " ":80-295" Consists. tools. " ":80-295" Consists. Solution- " ":80-300" Cranite Solution- " ":80-300" Cranite Solution- " ":80-305" Lamprophyre Boow Intereduction " ":80-305" Lamprophyre Boow Iamprophyre " ":80-305" Cranite 3:0-335" Dominantly green- " ":80-335" Lamprophyre Brow Iamprophyre " ":800" Cranite ":800" Solution- " ":800" Cranite ":800" Solution- " ":800" Cranite ":800" Solution- " :11 :800" Solution- <t< td=""><td></td><td></td><td>1</td><td>65 < 02 70</td><td>017</td><td></td><td></td><td></td><td></td><td></td></t<>			1	65 < 02 70	017					
coft: 280-295' Fault Zone 280-295' Fault Zone 280-295' Fault Sonly non- coft is only non- replaced mineral. 295-325' Granite 235-330' Granite 235-330' Granite 235-330' Granite 71 325-330' Granite 325-330' Granite 325-330' Granite 71 335-360' Granite 325-330' Granite 325-330' Granite 71 335-330' Granite 325-330' Granite 325-330' Granite 71 335-330' Granite 335-330' Granite 325-330' Granite 71 335-330' Granite 335-330' Granite 335-330' Granite 71 330-335' Lamprophyre above mixed w/ frags of gran- brow lamprophyre 71 330-335' Lamprophyre brow lamprophyre 71 330-335' Caraite grave and hard.				75 × 00	010					
Immute Immute Qtz is only non- replaced mineral. 295-335 Gneiss. grn., tan and qtz. Large frags show foliated rese qtz is fspr. 1 325-330'. Granite 325-330'. Granite gneiss as how foliated rese of grn- brn. Lamprophyre 11 325-330'. Granite 325-330'. Granite gneiss as how foliated rese 11 330-335'. Lamprophyre 335-330'. Granite gneiss as how fitags of grn- brn. Lamprophyre 11 330-335'. Lamprophyre 335-330'. Granite gneiss as how liamprophyre 11 330-335'. Lamprophyre 335-35'. Dominantly green- horn. Lamprophyre 11 330-335'. Lamprophyre 335'. Gereldspark quartz - minor biotite and chlorite. 11 335-360' Granite Minor biotite and chlorite. 11 335-360' Granite Minor biotite and chlorite. 11 335-360' Granite Rock is dense and hard.		Ĕ	38-15 280-20 " 285-29	85 A. 0	0.0		95' Fault Zone	280-295'. Rock is completely tan in color from siderite &		280-295°. Abdt. siderite. Lumonite after siderite & some earthy
235-325 Cranite 295. Frags are mottled grapping frags		-	" 290-2	95 <.02				limonite. Qtz is only non- replaced mineral.		hematite.
II Show Ioliated cse quz & tspr. II 325-330'. Granite 225-330'. Granite gneiss as II 325-330'. Granite 225-330'. Granite gneiss as II Diviss & Lamprophyre. above mixed w/ frags of gnr. II 330-335'. Lamprophyre bmLamprophyre II 330-335'. Lamprophyre bmLamprophyre II 330-335'. Lamprophyre brown Lamprophyre II 330-335'. Lamprophyre brown Lamprophyre II 330-335'. Lamprophyre brown Lamprophyre II 335-360' Granite brown Lamprophyre II 335-360' Granite brown Lamprophyre II 335-360' Granite brown Lamprophyre II Brown Isinger S quartz brown Isinger S quartz II Brown Isinger S quartz brown Isinger S quartz II Brown Isinger S quartz brown Isinger S quartz II Brown Isinger S quartz brown Isinger S quartz <		Ĩ-	GB-15 295-3	02 20 20 20	0	•	295-325' Granite Gneiss.	295'. Frags are mottled gry- grn, tan and qtz. Large frags	295 . Ulay, snior, wk sid & hematite on fracts.	295-320°. Siderice and nemacice on fracts.
T1 325-330'. Granite 325-330'. Granite gneiss as above mixed w/ frags of grn- brn. Jamprophyre T1 329-335'. Lamprophyre above mixed w/ frags of grn- brn. Jamprophyre T1 330-335'. Lamprophyre brn. Jamprophyre FEgn 335-360'. Granite 335'. Cse Feldspar & quartz FEgn 335'. Gneiss 335'. Cse Feldspar & quartz Pregn 335'. Gneiss 335'. Cse Feldspar & quartz III 335'. Gneiss 335'. Cse Feldspar & quartz Pregn 335'. Gneiss 335'. Cse Feldspar & quartz III 335'. Gneiss 335'. Cse Feldspar & quartz III 335'. Gneiss 335'. Cse Feldspar & quartz	1	\square	1	10 × 01 15 × 01	22			show tollated cse qtz & Ispr.	black chlorite.	
T1 325-330'. Granite 325-330'. Granite T1 Öneiss & Lamprophyre 325-330'. Granite T1 330-335'. Lamprophyre above mixed w/ frags of grn- Regn 330-335'. Lamprophyre brn. Lamprophyre Regn 335-360' Granite brown Lamprophyre Regn 335'. Cse Feldspar & quartz Ininor biotite and chlorite. brook is dense and hard. Ininor biotite minor biotite and chlorite.	1	1		20 4.0	1000				320'. Increased siderite alt.	
Interproprie Deminantly green- T1 330-335'. Lamprophyre Regn 335-360' Granite Regn 335-360' Granite Brown Lamprophyre brown Lamprophyre Regn 335-360' Granite Regn 335'. Cse Feldspar & quartz- minor biotite and chlorite. Book is dense and hard. Nock is dense and hard. Rock is dense and hard.			GB-15 325-3	30 <.0;	2	1 L	0'. Granite & lamrophyre.	325-330'. Gramite gneiss as above mixed w/ frags of grn-	Clay, chlorite, siderite & wk hematite alt.	
T1 330-335'. Lamprophyre T1 330-335'. Lamprophyre FEgn 335-360' Granite FEgn 3355-360' Granite Regn 3355'. Cse Feldspar & quartz minor biotite and chlorite. Rock is dense and hard. No No No No								brn. lamprophyre		
FEgn 335-360' Granite FEgn 335'. Cse Feldspar & quartz- minor biotite and chlorite. Nock is dense and hard. Nock is dense and hard.					2	ц	330-335'. Lamprophyre	330-335'. Dominantly green- brown lamprophyre	Clay, chlorite alt. in lamprophyre	
335'. Cse Feldspar & quartz minor biotite and chlorite. Rock is dense and hard. Nor biotite and chlorite.		1		10. ~ 01	2	Fegn	0' Granite Gneiss			
Rock is dense and hard. Rock is dense and hard. Rock is dense and hard.			GB-15 340-3	0.V V V V V V	2			1	wery art a. Chlorice and multi- or siderite and hematite.	
			" 350-3 " 355-3	355 < 0. 160 < 0.	4				Fsprs are pale bl-gm. color. Chloritic altm.	
Subsection of the section of the sec	1	1	ાં							
CORVERSION OF CO										
U CORVERSION CORVERSIO										
CORNER CONNER CO	1									
CORX S CORX S CO										
S CORVERSION S										
CORN &										
S CORS										
CORN &										
CAN & CORN &	1									
	1 12	EARCI	H CORPORATIC	ON, ANAH					C	

rizona	E. Cor. Sec. 25	Vertical	R. Corn
STATE Arizona	80'N., 2105'W. of S.	HOLE ANGLE Vertical	LOGGED BY
COUNTY Mohave	M 3B #53 . SECTION 25 T. 28N R. 19W COLLAR COORDS. 1680'N., 2105'W, of S.E. Cor. Sec. 25	Reverse Circulation	COMPLETED 12/18/83 DRILLER CONDUS
COUNTY	19W		DRILLER
	T. 28N R.	5 1/8"	12/18/83
Basin	SECTION 25	ATION 4780 HOLE SIZE 5 1/8"	
PECT Gold Basin	3B //53 .	TION 4780	DE02/16/83
PROSP	CLAIM	ELEVA	SPUDDI
HOLE NO GB-#16 PROSPI			

TOTAL DEPTH 360'

PAGE 1 OF 2

•

DRILL HOLE DESCRIPTIVE LOG

			Mdd	Mdd	BOCK TVBE	BOLV DESCRIPTION	AI TEBATION	MUNEBAL IZATION
2 VAL	ř.	SAMPLE N	(I) Au	(I) Hg		NOCK DESCRIPTION		MINENALIZATION
10,	COOD RECOV.	GB-16 0-5	<.02 .07	Pegngr	Granite Gneiss	Mottled green-gray and tan fragments of foliated fspr	LLAY, CNLORITE & SIGERITE ALT Feldspars are altd to clay &	About siderite, but no other indication of mineralization
							ak grn chlorite	
40,		GB-16 10-15 " 15-20	.05		10-50' sheared Granite Cheiss	10-50' few cse frags sample almost all fines	Frags are cut by mum. thin seams of siderite.	
		" 20-25 " 25-30					110-50' increased clay & sider: S ite altn. Approx 30% of chips	Siderite is abdt, minor hematite noted
		. 30-35					show feldsp completely repl. by siderite.	
							•	
20,		GB-16 50-55 " 55-60			Granite Gneiss	Similar to gneiss above but with less intense shearing	Feldspars show pale green sericite (?)-chlorite altn.	Thin seams of siderite cut quartz and feldspar.
		" 60-65 " 65-70	EE . 06 .				Yellowish clay (gouge?) is fairly common.	
		" 70-75 " 75-80	. 33 . 14					
			90.0					
			×02 202			=	Clay, chlorite, siderite altn	
12		GB-16 100-105 <.02 " 105-110 <.02	5 < . 02 < . 02		Gramite Gneiss	Mottled dk gry, grn and reddish brn and tan chips of	=	Yellow and yellow-tan siderite is very common
107		TI-011	5 A. 02 A. 02		Ouartz-Feldspar	chloritized feldsp & qtz. 110-120'30% chips of tam		
7		120-12	120-125 <. 02		Gneiss or F gr. Granite Gneiss	sideritized fspr. 5% white clav. 115' tan to 1t-brn	115' abundant sidcrite less intense chiorite.	115' MrOx noted on fract. Abund sider- ite. For. white mineral-fluorite or
ļ		. 130-13	5<.02			fine gr.foliated qtz-fspr. Chips are dominantly former		barite noted in panned conc.
		" 140-14	02 √ √ .02 02			feldsp w/fgr qtz.	-	
			5 × 02					
40,		GB-16 160-16	160-165 <. 02	PEgngr	r Granite Gneiss	Tan to lt. brn altd fspr & White qtz. Chips show	2ª ay, chlorite & siderite abundant siderite	Abdt siderite seams and wnlts.
		" 175-17 " 175-18	5 <.02 0.02			gneissic foliation.		
			180-185 <. 02 185-190 . 04				-	
		" 190-19 " 195-20	190-195 <. 02 195-200 <. 02					
8		GB-16 200-20 " 205-21	5.03 0<.02		Granite Gneiss	Lt red-brn sideritized fspr and white to clear qtz.	Fsprs are alt. to siderite, clay and minor chlorite.	Abdt thin seams and vnlts of siderite
		" 210-21 " 215-22	5 C 02					
		" 220-225 " 225-230	25 <.02 0 <.02					
BORA	X RESEARC	(I) ASSAYS 'JY U.S. BORAX RESEARCH CORPORATION, ANAHEIM, CA	, ANAHEIM,	CA.				CORN & AHERN

Ē
TATE
5 T
Y Mohave
Ę
5
8
Gold Basin
÷.
ů
S
õ
đ
E NO. GB- #16
ğ
ų
₫
T

STATE Arizona

PAGE 2 OF 2

MINERALIZATION	230'earthy hematite & MnOx noted on fractines	240'-several small frags of bracciated	hematitic limonite		Minor siderite - little hematite		290'- increased siderite & hematite							neralization in											
	230'- earthy he frachires				n Minor siderite		290'- increased	Statul.						No indicated mineralization in											
ALTERATION	230'- Prominent increase in hematite stain & coloration.	Some hematitic limonite aft.	Siderite, clay & hematite are dominant alt mins.		260-300'. greenish gray chior 260'- sericite & chlorite altr meiss w/ narrial hematite Wk sidarite					300-310'- Siderite & hematite 300-330'-siderite & hematite stained. Dense eneiss. 310'- istain om frachures Rlack	chloritic alt of gneiss.		Chlorite and siderite. Alteration is generally weak.											-	
ROCK DESCRIPTION	230'-Rd to red brown chips of altd feldspar & white otz w/	prominent hematite & siderite Some hematitic limonite aft. stain on fracts.			260-300'-greenish gray chlor meiss w/ nartial hematite	stain.		295-300'-20% of chips are white clay. Fault Gouge.		300-310'- Siderite & hematite stained. Dense oneiss. 310'-	350'-larger chips exhibit black chloritic color m	fresh fractures.	330'-tam or light brown leuco-Chlorite and siderite cratic rock comosed of gtz Alteration is general	and K feldspars, somewhat foliated			-								
ROCK TYPE	Granite Gneiss	liore shearing below 240'	250-260' Some Fault Gouge		Gneiss				Fault	Gneiss			Fault	Leucogranite	=										
	PEgngr				PEgn	-								Klgr											
6н(I) м	02 02	04 02	02 03		07 02	04 02	05	02 02		02 02	02 02	02 02		02 02	02 92	03								_	
MBER PPM	230-235 <. 235-240 <.)-245 -250 <	250-255 <.02 255-260 .03	•	260-265 .07 265-270 <.02)-275 -280 <.)-285 -290	295-300 <. 02		-305 <.	0-315 <	0-335 <.		0-335 <.	0-345 <.	350-355 .03 355-360 <.02		D.	_					 	
SAMPLE NUMBER	9	. 240	" 250 " 255		10	" 270 " 275		292		GB-16 305 "305	<u>GB-16 31(</u> " 315	" 320-335 <. 02 " 325-330 <. 02		GB-16 330 " 335	1	" 350 " 355		360 is T.D.							
RECOVERY	COOD RFCOV																								
INTERVAL	30				40,					10,	20'			30'											
HOLE DEPTH	230-260				260-300				300	300-310	310-330		330	330-360											

APPENDIX B

.

÷

ASSAY LOGS GB-1 through GB-16

	DRILL HOLE ASSAY LOG			PAGE 1 OF	GEOLOGY	Fanglomerate and Alluvium	Fine Granied Biotite Granite						White Hills Granite									CORN & AHERN
		1	1												 							ل≮ل
		ical	nanski		Total Ba%																	
ona	or	Vertical	W. Szyn		Acid Sol. 7 Bo b							 				 			 -		 	
E Arizona	925'W. of NE Cor	- HOLE ANGLE	ED BY		F A											 						
STATE	925'W.	HOLE	17 LOGG		-	đ	3		n	æ	m	3		4	m	m		ŧ				
	655'S.,	culation	DRILLER <u>Connors Drilling Company</u> LOGGED BY W. Szymanski		2 Hg 2	< .05	< .05		8	< .05	< .05	< .05		< .05	< .05	< .05		< .05				
Mohave	COLLAR COORDS. 655'S.	Reverse Circulation	Drilling		z Zn	61	20	5	5	20	0 [‡]	41		t6	39	31		67				4. Heim.
Моћ	OLLAR (Reve	Connors		Pb 2	911	017	8	8	817	917	60		51	61	47		53			:	, TUCSON ER, ANA
COUNTY			ILLER_		Mo	5	9		•	7	9	7		8	6	7		7				ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON. 2. U.S.BORAX RESEARCH CENTER, ANAHEIM.
8	R. 19W	l			2 Cu	10	10	9		=	2	8		8	 9	9		0			1 	STATE AN XX RESEA
	T. 28N	5 1/8"	COMPLETED 10-30-83		s b	< 2	 7	`		< 2	- 7 - 7	< 2		< 2	< 2	< 2		< 2				ASSAYS BY 1. COPPER 2. U.S. BORJ
		- HOLE SIZE	LETED		As 2	7	~	=	•	2	 m	4		m	 8	2		m			-	S - N
Gold Basin	SECTIONNE36	HOLE	COMF	_1	a Ag	1.2	1.3	-		1.4	1.4	 1.3		1.3	 1.4	1.4		1.4				TED.
Gold		4640'	-24-83	576	au 2	< .02	< .02		<u>′</u>	< .02	< .02	 < .02		< .02	 < .02	< .02		< .02				E INDICA
PROSPECT	CLAIM GB #2	ELEVATION 4640	SPUDDED 10-24-83	TOTAL DEPTH	INTERVAL SAMPLE NUMBER	GB-1 0-40	GB-1 40-120	CB-1 130-165		GB-1 155-200	CB-1 200-300	CB-1 300-400		CB-1 400-530	CB-1 530-560	CB-1 560-570		Avg				ESS OTHERWIS
	5	-		-	NTERVAL	017	8	, ,		45	100	100		130	e R	9		570'				PPM UNL
HOLE NO. CB-1					HOLE DEPTH	0+7-0	40-120	120-155		155-200	200-300	300-400		400-530	530-560	560-570		0-570				ALL VALUES IN PPM UNLESS OTHERWISE INDICATED.

		FI FVATION	4800	HUIE SIJE	SIJF	5 1/8"			Rever	Reverse Circulation	ulation		HOI E ANGLE	r Ver	Reverse Circulation Holi F Andi F Vertical		ASSAY LOG
		<u>+</u>	1-83	COMP	COMPLETED			DRILLER	Connot	Connors Drilling Co.	ng Co.	гоё Гоё	GED BY	W. Sz	LOGGED BY W. Szymanski		
		TOTAL DEPTH 600	600	1													PAGE 2 OF
HOLE DEPTH	INTERVAL	SAMPLE NUMBER	Au	2 Ag	A9 2	2 Sb	2 Cu 2	Mo 2	PP S	4 12	2 Hg		L	Acid Sol. , Ba	Total Ba %	2	6EOLOGY
0=10	10	No Sample															
																	Fanglomerate
10-50	40	GB-2 10-50	۲.	1.7	3	2	18	9	54	S4	. 39	7					Fine grained granite
																	white Hills granite
50-110	60	CB-2 50-110	<. 02	1.6	2	2	8	9	40	39	80.	М					
											1						
110-170	60	GB-2 110-170	.12	1.6	2	=	18	. 9	50	53	. 22	9					
																	Biotito Currito
170-210	40	GB-2 170-210	.03	1.9	2	2	=	9	38	91	.16	s					
						•											
210-240	30	CB-2 210-240	.12	1.6	Э	2	17	9	35	51	.22	2					
240-340	100	CB-2 240-340	<. 02	1.7	2	2	12	9	37	56	=	m					
											•						
340-430	90	CB-2 340-430	<.02	1.5	2	~ ~	2	S	36	47	< .05	2					
430-460	30	CB-2 430-460	<. 02	2.0	2	< 2	=	s	38	57	< .05	7					
																	White Hills Granite
460-530	70	CB-2 460-530	< 02	1.6	<2	7 2	0	< 5	38	45	< .05	2					
001	2		1	r •		,				:							
	R.	ADC - ACC 7 - CD	5		4	•	•		;		3	•					
580-600	20	CB-2 580-600	<. 02	1.9	2	~ ~	9	-	61	33	.05	2					
10-600	590	AVG	.02	1.7	8	< 2	=	v	40	8†	:	ŧ					
UES IN	ND WAA	ALL VALUES IN PPM UNLESS OTHERWISE INDICATED	INDICAT	ED.	ASS -	ASSAYS BY I. COPPER STI	ATE ANA	LYTICAL,	TATE ANALYTICAL, TUCSON.							٩	CORN & AHERN

•

· ·

DRILL HOLE	ASSAY LOG		PAGE 3 OF	GEOLOGY		Gneissic Granite		CRUSHED ZONE											 		CORN & AHERN
									 		_		 	 				 	 	 	 (A
Sec. 3	- E	4. Corn		Total Ba%	-+			_					 				 				
ona W. Cor	Vertic	l llassus		Acid Sol. T 1 Ba 1 B																	
STATE <u>Arizona</u> 1590'E. of N.W. Cor. Sec. 31	HOLE ANGLE Vertical	ED BYE		- Ac						+					•						
	•	IX LOGGE		-			=	٥	S	+		7		 							
275'S.	lation	Compan		× ₽			=	=	80.			.10									
e Dords.	Reverse Circulation	DRILLER <u>Connors Drilling Company</u> LOGGED BY <u>Russell M. Corn</u>		Zn 2			52	20	61	-		54								1	4. Heim.
Mohave Collar Coords.	Rever	onors		P P			35	37	37			36									, TUCSON ER, ANA
NTY	8	ררבא_כ		2 Mo 2			9	٥	9			9								:	ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON. 2. U.S.BORAX RESEARCH CENTER, ANAHEIM.
COUI R. 18W				s Cu			6	6	σ			6								,	STATE AN X RESEA
28N	5 1/8"	11-11-83		s b			2	< 2	< 2			< 2									ASSAYS BY 1. COPPER 3 2. U.S. BORA
d Basin Sectionnw 31 T 28N	SIZE			2 A5			< 2	< 2	< 2			< 2									ASS 2
Gold Basin	HOLE SIZE	COMPL	-1	2 A9			1.0	1.1	1.0			1.0									TED.
Col		10-83	200'	au 2			< .02	< .02	< .02			< .02									E INDICA
PROSPECT	ELEVATION 4480	SPUDDED 11-10-83	TOTAL DEPTH_	INTERVAL SAMPLE NUMBER	No Sample		CB-3 5-60	GB-3 60-130	GB-3 130-200			AVG									ALL VALUES IN PPM UNLESS OTHERWISE INDICATED.
		J,	. •	VTERVAL	5		55	2	70			195									M M M
HOLE NO. <u>GB-3</u>				HOLE DEPTH IN	0-5		5-60	60-130	130-200			5-200									ALL VALUES IN

ł

	DRILL HOLE	ASSAY LUG		PAGE 4 OF	GEOLOGY	Fine grained Biotite Cranite		CRUSHED ZONE		Fine grained Blotite	Granite				blotte Granite										CORN & AHERN
Arizona	Cor. Sec. 31	Vertical			Acid Sol. Totel U Bo Bo% U																				(P
STATE A	1290'E. of N.W. Cor. Sec.	HOLE ANGLE	DRILLER Connors Drilling Company LOGGED BY		u 																				
	560 ¹ S., 12		Company		H0 ×	.11 5		8 0.	.25 7	.47 8		.61 9		. 55 8			.37 8				 	 			
Mohave	COORDS.	Reverse Circulation	brilling		- ^z	52		22	57	54		43		46		-	50	-	 						I. HEIM.
Moh	COLLAR COORDS.	Revers	Connors		۹ ۶	42		42	011	34		24		23			36	:					1	·	ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON. 2. U.S.BORAX RESEARCH CENTER, ANAHEIM.
COUNTY	18W		BILLER		° Wo	ß		<u>م</u>	9	8		12	•	و			 2				 				NALYTICA Arch cen
	æ	5 1/8"			ۍ ۳	7		6 	3	11		S		13			 2		 	 	 				r state a Rax rese
	T. 28N		0_11-12-83		s sb	< 2		~ ~	~ ~ ~	2		2		7			 7		 	 	 	 			ASSAYS BY 1. COPPER 2. U.S. BOF
	SECTION 31	HOLE SIZE	COMPLETED_		2 As	9 < 2	'	3 < 2	1 < 2	1 < 2		2 < 2		1 < 2			 1 < 2		 		 	 			4
Gold Basin	_ SECTI			380'	2 Ag	. 09		1.3	1.1	 1.1		2 1.2		1.1			1.1		 	 	 	 			CATED.
ŏ	GB# 34	4420'	-11-83		ER 2 AU	< .02		<pre>0 < 03</pre>	0 < .02	 0 < .02		0 < .02		0 < .02		·	 < .02		 	 	 	 	_		SE INDIC
PROSPECT	CLAIM GB	ELEVATION_	SPUDDED 11-11-83	TOTAL DEPTH	INTERVAL SAMPLE NUMBER	CB-4 0-80		GB-4 80-100	GB-4 100-200	CB-4 200-240		GB-4 240-320		GB-4 320-380			AVG								.ESS OTHERWI
-	·				INTERVAL	80		20	100	40		80		60											PPM UNL
HOLE NO. CB-4					HOLE DEPTH	0-80		80-100	100-200	200-240		240-320		320380			0-380								ALL VALUES IN PPM UNLESS OTHERWISE INDICATED

- -

CORN & AHERN	ŋ						UCSON	ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON.	ATE ANAL	YS BY Opper Sti	ASSA	ËD.	INDICAT	IN PPM UNLESS OTHERWISE INDICATED.	PPM UNLE	ALL VALUES IN
					10				::	- · ·						
						<u> </u>		n		~	•	-	06	AVG		0-600
J I																
Coarse grained					30 ω	63 .28	27 6	6	9	2	< 2	1.2	< .02	GB-5 520-600	88	520-600
						+	+									
		•				70 .21	27	o 	12	2	^ >	1.3	< .02	GB-5 480-520	# 0	480-520
Gneiss	_				+			_								
					3 7	61 .33	6	u	8	ω	< 2	1.2	<.02	CB-5 390-480	90	08 <i>h-</i> 06E
Lampropnyre							_									
					53	92	29	n	15	2	ω	1.6	<.02	GB-5 380=390	10	380-390
Granite Gneiss											•					
I)						6	2	<u>,</u>		ω	2	1.2	.03	GB-5 260-380	120	260-380
Fine grained				12	. 72	51	26	<u>5</u>	=	ω	2	1.6	. 05	CB-5 210-260	50	210-260
						_							T			
				5	<u> </u>	5		σ 	7	2	< 2	- -	.03	CB-5 180-210	30	180-210
Granite Gneiss				717		f	8	đ	5			2.0	:	00 0 100 100		
				• 	+			<u> </u>	;	-	-	J N		CR-5 130-180	5	130-180
				12	-		5		-	4		:				
				•	+		+	J	2	=	7	2 0		GB-5 80-130	50	80-130
Biotite Granite						_	_				1					
Fine grained						5		^ 	=	< 2	2	E	. 03	GB-5 30-80	50	30-80
Fanglomerate				5	+	46 <.05	36	U	9	3	2	1.5	< .02	GB-5 0-30	30	0- 30
GEOLOGY	c	Total 1 Ba %	Acid Sol. 1 Ba		2 2 2 2 2	Zn 2 Hg	Pb ≥	No 2	° C₂	2 SB	2 As	2 Ag	2 Au	SAMPLE NUMBER	P	HOLE DEPTH
PAGE_5OF		•											600'	TOTAL DEPTH		
	3	II M. Co	BY Russell M. Corn	LOGGED (ompany	rilling (Connors Drilling Company LOGGED			11-16-83	COMPLETED_	COMP	-13-83	SPUDDED 11-13-83		
AOOMI LUU		Vertical		HOLE AN		Circula	Reverse Circulation			5 1/8"	HOLE SIZE	HOLE	4560'	ELEVATION_		
DRILL HOLE		Sec. 31	555'E. of N.W. Cor. Sec. 31	55'E. of N	280'\$5	ORDS. 2	COLLAR COORDS.		. R 18W	T. 28N		SECTION 31	ŀ	CLAIM_ <u>CB# 46</u>		

CORN & AHERN							-	, TUCSON	ALYTICAL	STATE AN	ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON.	AS	ATED.	E INDIC	IN PPM UNLESS OTHERWISE INDICATED.	IN PPM UNI	ALL VALUES
												-					
															•		
	-																
					5	.08	49 64	35	6	10	2	< 2	1.4	< . 02	AVG		0-300
Coarse grained Biotite Cranite					=		53	38	6	12	< 2	< 2	1.5	<pre>^.02</pre>	GB-6 220-300	8	770- 300
						-	f	47	•	~	< 2	< 2	1.3	< .02	CB-6 150-220	70	150-220
CRIISHED ZONE					• 	;		:									
					<u>л</u>	.08	50	34	6	10	=	< 2	1.5	< . 02	CB-6 90-150	60	90-150
		+															
Fine grained Biotite Granite					у	.08	54	46	و	5	< 2	< 2	1.2	< .02	GB-6 40-90	50	40-90
												1				ł	0-40
Fanglomerate						. 05	\$ <u>~</u>	3	•	و	~ ~	2		^ <u>-</u> 02	GR-6 0-40	5	
GEOLOGY		- c	iol. Total Ba %	Acid Sol. 1 Ba	¥ - F	Hg 2	Zn 2	PB N	Mo	C -	2 SP	2 As	2 Aq	N Au	INTERVAL SAMPLE NUMBER	INTERVAL	HOLE DEPTH
													-	300'	TOTAL DEPTH	_	
•	·	Corn	BY Russell M. Corn		_ DRILLER <u>Connors Drilling Company</u> _LOGGED	ompany	rilling C	nnors D	LER Co	13 DRI	11-17-83	COMPLETED	COMPI	11-16-83	SPUDDED 11-	6	
	•	=	Vertical	NGLE	HOLE ANGLE	tion	Reverse Circulation	Reverse		l	5 1/8"		HOLE SIZE	0	ELEVATION_	m	
ASSAY LOG	•	30	r. Sec.	S.W. Cor. Sec. 30	COLLAR COORDS. 210'N., 865'E. of	210'N., 8	ORDS.	LLAR CC	1	R. 18W	28N	30 T.	SECTION 30		CLAIM GB# 45	•	
												SW/SW					10EE 10.

CLANK CDB AL SECTION NUM F. 188 COLLAR COORDS. 20001. TOTAL CET PL COLLAR COORDS. 20001. TOTAL CET PL COLLAR COORDS. 20001. TOTAL CET PL COLLAR COORDS. 20011. TOTAL CET PL 20011. TOTAL CET PL <th></th> <th>)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>!</th> <th>ACCANC BY</th> <th></th> <th>ICATED.</th> <th>ALL VALUES IN PPM UNLESS OTHERWISE INDICATED</th> <th>PPM UNLES</th> <th>LL VALUES IN</th>)									!	ACCANC BY		ICATED.	ALL VALUES IN PPM UNLESS OTHERWISE INDICATED	PPM UNLES	LL VALUES IN
							\vdash			ŝ	ndividua	<u> </u>			ated by variatio	gold indic	*Particulate
Cityme (GB) Mode 1:1	Biotite Granite						. 18					^	^		VC	215 A	
CTTML OF MARE DESCLIPTION TABLE ALL ALL ALL ALL ALL ALL ALL ALL ALL A	Gneiss						. 46								VG		10-185
CLAN_ COLM SECTION JIT JIM NUM COLLAR COORDS JUNE CIALUA COORDS JUNE JUNE <thjune< th=""> JUNE JUNE</thjune<>	1																
C1.NN C01.W SECTION T. NN NN C01.L C00005 2003 1330 C1	1																
C1MM GB 4M SECTION 317 T <tht< th=""> T T</tht<>	<u>L</u>						. 13		29			^	~				300-400
CLAW GB W SECTION NUM NUM <td>1</td> <td></td>	1																
CLAM GBA SECTION 11 - 288 N 10 Conversion Note:	<u> </u>						. 13	38	24			^	^		275-300		275-300
CLAM. CB M. SECTION NJ.W. J.W. COLLAR COORON J.W.V. Concess J.W.V. J.W.V. Concess J.W.V. J.W.V. Concess J.W.V. J.W.V.V. J.W.V.V. J.W.V.V. J.W.V.V.V. J.W.V.V.V. J.W.V.V.V. J.W.V.V.V.V.V.W.V.V.V.V.V.V.V.V.V.V.V.V.	<u></u>																
CLAIM CB3 M SETTION NUM Num COLLAR COORDS 2005 1370E of N.W. Cer. Sec.31 DRILL HOLE DRILL HOLE SPUDED 1-18-3 COMPLETED 1-20-33 COLLAR COORDS 2005 1 1 No						-	. 17	ŧ	32				^		^		235-275
CLAIM CBF14 SECTION NUM COLLAR COORDS 2005 1378E of NUL Corres DRILL HOLE NUM NUM <th< td=""><td>Coarse grained</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Coarse grained																
CLAIM CB4 M SECTION NIT 2.00 N. 19M COLLAR COORDS 2.00% 2.00% Creation NIT Contrast Correlation HOLE ANGLE Vertical Contrast Correlation Contrast Correlation Partical Vertical Contrast Correlation Partical Contrast Correlation Partical Contrast Correlation Contrast Correlation C	Lamprophyre						. 30	83	33			^			225-235 <		225-235
CLAIM CBI 44 SECTION NUM COLLAR COORDS 2005 1307E of N.W. Cor. Sec.31 ASAY DORL HOLE SECTION NUM Section Section Num Section Num Section Section Section Secti																	
CLAIM							. 30	h 5	33			^			185-225 <		185-225
CLAIM GB# 44 SECTION 31 T. 20N 10H COLLAR COORDS. 2005. 1370'E. of N.W. Car. Sec. 31 DRILL HOLE SPUNDED 1-18-83 COMPLETED 1-20-93 DRILLER Commons Drilling Company LOGGED BY Russell M. Com SASAY LOG TOTAL DEFH 400 11 1.5 2 10 7 2.5 41 5.3 2.5 6.6 1.7 6.6 1.7 3.5 71 7 3.5 41 5.5 2.5 6.6 1.7 6.6 1.7 3.5 71 7 3.5 41 5.5 2.5 4.6	Coarse grained																
CLAIMCB# 44SECTION_312N1N COLLAR_COORDS_209'SI, 1370'E. of N.W. Cor. Sec. 31 DRILL HOLE DORILL HOLE DORILL HOLE DORILL HOLE DORILL HOLE ASAY LOG SASAY							•	34	18				~		165-185		165-185
CLAIM GB# 44 SECTION 31 T. 2NN COLLAR COORDS 2005's 1370'E. of N.W. Cor. Sec. 31 DRILL HOLE SPUDED 1-18-83 COMPLETED 1-20-83 ORILLER Connors Drilling Company LOGED BY Reverse Circulation HOLE AN AN 2 No No No 2 No 2 No 2	CRUSHED ZONE												-				
CLAIMCB# WSCTION131 T28MSCTUR128MR18WCOLLAR_COORDS289'S_, 1370'E. of N.W. Cor. Sec. 31 DRILL_HOLE ELEVATION4500'HOLE SIZE51/8''							. 48	66	40								130-165
CLAIMGB# 44SECTION4500HOLE_SIZE51/81																	
CLAIMGB# 44SECTION_31TN							. 51	48	28					6	_		75-130
CLAIM GB # 44 SECTION 31 T. 280 R. 1897 CULLAR COORDS. 280'5:, 1370'E. of N.W. Cor. Sec. 31 DRILL HOLE HOLE ASSAY LOG ELEVATION 4500' HOLE SIZE 51/8'' Reverse Circulation HOLE ANGLE Vertical ASSAY LOG SPUDDED 1-18-83 COMPLETED 1-20-83 ORILLER Connors Drilling Company LogGEE D BY Russell M. Corn PAGE	1											vidual A	-	54 AVG	(3	ត្	
CLAIM CB# 44 SECTION 11 SECTION 12 CORILL HOLE SIZE 51/8" Reverse Circulation HOLE ANGLE Vertical SPUDDED 1-18-83 COMPLETED 1-20-83 DRILLER CONNORS Drilling Company LOGGED BY Russell M. Corn TOTAL DEPTH 400" PH INTERVAL SAMPLE NUMBER 2 Au 2 Ag 2 Sb 2 Cu 2 Mo 2 Pb 2 Zn 2 Hg 2 W 1 F Acid Sol, Total 1.5 A Cu 2 Mo 2 Pb 2 Zn 2 Hg 2 W 1 F Acid Sol, Total 1.5 GEOLOGY ORILL HOLE ORILL NUMBER 2 Au 2 Ag 2 Sb 2 Cu 2 Mo 2 Pb 2 Zn 2 Hg 2 W 1 F Acid Sol, Total 1.5 GEOLOGY GEOLOGY ORILL HOLE ORILL NUMBER 2 Au 2 Ag 2 Sb 2 Cu 2 Mo 2 Pb 2 Zn 2 Hg 2 W 1 F Acid Sol, Total 1.5 GeoLogy ORILL HOLE ORIL							. 60	4 1 8	33						60-75		60-75
CLAIM_GB#44SECTION_31_T28N_R_18WCOLLAR_COORDS. 280'\$:, 1370'E. of N.W. Cor. Sec. 31 DRILL_HOLE SPUDDED_1-18-83COMPLETED_1-20-83_DRILLER_CONNOTS Reverse Circulation_HOLE_ANGLE_Vertical ASSAY_LOG TOTAL_DEPTH_400' 1-20-83_DRILLER_CONNOTS Drilling Company_LOGGED_BY_Russell M. Corn PAGE_7 PTH INTERVAL SAMPLE_NUMBER Aq As Sb 2 u 2 w r r AcidSol, Boy, Boy, Boy, Boy, Boy, Boy, Boy, Boy	Gneiss																
CLAIM_GB#_44 SECTION_31_T20N_R_18W COLLAR COORDS. 280'S., 1370'E. of N.W. Cor. Sec. 31 DRILL HOLE ELEVATION_4500' HOLE SIZE 5 1/8'' Reverse Circulation HOLE ANGLE Vertical SPUDDED_1-18-83 COMPLETED_1-20-83 DRILLER Connors Drilling Company Logged By Russell M. Corn Corn PAGE_7 TOTAL DEPTH_400' As 2 sb 2 cu 2 mo Pb 2 n 2 mo F Acid Soil Total Connors F Acid Soil Total Connors PAGE_7 PAGE_7 PTH INTERVAL SAMPLE NO Columber 2 sb 2 cu 2 mo Pb 2 n 2 mo F Acid Soil Total Bo GelLOGY GEOLOGY In NO Columber As Sb Cu 2 mo P Zn 2 mo F Acid Soil Bo Bo Bo Bo Bo Bo </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>. 53</td> <td>=</td> <td>25</td> <td></td> <td>_</td> <td>2</td> <td>~ †</td> <td></td> <td></td> <td><u>_</u></td> <td>10-60</td>							. 53	=	25		_	2	~ †			<u>_</u>	10-60
CLAIM GB# 44 SECTION 31 T. 28N R. 18W COLLAR COORDS. 280'S., 1370'E. of N.W. Cor. Sec. 31 DRILL HOLE ELEVATION 4500' HOLE SIZE 5 1/8'' Reverse Circulation HOLE ANGLE Vertical ASSAY LOG SPUDDED 1-18-83 COMPLETED 1-20-83 DRILLER Connors Drilling Company LOGGED BY Russell M. Corn PAGE 7 TOTAL DEPTH 400' 2 As 2 Sb 2 Cu 2 Mo 2 b 2 n 1 b Reverse Circulation HOLE ANGLE Corn PAGE 7 PH INTERVAL SAMPLE NUMBER And 2 As 2 b 2 n 2 h 2 n 2 h F AridSoli, Toldi 1 u GEOLOGY									_	+				AMPLE			0-10
CLAIM GB# 44 SECTION 31 T. 20N R. 18W COLLAR COORDS. 280'S., 1370'E. of N.W. Cor. Sec. 31 DRILL HOLE ELEVATION 4500' HOLE SIZE 5 1/8" Reverse Circulation HOLE ANGLE Vertical ASSAY LOG SPUDDED 1-18-83 COMPLETED 1-20-83 DRILLER Connors Drilling Company LOGGED BY Russell M. Corn PAGE 7 TOTAL DEPTH 400' Yes Sb Cu Mo Pb Zn Hq Yes Acid Soil Toing Toing PAGE 7 PTH INTERVAL SAMPLE NUMBER Au As Sb Cu Mo Pb Zn Hq Yes Acid Soil Toing Toing F Acid Soil Toing H GEOLOGY							ŗ	-	+	+	'	-		. .		_	
CLAIM <u>GB# 44</u> <u>SECTION 31 T. 28N R. 18W</u> COLLAR COORDS. <u>280'S., 1370'E. of N.W. Cor. Sec.31</u> DRILL HOLE ELEVATION <u>4500'</u> HOLE SIZE <u>5 1/8"</u> <u>Reverse Circulation</u> HOLE ANGLE <u>Vertical</u> SPUDDED <u>1-18-83</u> COMPLETED <u>1-20-83</u> DRILLER <u>Connors Drilling Company</u> LOGGED BY <u>Russell M. Corn</u> TOTAL DEPTH <u>400'</u> PAGE <u>7</u>	GEOLOGY	c	Total Ba %	Acid Sol. Bo	-	1					,	,	\$	•	NUMBER		DEPTH
CLAIM <u>CB# 44</u> SECTION <u>31</u> T. <u>28N</u> R <u>18W</u> COLLAR COORDS. <u>280'S:,1370'E. of N.W. Cor. Sec.31</u> ASSAY ELEVATION <u>4500'</u> HOLE SIZE <u>51/8"Reverse Circulation</u> HOLE ANGLE <u>Vertical</u> SPUDDED <u>1-18-83</u> COMPLETED <u>1-20-83</u> DRILLER <u>Connors Drilling Company</u> LOGGED BY <u>Russell M. Corn</u>	7														TAL DEPTH 400	To	
CLAIM GB# 44 SECTION 31 T. 28N R. 18W COLLAR COORDS. 280'\$:, 1370'E. of N.W. Cor. Sec. 31 ORILL ASSAY ELEVATION 4500' HOLE SIZE 5 1/8" Reverse Circulation HOLE ANGLE Vertical		3	I M. Cor	Russel	GGED BY	pany Lo	ng Com	rs Drilli		DRILLER			MPLETE		UDDED 1-18-82	SP	
CLAIM CB# 44 SECTION 31 T. 28N R. 18W COLLAR COORDS. 280'S:, 1370'E. of N.W. Cor. Sec. 31 DRILL	ASSAT LUG		tical	LE Ver	LE ANGL		rculatio	verse C	Re			 и	LE SIZE		EVATION 4500'	۳ :	
	DRILL HOLE		Sec. 31	.W. Cor.	E. of N			COORD	COLLAF	18W	R	-	10N 31	SECT	AIM GB# 44	2	

CORN & AHERN								SON. VAHEIM.	ISSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON. 2. U.S.BORAX RESEARCH CENTER, ANAHEIM.	ANALYTIC Earch Ce	Y ? STATE RAX RES	ASSAYS BY 1. COPPER 2. U.S. BOF	_	ICATED.	VISE IND	IN PPM UNLESS OTHERWISE INDICATED.	IN PPM UN	ALL VALUES
					•				 	-								
	•																	
-																		
						\$.09	43	29	5	8	< 2	6 < 2	.02 0.6	<u>^</u>	AVG		0-265
-																		
															•			
Riotite Granite					-	ω	. 08	32	22	s	9	< 2	7 < 2	.02 0.7	^	GB-8 230-265	35	230-265
					-													
						4	. 13	41	28	6	8	< 2	7 < 2	.02 0.7	~	GB-8 180-230	50	180-230
Biotite Granite																		
Coarse Orained						3	. 06	h 5	33	σ	و	< 2	6 < 2	.02 0.6	~	GB-8 130-180	50	130-180
																	-	
CRUSHED ZONE						5	. 10	41	25	6	σ	< 2	7 < 2	02 0.7	^	CB-8 90-130	ŧ	90-130
Biotite Granite															-+-		;	
Coarse Grained						=	.08	5	¥	л Г	8	2	ñ ^ 2	0.6		CB-8 30-90	70	20-00
Alluvium						ω	.08	39	30	- 	6	^2	6 < 2	.02 0.6	^	CB-8 0-20	20	0-20
GEOLOGY		- -	, Ba %	Acid Sol. 1 Ba	-	₽. ₩	2 ^{Hg}	2 Zn	2 Pb	2 Mo	≥ Cu	2 SP	2 As	2 Aq	BER 2 Au	SAMPLE NUMBER	INTERVAL	HOLE DEPTH
PAGE8OF														265'		TOTAL DEPTH		
•		ß	M. Co	Russel	GED BY	any Log	ng Comp	_ ORILLER <u>Connors Drilling Company</u> LOGGED BY Russell M. Corn	Conno	RILLER		0_11-28-83	COMPLETED	8	-20-83	SPUDDED 11-20-83	:	
	•		Vertical		HOLE ANGLE.	Hor Hor	ulation	Reverse Circulation	Reve			5 1/8"	HOLE SIZE	HO	4450'	ELEVATION 4450		
DRILL HOLE ASSAY LOG			Sec. 3	W. Cor.	1855'E. of S.W. Cor. Sec. 30		275 ¹ N.	COLLAR COORDS. 275'N.,	COLLAR	18W	א א ו	T. 28N	SE S	_ SECTI	1# 43	CLAIM CB# 43		
) .	-			Arizona		STATE		Mohave		COUNTY_		E	Gold Basin	Gol		PROSPECT_	GB-8	HOLE NO.

CORN & AHERN	₽ ⁰							SON. NAHEIM.	NTER, A	ANALYTIC Earch Ce	r 1 STATE RAX RES	ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON. 2. U.S. BORAX RESEARCH CENTER, ANAHEIM.		ATED.	E INDIO	IN PPM UNLESS OTHERWISE INDICATED.	ี PPM บุ่ง	ALL VALUES IN
					┝	┝		┝		-								
1												1						
<u> </u>																		
L							-											
<u> </u>																		
· · · ·																		
1						7	× . 05	45	29	6	æ	ω	< 2	2 0.8	< . 02	AVG		0-240
						6	< . 05	39	23	œ	~	ω	< 2	2 0.8	0 < . 02	GB-9 22024(20	220-240
						10	× .05	35	19	л СЛ	6	3	< 2	3 0.9	d . 03	GB-9 150-22	70	150-220
Granite						σ	< . 05	61	33	6	6	2	< 2	2 0.8	d < . 02	GB-9 100-150	50	100-150
Fine grained																		
						J	× . 05	‡2	36	6	9	2	^ 2	2 0.8	< .02	GB-9 50-100	50	50-100
Fault					.					-				<u> </u>		00-9 20-30	30	0C -07
Granite				\uparrow		7	2	5	3	n	•				,		;	
Fine grained						7	· . 05	ţ	36	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9	2	< 2	2 0.7	< . 02	GB-9 0-20	20	0-20
. GEOLOGY		- -	ji. Totaj 1 Ba %	Acid Sol. 1 Ba		≥ ¥	2 Hg	2 Zn	∾ ₽	≈ Mo	∾ 2	s ₽	2 A3	2 Ag	P Au	INTERVAL SAMPLE NUMBER	INTERVAL	HOLE DEPTH
PAGE_9OF														ļ	240'	ТОТАL DEPTH <u>240'</u>	_	
	kolb	ORILLER <u>Connors Drilling Company</u> LOGGED BY <u>Michael H. Rauschko</u> lb	hael H.	Y_Mic	DGGED E	ipany L	ling Cor	ors Drill	Conne	RILLER		11-29-83	COMPLETED	CON	28-83	SPUDDED <u>11-28-83</u>		
	1		°06	SLE	HOLE ANGLE_	- T	culation	Reverse Circulation	Rev			5 1/8"	HOLE SIZE	HOL	4420'	ELEVATION 4450		
DRILL HOLE ASSAY LOG	1	30	or. Sec.	S.W. Co	2125'E, of S.W. Cor. Sec. 30	V., 212)S. 780'	COLLAR COORDS. 780'N.	COLLAF	18W	28N R. 1	7	SECTION 30	SECTIC	43	CLAIM_ <u>CB# 43</u>		

HOLE NO.__

CB-9

___PROSPECT_____

Gold Basin

_COUNTY___

Mohave

___ STATIE ____

Arizona

CORN & AHERN								SON. NAHEIM.	SAYS BY COPPER STATE ANALYTICAL, TUCSON. U.S. BORAX RESEARCH CENTER, ANAHEIM.	ANALYTI(Earch ce	r † STATE RAX RESI	ASSAYS BY 1. COPPER 2. U.S. BOF	-	ATED.	SE INDIO	IN PPM UNLESS OTHERWISE INDICATED.	N PPM UNI	ALL VALUES
											-			-				
<u></u>																		
. <u> </u>																		
								ų	ų		-	~			/ . 02	240		U- 30V
						л 	Do	5	*			<u>}</u>		-		AVC		036 - O
															\uparrow			
						u	. 16	56	41	6	14	< 2	< 2	2 1.2	60 < . 02	GB-10 300-360 <	60	300-360
									-	_			-		+			
						6	. 20	47	32	σ	10	< 2	< 2	2 1.1	00 < . 02	GB-10 255-300 <	45	255-300
·						5	. 16	46	35	J	9	2	^ 2	2 1,0	55 < . 02	GB-10 200-255 <	55	200-255
						σ	. 07	56	53	6	10	< 2	< 2	2 1.0	00 < . 02	CB-10 165-200 <	35	165-200
Biotite Granite		·																
Fine grained	•					4	<0.5	50	32	л	9	2	< 2	2 0.6	5 < .02	GB-10 90-165	75	90- 165
														-	1.			
CRUSHED ZONE						ω	^ D5	5	25	20	5	ŝ	- 		^ 8	GB-10 30-90	60	30- 90
Fine grained Biotite Cranite						=	<, 05	48	4 0	<u>о</u>	10	. 2	< 2	2 0.8	< . 02	CB-10 0-30	30	0-30
GEOLOGY			Total 1 Ba %	Acid Sol. 1 Ba	- 1	N ¥	2 Hg	2 Zn	∾ Po	∾ Mo	≥ C⊔	2 Sb	2 AS	≥ Ag	R R Au	INTERVAL SAMPLE NUMBER	INTERVAL	HOLE DEPTH
PAGE 10 OF												,			360'	ТОТАL DEPTH <u>_360</u> '		·
	<u></u>	uschko	i H. Ra	_ DRILLER <u>Connors Drilling Company</u> LOGGED BY <u>Michael H. Rauschko</u> b	GGED' BY	pany Lo	ing Com	yrs Drill	Conne	DRILLER		COMPLETED 12-1-83	IPLETE	COM	-29-83	SPUDDED <u>11-29-83</u>		
	•		Vertical	-EVe	_ HOLE ANGLE_	n Ho	Reverse Circulation	verse C	Re			5 1/8"	HOLE SIZE		4600'	ELEVATION		
ASSAY LOG	•		Sec. 30	85'E. of S.W. Cor. Sec. 30	of S.W		S. 705'N.,	COLLAR COORDS.	COLLAF	18W	ן גר ו	T. 28N	SECTION 30 1	SECTIC	46	CLAIM CB# 46		
	•			rizona	STATE Arizona	ST.		Mohave		COUNTY_		W	SW/S	Cold Basin	Cold	PROSPECT	GB-10	HOLE NO. G

CORN & AHERN								CSON. ANAHEIM.	ISSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON. 2. U.S.BORAX RESEARCH CENTER, ANAHEIM	SEARCH	BY Ber State Borax Re	ASSAYS BY 1. COPPER 2. U.S. BOF		DICATED.	ALL VALUES IN PPM UNLESS OTHERWISE INDICATED.	PPM UNLE	LL VALUES IN
							┝╌┼										
										_							
I														_			
<u> </u>						1											
1																	
1																	
<u> </u>						σ	. 08	52	36	5	=	2	1.2 < 2	. 02	AVG <	A	0-300
1																	
<u> </u>						÷	. 05	ħ5	32	5	12	۵	1.1 < 2	. 06	CB-11 240-300	60 C	240-300
1																	
Biotite Cranite						5	005	50	30	б	=	۵	1.3 < 2	.02	GB-11 200-240 <	5 0	200-240
Fine grained																	
Sheared						6	. 14	ħ5	29	5	=	۵	1.1 < 2	02	GB-11 135-200 <	65 CI	135-200
CRUSHED ZONE						5	. 09	52	31	<u></u>	=	2	1.2 2	.02	GB-11 120-135 <	15 CI	120-135
						#	. 09	55	32	5	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.0 < 2	. 02	GB-11 25-120 <	95 CE	25-120
- Biotite Cranite								+						-			
						÷	. 09	47	53	6	13	2	1.3 2		^	25 GI	0-25
GEOLOGY		- c	Total Ba %	Acid Sol. 1 Bo		≥ ₹	R Hg	2 Zn	2 Pb	2 Mo	× 2	s ≥ SP	≥ As	2 Ag	SAMPLE NUMBER 2 Au	INTERVAL SA	HOLE DEPTH IN
PAGEOF														300'	TOTAL DEPTH	7	
	•	'n	M. Co	Russel	GGED BY	ny_Lo	g Compa	s Drillin	DRILLER Connors Drilling Company LOGGED BY Russell M. Corn	DRILLE		ED 12-5-83	COMPLETED.	-	SPUDDED 12-2-83	Sb	-
	•		Vertical		LE ANGLE.	HOLE	culation	Reverse Circulation	Rev		8	E51/8"	HOLE SIZE		ELEVATION 4560'	Ē	
ASSAY LOG	•	30	. Sec.	of S.W. Cor. Sec. 30	E. of S	N., 350'E.	S. 1175'N.,	COLLAR COORDS.	COLLA	18W	28N R.	: - 	SECTION 30	SECT	CLAIM GB# 49	2	
	•			Arizona	STATE	ST		Mohave		_COUNTY_		2	SW/SW	Gold Basin	PROSPECT Gol		HOLE NO. CB-11

CORN & AHERN	₽							ON. AHEIM.	ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON. 2. U.S. BORAX RESEARCH CENTER, ANAHEIM.	ARCH CEP	STATE A	SSAYS BY		ATED.	SE INDIC	PPM UNLESS OTHERWISE INDICATED	N PPM UNL	ALL VALUES IN
									·									
				•														
-																		
						7	< . 05	4 0	21	^ 5	9	2	4 < 2	2 1.4	< . 02	AVG		0-230
						5	< . 05	50	20	5	10	< 2	6 < 2	2 1.6	10 < .02	CB-12 2002-30	30	200-230
						. 7	. 05	ŧ	21	л	9	ъ	5 2	2 1.5	0 < .02	GB-12 170-200	30	170-200
Biotite Granite													·					
Fine grained						. 9	< . 05	41	18	^ 5	7	2	4 < 2	3 1.4	. 03	GB-12 130-170	40	130-170
CRUSHED ZONE						12	< . 05	42	24	υ	9	2	4 ~ 2	5 1.4	. 05	GB-12 90-130	4 0	90-130
			•			7	.09	26	15	^ 5	6	2	3 < 2	1.3	< . 02	GB-12 55-90	35	55-90
Biotite Granite														+	1			
Fine grained						#	< . 05	38	27	5	10	2	3 < 2	2 1.3	< .02	GB-12 0-55	55	0~55
GEOLOGY		- c	Total Ba %	Acid Sol. 1 Ba		2. W	2 ^{Hg}	2 Zn	2 Pb	2 Mo	² Cu	s s	N As	≥ Aq	R 2 Au	SAMPLE NUMBER	INTERVAL	HOLE DEPTH
PAGE 12 OF			·											Q	1 230'	TOTAL DEPTH	· .	
	I	orn	Russell M. Corn	Y <u>Russ</u> e	;GED BY	3nλ ⁻ Γοί	g Campi	s Drillin	_ DRILLER <u>.Connors Drilling Company</u> _Logged B	RILLER	1	0 12-6-83	_ COMPLETED	COM	12-5-83	SPUDDED 12	•	
	I		Vertical		HOLE ANGLE		culation	Reverse Circulation	Rev		=	5 1/8"	HOLE SIZE	HOL	4550'	ELEVATION	_	
DRILL HOLE ASSAY LOG	I	30	· Sec.	S.W. Cor. Sec. 30	E. of S	1810'N., 615'E. of		COORDS	COLLAR COORDS.	18W	ן ד ו	T. 28N	N 30	SECTION 30		CLAIM GB# 12	-	
	I			Arizona		STATE		ve	Mohave	_COUNTY_		E	n n	Gold Basin	G		GB-12	HOLE NOG

CORN & AHERN	₽.							ON. AHEIM.	AL, TUCS	ANALYTIC	STATE / PAX RESE	ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON. 2. U.S. BORAX RESEARCH CENTER, ANAHEIM.		ATED.	E INDIC	ESS OTHERWIS		ALL VALUES IN PPM UNLESS OTHERWISE INDICATED.
-													-	-				
-											.							
																		•
											$\left \right $				1			
I																		
<u></u>					-													
						6	<.05	57	27	^ 5	15	< 2	3 < 2	2 1.3	< . 02	AVG		0-160
i,																		
Biotite Granite																		
- Fine grained						7	<.05	61	25	б	12	^ 2	6 < 2	2 0.6	6 < . 02	GB-13 105-16	55	105-160
CRUSHED ZONE						6	. 05	49	19	5	21	< 2	5 < 2	2 1.5	5 < . 02	GB-13 65-105	04	65-105
Fine grained						o.	<.05	59	33	< 5	=	< 2	7 < 2	2 1.7	< .02	GB-13 0-65	65	0-65
GEOLOGY		-	Ba %	Acid Sol. 1 Ba		N W	2 Hg	2 Zn	~ ₂	× Mo	» 2	2 SP	2 AS	2 Ag	R 2 Au	INTERVAL SAMPLE NUMBER	INTERVAL	HOLE DEPTH
PAGE_13_0F														0	H <u>160'</u>	TOTAL DEPTH	1	
	1	Corn	Russell M. Corn		GGED B	any_Lo	ng Com	DRILLER Connors Drilling Company LOGGED BY	Conno	DRILLEF		D <u>12-8-83</u>	COMPLETED	0	- 7- 83	SPUDDED 12-7-83	•	
ASSAT LUG	1.		Vertical		HOLE ANGLE	 	ulation	Reverse Circulation	Reve		81	5 1/8"	4480' HOLE SIZE	BO1 HO	ŧ	ELEVATION_		
DRILL HOLE	I	30	or. Sec.	S.W. Cor. Sec.		2410'N., 800'E. of	1	COLLAR COORDS.	COLLAF	18W	28N R.	Ē	0N 30 1	SECTION 30		CLAIM _ CB# 48		
•	I			Arizona	STATE	S1		Mohave	Mo	COUNTY				Gold Basin	ດ	PROSPECT	-13	HOLE NO. CB-13

CORN & AHERN	- pr							SON. NAHEIM.	CAL, TUC Enter, A	ANALYTI Earch ci	r 1 STATE RAX RESI	ASSAYS BY 1. COPPER STATE ANALYTICAL, TUCSON 2. U.S. BORAX RESEARCH CENTER, ANAMEIM.		ATED.	SE INDIC	ESS OTHERWIS	4 PPM UNL	ALL VALUES IN PPM UNLESS OTHERWISE INDICATED.
	-	\vdash	-	F	┢		┝	-		-	-	-			-			
L																		
<u>!</u>				<u>}</u>														
1																		
L									 									
I				-														
I																		
				<u></u>														
<u> </u>	 .			-		=	~ . 05	52	45	6	16	< 2	<2	0.8	< . 02	AVG		0-320
and Cneiss																		
Coarse grained Biotite Granite						10	<. 05	53	25	ы	10	ω	< '2	0.8	:0 < . 02	GB-14 250-320	70	250-320
<u>I</u>						8	. 05	45	20	6	9	w	< 2	0.8	id < . 02	CB-14 200-250	50	200-250
CRUSHED ZONE																		
						10	<`05	67	28	6	9	< 2	< 2	0.8	0 < . 02	GB-14 160-200	40	160-200
																	•	
-						14	< 05	50	82	σ	20.	< 2	ω	0.7	;q < .02	GB-14 110-16	50	110-160
Fine grained						15	<.05	53	102	7	31	× 2	^ >	0.8	^ .02	CB-14 60-110	50	60-110
Biotite Granite					- .	8	~ 05	37	17	UT UT	10	2	× 2	0.8	< . 02	GB-14 40-60	20	4 <u>0</u> -60
Coarse grained		\uparrow																
Fine grained Biotite Granite						9	<. 05	50	26	5	10	< 2	< 2	0.8	.03	GB-14 0-40	40	0+40
GEOLOGY		- c	ol. Total 1 Ba %	Acid Sol. 1 Ba		2 ¥	2 Hg	2 Zn	∾ P6	≥ Mo	≥ Cu	2 SP	≈ ∧ s	2 Ag	P P Au	INTERVAL SAMPLE NUMBER	INTERVAL	HOLE DEPTH
PAGE_14_0F														-	320'	TOTAL DEPTH		
	ļ			¥۴)GGED E	ipany Lu	ing Cor	rs Drill	12-19-83 DRILLER Connors Drilling Company LOGGED BY	ORILLEF	9-83 [COMPLETED	COM	12-8-83	SPUDDED 12		
	1		Vertical		HOLE ANGLE	H	ation	Reverse Circulation	Reverse		8"	5 1/8"	HOLE SIZE		4700'	ELEVATION	_	
DRILL HOLE ASSAY LOG	1	. 25	Cor. Sec.	S.E.	1810'W. of		DS. 2430'N.,	COLLAR COORDS.	COLLA	19W	 	T. 28N	N 25	SECTION 25	53	CLAIM GB#	-	
)) · · · · · · · · · · · · · · · · · ·	1		5	Arizona	STATE	 S		Mohave		_COUNTY_		Ĩ	NW/SE	Cold Basin	Col	PROSPECT	CB-14	HOLE NO. CE

.

.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	CORN & AHERN								ASSAYS BY		BY	ASSAYS BY		NDICATED	IN PPM UNLESS OTHERWISE INDICATED.	PPM UNLE	ALL VALUES IN
ELEMATION Mail SETION COLLAR DOUBLE TRUE DOUBLE TR					 	$\left - \right $	$\left - \right $										
ELEMINO International Internation International International <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>										·	_				_		
CLANII, UNITY NUME NUME </td <td>4d</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td>	4 d													<u> </u>			
CLAM. Markard Section T. M. Markard Concents Markard Section Section Markard Section																	
CI,NIM UP 23 SECTION T. M. N. D. 23 SECTION T. M. N. D. 23 SECTION T. M. N. D. 23 SECTION CONStrained in the section in the sectin the sectin the section in the section in the sectin th	L																
CLUM CUIV T. MR I. MOLE Sector (ML T. MR MIC																	
ELEMING 4700 Note 11-16-30 ONLER Convert Citability Note Note <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>^</td><td></td><td></td><td>_</td><td></td><td></td><td>1</td><td></td><td></td><td>- 2</td><td>0-360</td></t<>							^			_			1			- 2	0-360
CLAM UNIT T. M. R. T. M. R. COLLAR CONS. Currul No. 5 . E: Curr. Soc. 75 ASSAF LOG SPUODED 17-16-33 ONNELETED 12-15-33 ONNELETED IA-15-33 IA-15-33 IA-15-33 IA-15-33 IA-15-33 <td< td=""><td>- Cranite Cneiss</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td></td<>	- Cranite Cneiss														 		
CLAM Variety of Sec. 101 1.1 Support Collaboration Coll	and												-				
CLAIM OIDE STEP Train CIAN No. State Stat							~						^	1. 1	325 360		325-360
CLAIR Mar Section 1.7 Control Provide Section No. No. Section No. Section Sectin Section Section							-+			-+					_		
CLAM. UMP 33 SECTION. 37 1.1					-			_					~				295-325
CLAM OPF 3-3 SECTION 2-1 Amage in the state							┥		+	+	_	,					
CLAM. UMP 33 SECTION 1. 1. 1.11 1.11 Parese Circulation HOLE ANGE_15 ASSAY LOG SPUDDED 1-11-8.3 COMPLETED 1-11 COMPLETED 1-11	CRUSHED ZONE				<u></u>		~	-+		+							240-295
CLAIM LOB = 3-3 SECTION 4-3 T. ZMR R. YMP COLLAR CORPOS Z01/W., of S.E. Cor. Sec. 25 ASAY LOG SPUDDED 12-14-83 COMPLETED 12-15-83 DRILLER Company LOG EDB M HOLE SUPPLIE NOGE SUPPLIE NOGE SUPPLIE NOGE SUPPLIE							-	+					1		15 200-240		200-240
CLAIM								+			_						
CLAIM CBF 53 SECTION 12 T, 21/18* Reverse Circulation HOLE ANGLE 90° ASAY LOG SPUDDED 12-14*83 COMPLETED 12-15*83 DRILLER Connors Drilling Company LOGED BY PAGE_15 PAGE_15 TOTAL DEPTH 360* Cu. 2 5 7 24 26 2.05 5 11 Image: Curation F Asid Soit Toold Asid Soit Boold Asid Soit Boold Asid Soit Toold Asid Soit Toold Asid Soit Boold Asid Soit	<u>!</u>						^		+				^		15 160-200		160-200
CLAIM CBF 33 SECTION 12 11 <td>Biotite Cranite</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Biotite Cranite										•						
CLAIM UB# 53 SECTION 23 T. ZM P. TYP COLLAR COORDS. ZUIVN., ZUIVN. of S.E. Cor. Sec. 25 ASSAY LOG ELEVATION 4780 HOLE SIZE 51/8" Reverse Circulation HOLE ANGLE 90° SPUDDED 12-14-83 COMPLETED 12-15-83 DRILLER Connors Drilling Company LOGGED BY PAGE 15 TOTAL DEPTH 360' - 2 5 7 24 2 - Acid soil Total B% - GEOLOSY INTERVAL SAMPLE NUMBER An 2 5 7 24 26 05 5 - GEOLOSY Coarse grained 60 CB-15 60-130 02 0.8 - 5 7 24 26 05 5 - Gearse grained Bioàite Granite 70 CB-15 60-130 02 0.9 - 3 7 8 23 32 05 11 - - Bioàite Granite 70 CB-15 - - 3	Fine grained						^					2			3B-15 130-16D <		130-160
CLAIM UB# 33 SECTION 23 T. ZW R. 19W COLLAR COORDS. ZUIUW. of S.E. Cor. Sec. 25 ASSAY LOG ELEVATION 4780' HOLE SIZE 51/8" Reverse Circulation HOLE ANGLE 90° ASSAY LOG SPUDDED 12-14-83 COMPLETED 12-15-83 DRILLER Connors Drilling Company LOGGED BY PAGE 15 TOTAL DEPTH 360' An 2 Sh Cu Mo Pho Zn 2 Hg W F Acid Sol Totol 0 GEOLOGY AGE_15 GEOLOGY GEOLOGY GEOLOGY GEOLOGY GEOLOGY Coarse grained 70 GB-15 0-130 C.02 0.9 2 3 7 8 23 32 Co5 11 Hg					-												
CLAIM CB# 53 SECTION 43 T. ZN R. 19W COLLAR COORDS. Z010W. of S.E. Cor. Sec. 25 ASSAY LOG ELEVATION 4780' HOLE SIZE 5 1/8" Reverse Circulation HOLE ANGLE 90° SPUDDED 12-14-83 COMPLETED 12-15-83 DRILLER Connors Drilling Company LOGGED BY PAGE 15 TOTAL DEPTH 360' An 2 hs 2 ho Pho 2 n 2 hg W F Arid Sol, Total, Bo %, 1 U FOGE FOGE FOGE F Arid Sol, 1 ho FOGE F F Arid Sol, 1 ho F Coarse grained 60 CB-15 0-60 <.02					-		$\overline{}$				_	2	<u> </u>	.	60-130		60-130
CLAIM CB# 53 SECTION 43 T. ZN R. 19W COLLAR COORDS. Z010'N. of S.E. Cor. Sec. 25 Control of S.E. Cor. Sec. 25 SPUDDED 12-14-83 COMPLETED 12-15-83 DRILLER Connors Drilling Company LOGGED BY HOLE ANGLE 90° TOTAL DEPTH 360' 2 2 2 10 2 1 F. 180% NOCE PAGE 15 INTERVAL SAMPLE NUMBER Au 2 3 2 2 2 1 F. 180% 1 U GEOLOGY	- Coarse grained							+	_		_	+		.			0-60
CLAIM CB#53 SECTION 43 T. 28N R. 19W COLLAR COORDS. 2010'N. of S.E. Cor. Sec. 25 ONCE TO CE ELEVATION 4780' HOLE SIZE 51/8" Reverse Circulation HOLE ANGLE 90° SPUDDED 12-14-83 COMPLETED 12-15-83 DRILLER Connors Drilling Company LOGGED BY PAGE 15 TOTAL DEPTH 360' PAGE 15	GEOLOGY		1 Ba %	Acid Sol. 1 Ba		N	2	N	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N	N	~	P		INTERVAL SI	Ť
CLAIM CB# 53 SECTION 25 T. 28N R. 19W COLLAR COORDS. 2010'N., 2010'W. of S.E. Cor. Sec. 25 ELEVATION 4780' HOLE SIZE 51/8" Reverse Circulation HOLE ANGLE 90° SPUDDED 12-14-83 COMPLETED 12-15-83 DRILLER Connors Drilling Company LOGGED BY														360'	DTAL DEPTH	Ţ	
UB# 53 SECTIONT				۲ ۲	_OGGED B	npany_L	lling Cor	ors Dri	ER Conn	_ DRILL	2-15-83		COMPLE		9UDDED 12-14		
UB# 53 SECTION 25 T. 28N R. 19W COLLAR COORDS. 2010'N., 2010'N. of S.E. Cor. Sec. 25			0		OLE ANG		rculation	erse Cir	Rev	I	1/8"		HOLE SI		1	m	
	DRILL HOLE	15	r. Sec. i	S.E. Cot		10'N., 2	RDS. 20	AR COO		19W	28N R	5 			LAIM CB# 53	c	

• •

•

CRUSHED ZONE					╞		╞	-	$\left \right $				
CRUSHED ZONE													
CRUSHED ZONE		28	. 05		5 24	6	2 7	2		. 05	AVG		10~360
CRUSHED ZONE										_			
CRUSHED ZONE		4											
CRUSHED ZONE		18	5	45	5 26		5	2	1.7 <	^ . 02	CB-16 310-360	50	310-360
CRUSHED ZONE	-	22	. 06	36	7 27		3 7	2	1.7 <	. 05	CB-16 260-310	50 C	260-310
		28	. 10	41	5 30	10	2	2	1.7 <	. 06	GB-16 230±260	30	230-260
				4	2		•				067 007 01 02		
		:			+				- 	3	CB-16 200-220	3	
		29	< . 05	5 47	7 36	10	2	2	1.5 <	.03	GB-16 160-200	40	160-200
										1 1			
		27	. 07	46	5 29	~	2	2	1.6 <	<.02	GB-16 115-160	45	115-160
		20	< . 05	7 38	6 17		ы б	2		. 18	CB-16 50-115	65	50-115
Hematite Alteration		21	< . 05	5 37	6 15		2 8	2 <	0.9 <	.03	CB-16 30-50	20	30-50
Gneiss with Siderite-		29	< .05	36	6 13		8		0.8	.15	UB-19 10-30	20	10-30
6													
	-									<u> </u>	NO SAMPLE	10	0-10
6 . U GEOLOGY	F Acid Sol. Total	N E	- Ha	2 Zn	~ ∾ ₽	N N Mo	Sb ≥ Cu	As 2 (Ag 2	A c N	SAMPLE NUMBER 2	INTERVAL	HOLE DEPTH
PAGE <u>16</u> _0F	·									360'	TOTAL DEPTH_		
Sorn	GED BY Russell M. Corn	DRILLER Connors Drilling Company LOGGED	ng Com	ors Drilli	R Conn		12-18-83		COMPLETED	-83	SPUDDED 12-16-83	:	
	E ANGLE Vertical	HOLE A	ulation	Reverse Circulation	Reve	I	5 /8"		HOLE SIZE		ELEVATION 4780	_	
DRILL HOLE	W. of S.E. Cor. Sec.	1680'N., 2105'W.		COLLAR COORDS.		19W	28N R.		SECTION 25	SE	CLAIM CB# 53	_	
	re Arizona	STATE		Mohave					Basin	Gold Basin	PROSPECT	CB-16	HOLE NO. GI

APPENDIX C

.

.

SUMMARY OF AVERAGE VALUES FROM DRILLING RESULTS

;

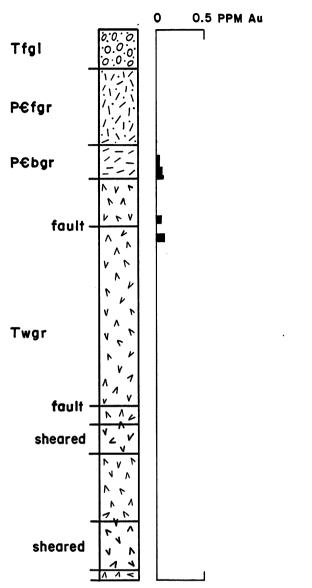
CORN & AHERN	Ą							ISSAYS BY:			ASSAYS BY:	ASS	TED.	E INDICA	PPM UNLESS OTHERWISE INDICATED.	ALL VALUES IN PPM
	-	\vdash			-											
<u> </u>				†												
L																
L																
<u> </u>																
										-						
4																
4																
4					7	. 10	50	33	6	10	< 2	< 2	1.0	< . 02	AVG	
·																
.																
d																
Granite Gneiss					28	. 05	41	24	5	7	< 2	< 2	1.4	. 05	10-360	GB-16
Biotite Granite					=	. 05	ж ж	29	5	و	2	< 2	0.9	< .02	0-360	GB-15
Biotite Granite					=	. 05	52 <	£5	6	16	< 2	< 2	0.8	< .02	0- 320	GB-14
Biotite Granite					6	. 05	57 <	27	^ 5	15	< 2	< 2	1.3	< .02	0-160	GB-13
Biotite Granite					7	. 05	8 ^	21	~ 57	ف	2	< 2	1.4	< . 02	0-230	GB-12
Biotite Granite					л 	.08	52	36	6	=	< 2	< 2	1.2	< .02	0-300	GB-11
Biotite Granite					σ	. 09	50	36	6	10	< 2	< 2	1.0	< .02	0- 360	CB-10
Blotite Granite					7	. 05	45 ^	29	5	œ	ω	< 2	0.8	< .02	0-240	GB-9
Biotite Granite					-	. 09	43	29	σ	8	< 2	< 2	0.6	< . 02	0-265	GB-8
Biotite Granite					-	. 18	47	30	6	=	< 2	< 2	1.6	< .02	185-400	-
Gneiss					20	శ్	4	29	7	42	-	2	1.7	.27	10-185	CB-7
Biotite Granite					5	ງສ	49	35	6	5	2	< 2	1.4	< .02	0- 300	CB-6
Gneiss					6	. 37	60	27	л 57	5	ω	2	1.5	. 06	0-600	CB-5
Biotite Granite					8	. 37	8	36	7	10	7	< 2	1.1	< .02	0-380	GB-4
Gneiss					7	. 10	54	36	6	9	< 2	< 2	1.0	< .02	5-200	GB-3
Biotite Granite					*	:=	48	40	6	11	< 2	2	1.7	. 02	10-600	GB-2
White Hills Granite		 			4	. 05	> 6th	53	۲	و	< 2	ω	1.4	< . 02	0~ 570	GB-1
GEOLOGY		, 1 U	, Ba %	- Ba	W	ng 2	دہ 2	N 10	2 80	2	2 20	2	2 Ag	2 40	INTERVAL	HOLE NUMBER

SUMMARY OF AVERACE VALUES FROM DRILLING RESULTS

COUNTY Mohave

_ STATE___

Arizona

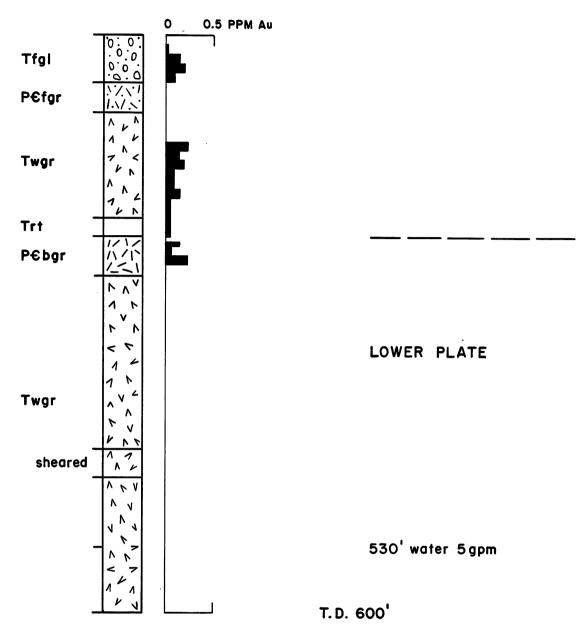

PROSPECT <u>Cold Basin</u>

PAGE _____ OF_

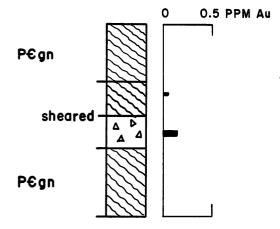
APPENDIX D

GRAPHIC LOGS GB-1 through GB-16

RDH GB-I Elevation 4640'

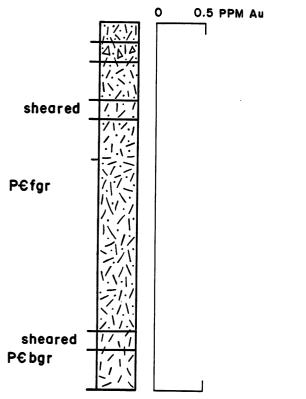


155-160 quartz-rich fault breccia


LOWER PLATE

T.D. 570'

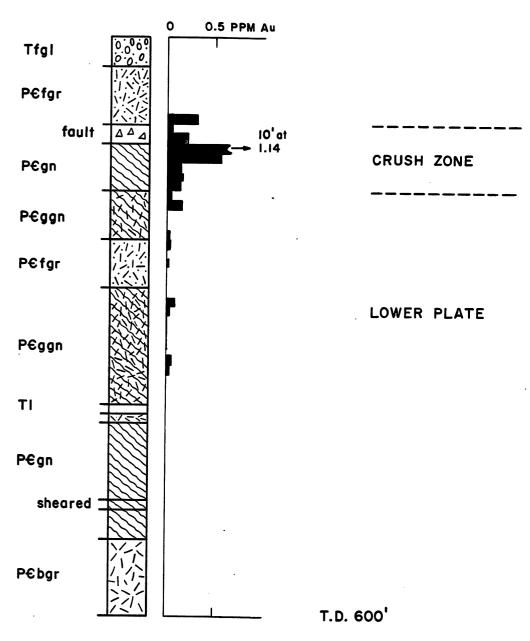
RDH GB-2 Elevation 4800'


RDH GB-3 Elevation 4480'

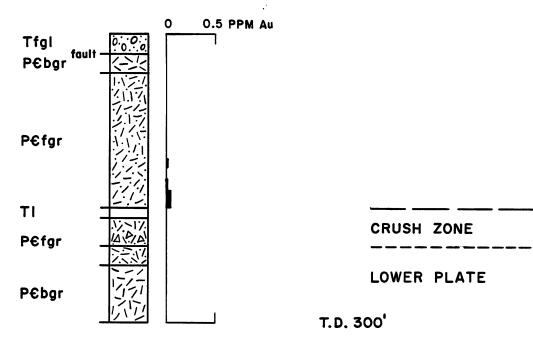
CRUSH	ZONE
LOWER	PLATE

T.D. 200'

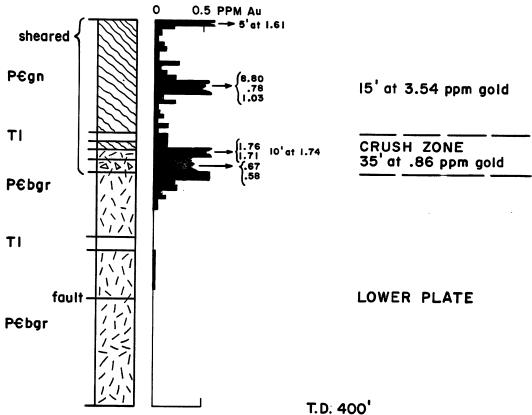
RDH GB-4 Elevation 4420'

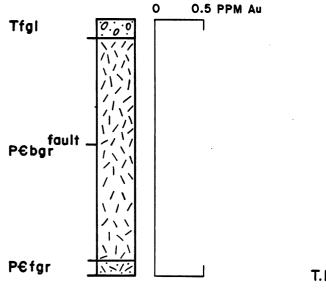


CRUSH ZONE


140' chloritic alteration

T.D. 380'

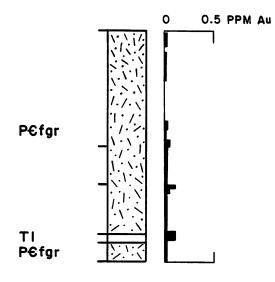

RDH GB-5 Elevation 4560'

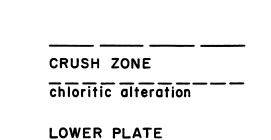

RDH GB-6 Elevation 4550'

RDH GB-7 Elevation 4500'

RDH GB-8 Elevation 4450'

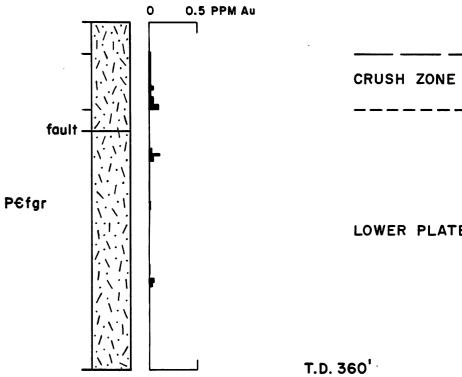
CRUSH ZONE

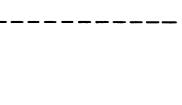

fine-grained black alteration in feldspars


LOWER PLATE

T.D. 265'

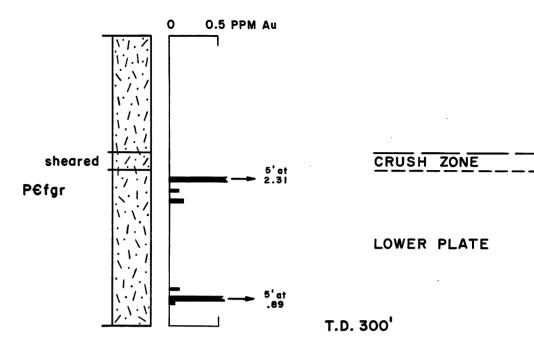
RDH GB-9

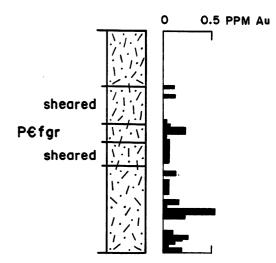

Elevation 4450'



T.D. 240'

RDH GB-IO Elevation 4600'

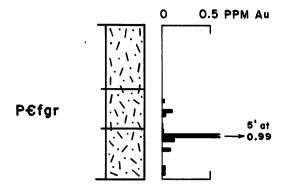

÷

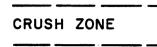

- ----

LOWER PLATE

RDH GB-11 Elevation 4560'

RDH GB-12 Elevation 4550'


CRUSH ZONE

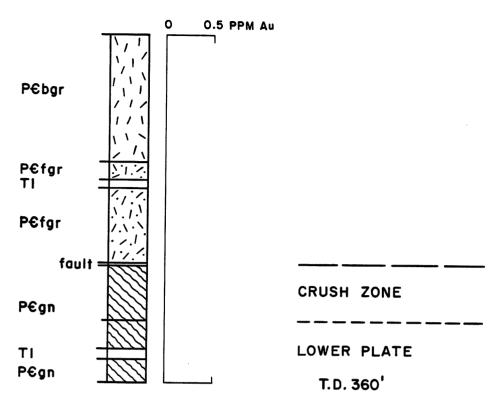

chloritic alteration with purple fluorite

LOWER PLATE

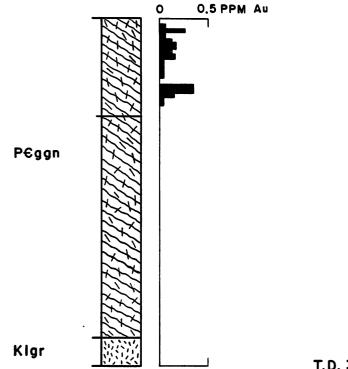
T.D. 230'

RDH GB-13 Elevation 4480'




LOWER PLATE

T.D. 160'


RDH GB-14 Elevation 4700'

RDH GB-15 Elevation 4780'

RDH GB-16 Elevation 4780'

CRUSH ZONE ?

chloritic alteration

LOWER PLATE

T.D. 360'

APPENDIX E

...

SAMPLE LOG

APPENDIX A

•

ROCK UNITS GOLD BASIN DISTRICT MOHAVE COUNTY, ARIZONA

Quaternary	Alluvium (Qal)	
Tertiary	Fanglomerate and conglomerate (Tfg)	Unsorted bouldery fanglomerate made up dominantly of cobbles and boulders of gneiss and granite set in a coarse sandy matrix. The unit includes a similar conglomerate that was derived from eroded and disintegrated fanglomerate.
	Rhyolitic tuff (Tr)	White, unwelded, fine-to-medium-grained rhyolitic ash flow tuff intimately associated with the fanglomerate.
	Andesite (Ta)	Medium-grained, dark grey hornblende andesite.
	Sandstone (Ts)	Fine-grained, light grey bedded arkosic sandstones.
	Lamprophyre (Tl)	Fine-to medium-grained, dark brown or greenish brown, intrusive dikes and sills characterized by phenocrysts and fragments of hornblende and plagioclase in a fine-grained matrix with a roughly equivalent content of amphibole and plagioclase. The rock is commonly fragmental or brecciated, exhibiting outlines of milled fragments or angular fragments of amphibole, and is generally altered to chlorite and siderite.
	Latite porphyry (Tl)	Light gray intrusive porphyry exhibiting small phenocrysts of feldspar (20%) in a dense gray aphanitic groundmass.
• 1	White Hills granite (Twgr)	Light-gray to white coarse-grained leucocratic biotite granite (5% biotite) characterized by prominent one to two inch long feldspar crystals. This granite is <u>not</u> foliated, cut by pegmatites, or lamprophyre and is common south and west of the Cyclopic Mine.

Cretaceous	Leucogranite (Kg)	Medium to coarse-grained, light gray or white, biotite and biotite-muscovite granite that contains numerous pegmatite and aplite dikes over a large area adjacent to the low-angle shear zone at Gold Basin. The granite is altered to an alaskite (Kagr) which exhibits numerous quartz veinlets and muscovite as the only mica.
Precambrian	Quartz-Biotite granite (P C -fgr)	Fine-grained, dark gray-green, quartz- rich holocrystalline biotite granite. Quartz (30%) and biotite (10%) are prominent constituents.
	Biotite granite (P C -bgr)	Coarse-grained, equigranular biotite granite containing 10 to 15% biotite. The granite has been weakly metamorphosed and varies from non-foliated to severely foliated.
	Gneissic granodiorite (P C- gd)	Medium to coarse-grained, dark-colored gneissic granodiorite with 30% or more former ferro-magnesian minerals.
	Gneiss (P C -gn)	Layered gneissic metasedimentary and meta-volcanic rocks that exhibit epidote- amphibolite to amphibolite rank meta- morphism. Included in the mapped unit are fine-grained quartz-biotite-feldspar gneiss, coarse-grained garnet- feldspar-amphibole gneiss and medium to coarse-grained granitic gneiss.
	Gneissic biotite granite (P C -gngr)	Coarse-grained, gneissic, intensely foliated tan to pink granite characterized by prominent K-feldspar, biotite and quartz.

APPENDIX B.

SCREEN TEST GOLD BASIN PROJECT MOHAVE COUNTY, ARIZONA

A bulk sample weighing over twenty-five pounds was collected from an exposure of the "Crushed Zone" prospect pit in the NE NW of Section 25, T. 28 N., R. 19 W. Several previous samples of the crush and gouge zone from this prospect ran 3.5 ppm to 7 ppm gold.

The bulk sample was crushed and ground in a pulping mill and screened into three size fractions, coarse (+20 mesh), middle (<20:+60 mesh) and fine (<60 mesh). Assay results for gold, silver and several pathfinder elements on these fractions are shown on the following table. Detailed examinations of each size fraction did not disclose any gold particles, but gold was observed during microscopic examination of the panned heavies from the fine fraction. The gold observed consisted of a delicate crystalline particle in a soft white clay matrix. The panned heavy concentrate from 6 pounds of fines consisted of a few grams of hematite and goethite after fine-grained pyrite, too little to assay.

The analytical data show that gold and silver are slightly concentrated in the more siliceous coarse (+20 mesh) screen fraction with 60-percent of the total gold in this fraction. The data indicates that gold permeates the gouge and crushed material, probably occurring as free gold and/or auriferous pyrite and the mineralization has resulted from pervasive soaking of the crushed zone by epigenetic hydrothermal fluids.

Sample Number	Screen Mesh	% Fraction	% Total Au in Fraction	Au ppm	Ag ppm	W ppm	As ppm	Sb ppm	Hg ppm
2799	-	-		2.13	1.1	79	20	2	2.03
2799A	+20	49.7	61%	3.02	3.5	43	18	2	1.66
2799G	<20 +60	32.4	26%	1.95	1.4	54	23	2	1.04
2799C	<60	17.9	13%	1.78	0.7	61	23	2	1.65

Screen Test, Bulk Sample From Crushed Zone^{*}

^{*}-Testing results from USBRC, Anaheim, California

GOLD BASIN PROJECT (Au) MOHAVE COUNTY, ARIZONA

GENERAL

Land: 90 claims located by PCMI in 1982 and 1983 in the following sections: T28N, R18W Sections 30 and 31 T28N, R19W Sections 24, 25 and 36

There are no outstanding options or commitments.

Work-To-Date: 367 surface samples

5,645 feet of reverse circulation drilling in 16 holes

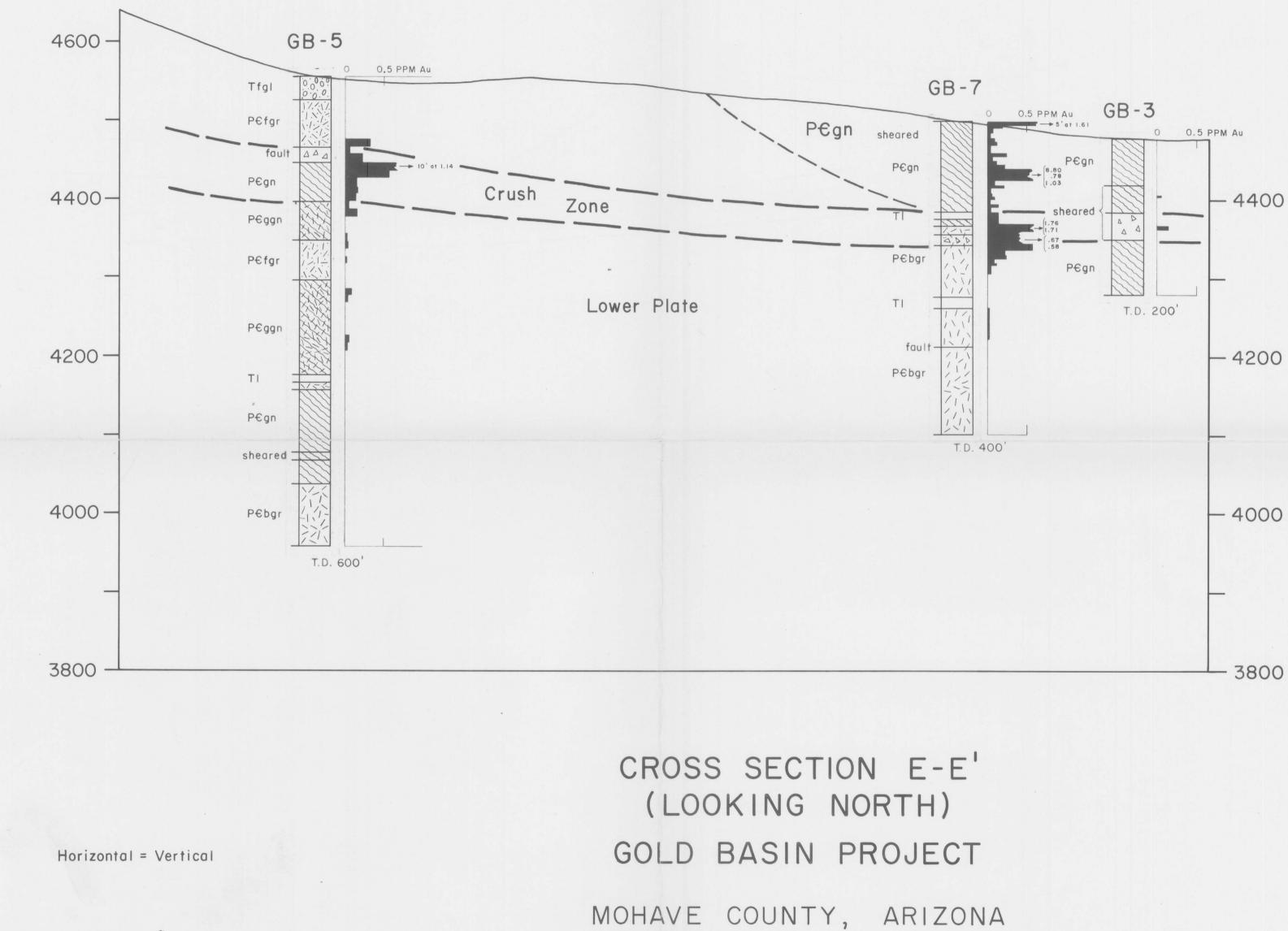
GEOLOGY AND MINERALIZATION

Gold occurs at Gold Basin as widespread diffuse epigenetic mineralization localized in an extensive, sub-horizontal zone of crushing and shearing. The mineralized "Crushed Zone" is a 50 to 100-foot thick zone of gouge, breccia and crushed rock that resulted from coalescing listric faults at the base of an overlying lithotectonic unit positioned between an Upper Plate post-mineral lithotectonic unit and a stable underlying basement complex. In the vicinity of the Cyclopic Mine, the "Crushed Zone" contains .05 to .20 ounces of gold per ton associated with minor introduced pyrite and anomalous fluorine, tungsten mercury and lead.

Geologic investigations and drilling have outlined an elongate northwest trending zone of pyritic alteration and prominently anomalous gold and mercury values in exposures of Middle Plate rocks above the "Crushed Zone", which could contain a limited tonnage of low grade gold mineralization treatable by selective open pit mining and heap leaching.

200 Feet

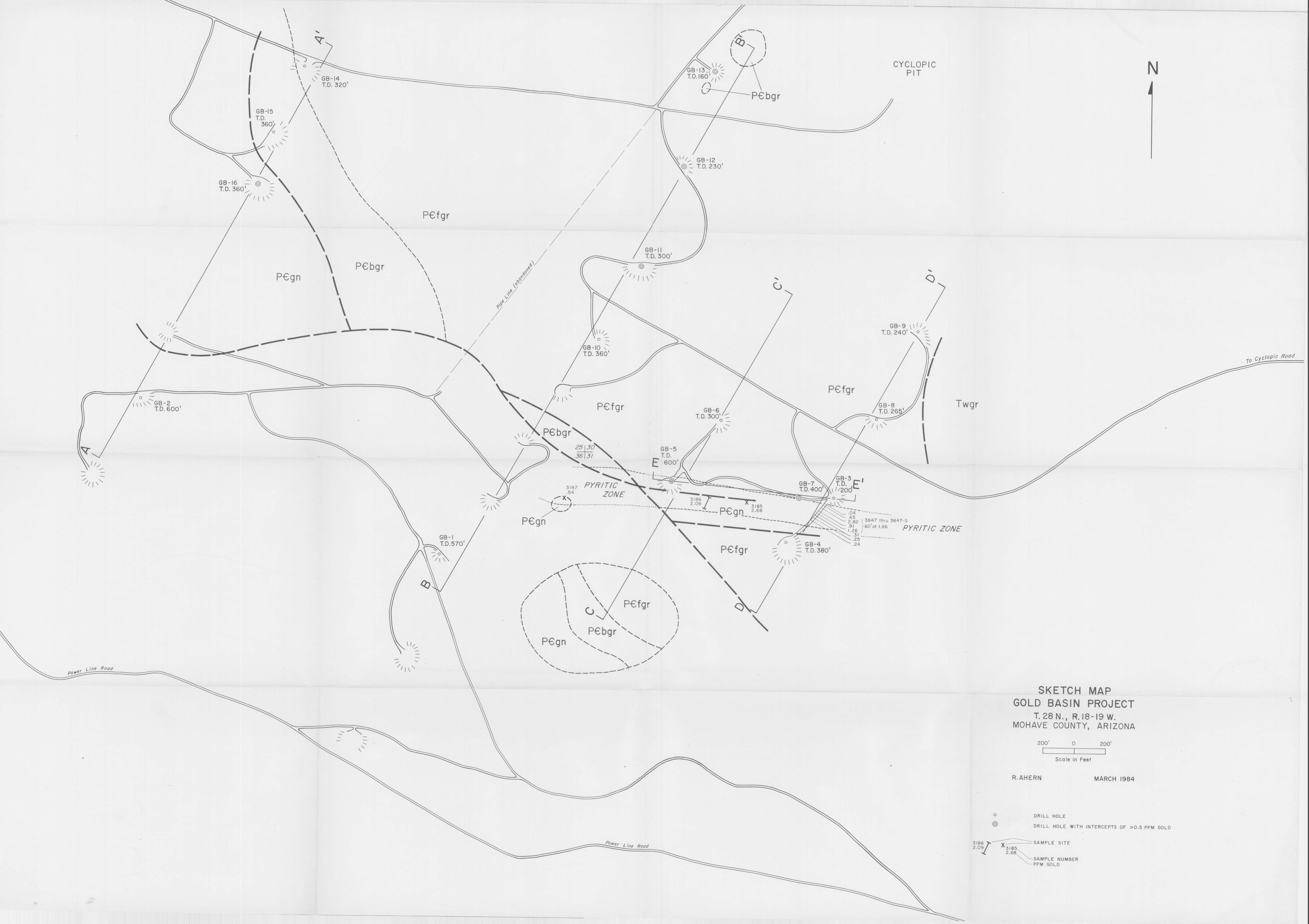
00-

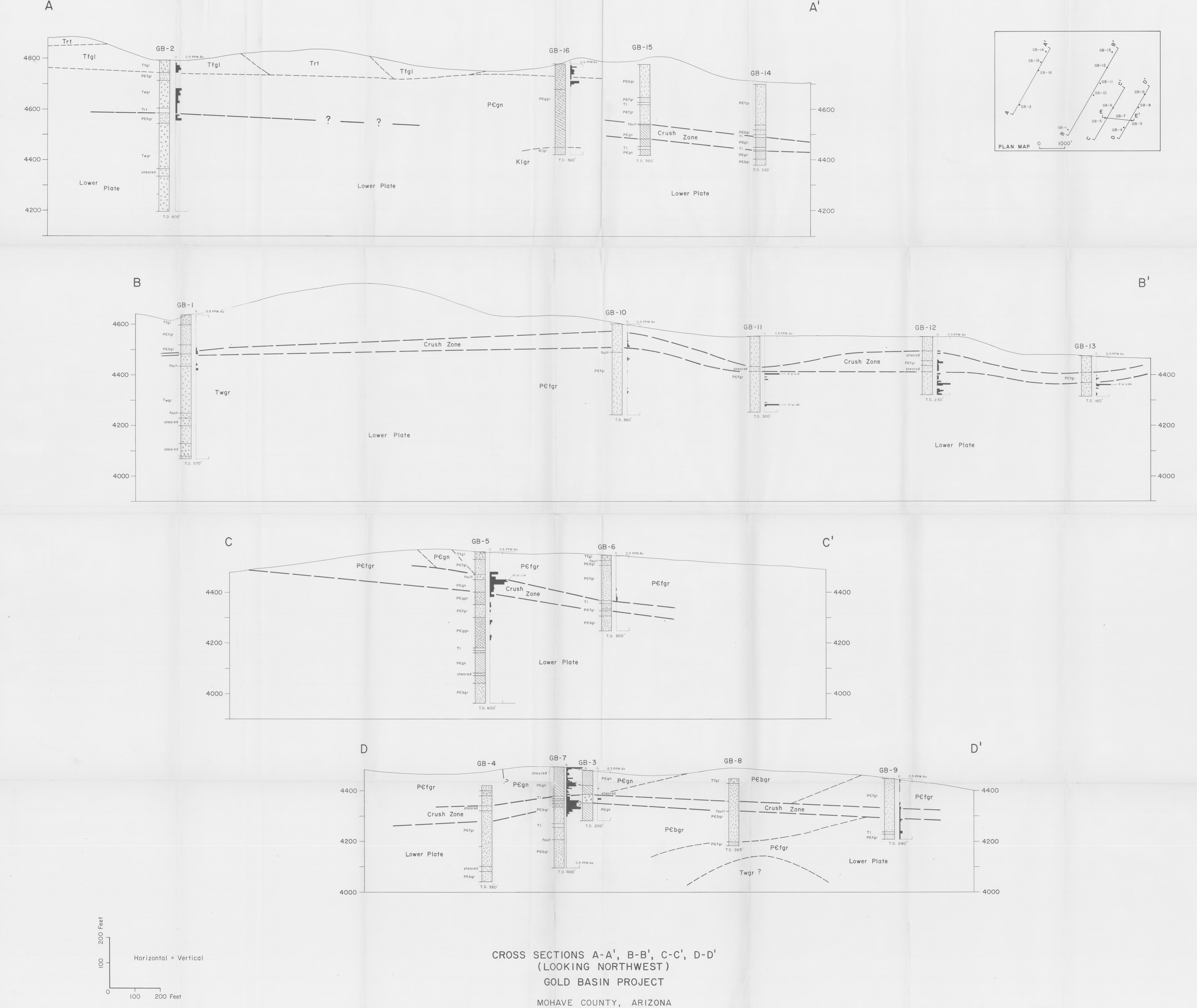

0

1

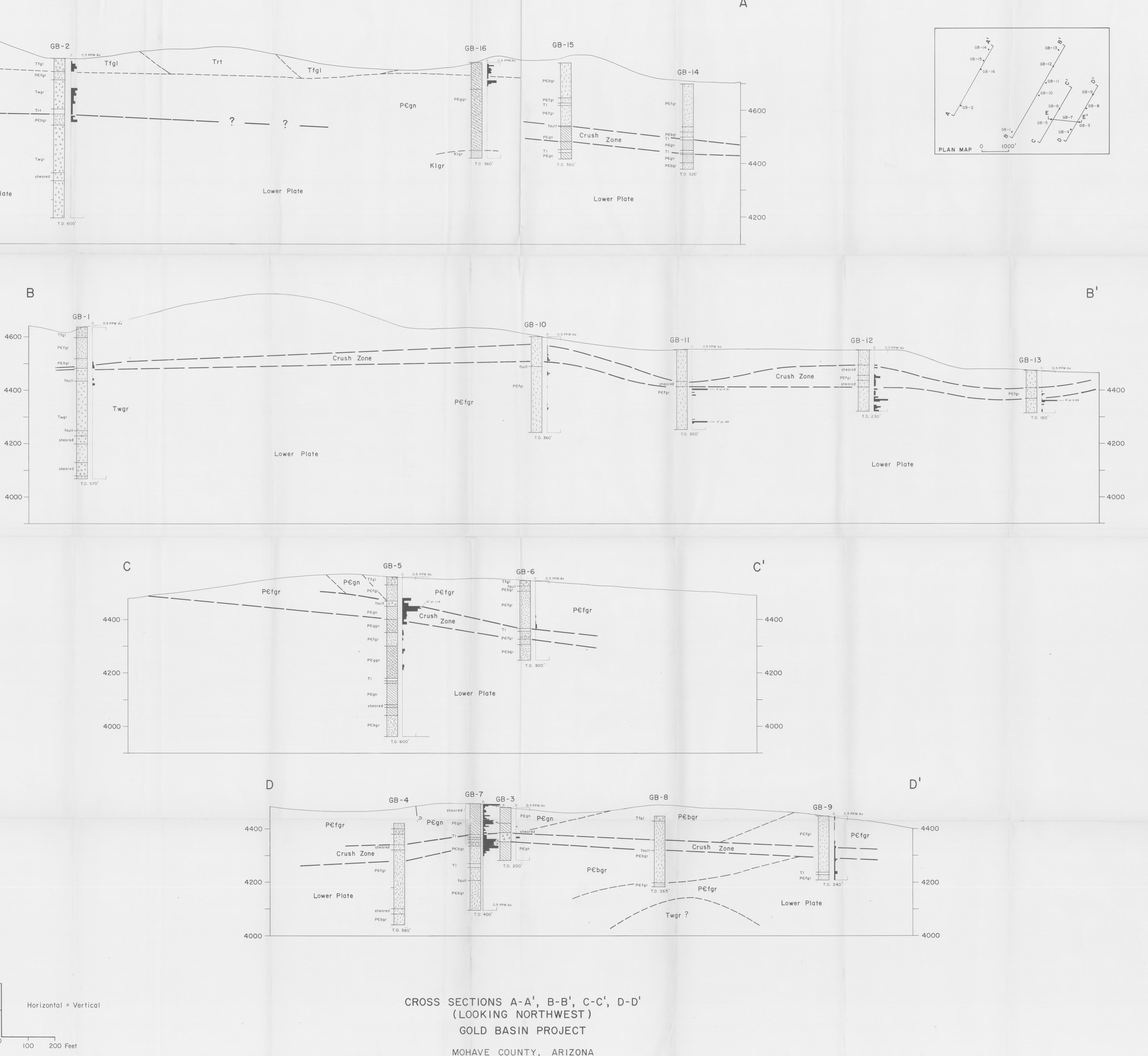
100

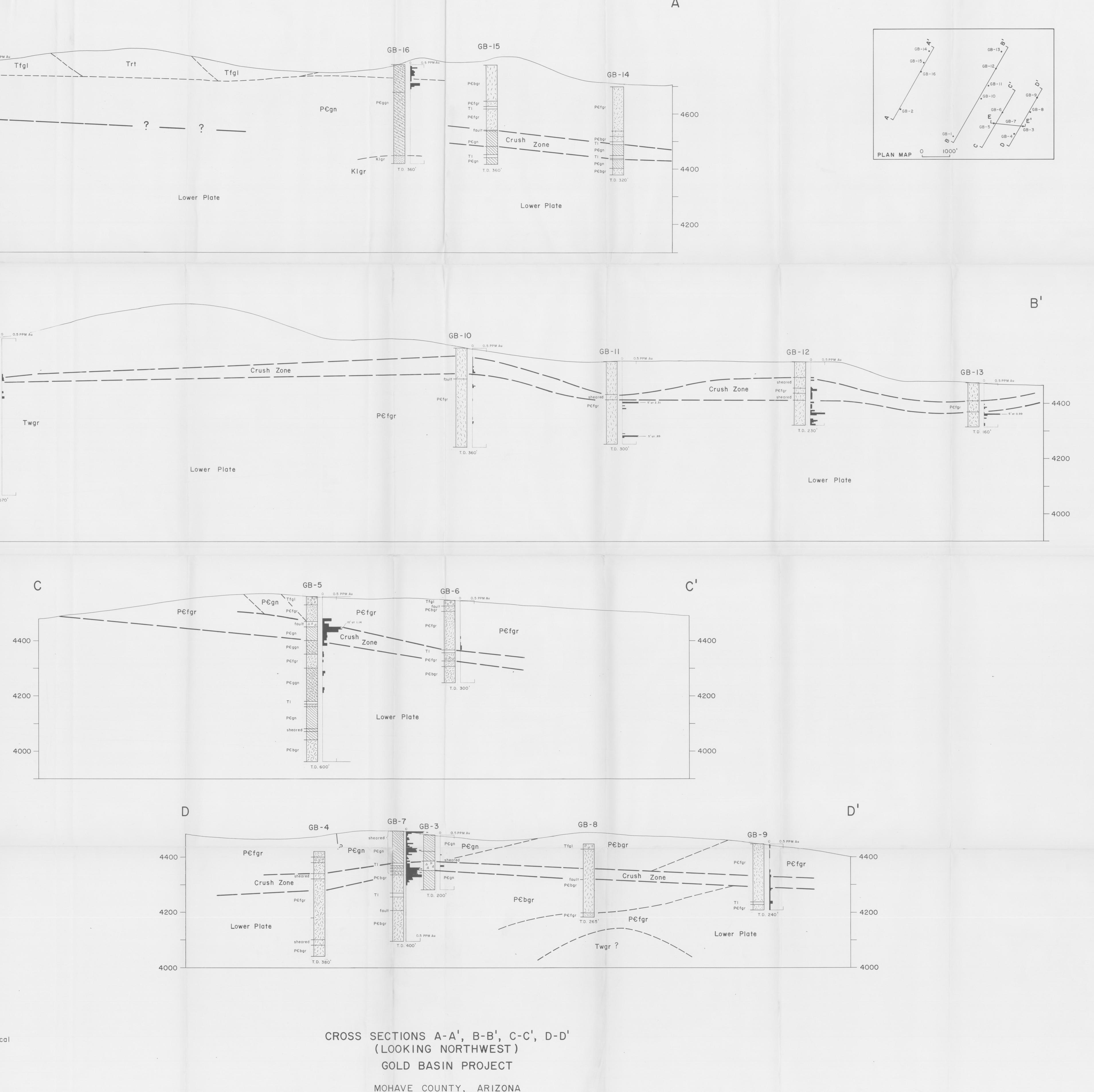
16.2

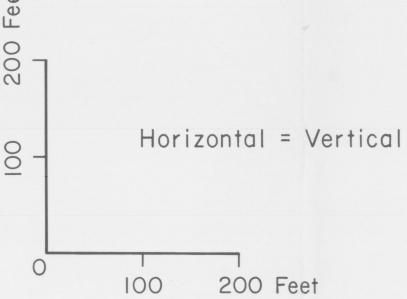

200 Feet



R. AHERN


MAY 1984


1



`

R. AHERN

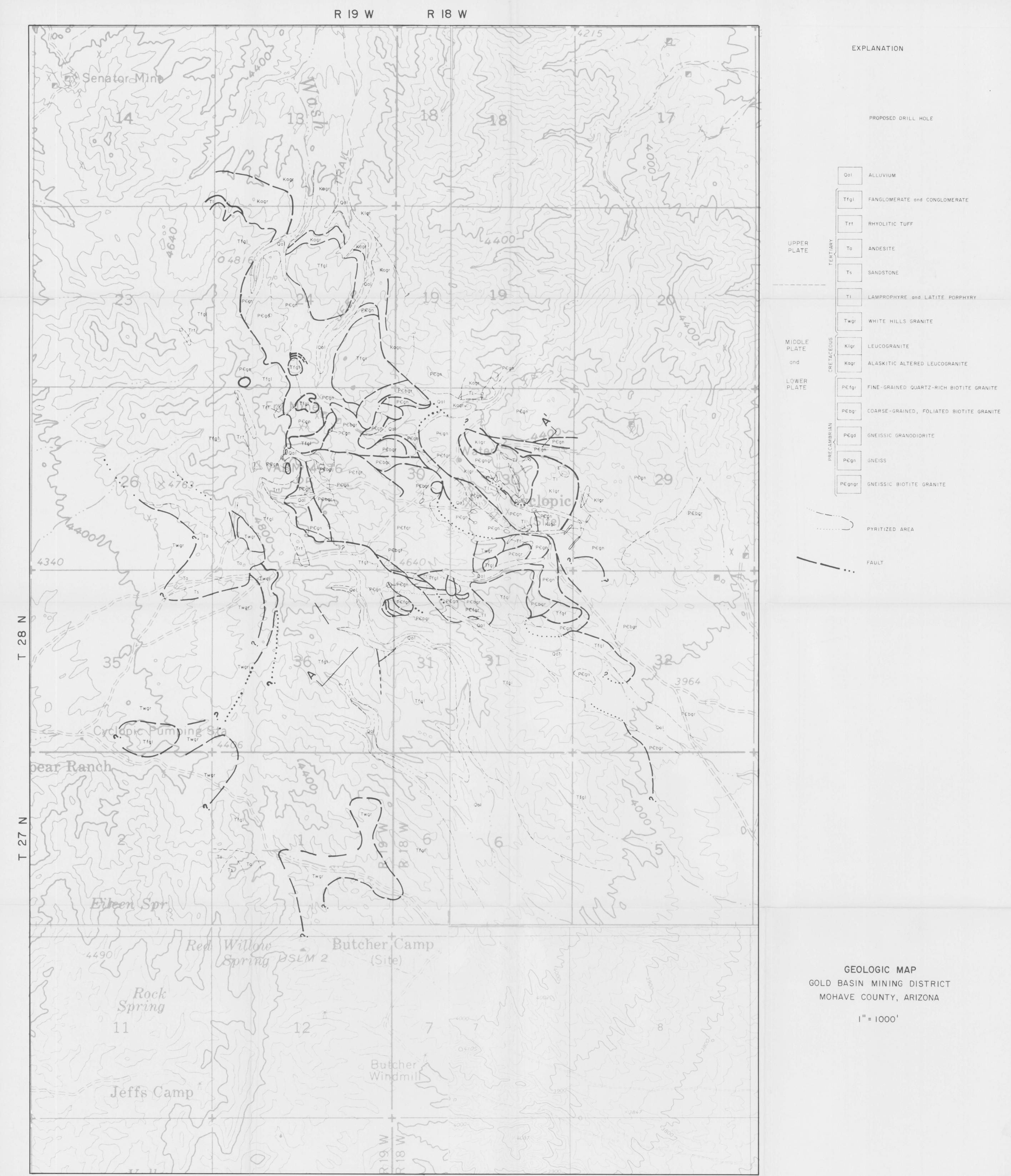
MAY 1984

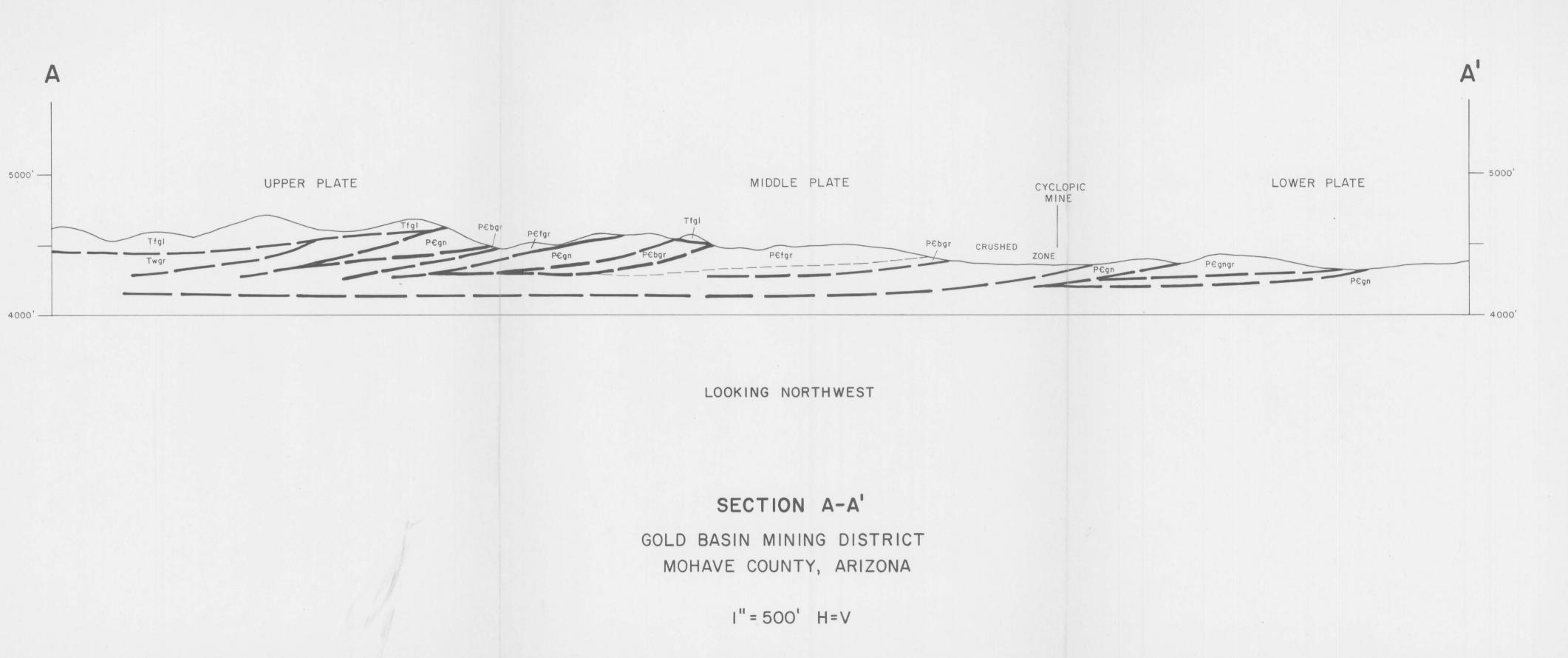
R 18 W

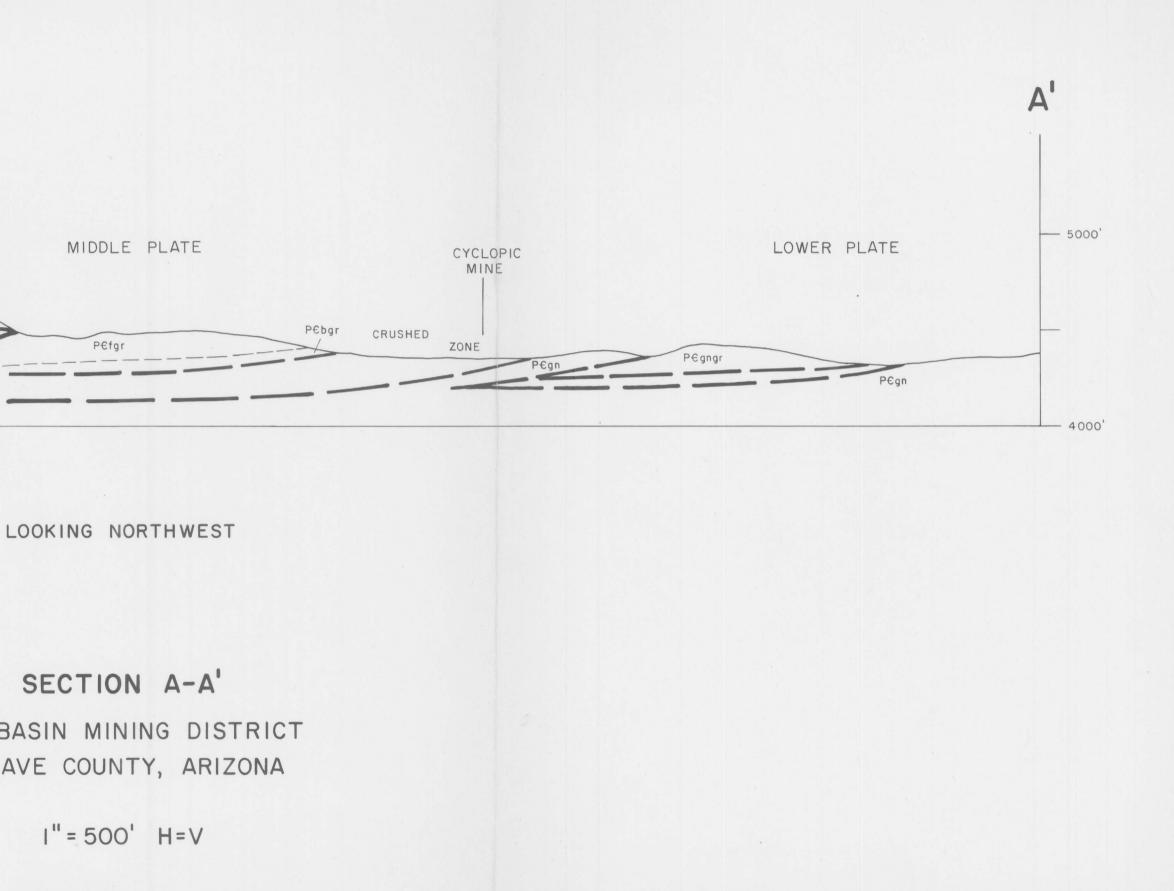
R 19 W

28 N \vdash

27 N

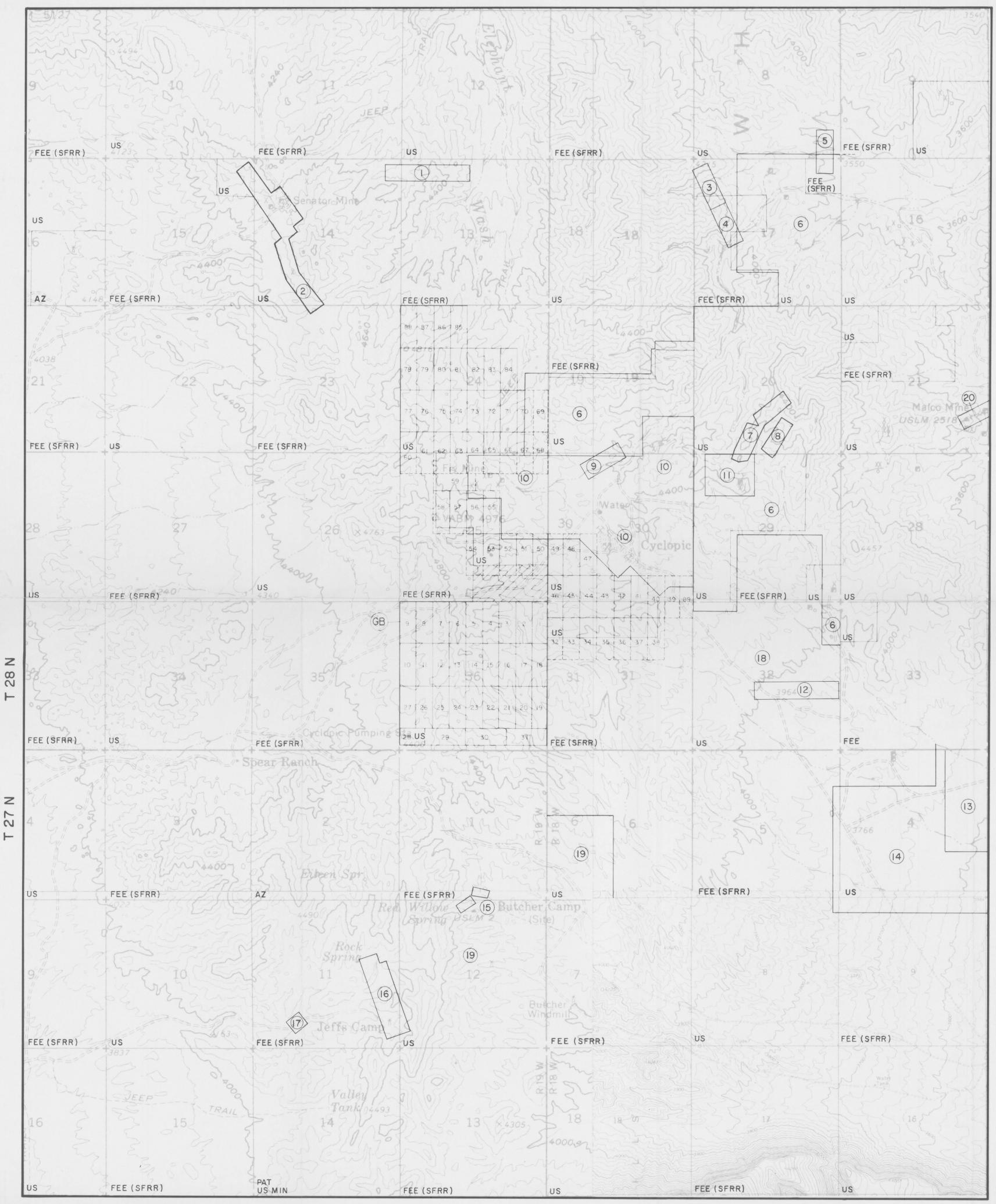

LITHOTECTONIC UNITS UPPER PLATE MP MIDDLE PLATE CRUSHED ZONE LP LOWER PLATE /// UPPER MARGIN OF LOWER PLATE


·····> PYRITIZED AREA


PROPOSED DRILL HOLE

LITHOTECTONIC MAP GOLD BASIN DISTRICT MOHAVE COUNTY, ARIZONA

|" = 2000¹



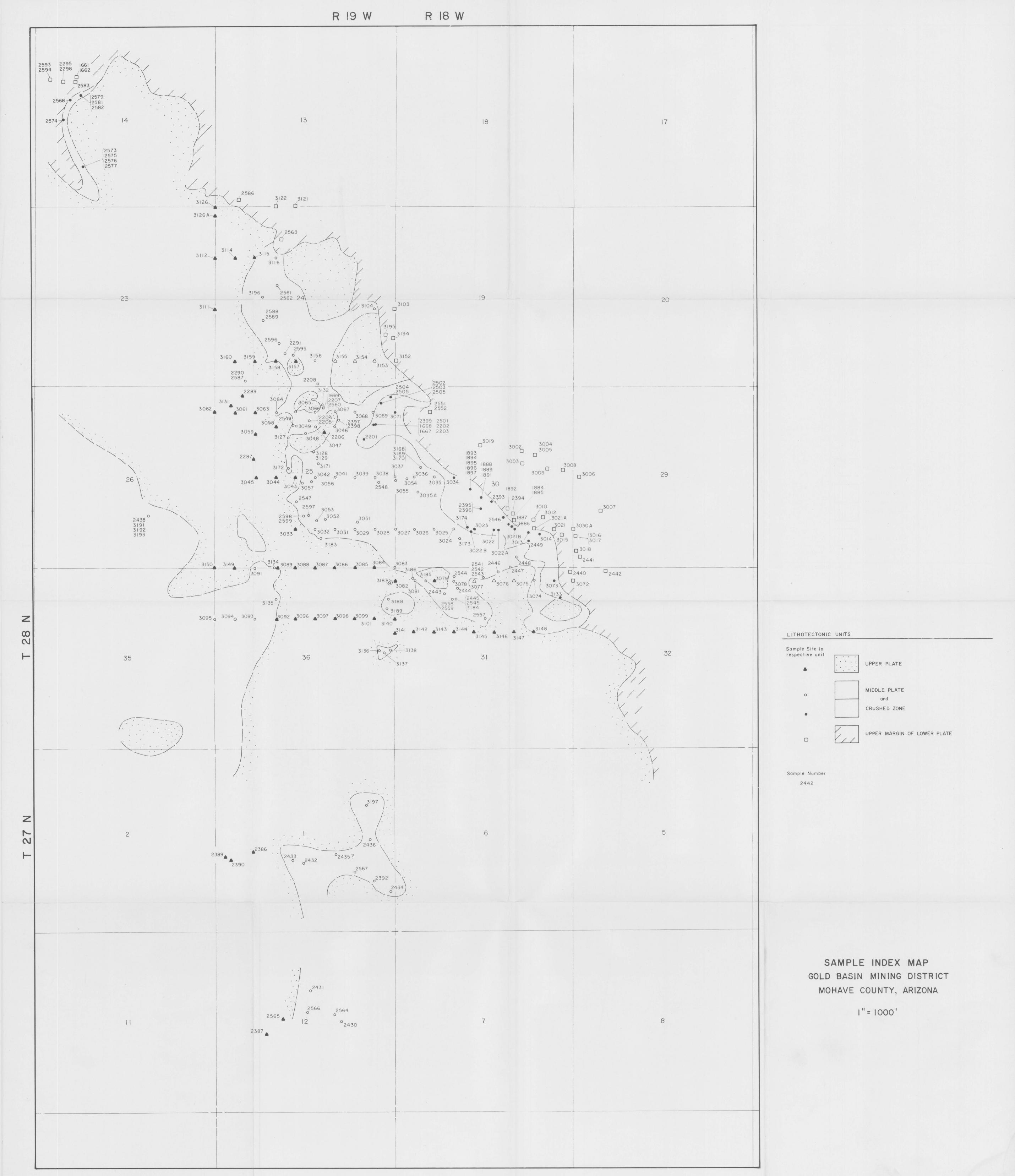
MAY, 1983

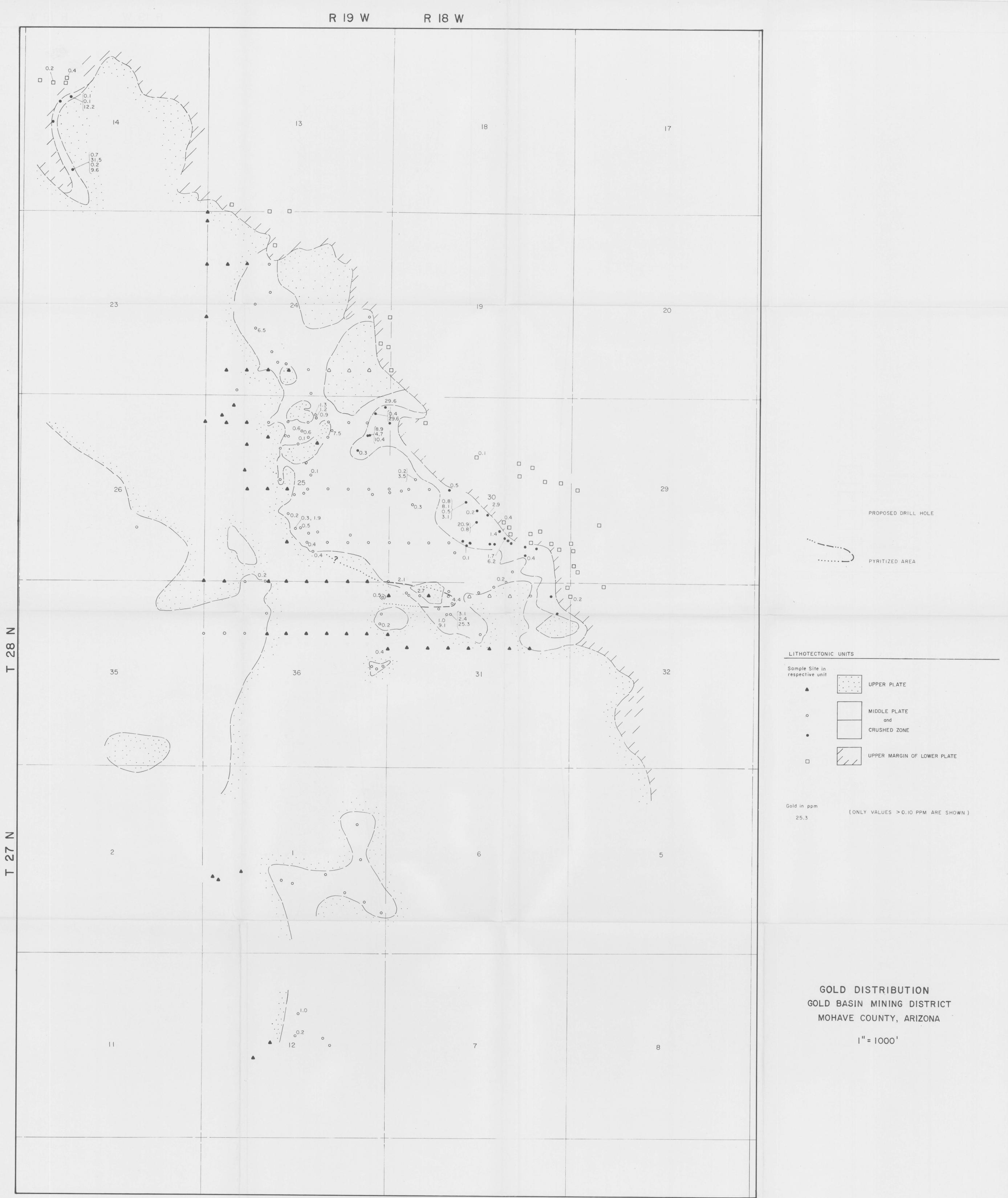
PLATE III

R 19 W

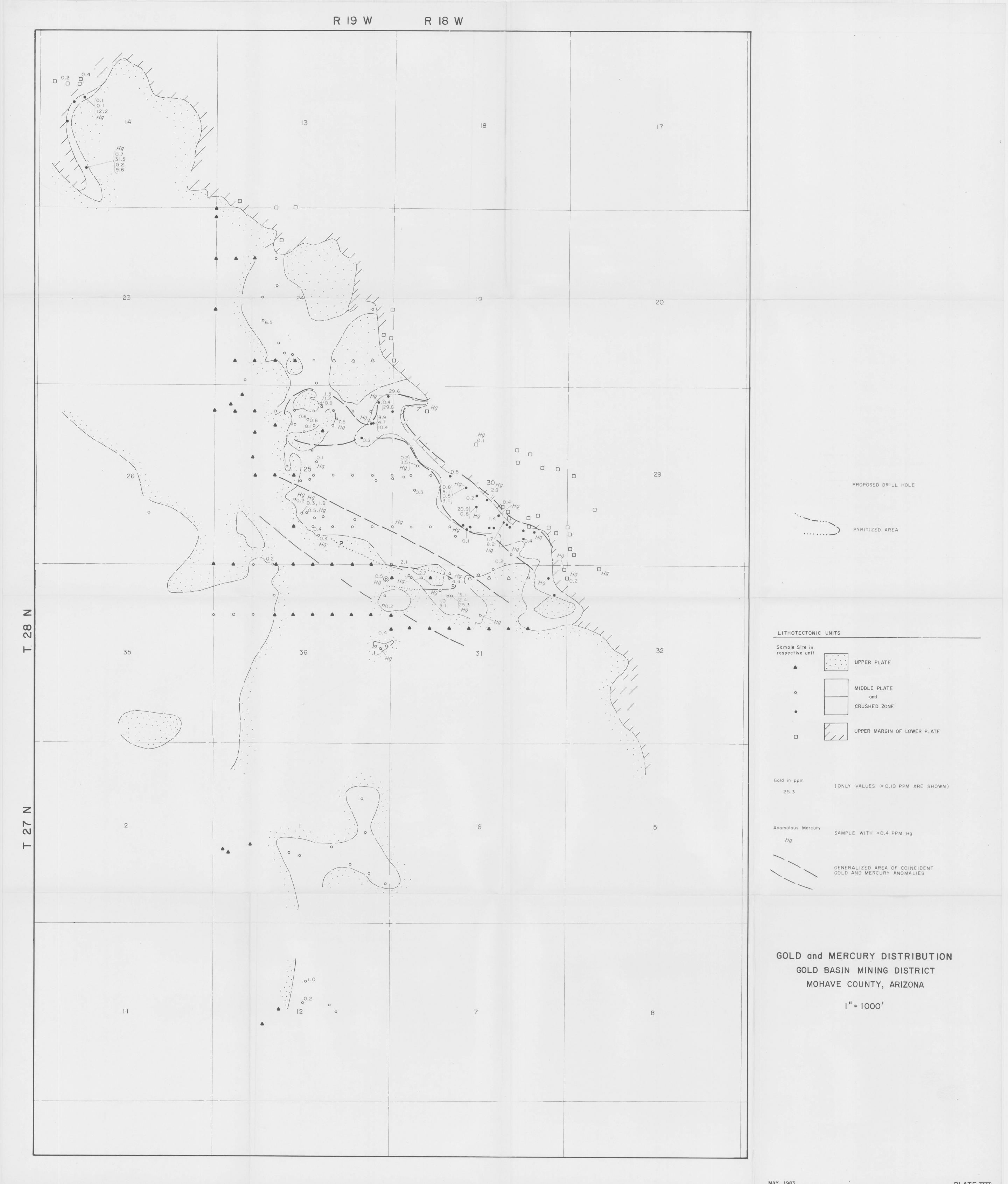
R 18 W

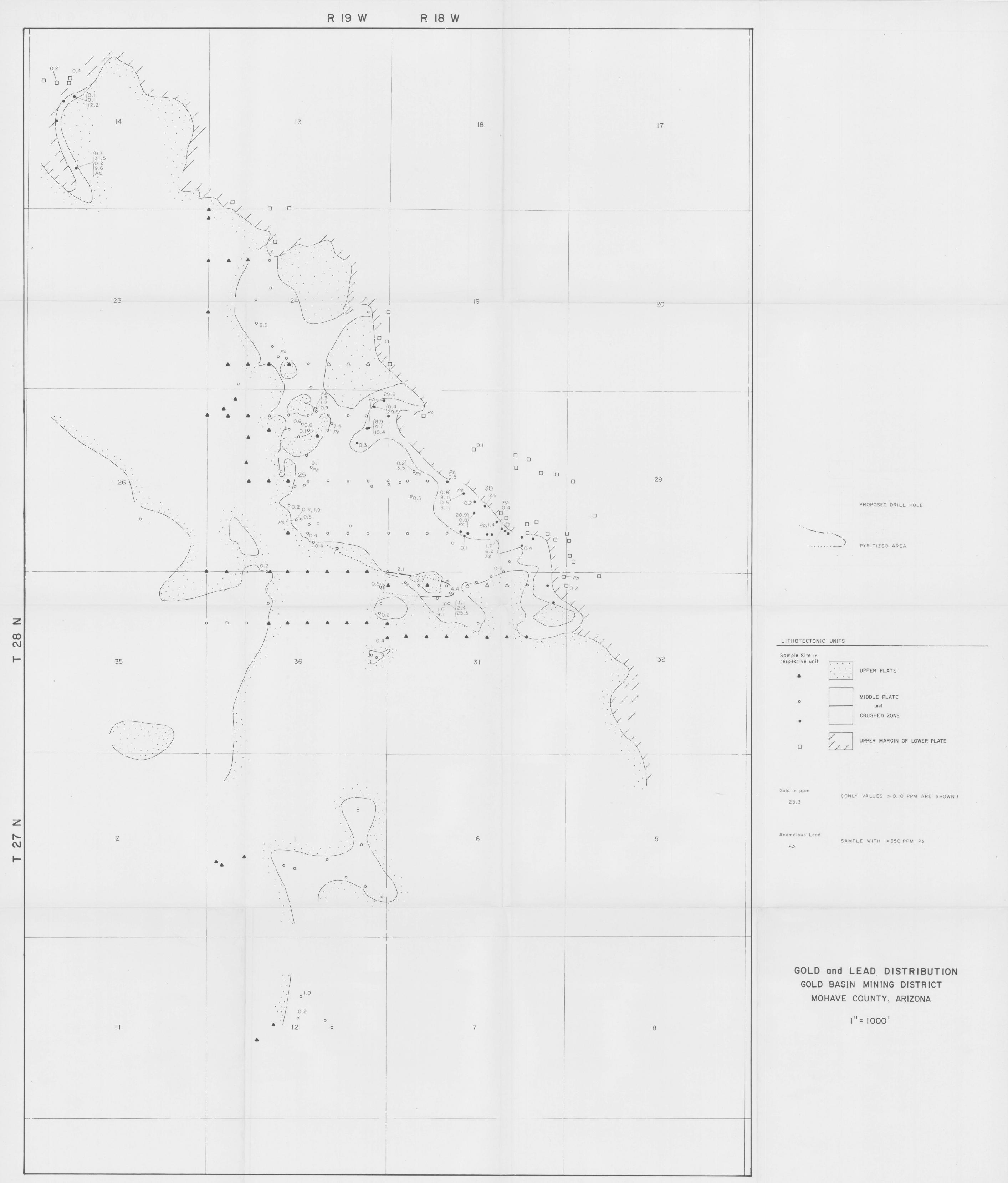
F


UNPATEN	CUNERSHIP						
1¢9 RIDDLES							
3	JOANNE and CLARENCE CALLENDAR						
4	JOHN MILLS						
5	GOLDTEX MINING DEVELOPMENT (SR) (Abandoned?)						
6	ROCKY MOUNTAIN SURVEY						
(10)	WYMAN and KING						
	WILLIAM and CHLOE JOHNSON						
(12)	VERN and ROBERT SCHENECK, and L. MORRISON (Abandoned?)						
(13)	VENDOR B. LEE (SR)						
(14)	SFP MINERAL CORP. (Abandoned?)						
(15)	OTHER						
(18)	FORTRESS MINING						
(19)	JOHNSON - CAMERON						
GB	PCMI GB CLAIMS						
PATENTED CLAIM OWNERSHIP							
2							
7							
8							
(16)(17)							
20							


20

PROPOSED SANTA FE LEASE


LAND STATUS MAP GOLD BASIN DISTRICT MOHAVE COUNTY, ARIZONA


1"= 2,000

•

,