

CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 3550 N. Central Ave, 2nd floor Phoenix, AZ, 85012 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the Cambior Exploration USA Inc. records

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

Polyconic projection. 1927 North American datum 10,000-foot grids based on Arizona coordinate system, east and central zones 1000-meter Universal Transverse Mercator grid ticks, zone 12, shown in blue

CR 30

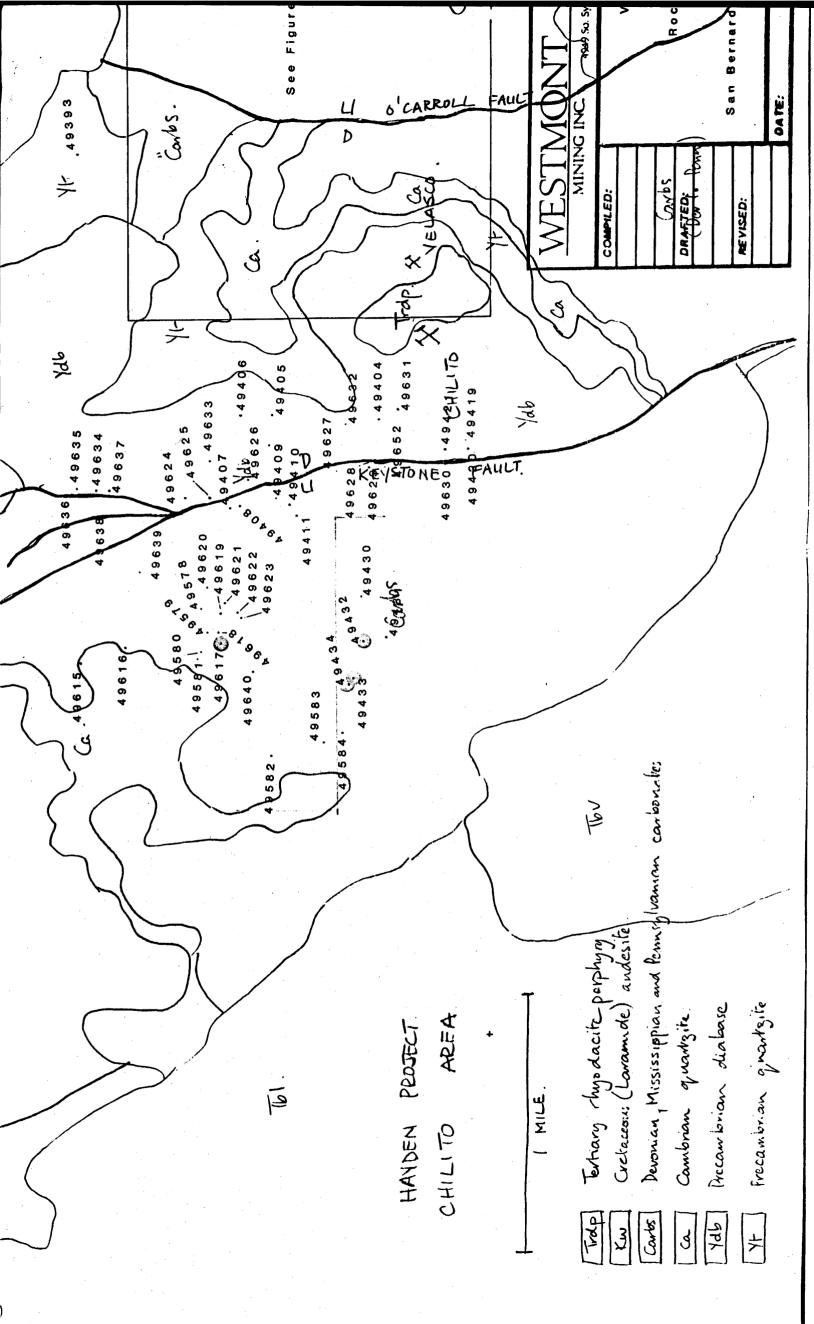
Where omitted, land lines have not been established

0°06′ 2 MILS UTM GRID AND 1964 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET

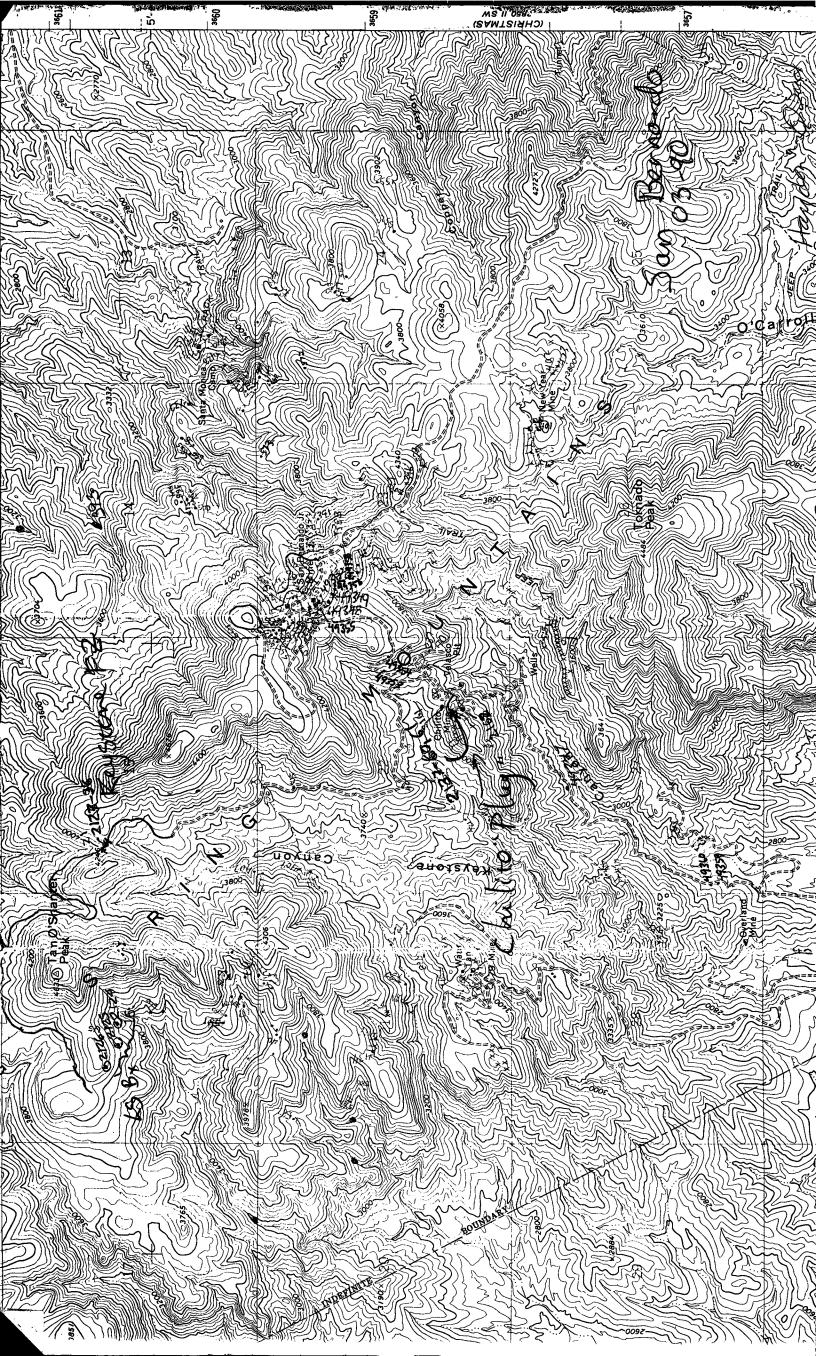
EFFFF CONTOUR INTERVAL 40 FEET DOTTED LINES REPRESENT 20-FOOT CONTOURS DATUM IS MEAN SEA LEVEL

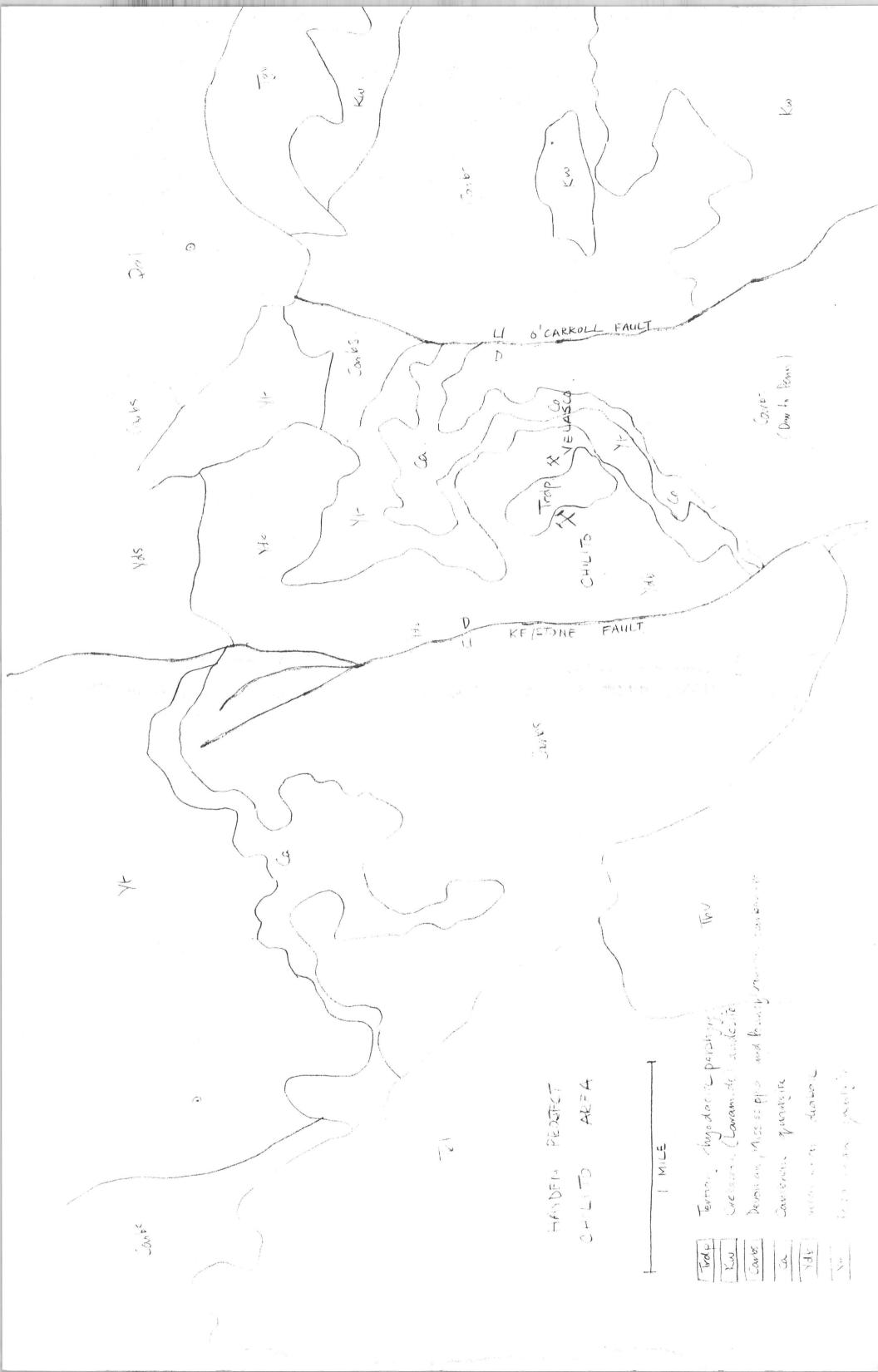
THIS MAP COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS FOR SALE BY U.S. GEOLOGICAL SURVEY, DENVER, COLORADO 80225, OR WASHINGTON, D.C. 20242 A FOLDER DESCRIBING TOPOGRAPHIC MAPS AND SYMBOLS IS AVAILABLE ON REQUEST

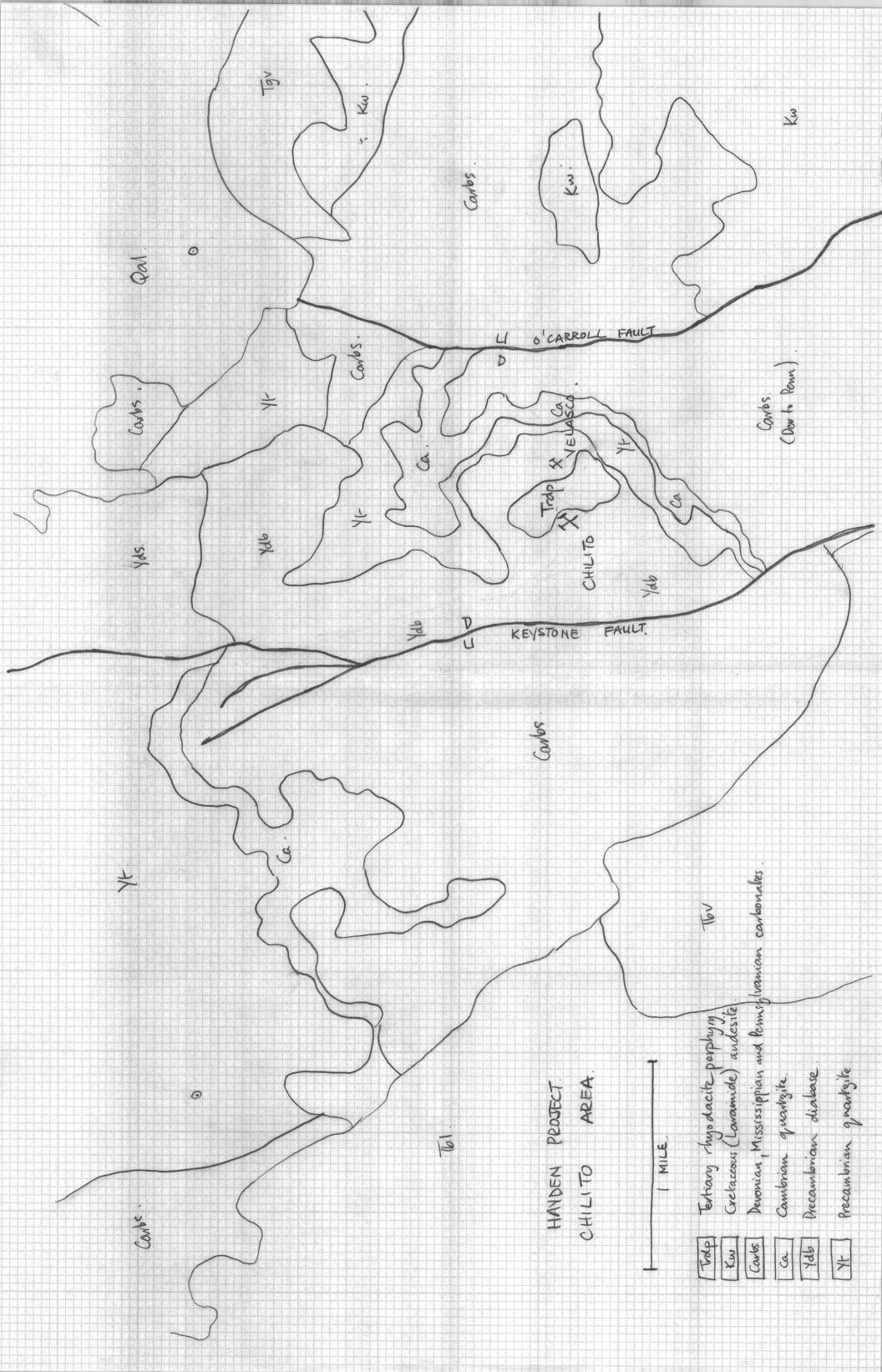
HAYDEN, ARIZ. SE/4 RAY 15' QUADRANGLE N3300-W11045/7.5

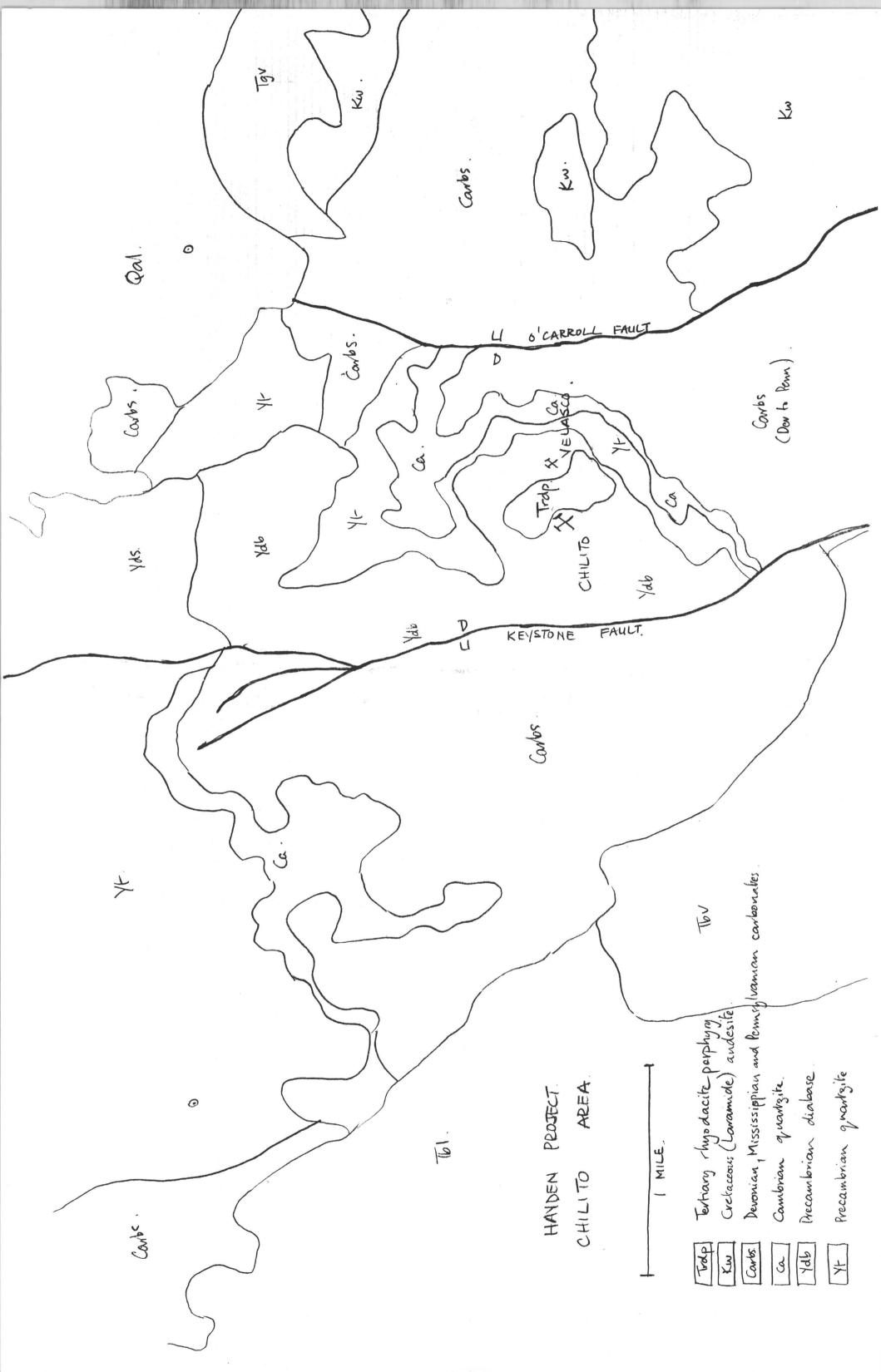

Unimproved dirt _____

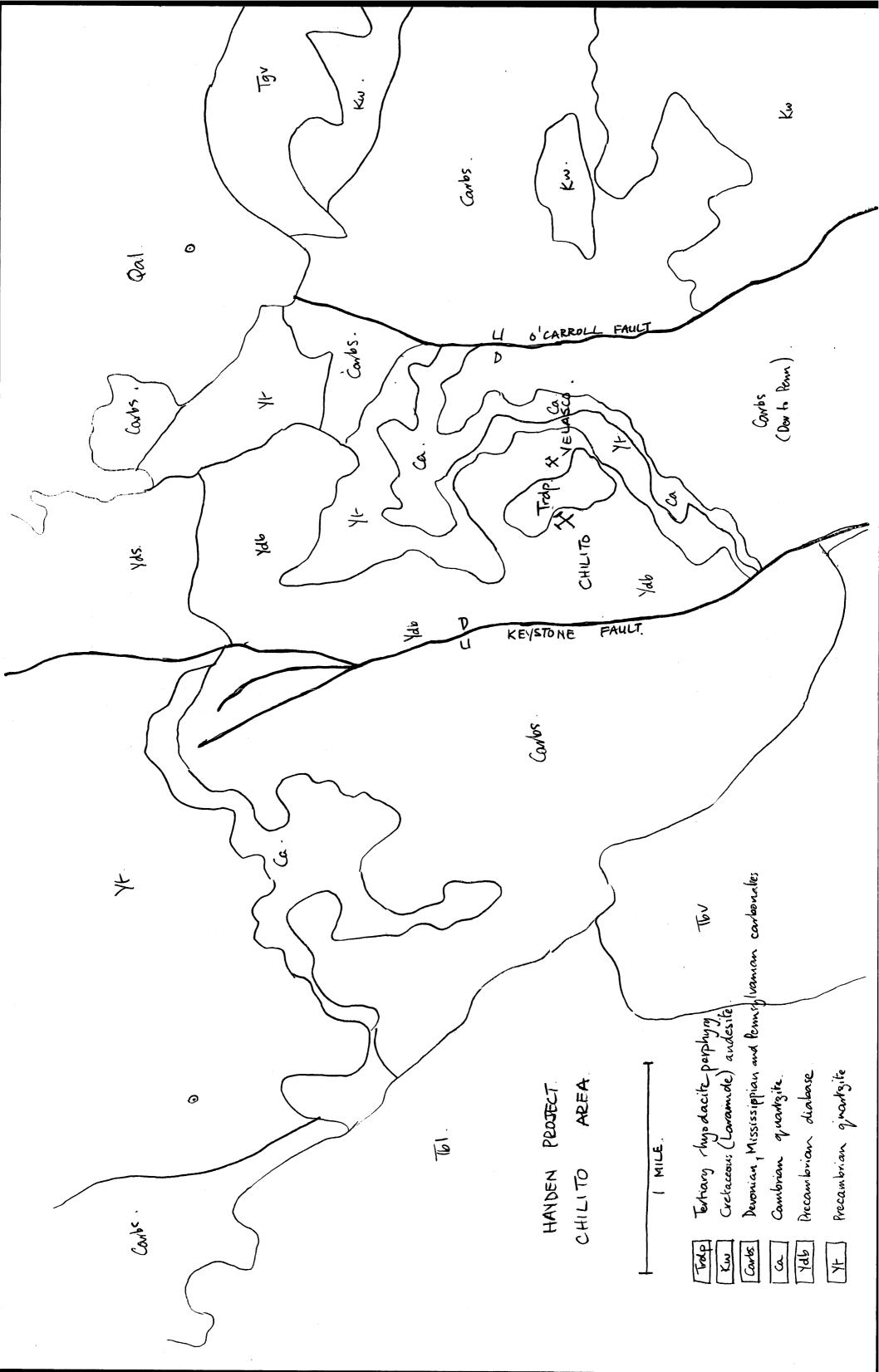
State Route

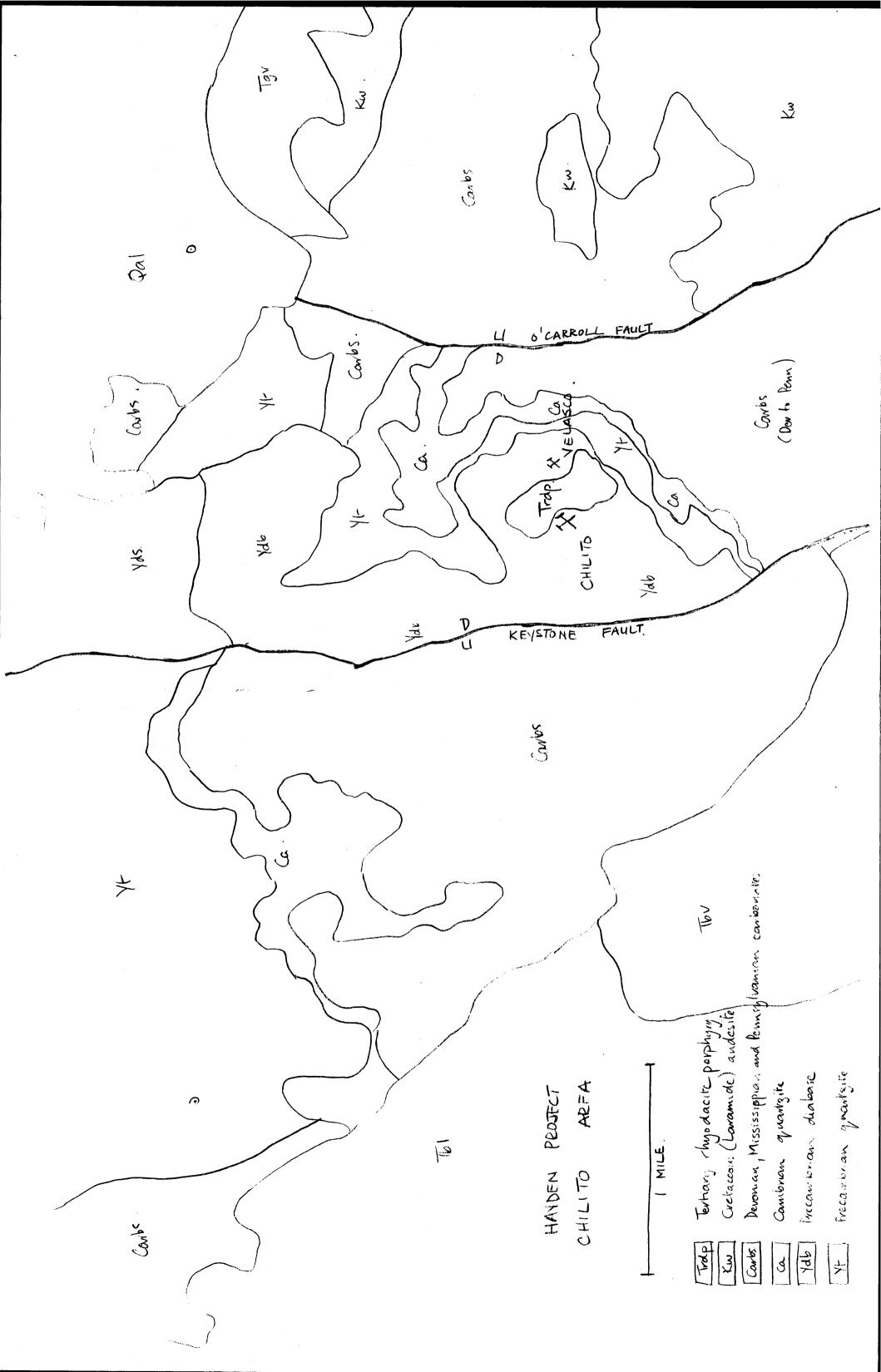

1964

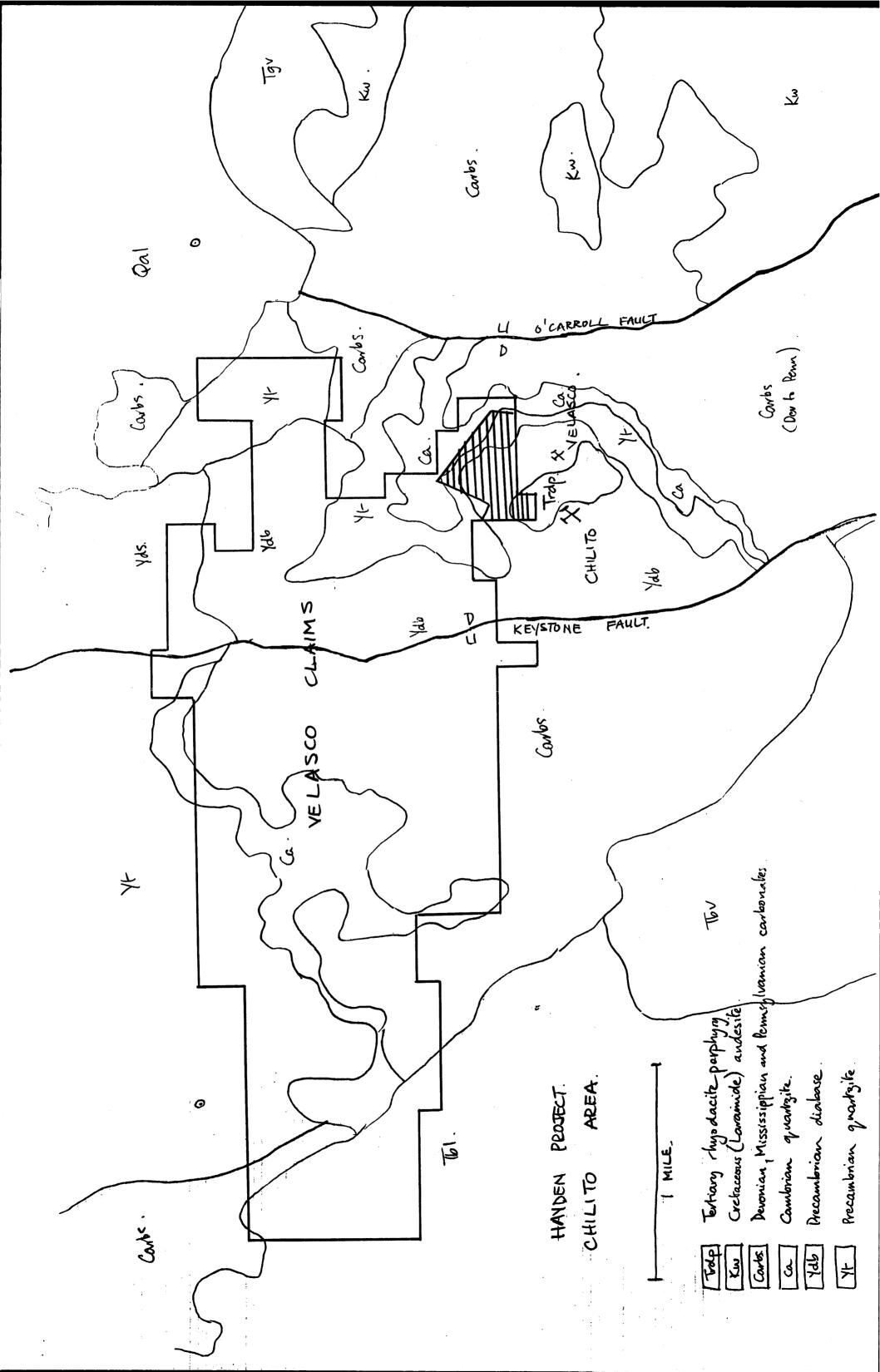

AMS 3850 III SE-SERIES V898

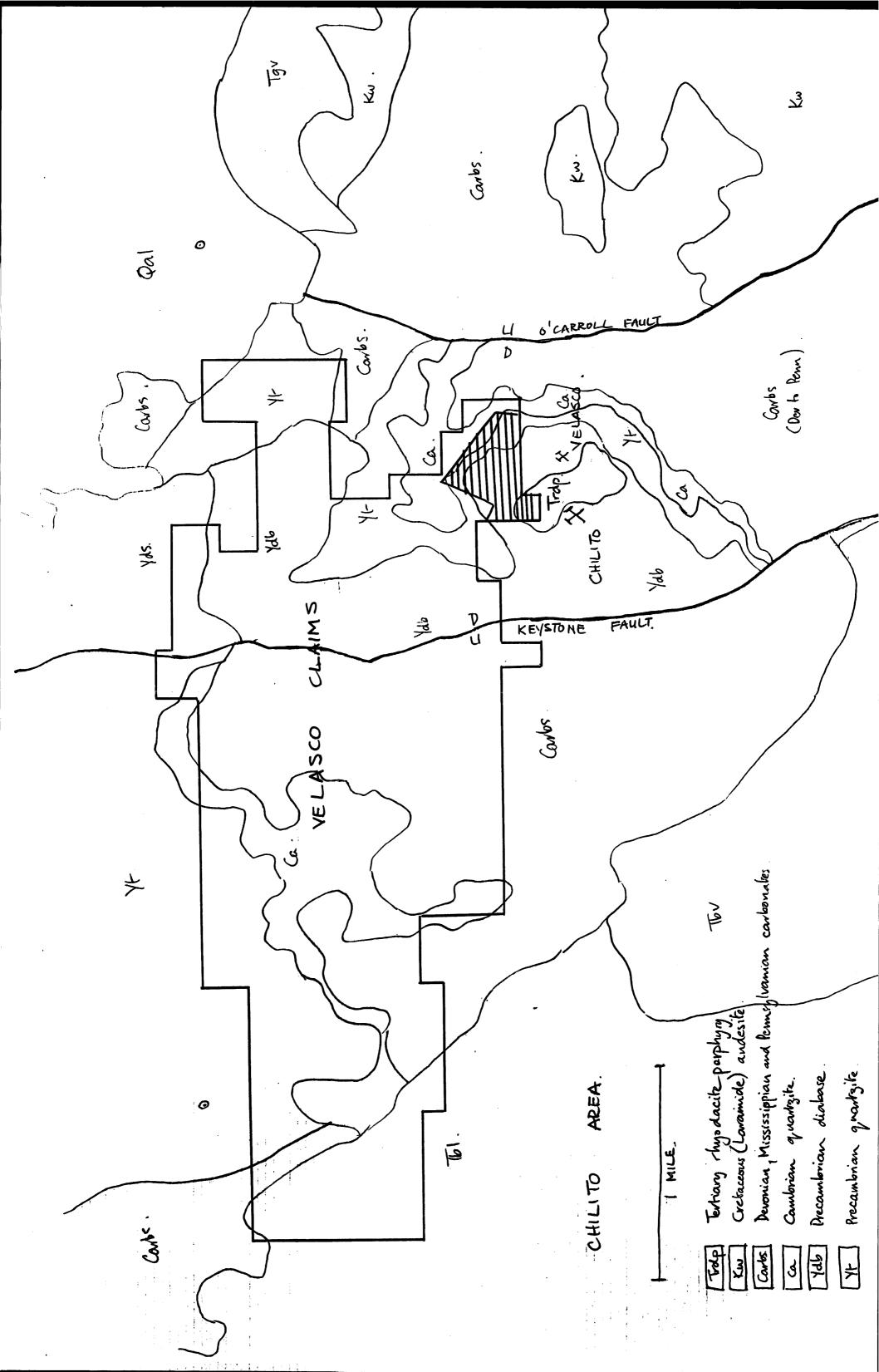


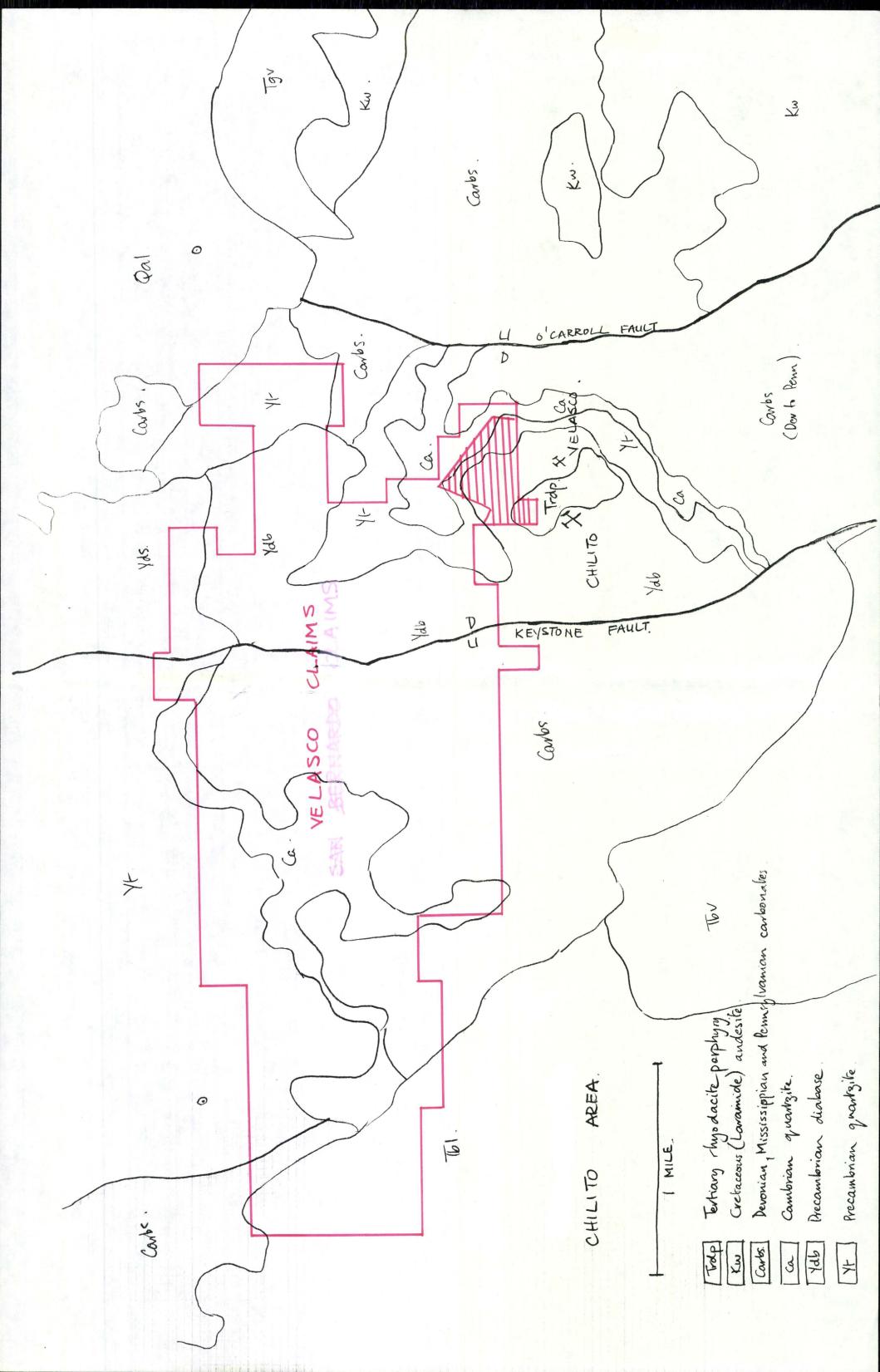


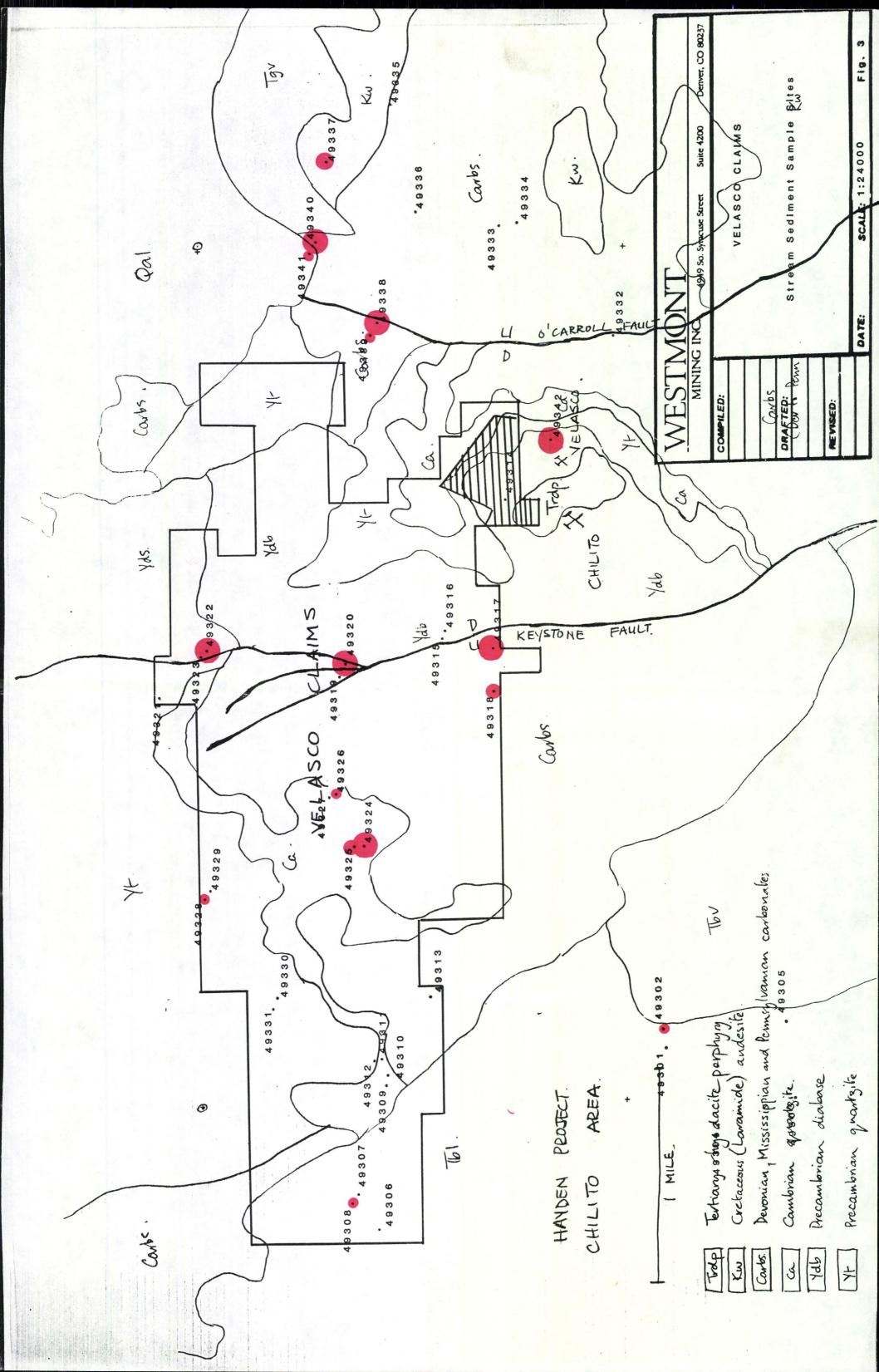

. .

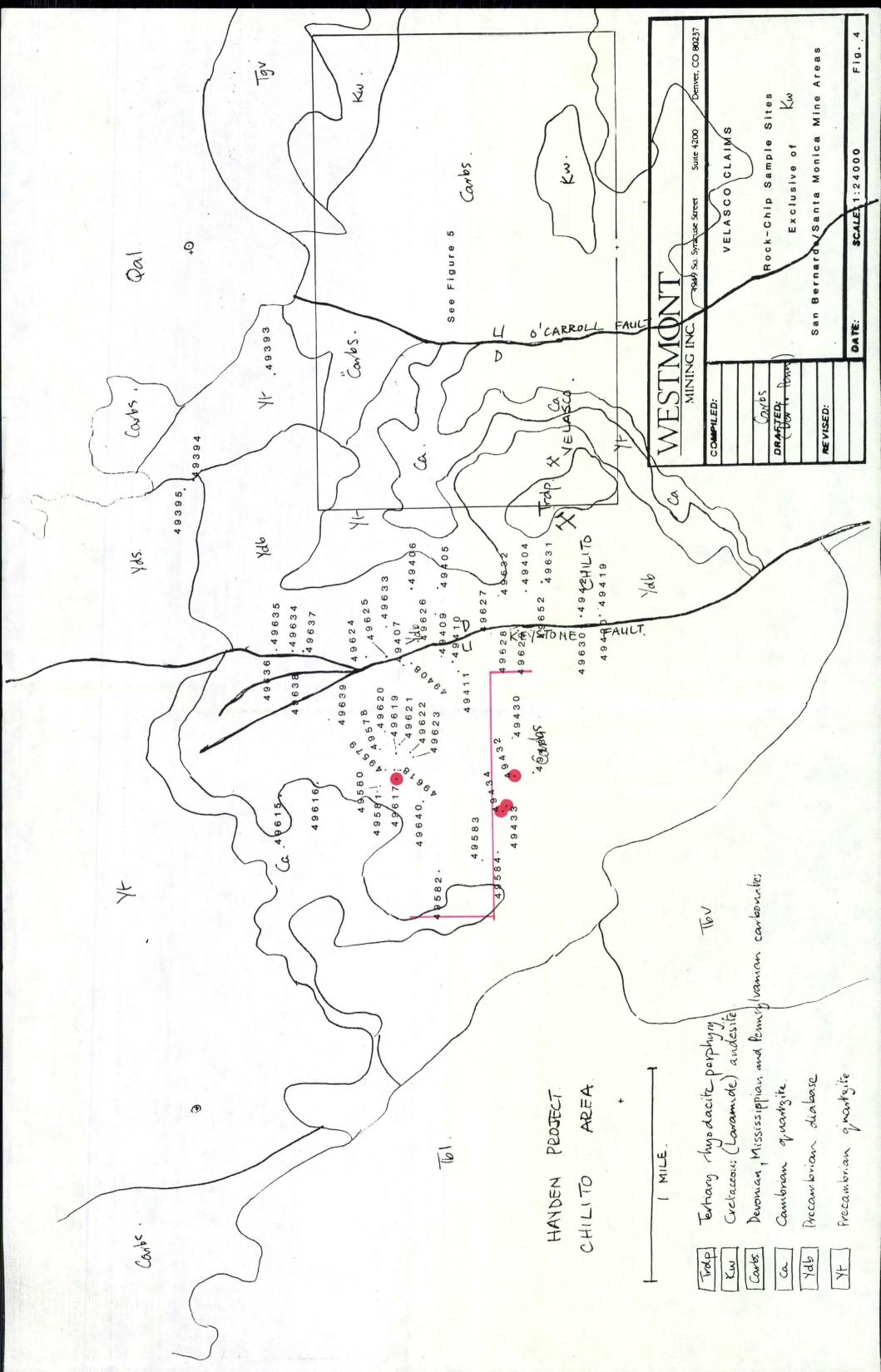


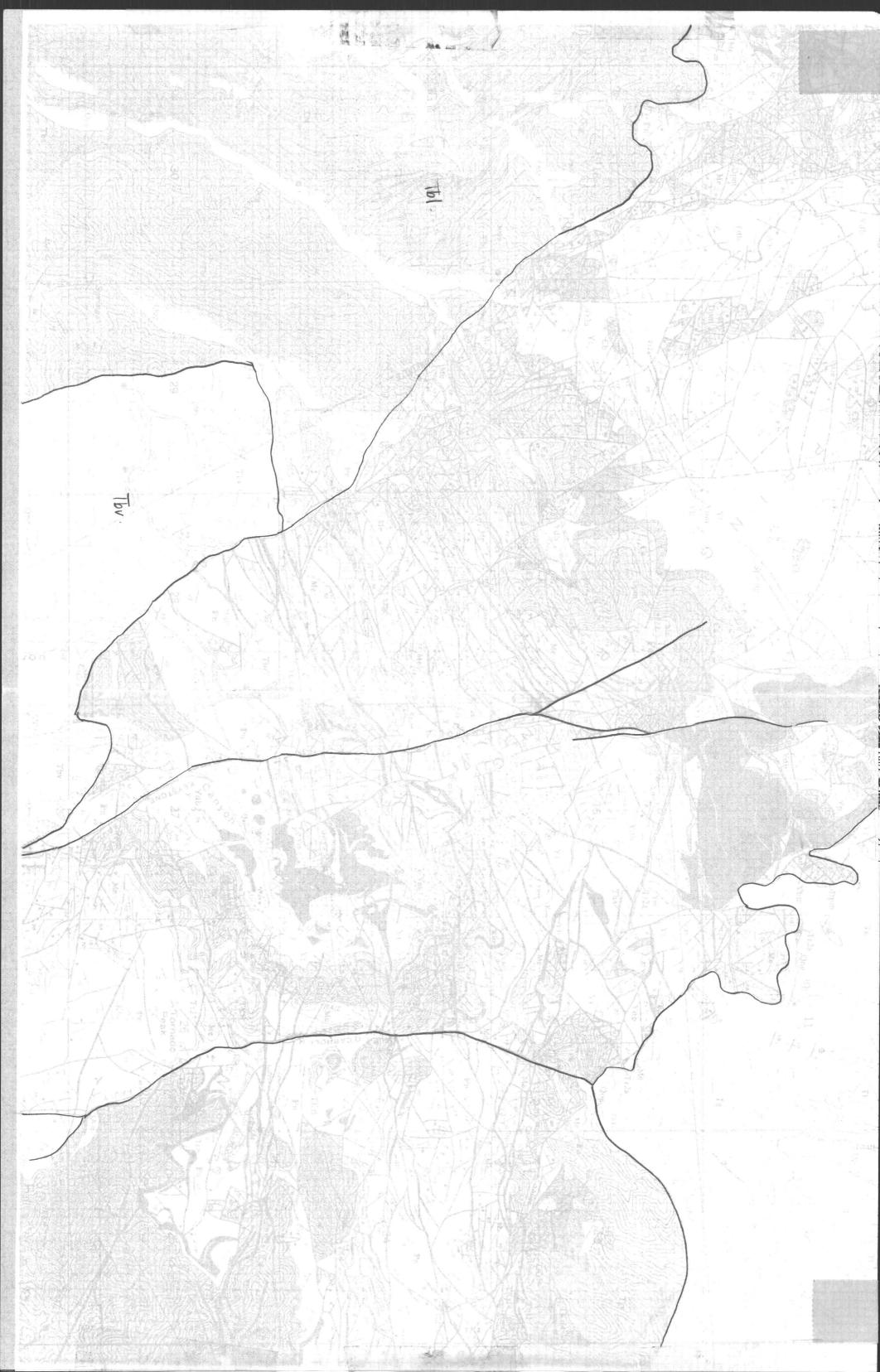


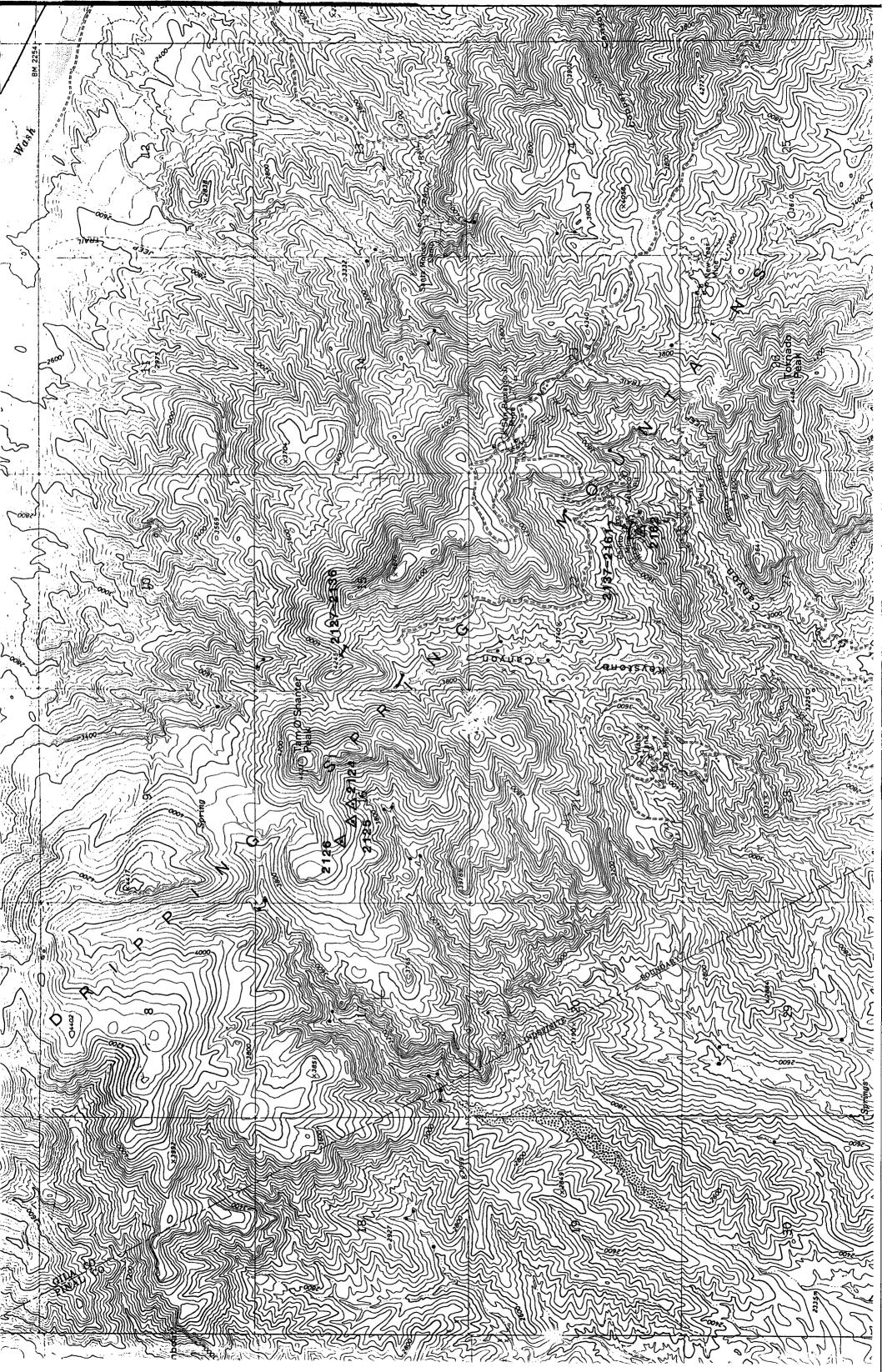












Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

Geochemical Lab Report

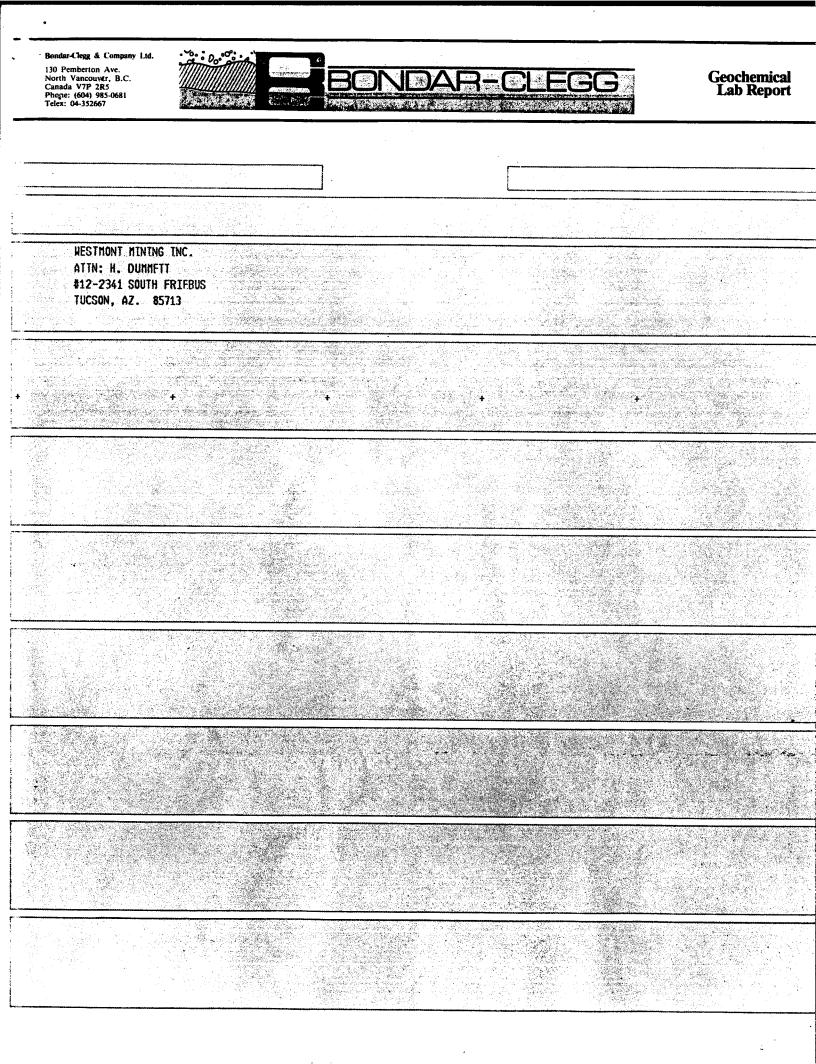
	MONT MINING INC.		t to the second s		SUBMITTED BY: C.F. MINEKALS	
DJECT: NON	YE GIVEN	· ·· · ·			DATE PRINTED: 18-JUL-88	
	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	Sample Preparations Number	
	C CONCENTRATE (PAN/HM)	51	4 AS REC'D	51	AS RECEIVED, NO SP 42 LARGE VIAL SURCHARGE 51	
	en e				 The object is only doing in the second s	
	REMARKS: SOME DETECTION Levels of Ba,H Results on Smal	E,LA AND TH.				
	REPORT COPIES TO: ATTN: C.F. 1	H. DUMMETT HINERALS RESE/	ARCH	INVO	ICE TO: AITN: H. DUMMETT	
		5 5 60 60 60 e e e e e e e e e e e e e e e	ر بینی رو ۱۹۹۵ میلی میلی ۱۹۹۵ میلی مور میافی و میلیونی و ۱۹			**************************************
						1
		10 10 10 10 10 10 10 10 10 10 10 10 10 1				

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681

Telex: 04-352667

Geochemical Lab Report

REFERENCE INFO: C.F. MIN 88-576


SUBMITTED BY: C.F. MINERALS

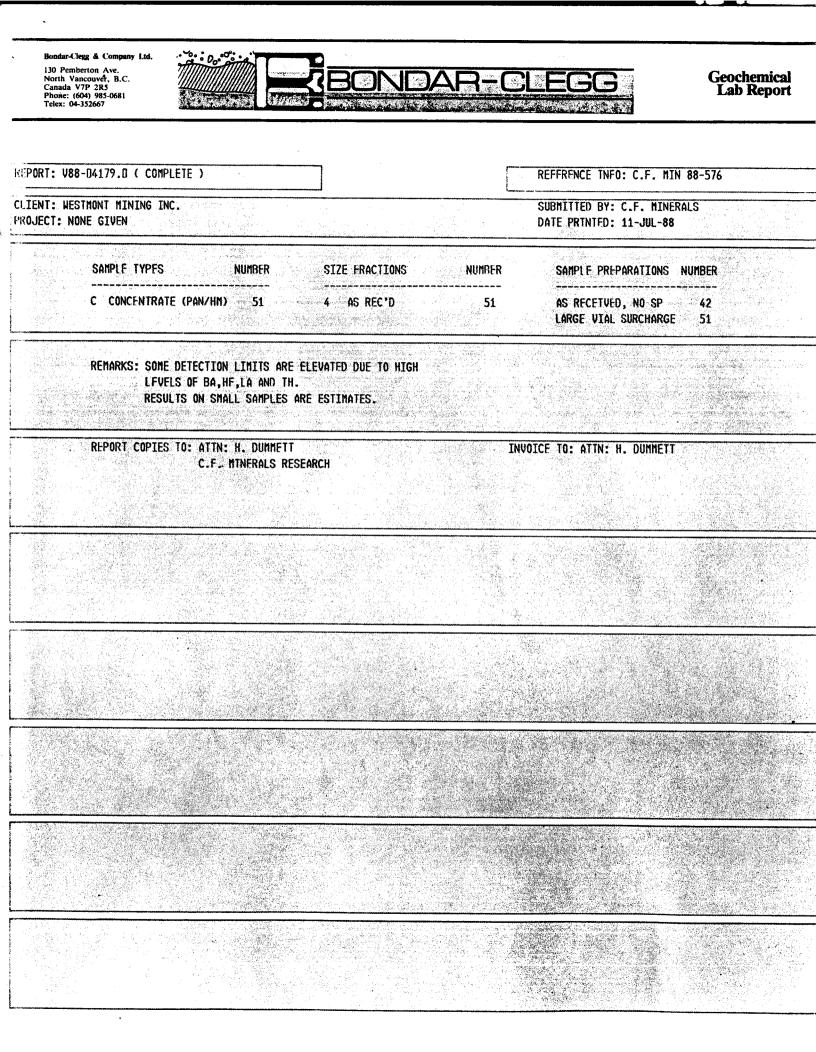
REPORT: V88-04179.0 (COMPLETE)

.IENT: WESTMONT MINING INC.

PROJECT: NONE GIVEN

DATE PRINTED: 18-JUL-88 NUMBER OF LOWER ORDER ELEMENT ANALYSES DETECTION LIMIT EXTRACTION NETHOD WT Sample Weight (0.1) 1 51 0.1 qm 2 Au Gold 51 5 PPB NOT APPLICABLE INST. NEUTRON ACTIV. 3 Aq Silver 51 5 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 4 As Arsenic 51 1 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 5 Ba Barium 51 100 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 6 Br Bromine 51 1 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 7 Cd Cadmium 51 10 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 8 Ce Cerium 51 10 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 9 Co Cobalt 51 10 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 10 Cr Chromium 51 50 PPM INST. NEUTRON ACTIV. NOT APPLICABLE 11 Cs Cesium 51 1 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 12 Eu Europium 51 2 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 13 Fe Iron 51 0.5 PCT NOT APPLICABLE INST. NEUTRON ACTIV. 14 Ħf Hafnium 51 2 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 15 Ir Iridium 51 100 PPB NOT APPLICABLE INST. NEUTRON ACTIV. 16 La Lanthanum 51 5 PPM INST. NEUTRON ACTIV. NOT APPLICABLE Lu 17 Lutetium 51 0.5 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 18 ňo Molybdenum 51 2 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 19 Na Sodium 51 0.05 PCT NOT APPLICABLE INST. NEUTRON ACTIV. 20 Ni Nickel 51 50 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 21 Rb Rubidium 51 10 PPM NUT APPLICABLE INST. NEUTRON ACTIV. 22 Sb Antimonv 51 0.2 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 23 Sc Scandium 51 0.5 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 24 Se Selenium 51 10 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 25 Sm Samarium 51 0.1 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 26 Sn Tin 51 200 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 27 Ta Tantalum 51 1 PPM NOT APPLICABLE INST. NEUTRON ACTIV. -----28 Тb Terbium 51 1 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 29 Te Tellurium 51 20 PPM INST. NEUTRON ACTIV. NOT APPLICABLE 30 Ĩh Thorium 51 0.5 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 31 U Uranium 51 0.5 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 32 ¥ lungsten 51 2 PPM INST. NEUTRON ACTIV. NOT APPLICABLE 33 Yb Ytterbium 51 5 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 34 Zn Zine 51 200 PPM NOT APPLICABLE INST. NEUTRON ACTIV. 35 Zirconium Zr 51 500 PPM NOT APPLICABLE INST. NEUTRON ACTIV.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phoge: (604) 985-0681 Telex: 04-352667


•

Geochemical Lab Report

1

PORT: V88-041	.79.0 (COMPLETE)			F	REFERENCE INF	O: C.F. MTN	88-576
IENT: WESTHON		NG INC.		······································		SUBMITTED BY:		ALS
DJECT: NONE G	SIVEN				E	DATE PRINTFD:	11-JUL-88	
			NUMBER OF	LONER				
OR	DER	ELEMENT	ANALYSES	DETECTION LIMIT	EXTRACTION	<u>III</u>	ETHOD	
	1 W	그는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 많이 있다.	51	0.1 ga				
	2 A	u Gold	51	5 PPB	NOT APPLICA	BLE TN	IST. NEUTRON	ACTIV.
	3 A	g Silver	51	5 PPM	NOT APPLICAT	RLF IN	IST. NEUTRON	ACTIV.
	4 A	s Arsenic	51	1 PPM	NOT APPLICAT	BLE	IST. NEUTRON	ACTIV.
	5 B	a Barium	51	100 PPM	NOT APPLICAT	BLE IN	IST. NEUTRON	ACTIV.
	6 B	r Bromine	51	1 PPN	NOT APPLICAT	BLE 🔬 TN	IST. NEUTRON	ACTIV.
	7 Ci	d Cadmium	51	10 PPM	NOT APPLICA	ALF IN	IST. NEUTRON	ACTIV.
	8 C	e Cerium	51	10 PPM	NOT APPLICAL	BLE TN	IST. NEUTRON	ACTIV.
	9 C	o Cobalt	51	10 PPM	NOT APPLICAN	RLF IN	IST. NEUTRON	ACTIV.
	10 C	r Chronium	51	511 PPM	NOT APPLICAT	BLE 👘 🚺	IST. NEUTRON	ACTIV.
	11 C	s Cesium	51	1 PPM	NOT APPLICAT	RE IN	IST. NEUTRON	ACTIV.
	12 E	u Europium	51	2 PPM	NOT APPLICAL	BLE TI	IST. NEUIRON	ACTIV.
	13 F	e Iron	51	0.5 PCT	NOT APPLICA	BLE IN	IST. NEUTRON	ACTIV.
	14 H	f Hafnium	51	2 PPN	NOT APPLICA	3LE D	IST. NEUTRON	I ACTIV.
	15 I	r Iridium	51	100 PPB	NOT APPLICA	RE IN	IST. NEUTRON	ACTIV.
	16 L	a Lanthanum	51	5 PPM	NOT APPLICA	BLE D	IST. NEUTRON	ACTIV.
	17 L	u Lutetiun	51	0.5 PPM	NOT APPLICA	ALE IN	IST. NEUTRON	ACTIV.
	18 M	o Molybdenum	51	2 PPM	NOT APPLICA	BLE TH	IST. NEUTRON	ACTIV.
	19 N		. 51	0.05 PCT	NOT APPLICAT	RLF IN	IST. NEUTRON	ACTIV.
· 2월 전 : 2월 12일 - 2월 2일 (20 N	그 같은 것이 있는 것이 같이 있는 것이 같은 것이 같은 것이 같은 것이 없다. 귀엽 것이 많이 없는 것이 같이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없이 않이	51	50 PPM	NOT APPLICA	BLE TI	IST. NEUTRON	I ACTIV.
AN ANT THE REAL PROPERTY OF	21 R		51	10 PPN	NOT APPLICA	BLE 🔄 🖓 🕺 II	IST. NEUTRON	ACTIV.
	22 S	b Antimony	51	0.2 PPM	NOT APPLICA	BLE II	IST. NEUTRON	I ACTIV.
	23 S	c Scandium	51	0.5 PPN	NOT APPLICA	ALE II	IST. NEUTRON	ACTIV.
	24 S		51 -	10 PPM	NOT APPLICA	 Analog and the state of the state of the state of the state 	NST. NEUTRON	I ACTIV.
and the second second second second second	25 S	へいさいち アイズ あんざい ひょうそう ほうしい きょしんりゅう きねん としいほう いったけ	51	0.1 PPM	NOT APPLICA		IST. NEUTRON	나는 것이 다른 명이 있었다. 전쟁 전쟁 전쟁을 다양 성장 성장 전쟁을 받았다.
Carlos Constanting	26 S		- 51	200 PPM	NOT APPLICA		NST. NEUTRON	
	27 T	a Tantalum	51	1 PPN	NOT APPLICA	RLE 🛸 👘 II	NST. NEUTRON	I ACTIV.
(1) 11 (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	28 T		51	1 PPM	NOT APPLICA	BLE	NST. NEUTRON	I ACTIV.
	29 T	지수는 것은 것은 것이 있는 것이 있는 것은 것을 가지 않는 것을 가지 않는 것을 했다.	si 51	20 PPM	NOT APPLICA	a the arriver of the second second	NST. NEUTRON	
	30 T	경험 가슴 집 같은 것이 아파지 않는 것이 없는 것이 없 않는 것이 없는 것이 않는 것이 없는 것이 없는 것이 없는 것이 없는 것이 않는 것이 없는 것이 않는 것이 없는 것이 없는 것이 없는 것이 같이 않는 것이 없는 것이 같이 않는 것이 같이 않이	51	0.5 PPM	NOT APPLICA		NST. NEUTRON	같이 나는 것이 집에서 동안에서 집에 가지 않는 것을 가지 않는
	31 U		51	0.5 PPM	NOT APPLICA		NST. NEUTRON	
	32 W	Tungsten	51	2 PPM	NOT APPLICA	BLĘ	NST. NEUTRON	NACTIV.
	33 Y		51	S PPN	NOT APPLICA		NST. NEUTRON	
	34 Z	- 「「「「「」」」、「」」、「」」、「」」、「」、「」、「」、「」、「」、「」、「	51	200 PPM	NOT APPLICA	and the second secon	NST. NEUTRON	
	35 Z	r Zirconium	51	5uo ppm	NOT APPLICA	BL F 👘 🕄 🔳	NST. NEUTRON	I ACTIV.
1월 14일 년 사 14일 - 14일								

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phoze: (604) 985-0681 Telex: 04-352667

٠

Geochemical Lab Report

Sec. Store and

RUPORT: V88	8-04179.0							PRO	JECT: NON	E GIVEN		PAGF 1A	
SAMPLE NUMBER	ELEMENT	WT	Au PPB	Ag PPM	As PPM	Ba PPM	Br PPM	Cd	Се	Со	Cr	Cs	Eu
NUNDER		gm gm	FFU	Г Е Н	гти	гси	rrii	PPM	PPM	PPM	PPM	PPM	PPM
C4 49301		39.9	\$	<5	148	1300	100	<10	150	71	200	8	·
C4 49301		40.9	6	<5	129	12110	91	<10	200	84	250	9	4
C4 49302		67.4	. 15	<5	160	580	110	<10	140	98	210	7	3
C4 49302		72.2	250	<5	163	580	110	<10	160	99	300	8	- 5
C4 493D3		50.5	6	ও	123	480	150	<1D	140	$\sim \eta$	200	8	<2
C4 49303		51.0	16	<5	117	420	160	<10	180	71	200	9	4
C4 49304		6.0	3190	<5	49	18600	41	<10	180	14	180	10	4
C4 49305		52.7	6	<5	80	320	47	<10	120	76	120	9	<2
C4 49306		2.9	71	13	15	990	<5	<10	28	<18	240	2	<2
C4 49307		2.7	<20	<16	36	>30000	36	<24	490	66	310	6	10
C4 49308		4.5	350	<11	37	11800	34	<10	320	37	380	<2	12
C4 49309		3.2	<24	<15	15	>30000	17	<24	500	16	<190	હ	12
C4 49310		4.9	<20	<16	36	>30000	36	<24	490	66	.310	6	10
C4 49311		3.6	<19	<15	63	18600	110	<23	440	62	160	8	15
C4 49312		1.7	<13	<5	,76	1200	77	<10	350	41	430	5	8
C4 49313		12.9	12	<5	368	5900	230	<10	880	220	130	6	9
C4 49314		66.0	<24	<15	15	>30000	17	<24	500	16	<190	3	12
C4 49314		17.9	480	<5	71	350	210	11	170	160	98	- 4	6
C4 49315		70.2	45	<14	36	>30000	62	<22	970	65	110	(3	23 [.]
C4 49315		71.6	78	<5	16	170	31	<10	29	110	2100	đ	(2
C4 49316	•	31.6	<19	<15	63	18600	110	<23	440	62	160	8	15
C4 49317		48.4	3210	<5	12	290	61	<10	66	75	2000	2	3
C4 49317		49.4	<24	<18	38	>30000	88	<29	820	98	140	B	15
C4 49318		16.6	862		840	610	170	<10	510	91	92	1	8
C4 49319		2.0	12	<5	368	5900	230	<10	880	220	130	6	9
C4 49320		43.7	1170	<5	97	460	230	<10	190	170	59	4	• 7
C4 49320	and the second	18.5	480	<5	77	350	210	11	170	160	98	4 ··-	6
C4 49321		21.9	10	<5	11	<100	23	<10	16	83	2000	a	<2
C4 49322		48.9	78	<5	16	170	31	<10	29	110	2100		2
C4 49322		38.1	6150	<5	36	1900	130	<10	410	75	110	ંક	. 12
C4 49323		1.5	23	. <16	101	830	49	<28	520	45	170	7	14
C4 49324		17.8	3210	<5	12	290	61	<10	66	75	2000	2	3
C4 49325		10.6	862	<5	840	610	*170	<10	510	. 91	92	1	8
C4 49326		0.8	430	<20	78	1100	77	<20	670	22	180	- 4	15
C4 49327		1.5	57	<13	280	3500	43	< 23	580	15	810	<3	11
C4 49328		1.7	190	<22	68	3400	87	<35	580	110	130	5	10
C4 49329		3.7	<18	<13	156	2700	130	<22	400	120	170	7	13
C4 49330		2.5	44	<5	2	<100	21	<10	25	69	2500	<1	<2
C4 49331		1.2	12	<5	1	<100	15	<10	15	71	2600	ধ	<2
C4 49332		56.3	<5	ৎ	22	570	63	<10	380	34	65	7	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave, North Vancouver, B.C. Canada V7P 2R5 Phose: (604) 985-0681 Telex: 04-352667

•

1 1 1

AMPLF ELEMENT NUMBER UNITS C4 49301 C4 49302 C4 49302 C4 49302 C4 49303 C4 49303 C4 49303 C4 49303 C4 49303 C4 49304 C4 49305 C4 49306 C4 49307 C4 49308 C4 49309 C4 49310 C4 49312 C4 49313 C4 49314 C4 49315	Fe PCJ 26.0 28.0 27.0 28.0 21.0 21.0 21.0 8.0 19.0 1.1 7.5	Hf PPM 28 53 13 34 14 82 140 30 <2	Ir PPB <100 <100 <100 <100 <100 <100 <100 <10	La PPM 98 120 89 100 84 110	Lu PPM 0.7 1.0 0.9 1.3 0.8	No PPM 17 16 13 13	Na PCT 0.31 0.34 0.29	NI PPM 68 59 82	Rb PPn <10 <10 <10	Sb PPM 8.4 7.7	Sc PPM 34.0 41.8	Se PPM <10 <10
C4 49301 C4 49302 C4 49302 C4 49303 C4 49303 C4 49304 C4 49305 C4 49305 C4 49306 C4 49307 C4 49307 C4 49309 C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	28.0 27.0 28.0 21.0 21.0 8.0 19.0 1.1 7.5	53 13 34 14 82 140 30	<100 <100 <100 <100 <100	120 89 100 84	1.0 0.9 1.3	16 13 13	0.34 0.29	59	<10	7.7		
C4 49302 C4 49302 C4 49303 C4 49303 C4 49304 C4 49305 C4 49306 C4 49306 C4 49307 C4 49307 C4 49307 C4 49309 C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	27.0 28.0 21.0 21.0 8.0 19.0 1.1 7.5	13 34 14 82 140 30	<100 <100 <100 <100	89 100 84	0.9 1.3	13 13	0.29		ere a fisia serie el el cara p		41 R	<10
C4 49302 C4 49303 C4 49303 C4 49304 C4 49305 C4 49305 C4 49306 C4 49307 C4 49307 C4 49309 C4 49310 C4 49311 C4 49312 C4 49312 C4 49314 C4 49314 C4 49315	28.0 21.0 21.0 8.0 19.0 1.1 7.5	34 14 82 140 30	<100 <100 <100	100 84	1.3	13		82	/10			
C4 49303 C4 49303 C4 49304 C4 49305 C4 49305 C4 49306 C4 49307 C4 49309 C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	21.0 21.0 8.0 19.0 1.1 7:5	14 82 140 30	<100 <100	84	8 전 11 M - 영어 -			and the second		10.0	60.2	<10
C4 49303 C4 49304 C4 49305 C4 49305 C4 49306 C4 49307 C4 49307 C4 49309 C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	21.0 8.0 19.0 1.1 7.5	82 140 30	<100		0.8		0.29	71	15	10.0	64.4	<10
C4 49304 C4 49305 C4 49306 C4 49307 C4 49308 C4 49309 C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	8.0 19.0 1.1 7.5	140 30	and the second difference	110		11	0.26	<50	<10	8.4	60.8	<10
C4 49305 C4 49306 C4 49307 C4 49309 C4 49310 C4 49311 C4 49312	19.0 1.1 7.5	30	<100	マウト・コー おかんだい さてい ちょうせい	1.9	9	D.3D	<50	20	8.6	65.7	<10
C4 49306 C4 49307 C4 49307 C4 49309 C4 49310 C4 49311 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	1.1 7.5		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	97	1.4	8	0.30	<50	23	4.6	18.0	<10
C4 49307 C4 49308 C4 49309 C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	7.5	<2	<100	67	0.7	14	0.19	50	11	7.0	20.0	11
C4 49308 C4 49309 C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315		contraction of the state of the	<100	20	<0.5	<2	0.29	<50	120	8.6	2.7	<10
C4 49309 C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	5.7	749	<100	180	<8.4	ব	0.21	<76	72	10.0	67.9	34
C4 49310 C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	J.1	458	<100	150	6.5	<5	0.24	130	<31	8.3	47.0	<23
C4 49311 C4 49312 C4 49313 C4 49314 C4 49314 C4 49315	4.1	1130	<210	200	<21.0	9	0.10	<68	<3 4	3.5	100.0	44
(4 49312 C4 49313 C4 49314 C4 49314 C4 49315	7.5	749	<100	180	<8.4	a	0.21	<76	72	10.0	67.9	34
C4 49313 C4 49314 C4 49314 C4 49314 C4 49315	7.7	1300	<100	160	<17.0	9	0.17	<70	65	6.7	121.0	<30
C4 49314 C4 49314 C4 49315	16.0	308	<100	180	<3.6	15	0.15	65	<28	10.0	38.0	19
C4 49314 C4 49315	33.0	140	<100	513	(3.7	48	0.22	190	34	24.6	26.0	16
C4 49315	4.1	1130	<210	200	<21.0	9	0.10	<68	<34	3.5	100.0	44
그는 것 같은 것 같	28.D	44	<100	89	1.7	27	0.33	63	29	3.5	46.0	<10
	8.1	1510	<100	340	<26.0	<8	0.15	<64	59	9.0	113.0	<30
C4 49315	11.0	8	<100	15	<0.5	<2	0.57	280	<10	0.8	131.0	<10
C4 49316	7.7	1300	<100	160	<17.0	9	0.17	<70	65	6.7	121.0	<30
C4 49317	8.6	24	<100	37	0.8	<2	0.56	200	<10	1.8	117.0	<10
C4 49317	10.0	719	<220	260	<7.7 [.]	24	8.13	<84	74	7.4	71.6	<38
C4 49318	26.0	57	<100	310	2.3	57	0.22	58	<21	25.9	17.0	45
C4 49319	33.0	140	<100	513	3.1	48	0.22	190	34	24.6	26.0	16
C4 49320	35.0	40	<100	. 110	2.3	30	0.26	64	23	4.6	53.6	<10
(4 49320	28.0	- 44	<100	89	1.7	27	0.33	63	29	3.5	46.0	<10
C4 49321	8.3	12	<100	11	0.6	<2	0.52	240	<10	0.6	115.0	<10
C4 49322	11.0	8	<100	15	<0.5	(2)	0.57	280	<10	0.8	131.0	<10-
C4 49322	8.8	64	<100	200	3.3	4	0.53	<50	23	20.1	51.3	_<10
C4 49323	5.1	498	<100	240	<5.5	10	0.26	96	<48	6.1	31.0	33
C4 49324	8.6	24	<100	37	0.8	<2	0,56	200	. <10	1.8	117.0	<10
C4 49325	26.0	57	<100	310	2,3	57	0.22	58	<21	25.9	17.0	15
C4 49326	3.4	527	<200	310	<7.0	30	<0.10	120	<64	8.1	25.0	<4 5
C4 49327	5.5	235	<100	290	<4.5	91	0.25	(63	(39	35.1	31.0	29
C4 49328	19.0	957	<240	2 8 0	<17.0	13	0.10	210	<59	17.0	87.5	45
C4 49329	29.0	640	<100	200	(1.1	24	0.16	270	54	17.0	54.6	<24
C4 4933D	7.9	17	<100	14	0.8	<2	0.66	230	<10	0.4	124.0	<10
C4 49331		 A set of the set of		aleren e la serie de	Contract the second	11.2.44			はな あいおい ひちょう しょう	가슴 옷을 걸 많다. 지는 것으로 같은 것	おようかいだいしょう ざいさい うち	
C4 49332	7.7	2	<100	6	<0.5	<2	0.51	210	<10	0.2	122.0	<10

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phofie: (604) 985-0681 Telex: 04-352667

٠

v

•

Geochemical Lab Report

at ger

PORT: V88-	-04179.0].			PR	OJFCT: NONE	GIVHN		PAGE 1C	
AMPLE	ELEMENT	Sm	Sn	Ta	Tb	Te	Th	U	. .	Yb	Zn	Zr	
IUMBER	UNITS	PPM	PPM	PPM	PPM	PPM	PPN	PPM	PPM	PPM	PPM	PPM	
6 49301		15.0	<200	2	2	<20	12.0	5.2	8	<5	<200	1200	
4 49301	がた 教授会 だいたい モストル・モルトレート	18.0	<200	3	3	<20	18.0	5.9	6	6	<200	2400	rialgest Statest
4 49302		16.0	<200	2	- 2	<20	12.0	6.2	-5	×5	340	<500	
4 49302		18.0	<200	2	3	<20	18.0	7.8	5	8	430	1700	
4 49303		15.0	<200	2	2	<20	11.0	5.4	12	6	280	<500	et en en de la constant de la constant la constant de la constant de la constant de la constant la constant de la constant de la constant de la constant la constant de la constant de la constant de la constant
4 49303		22.0	<200	3	4	<20	26.0	10.0	4	11	270	3800	
4 49304	andrelighet an an that an an that has An that an that	21.0	<201	4	3	<41	24.0	8.5	5	11	<200	7200	State of the second
4 49305		11.0	<200	1	2	<20	10.0	7.3	7	<5	240	1500	iangi shining Gadi shining
4 49306		2.7	<200	4	<1	<20	4.6	1.3	24	<5	<200	<500	
4 49307		54.8	<640	19	23	<110	146.0	69.9	27	80	350	>30000	
4 49308		38.0	<460	13	16	<67	81.8	41.0	21	50	<200	23000	
4 49309		51.7	<760	24	36	<130	207.0	100.0	30	150	200	>30000	
4 49310	and the second	54.8	<640	19	23	<110	146.0	69.9	27	8 1)	350	>30000	
4 49311		88.3	590	28	44	<96	270.0	131.0	24	180	290	>30000	
49312		39.0	<200	10	- 11	<57	71.5	31.0	12	36	220	16000	
49313		60.8	<200	6	8	64	91.9	20.0	12	24	500	7900	
49314		51.7	<760	24	36	<130	287.0	100.0	30	150	200	>30000	
49314		25.0	<200	4	4	<20	17.0	8.1	12	12	360	2400	
49315	1	02.0	58N	32	44	<94	294.0	135.0	42	170	310	>30000	
4 49315		7.1	<200	<1	1	<20	1.8	1.1	3	<5	<200	<500	
4 49316	이상 제공에는 것을 가지 않는 것을 위한 것을 가지 않는 것을 수 있었다.	88.3	590	28	44	<96	270.0	131.0	24	180	290	>30000	
4 49317	: 2011년 - 2017년 AND - 2014년 - 2017년 - 2019년 - 201	13.0	<200	2	3	<20	5.6	2.5	. 32	5	<200	1400	
49317		67.8	<730	21	29	<11D	176.0	75.3	57	95	410	>30000	
4 49318	연습하는 것이 많이 있는 것이 많이	54.7	<200	4	8	< 52	35.0	12.0	11.	15	590	3100	
4 49319		60.8	<200	6	8	64	91.9	20.0	. 12	24	500	7900	
49320		32.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	6	<20	17.0	10,0	20	13	370	.2000	i da serie de la composición de la comp
49320		25.0	<200		4	<20	17.0	8.1	12	12	360	2400	
49321		6.2	<200	<1	1	<20	2.7	1.1	<2	<5	<200	660	
49322		7.1	<200	<1	1	<20	1.8	1.1	्र ३	<5 .	<200	<500	
49322		82.4	<200	6	14	<40	24.0	8.9	280	22	220	3900	
49323		55.1	<620	<u>.</u> 15	15	<93	89.5	38.0	15	49	280	25000	
4 49324		13.0	<200	2	3	<20	5.6	2.5	32	5	<200	1400	
4 49325		54.7	<200	4	8	<52	35.0	12.0	11	15	590	3100	
49326		85.0	<92 0		. 18	<130	259.0	42.0	23	52	740	26000	
4 49327		65.6	<610	13	. 14	<95	79.3	17.0	8	30	1180	11000	
4 49328		58.6	<850	39	33	<120	204.0	108.0	48	110	480	>30000	
4 49329		47.0	<530	14	19	<87	139.0	67.3	21	72	510	>30000	
4 49330	방문 가격에 가지? - 전철한 상품은 것이다.	6.7	<200	<1	2	<20	3.4	1.4	<2	<5	<200	860	
4 49331		3.6	<200	<1	1	<20	<0.5	0.5	<2	ৎ	<200	<500	
4 49332	an a	48.0	<200	10	11	<20	53.9	24.0	11	31	<200	12000	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phome: (604) 985-0681 Telex: 04-352667

.

.

÷

BONDAR-GLEGG

•

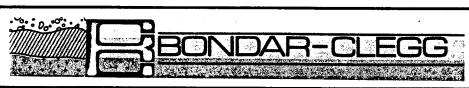
	179.0					· .		PR	OJECT: NON	E GIVFN		PAGE 2A	
AMPLE	ELEMENT UNITS	WT ga	Au PPB	Ag PPM	As PPN	Ba PPM	Br PPM	Cd PPM	Ce PPM	Co PPM	Cr PPN	Cs PPM	Eu PPM
4 49333 4 49334 4 49335 4 49336		15.4 32.8 3.2 59.0	5 <5 19 23	دج دج دج دج دج	19 9 12 101	330 <100 230 830	43 29 33 49	<10 <10 <10 <28	170 25 39 520	41 65 72 45	<50 1700 1900 170	4 2 2 7	4 <2 <2 14
24 49336 24 49337		35.8	10 839	<য ব্য	46 310	240 1900	73 150	<10 <10	120 560	130 	<50 250	<1 6	4
24 49338 24 49339 24 49340 24 49341		17.5 65.5 29.9 66.1	10300 230 2750 430	18 <5 <5 <20	65 18 105 78	570 2100 210 1100	47 78 120 77	46 <10 <10 <20	290 130 600 670	34 64 47 22	83 120 65 180	<1 10 <1 <4	5 5 5 15
:4 49342		20.8	19900	17	719	690	140	<10	310	34	<50	2	3
											<u></u>		
		a series and the series of the				20030302000000000000000000000000000000	1. 20 Martin Contraction of the second s					C 1877 - 1897 C 1897	
							an a						
							<u></u>						

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

٠

¥

BONDAR-CLEGG


SAMPLEELEMENTFeHfIrLaLuNoNaNiNUMBERUNITSPCTPPMPPBPPMPPMPPMPCTPPMC44933310.057<100950.830.26<50	Rb PPM <10 <10	Sb PPM 2.3	Sc PPM	Se PPM
C4 49333 10.0 57 <100 95 0.8 3 0.26 <50	<10	2.3	and the second late of the	
		化乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基	33.0	<10
C4 49334 7.3 5 <100 11 <0.5 <2 0.55 250		8.7	108.0	<10
24 49335 8.6 11 <100 18 0.6 <2 0.58 250	-15	0.8	116.0	<10
C4 49336 5.1 498 <100 240 <5.5 10 0.26 96	<48	6.1	31.0	33
C4 49336 18.0 10 <100 73 <0.5 4 0.22 <50	<10	4.6	32.0	<10
4 49337 30.0 120 <109 360 2.8 37 0.36 140	41]	26.0	52.6	<10
4 49338 8.6 130 <100 170 2.0 120 0.23 <50	22	6.1	34.0	<10
24 49339 15.0 200 <100 51 4.8 9 0.63 110 (102) <td< td=""><td>37</td><td>3.5</td><td>109.0</td><td><10</td></td<>	37	3.5	109.0	<10
C4 49340 10.0 228 <100 430 1.1 58 0.54 <50 C4 49341 3.4 527 <200 310 <7.0 30 <0.10 120	<10	4.3	17.0	<10
24 49341 3.4 527 <200 310 <7.0 30 <0.10 120	<64	8.1	25.0	< 45
C4 49342 9.4 110 <100 220 2.0 1450 0.16 <50	<20	11.0	16.0	<10
		9 August		
	<u></u>			
		Charles 1		lingen er
		(* 14. At.) 1997 - At	Maria da Serie Series de Carlos de C	
	e 😤 🛵			
		<u>1888-011-070</u>		
	이 관람들이 1944년 2017			
	and and a second se Second second			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

٠

.

1

EPORT: V88-D	4179.0		,					PI	ROJECT: NOM	IE GIVEN		PAGE 2C	
AMPLE IUMBER	ELEMENT UNITS	Sa PPM	Sn PPN	Ta PPM	Tb PPM	Te PPM	Th PPn	U PPN	N PPN	Yb PPM	Zn PPM	Zr PPM	
4 49333 4 49334 4 49335		16.0 7.6 10.0	<200 <200 <200	2 (1 (1	2 2 2 2	<20 <20 <20	16.0 1.5 2.1	5.1 0.8 1.6	<2 1N 12	6 (5 (5	<200 <200 <200	2700 730 <500	
4 49336 4 49336		55.1 13.0	<621) <200	15 4	15 2	<93 <20	89.5 5.0	38.0 3.7	15 <2	49 <5	280 <200	25000 <500	a al productional antes estas productiones productiones antes antes productiones productiones antes antes productiones productiones antes antes productiones productiones antes antes productiones productiones productiones antes antes productiones productiones productiones productiones antes antes productiones productiones productiones productiones productiones productiones productiones antes antes productiones productiones productiones productiones productiones productiones productiones productiones antes productiones productiones antes productiones productiones antes productiones productiones productiones productiones productiones productiones productiones productiones productiones productiones antes productiones production
4 49337 24 49338 24 49339 24 49340 24 49341		41.0 29.0 25.0 44.0 85.0	<200 <200 <200 <200 <200 <920	4 5 4 2 17	8 4 9 4 18	<46 <41. <20 <20 <130	64.2 37.0 49.0 110.0 259.0	16.0 14.0 22.0 11.0 42.0	10 13 6 <2 23	20 13 31 6 52	440 11000 220 1300 740	5700 6100 9100 12000 26000	
4 49342		21.0	<200	6	5	170	25.0	16.0	31	7	2600	5500	
												1. C. S. S. S. S. J. S.	

Sample	assays	by	rock	type
()	<u> </u>			(11

	DIABASE (416)			
)	sample #	Au (ppm)	Ag(ppm)	
L	······································	0-10	6 45	
	49347	0.10	0.65 0.41	TH
	49353	0.03	0.41	
	49405	0.07	0.69	
	49418			
	49421	0.14	89.83	
	49451	0.02	17.21	
				+
				+++
			╢╴┞┼┼╋┤┼┝╍╢╴┝┦┽┾┼┼┼╴╢╺╂┼┼	+++
			╫─╴┦╿┼┼┦╢┼╂╍╌╫╌╴┠┼┝┥╿┼╎┟┈╫╴╶┾┼┼	
			╫┈╶╂╶╂╶╂╌┨╌┨╴┨╌╴┨╌╴┨╌╴┨╌╴┨╌╴┨╴╴	+++-
	BASALT (Kw)			
	49359	AN	ND	+++
	49360	ND	1.17	╉╌┟╼┿╸
	49412	0.14	10.29	+++
	49415		ND	.+-+-+-
	49469	0.03	0.10	┿┽┼
	49470			┼┼┾
	41470	0.03		
		0.03	1.34	
	49480	0.03	14.67	┿┿
	49486 49525	0.07	72.69 5.62 210.24	<u></u>
	44983	0.48		
	49526	0.21	5.83	++-+-
				++
				+++
				+
 				+
┣				<u> </u>
				+
	20Ecci A	[·]	╟╍╂┼┼┟╎╎┟╴╟╌┠╎╎┥╎┽┽╸╟╶┝┿┤	+
	BRECCIA		╫─┤┾┼┼┼┼┼╴╢╶┼┼╎┤┽┼╴╢	+ + -
	5		╫╌┈┝┽╪╧┨╞╋╪┯╍╫╾┨╏┝┥┆╎╴┥╸	
	49390 49408	0.21	0.41 8.57	
	49408	0.03	8.57	
	•			

sample assays by rock type

 Sample #	Au (ppm)	Ag (ppm)	
 49388	0.34	14.33	_
49398	0.20	5.21	+
49399	0.41	5.21 28.66	
49400	0.10	44.57	
49401	0.03	37.37	
49416	0.45	66.51	
49430	0.55	0.69	
49432	3./5	81.54	+
 49422			
 49434	1.23 2.54	21.74 18.99	
49435	700		_
 (1042)	7,80 9.87	25.92 10.89 1.17 10.22	_
 49436 49465	7.07		
 49505 (55)	- ND		
 49506 (Dm)	0.79		+
	0.07		
 49507 (Dm)	0.38	5.45 18.51 18.51	
 49508 (53+15)	0.24	18.91	
49510 (Pn)	0.03	36.65	
 49511 (Dm)	0.03 2.70 3.84	140.68	
 49541	5.84	6.45	
 <u>49545 (Me)</u>	11.04 1.68	62.06 71.45	
 49546 (Me)	1.68	7/. 45	_
 49548	0.85	. 4.18	44
 49557 (Me)	- C		
 49560	0.27	13.44	
 49562	- 1.37	13.54	
49568		── ╆ <u>┥┝┽┝</u> ╋╍╢╵┍╋┽┥┦┝ _┍ ┟ <mark>╴</mark> ╢┈┶┝ <u></u> ╋	
 49570			
 49571			
 4 95 75			
 · · · · · · · · · · · · · · · · · · ·			
 			Π
			T
			T

Sample assays by rock type

≩ z	Skarn		·			
	sample #	Au (ppm)	Ang (gpm)		-	
1	49368			┟┝╡╏╎╞╋		++-
2		ND 0.27	4,87	╉┽┽┼╍╋╇╍╆╸		
3	49396		0.4/			
4	49397	0.14	10.08	┝┿┊┝┿┿┾┾╸		
5	49403	0.62	137.14	┟┊┊┟╷╷╷		
6	49429	0.38	3.09			
7	49439	3.15	17.07			
8	49531 (Yme)	ND	0.07			
9	49542 (Ea)	2.13	713			
0	49544 (Me)	0.02	0.273			
1	4955Q (Pn)	0.02	ND			++
2	49565	ND	0.07			+
3	49567			┟╍╁╍┿╍┥╶┟╸┾┉┝╾		++
4	49573 (Pn)					++-
5	49574 (Pn)			┥╵┼╍┿╍╂╼╂╓╢╡╢┈		+
						++-
6	49376 (Ea)			┟╌┼╌┽╶┟╴┟╴┟		
7	49577 (Ea)			╎╎╎╷		
8	49582 (Dm)					_
9	49584 (Dm)					
0	49588 (Ea)					
1	49589					
2	49590					
3	49591					+-+
4	49592					
5	49593					
6	49594					+
7	49595			┝╶┼╶╎╼╅╾╎╴┼╸		+
B				┝╌┾╼┝╌┨╌╢╌┠┈╸		++-
	49596	╶──╫╴┉╂┼┾┦╌┿┥┼		┢┼╍┝╄╌┼╶┞─		+ +
9	49597			┟┤┾┼┼┼		+-+-
0	49598			┝┼┼┼┼┼┼		-
ا	49599			┝╶┼╍╋╍┽╴┞╴┠╸		
2	49600					
3	49601					
•	49602					
5						
3						
,						
3						
			<u></u> <u></u> 			+
						++
P						

sample assays by rock type

ø

z	QUHRTZITE (Ea)				 	
COLUMN	+ SS + SILTST (Yds)					
ŭ	QUARTZITE (Ea) + SS + SILTST (Yds) sample #	Au (ppm)	Ag(ppm)			
1						
2	4 9354	0.01	0.3/			
3	49358	0.07	0.31 3.19			
4	4 9363	0 0.5	5.52			
5	49364	0.05	5.52 25.06			
6	49364 49365	0.58	36.75			
7	49366	0.55	7.27			
8	49369	0.41	7.27 9.53			
9	49372	0.14	8.54			
0	49374		298			
1	49376	0.10	2.98 48.81			
2	49377	3.22	107.76			
3	49379	0.5/	10.90			
4	49380	Aik	4,32		-	
5	49381	ND 0.55	4,32			+-+-+-+-+++++++++++
6	49384	0.69	3243			
7	49385	0.69	3 2.43 52.46 16.80			
8	49 386	0.82	16.80			<u>}-</u> }-
9	49389	2.47	25.71	┊╧╸┝╺┠╌┼╴		
0	49391	0.82	1.37			
1	49512 (413)	0.01	15.63			
2	49513 (Yds)	0.01	15.63			
3	49516 (Yds)	NA	281			
4	49517		1160.36			
5	49519 49534 (Ydb+sh)	0.02	2.81 169.34 0,89 0,86			
6	49534 (Jd6+sh)	ND	0.86			
7						
8						
9						
0						
1						
2						
3	CHERT/JASPER					
4		· · · · · · · · · · · · · · · · · · ·				
5	49561	1.03	ND ND			
6	49564					
7	49561 49564 49578					
8						
9						
D						

Sample assays by rock type

ø

	LIMESTONE (Dpm)			
	Sample #	Au (ppm)	Aq(ppm)	
	49348	0.07	1.27	
	49349	0.10	0.55	
	49350	0.27	AND	
	49351	0.07	0.58	T
	49352	0.82	2.37	T
	49355	0.07	2.37 0.93 4.39	
	49367	0.10	4.39	1
	49370	0.24	28,42	t
	49371	0.23	18.34	+
	49373	1.71	34.63	+
	49375	n.14	3.50	
	49378	0.14	~ .57	╈
	49382	0.96	3.02	+-
	49383	0.07	8.78	-
	49579			╀
	49580			+
	49581			+
	49583			╋
	1.005			+
				-
				+
· ·				
	STREAM SEDIMENT			+
	SINCI MENI			-
	49393		4,46	+
	49394	0.07		+
	49395	0.06	NA NA	╇
	+1010	0.01		+
	· · · · · · · · · · · · · · · · · · ·			╀
	MISCELLANEOUS			╇
	THOLEUNNEUWS			+
	4949 for 111mb and		╫╾┠┼╽┥╝┟╢╴╫┈╎┽┽┼┥╎┽╴╫╸╵┝┤┤┼┼	+
	49426 (black cc) 49445 (sh) 49462 (cong - 761) 49463 (MnOX)	0.14	12.69	
	47443 (54)	ND	ND 0.3/	+
		N.D.		+
	49463 (MnOX)	ANY I	0.55	

SON JONES COMPANY G7504

MADE IN U.S.A.

Sample assays by rock type

Щ

Ζ	LIMESTONE			
	sample #	Au (ppm)	Ag(ppm)	
1	42			TT
2	49404 (Ym)			++
3	49407	0.07	1/.66 9.39	$\left + \right $
4	49409 (Me)	0.14	25.37	┼┽.
5	49411 (Me)		6.51	┼┼
	49413 (Pr)	0.07		$\left \right $
5	49414 (Ph)	0.03	2.06 38.74	
,	49425			$\left \right $
		0.03	2.74	-
]	49428 (Me)	NA	0.68	
0	49431 (Mr)	0.07	1.37	_
1	49437 (Mé)	0.27	3.84	
2	49440 (Me)	0.06	3.77	├ - -
3	49446	0.03	0.89	_⊢
4	49448	0.03	13.58	
5	49449	0.05	138-45	
6	49450	10.0	ND	
7	49464	NB	ND	
8	49514 (Yme)	ND	ND ND ND	
9	49515 (Yme)	ND	NB	
0	49518	ND	3.53	
1	49533 (Yme)	ND	0.58	
2	49547 (Me)	0.03		
3	49549 (Me)	0.03		
4	49550 (Pn)	0.03	ND	Π
5	49558 MD			
6	49558 (HD) 49563 (bxxa)	NA	0,82	
7	49566			
8	49569			
9	49572 (Pm)			
)	49519			
	49580 (Dm)			
2	49581			
3	49583 (Dm)			
۱ <u> </u>				T
j				 _
6				
,			╶╴┲╶╪┥╴┟┊┾┟╴╫┈╞╞╞┾╎┟┝┝╶╫┈┝╎┾┾┾┤	
		──╫ ──┤╎┊┨╎ ╢	╼╍╀┼┾╋┽┽┽╸╢┊┊┼╃┟┟┧╎┍╋╍╸╟┍╴┝┼┼┟┦╢	-+-

	DOLOMITE	1	2	3	4	
	sample #	Aru (ppm)	Ag (ppm)	<u> </u>		
_	49356	0.03	AUN			L
	49357	0.03	ND 0.89			
	49361	- ND				
_	49362	0.03	ND			
_						
						L
_						L
_						
\square						
	· · · · · · · · · · · · · · · · · · ·					
						ļ
_	QUARTZ VEIN					.
	49392	0.69	58.28			
_	49402	0.51	167.66			
_	49406	0.89	99.22			
	49410	2.50	229.72			
	49419 (Ydb)	0.24	0 3/			
	49420 (446)		14.06			
	49422	0.14 1.30 0.14	38.6/			
	49424	1.30	281.49			
	LQUAT	0.14	25.10			
_	49452	0.03	22.08			
	49453	NO	ND			
	49452 49453 49455 49456	0.03 XD 1.13 28.97	7.26 /4.06 38.6/ 28/.49 25.10 22.08 ND 6.57 2.33 1.89 2.57 2.57 2.33			
	49456	28.97	<i>a.33</i>			Ŀ
	44457	5.82 3.46 2.30 0.48	1.89			
	49458 49459	3.46	2.57			
	49459	2.30	93.70			
	49460	0.48	0.55			
	49461	1.27	21.81			
	49461 49476 49477	0.48 1.27 3.98 55.17 0.62 0.14 0.58 1.10 3.50	93.70 0.55 21.81 8.74 43.51 311.35 15.80 360.24			
	494 77	55.17	43.51			
	49478	0.62	3/1.35			
	49478 49479 (bas) 49482 (bas)	0.14	15.80			
	49482 (bas)	0.58	360.24			
	49484 (vol)	1.10	03.3/			
	49485 (vol)	350	52.46			-

WILSON JONES COMPANY G7504 GREEN

MADE IN U.S.A.

®	QUARTZ VEIN cont	4		
a	491222	1	2 3 4 =	
Z Z		·		
COLUMN	sample #	Au (ppm)	Ag (ppm)	
1	49489 (Kwc)	0.27		
2	49490 (Kwc)	1.54		
3	49491 (por)	4.87	30.54	
4	49491 (por) 49492 (Kwc)	2.61	5.06 61.58 3.2.54 88.29	
5	49493	14,26	92.81	
6	49498 (por)	0.02	101.35	
7	49500	1.10	78.97	
8	49501	1.47	245.52	
9	49502	0.86		
10	49503	/, 33	3.33 953.36	-
11	49504	0.72	838.22	
12				
13				
14				
15				
16	PORPHyry			
17				
18	49438	49.58	5.69	
19	49447	0.07	19.71	
20	49472	44	0.14	
21	49473	0.24	(o.i)	
22	49474	0.48 4.42	81.15 36.03 52.49 165.26	
23	49475	4.42	36.03	
24	49481 49483 49487	0.31		<u>_</u>
25	49483	0.03	165.26	
26	49487			
27	49496	0.01		┥
28	49499	0.01	0.86 1.58 2.16	_
.9	49499 49520 49521	ND		
	47381	N8	(03	
11 - 2	49522 49523	0.01	1.99	
3		ND ND	/346./3 8.54	++-
4	49524 49527 49543		29.21	+-
5	495 U 2	0.77	ND ND	+
6	(13 5)		ND ND	++-
7		0.02	──	
8				
9				++
0				++

CERTIFICATE NO. 88-054-F

MOUNTAIN STATES R & D INTERNATIONAL, INC.

PROJECT NO.____ 1056

·		MAL, INC.				DATE	6-	-10-88
MSRD	SAMPLE		Au	Ag				
NO.	IDENTIFICATION	Rock Chips	ppm	ppm				
09140	49359	11	ND	ND	1			
09141	60	11	ND	1.17			+	
09142	61	11	ND	0.89				
09143	62	11	0.03	ND			· · · · · · · · · · · · · · · · · · ·	
09144	63	11	0.05	5.52			 	
09145	. 64	11	1.85	25.06				
09146	65	19	0.58	36.75		i 1		
09147	66		0.55	7.27				
09148	67	11	0.10	4.39			t	
09149	68		ND	4.87				<u> </u>
09150	69		0.41	9.53			1	
09151	70		0.24	22.42			1	
09152	71	11	0.23	18.34			1	
09153	72	11	0.14	8.54				·
09154	73	11	1.71	34.63				
09155	74	11	0.10	2.98				
09156	75	11	0.14	3.50	~			
09157	76	11	12.82	48.31				
09158	77	11	3.22	107.76				
09159	78		0.31	2.57				
F	ire Assay	STATEMENT	OF CHARGES.	INVOICE W	VILL FOLLO		·	'
20 Aus	2	\$200.00					GISTERED ASP	
<u>20</u> Pre		\$_70.00					CERTIFICAJE 10	
	@\$:	\$				@(\$	12210 MARVIN D. \$ CHILCATMAN	
		· ,	ł				11.100	11:16

Total Charge \$___270.00 mard-08

0\$

ND (None Detected)

ł

\$

Registered Assayer

Iman

CERTIFICATE NO. 88-055-F

MOUNTAIN STATES

R & D INTERNATIONAL, INC.

PROJECT NO. 1056

DATE

6-10-88

·						DATE		5-10-88
MSRD NO.	SAMPLE IDENTIFICATION	Kock Chips	Au	Ag				
	<u>.</u>		ppm	ppm				
09160	49379		0.51	10.90			<u> </u>	
09161	80	"	ND	4.32				
09162	81	"	0.55	27.43		-		
09163	82	11	0.96	3.02				
09164	83	"	0.07	8.78	-			
09165	84	11	0.69	32.43			, ,	
09166	85	"	0.89	52.46				
09167	86	in in	0.82	16.80				
09168	87	"	0.07	6.93				
09169	88		0.34	14.33				
09170	89		2.47	25.71				
09171	90		0.21	0.41				
09172	91		0.82	1.37				
09173	92		0.69	58.28				
09174	93		0.07	4.46				
09175	94		0.06	ND	·			÷
09176	95		0.07	ND				
09177	96	11	0.27	0.41				
09178	97	11	0.14	10.08		ł.		•
09179	98	11	0.20	5.21				

STATEMENT OF CHARGES. INVOICE WILL FOLLOW.

0\$ 0 MARY alman

Total Charge \$_270.00

mard-08

ND (None Detected)

i

CERTIFICATE NO. 88-056-F

MOUNTAIN STATES

R & D INTERNATIONAL, INC.

PROJECT NO. 1056

					DATE	6-10-88
SAMPLE		Au	Ag			
	Rock Chips	ppm	ppm			
49399	11	0.41	28.66			
<i>0</i> 49440		0.10	44.57			
49441	11	4.53 4.25	5.42 4.53			
P	11	0.03	37.37			
402	11					
403						
404	11	0.07	· ·			
405					-	
406	11	0.89	-			
407	11	0.14				
408	31	•				
409		0.24	· •			
- 410	11	2.50	229.72			
411	n	. 0.07	6.51			
412	31	0.14	10.29			
413	11	0.03	2.06			
414	11	0.65	38.74			
415	11	0.03	ND			
416	11	0.45	66.51			
417	11	0.03	ND			
	SAMPLE IDENTIFICATION 49399 49440 49441 401 402 403 404 405 406 405 406 407 408 409 410 410 411 412 413 414 415 416	IDENTIFICATION Rock Chips 49399 " 49440 " 49441 " 401 " 402 " 403 " 404 " 405 " 406 " 407 " 408 " 410 " 411 " 412 " 413 " 416 "	SAMPLE IDENTIFICATION Rock Chips ppm 49399 " 0.41 49440 " 0.10 49441 " 0.10 49441 " 0.10 401 " 0.03 402 " 0.03 402 " 0.51 403 " 0.62 404 " 0.07 405 " 0.07 406 " 0.07 406 " 0.14 408 " 0.03 409 " 0.24 410 " 2.50 411 " 0.07 412 " 0.14 413 " 0.03 414 " 0.65 415 " 0.03	SAMPLE Au Ag IDENTIFICATION Rock Chips ppm ppm 49399 " 0.41 28.66 49440 " 0.10 44.57 49441 " 4.53 5.42 49441 " 0.03 37.37 401 " 0.03 37.37 402 " 0.51 167.66 403 " 0.62 137.14 404 " 0.07 11.66 405 " 0.07 0.69 406 " 0.07 0.69 406 " 0.03 8.57 409 " 0.14 9.39 408 " 0.03 8.57 409 " 0.24 25.37 410 " 2.50 229.72 411 " 0.07 6.51 412 " 0.14 10.29 413 " 0.03 <td>SAMPLE Rock Chips ppm ppm 49399 " 0.41 28.66 494$40$ " 0.10 44.57 49441 " 4.53 5.42 49441 " 0.03 37.37 401 " 0.03 37.37 402 " 0.51 167.66 403 " 0.62 137.14 404 " 0.07 11.66 405 " 0.07 0.69 406 " 0.89 92.22 407 " 0.14 9.39 408 " 0.03 8.57 409 " 0.24 25.37 410 " 0.07 6.51 411 " 0.14 10.29 413 " 0.03 2.06 413 " 0.03 2.06 414 " 0.65 38.74 415 "</td> <td>DATE</td>	SAMPLE Rock Chips ppm ppm 49399 " 0.41 28.66 494 40 " 0.10 44.57 49441 " 4.53 5.42 49441 " 0.03 37.37 401 " 0.03 37.37 402 " 0.51 167.66 403 " 0.62 137.14 404 " 0.07 11.66 405 " 0.07 0.69 406 " 0.89 92.22 407 " 0.14 9.39 408 " 0.03 8.57 409 " 0.24 25.37 410 " 0.07 6.51 411 " 0.14 10.29 413 " 0.03 2.06 413 " 0.03 2.06 414 " 0.65 38.74 415 "	DATE

TATEMENT OF CHARGES. INVOICE WILL FOLLOW.

Fire Assay <u>20 Au&Ag</u> @ \$<u>10.00</u>: \$<u>200.00</u> Sample <u>20 Prep</u> @ \$<u>3.50</u>: \$<u>70.00</u> <u>____</u> @ \$___: \$ ____ @ \$___: \$

Carloat Man Control of the second Control of the second Control of the second Scritcoat Man Scrittoat Man

Total Charge \$_270.00

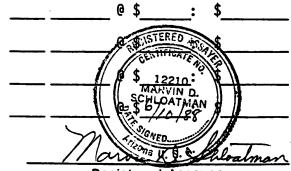
mard-08

ND (None Detected)

CERTIFICATE NO. 88-057-F

MOUNTAIN STATES

R & D INTERNATIONAL, INC.


PROJECT NO. 1056

	R & D INTERNATIO	NAI INC				11100201	
						DATE	6-10-88
MSRD	SAMPLE		Au	Ag			
NO.	IDENTIFICATION	Rock Chips	ppm	ppm			
09200	49418	"	0.14	14.06			
09201	419	"	0.24	9.26	-		
09202	420	11	0.14	14.06			
09203	49442	11	ND ND	3.22 3.84			
09204	421	"	0.21	89.83			
09205	422	"	0.14	38.61			
09206	423	11	0.10	71.66			
09207	424		1.30	281.49			
09208	425	11	0.03	2.74			
09209	426	11	0.14	12.69			
09210	427	".	0.14	25.10			
09211	428	11	ND	0.68			
09212	429	11	0.38	3.09			·
09213	430	11	0.55	0.69			
09214	431	11	0.07	1.37			
09215	432	11	3.15	31.54			
09216	433	11	1.23	21.74			
09217	434		2.54	18.99			
09218	435	п	7.82	25.92			
09219	436	n	9.87	12.89			`
		OTATEN	ENT OF CHARGES	1		!	

STATEMENT OF CHARGES. INVOICE WILL FOLLOW.

		.ss ()	ay \$_	10.00	_:	\$ <u>200.00</u>
20	Sample Prep	0	\$_	3.50	_:	\$ <u>70.00</u>
		0	\$_		_:	\$
		0	\$:	\$

Total Charge \$____270.00

mard-08

ND (None Detected)

CERTIFICATE NO. 88-058-F

MOUNTAIN STATES

R & D INTERNATIONAL, INC.

PROJECT NO. 1056

	R & D INTERNATIO	NAL, INC.					DATE	· · · · ·	6-10-88
MSRD	SAMPLE			Au	Ag				
NO.	IDENTIFICATION	Rock Chips		ppm	ppm				
09220	49437	"		0.27	3.84				
09221	438			49.58	5.69				
09222	439			3.15	17.07				
09223	440			0.06	3.77				
09224	49443	"		1.71 1.78	4.87 6.03				
09225	UG-1		•	0.27	16.94				
09226	2		· ·	1.30	229.02				
09227	3			0.69	24.21				
09228	45793			0.05	0.55				
09229	94			0.07	3.91				
09230	95			ND	3.84				
09231	96	11	·	0.55	2.61			•	
09232	Arana #1	11		72.82	ND				
09233	49444	11		0.07 0.05	1.10 2.67				
									· · ·
			•						
								· · · · · · · · · · · · · · · · · · ·	
	ire Assay	STATEM	ENT OF C	HARGES.	INVOICE W	VILL FOLLC	w.		. <u></u>

•	Fire A	ss	ay		
14	Au&Ag	0	\$_	10.00:	\$140.00
14	Sample Prep	0	\$_	3.50:	\$_49.00
		0	\$:	\$

@\$_ \$:

0\$ \$ ERED 13 MARVIN D. ØATMAN alman

Total Charge \$_189.00

ND (None Detected)

CERTIFICATE NO. 88-080-F

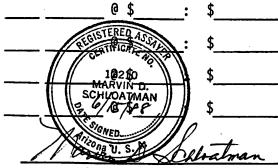
MOUNTAIN STATES

1056 PROJECT NO.___

• •	R & D INTERNATIO	NAL INC.			I NOULOI		
		·			 DATE		5-15-88
: MSRD	SAMPLE		Au	Ag			
NO.	IDENTIFICATION		ppm	ppm			
09405	49445		ND	ND			
09406	46		0.03	0.89			
09407	47		0.07	19.71			
09408	48		0.03	13.58			
09409	49		0.05	138.45			
09410	50		0.01	ND	 		
09411	51		0.02	17.21	 		
09412	52		0.03	22.08	 		
09413	53		ND	ND			
09414	54		ND	0.24		<u> </u>	
09415	55		1.13	6.51			
09416	56		28.97	2.33			
09417	57		5.82	1.89			
09418	58		3.46	2.57			
9419	59		2.30	93.70			
09420	60		0.48	0.55			
9421	61		1.27	21.81			
9422	62		ND	0.31			
9423	63		ND	0.55			
9424	64		ND	ND			

STATEMENT OF CHARGES. INVOICE WILL FOLLOW. ···· · ·

ND (None Detected)


.

	Fire As	say		
20	Au&Ag	@\$ 10	0.00:	\$ 200.00
_20	Sample Prep	0\$	3.50:	\$ 70.00
		@\$:	\$
		@\$		\$

270.00

Total Charge \$____

mard-08

CERTIFICATE NO. 88-081-F

6-15-88

MOUNTAIN STATES

ĩ

.

R & D INTERNATIONAL, INC.

1056 PROJECT NO.__

DATE_

MSRD	SAMPLE			Au	Ag				
NO.	IDENTIFICATION			ppm	ppm				
09425	49465	_		ND	1.17				
09426	66			1.64	3.50				
09427	67			4.46	6.93				
09428	68			ND	4.32				
					:				
									1
					 				<u> </u>
									1
					· · ·	· · · ·			·
		•	· ·		· -			•	
								····	
		-							
	·····					· · ·			
		-							
					-				
		-							
	<u> </u>								
	· · · · · · · · · · · · · · · · · · ·	_							
II		STATE) MENT OF (Charges. I					· · · · · · · · · · · · · · · · · · ·
4 Au8	<u>Ag</u> @ \$10.00 :	\$ 40.0						: \$	
Sar	mple						REGISTERED	ASO	
<u>4</u> Pre		\$ <u>14.0</u>					12211)
	@\$:	\$					Martin SCHLOAT		
	@\$:	\$					PT 6 6 \$	<u>***</u> ***	,)
Total Ch	arge \$ <u>54.00</u>		'N	ID (None De	tected)		Aricona J. S.	Chlo	etman

mard-08

t

CERTIFICATE NO. 88-023-G

MOUNTAIN STATES

R & D INTERNATIONAL, INC.

PROJECT NO. 1056

• .	R & D INTERNATIO	NAL, INC.				DATE		/-7-88
MSRD	SAMPLE		Au	Ag	Cu		-	
NO.	IDENTIFICATION		ppm	ppm	7.			
12319	49540	Rock Chips	0.03	0.82	_			
12320	41		3.84	6.45				
12321	42	11	2.13	7.13				
12322	43	11	0.04	ND				
12323	44	11	0.02	0.27				
12324	45	11	11.04	62.06				
12325	46	11	1.68	71.45				
12326	47	11	0.03	ND :				· · · · · ·
12327	48	11	0.85	4.18			•	
12328	49		0.03	ND				
12329	50	11	0.03	ND	· · · · · · · · · · · · ·			
12330	51	11	0.02	ND				
12331	52	н	0.02	ND				
12332	53	11	0.27	4.70	AA 2.06	:		
12333	49560	11	0.27	13.44				
12334	61	11	1.03	ND				
12335	62	"	1.37	13.54				
12336	63	11	ND	0.82				
12337	64	11	ND	ND				
12338	65		ND	0.07	-			
	re Assay &Ag_ @ \$_10.00:	STATEMENT OF (\$_200.00	CHARGES.	INVOICE W	VILL FOLLO	w.		\$
Sa	AA @ \$ 5.50: mple	\$ 5.50				Stansfer	- <u>SUS</u>	5

msrd-08

20 Prep @\$ 3.00:

@\$

\$ 60.00

: \$

Registered Assayer

Joalman

16

CERTIFICATE NO. 88-024-G

MOUNTAIN STATES

۰. ,

R & D INTERNATIONAL, INC.

1056 PROJECT NO._

				·			DATE	7	-7-88
MSRD NO.	SAMPLE			Au	Ag	· ·			
12339	1055/	Rock							
		Chips		1.34	60.21			·	
12340	55	"		0.69	19.65				
12341	56	"		ND	ND				
		<u> </u>	<u>.</u>					<u> </u>	
									_
	•								
•					•	-		-	1
	· · · · · · · · · · · · · · · · · · ·			·	· · · · · · · · · · · · · · · · · · ·	;			· · ·
			-						
		+		<u></u>		· · · · · ·	· ·		
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	······································	.	•			· · ···· · · · ·	· · ·		:
			- ·	-					· · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·		
	•		-				+	а	•
						•	· · · · ·		• • • •
									.
	· · · · · · · · · · · · · · · · · · ·	┟╴╴┟╴						-	-
							· · · · · · · · · · · · · · · · · · ·		
								: 	
	·			l l					
		STATEME	ENT OF C	HARGES, I	NVOICE W	ILL FOLLO	w.		
Fin 3Au	re Assay <u>Ap</u> [©] <u>10.00</u> : mpie	\$ <u>30.00</u>	-		-		@\$: \$;
		\$ 6.00					REGISTERE	ASSAN: 1	
	@\$:	\$				/	AI 201		
		*					MARVIN SCHLOAT	MAN #)
	@\$:	\$: 				E 10 5	<u>18</u>	
	rge \$_36.00		NC) (None De	tected)		ALICONA U.S.	N. C.	oatma

Registered Assayer

mard-08

CERTIFICATE NO. 88-092-G

MOUNTAIN STATES R & D INTERNATIONAL INC

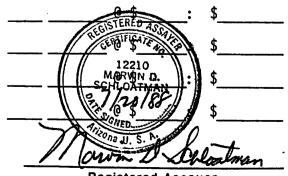
PROJECT NO.___ 1056

• •	R & D INTERNATIONAL	, INC.				DATE		7–20–88		
MSRD NO.	SAMPLE		Au	Ag						
13223	49557		ppm 0.02	9pm 3.87						
13224	58		0.01	ND				1		
13225	59		0.01	0.10						
13226	49566		0.01	0.48						
13227	67		0.01	2.22						
13228	68		0.49	19.82				-		
13229	69	·	0.03	1.17						
13230	70		0.24	2.57						
13231	71		0.31	13.95					•	
13232	72		ND	ND		· · · ·				
13233	73		ND	ND	• • • • •				- 1 	
13234	74		0.03	0.41	<u> </u>			<u>.</u>		
13235	75	-	0.17	4.35	2			· .	<u> </u>	
13236	76		0.14	3.67						
13237	77		0.01	1.99				•	, ,	
13238	78		ND	1.82						
13239	79		ND	0.38						
13240	80		ND	0.10						
		1 1			· ·		1	1		

STATEMENT OF CHARGES. INVOICE WILL FOLLOW.

0.69

7.51


ND

0.02

 Fire As <u>Au&Ag</u>	sa Q	יץ \$	<u>10.00</u>		\$ <u>_</u>	200.00	•
 Sample Prep	0	\$_	3.00	:	\$	60.00	-
	0	\$:	\$	· · · · · · · · · · · · · · · · · · ·	••
	0	\$:	\$		

81

82

Total Charge \$_260.00

13241

13242

mard-08

ND (None Detected)

CERTIFICATE NO.88-093-G

MOUNTAIN STATES

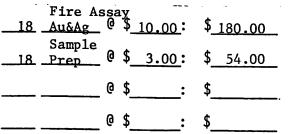
R & D INTERNATIONAL, INC.

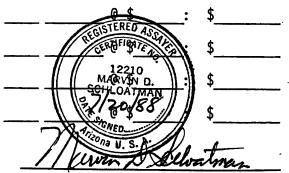
PROJECT NO. 1056

	R & D INTERNATIO						DATE	7-	-20-88
MSRD NO.	SAMPLE IDENTIFICATION			Au	Ag				
				ppm	ppm			Ļ	
13243				ND	0.14				
13244				0.03	2.91				
13245	85	ļ		1.44	59.97				
13246	86			1.03	21.84				
13247	87			ND	ND				
		· ·		· · ·					<u> </u>
					-	:			<u> </u>
							· · ·		·
	-			• ·					
	· · · · · · · · · · · · · · · · · · ·		-						
	·····								· · · ·
	······								
					•			·	· · · · ·
	· · · · · · · · · · · · · · · · · · ·	STATE	MENT OF C	HARGES.	INVOICE W	/ILL FOLLO	w.		
San 2 <u>Pre</u>	ce Assay <u>Ag</u> @ \$ <u>10.00</u> : mple <u>ep</u> @ \$ <u>3.00</u> :	\$ <u>50.00</u> \$ <u>6.00</u>					CISTERED ASCA	: \$: \$	<u> </u>
San <u>3 Pre</u>		\$ <u>10.50</u> \$)					↓ . \$; ;
otal Cha	urge \$	Ψ	 NC) (None De	tected)	Ma	SCNED.	Left Assayer	man

CERTIFICATE NO. 88-091-G

MOUNTAIN STATES


R & D INTERNATIONAL, INC.


PROJECT NO. 1056

· .	R & D INTERNATIO		•	- <u>1</u>			DATE	 7-20-88	
MSRD	SAMPLE			Au	Ag				
NO.	IDENTIFICATION			ppm	ppm			-	
13392	49588	Rock Chip		0.24	4.73				
13393		"		0.07	4.15				
13394	90	"		0.01	ND				
13395	91	"		1.75	11.90				
13396	92	"		0.03	1.75				
13397	93	11	······································	0.01	ND				
13398	94	81	'	0.03	4.15				
13399	95	. 11		0.01	0.89				
13400	96	H		ND	0.03				
13401	97	11	•	0.07	3.12				
13402	98	11		0.10	3.60				
13403	99			0.03	ND				
13404	49600	"		0.01	ND				
13405	01	11	-	0.01	0.86	•			
13406	02	"		ND	ND				
13407	03	11		1.51	62.78				
13408	04	11		0.82	20.13				
13409	05	11		ND	1.17				
								 · . ·	
	· ·	· ·							

STATEMENT OF CHARGES. INVOICE WILL FOLLOW.

ND (None Detected)

Registered Assayer

Total Charge \$ 234.00

mard-08

CERTIFICATE NO.88-169-G

MOUNTAIN STATES R & D INTERNATIONAL, INC.

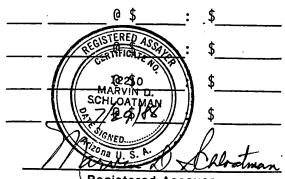
PROJECT NO. 1056

				•			DATE	7-	-27-88
MSRD NO.	SAMPLE IDENTIFICATION		Au	Ag					
		Rock	ppm	ppm					
14045	9 40606	Chips	. 0.01	ND					
14046	" 07		ND	ND				-	
14047	" 08		ND	ND					
14048	" 09		ND .	ND					
14049	" 10		ND	ND					-
14050	" 11		ND	ND					
14051	" 12		0.86	20.30 20.19				· .	
14052	" 13		1.54 1.54	60.41 60.48					
14053	" 14		ND ND	ND ND	-				
			•						
	· .	÷	•	· · · · · ·	•••••	• • • • • •			
			· •.	· · ·	· - · · · · · · · · · · · · · · · · · ·			· · ·	
	-		-						
						· ·			
								, -	
	·•• ···								
									·····
		STATEM	ENT OF C	HARGES.	INVOICE V	VILL FOLLO			l
Fi: 12 Au	re Assay &Ag_ @ \$_10.00:	\$ 120.0	0		-	· · · · · · · · · · · · · · · · · · ·	@\$	• \$	
San 6 Pro	mple	\$_18.00					ataister	ED ASSAL	· · · · · · · · · · · · · · · · · · ·
	mple	\$ <u>7.5</u>					n el2	210	
	@\$:	\$\$,			<u> </u>	SCHUC		}
	••••••••••••••••••••••••••••••••••••••	т				<u> </u>	A TISIONE		
	irge \$ <u>145.50</u>		NE) (None De	tected)	_//	awa	XXHI	atman
msrd-08							Registere	d Assayer	

CERTIFICATE NO. 88-177-G

MOUNTAIN STATES

R & D INTERNATIONAL, INC.


PROJECT NO. 1056

· ,	R & D MIERMANO		······································			DATE		7-29-88
MSRD NO.	SAMPLE		Au	Ag				
NU.	IDENTIFICATION		ppm	ppm				
14291	49615	Rock Chip	0.02	ND				
14292	16	н	ND	1.23				
14293	17	11	0.72	15.98				
14294	18	11	ND	0.72				
14295	19	11	0.01	3.22				
14296	20	71	0.01	0.45				
14297	21	11	ND	0.10			1	
14298	22	11	ND	ND			-	
14299	23	11	ND	1.58				
14300	24		ND	ND	·		1	
14301	25	11	ND	ND	· · ·		· ·	
14302	26	11	ND	ND				
14303	27	11	0.02	ND				· .
14304	28	"	ND	92.81				
14305	29		ND	6.99				
L4306	30	11	ND	8.98				· ·
14307	31		ND	0.65		<u> </u>		· ·
4308	32	11	ND	ND				
4309	33	11	ND	ND		<u> </u>		
4310	34		0.01	ND		· · · · · · · · · · · · · · · · · · ·		· · ·
	e Assay	STATEMENT	OF CHARGES.	INVOICE W	/ILL FOLLC	W.	I	I

ND (None Detected)

<u>20 Au&Ag</u> @ \$ 10.00: \$ 200,00 i Sample <u>20 Prep</u> @ \$_3.00 @\$ @\$_

-•	\$ <u>200.00</u>
:	\$ 60.00
:	\$
:	\$

Registered Assayer

Total Charge \$_260.00

msrd-08

· .

CERTIFICATE NO. 88-178-G

MOUNTAIN STATES

R & D INTERNATIONAL, INC.

1056 PROJECT NO.___

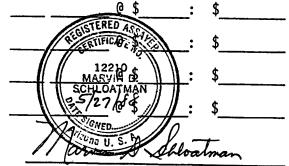
							DATE		7–29–88
MSRD NO.	SAMPLE IDENTIFICATION			Au	Ag				
		Rock		ppm	ppm				
14311	49635	Chip		ND	ND				
14312	36	"		ND	ND			×.	
14313	37	"		0.07	ND				
14314	38	11		0.01	ND			·	
14315	39			0.01	ND				
14316	40	"		0.02	0.10				
14317	41	11	<u></u>	0.06	0.34				
14318	49652			ND	ND	·			
								·	.
	· · · · · · · · · · · · · · · · · · ·		······			· · ·	:		
			· · ·						
				-				<u></u>	
							-		
									• •
				· · · · · · · · · · · · · · · · · · ·					
		+						······	
		┼──┼							
	·····								
- Fir	e Assay	STATEME	NT OF C	HARGES.	NVOICE V	VILL FOLLO	W.		
Auð	Ag @\$10.00:	\$80.00	•				0\$: \$	5
	ple p 0 \$ 3.00 :	\$24.00				1	REGISTERED AS		5 .
	@\$:	\$					18210 MAR210	s //	5
		\$	-				SCHLOATING		·
		۰ <u></u>	-				T SICNED		,
	arge \$ <u>104.00</u>		'NI	D (None De	tected)		anon A	Chlos	tomen
d08						7	Registere	d Assaver	*

San Bernardo

CERTIFICATE NO. 88-002-F

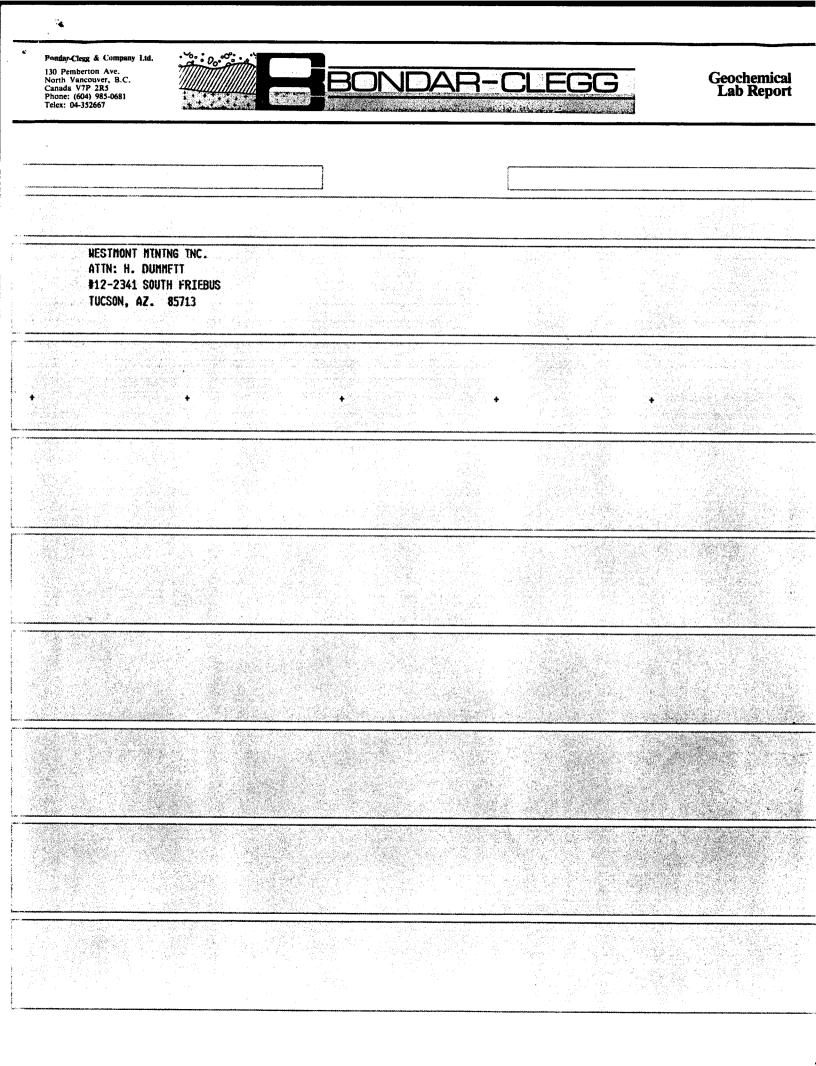
1056

MOUNTAIN STATES


R & D INTERNATIONAL, INC.

PROJECT NO.__

	R & D INTERNATIO	·····				DATE	0	5-27-88
MSRD	SAMPLE			Au	Ag			
NO.	IDENTIFICATION			ppm	ppm			
08491	49347			0.10	0.65			
08492	49348			0.07	1.27			
08493	49349			0.10	0.55			
08494	49350			0.27	ND			
08495	49351			0.07	0.58			
08496	49352			0.82	2.37			
08497	49353			0.03	0.41			
_08498	49354	·		0.01	0.31			
_08499	49355			0.07	0.93			
08500	49356			0.03	ND			
08501	49357			0.03	ND			
08502	49358			0.07	3.19			
<u>.</u>								
			•					
	······································			Ϋ́.				


STATEMENT OF CHARGES. INVOICE WILL FOLLOW.

12					\$0
12	Sample <u>Prep</u>	0	\$ <u>3</u> .	50:	\$_42.00
 -		0	\$	_:	\$
		0	\$	•	¢

Total Charge \$____162.00 mard-08

ND (None Detected)

Pondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

-

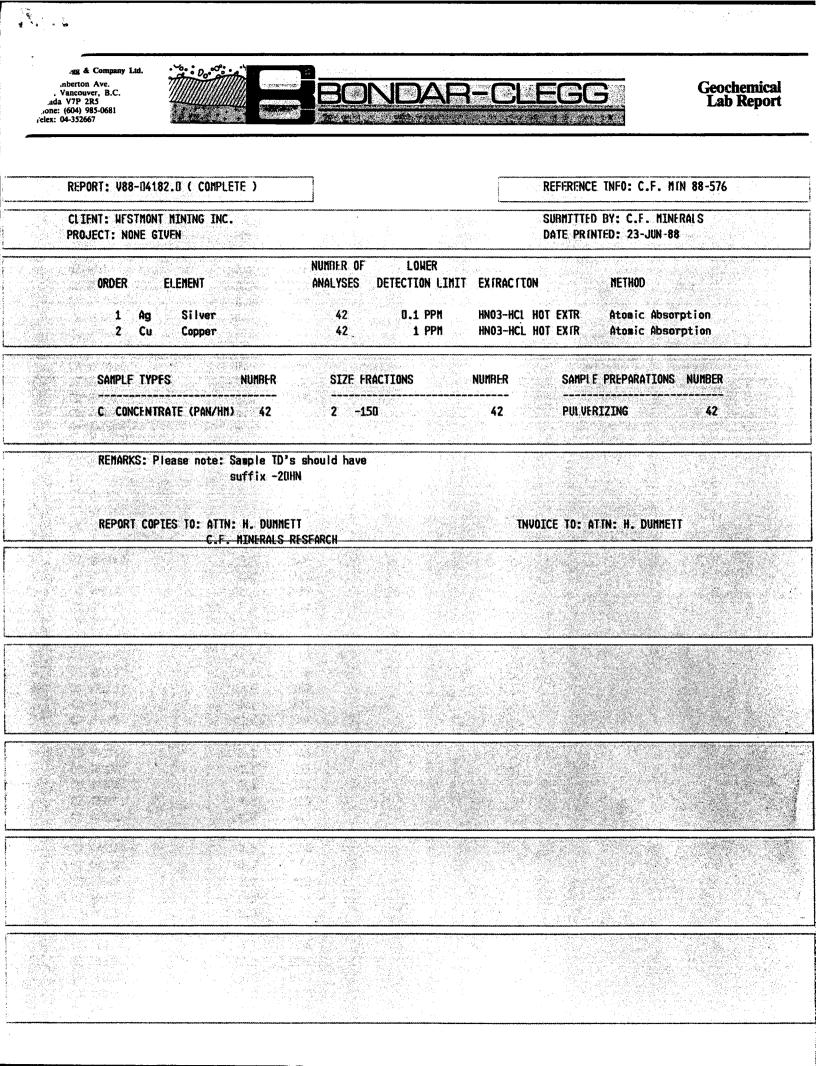
Geochemical Lab Report

REPORT: V88-04182.0 (COMPLETE) REFERENCE INFO: C.F. MIN 88-576 CLIENT: WESTMONT MINING INC. SUBMITTED BY: C.F. MINERALS PROJECT: NONE GIVEN DATE PRINTED: 23-JUN-88 NUMBER OF LOHER ORDER ELEMENT ANALYSES DETECTION LIMIT EXTRACTION METHOD 1 Silver 0.1 PPM Ag 42 HN03-HCL HOT EXTR Atomic Absorption 2 Cu Copper 42 1 PPN HN03-HCL HOT EXIR Atomic Absorption SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER SAMPLE PREPARATIONS NUMBER ____ C CONCENTRATE (PAN/HM) 42 -150 42 2 **PULVERIZING** 42 REMARKS: Please note: Sample ID's should have suffix -20HN REPORT COPIES TO: ATTN: H. DUMMETT TNVOICE TO: ATTN: H. DUMMETT C.F. MINERALS RESEARCH

Brondae-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

. *

. 4



Geochemical Lab Report

Contract

	REPORT: V88-	-04182.0					PROJECT: NONE	AGE 1	1		
	Sampl F Number	ELFMENT UNITS	Ag PPM	Cu PPM		SAMPL F NUNBER	ELEMENT UNITS	Ag PPN	Cu PPM		
	C2 49301		<0.1	107		C2 49341		5.6	92		
	C2 49302		<0.1	139	10-12 ⁰ 10-12	C2 49342		>50.0	940		
	C2 49303		<0.1	108							
	C2 49304		18.0	123	na da sera da s Tenera da sera d	and the second					
andre der Standige Verstander Standige	C2 49305		0.1	184							
	C2 49306		<0.1	256				21 - L - M			
	C2 49307		0.2	202	na serie de la construcción de la La construcción de la construcción d La construcción de la construcción d		e de la composition d la composition de la c				
	C2 49308		<0.1	158							
	C2 49309		0.1	135	lan an stàitean an s An taoinn an t-						
	C2 49310		<0.1	161		an an an Araba an Araba. An Araba					
	C2 49311		0.1	317							
	C2 49312	의 위험한 것이 가격했다. 같은 1월 1일 - 1	<0.1	262							
	C2 49313		<0.1	338							
	C2 49314		0.3	538		an an an an an an ann an Arrainn Anns an Arrainn an Arrainn Anns an Arrainn				and a second	ja (j
	C2 49315		0.3	63							
	C2 49316		6.9	129							
	C2 49317		0.3	115							
	C2 49318		<0.1	1500							
	C2 49319		1.5	640							1674
	C2 4932D		0.1	30							
	C2 49321		<0.1	89							
	C2 49322		<0.1	39							
	C2 49323		<0.1	160							
	C2 49324		0.1	222						(q_{1},q_{2})	
	C2 49325		<0.1	64							la 1995 - Status
	C2 49326		2.1	665						e en se	4. U.C.
	C2 49327		<0.1	295						e series de la companya de la company	
	C2 49328		2.4	206							an a
	C2 49329		0.3	155							
	C2 49330		21.0	415							
	C2 49331		0.5	350							
	C2 49332		<0.1	51							
	C2 49333		2.9	110							
	C2 49334		0.3	87				(see			
	C2 49335		26.0	1365							
	C2 49336		0.1	106		······································				an Saithean	
	C2 49337		21.0	1840							
	C2 49338		5.8	1700					가는 가슴다. 제 - 전자 제품이		
	C2 49339		1.5	139							
	C2 4934N		3.2	218	14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -				n de la composition Anti-		

ŧ

.egg & Company Ltd. .mberton Ave. .i Vancouver, B.C. .ada V7P 2R5 .one: (604) 985-0681 felex: 04-352667

1. . .

Geochemical Lab Report

...

	REPORT: V88-04182.0					PROJECT: NON	GIVEN	PAGE	1
		NENT Ag NITS PPM	Cu PPM		SAMPLE NUMBER	ELEMENT UNITS	Ag PPN	Cu PPN	
		<0.1	107		C2 49341		5.6	92	
	C2 49302	(2024년 1월 1월 1일) - 2014년 전 (1924년 1월 2 년)	139		C2 49342		>50.0	940	
	C2 49303	<0.1	108						
	C2 49304		123					er an	
	C2 49305	0.1	184						
	C2 49306	<0.1	256 ·]		an a				
and a start of the second s	C2 49307	0.2	202						
a santa tanàn Ny INSEE dia mampina Ny INSEE dia mampina ma	C2 49308	<0.1	158						
	C2 49309	0.1	135						
	C2 49310	<0.1	161						
	C2 49311	0.1	317						
가 같은 것 않는 같은 것 같은 것	C2 49312	<0.1	262	이 바람과, 같은 것이 가 같은 것 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 없다.					
	C2 49313	<0.1	338						
	C2 49314	0.3	538						
	C2 49315	0 . 3	63						
	C2 49316	6.9	129						
	C2 49317	0.3	115						
	C2 49318	(0.1	1500						
	C2 49319	1.5	640						
	C2 49320	0.1	30						
	C2 49321	<0.1	89						
	C2 49322	<0.1	39						an a
	C2 49323	<0.1	160						
	C2 49324	0.1	222						
	C2 49325	<0.1	64						
	C2 49326	2.1	665						
	C2 49327	<0.1	295		1. Sec.		2000 - A		- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19
	C2 49328	2.4	206						
7.69	C2 49329	0,3	155						
- 1918 - 1918	C2 49330	21.0	415			•			<u></u>
	C2 49331	0.5	350						
	C2 49332	<0.1	51						
	C2 49333	2.9	110						
	C2 49334	0.3	87						
	C2 49335	26.0	1365						
10. j. 6. j. 1. j. 4. j. 1. j. 4. j.	C2 49336	0.1	106						
	C2 49337	21.0	1840						
	C2 49338	5.8	1700						
	C2 49339	1.5	139						
	C2 4934N	3.2	218	an Maria Rata (BMI) an Sairt					

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

्रेः

21

· · · ·

 Geochemical Lab Report

Eu

PPM

4

REPORT: V88-	04179.0							PRC	JECT: NON		1	PAGE 14
. MPLE NUMBER	ELEKENT UNITS	WI 9m	Au PPB	Ag PPM	As PP N	Ba PPN	Br PPM	Cd PPM	Ce PPM	Co PPM	Cr PPM	Cs PPM
C4 49301		39.9	<5	<5	148	1300	100	<10	150	71	200	8
C4 49301		40.9	6	<5	129	1200	91	<10	200	84	250	9
C 4 49302		67.4	15	<5	160	580	110	<10	140	98	210	7
C4 49302		72.2	250	<5	163	580	110	(10	160	99	300	8
C4 49303	nana ana ana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny sorana amin'ny	50.5	6	(5	123	480	150	<10	140	77	200	8
C4 49303		51.0	16	<5	117	420	160	<10	180		200	Q
CA 4000A		7 A				10000					244	4

C4 49301	39.9	<5	<5	148	1300	100	<10	150	71	200	8	4
C4 49301	40.9	6	<5	129	1200	91	<10	200	84	250	9	4
C4 49302	67.4	15	<5	160	580	110	<10	140	98	210	7	3
C4 49302	72.2	250	<5	163	580	110	<10					
C4 49303								160	99	300	8	5
64 47303	50.5	6	(5	123	480	150	<10	140	77	200	8	<2
C4 49303	51.0	16	<5	117	420	160	<10	180	71	200	9	4
C4 49304	6.0	3190	<5	49	18600	41	<10	180	14	180	10	4
C4 49305	52.7	6	<5	80	320	47	<10	120	76	120	9	<2
C4 49306	2.9	71	13	15	990	<5	<10	28	<10	240	2	<2
C4 49307	2.7	<20	<16	36	>30000	36	<24	490	66	310	6	10
C4 49308	4.5	350	(11	37	11800	34	<10	320	37	380		٦ŋ
C4 49309	3.2	<24	<15	15	>30000	17	<24				<2	12
C4 49310	4.9	<20	<16					500	16	<190	<3	12
C4 49311				36	>30000	36	<24	490	66	310	6	10
	3.6	<19	<15	63	18600	110	<23	440	62	160	8	15
C4 49312	1.7	<13	<5	76	1200	77	<10	350	41	430	6	8
C4 49313	12.9	12	(5	368	5900	230	<10	880	220	130	6	9
C4 49314	66.0	<24	<15	15	>30000	17	<24	500	16	<190	<3	12
C4 49314	17.9	480	<5	77	350	210	11	170	160	98	4	6
C4 49315	70.2	45	<14	36	>30000	62	<22	970	65	110	<3	23
C4 49315	71.6	78	<5	16	170	31	<10	29	110	2100	<1	<2
C4 49316	31.6	<19	<15	63	18600	. 110	〈 23	440	62	160	8	15
C4 49317	48.4	3210	(5	12	290	61	<10	66	75	2000	2	
C4 49317	49.4	<24	<18	38	>30000	88	(29	820	98			3
C4 49318	16.6	862	<5	840	610					140	<3	15
C4 49319	2.0	12				170	<10	510	91	92	1	8
GT 1/01/	6.V		(5	368	5900	230	<10	880	220	130	6	9
C4 49320	43.7	1170	<5	97	460	230	<10	190	170	59	4	7
C4 49320	18.5	480	<5	77	350	210	11	170	160	98	4	6
C4 49321	21.9	10	<5	11	<100	23	<10	16	83	2000	<1	<2
C4 49322	48.9	78	<5	16	170	31	<10	29	110	2100	a	<2
C4 49322	38.1	6150	<5	36	1900	130	<10	410	75	110	3	12
C4 49323	1.5	23	<16	101	830	49	<28	520	45	170	7	14
C4 49324	17.8	3210	<5	12	290	61	<10	66	75	2000	2	_ 1
^4 49325	10.6	862	<5	840	610	170	<10	510	91	2000		3
-4 49326	0.8	430	<20	78	1100	77					1	8
C4 49327	1.5	-57	(13	280	3500	43	<20 <23	670 580	22 15	180 810	<4 <3	15 11
C4 49328		104	/^^	· · · · · · · · · · · · · · · · · · ·								
	1.7	190	<22	68	3400	87	<35	580	110	130	5	10
C4 49329	3.7	<18	<13	156	2700	130	<22	400	120	170	7	13
C4 49330	2.5	44	<5	2	<100	21	<10	25	69	2500	4	<2
C4 49331	1.2	12	<5	1	<100	15	<10	15	71	2600	a	<2
C4 49332	56.3	<5	<5	22	570	63	<10	380	34	65	7	8

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

EGG 7 1

Geochemical Lab Report

REPORT: VE	8-04179.0		na rain nan ann an					PR	DJECT: NO	NE GIVEN		PAGE 1B	
.1MPLE NUMBER	element Un its	Fe PCT	H£ PPM	Ir PPB	La PPM	Lu PPM	Mo PPM	Na PCT	Ni PPM	Rb PPM	S5 PPM	Sc PPM	Se PPM
C4 49301	We have a set of the second descendence opposing our	26.0	28	<100	98	0.7	17	0.31	68	<10	8.4	34.0	<10
C4 49301		28.0	53	<100	120	1.0	16	0.34	59	<10	7.7	41.0	<10
C4 49302		27.0	13	<100	89	0.9	13	0.29	82	<10	10.0	60.2	
C4 49302		28.0	34	<100	100	1.3	13	0.29	71	15	10.0	6 4.4	<10 <10
C4 49303	analogue internet also presidente	21.0	14	<100	84	0.8	11	0.26	<50	<10	8.4	60.8	<10
C4 49303	lan oon ooning and	21.0	82	<100	110	1.9	9	0.30	<50	20	8.6	65.7	<10
C4 49304		8.0	140	<100	97	1.4	8	0.30	<50	23	4.6	18.0	
C4 49305		19.0	30	<100	67	0.7	14	0.19	50	11	7.0	20.0	<10 11
C4 49306		1.1	<2	<100	20	<0.5	<2	0.29	<50	120	8.6	2.7	<10
C4 49307	· · · · · · · · · · · · · · · · · · ·	7.5	749	<100	180	<8.4	(7	0.21	<76	72	10.0	67.9	34
C4 49308	AMA AN, INT AT MANY A AND AND A AND AND A AND AND A A	5.7	458	<100	150	6.5	<5	0.24	130	<31	8.3	47.0	<23
C4 49309		4.1	1130	<210	200	<21.0	9	0.10	<68	<34	3.5	100.0	44
C4 49310		7.5	749	<100	180	<8.4	<7	0.21	<76	72	10.0	67.9	34
C4 49311		7.7	1300	<100	160	<17.0	9	0.17	<70	65	6.7	121.0	<30
C4 49312	a da anti-	16.0	308	<100	180	<3.6	15	0.15	65	<28	10.0	38.0	19
C4 49313		33.0	140	<100	513	<3.7	48	0.22	190	34	24.6	26.0	16
C4 49314		4.1	1130	<210	200	<21.0	9	0.10	<68	<34	3.5	100.0	44
C4 49314		28.0	44	<100	89	1.7	27	0.33	63	29	3.5	46.0	<10
C4 49315		8.1	1510	<100	340	<26.0	· <8	0.15	<64	59	9.0	113.0	<30
C4 49315	 	11.0	8	<100	15	<0.5	<2	0.57	280	<10	0.8	131.0	<10
C4 49316		7.7	1300	<100	160	<17.0	9	0.17	<70	65	6.7	121.0	<30
C4 49317		8.6	24	<100	37	0.8	<2	0.56	200	<10	1.8	117.0	<10
C4 49317		10.0	719	<220	260	<7.7	24	0.13	<84	74	7.4	71.6	<38
C4 49318		26.0	57	<100	310	2.3	57	0.22	58	<21	25.9	17.0	15
C4 49319		33.0	140	<100	513	<3.7	48	0.22	190	34	24.6	26.0	16
C4 49320 C4 49320		35.0	40	<100	110	2.3	30	0.26	64	23	4.6	53.6	<10
		28.0	44	<100	89	1.7	27	0.33	63	29	3.5	46.0	<10
C4 49321		8.3	12	<100	11	0.6	<2	0.52	240	<10	0.6	115.0	<10
C4 49322 C4 49322		11.0 8.8	8 64	<100 <100	15 200	<0.5 3.3	<2 4	0.57 0.53	280 <50	<10 23	0.8 20.1	131.0 51.3	<10 <10
C4 49323		5.1	498	<100	240	an dia mangka sa sa kanang dipan sa kanang sa sa sa kanang sa	1.0		· · · · · · · · · · · · · · · · · · ·			an a	
C4 49324		8.6	24		240	<5.5	10	0.26	96	<48	6.1	31.0	33
°4 49325		26.0	57	<100	37	0.8	<2	0.56	200	<10	1.8	117.0	<10
.4 49326		3.4	527	<100 <200	310	2.3	57	0.22	58	<21	25.9	17.0	15
C4 49327		5.5	235	<100	310 290	<7.0 <4.5	30 91	<0.10 0.25	120 <63	<64 <39	8.1 35.1	25.0 31.0	<45 29
C4 49328	1979 Mittable Sector V Norfsette Bills Magenting	19.0	9 57	<240	280	<17.0	13	0.10	210	<59		, 	
C4 49329		29.0	640	<100	200	<7.7	24	0.16	210		17.0	87.5	45
C4 49330		7.9	17	<100	200 14	0.8			270	54	17.0	54.6	<24
C4 49331		7.7	2	<100	6	<0.5	<2 /2	0.66	230	<10	0.4	124.0	(10
C4 49332		3.4	250	<100	160	<4.1	<2 5	0.51 0.45	210	<10	0.2	122.0	<10
	and a constant of an		4 ~ V	1100	100	NT.L	J	V.9J	50	89	3.1	28.0	<10

Bondar-Clegg & Company Lid. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

i i

30

JC

Geochemical Lab Report

N (1993) .

NDAR-CLEGG

REPORT: V88-	04179.0							PRI	OJECT: NON	NE GIVEN		PAGE 1C	
MPLE NUMBER	ELEMENT UNITS	Sm PPM	Sn PPM	Ta PPM	Tb PPM	Te PPM	Th PPM	U PPN	W PPM	Yb PPM	Zn PPM	Zr PPM	n an tha an tha an tha an tha an tha
C4 49301	 - Marcine and the second second	15.0	<200	2	2	<20	12.0	5.2	8	<5	<200	1200	
C4 49301		18.0	<200	3	3	<20	18.0	5.9	6	6	<200	2400	
C4 49302		16.0	<200	2	2	<20	12.0	6.2	5	<5	340	<500	
C4 49302		18.0	<200	2	3	<20	18.0	7.8	5	8	430	1700	
C4 49303	11 and 11 a field the states of the states	15.0	<200	2	2	<20	11.0	5.4	<2	6	430 280	<500	
C4 49303	- 	22.0	<200	3	4	<20	26.0	10.0	4	11	270	3800	n ann an
C4 49304		21.0	<200	4	3	(41	24.0	8.5	5	11	<200	7200	
C4 49305		11.0	<200	i	2	<20	10.0	7.3	5 7	<5	240	1500	
C4 49306		2.7	<200	a	ā	<20	4.6	1.3	24	<5	<200	<500	
C4 49307	· · · · · · · · · · · · · · · · · · ·	54.8	<640	19	23	<110	146.0	69.9	27	80	350	>30000	
C4 49308	an ann ann a' far de ann an an an an a	38.0	<450	13	16	<67	81.8	41.0	21	50	<200	23000	a na an
C4 49309		51.7	<760	24	36	<130	207.0	100.0	30	150	200	>30000	
C4 49310		54.8	<640	19	23	<110	146.0	69.9	27	80	350	>30000	
C4 49311		88.3	590	28	44	<96	270.0	131.0	24	180	290	>30000	
C4 49312		39.0	<200	10	11	<57	71.5	31.0	12	36	220	16000	:
C4 49313		60.8	<200	6	8	64	91.9	20.0	12	24	500	7900	n na sana ang sana sangara sangara
C4 49314		51.7	<760	24	36	<130	207.0	100.0	30	150	200	>30000	
C4 49314		25.0	<200	4	4	<20	17.0	8.1	12	12	360	2400	
C4 49315	1,42,50 1 1,112	102.0	580	32	44	(94	294.0	135.0	42	170	310	>30000	
C4 49315	2. Some answer and the same used manufacture states	7.1	<200	(1	1	<20	1.8	1.1	3	(5	<200	<500	·····
C4 49316		88.3	590	28	44	< 96	270.0	131.0	24	180	290	>30000	t sojas
C4 49317		13.0	<200	2	3	<20	5.6	2.5	32	5	<200	1400	
C4 49317		67.8	<730	21	29	<110	176.0	75.3	57	95	410	>30000	
C4 49318		54.7	<200	4	8	<52	35.0	12.0	11	15	590	3100	
C4 49319		60.8	<200	6	8	64	91.9	20.0	12	24	500	7900	
C4 49320	an ann ang ann na	32.0	<200	6	6	<20	17.0	10.0	20	13	370	2000	
C4 49320		25.0	<200	4	4	<20	17.0	8.1	12	12	360	2400	
C4 49321		6.2	<200	<1	1	<20	2.7	1.1	<2	<5	<200	660	
C4 49322		7.1	<200	a	1	<20	1.8	1.1	3	<5	<200	<500	
C4 49322		82.4	<200	6	14	<40	24.0	8.9	280	22	220	3900	t a constant the short
C4 49323		55.1	<620	15	15	<93	89.5	38.0	15	49	280	25000	a mananananan ar tau saka a
C4 49324		13.0	<200	2	3	<20	5.6	2.5	32	5	<200	1400	
`4 49325		54.7	<200	4	8	<52	35.0	12.0	11	15	590	3100	
-4 49326		85.0	<920	17	18	<130	259.0	42.0	23	52	740	26000	
C4 49327		65.6	<610	13	14	<95	79.3	17.0	8	30	1100	11000	ta tanan tanang sa sa
C4 49328	Te di Antoini (de centre de la contra de la c	58.6	<850	39	33	<120	204.0	108.0	48	110	480	>30000	
C4 49329		47.0	<530	14	19	<87	139.0	67.3	21	72	510	>30000	
C4 49330		6.7	<200	ā	2	<20	3.4	1.4	<2	(5	<200	860	
C4 49331		3.6	<200	ā	ī	<20	<0.5	0.5	<2	<5 <5	<200	(500	
C4 49332		48.0	<200	10	11	<20	53.9	24.0	11	31	<200	12000	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667 0000

· • · • • • •

No or the anti-Marian sector of the sector sector of the sector of the sector of the sector of the sector sec

.....

1

Geochemical Lab Report

. . . .

	a and the second second							PRO	JECT: NON	E GIVEN	I	AGE 2A	
AMPLE NUMBER	ELEMENT UN ITS	WI 90	Au PPB	Ag PPM	As PPM	Ba PPN	Br PPM	Cd PPN	Ce PPM	Co PPM	Cr PPM	Cs PPN	Eu PPN
C4 49333	***** · · · · · · · · · · · · · · · · ·	15.4	5	(5	19	330	43	<10	170	41	(50		
C4 49334		32.8	<5	<5	9	<100	29	<10	25	65	1700	2	/2
C4 49335		3.2	19	(5	12	230	33	<10	39	72	1900	2	×4 72
C4 49336		59.0	23	<16	101	830	49	<28	520	45	170	7	14
C4 49336		35.8	10	<5	46	240	73	<10	120	130	<50	á	4
C4 49337		23.7	839	<5	310	1900	150	<10	560	120	250	6	5
C4 49338		17.5	10300	18	65	570	47	46	290	34	83	0	J 5
C4 49339		65.5	230	<5	18	2100	78	<10	130	64	120	10	J 5
C4 49340		29.9	2750	(5	105	210	120	<10	600	47	65	23	- J - E
64 49341	n de sert seraj de rejer da de su daga de ser ser ser ser	66.1	430	<20	78	1100	77	<20	670	22	180	< <u>4</u>	15
C4 49342		20.8	19900	77	719	690	140	<10	310	34	(50	2	3

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667 ·····

- North and a strand and and a start

ţ

.....

2

2.5

REPURT: V88-	•04179.0							PRC	JECT: NON	ie given		PAGE 2B	
AMPLE NUMBER	ELEMENT UNITS	Fe PCT	H r PPN	Ir PPB	La PPH	Lu P PN	Mo PPM	Na PCI	Ni PPM	Rb PPM	Sb PPM	Sc PPN	Se PPM
C4 49333	<pre>1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 *</pre>	10.0	57	<100	95	0.8	3	0.26			2.3	33.0	<10
C4 49334		7.3	5	<100	11	<0.5	<2	0.55	250	<10	0.7	108.0	<10
C4 49335		8.6	11	<100	18	0.6	<2	0.58	250	15	0.8	116.0	<10
C 4 49 336		5.1	498	<100	240	<5.5	10	0.26	96	<48	6.1	31.0	33
C4 49336	a and a sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	18.0	10	<100	73	<0.5	4	0.22	<50	<10	4.6	32.0	<10
C4 49337		30.0	120	<100	360	2.8	37	0.36		40	26.0	52.6	<10
C4 49338		8.6	130	<100	170	2.0	120	0.23	<50	22	6.1	34.0	<10
C4 49339		15.0	200	<100	51	4.8	9	0.63	110	37	3.5	109.0	(10
C4 49340		10.0	228	<100	430	1.1	58	0.54	<50	<10	4.3	17.0	
C4 49341	The second s	3.4	527	<200	310	<7.0	30	<0.10	120	<64	8.1	25.0	<10 <45
C4 49342		9.4	110	<100	220	2.0	1450	0.16	<50	<20	11.0	16.0	<10

.

Bondar-Clegg & Company Ltd.

.

موجوع وتصفح فتصفح فالمتعاد

.

0000

ŧ.,

130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

4. V. S. A. S.

		· ····	5,1 F						JECT: NON			PAGE 20
.4MPLE NUMBER	element Un its	Sm PPM	Sn PPN	Ta PPN	Tb PPM	Te PPN	Th PPH	U PPN	W PP N	Yb PPM	Zn PPH	Zr PPM
4 49333	an an an ann an an an ann an ann an ann an a	16.0	<200	2	2	<20	16.0		<2	6	<200	2700
C4 49334		7.6	<200	\mathbf{Q}	2	<20	1.5	0.8	10	<5	<200	730
24 49335		10.0	<200	0	2	<20	2.1	1.6	12	<5	<200	<500
C4 49336		55.1	<620	15	15	<93	89.5	38.0	15	49	280	25000
24 49336		13.0	<200	<1	2	<20	5.0	3.7	<2	<5	<200	<500
4 49337		41.0	<200	4	8	<46	64.2		10			
:4 49338		29.0	<200	5	4	(41	37.0	14.0	13	13	11000	6100
24 49339		25.0	<200	4	9	<20	49.0	22.0	6	31	220	9100
:4 49340		44.0	<200	2	4	<20	110.0	11.0	(2	6	1300	12000
24 49341	n Marine and the president states of the states	85.0	<920	17	18	<130	259.0	42.0	23	52	740	26000
4 49342	na kala di seran sakata sayawan daga yan	21.0	<200	6	5	170	25.0	16.0	31	7	2600	5500

Sample 49367 Au (ppr) Ag (ppm 4/ 39 Lr(Dpn), g-py-ser v. Skam - gar+cal+mag+py 49368 ~ ND Qtzike (fa) + gos. Ls. + skan - may, chl 49370 -22 42 × 9 K Ls, g-py-ver v., mag 18 34 Qtzite(fa) + Is (Upm), q-py V. 8.54 Ls(Dpn) + ss(fa), q-py v. 34.63 13 🗶 Ss(fa), g-py-serv. 2.98 Ls/dol + ss, cale-vil, q-pyv 3.50 DIM Ss+dol, q-py-ser v. 12 82 48.31 19 😾 Ss (fa) + dol, q - py v. 49.877 107 76 ls/dol (Dpm) + por.-alt, gos 2.57 Ss(fa) -alt, q-py v., gos 10.90 Ss, q-py-per v. ND 4 32 Ss + por., q + py r. 0.55 LS (Dpm), q-py k 0.96 3.02 LS (Dpm) - alt, q-py V., gp. 0.01 8.13 Ss + por., alt, g-py v., gor 32.43 0.69 Ss + por., q-py 1 0 89 Sr+b-Sil, g-py v., go. 0.82 16.80

MADE IN U.S.A

San Bernardo

1) \$

		Sample 1	A. (Nala	
	Diabase (Yas)	49347	94 (ppm) 0.10	Ag(ppm) 0.65	
	LS (Dpm) q-p(FeOx)V.	49348	0.07	/ 27	
	Ls (Dpm) q-py v.	49349	0.10	055	
	Ls (Dpm) w/calc=sil; q-py v	49350	027	<u> </u>	
	Lr (Dpm) w/ calc-sil, q-pyv.	49351	0.07	0.58	
×	Lr (Dpm) w/calc-sil, q-pyx	49352	0.82	2.37	
•	Diabase (You)	49353 ~	003	0.41	
	Qtzite (Ea)	49354 ~	001	0.31	
	LS(Dpm) by calc-sil, g-py v.	49355 ~	0.07	0.93	
	Dol, q-py(FeDx)v., calc-ril	49356	003	ND	
	Dol. (Dpm.)	49357 -	0.03		
	Qtzite (fa), g-py v., Cullos	49358	0.07	3.19	
	Basalt (Kw), alt, FeOx, py	49359 -	ND		
	Basalt (Kw), alt, FeOx, py	49360	MD	1.17	
	Dol, Silz, calc-sil	49361 ~	ND	0.87	
	Dol+qtzite+fault brx, q-pycolu	49362	0.03	10	
	Qtzite (fa), g-py-ser v.	49363 -	0.05	5.52	
*	Qtzite (fa) + dol (Dpm), Sil, go.	49364 -	1.85	25 06	
*	Qtzite (fa) + 1s, py-ser-g v.	49365 ~	0.58	36.75	
1	Qtzite (fa) Wpy, g-py v. Glos	7 49346 -	0.55	7.27	

2 -Fg(ppm) (93 Au (ppm) Sample 49387 Qtzite (Y+) - CuCO, 2 2 Gossan 49388 0.34 14.33 Ss(fa), q+py V., tr. Cu(O) 49389 25 71 247 5 Brx 49390. 0.21 041 Q+2; te (Ga) - q+py v. 49391 0 82 K 9 37 9 10 10 Qtz V. + FeOx 49392 0.69 11 58.28 11 12 12 Sediment (Strean) 0.07 49797 4 46 13 13 14 14 Stream sediment 49394 0 06 ND 15 15 16 16 Stream sediment 0.01 49395 NIS 17 17 18 18 Skam - hen, mag, epid, gar, lule 49396 027 O.YI 19 19 20 20 49397 Skarn-gar,epid +gus. 0.14 10.08 21 21 22 22 Gus - FeOx, mag + CuCO3 49398 0.20 5.21 23 23 24 24 Gos + Skarn (gar tepid) Yr. 0.41 49399 28.66 25 25 26 26 Gos + Skam New 49400 44.57 010 27 27 28 Gur - Feox + q v. + Cu (0, 4. 49401 5737 0.03 29 29 30 30 Qtz-FeOx v. + skarn(gar, ep) 49402 167.66 051 31 31 32 Skam - gar., epid, q, py Yr. 49403 ~ 0.62 137.14 × 33 33 34 Ls (Ym) + g - py -ser v. Cu(U)++. F - py -ser v. Cu(U)++. Keystone Cny. J 34 49404 0.07 1166 35 35 36 36 Diabase (Ydb) + g-py ser v. 49405 0.07 0.69 37 38 38 Qtz-py v. in Yab 49406 0.89 92 22 39 39 40 40

MADE IN U.S.A.

3ri

Sample 49407 Au (ppn 0 14 Ls + q-FeOx - cky - sor. V Keystoreni; (ppn 9 39 X Brx (15) w/ g-Fe0x-cal 003 49408 8.57 Ls(Me) + g - py v. 49409 0.24 25 37 × Qt2-FeOx v. + in Yme yon, Grooz 49410 2.50 229 72 Ls (Me) + q-FeO, v. 49411 0.07 6.51 9 10 Basalt (Kw) - alt + wul, van Mine 49412 0.14 10 29 110 11 12 LS + g-py - wel Keystone 12 49413 0.03 2.06 13 13 14 14 Ls + gys + sil + van py, Cu(0) 49414 0.65 38.74 15 15 16 16 Racalt (Kw) -alt + py-q-clay 2 49415 0.03 NÌÌ 17 17 18 Gossan - FeOx+q+ GCO; 49416 0.45 6651 19 🕺 19 20 20 Marble (Pn), g-Mnox r, welth 49417 003 ND 21 21 22 22 Diabase (Yob) - alt + g-py -pr v 49418 DH 14.06 23 23 24 24 Qtz-py V. in Ydb 0.24 49419 9.21 25 25 26 26 Qt2-py v. + sph(+r.) in Ydb 419420 0.14 14,06 27 27 Diabase (Yab) -alt w/q-py v. 28 49421 021 89 83 29 29 30 30 79 Mine Qtz-py-gn-Cullorv 49422 014 38.61 31 32 Qtzik - sil + py + lu Coz 49423 33 📈 010 7166 33 34 Qt2-py-Gis, gn-wulf v. 49424 ~ 1.30 281.49 35 35 36 36 Ls - Sig + py 494/25 1 0.03 2 74 37 38 38 Black cal (MnOx) 49426 0.14 12 69 39 39 40 C WILSON JONES COMPANY G7504 GREEN MADE IN U.S.A.

(F) 3

3z

		\parallel	<u>ج</u>	A				V	}	/ \		<u>N</u>						
X	Qt2-py V. + gn, & CO3 79 Min	4	2	Im 19	1/2	<u>.</u> 71.		<u> </u>		(ppn)). 14		12	(ppn 5.10)			TT	T
						[]												
	Ls (Me) - SiD, + py		4	91	428	3,			1	<i>I</i> D			68			+		
x	Cran - en lan la all			IG.	429	3				2 38	-		2.09			+++		_
	Skarn - ep +gar +q+cal+p,			1	7 ~ 1							\$.07				++-	+
	Gossan - FeOxtg + (400;		4	9	430	2			C	255			0.69	-				
	Ls (Me)											_						_
	Ls (Me)		7	2	43	$\left\{ + \right\}$			0	07			1.37					+
×	Gorman - FeOx +q + Cu(Os(4r))		4	191	43.	2			5	2/5		3	1.54			++++	·	
X	Goman - FeOx +q + Cu (Oz(++)		4	19.	43	7				1.23		2	1.74				-	+
×	Goman - Feux +q + CuCO; (+r)		4	19.	432					2.54		10	3.99			+	-	-
	0	Ma											2 77			╋		+
K	Gonan - FeOx +q + CuCO3(+r)	V	2	19.	43		-			1 82		ð	5.92					-
×				101	431					2					_	+++		_
*	Gorran - FeOx +q + CuCOs (++)	+	7	77	751	• <u>v</u>			+7	387			89			+	+	
	Ls (Me)		4	9	13-	1-	-		0	27		Ī	84					
				6												<u> </u>		-
*	Rhydec w/ q-py-cley-ser. v.		7	7	432	3			79	7.58		15	5.69					-
x	Skarn (q +gar. + amph.) + Guo		4	94	130	7			5	2.15		1	707					+
	Skarn (q+gar. + amph.) +gus. Ls. (Me) - rex11, SiD, w/q-py v.					_			+									
	Ls. (Me) - rex11, SiD, w/g-py v.	 	4	91	1410	> -		·	4	06	-	3	277			┝╺┝		
	RR-B		4	94	IN,				4	153			42		Au	d.		
									4	25			53		Aa	- /	1.31	1
	Blank		4	92	142		-			10		3						
	RR - A		4	91	143	,			/	V0		3	84			$\left \right $	+	+
				<u> </u>	73					.78			187					+
	Blank		4	94	14/3	1			1 1	07			10					
				+	0		_		0	05		X	47				++-	\downarrow
									++-			+				$\left \right $	+	+
							-#	-+	╞┼╴	╋┈╎╌┦╌┦╌╌╸					0-04 2006 - 1		+	╀

Sample Acc (ppm) Ag (ppm) Shale Santa Monica 0.89 Kane Cayn And por 1/9-FOX-wel-van vi X Ls. 149-Felx-cal-van-well v. 0 03 × LS w/q - FeOx - van - www-gn v. X 0.05 138.45 IS w/ calc-sil ND Diab (Ydb) w/q-Feox-gn,-van-wul 0.02 17.21 Qt2-V + Folx+gn+van 0.03 22.08 Qt v. in Yds ; q + FeOx + Mrox ND ND Atzite w/g+FeOx v. W 0 24 Boldmine Mt. 1 × 1/37 6.51 g+py+ma+az v. VISIBLE G+ py v., tr. Cu 23 🗶 28.97 gtpy v. in schirt, tr. Call, 5 82 1.89 g-py v. wy schirt, tr. Cuco, × 9+py+gn+(40) 93.70 Gtpy in schift 0.55 g + py + gn in schirt 2/8/ steanboat Cg1 (T61) ND MnOx in 15 ND 0.55 ND NO

O_t

Au (ppm) Sample Ag (ppm) 1959, 57 marble (Yme?) by cal-g-ma v. Mine Ydb (alt) w/g-py-bn-sn-nav 49530 -676 09 MI Skarn (Yme) NO 0.07 ghite my FeDy 0.14 ND Is/dol (Yme) ND 0.58 sh + Yab (alt) w/ g-py v. M 0 86 Standard RR-B 4.11 Blank N9576 NO 0.27 Standard RR-A 2.8 Standard RR-R 4.32 Blank ND San Remardo LS (Dpm) W/ FeOx 0 03 0 82 Gossan 6.45 3.84 Skam in Ca 7.13 Rhydac (alt) w/g-Ferx v. 0.04 ND Skarn (Me) w/col-q-Cu- Santa 0.02 0.27 Gossan in Me 11.04 62.06 Gonan in Me 71.45 1 68 LS (Me) w/ cal-FeOx v. 4954.7 ND Gonan 4.18 C WILSON JONES COMPANY G7504 GREEN MADE IN U.S.A

					_		<u> </u>						
		<	201	ala		И.,		V	1./	7pm)			
1	Gorsan Stearback Mh		49.	nple 465		N	(ppm)		7/	<u>7pm</u>) .17			
2	RR-A		49	466			54		2	50 +	•		
4													
5	RR-B		49.	467		4	46		6	.93 +	-		
7	Blank		410	468	_		1)			32		_	
3	B WWK		<u> </u>	760	-	+ /			7	54			
3													
0													
1													
2						+						_	
3			┟┼┼										$\left \right $
5							정말 (1) 같은 것 같이 하는 것이 같이 하는 것이 같이 하는 것이 하 같이 하는 것이 같이 하는 것이 같이 않는 것이 하는 것이 않는 것이 하는 것이 같이 같이 않는 것이 하는 것이 하는 것이 같이 않는 것이 하는 것이 같이 않는 것이 같이 않는 것이 같이 않는 것이 같이 않는 것이 하는 것이 않는 것이 하는 것이 않는 것이 같이 않는 것이 않						++
6 .				╊╋╋					╈		·		
7													
B													
9													
▶													
2										이상 사 역장 12			
3										이 가슴 전 가슴		++	
\$						╈╋				200 <u>8</u> 1997			
5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											<u> </u>
3													
8													
					-		같은 것이다. 1963년 - 1971년 - 1971년 1971년 - 1971년 -					┼╋┥	
									$\left - \right \right $			┥╋┥	$\left \right $
2		•											
; 													
						┝┼┝	-+					+	

WILSON JONES COMPANY G7504 GREEN

MADE IN U.S.A.

7

Э 🗄 4 🗄 õ South Monica Sample 49549 Au(ppm) Ag (ppm LS (Me) my cal + FeOx v. LS(PR) 0.03 ND Rhydac por. alt-> epid. 0.02 ND Skann in Ph 0,02 ND Gary's sample 0.27 4.70 2.06% 64 Standard - NBR 60.21 Standard - NBg Blank ND ND Gossan in Me 0.02 3.87 Marblized Me w/ cel-Fe0x v. 0.01 ND Ls - rex11, SiD, skam 0.10 Goman 13.44 Chert/jaoper in ls ND Gonan 13.54 LS (brx) wy cal v. ND 0.82 Chert/jasper ND ND SKArn ND 0.07 Ls w/ cal-FeOx v. 0.01 0.48 SKARN 2.22 Gossan 0.49 19.82

C WILSON JONES COMPANY G7504 GREEN

MADE IN U.S.A.

		2	33	4
0 <u>San</u>	Sample	Au (ppm)	Ag(ppm) 4/15	
 Skarn in ta San Rern.	49589	0,07	415	
skarn in fa	49590	0.01	ND	
skarn in fa mg-FeDx v.	49591	1.75	11.90	
Skarn + FeOx in fa	19592	0.03	1.75	
skan + FcOx in fa	49593	0.01	ND	
skarn + FeOx + q - FeOx - py v.	49594	0,03	4.15	
Skann + FeOx in fa	49595	0.01	0,89	
skam + FeOx in ta	49596		0.03	
 Skarn + FeOx in Ea	49597	007	3.12	
skarn w/9+py+FeDx v. skarn + FeOx in fa	49598	0.10	3.60	
Skam + Feox in ta	49599	0.03		
		0.01		
Skam + FeOx in fa	49601	0.01	0,86	
Skam + FeOx in fa	49602	ND	ND	
NBR - standard	49603	1.51	42.78	
NBg - standard Blank	49605	0,82 ND	20.13	
Jasper cyl Hot - Spo	49606	0,61	ND	
Jasper cg	49607	N/D		
Jasper (g)	49608	ND	ND	
7 0				

		-		<u> </u>	
5		Sample	Au(ppm)	4(00)	-
	Ls->marble	49569	0.03	Ag (ppm)	
2					
8	Gosan	49570	0.24	2.57	
·	Gossan Sen.	49571			
5 	Obsan Ben.	770 1	0.31	13:95	
	LS (Pm) wy cal v.	49572	NO	ND	
	Skarn in Pu	49573	ND	ND	
•					
2	Skarn	49574	0.03	0.41	
3	6500 Schneider Canz.	4/9575	0.17	4.35	
•					
5	Skarn v	49576	0.14	3.67	
3 					
	Skam in ta wg-py r.	49577	0.01	199	
	Chart box my FEOx "79 Min	e 49578	NA	1.82	
				1.00	
	Ls -> marble	49579	NO	0 38	
2					
L	LE(Dm) by cal - FeOx V.	49580	10	0.10	
	LS W CAR - FEOX	49581	NO	0 69	
	skam in Dm in Feox of v.	49582	0.02	7,51	
					· · · · · · · ·
	LS (Dn) w epid, ie0x, py	49583	ND	0.14	
	Skam in Dry	49584	0.03	2.91	
	NBR standard	49585	1.44	59.97	
	AR dada	1/2-2			
	NBg standard	49586	1.03	21.84	
	Blank	49587	ND	MO	
	Skarn in fa Skarn.	49588	0.24	4,73	

.

MADE IN U.S.A.

١ Sample 49609 Acc (ppm) Ag (ppm) Hot - SPD Jasper cgl 1 1 2 2 Jasper eg 49610 ND ND 3 Jasper cyl 49611 ND ND 6 NBg - standard 49612 0 081 20.30 7 0.086 20.19 8 NBR - standard 49613 60 0.154 AI 9 9 0 154 60 MB 10 10 Blank 49614 ND ND 11 11 Tanidado ND ND 12 12 LS (Dpm) w/ cal-FeOx v. 49615 0.02 ND 13 13 14 14 LS (Dpm) 49616 1.23 15 ND 15 16 16 Gossan Hoat 496 7 072 15.98 17 17 18 18 thydac. por. w/g-FeOx v. 49618 ND 0.72 19 19 20 20 Ls brx 49619 3.22 00 21 21 22 22 Ls (Me?), float 4/9620 0.45 001 23 23 24 24 LS (Me) w/ cal v. 49621 ND 010 25 25 26 26 LS (Me) by cal-FeDx V. 49622 27 ND ND 27 28 28 Ls - sil w/ FeOx - MnOx 49623 ND 29 1.58 29 30 Chert in fault come Key tone 30 49624 ND 31 ND 31 32 32 Fractured Is (Dpn?) by FeOx 49625 ND 33 ND 33 34 34 gtzite - brx by hen 49624 NI) 35 ND 35 36 36 gtaite - brx when 49627 0.02 ND 37 37 38 38 skan - epid, hen, q, Cu 92.81 49628 WD 39 39 40 40 O WILSON JONES COMPANY G7504 GREEN MADE IN U.S.A

CLAIM OWNERS: FOR HUGH DUMMETT BY CONSUELO P. VELASCO EANDER'S FEE 75% CONSUELO P. & B. C. VELASCO & E. A. & BARB WILSON ALFONSO AND ISABEL MARIN MIAMI, AZ BELEN CLUFF WINKELMAN LOUIS B, ELLSWORTH GLOBE CHARLES QUARELLI FOM QUARELLI PHOENIX MORRIS AND LUCY Q. WILKINS TEXAS MARGIE DALMOLIN **KEARNY** JOANNA CALIFORNIA Nonst touch - go on claims until ym talk to Im 264-0258 1832 E Shomas RU Phoenny A 85016

1) \$ Au (ppm) 0.10 Sample Ag (ppn) 49347 Diabase (Yas) LS (Dpm) q-p(FeOn)V. 49348 0.07 127 Ls (Dpm) q-py v. 49249 00 055 LS (Dpm) w/ calc=vil; q-py v. 49350 NO 027 Lr (Dpm) w/ calc-vil, q-py x 49351 007 0.58 9 10 Lr (Dpm) m/calc-sil, q-pyr. 49.252 0 82 237 11 12 12 Diabase (Youb) 49853 13 003 0,41 13 14 14 Qtzite (Ea) 15 49354 001 031 15 16 16 LS(Dpm) 4/ calc-sil, g-py v. 49355 0.07 17 0.93 17 118 18 Dol, q-py(FOx)v., calc-sil 49356 19 003 ND 19 20 20 Dol. (Dpm.) 49357 -0.03 21 N 21 22 22 Qtzite (Ga), q-py v., Cu CO; 49358 23 0.07 3 19 23 24 24 Basalt (Kw), alt, Felx, py 49359 -25 ND ND 25 26 26 Basalt (Kw), alt, FeOx, py 49360 27 ND 17 27 28 28 Dol, SiDz, calc-sil 49361 , 29 ND 0.89 29 30 30 Dol+gtzite+fault brx, g-py-olu 49362 31 003 XD 31 32 32 Qtzite (fa), g-py-ser v. 49363 , 33 0.05 5 52 33 34 Q+zite (fa) + doi (Dpm), Sio, gos. 34 49364. 185 25 06 35 35 36 36 Qtzite (fa) + 1s, py-rer-q v. 49.865 ~ 37 0.58 36 75 37 38 38 Qtzite (fa) Wpy, g-py v. lulos 49366 39 7 7.27 0.55 39 40

C WILSON JONES COMPANY G7504 GREEN

MADE IN U.S.A

õ Sample Au (ppr Ag (ppm 4/39 Ls(Dpm), g-py-ser v Skam - gar+cal+mag+py 49368 ~ ND Otzite (fa) + gos. Ls. + skarn - may, chl ls, g-py-ver v., mag 18 34 Qtzite(Ga) + Is (Upm), q-py V 49.272 8.54 0.14 Ls(Dpn) + ss(fa), q-py v. 34.63 Ss(G), g-py-verv Ls/dol + sr, cale-vil, q-pyv. 3.50 Sc+dol, g-py-ser v. 12.82 48.31 19 😾 Ss (fa) + dol, g - py v. 21 X 3.22 107 76 Ls/dol (Dpm) + por-alt, gos 2.57 Ss(fa) -alt, q-py v., gos 10.90 Ss, q-py-per v. ND 4 32 Ss + por., g+py r. 27 43 0.55 Ls (Dpm), q- py K 31 X 0.96 LS (Dpm) - alt, q-py V., gos. 0.07 8.78 Ss + por., alt, q-py v., gen 0.69 32 4/2 8s + por., q-py n 37 1 0.89 Sr+b-SiO2, g-py v., go. 39 🗡 0.82 16 80

MADE IN U.S.A

••••••••••••••••••••••••••••••••••••••													
			S	ample	2	AL	د())	Ag	(pp)		
	Qtzite (Y+) - CuCO,		 	938	7		0.	07		6	93	┝╍╋╍╉	-
5	Gossan			1938							<u></u>		-
	<u>Gossan</u>		-7	730	5		D	.34		14.	33	 	
K	Ss(fa), q+py V., tr. Ck((Dz	4	9389			2	47		25	7/		
					_								
	Brx .		- 4	19390	>/		Û	.2/		0	41		
×	Qtzile (Ge) - g+py v.			9391	_		5	82					
	- grane (a) - grpy U		_7	7571				Da		-4	37		
×	Qtz V. + FeOx	<u> </u>	4	19 392			D	69		58	28		
	Sediment (Stran)		4	9.393			D	. 07	-	4	46		
	Stream sediment			9394								 	
	Stream Secument		_7	7377			0	06		_1	N		
	Stream sediment		4	9395			D.	07		1	<i>m</i>		_
	Skarn - hem, mag, epid, gar,	(ıQ	- 4	19396	-		0	27		0	41		
				10 20									
	Skarn-gar, epid +gus.		-7	19397			0	. 14		10.	08		
	Gus Feux, mag + CuCO3		4	19398			0	.20		5	21	-	_
*	Gos + Skarn (gar + epid) Y	ep r.	4	9399	+	<u> </u>	٥	. 41		28	66		
×	Gis + Skan M	ew v.		04	-		~						
		¥		9400	-		0	10		44.	57	 +++	-
×	Gos - Feox +q x. + Cuco	New), Yr.	4	19401			0	.03		37	27		_
	B						:						_
×	Qtz-FeOx v. + skarnlyer, e	الآ (م	1	19402			U	51		67.	66		
*		:w		IG UN	2		2			74		 	
		fr	7	1940				62		37	17	+++	_
7	LS (Ym) + g-py-serv. Cull);+r;	14	19404	/		0.	07		11	66		
 	f Keystone	ny. j											
	Diabase (Ydb) + q-py ner v.	v	4	9405	•		0	07		0.	69		
4			- L.	Gaini			_			0		 +++	
r	_ Qt2-py v. in Ydb	·		9406			. 9	. B9	<u> </u>	92	22	 	

ų —

· · ·

Ð3 õ Sample 49407 Au (ppm) (ppn 9 39 Ls + q-FeOx - cky - mr. V Keystorini; Brx (15) w/ g-F=0x-cal 003 49408 8 47 LS(Me) + q- Py K. 25 37 49409 0 24 5 Qt2-FeOx v. + in Ime van, C. Co, 49410 2 50 229 72 Ls (Me) + q-FeO, v. 49411 007 6.51 9 9 10 10 Basalt (Kw) - alt + wel, van Mine 49412 0 14 10 29 11 12 12 LS + g-py - wel Keystone 49412 0.03 206 13 13 14 14 Ls + gys + sil + van, pr, Cu(0) 49414 15 0.65 38.74 15 16 16 Racalt (Kw) -alt + py-q-clay vine 49415 17 0.03 ND 17 18 18 Gossan - Feox+q+ G.CO2 19 49416 0.45 6651 19 20 20 Marble (IPn), g-Mnox r, welt 21 49417 0.03 ND. 21 22 22 Diabase (Yob) - alt + g-py - ar 49418 23 0.14 14 06 23 24 24 Qtz-py V. in Ydb 49419 921 25 0.24 25 26 26 Qt2-py v. + sph(4r.) in Yd6 419420 27 0.14 14 06 27 28 Diabase (Yab) -alt w/q-py v. 28 49421 29 8983 0.21 29 30 30 79 Minu Qt2-py-gn-CuCO2V 49422 31 38 LI 0 14 31 32 32 Qtzik - sil + py + lu Coz 49423 33 h 0.10 71.66 33 34 34 Qt2-py-Gis, gn-wulf v. 49424 35 281 49 1.30 35 36 36 Ls - Sia + py 49425 2 74 37 0.03 37 38 38 Black cal (MnOx) 12 69 49426 39 0.14 39 46

4 COLU Au (ppn) Ag (ppm) 25.10 Q+2-py v. + gn, C. CO; 79 Mine 0 14 1 X 2 Ls (Me) - SiD, + py N. 79 Mine 49428 ND 068 Skam - ep +gar +q+cal+py 49429 0 38 5 309 5 6 Gossan - FeOx+q + (400, 49430 0.55 0.69 1 Ls (Me) 49431 1.37 0.07 9 9 10 10 Goman - FeOx +q + Cu(Os(4r) 49432 11 315 31 54 11 12 12 Gosan - FeOxi +q + Cu (O;(+,) 49433 21.74 13 X 1.23 13 14 14 Goman - Feux +q + CuCO; (4+) 15 🗙 49434 18 99 2.54 15 16 16 Gonan - FeOx +q + CyCO3(4r) 49435 -17 7 82 25.92 17 18 Gonan - FeOx+q+ Cu(Os(++) 49436 987 12.89 19 19 20 20 Ls (Me) 49437 ~ 21 0 27 3 84 21 22 22 Rhydac w/q-py-clay-nor. v. 49438 49.58 23 5 69 23 24 24 Skarn (q+gar. + amph.) +gio. 49439 25 3.15 1707 25 26 26 Ls. (Me) - vex11, SiD, w/g-py v. 49440 27 377 0.06 27 i : 28 28 RR-B 49441 4 53 29 542 U. 29 4.25 30 2) 4 53 12 30 Blank 49442 31 3.22 VD. 31 **`\32** ND 3.84 32 RR - A 49443 33 71 487 33 34 .78 6.07 34 Blank 49444 35 0.07 10 35 36 0 05 267 36 37 37 38 38 39 39 40 40 C WILSON JONES COMPANY G7504 GREEN MADE IN USA

3z

©, 2 3 = 4 = Sample Au (ppm) Ag (ppm) Shale Santa Monica 49445 ND ls 49446 003 0.89 Can 41941417 And por 149-Fox-wel-van v. ?? × 007 197 LS. 149-Feox-cal-van-wel v. X 49448 002 13.58 LS w/q - Feox - van - wwe-gn v. X 49449 0.05 138 45 LS w/ calc-sil 49450 001 ND 11 11 12 12 Diab (Ydb) w/q-Fox-gn,-van-wud 49451 13 🗙 0.02 17.21 13 14 Qtz-v + Folx+gn+van 15 🗙 49452 003 22.08 15 18 16 Qt v. in Yds ; q+ Fox+ Mrox 17 49453 ND ND 17 18 Atzite wy q+FeDx v. 49454 19 0.24 VD 19 20 Boldmine Mt. 1 20 21 g+py+ma+az v. 49455 1.13 6.51 21 22 22 VISIBLE G+ py v., tr. Cu 49456 23 28.97 233 23 24 24 gtpy v in schirt, to GROS 49457 25 5 82 1.89 25 26 26 g-py v. wy schiel, tr. CuCo, 49458 27 3,46 251 27 28 28 9+ py + gn + (40) 29 49459 2,30 93.70 29 30 30 ftpy in schirt * 49460 31 0.48 055 31 32 32 g+py+gn in schirt 49461 33 1.27 2181 33 stearboat 34 34 $cgl(T_{4})$ 49462 35 ND 031 35 36 36 49463 MnOx in 15 37 ND 0.55 37 38 38 15 4946 ND 39 ND 39 40 40 C WILSON JONES COMPANY G7504 GREEN MADE IN U.S.A.

		1		3	4
		Sample Mh 49465	Au (ppm)	Ag (zpm)	
	Gorsan Sterlact	Mh 49465	NO	///7	
	RR-A	149466	1.64	350+	
	RR-B	49467	4461	6.93+	
	Blank	49468		432	
.					

Sample ALL(ppm) (T.) Little An (ppn 0,10 Basalt w/g-py v. 49469, 0.051 BBB AD AD Basalt u/g-py v. 49470 0.03 10088 Realt, alt w/g-py v. 49471 1 74 DOS 12001 Qtz lat. por 1/9-py v. 49472 NN 0.14 008 × latite, alt wq:px. 49473 0 24 10/1 dole 10 × Qt2 lat. por., alt wg-py v. H9H74 0.01 0.48 81.15 11 12 × Qtr. let. por, at w/g-p.v. 49475 ~ 13 4.42 31 03 0037 14 14 g-py (FeOx)-cal V 49476 15 398 8 74 O D ZD 15 16 16 g-py(FeOx) v. in latile (201) 49477 5517 17 4351 0.055 17 115 18 9-py r. 49418 311.35 19 X 0.62 0013 19 20 20 g-py-FOX r. in Samel(64) 49479 21 0.14 15 80 0014 21 22 22 × Basalt (alt) + g-py V. 49480 23 0,24 72 69 O. OYL 23 24 24 × latite w/g-py x 149481 25 031 5249 0034 25 26 26 g-py r. in baset 27 H9482 360 24 0.58 0 052 27 28 28 Andoire, alt w/q-py v. 49483 29 001 1.10 165 26 29 30 30 G-py-sph-gn v. in vol. 31 49484 83.31 110 0.079 31 32 32 q-py r. in alt. vol. X 49485 33 52.46 0.142 3.50 33 34 34 Besalt (alt) ~ g - py v. 49486 35 0.07 5.62 0 004 35 36 36 Rhydac por (alt.) wg-pyn 49481 37 0.03 110 0 027 37 38 38 × Krc 4/9-py 1. 49488 0.024 39 0,21 50,88 39 40 C WILSON JONES COMPANY G7504 GREEN MADE IN U.S A

4 UMN õ Sample Au (ppm) G-py-cal-ser v. in Kuc Guld Ag(pph 506.40 Cy(%) 49489 0031 1 2 2 Ģ -py-bar r in Kne 49490 54 6158 ODB 3 3 in rhydac por 4949 4 87 04 32 54 5 Ы 5 6 PoolerMine G-py v. in Kue 49492 2 61 88 29 0.075 7 49493 14.26 922 × 0.05% 9 G-PYV 9 10 10 vol. rx (alt) 49494 29.66 0015 11 3.91 11 12 12 har 49495 13 055 0.014 ODL 13 14 Deer 14 hub rhydac por (alt) 49496 0004 15 0.01 0 86 15 16 16 FeOx-cal-q v in rhydre por. 49497 17 00 0.008 2 88 17 18 18 49498 g-py r in rdp dike 19 0.02 ODIST 101.35 19 20 20 hub rdp (alt) by py 49499 21 0.01 1.58 0004 21 22 22 Lees 49500 23 g-py 10 78.27 0.315 Δ 23 24 24 Peerce -py-sph-ge-barr 49501 タカ 25 245.52 12 045 25 26 26 49502 27 0.86 3 33 0028 - py-gh-Jp 27 28 28 49503 -29 V. in Kwc G-py-spl 32 45336 UOZZ 29 30 30 -py-sph-sn-bar V. 49504 31 83822 0018 072 31 32 Ray Mine 32 0.79 10:22 49505 '33 in SS Gosan 33 34 34 gosan 49506 35 5.45 0.07 İn_ 35 36 36 gosan 49501 .37 0.38 18 51 37 38 38 gonan + sr+b 49508 0 24 1851 39 ¥ 39 . C WILSON JONES COMPANY G7504 GREEN MADE IN U.S.A

Au (ppm) Sample $(\mu(7.))$ Ag (ppm) 079 Ray Min 49509 Is (Pa) gersan in Th 49510 0.03 34 55 gersan in Dm 49511 270 140 68 Monit sr (Ydr) wy q-Feux v 49512 001 15 63 8 stat (Vdc) wg- TEOx-max. 49513 001 19190 9 10 10 Is (Ime) - calcril 49514 V ND M 12 12 Is (Yme) by TOX-qn 49515 13 ND ND 13 14 14 sthet (Yde) w/g-cal-ide v. 49516 15 281 NI) 15 16 16 49517 ss mg-py-ma-as 17 1,162.36 0 02 17 18 15 49518 19 ND 353 19 20 20 stat w/ g-py-Cuco, r 49519 21 0.89 0.02 21 Mydac por. Wg-per-py V Ged 49520 ~ 22 22 23 ND 216 0.03 23 24 24 bt: dac por wg-py v 49521 25 ND 03 UM 25 26 26 rdp (alt) w/ g-py v. 49522 27 001 199 0008 27 :28 Latile (alt) w/g-py spl,-susar 28 49523 29 0.73 366,13 U DZE 29 30 30 Latite (alt) wy g-py v 49524 31 8 54 ND 000 31 32 32 Beault (all) w/ g-py-sur. 0031 33 49525 / 210 24 0.48 33 34 34 Basalt (alt) wy g-py v 49526 35 0,21 583 0.035 35 36 36 Latite (alt) up g - py r. ;37 49527 29.21 0.014 0.77 37 38 38 Stata 49528 Granodiv. 4,32 39 ND 35 4 በ C WILSON JONES COMPANY G7504 GREEN

MADE IN USA

Sample 19529 A. (ppm) marble (Yme?) by cal-g-me . Monthine Ag (ppm. 1759 57 Ydb (alt) w/g-py-bn-sn-nav 676.09 ND skarn (Yme) NO 0.07 ghite my Fely ND Is/dol (Yme) ND 0 58 1 N sh + Yab (alt) w/ g-py v. M Standard RR-B 4.11 3 43 Blank ND Standard RR -A 1 57 2.81 Standard RR-B Blank ND San Remard LS (Dpm) by FeOx 0 03 0 82 Gossan 3.84 Skann in fa 7.13 Rhydac (alt) w/g-Fox v. Beer-0.04 ND Skarn (Me) w col-q-Cu- Santa Monica 0.02 0.27 Gossan in Me 11.04 62.06 Goman in Me 1 68 71.45 LS (Me) w/ cal-Feor v. ND Gonan 4.18 . . 0.85

WILSON JONES COMPANY G7504 GREEN

MADE IN U.S.A

 $\prime\prime$

õ Sample Au(ppm) 0.03 Ag (ppm LS (Me) my cal + FeOx v. J 49549 LS (PR) 49550 003 NI 3 Rhydac por. alt-> epid. 49551 0.02 ND Skann in Ph 0,02 49552 ND 8 Gany's sample 49553 0 27 4.70 2.06% 64 9 10 Standard - NBR 49554 60 21 1.34 11 11 12 12 Standard - NBg 49555 0.69 13 19 65 13 14 14 Blank 49556 15 ND ĺĎ 15 16 16 Gossan in Me 49557 17 0.02 3.87 17 18 18 Marblized Me wy cel-Feox v. 49558 0.01 19 ND 19 20 20 Ls - rex 11, SiD, skam 49559 21 0.01 0.10 21 22 22 Gonan 49560 23 13.44 027 23 24 24 Chert/jaoper in lr 49561 103 25 ND 25 26 26 Gonan 49562 27 137 13.54 27 28 28 LS (brx) wy cal v. 29 49563 VD. 0.82 29 30 30 Chert/jasper 49564 ND 31 ND. 31 32 32 Skarn 49565 33 ND 0,07 33 34 34 Ls w/ cal-FeOx v. 49566 35 0.01 0.48 35 36 36 Skarn 37 49567 001 ! 2 22 37 38 1 38 Gonan 49568 0.49 39 19.82 1. 39 40 46 C WILSON JONES COMPANY G7504 GREEN

MADE IN U.S A

з 4 -Sample 49569 Au(ppm) 003 Ag (ppm 1.17 Ls->marble 2 Goman 49570 0.24 251 3 San Ben. Gosar 49571 0.31 13.95 5 LS (Pn) wy cal v. 49572 ND ND Skarn in IPn 49573 ND ND 9 10 10 SKAM 49574 003 11 0.41 11 12 12 Schneider Canz. Gonan 49575 0.17 13 4.35 13 14 14 SKarn 49576 15 0.14 3.67 15 16 16 Skam in ta 4/9-py v. 49577 001 17 99 17 Chart box by FEOX N. 99 Mine 18 49578 19 ND 82 19 20 20 Ls -> marble 49579 21 ND 0.38 21 22 22 LS(Dm) W/ Cal - FeOx V. 49580 23 ND 0.10 23 24 24 LS W CAR - FEOX 49581 25 ND 0 69 25 26 26 skan in Dm iv/ FeOx q v. 49.582 27 0.02 7,51 27 28 28 LS (Dn) wy epid, Feox, py 49583 29 ND 0.14 29 30 30 Skann in Dr 49584 0.03 2.91 31 31 32 32 NBR standard 49585 33 1.44 59.91 33 34 34 NBg standard 49586 35 21.84 1.03 35 36 36 Blank 49587 .37 ŃD ND i 37 38 38 Skarn in fa San Born. 49588 39 0.24 4.73 39 40 46 O WILSON JONES COMPANY G7504 GREEN MADE IN USA

з 🚞 4 = Sample Au (ppm) Ag(ppn) 4/15 San Rern Skann in fa skarn in fo 0.01 ND skarn in fa wg-FEDx v. 1.75 Skarn + FeOx in fo skan + FCOx in fa 0.01 ND SKARN + FeOx + g - FeOx - Fy v. 4 15 Skann + FeOx in fa 0.89 Skarn + FeDx in for ND Skarn + FeOx in fa skarn w/g+py+Feox v skarn + FeOx in fa ID Skam + Feox in fa 0.01 (V) Skam + FeOx in fr 0.01 0,86 Skam + FeOx in fa ND ١Ù NBR - standard 1,51 L2 78 NBg - standard 20.13 0,82 Blank 1.17 ND Hot - SPS Jasper cyl 0.01 į. ND Jasper cgl .37 ND ND. Jasper cgl · · · ND ND

[4

2 з õ Ag (ppm NO Sample Acc (ppm Hot - Spg 49609 Jasper cg1 ND 2 2 Jasper eg 49610 3 ND ND Jasper cgl 49611 ND ٧Ŋ NBg - standard 49612 OBL 20 30 D 0.086 20 19 NBR - standard 49613 153 0 9 60.41 b 154 10 60 HB 10 Blank 49614 VD 11 ND 11 Tanistante 12 Ń ND 12 LS (Dpm) w/ cal-FeOx v. 49615 0.02 13 ND 13 14 14 LS (Dpm) 49611 15 ND 1.23 15 16 16 Gossan Hoat 17 49617 072 15.98 17 18 Hydac. por. w/g-FeOx v. 49618 19 ND 0.72 19 20 20 Ls brx 49619 21 001 3 22 21 22 22 Ls (Me?), float 4/9620 23 001 0.45 23 24 24 Ls (Me) w/ cal v. 49621 25 010 25 26 26 (S(Me) by cal-FeDx V. 49622 27 ND VD 27 28 28 Ls - sil wy FeOx - MnOx 49623 29 ND 1.58 i ļ 29 30 Chent in fault zone Keystone 30 49624 31 ND 1 ND 31 32 32 Fractured Is (Dpm?) by FeOx 33 49625 ND NI) 33 34 34 gtzite - box by hen 49626 35 ND ND 35 36 36 gtzite - brx when 49627 ;37 0.02 ND 37 38 38 skam - epid, hen, g, Cu 49628 92.81 ND 39 39 40

		1	2	3	4
		Sample	Au (ppm)	Hg (pm)	
	600an Keytongyn	49629	Au (ppm)	6.99	
	Fault bix	49630	MD	8.98	
	Gonan/skarn	49631	ND	0.65	
	at the first of Side 1	49632			╺╺┼┼┼┟┽
	gtzite brx w Silz, han	77652	ND		
·	LS (Ym)-repl 4/ SiD, FeOx	49633	ND	NO	
	LS (Me) + FeOx, MnOx, ep	49634	001	ND	
	You - fract +alt - FeOx	419635	ND	ND	
	Yolb - fract. • ald - FeOx	49636	NO	ND	
	Ls - Srx, + SiDs, her	49637	007	NID	
	ls	49638	0.01	ND	
	LS (Ph) - Wy Felx staining	49639	0.01	ND	
	Chart bry W/ FeOx Tam Orto	her			
	Chant Brx 4/100x 100.	49640	0.02	0.10	
	Chert brx 4/ FeOx Tamorta Ig. brx Little Fault brx Keyha	49641	0.06	034	
	J				
	Fault Srx Keyha	49652	ND	ND	
		· · · · · · · · · · · · · · · · · · ·			

C WILSON JONES COMPANY G7504 GREEN

WESTMONT MINING INC.

May 31, 1988

Robert E. Holt Box 1018 MSR Tucson, AZ 85737

Re: Bernie Velasco Property, Gila County, AZ

Dear Mr. Holt:

This letter serves to formalize a previous verbal agreement between Hugo T. Dummett of Westmont Mining Inc. and Bernie Valasco concerning Mr. Velasco's property in the Dripping Springs Mountains north of Hayden, Arizona. Westmont agrees to provide a copy of all non-interpretive data, including sample location sites, assay results and geologic maps, generated by or on behalf of Westmont on Mr. Velasco's property.

Sincerely,

Gary A. Parkison for Hugo Dummett Westmont Mining Inc.

GAP:psp

12/05/88

PREPARED BY: DIETZ AND ASSOCIATES, 4706 N. 31ST DRIVE PHOENIX, AZ. 85017 PHONE (602)841-1744

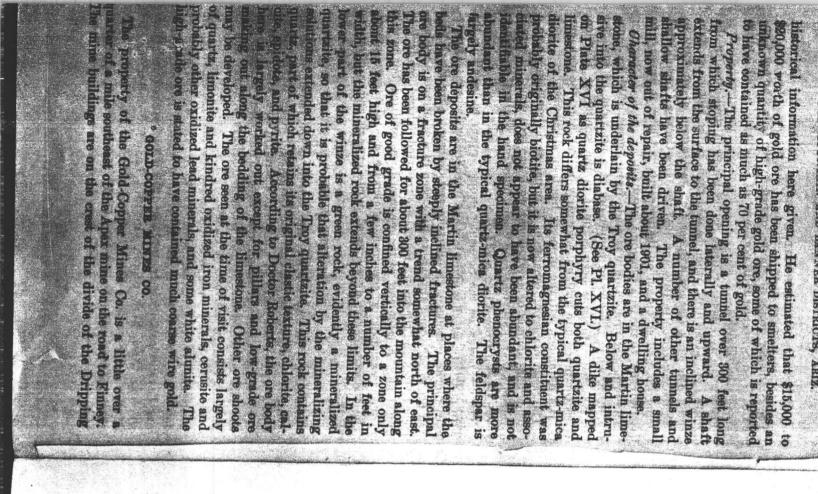
PRIMARY NAME: SAN BERNARDO JR PROPERTY

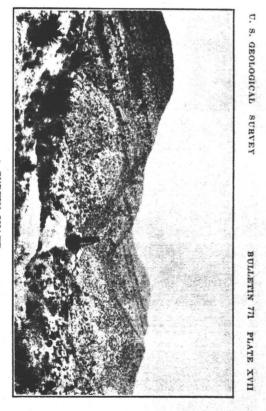
ALTERNATE NAMES:

CHILITO MS 4680 GOLD-COPPER PROPERTIES

GILA COUNTY MILS NUMBER: 12B

LOCATION: TOWNSHIP 4 S RANGE 15 E SECTION 23 QUARTER NW LATITUDE: N 33DEG 04MIN 30SEC LONGITUDE: W 110DEG 47MIN 20SEC TOPO MAP NAME: HAYDEN - 7.5 MIN


CURRENT STATUS: PAST PRODUCER


COMMODITY:

COPPER GOLD SILVER LEAD

BIBLIOGRAPHY:

ADMMR "U" FILE CITUM CAUG ADMMR CARD FILE CITUM FACT AZ MNG JNL, DEC. 15, P 9; 1921 BLM MINING DISTRICT SHEET 673 ROSS C P ORE DEPTS SADDLE MTN & BANNER MNG DISTRICTS USGS BULL 771 1925 P 64

Tornado Peak in the distance **A. CURTIN SHAFT**

B. WORKINGS ON THE SCHNEIDER GROUP OF THE GILA CANYON COPPER CO.

Spring Range, at an altitude of about 4,250 feet, and the workings are near by on the northeast slope of the ridge.

The deposit was located about 1914 by S. O. Stewart, who gave J. H. Ramsey a half interest in it for working it. Later the Gold-Copper Mines-Co. was formed and additional claims were located. In 1921 Ramsey and Doctor Ruff acquired an option on the property and did some work. A mill was completed in the fall of 1921, but no ore has been shipped, and when visited in June, 1922, the property was idle.

The mine is developed by several tunnels one above another. At the mouth of the lowest is the mill, which is equipped with amalgamation plates, two concentrating tables, and, below these, cyanide tanks. It is reported to have been in operation 11 days and to have treated 23 tons of ore. On the ridge above the mine are several houses, one of which is occupied by J. J. Hill, who was of assistance in the examination of the property.

crysts. Under the microscope it is seen to be so highly altered that dull-green rock speckled with numerous small white feldspar phenovertical dip. One tunnel follows another and smaller mineralized examined. In several places the mineralization extended short disquartz crystals, a feature not observed in any of the other deposits several inches wide consisting largely of long, narrow, well-formed common in this region. The limestone along the fissure is mineraldeterminate alteration products. The rock is probably an altered an aggregate of chlorite, epidote, residual bits of feldspar, and inclose determination of its original character is impossible. It is wall of the main vein. In the hand specimen this is a fine-grained fissure. In a number of places altered igneous rock forms the south The tunnels follow a vein striking about N. 80° W., with nearly intrusive andesite, perhaps related to the dioritic dikes that are ing malachite. mouth of one tunnel was a small pile of mineralized rock contain A little copper-stained pyrite was noted at one place, and at the tances away from the vein along the bedding planes of the limestone. ized for a width of a foot or two. In the central part is a seam The country rock of the mine is principally the Martin limestone

HOGVALL PROSPECT

Anton Hogvall has a prospect on the south side of a gulch threequarters of a mile almost due west of Tornado Peak and somewhat over half a mile southwest of Chilito. Here several short tunnels have been opened on mineralized stringers and irregular gossan bodies in the Martin limestone. Pyrite was seen on the dump of one tunnel. The ore is reported to carry gold. becember 15, 1921.

15,

r. iam

me oun

h it eral

thre

. In ocur befo

fiel m.

e su the

rour

igh k h

his

nce er

ludi

acce ctio

der

. 1, 1

o b

ch i

e n

in

hap

im

nent the

e al

alw

col

15

n

t

th

moi ope

th

e

ARIZONA MINING JOURNAL

CONCENTRATED MINING ACTIVITIES FROM ARIZONA, NEW MEXICO AND OLD MEXICO

COCHISE

Articles of incorporation have been field for the Copper Mining and Concenrating Company, capitalized at \$75,000. The principal place of business is given s Bisbee. The incorporators include W. H. Remington, J. D. Murphy, George puinby and John A. Stewart.

The work of concreting the Dallas shaft of the C. & A. in the Bisbee district was eccently completed. The shaft was conreted from the surface to the bottom, a listance of 1600 feet. A number of ore ockets were included in the work.

The property of the Black Prince Coper Company, situated in the Cochise disrict, will be sold at public auction on December 19, at Tombstone, in order to atisfy a judgment obtained against the ompany in the sum of \$6,627.42.

It is reported that a good sized body of high grade ore has been opened up on the Wakefield silver-gold claims in the Hauhuca mountains, which are being worked mder lease and bond by Messrs. Medigorich and Litich, of Bisbee. The recent trike is said to carry values from \$1,500 o \$3,000 per ton. The leasors have rected a five-ton mill and concentrator in the property and are saving 90 per ent of the values. It is estimated that here are 500 tons of ore in sight in the nine and on the dumps.

GILA

Steady progress has been made on the haft of the Louis d'Or mine, in the Miami listrict, a depth of 260 feet being reached. Water was struck at 255 feet, and at this oint chunks of ore assaying up to 15 per ent copper and in one instance, up to 26 er cent was found. Assays indicate that he shaft, which is located on the Bessie roup of claims, penetrates ore averagng 2 per cent in copper. A water supply ite was recently leased by the company. The Live Oak mine of the Inspiration consolidated in the Miami district, is proucing a considerable quantity of silica. ome of this is being put through the test eaching plant of the Inspiration company, nd the balance is being shipped from ive Oak to the International smelter, here it is being used for fluxing puroses.

The Gold, Copper Mines Company, whose property is situated about three alles north of Christmas, is operating a 0-ton Gibson mill, the concentrate assayng \$200 bold, 13 ounces silver and 30 er cent lead, it is reported. The vein is pened by three tunnels, 100 feet apart ertically, penetrating the mountain 750 eet, 600 feet and 300 feet respectively. The ledge is of an average width of two eet and a large amount of ore is exosed. Development work will be activey prosecuted beginning the first of the ear.

The Atlantis Mining Company, in the x Bow district in the vicinity of Payson; ill resume active operations soon after the first of the year, according to A. oozer, general manager of the property, Alantis mine, which is a copper-gold property, has been worked actively since 1919. The company has sunk a shaft to the depth of 176 feet, which is the water level. They will now turn their attention to drfiting along the vein. They have over 700 feet of tunneling on the property and have a 20-ton mill erected.

The Superior & Boston Copper Company resumed mining operations on the 8th of the month with a small force which will be gradually increased. Moderately low grade ores only will be mined for the present, in order that they may be handled at the International smelter. Mining was resumed in the stopes at the 400 and 600 levels of the Footwall vein, where there is a considerable tonnage of onened ore that is available for shipment. The resumption at the S. & P. property is most encouraging in the local situation, and is the most important mining development in the district since the announcement of the resumption of operations at the International smelter.

MOHAVE

The Cliff Central Mining Company has filed application for permission to apply 500,000 shares of stock on the purchase of property and to sell 750,000 shares at 5 cents a share. The company has an authorized capital stock of \$150,000, divided into 1,500,000 shares at 10 cents, the stock being assessable.

It is reported from Chloride that the crosscut from the 250 level of the Tuckahoe mine cut through eight feet of ore that carried an average value of 300 ounces silver to the ton. Under the management of E. J. Carter, the Tuckahoe has been opened to a depth of 250 feet and considerable lateral work carried on. On a recent trip to the east Mr. Carter is said to have been successful in financing the company for further development of the property on a large scale.

The east drift from the 500 level of the United American at Oatman, has been driven about 50 feet into the new orebody and the ore extends beyond the width of the drift. The average of the ore, a sample of which shows considerable free gold and is similar to the rich ore found in the Tom Reed at the 500 level, is higher than anything harctofore found in the property. Stopes are being opened to extract ores from the upper levels of the property from which shipments will soon be going forward to the Tom Reed mill.

The Sunbeam group in the Katherine section has been taken over by the Silver Hills Mining Company, of Nevada, in which W. J. Loring is interested. The Sunbeam group consists of five claims

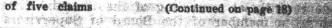
"你我的"的话,我们的是

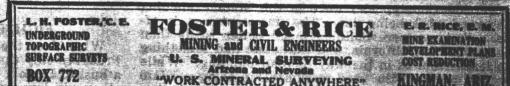
200

that lie close to the Gold Chain mine, and the management is convinced that there are great possibilities in the property.

and been starting of

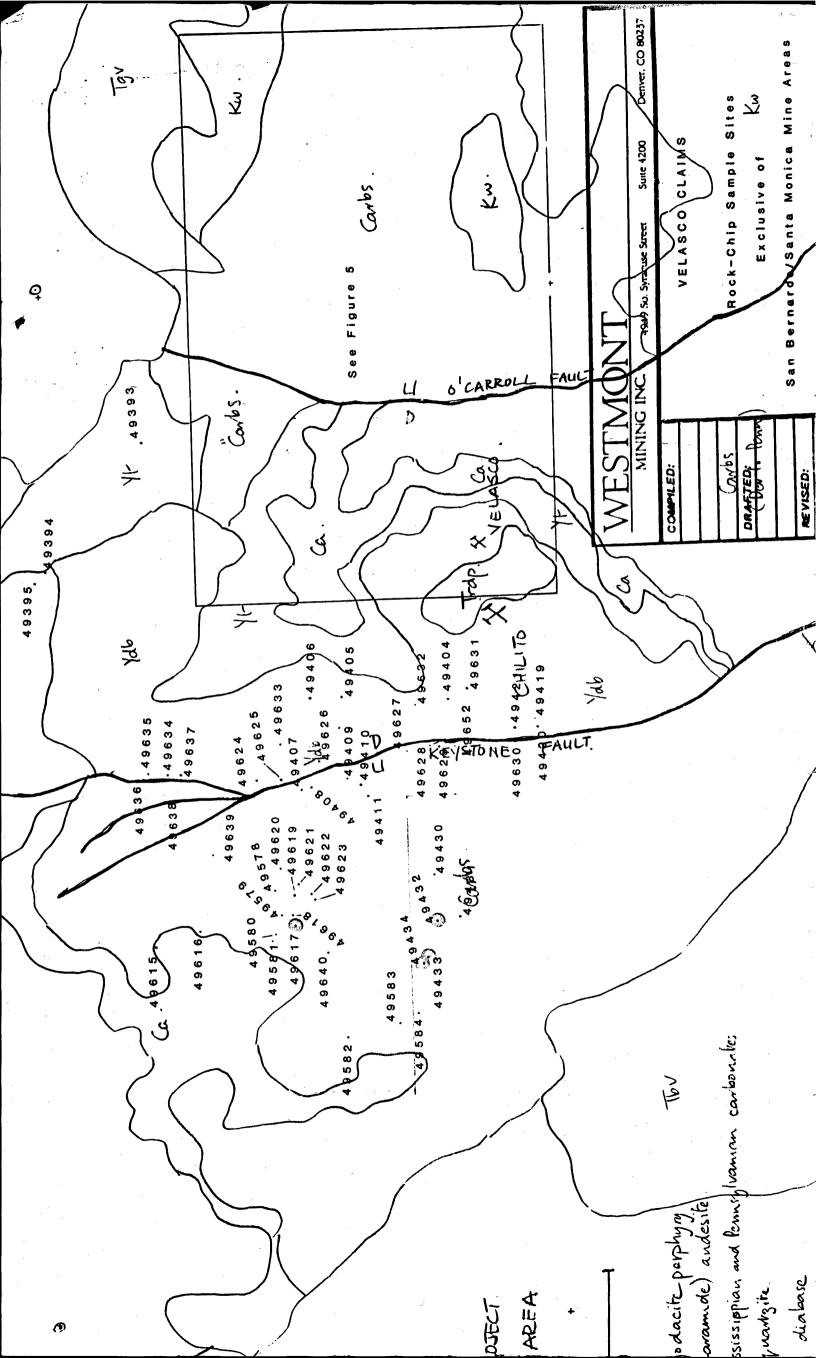
L. D. Adams, of Kingman, recently examined the McCracken mine with a view of taking over the property for large interests, and equipping it with modern operating and reduction machinery. The McCracken is an old mine developed to the 600 level and during the period 1874 to 1880, is reported to have produced some \$4,000,000 in bullion, and later a large tonnage of silver-lead concentrates were sent to the smelter.


The Kaaba Mining and Milling Company is now driving a diamond drill into the vein at a depth of 310 feet, on its property near the Standard Minerals, where they are reported to have opened an eight-foot vein of ore with assays of \$13,610 in gold and \$86.90 in vanadium. The property of the Kaaba company was taken over severals years ago by W. E. Little, who has installed a mill and a pumping plant on the property.


Jumping plant on the property. It is reported that plans are under way to have the Tom Reed mill at Oatman handle the ores from the United American mine, the American to furnish 100 tons daily. The Tom Reed mill is at present handling 100 tons of the Reed's high grade ore, though the capacity of the plant is better than 300 tons daily. The custom milling of ores for other mines of the district, would be of immense value in stimulating the industry around Oatman, it is said.

man, it is said. The Katherine Russell Mining Company has been authorized to issue 600,000 shares to W. C. Russell, George M. Keller, L. O. Tucker, Bryan C. Farrell and Raymond C. Wiley, and to sell 100,000 ahares at 65 cents a share. The company, which incorporated November 25 for \$1,500,000, divided into a like number of shares at \$1, owns unpatented lode mining claims in the San Francisco district.

in the San Francisco district. The best grade of ore thus far disclosed in the Gold Chain mine was recently uncovered at a point 140 feet cast of the shaft on the 100 level. It has since been crosscut a distance of 20 feet. The ore pans freely, is well oridized and carries considerable gold. Further development of the new find will doubtless result in demonstration of an ore breadth equal to that in the crosscut north of the shaft, where 46 feet of pay quartz has been opened.


Work has been started on the Katherine Victor property, better known as the Noontime group, which was located some time age by E. Ross Houshelder, mining

S. A. S. To 8:55 Time_ Date W NERE OUT 10 M of. 326-0899 Phone. Area Code Number Extension TELEPHONED PLEASE CALL CALLED TO SEE YOU WILL CALL AGAIN WANTS TO SEE YOU URGENT RETURNED YOUR CALL Message Operator AMPAD 23-000 50 SHT, PAD **EFFICIENCY**® 23-001 250 SHT, DISPENSER BOX

No horry Bernard Talked to valasca Bernie Velasco 29 500 89 602 326 - 0899 4 miles from Winkleman - Dripping Spring San Bernando Mtus Sount to 17,252-00 Afaderit & hay 20 - Ars 9, 1988 15,500 They have agres of all the work Hospo 10 did 13.3 W5° spoke to Asapco, Egprus & Velesco 35 to re: J.U. Jonatha Dihanel (P) Jonatha Dihanel (P) Jonatha Dihanel (P) Jonatha Dihanel (P) Jonatha Dihanel (Dibled at prop at Velosco's reguest. Wants to know if Westmont is still interview Huspo had set up onto. W/ Duhamel Call Hugo re: This

May 25, 1990

Mr. Bernard C. Velasco 2904 E. Elm Tucson, AZ 85716

MINING INC.

Dear Bernie:

Enclosed is a preliminary copy of the data Syver More generated on your San Bernardo claims. I will send a drafted copy of the sample location map later, but I wanted to get this data to you as soon as possible.

I have also enclosed invoices for the work performed at San Bernardo. You should be able to apply this towards your assessment work.

I am sorry that we had to terminate our discussion as a result of Westmont's budget problems. As I told you, I am being forced to lay off three of my contract geologists, Syver included.

I apologize for any inconvenience this may have caused you and hope that we can perhaps conduct business again in the future.

Sincerely,

WIL

William H. Wilkinson District Geologist

WHW:psp

(602) 881-8871

file Op.

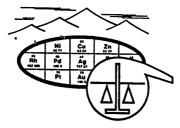
w671

PERSONNEL CHARGES - SAN BERNARDO PROPERTY

Time Period:

and the state

27


March 15 through March 25, 1990

Personnel:

Syver More

5 days	\$1,125.00
Transportation	\$209.00
Expenses	<u>\$120.00</u>

TOTAL \$1,454.00

(

SKYLINE LABS, INC. 1775 W. Sahuaro Dr. • P.O. Box 50106 Tucson, Arizona 85703 (602) 622-4836

> INVOICE NET 30 DAYS

> > Job No. UGH 275 April 10, 1990 2124 TO 2166

WESTMONT MINING, INC. Attn: Mr. S.W. More 2341 S. Friebus, Suite 12 Tucson, AZ 85713

Analysis of 41 Rock Chip and 2 Pulp Samples

43 GREAT BASIN #3 @ \$16.00*. 43 Cu,Pb,Zn,Mo(ppm) @ \$2.80*. 41 samples crushed, split and pulverized @ \$3.66	\$120 40
Totals	\$958.46

* Multi Element Discount

SAN BERNARDO SAMPLES

- 2124-2126 Limestone breccia near rhyodacite dikes (west of Keystone Fault zone)
- 2127-2136 Keystone Fault zone major 140' wide shear cutting Precambrian diabase and quartzite
- 2137-2136 Chilito Mine Tertiary rhyodacite plug and strong quartz-sericite $(N25^{\circ}W, vertical)$ shearing and veining (quartz-sericite-CuOx \pm pyrite \pm chalcopyrite. Important to find out if gold is associated with this calc-alkalie plug.
- 2161 Pyritic dump material in fault zone in prospect at 2162

2162 FeOx + gouge in Precambrian Troy quartzite (after pyrite) at Chilto Mine

and games

TO: William H. Wilkinson FROM: Syver W. More DATE: April 5, 1990 SUBJECT: Interim Report - San Bernardo Program

San Bernardo Property, Pinal County, Arizona Introduction

An analysis of Westmont's San Bernardo property data package was undertaken at the request of client for an alternative appraisal of the exploration potential within the San Bernardo claim boundaries. A three-day field examination of relevant sites followed, and consisted of bench sampling of the Chilito rhyodacite plug and detailed sampling of a 140'-wide shear zone in diabase across a rare, continuous exposure of the Keystone fault. Multiple traverses were made along favourable replacement horizons (Abrigo-Lower Martin, Escabrosa, Horquilla) for examination and comparison.

The reader is referred to Hasenohr's summary project report paper detailing Westmont's sampling investigation of the San Bernardo property, plus the correspondence with Bob Holt and the Velasco's for a review of the land situation.

Target Geology

The Velasco claims have been examined as a potential porphyry skarn/replacement deposit since the early 1960's. The claims lie approximately two miles west of Cyprus' inactive Christmas Mine and six miles southeast of Asarco's multi-billion-ton Ray deposit. The intense calc-alkaline dyke swarms and capture of the Chilito Mine rhyodacite plug along a major shear, plus the zonation of lead-zinc camps peripherally about the Chilito area (New Year, 79 Mine, Santa Monica, and San Bernardo mine areas), have led to models of a buried porphyry system in the SE corner of the claim block, with both intrusive and skarn/replacement-hosted mineralization. Favourable horizons within the straigraphic section include the O'Carroll beds in the lower Martin formation (at and above the basal contact with the Abrigo), within the fractured interbeds of massive Escabrosa Formation, and within units of the Naco group (Horquilla Limestone).

The eastern third of the San Bernardo claim block lies within a horst block (informally termed the Keystone Block) in which most of the Paleozoic section has been stripped, leaving a broad expanse of preCambrian diabase sills and basalt flows, Mescal limestone/ dolomite, and Troy quartzite, i.e., less favourably-reactive hosts. Much of the slopes and canyons are covered with boulder talus, obscuring contacts and fractures. page 2 San Bernardo Report

Krieger's geologic map of the Hayden quadrangle fails to communicate the tremendous fracturing and shearing as evidenced along the Cowboy, Kelly Springs, Keystone, O'Carroll, and Joker (in the adjacent Christmas quadrangle) Faults. Prolonged repetitive movement serves to generate permeability and hence enhances the San Bernardo area as a target for replacement bodies.

The Chilito plug (a small, rhyodacitic, low-sulphide, phyllic stockwork deposit) lies coincident with the WNW-trending anticlinal core of the range, i.e., near the projected intersection of the NS-trending Keystone Horst and numerous EW-ENE rhyodacite dyke swarms. Without digressing into an academic review and discussion of localisation mechanisms and controls of porphyry systems, it should be noted that the Chilito plug exhibits a pronounced N. 20 -25 W. shearing and vein orientation, suggesting capture or localization in a subsidiary cymoid deflection off of the Keystone Fault. The eastern third of the claim block is the site of numerous mines and prospects. The seeming spatial coincidence of prospects with the O'Carroll and Keystone Faults is intriguing, but resolution of district structural controls on mineralization awaits further study.

Regionally the metallogeny of the productive mines is distinctly base-metal rich, with trace to nihil gold values from central productive primary ore zones. The Ray, Christmas (cf: Banner), and Saddle Mountain (?) districts are associated with predominantly calc-alkaline igneous assemblages. Primary ore from the Christmas deposit is nihil, while the Ray deposit averages .000X opt.

The only evidence of porphyry-related, precious-metal mineralization in the region is evidenced at Little Gold Gulch, located southeast of Christmas on the San Carlos Reservation. Upper-level porphyry assemblages, including intrusive and pebble-breccia dykes and stockwork veins emplaced in Williamson Canyon volcanics, carry significant silver and gold values, albeit of marrow extent.

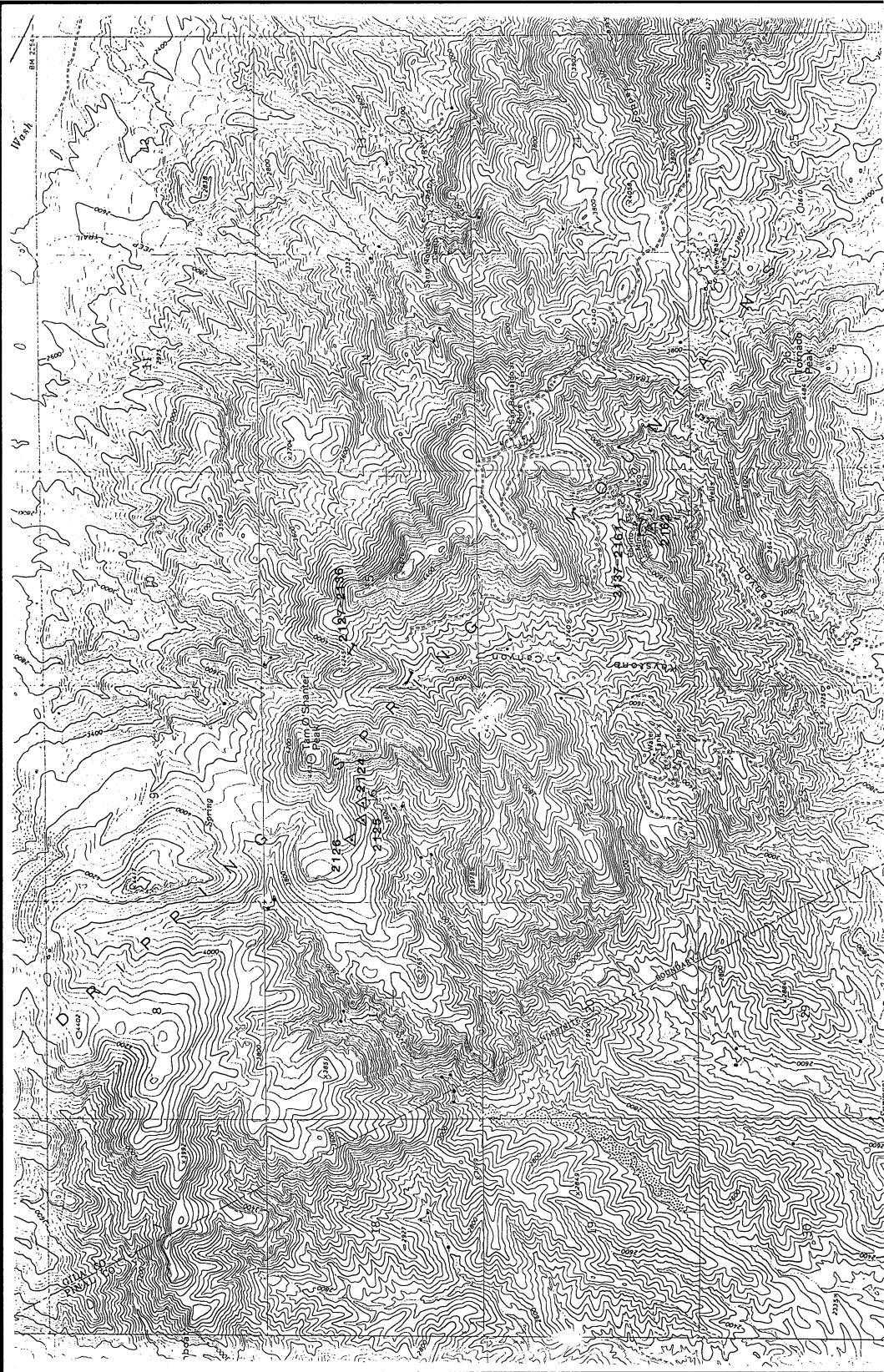
Geochemistry

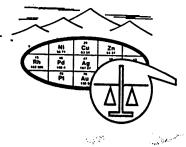
Ed Hasenohr conducted a detailed vein, prospect, and dump sampling program on the property in 1988, and demonstrated elevated gold values in supergene-enriched vein and fracture-filling mineralization of skarn and carbonate replacements. A follow-up heavy-minerals stream-sediment concentrate sampling program (using Fripke seperation tehniques) revealed two catchment areas, centred along the Keystone and O'Carroll horst-bounding faults at the eastern third of the claim block. page 3 San Bernardo Program

An explanation for the stream-sediment anomalies is not readily apparent. While the easternmost anomaly may be attributable to contamination from the numerous prospects in the Santa Monica and San Bernardo camps, the linearity of the anomaly with the NE-trending dyke swarms also suggests a structural control, i.e., intersection-related. The central anomaly, south of Tam O'Shanter Peak, projects northwesterly from the Keystone Fault into a broad expanse of Martin and Escabrosa limestone notable for the profusion of rhyodacitic dykes and for a lack of obvious mineralization, i.e., prospects. Prospecting along these central-area washes fails to offer evidence of mineralizatation due to alluvial cover concealing dykes and

Recent Sampling Geochemistry

A limited sampling program was undertaken during the field examination to answer questions as to the affinity of gold to the rhodacite plug and to the apparent disposition about the Keystone Fault.


Eight samples of sheared pC diabase exposed for 140' along a road cut were collected (# 2127-2136) to test for leakage along the Keystone Fault, with negative results. Gold values overall are low, (2 - 18 ppb Au), while base-metal values are weakly elevated (60-155 ppm Cu, 6-40 ppm Pb).


Sampling of the Chilito rhyodacite plug (off of the San Bernardo claims) (# 2137-2160) reveals weakly elevated gold values of 4-80 ppb Au (x=25 ppb Au), with high copper (560-6000 ppm Cu, x=1800 ppm Cu), Mo (x=20 ppm Mo), and virtually no lead or zinc enhancement.

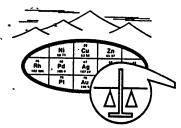
Several samples of limestone bedding breccia (# 2124-2126) taken southwest of Tam O'Shanter Peak show weakly elevated gold values (4, 14, and 55 ppb Au).

Synthesis and Conclusions

The modest gold values encountered in the Chilito plug fractures and veins suggest that the gold in gossan samples may be genetically tied to the magamtism responsible for the Chilito rhyodacite plug and the temporally late-stage (?) rhyodacite dyke swarms, rather than to a dioritic pluton at depth. The pronounced lead-zinc zonation about the Chilito Mine, as suggested by the disposition of the 79-New Years-Santa Monica-San Bernardo Mines, may be extrapolated into the anomalous gold areas defined in the limited stream-sediment survey as products of fringe-zonation phenomena from the Chilito plug centre, or else as upper zonation about seperate related plutons.

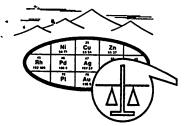
REPORT OF ANALYSIS

JOB NO. UGH 275 April 10, 1990 2124 TO 2166 PAGE 1 OF 6


WESTMONT MINING, INC. Attn: Mr. S.W. More 2341 S. Friebus, Suite 12 Tucson, AZ 85713

Analysis of 41 Rock Chip and 2 Pulp Samples

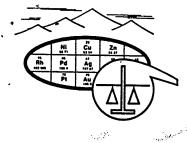
SAN BERNARDO PROPERTY


]	TEM	SAMPLE NO.	FIRE ASSAY Au* (ppm)	Ag	As (ppm)	Sb (ppm)
Limestone Breccia	5	2124 2125 2126 2127 2128	.004 .055 .014 .004 .002	.25 <.05 .10 .10 .10	20.0 9.0 8.5 24.0 8.0	.8 .5 .4 .6 .3
Keystone Fault Zone	6 7 8 9 10	2129 2130 2131 2132 2133	.018 .006 .004 <.002 .018	.10 .10 .10 .10 .25	18.0 4.2 2.2 4.0 17.0	.6 .2 .6 .2 .2
	11 12 13 (14 15	2134 2135 2136 2137 2138	.006 .018 .010 .028 .034	.10 .15 .15 .70 .70	16.0 2.4 2.2 1.0 1.0	.3 .1 <.1 <.1 <.1
	16 17 18 19 20	2139 2140 2141 2142 2143	.070 .034 .040 .034 .040	.70 .80 .60 .70 .75	1.2 .6 .8 .8	<.1 <.1 <.1 <.1 <.1 <.1
Chilito Mine Area	21 22 23 24 25	2144 2145 2146 2147 2148	.010 .014 .018 .034 .004	.30 .50 .75 .55 .45	.8 .6 1.8 .8 .4	<.1 <.1 .7 <.1 <.1

Charles E. Thompson Arizona Registered Assayer No. 9427

> JOB NO. UGH 275 April 10, 1990 PAGE 2 OF 6

							به در منه منه چنه منه
		. F	IRE ASSA		A c	ch	
	ITEM	SAMPLE NO.	(ppm)	Ag (ppm)	As (ppm)	Sb (ppm)	
9000 900 kito 600 yrag adda adag ayna ad							5
	(26	2149	.008	.55	.6	<.1	
	27	2150	.010	.45	2.6	<.1	
	28	2151	.020	.50	.6	<.1	
) 29	2152	.012	.55	1.0	<.1	
Chilito	{ 30	2153	.004	.40	- 4	<.1	
Mine	31	2154	.006	.40	. 4	<.1	
Arza	32	2155	.010	.55	.4	<.1	
	33	2156	.006	.45	4.0	<.1	
	34	2157	.080	.45	3.4	< . 1	
	35	2158	.018	.80	.8	<.1	
	36	2159	.018	.90	.4	<.1	
	37	2160	.030	.85	1.0	<.1	
	38	2161	.004	.85	6.0	.2	
	(39	2162	.065	6.50	14.0	.2	


> JOB NO. UGH 275 April 10, 1990 PAGE 3 OF 6

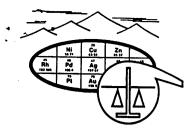
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 ⁻² -	<u>Zn</u> (ppm)	Pb (ppm)	Cu (ppm)	(bbù)	SAMPLE NO.	ITEM	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
6 2129 $.05$ 95 14 48 7 2130 $.02$ 80 14 48 8 2131 $.18$ 75 14 44 9 2132 $.01$ 90 12 42 10 2133 $.01$ 80 10 36 11 2134 $(.01$ 130 4 48 12 2135 $.01$ 155 10 36 13 2136 $.02$ 8 6 (2) 14 2137 $.03$ 2850 6 28 15 2138 $.02$ 3300 6 12 16 2139 $.02$ 2600 6 16 17 2140 $.03$ 5750 6 16 18 2141 $.04$ 6000 8 22								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		38.	14.	/5.	.03	2128	5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		48.	14.	95.	.05	2129	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		00.		•••				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		48.	4.	130.	<.01	2134	11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			10.			2135	12	
14 2137 .03 2850. 6. 28. 15 2138 .02 3300. 6. 12. 16 2139 .02 2600. 6. 16. 17 2140 .03 5750. 6. 16. 18 2141 .04 6000. 8. 22.				8.	.02	2136	13	
15 2138 .02 3300. 6. 12. 16 2139 .02 2600. 6. 16. 17 2140 .03 5750. 6. 16. 18 2141 .04 6000. 8. 22.						2137	14	
162139.022600.6.16.172140.035750.6.16.182141.046000.8.22.								
172140.035750.6.16.182141.046000.8.22.								
172140.0357506.16.182141.0460008.22.		16.	6.	2600.	.02	2139	16	
			6.	5750.	.03	2140	17	
		22.	8.	6000.	.04	2141	18	
		16.	6.	2200.	.03	2142	19	
20 2143 .02 1450. 4. 6.					.02	2143	20	
								
21 2144 .02 940. 2. 4.								
22 2145 .01 610. 2. 4.								
23 2146 .01 1450. 4. 8.								
24 2147 .02 2200. 4. 10.		10.	4.					
25 2148 .02 1950. 6. 8.		8.	6.	1950.	.02	2148	25	

.

SKYLINE LABS, INC. 1775 W. Sahuaro Dr. • P.O. Box 50106 Tucson, Arizona 85703

(602) 622-4836

JOB NO. UGH 275 April 10, 1990 PAGE 4 OF 6

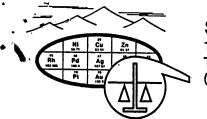

· • •

d.

:/.³⁺

Hg Cu Pb Zn ITEM SAMPLE NO. (ppm) (ppm) (ppm) (ppm) 26 2149 .01 1050. <2. (2. 27 2150 .01 650. 12. (2. 28 2151 .05 1000. 4. 2. 29 2152 .03 1100. (2. 4. 30 2153 .02 560. 4. <2. 31 2154 790. .01 <2. <2. 32 2155 .02 1050. (2. 2. 33 2156 .02 580. 2. (2. 34 2157 .02 580. (2. 6. 35 2158 .01 1700. 4. 22. 36 2159 .01 1050. 20. 6. 37 2160 .02 1750. 4. 40. 38 2161 .02 465. 10. 10. 39 2162 .02 2350. <2. 34.

SKYLINE LABS, INC. 1775 W. Sahuaro Dr. • P.O. Box 50106 Tucson, Arizona 85703 (602) 622-4836


> JOB NO. UGH 275 April 10, 1990 PAGE 5 OF 6

ITEM	SAMPLE NO.	Mo (ppm)		
nn ang san ang dan ang ang pag ang ang ang pag ang ang ang ang ang ang ang ang ang a		80 000 , 000, 000 000, 000, 000, 000, 00		
1	2124	<2.		
2	2125	<2.		
З	2126	<2.		
4	2127	<2.		
5	2128	<2.		
6	2129	<2.		
7	2130	<2.		
8	2131	<2.		
9	2132	<2.		
10	2133	<2.		
· · · · · · · · · · · · · · · · · · ·	0107			
11	2134	<2.		
12	2135	<2.	and the second	
13	2136	<2.		
14	2137	22.		
15	2138	8.		
16	2139	20.		
17	2140	16.		
18	2140	12.		
19	2142	8.		
20	2142	14.		
20	617U	14.		
21	2144	24.		
22	2145	20.		
23	2146	44.		
24	2147	48.		
25	2148	48.		

.

N., 20.

and and

> JOB NO. UGH 275 April 10, 1990 PAGE 6 OF 6

	ITEM	SAMPLE NO.	Mo (mqq)	
			44 946 946 968 666 666 966 966 666 666 666 666 968 968	
	26	2149	26.	
	27	2150	38.	
	28	2151	26.	
	29	2152	26.	
	30	2153	10.	
с.	31	2154	8.	
	32	2155	12.	
	33	2156	16.	
	34	2157	14.	
	35	2158	10.	
	~ /			
	36	2159	6.	
	37	2160	4.	
	38	2161	46.	
· · · · -	39	2162	16.	

*NOTE: Method of analysis by combination fire assay and atomic absorption.

cc: Dr. William H. Wilkinson

14/12/92

San Bernardo Project

Results from rock-chip gold and silver assay

Sample #	Au (ppm)	Ag (ppm)
49348	0.07	1.27
49349	0.10	0.55
49350	0.27	ND
49351	0.07	0.58
49352	0.82	2.37
49353	0.03	0.41
49354	0.01	0.31
49355	0.07	0.93
49356	0.03	ND
49357	0.03	ND
49358	0.07	3.19
49361	ND	0.89
49362	0.03	ND
49363	0.05	5.52
49364	1.85	25.06
49365	0.58	36.75
49366	0.55	7.27
49367	0.10	4.39
49368	ND	4.87
49369	0.41	9.53
49370	0.24	22.42
49371	0.23	18.34
49372	0.14	8.54
49373	1.71	34.64
49374	0.10	2.98
49375	0.14	3.50
49376	12.82	48.31
49377	3.22	107.76
49378	0.31	2.57
49379	0.51	10.90
49380	ND	4.32
49381	0.55	27.43
49382	0.96	3.02
49383	0.07	8.78

Sample #	Au (ppm)	Ag (ppm)
49384	0.69	32.43
49385	0.89	52.46
49386	0.82	16.80
49388	0.34	14.33
49389	2.47	25.71
49390	0.21	0.41
49391	0.82	1.37
49392	0.69	58.28
49393	0.07	4.46
49394	0.06	ND
49395	0.07	ND
49396	0.27	0.41
49397	0.14	10.08
49398	0.20	5.21
49404	0.07	11.66
49405	0.07	0.69
49406	0.89	92.22
49407	0.14	9.39
49408	0.03	8.57
49409	0.24	25.37
49410	2.50	229.72
49411	0.07	6.51
49419	0.24	9.26
49420	0.14	14.06
49421	0.21	89.83
49430	0.55	0.69
49431	0.07	1.37
49432	3.15	31.54
49433	1.23	21.74
49434	2.54	18.99
49435	7.82	25.92
49436	9.87	12.89
49437	0.27	3.84
49438	49.58	5.69
49439	3.15	17.07
49440	0.06	3.77

Sample #	Au (ppm)	Ag (ppm)
49445	ND	ND
49446	0.03	0.89
49528	ND	4.32
49540	0.03	0.82
49541	3.84	6.45
49542	2.13	7.13
49544	0.02	0.27
49545	11.04	62.06
49546	1.68	71.45
49547	0.03	ND
49548	0.85	4.18
49549	0.03	ND
49550	0.03	ND
49551	0.02	ND
49552	0.02	ND
49557	0.02	3.87
49558	0.01	ND
49559	0.01	0.10
49560	0.27	13.44
49561	1.03	ND
49562	1.37	13.54
49563	ND	0.82
49564	ND	ND
49565	ND	0.07
49566	0.01	0.48
49567	0.01	2.22
49568	0.49	19.82
49569	0.03	1.17
49570	0.24	2.57
49571	0.31	13.95
49572	ND	ND
49573	ND	ND
49574	0.03	0.41
49578	ND	1.82
49579	ND	0.38
49580	ND	0.10

	<u>Au (ppm)</u>	A <u>g</u> (ppm)
49581	ND	0.69
49582	0.02	7.51
49583	ND	0.14
49584	0.03	2.91
49588	0.24	4.73
49589	0.07	4.15
49590	0.01	ND
49591	1.75	11.90
49592	0.03	1.75
49593	0.01	ND
49594	0.03	4.15
49595	0.01	0.89
49596	ND	0.03
49597	0.07	3.12
49598	0.10	3.60
49599	0.03	ND
49600	0.01	ND
49601	0.01	0.86
49602	ND	ND
49615	0.02	ND
49616	ND	1.23
49617	0.72	15.98
49618	ND	0.72
49619	0.01	3.22
49620	0.01	0.45
49621	ND	0.10
49622	ND	ND
49623	ND	1.58
49624	ND	ND
49625	ND	ND
49626	ND	ND
49627	0.03	ND
49628	ND	92.81
49629	ND	6.99
49630	ND	8.98
49631	ND	0.65

Sample #	Au (ppm)	Ag (ppm)
49632	ND	ND
49633	ND	ND
49634	0.01	ND
49635	ND	ND
49636	ND	ND
49637	0.07	ND
49638	0.01	ND
49639	0.01	ND
49640	0.02	0.10
49652	ND	ND

San Bernardo Project

Results from stream sediment gold-silver-copper assay

Gold analysis: Neutron activation

Silver and copper analysis: HNO3-HCl hot extraction and atomic absorption *Two gold values for a single sample represent instances when the sample was split in the lab into two unequal fractions in order to fit in the lab vials.

Sample #	Au (ppb)	Ag (ppm)	Cu (ppm)
49301	<5	<0.1	107
·	6		
49302	15	<0.1	139
	250		
49303	6	<0.1	108
	16		
49304	3190	18	123
49305	6	0.1	184
49306	71	<0.1	256
49307	<20	0.2	202
49308	350	<0.1	158
49309	<24	0.1	135
49310	<20	<0.1	161
49311	(19	0.1	317
49312	<13	٢٥.١	262
49313	12	(0.1	338
49314	<24	0.3	538
	480		
49315	45	0.3	63
	78		
49316	<19	6.9	129
49317	3210	0.3	115
	<24		
49318	862	<0.1	1500
49319	12	1.5	640
49320	1170	0.1	30
·	480		
49321	10	<0.1	89

Sample #	Au (ppb)	Ag (ppm)	Cu (ppm)
49322	78	<0.1	39
	6150		
49323	23	(0.1	160
49324	3210	0.1	222
49325	862	<0.1	64
49326	430	2.1	665
49327	57	(0.1	295
49328	190	2.4	206
49329	<18	0.3	155
49330	44	21	415
49331	12	0.5	350
49332	۲5	<0.1	51
49333	5	2.9	110
49334	<5	0.3	87
49335	19	26	1365
49336	23	0.1	106
	10		
49337	839	21	1840
49338	10300	5.8	1700
49339	230	1.5	139
49340	2750	3.2	218
49341	430	5.6	92
49342	19900	>50	940

San Bernardo

1) \$

Au (ppn) Sample Ag(ppn) 0.65 Diabase (Yds) 49347 LS (Dpm) q-py (FeOx) V. 49348 0.07 27 Ls (Dpm) q-py v. 49349 9,10 0 55 Ls (Dpm) w/ calc=sil; q-py v 49350 0,27 ND Lr (Dpm) w/ calc -sil, q-py v. 49351 007 0.58 Lr (Dpm) w/calc-sil, q-py v. 49352 0 82 237 12 Diabase (Youb) 49353 003 0.41 Qtzite (fa) 49354 001 0.31 LS(Dpm) by calc-sil, g-py v. 49355 0.07 0.93 Dol, q-py(FEDx)v., calc-ril 49356 003 ŇĎ 20 Dol. (Dpm.) 49357 0.03 ND 21 22 Qtzite (Ga), q-py v., Cu (D; 49.358 0.07 3.19 23 Basalf (Kw), alt, Felx, Py 49359 -ND ΝŊ 26 Basalt (Kw), alt, Feox, py 49360 ND 477 27 28 Dol, Silz, calc-sil 49361 MD 0.89 29 30 Dol + gtzite + fault brx, g-pycolu 49362 0.03 XI) 31 32 Atzite (fa), g-py-ser v. 49363 ~ 0.05 5 52 33 34 Q+zite (fa) + do/ (Dpm), did, gos. 49364 -185 25 06 35 36 Qtzite (fa) + 1s, py-ser-g v. 49365 ~ 36 75 0.58 37 38 Qtzite (fa) w/py, q-py v. (ull) 49366 -0 55 7.27 39

WILSON JONES COMPANY G7504 GREEN

нΧ

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

36

38

35 7

31 X

39 F

Sample Au (ppm) Ag (ppm) 4 39 La(Dpn), g-py-ser v. 0.10 49367 Skarn - gar+cal+mag+py 49368 ~ ND 487 Qtzite (fa) + gos. 5 🗙 49369 0.41 9.53 Ls. + skan - may, chl 49370 1 X 024 22 42 9 K Ls, g-py-ser v., mag 49371 0.23 18 34 Qtzite (Ga) + 1s (Upm), q-py V. 11× 49372 014 8.54 1-1 Ls(Dpn) + ss(&), q-py v. 12 13 × 49373 34.63 171 12 Ss(Ga), g-py-ser v. 14 49374 2.98 010 15 16 Ls/dol + ss, calc-vil, q-pyv. 49375 3.50 014 17 Ss+dol, g-py-ser v. 18 49376 19 🖌 12 82 48.31 19 Ss (fa) + dol, g - py v. 20 21 X 49377 322 107 76 21 Ls/dol (Dpm) + por.-alt, gos. 22 49378 031 2.57 23 Ss(fa) -alt, q-pyr., gos. 24 49379 25 父 051 10.90 25 26 Ss, q-py-ser v. 49380 ND 4 32 27 28 Ss + por., q + py v. 29 X 49381 0.55 27 43 29 Ls (Dpm), q-py k 30 31 7 49882 0.96 3.02 31 Lo (Dpm) - alt, q-py V., gos. 32 49383 0.07 8.78 33 Ss + por., alt, q-py v., gen 34 35 🗡 49384 32.43 0.69 35 Ss + por., q-py ". 36 49389 5246 0,89 37 Sr+ls-Sila, g-py v., go. 38 49386 1680 0.82 39

C WILSON JONES COMPANY G7504

10

12

14

15

16

17

18

20

22

23

24

26

27

28

30

32

33

34

36

38

4 A

37¥

39 7

ন্ ই

	1	. 2	3	
Qtzite (Y+) - Cuco,	Sample 49387	Au (ppm)	Ag (ppm)	
Gussan	49388	D. 34	14.33	
Ss(fa), q+py v., tr. (400;	49389	247	25.71	
Brx	49390-	0.21	0.41	
Qtzite (Ga) - q+py v.	49391	0.82	1.37	
Qtz V. + FeOx	419392	0.69	58.28	
Sediment (Strean)	49393	D. 07	4 46	
Stream sediment	49394	0.06	ND	
Stream sediment	49395	0.07	113	
Skarn - hen, mag, epid, gar, lullz	49396	0.27	0.41	
Skarn-gar, epid +gus.	49397	0.14	10.08	
GUS Feux, mag + CuCO3	419398	0.20	5.21	
Gus + Skarn (gar + epid) New Yr.	49399	0.41	28.66	
Gus + skam New Yv.	49400	010	44.57	
Gur For +q v. + Cu (O, Yr.	49401	0.03	37.37	
Qtz - FeOx v. + skarn(gr, ep)).	49402	0 51	167.66	
Skarn - gar., epid, q, py New Yr.	419403 -	0.62	137.14	
Ls (Ym) + q-py-ser v. Cu(U)++. Keyrtonie Cny. J	49404	0.07	11 66	
Diabase (Ydb) + q-py ser v.	49405	0.07	0.69	
Qt2-py v. in Ydb	49406	0.89	92 22	

O WILSON JONES COMPANY G7504 GREEN

MADE IN U.S.A

S RE

	. 1 	2		4
Ls + q - FeOx - clay -sor. V Keystonary. Brx (15) w/ q-FeOx - cal	Sample K 49407 49408	14 (ppm) 014 003	Ag (ppn) 9.39	
Ls(Me) + g - Py V.	49409	0.24	8.57 25.37	
Qtz-FeOx v. + gn, van, GrOz Ls (Me) + q-FeOx v.	49410 ~ 49411	2.50 0.07	6.51	
Basalt (Kw) - alt + Wul, Van Mine Ls + g- Py - wul Keystone Cyp. 1	49412 - 49413 -	0.14 D.03	10 29	
Ls + ges + sil + van, pr, Cuco; Facult (kw) - alt + py-q-clay v.	49414 49415	0.65 D.03	38.74 ND	
Gossan - FeOx+q+ C.CO; Marble (IPn), g-MnOx v, wull(++)	49416	0.45	66.51	
Diabase (Yob) - alt + g-py -perv.	49418 -	0.14	14.06	
Qtz-py v. in Ydb Qtz-py v. + sph(tr) in Ydb	49419	0.24 0.14	9.21 14.06	
Diabase (Yab) - alt w/q-py v. Qt 1-py-gn - (40, v. 79 Mine	49421 49422	0.21	89.83 38 61	
Qtzik - sil + py + lu Coz Qtz-py - CuSx-gn - wulf v.	49423 ,	0.10	71.66	
Ls - SiQ + py Black cal (MnOx)	49425 ~	0.07	2.74	
DIALK CAX (MINUX)	49426	0.14	12 69	

, e

) Z

MADE IN U.S.A.

QH2 - py V. + gr, C. CO3 79 Mine	Sample 49427 -	Au (ppm) 0.14	Ag (ppm) 25.10	
Ls (Me) - SiD2 + Py 1	49428 -	ND	068	
Skam - ep +gar +q+cal+py	49429 -	0.38	3.09	
Gossan - Feox+q + Culo,	49430	055	0.69	
Ls (Me)	49431	0.07	1.37	
Goman - FeOx +q + Cu(Os(4r))	49432	3.15	31.54	
Goran - FeOx +q + C4 (0;(++)	49433	1.23	21.74	
Goman - Feux +q + (400; (++)	49434	2.54	18.99	
Goman - FeOx +q + CuCO3(+r)	onica 49435 -	7,82	25.92	
Gonan - FeOx +q + Cu(Os(++)	49436 ~	9.87	12 89	
Ls (Me)	49437 ~	0.27	3 84	
Rhydac w/q-py-cky-sor. v.	49438	49.58	5.69	
Skarn (q+gar. + amph.) +gos.	49439	3.15	17.07	
Ls. (Me) - vex11, SiDz Wg-py V.	49440 -	0.06	3.77	
RR-B	49441	4.53	5.42)	
Blank	4.9442	4.25 ND	4153 3.22	
RR - A	49443	ND 1.71	384 487	
Blank	49444	0.07	6.03	
		0.05	267	

С

MADE IN U.S.A.

Ł

Au (ppm) Ag (ppm) Sample Santa Morice Shale 49445 ND ND 15 49446 003 0.89 And por 149 - For - wel - van v. 49447 5 X 1971 007 Ls 149 - Felx - cal - van - wel v. 49448 18 003 13.58 LS w/q - Feox - van - wwe-gn v. 49449 0.05 9 K 138 45 LS w/ calc-sil 49450 ND 11 001 12 12 Diab (Ydb) w/q-Feux -gn,-van-wul 49451 17.21 13 🔨 0.02 13 14 14 Qt2 - V + FeOx+gn+van 49452 15. × 0.03 22.08 15 16 16 Qt. v. in Yds ; g + FeDx + MuDx 49453 17 ND ND 17 18 18 Atzite w/q+FeOx v. 49454 19 ND 0 24 19 Boldmine Mt. 1 20 20 49455 g+py+ma+az v. 21 ×. 1.13 6.51 21 22 22 g+ py v., tr. Cu 49456 23 🔀 28.97 233 1 23 24 24 g+py v. in schirt , tr. Calls 49457 25 × 5,82 1.89 25 26 26 g-py v. wy schirt, tr. Culo, 49458 27 7 346 257 27 28 28 9+ py + gn + Cullos 49459 93.70 29 × 230 29 30 30 g + py in schirt 49460 31 %. 048 0.55 31 32 32 g + py + gn in schirt 49461 21,81 33 Y 127 33 34 steamboat Mt. L 34 Cgl(Ts1) 49462 35 ND 031 35 36 36 MnOx in 15 49463 37 ND 0.55 37 38 38 15 49468 39 ND ND 39 40

O WILSON JONES COMPANY 67504 GREE

MADE IN U.S.4

6,

WRITE ® з COLUNN stearbart Mh Sample Ag (7pm) Aci (ppm) Gosan RR-A 3.50 1.64 RR-B 4.46 6.93 Blank ND 3.3 O WILSON JONES COMPANY G7504 GREEN

Marthe (Yme?) by cal-g-ma Monitor Sample Au(ppm) Ag (ppm) 459 57 Ydb (all) w/g-py-bn-sn-mar 49530 676 09 MD Skarn (Yme) 49531 ND 0.07 gtite wy FOX 49532 ŇĎ 014 Is/dol (Yme) 419533 ND 0.58 sh + Yab (alt) up g-py v. 49534 M 086 Standard RR-B 12 49535 4.11 3.43 13 Blank 14 49536 ND 0.27 15 16 Standard RR-A 49537 57 1 2.81 17 18 Standard RR-R 49538 4.32 58 19 20 Blank 49539 Q01 ND 21 San Remardo LS (Dpm) by FeOx 22 49540 \mathcal{O} 03 0 82 23 24 Gossan 49541 3.84 6.45 25 26 Skam in Ca 49542 213 7.13 27 Rhydac (alt) w/g-Ferx v. 28 49543 0.04 ND 29 30 Skarn (Me) w/cal-q-Cu. Santa Monica 49544 0.02 0.27 31 32 Gossan in Me 49545 11.04 62.06 33 34 Gosan in Me 49546 71.45 1 68 35 LS (Me) w/ cal-For v. 36 49547 0.03 ND 38 Gonan 49548 0.85 4.18 39 40

15

17.

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

MADEINUS

]/

Sample 149549 Au(ppm) LS (Me) w/ cal + FeOx v. Santa Ag (ppm) NIS Ls (PR) 49550 003 NI) Rhydac por alt -> epid 49551 0.02 ND Skann in Ph 49552 0,02 ND Gary's sample 49553 4.70 0,27 2.06% Cu Standard - NBR 10 49554 1.34 60 21 11 Standard - NBg 12 49555 069 1965 13 14 Blank 49556 ND ND 15 16 Gossan in Me 49557 0.02 3.87 17 18 Marblized Me w/ cal-Fe0x v. 49558 0.01 ND 19 20 Ls - rex11, Sil, skam 49559 0.01 0.10 21 22 Gosan 49560 027 13.44 23 24 Chert/jasper in 1s 49561 103 ND 25 26 Gonan 49562 37 13.54 $\boldsymbol{/}$ 27 Ls (brx) wy cal v. 28 49563 ŇD 0.82 29 30 Chert/jasper 49564 ND ND 31 32 SKarn 49565 ŇÌ 0.07 33 Ls w/ cal-FeOx . 34 49566 0.01 0,48 35 36 SKArn 49567 001 2 22 37 Gosan 38 49568 0.49 19.82 39 40

C WILSON JONES COMPANY G7504 GREEN

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

MADE IN U.S.A

Sample Au (ppm) 003 Ag (ppm) 1.17 Ls -> marble 49569 Gossan 49570 0 24 2.57 San Bern. Gossan 49571 0.31 13.95 LS (IPm) wy cal v. 49572 ND ND Skarn in IPn 49573 ND ND Skarn 49574 0.03 0.41 11 12 Gosan Schneider Canz. 49575 0.17 4.35 13 14 SKarn 49576 0.14 3,67 15 16 Skam in ta w/q-py v. 49577 0.01 99 17 Chart box by FeOx "79 Mine 18 49578 ND 182 19 20 Ls -> marble 49579 ND 0.38 21 22 LS(Dm) W Cal - FOX V. 49.580 ND 0.10 23 24 LS Wy CAR - FEOX 49581 0.69 ND 25 26 skam in Dm 10/ FOX q v. 49582 0 02 7.51 27 28 LS (Dn) wy epid, Feox, py 49583 ND 0.14 29 30 Skam in Dr. 49584 003 2.91 31 32 NBR standard 49585 1.44 59.91 33 NBg standard 34 49586 1.03 21.84 35 36 Blank 49587 ND ND 37 San Rom. 38 Skarn in fa 49588 0.24 4.73 39 40

© WILSON JONES COMPANY G7504 GREEN

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

MADE IN U.S.

Sample Au (ppm) Ag(ppn) 4/5 San Bern. Skarn in fa 49589 0.07 skarn in fa 49590 0 01 ND Skann in fa m/g-FEDx . 49591 75 11.90 Л Skarn + FeOx in fa 49592 0.03 75 skan + Feox in fa 49593 0.01 ND skarn + FeOx + g - FeOx - Fy v. 49594 003 4 15 12 Skarn + FeOx in fa 001 49595 0,89 skam + FeOx in fa 49596 ND 0.03 15 16 skarn + FeOx in fa 49597 0.07 312 17 18 Skarn W/9+ py+ Felx v. 49598 0 10 360 19 20 skarn + FeOx in fa 0.03 49599 ND 21 22 49600 Skann + FeOx in ta 0,01 ND 23 24 Skam + FeOx in fa 49601 001 0,86 25 26 49602 Skam + FeOx in fa ND ND 27 28 NBR - standard 49603 1,51 62.78 29 30 NBg - standard 49604 20.13 0,82 31 32 Blank 49605 ND 1.17 33 Hot - Spg. 34 Jasper cyl 49606 0.01 ND 35 36 Jasper cgl 49607 ND ND 37 38 Jasper cgl 49608 ND ND 39 4 በ

C WILSON JONES COMPANY G7504 GREEN

10

11

13

14

15

1.6

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

MADE IN USA

	Sample 49609	Au (ppm) ND	Ag (ppm) 110	1
Jasper egl	49610	ND	ND	3
Jasper egl	49611	ND	ND	5
NBg - standard	49612	0.086	20.30	7
NBR - standard	49613	0,086 0,154	20.19 60.41	9
	49614	0.154 ND	60 HB ND	10
Blank Ls (Dpm) w/ cal-FeOx v.	49615	0.02	ND ND	12
Ls (Dpm)	49616	ND	1.23	14
Gossan Hoat	49617	0.72	15.98	16
thydac. por. w/g-FeOx v.	49618	ND	0.72	18
Ls brx	49619	001	3.22	20
Ls (Me?), float	49620	001	0.45	22
Ls (Me) w/ cal v.	49621	. MD	0,10	24
LS (Me) wy cal-Feox v.	49622	ND	ND	26
Ls - sil wy Feox - Mnox	49623	ND	1.58	28
Chert in fault zone Keystone	49624	ND	ND	30
Fractured Is (Dpn.?) by FeOx	49625	ND	ND	32
gtzite - box by hen	49626	MD		34
gtzite - brx ly hen	49627	0.02	ND	36
skann - epid, hen, g, Cu	49628	ND	92.81	38
· · · · · · · · · · · · · · · · · · ·				40

COLUMN WRITE-®

MADE IN USA

SOUTHWESTERN ASSAYERS & CHEMISTS, Inc.

REGISTERED ASSAYERS

. . .

FELIX K. DURAZO W.L. WRIGHT 4 AIZONA REG. NO. 5875 P. O. BOX 7517 TUCSON, ARIZONA 85713 710 E. EVANS BLVD. PHONE 602-294-5811

Continental Oil Company

Page 2

JOB . 009778 Continued

•	RECEIVED					
SANALE GOLD NUMBER OZ.*	SILVER OZ.*	LEAD	COPPER PPM	ZINC %		MOLYBDENUM
11657			35		E	ц
2002 11658 Nil	.74	1.66		1.03		15
ر 11659			ւրդ			5
<i>v - 4/</i> 11050			87			8
11501 Jacob			60			6
			84			20
						· ·
						•

Charge to Tucson Office.

TERUO AND

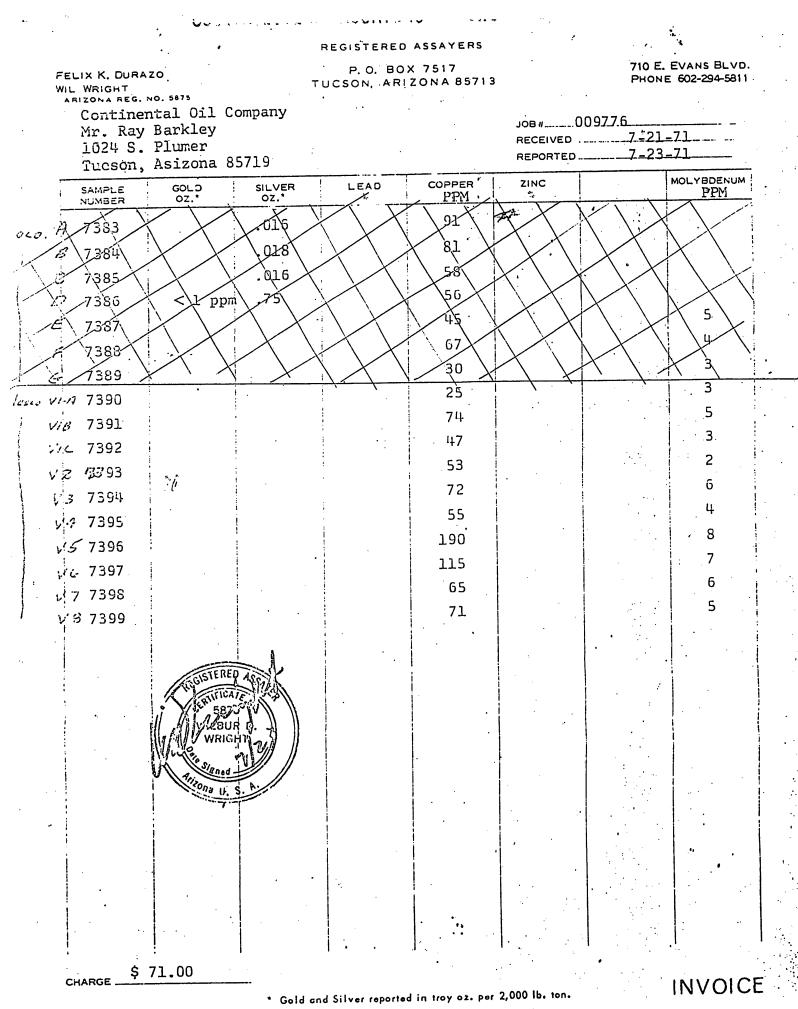
CAARGE \$ 152.00

INVOICE

SOUTHWESTERN ASSAYERS & CHEMISTS, Inc.

REGISTERED ASSAYERS

FELIX K. DURAZO WIL WRIGHT ARIZONA REG. NO. 5875

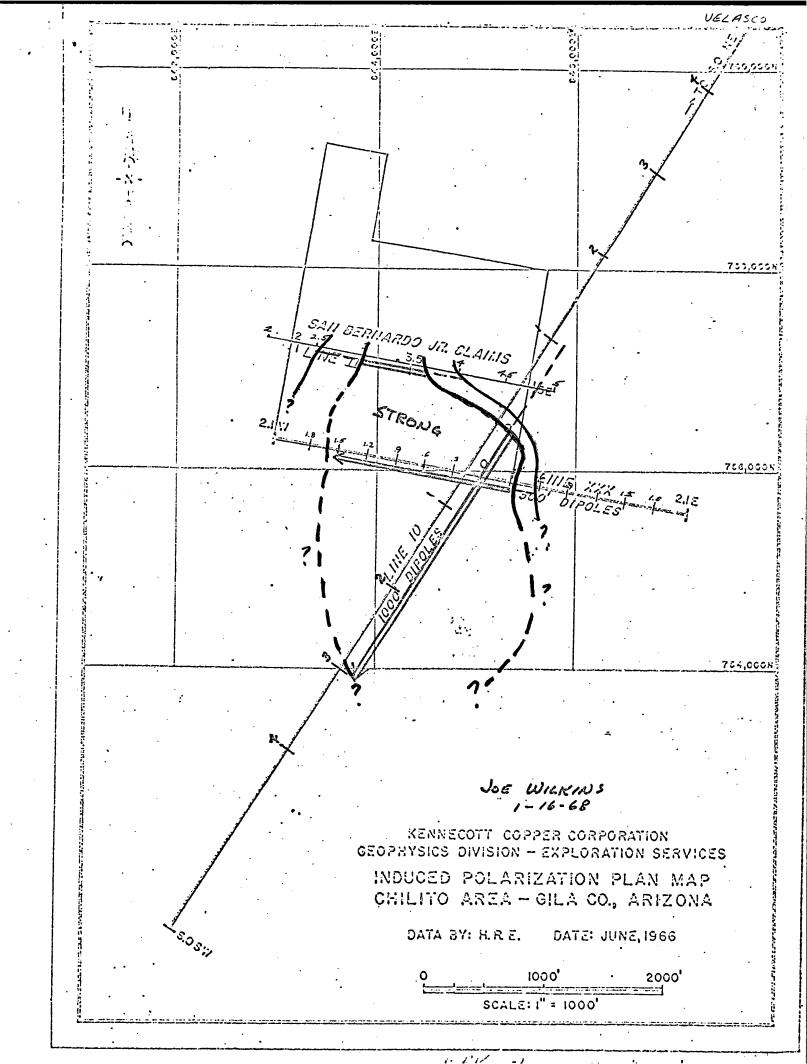

P. O. BOX 7517 TUCSON, ARIZONA 85713

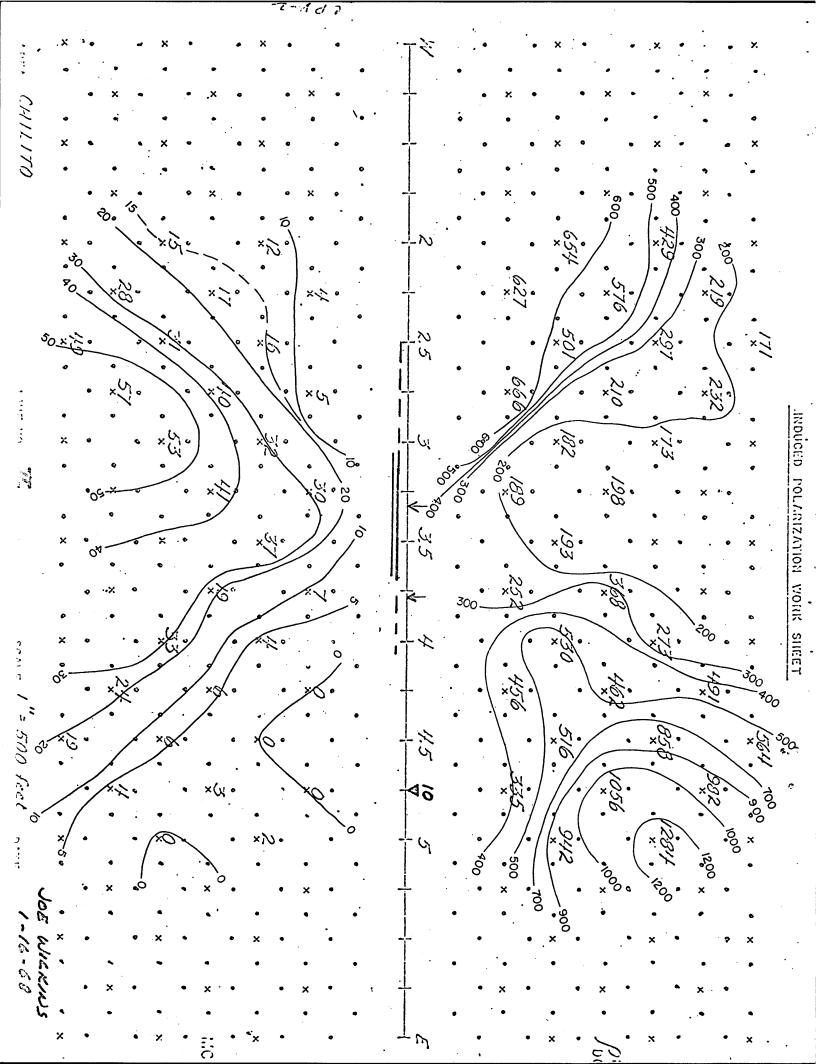
710 E. EVANS BLVD. PHONE 602-294-5811

Continental Oil Company

_{ЈОВ}" 009778 Mr. Ray Barkley 7-21-71 RECEIVED _ 1024 S. Plumer 7-24-71 REPORTED_ Rucson Arizona 85716 GOLD SANPLE SILVER COPPER PPM· MOLYBDENUM PPM LEAD ZINC NUMBER OZ. oz.* 7 132 4 *34/9* 11328 67 5 j-# 11529 68 6 1-12 11030 104 5 7-13 11531 78 3 *ソー:)-/*11532 .186 4 11833 (يەس مىز 90 4 +33 شار مرزمان 137 6 247 LL383 7 125 11 /~// 11350 178 4 J-V. 31637 72 5 7-10 11638 45 7 7-77 11639 5 74 11840 32 Ļ 5 042/ 22542 56 39 5 11542 27 Ļ 14.20 11043 5 1-2-1-22044 43 2-2511645 23 ц. 5 1-26 11543 47 5 1-27 11647 71 4 27 V-2%- 11348 3 36 7-28 11649 3 38 11.29 11650 4 48 1-10 116:A 7 78 1-3/ 11352 7 28 小二二 11653 3 35 1-35 11654 4 50 1-38,11655 6 49 1-39 11656

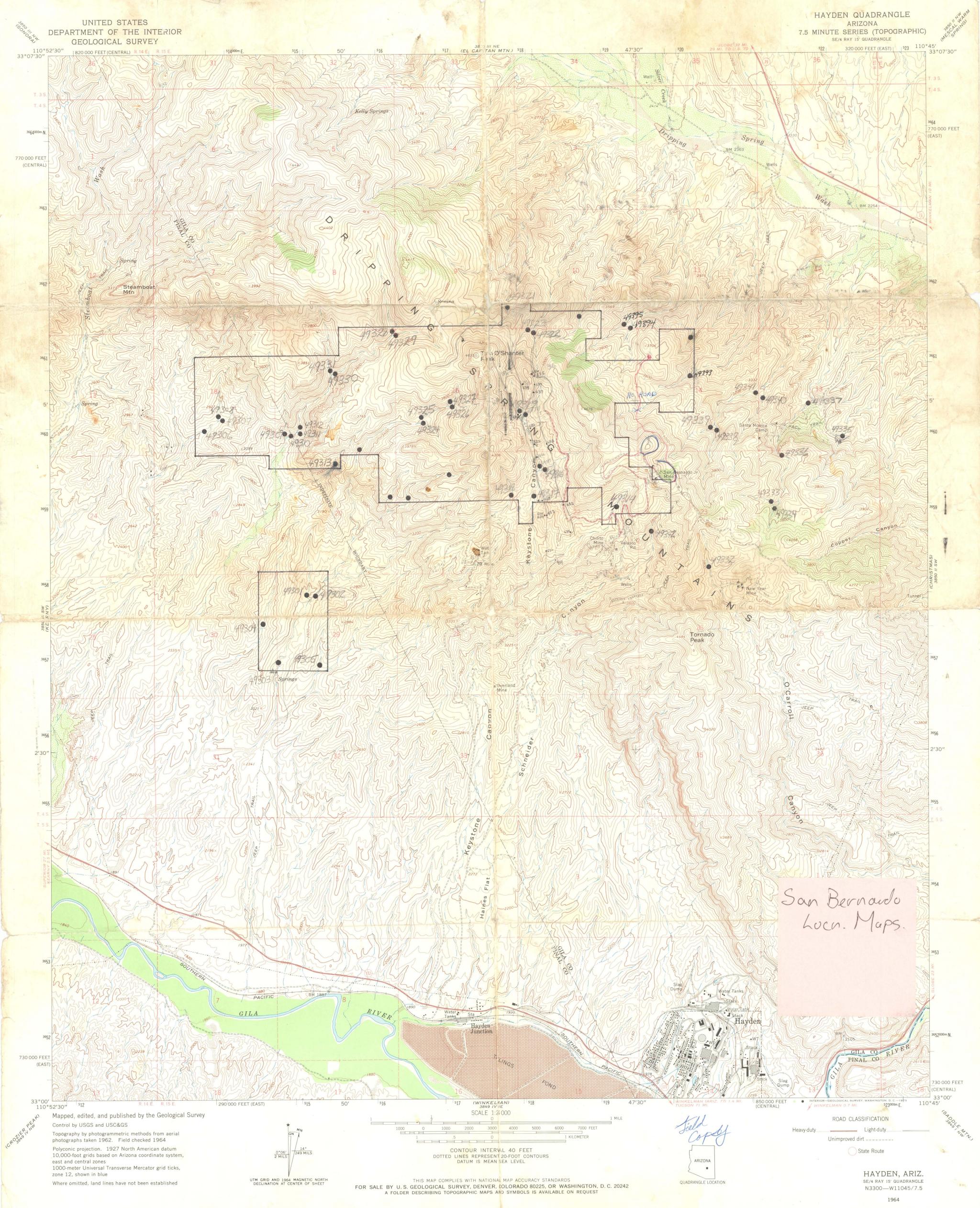
CHARGE




	nijenskom se manistan Andregonanova v sa sastana se sa sastana se sa				
			al of the different states at one of the processing approximation of the strength of the states and the strength of the states and the strength of the strengt	nan an	
					e a sudar Managera d
	an a sa a sa anna an san an sa an				
	n an an an an an ann an an an ann an ann an a	nan ann a stàite ann ann an tha an	(ii) The Control of States in the Control of States and Control	na ang ang ang ang ang ang ang ang ang a	*******
		nanna ann an Shannanna ann an Shannanna an Shannan an Shannan an Shannan an Shannan an Shannan an Shannan an Sh	d daar adam aa ah		
	· · · · · · · · · · · · · · · · · · ·			nen en	an an tao an
+	+	+		+	
		•		•	
and a state with a state and a state of the	a and a second			• • • • • • • • • • • • • • • • • • •	
			3 TERNO	1/28 *2341 2011H EK	
				TIAHHUU .H :NTIA	
 Manufacture d' el concer el contendad del manda d Enterna del manda del mand Enterna del manda d Enterna del manda del man Enterna del manda del ma Enterna del manda del man				I ONININ INONISAM	
an a	en e	nender (K. est. Allen andreast gest.), gestigt gigt af sit andre	· · · ·	an a	
· · · · ·	······································		······		
an an the many constrained because in the same and the second				anna ann a bhrann a chuir a chuirean	••••
		1996 - Carlo Martin Martin and Santa and			·
Geochemical Lab Report				* 1 1890-586 (105	Canada / Phone: (6 Telex: 04
Ceocuemical				Derton Ave	North Va

n dimensioner af de la sector de La

Bondar-Clegg & Company Ltd.


-

1.2 .5 . 6 1.2 3 WEST. EAS Q 300 300 — ×59) (×554 ×351 × 291 ×169/× 500 × 97-×92 ×71 100 ≈30/ ×133 ×83 ×25) 1/1(×111) (×1180) ×230/×590 £5% × ×22 × 8×51 EVI. *1485 1.5% 288/2662 2553 $\frac{p_0}{2\pi} \times 140 \times 11)$ ×49/73×75 x 221 638 ×24✓ x 035x 353 x 856 x x96 100 **x**60 ×69 ×55⁄ \x112 , *27/ ×1984 ×1269 × 33 ×. × 46 ×73 ×27 x × -1000 × ⁵00 .9 ð.9 1.5 1.2 · 6 · 1.5 .3 1.2 .6 .3 EAS 10 × ×11 ×17 ×14 ×2 ×2 ×4 × 8 <mark>ہ</mark> × ×!8 ×16 ×22 ×19 x ×2 ×3 ×2 ×9 PFE 20 24 x24 x21 18x19 11x2 ×4 ×7 ×2 ×26 1 "3⁴ ×25 \ x17 19:20 ×3 25 ×6 · × × =24 ×17 /.32 .34/ ×2 ×25 -10., ×32 *25 81% 120 × × x × × X × × х × × X MCF × × × × × × × X × × × × × × × × × ' × × × × × × × × ខ្ពុដ × · × × × × × × × ASTA CHILITO STATE ARIZON ALINE NO XXX DATA ON HR.F. DATE 6-22 TRANS_H___REC. 9. DIPOLE - DIPOLE ARRAY, P. J. Wienens . CP1. 3 1-16-68

3 Ē 0 л V 2 2 SOUTHWEST NORTHEA ₹ 1000 500 1.50G ×8911 ×24.5 χ. × × ×54 , OX ×(2, ×97 ×262 × ×430 ×39 F 109 ×332 ×(7) ×378 × × ૬ × ×(16) ×400 ×(4-15 ×414 × × × (29)×467 × × × × × સ્ટ × 3₀₀ 00 З 5 З ş **OUTHWEST** NORTHEAS 20, 10, 2 ×24 ×O × x × ,16 16 ×15 ×Д × × × 20 ×12 ×2 ×15 PFE ¥ × ́О × × ... × × × × x × × MOF × × × × × × × 22 × × × × × × × ů X × × × × × × -16-68 × Ó CHILITO ARIZONA v. 0.1 a 1.2 0:20! - DIPOL É. Ξ ABRAY

AMS 3850 III SE-SERIES V898

PROJECT REPORT FOR THE

SAN BERNARDO PROJECT, GILA COUNTY, ARIZONA

Ed Hasenohr

August 10, 1988

Westmont Mining, Inc. Tucson, Arizona

VELASCO CLAIMS: SUMMARY OF GEOLOGICAL AND GEOCHEMICAL REPORT, July and August, 1988

The Velasco claims are located in the Dripping Springs Mountains in sections 9, 10, and 14 through 23 in T4S, R15E. Evaluation of the claims for mining potential included the following:

- 1) Collection of 51 stream-sediment samples from which a heavy mineral concentrate was obtained. This concentrate was split and analyzed for Cu and Ag by atomic absorption spectroscopy, and Au plus 33 other elements by neutron activation analysis. Stream sediment sampling and heavy mineral separation was carried out by C. F. Minerals of Kelowna, B.C., and analytical services were provided by Bondar-Clegg of Vancouver, B.C.
- 2) Geologic examination of the Velasco claims and adjacent areas, including the Santa Monica Camp, by geologists of Westmont Mining, Inc., of Tucson, Arizona.
- 3) Collection of 151 rock-chip samples from the Velasco claims and adjacent areas, including the Santa Monica Camp. These samples were collected by geologists of Westmont Mining, Inc., and analyzed for Au and Ag by Mountain States Research and Development Corp., of Tucson, Arizona.

Three principal types of mineralization were investigated in the Velasco claims area: 1) quartz-pyrite veins containing galena, chalcopyrite and copper carbonates in skarn, 2) quartz-pyrite veins in a rhyodacite porphyry sill, and 3) quartz-pyrite veins contining galena, wulfenite and vanadinite that occur along the Keystone Canyon fault. Near-surface portions of type 1 veins have been heavily oxidized to a gossan that in places is goldbearing. Type 2 veins are associated with quartz-sericite alteration of the sill, and contain minor amounts of copper carbonates and trace amounts of gold.

INTRODUCTION

The Velasco claims are located in the Dripping Springs Mountains in sections 9, 10, and 14 through 23 in T4S, R15E. Evaluation of the claims for mining potential included the following:

- Collection of 51 stream-sediment samples from which a heavy mineral concentrate was obtained. This concentrate was split and analyzed for Cu and Ag by atomic absorption spectroscopy, and Au plus 33 other elements by neutron activation analysis. Stream sediment sampling and heavy mineral separation was carried out by C. F. Minerals of Kelowna, B.C., and analytical services were provided by Bondar-Clegg of Vancouver, B.C.
- 2) Geologic examination of the Velasco claims and adjacent areas, including the Santa Monica Camp, by geologists of Westmont Mining, Inc., of Tucson, Arizona.
- 3) Collection of 151 rock-chip samples from the Velasco claims and adjacent areas, including the Santa Monica Camp. These samples were collected by geologists of Westmont Mining, Inc., and analyzed for Au and Ag by Mountain States Research and Development Corp., of Tucson, Arizona.

The location of the stream-sediment samples is shown on Figure 3, and the location of the rock-chip samples on Figures 4 and 5. Results of the analyses of the stream sediment and rock-chip samples are included as separate tables with this report.

The following is a brief description of the geology, structure, alteration and mineralization of the Velasco claims area.

GEOLOGY

The geology of that portion of the Hayden quadrangle which encompasses the Velasco claims is shown on Figures 1 and 2. These figures are taken from Banks and Krieger (1977), and detailed descriptions of the rock units can be found in a report accompanying their map.

The oldest rocks exposed in the area of the Velasco claims are of Precambrian age and belong to the Apache Group, which consists of the Dripping Springs Quartzite and the overlying Mescal Limestone. Above the Apache Group is the Troy Quartzite. This unit is also of Precambrian age and forms prominent cliffs in both Schneider and Keystone Canyons. The Troy Quartzite is composed of cross-bedded, yellowish to reddish quartzite and pebble comglomerate. All of the Precambrian rocks are intruded by Precambrian Y sills and dikes of olive-gray-weathering diabase. Unconformably overlying the Precambrian section is the Late Cambrian Abrigo Formation, which consists mostly of thin-bedded, yellow-brown quartz arenite and siltstone. The Abrigo Formation is overlain by a thick sequence of sedimentary rocks, dominated by carbonate and shale beds, and consisting, in ascending order, of the Martin Formation, Percha Shale, Escabrosa Limestone, and Naco Limestone.

The Martin Formation is composed of light to dark gray, finegrained limestone and dolomite with nodules and layers of chert. However, the Martin tends to be sandy near its base, particularly when it disconformably overlies the Abrigo Formation, becoming a sandy dolomite to dolomitic quartzite. The Percha Shale is mapped with the Martin Formation, and consists of olive shale and clayey dolomite. Both the Martin Formation and Percha Shale are of Late Devonian age.

The overlying Mississippian Escabrosa Limestone is a cliffforming, medium gray, thick-bedded, fossiliferous limestone, locally converted to dolomite and containing chert nodules. Interbedded resistant limestone and less resistant shale characterize the Pennsylvanian-age Naco Limestone.

Small patches of Williamson Canyon Volcanics are found in the vicinity of the Velasco claims. These late Cretaceous volcanics consist mostly of dark-colored basaltic flows, flow breccias and volcaniclastics. Deposition of the volcanic rocks was followed by, and probably in part accompanied by, intrusion of dikes and sills of andesite to quartz latite porphyry. The dikes occur as parallel to subparallel swarms, with the most common orientation of the dikes in the vicinity of the Velasco claims being northeast-southwest, and 0 to 30 degrees north or south of east-west.

Rocks of the Dripping Spring Mountains have been arched into a broad, southeast-plunging anticline on which is superimposed an intricate fault pattern. In the area of the Velasco claims the range is cut by two north-south trending fault systems (Keystone and O'Carroll faults), and sets of northeast-southwest, eastwest, and northwest-southeast faults. The last set of faults is parallel to range-bounding faults, movement along which resulted in the formation of sedimentary basins to the northeast and southwest of the Dripping Spring Mountains. These basins contain unconsolidated to weakly cemented sands and gravels of late Tertiary to Quaternary age.

ALTERATION

Within the Velasco claims alteration assemblages are present in both the igneous and sedimentary rocks. Nearly all of the igneous rocks exhibit at least a weak propylitic alteration, which typically consists of partial replacement of feldspars by clays, and of biotite and hornblende by various mixtures of chlorite, epidote, and quartz. The grade, intensity and extent of alteration varies with dike type (e.g. Tql1 and Tql2 generally are more highly altered than Tr2a), and with the presence and development of quartz-sulfide veins. Igneous rocks containing prominent quartz-sulfide veins usually display a phyllic alteration assemblage in which feldspars are partly to completely altered to sericite; biotite and hornblende are altered to chlorite, sericite and quartz; and the groundmass is converted to a mixture of quartz and sericite.

Alteration in the sedimentary rocks is characterized by the development of skarn. The skarn is of two types: 1) massive, medium- to coarse-grained epidote-garnet-magnetite-calcite-quartz in carbonate beds adjacent to igneous dikes and sills, and 2) fine- to medium-grained diopside-calcite-quartz-tremolite-pyrite-pyrrhotite-magnetite developed as a replacement of carbonate-bearing beds that are associated with cross-cutting quartz-sulfide veins and igneous dikes.

The first skarn type is found as small, podlike masses that are sporadically developed in limestone and dolomite of the Martin, Escabrosa and Naco Formations. Skarns of the second type generally are restricted to areas of abundant quartz-sulfide veining. In the Velasco claims area this includes the zone of contact between the Abrigo and Martin Formations at the head of Schneider Canyon, and in the Escabrosa Formation in the Santa Monica Camp.

MINERALIZATION

Three principal types of mineralization were investigated in the Velasco claims area: 1) guartz-pyrite veins in skarn, 2) quartz-pyrite veins in a rhyodacite porphyry sill, and 3) quartz-sulfide-wulfenite-vanadinite veins along the Keystone The quartz-pyrite veins in skarn consist of vertical fault. quartz-pyrite veins with galena, chalcopyrite and copper carbonates that cut skarnified carbonate-bearing rocks. Where the veins are well developed, mineralization extends outward from the veins into the adjacent wallrocks, filling pore spaces and partially replacing skarn. The near-surface portions of the veins have been heavily oxidized resulting, in many cases, in the formation of a distinctive gossan. The gossan is composed of massive and spongy-textured hematite, limonite, jasper, quartz and manganese oxides, and trace to minor amounts of copper carbonates. In places the gossan is gold-bearing. Quartz-pyrite veins in skarn occur along the Abrigo-Martin Formation contact at the head of Schneider Canyon, and in Escabrosa Limestone in the Santa Monica Camp and in the north-central portion of section 21.

A sill of rhyodacite porphyry in the Santa Monica Camp is cut in places by quartz-pyrite veins. These veins are associated with sericite-quartz alteration of the sill. Some of the veins are stained with copper carbonates and carry trace amounts of gold.

Quartz-pyrite veins containing galena, wulfenite and vanadinite occur along the Keystone Canyon fault, particularly where the fault is associated with altered porphyry dikes. Wallrock for the veins includes Escabrosa and Naco limestones, and Precambrian diabase, as well as altered porphyry.

San Bernardo Project

Results from rock-chip gold and silver assay

Sample #	<u>Au (ppm)</u>	Ag (ppm)
49348	0.07	1.27
49349	0.10	0.55
49350	0.27	ND
49351	0.07	0.58
49352	0.82	2.37
49353	0.03	0.41
49354	0.01	0.31
49355	0.07	0.93
49356	0.03	ND
49357	0.03	ND
49358	0.07	3.19
49361	ND	0.89
49362	0.03	ND
49363	0.05	5.52
49364	1.85	25.06
49365	0.58	36.75
49366	0.55	7.27
49367	0.10	4.39
49368	ND	4.87
49369	0.41	9.53
49370	0.24	22.42
49371	0.23	18.34
49372	0.14	8.54
49373	1.71	34.64
49374	0.10	2.98
49375	0.14	3.50
49376	12.82	48.31
49377	3.22	107.76
49378	0.31	2.57
49379	0.51	10.90
49380	ND	4.32
49381	0.55	27.43
49382	0.96	3.02
49383	0.07	8.78

Sample #	<u>Au (ppm)</u>	Ag (ppm)
49384	0.69	32.43
49385	0.89	52.46
49386	0.82	16.80
49388	0.34	14.33
49389	2.47	25.71
49390	0.21	0.41
49391	0.82	1.37
49392	0.69	58.28
49393	0.07	4.46
49394	0.06	ND
49395	0.07	ND
49396	0.27	0.41
49397	0.14	10.08
49398	0.20	5.21
49404	0.07	11.66
49405	0.07	0.69
49406	0.89	92.22
49407	0.14	9.39
49408	0.03	8.57
49409	0.24	25.37
49410	2.50	229.72
49411	0.07	6.51
49419	0.24	9.26
49420	0.14	14.06
49421	0.21	89.83
49430	0.55	0.69
49431	0.07	1.37
49432	3.15	31.54
49433	1.23	21.74
49434	2.54	18.99
49435	7.82	25.92
49436	9.87	12.89
49437	0.27	3.84
49438	49.58	5.69
49439	3.15	17.07
49440	0.06	3.77

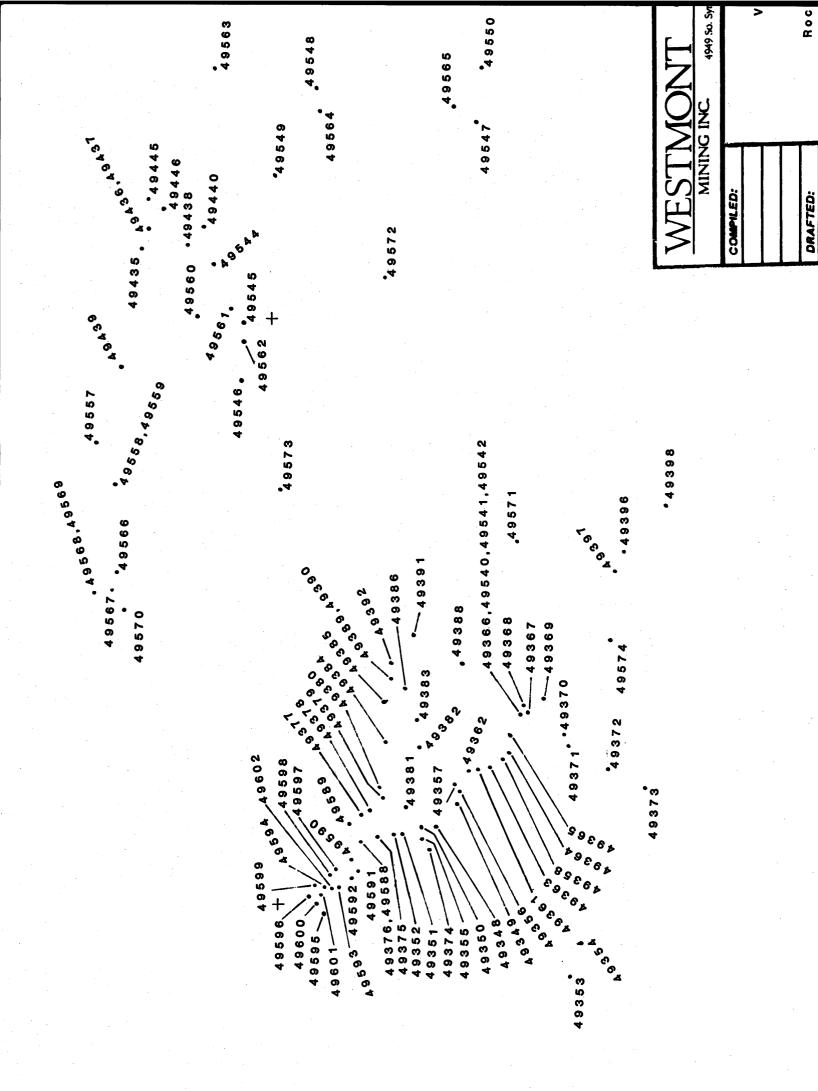
Sample #	Au (ppm)	Ag (ppm)
49445	ND	ND
49446	0.03	0.89
49528	ND	4.32
49540	0.03	0.82
49541	3.84	6.45
49542	2.13	7.13
49544	0.02	0.27
49545	11.04	62.06
49546	1.68	71.45
49547	0.03	ND
49548	0.85	4.18
49549	0.03	ND
49550	0.03	ND
49551	0.02	ND
49552	0.02	ND
49557	0.02	3.87
49558	0.01	ND
49559	0.01	0.10
49560	0.27	13.44
49561	1.03	ND
49562	1.37	13.54
49563	ND	0.82
49564	ND	ND
49565	ND	0.07
49566	0.01	0.48
49567	0.01	2.22
49568	0.49	19.82
49569	0.03	1.17
49570	0.24	2.57
49571	0.31	13.95
49572	ND	ND
49573	ND	ND
49574	0.03	0.41
49578	ND	1.82
49579	ND	0.38
49580	ND	0.10

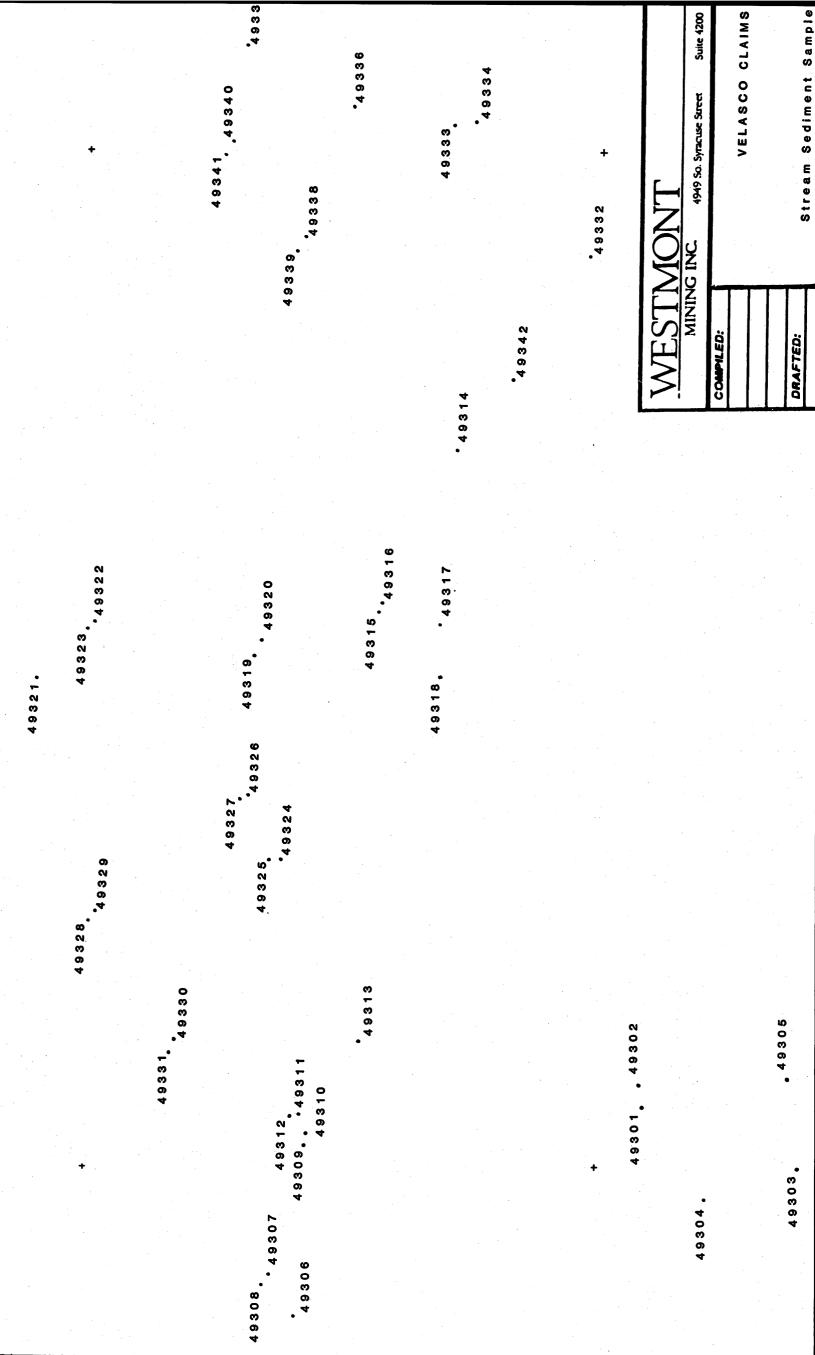
Sample #	<u>Au (ppm)</u>	Ag (ppm)
4 9 581	ND	0.69
49582	0.02	7.51
49583	ND	0.14
49584	0.03	2.91
49588	0.24	4.73
49589	0.07	4.15
49590	0.01	ND
49591	1.75	11.90
49592	0.03	1.75
49593	0.01	ND
49594	0.03	4.15
49595	0.01	0.89
49596	ND	0.03
49597	0.07	3.12
49598	0.10	3.60
49599	0.03	ND
49600	0.01	ND
49601	0.01	0.86
49602	ND	ND
49615	0.02	ND
49616	ND	1.23
49617	0.72	15.98
49618	ND	0.72
49619	0.01	3.22
49620	0.01	0.45
49621	ND	0.10
49622	ND	ND
49623	ND	1.58
49624	ND	ND
49625	ND	ND
49626	ND	ND
49627	0.03	ND
49628	ND	92.81
49629	ND	6.99
49630	ND	8.98
49631	ND	0.65

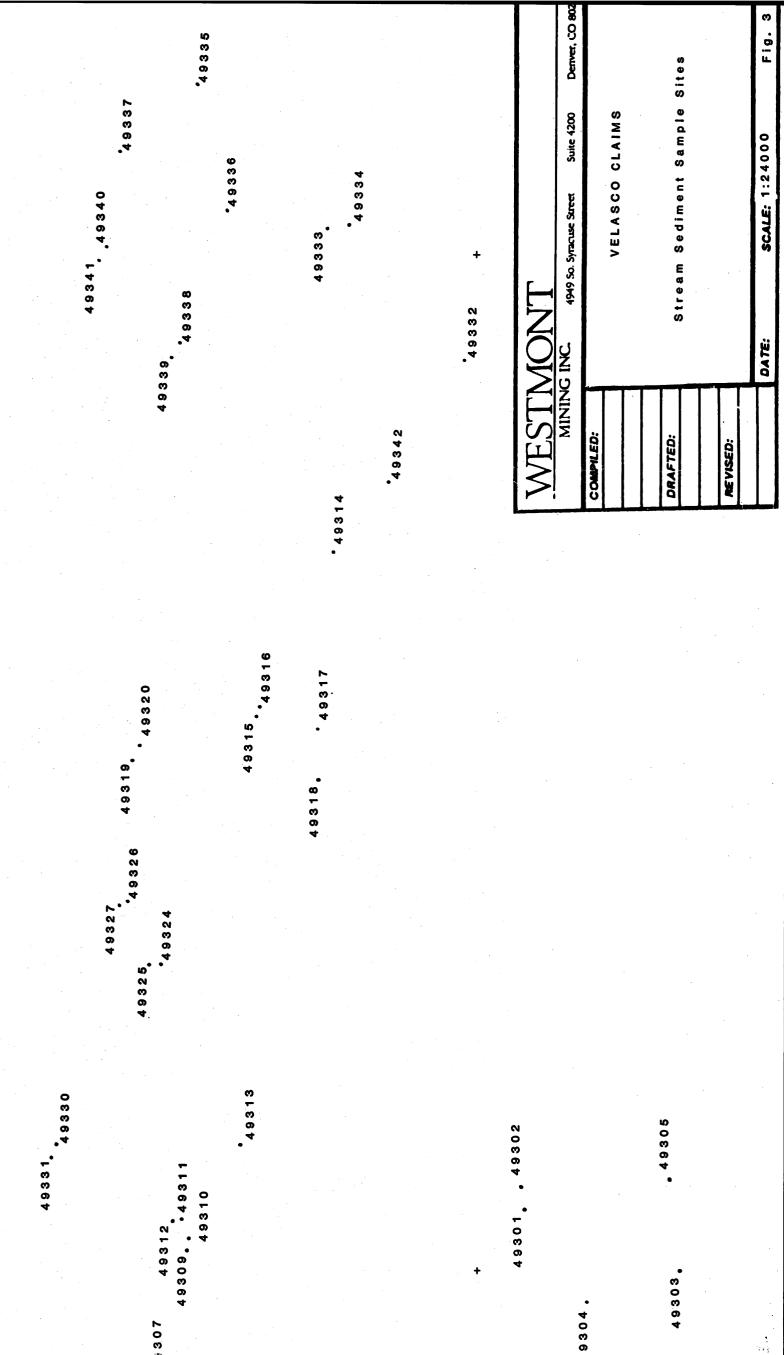
Sample #	Au (ppm)	Ag (ppm)
49632	ND	ND
49633	ND	ND
49634	0.01	ND
49635	ND	ND
49636	ND	ND
49637	0.07	ND
49638	0.01	ND
49639	0.01	ND
49640	0.02	0.10
49652	ND	ND

San Bernardo Project

Results from stream sediment gold-silver-copper assay

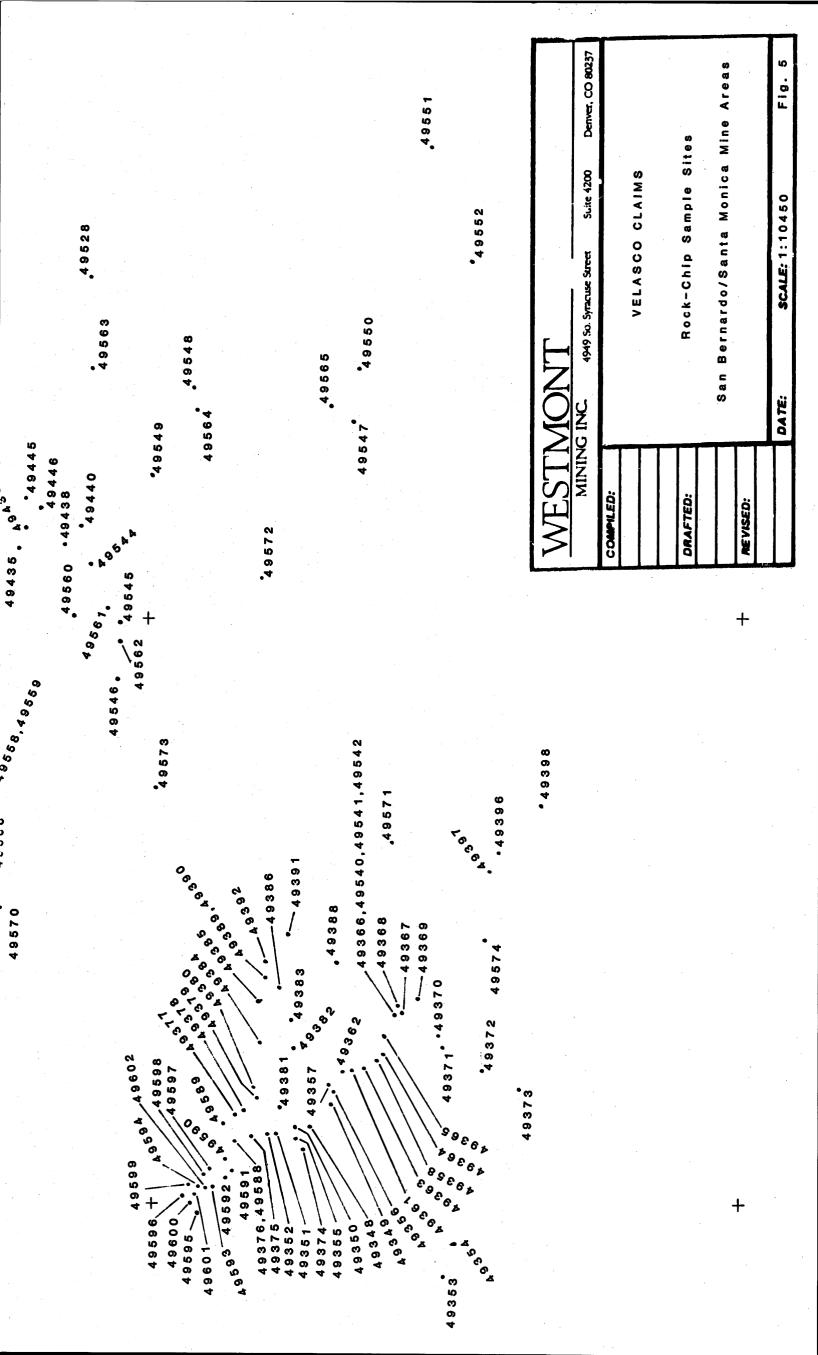

Gold analysis: Neutron activation

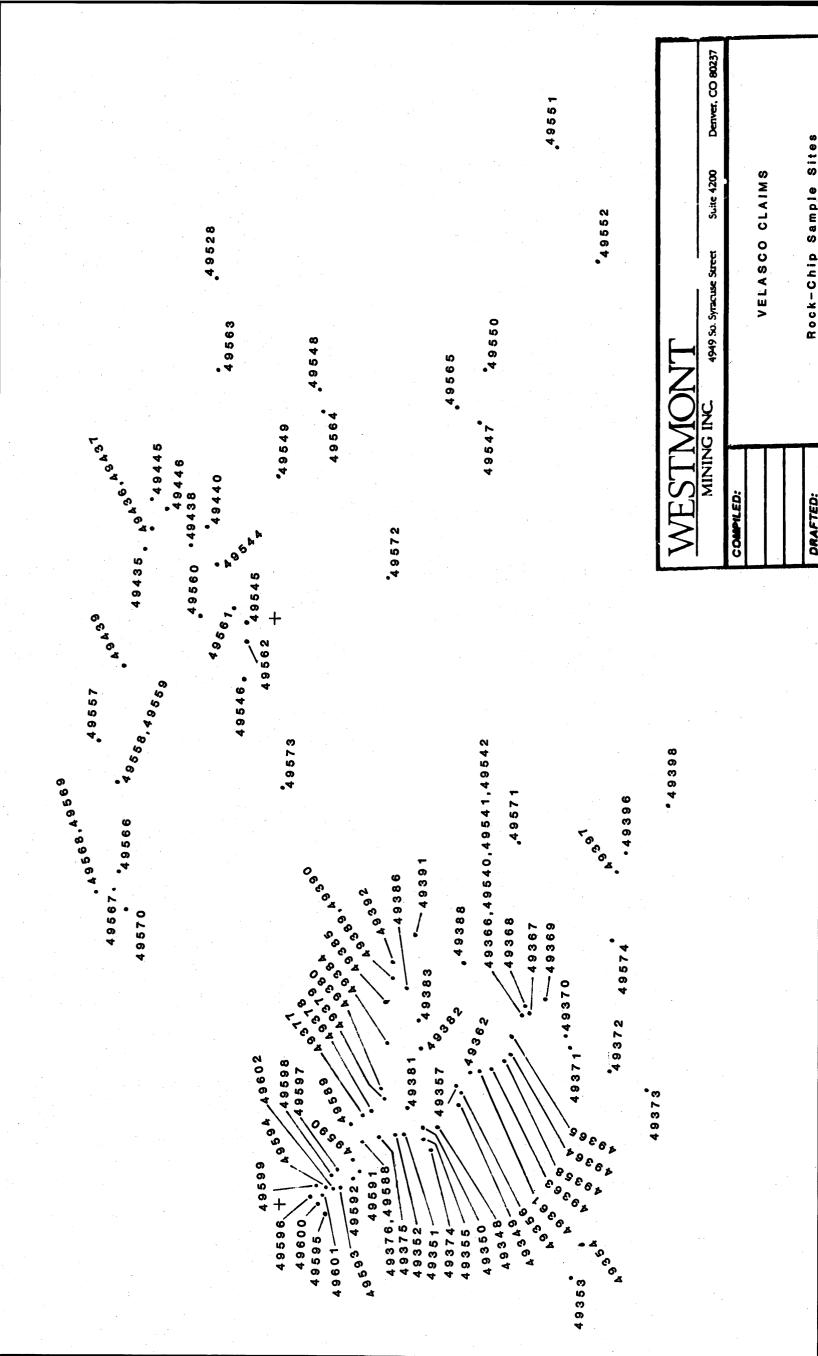

Silver and copper analysis: HNO3-HC1 hot extraction and atomic absorption *Two gold values for a single sample represent instances when the sample was split in the lab into two unequal fractions in order to fit in the lab vials.


Sample #	Au (ppb)	Ag (ppm)	Cu (ppm)
49301	<5	<0.1	107
	6		
49302	15	<0.1	139
	250		
49303	6	<0.1	108
	16		
49304	3190	18	123
49305	6	0.1	184
49306	71	<0.1	256
49307	<20	0.2	202
49308	350	<0.1	158
49309	<24	0.1	135
49310	<20	<0.1	161
49311	<19	0.1	317
49312	<13	٢٥.1	262
49313	12	(0.1	338
49314	<24	0.3	538
	480		
49315	45	0.3	63
	78°		
49316	<19	6.9	129
49317	3210	0.3	115
	<24		
49318	862	<0.1	1500
49319	12	1.5	640
49320	1170	0.1	30
	480		
49321	10	<0.1	89

Sample #	Au (ppb)	Ag (ppm)	Cu (ppm)
49322	78	<0.1	39
	6150		
49323	23	(0.1	160
49324	3210	0.1	222
49325	862	<0.1	64
49326	430	2.1	665
49327	57	<0.1	295
49328	190	2.4	206
49329	<18	0.3	155
49330	44	21	415
49331	12	0.5	350
49332	< 5	<0.1	51
49333	5	2.9	110
49334	<5	0.3	87
49335	19	26	1365
49336	23	0.1	106
	10		
49337	839	21	1840
49338	10300	5.8	1700
49339	230	1.5	139
49340	2750	3.2	218
49341	430	5.6	92
49342	19900	>50	940

0 Y- +3 · 1-42 0 7-32 0 1- 31 0 1-3 V-37 0 V-36 V-30 \$~---\$~ 1.27.4 V-47 01-3 100 1-12 V-4 ى لىز \\ Velasco Prospect By. H.G. ĸ 7-20-71 1-17 scale 1 - 1000' 10 ĨN Explanation Terbiory Rhyo-docite Ditos Ś /- 10 0 Paleozoic Limestones (Undivided) Precambrian Quartzites (Undivided) Diabase I.P. ANOMaly



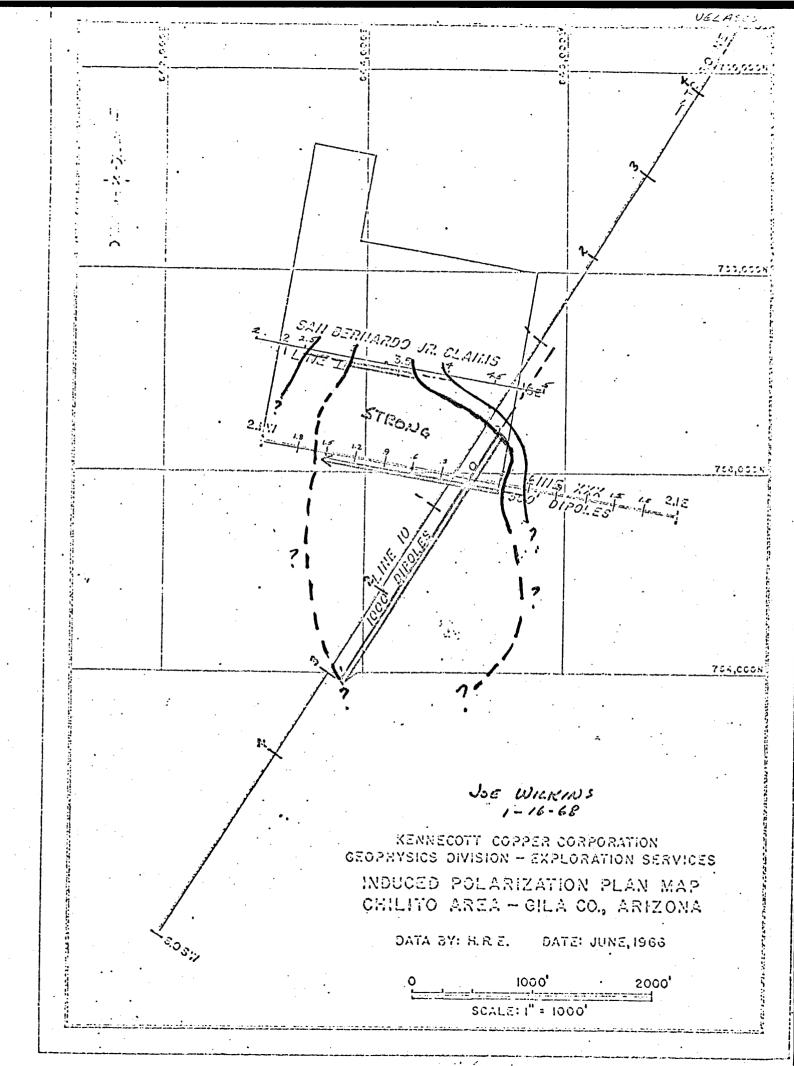


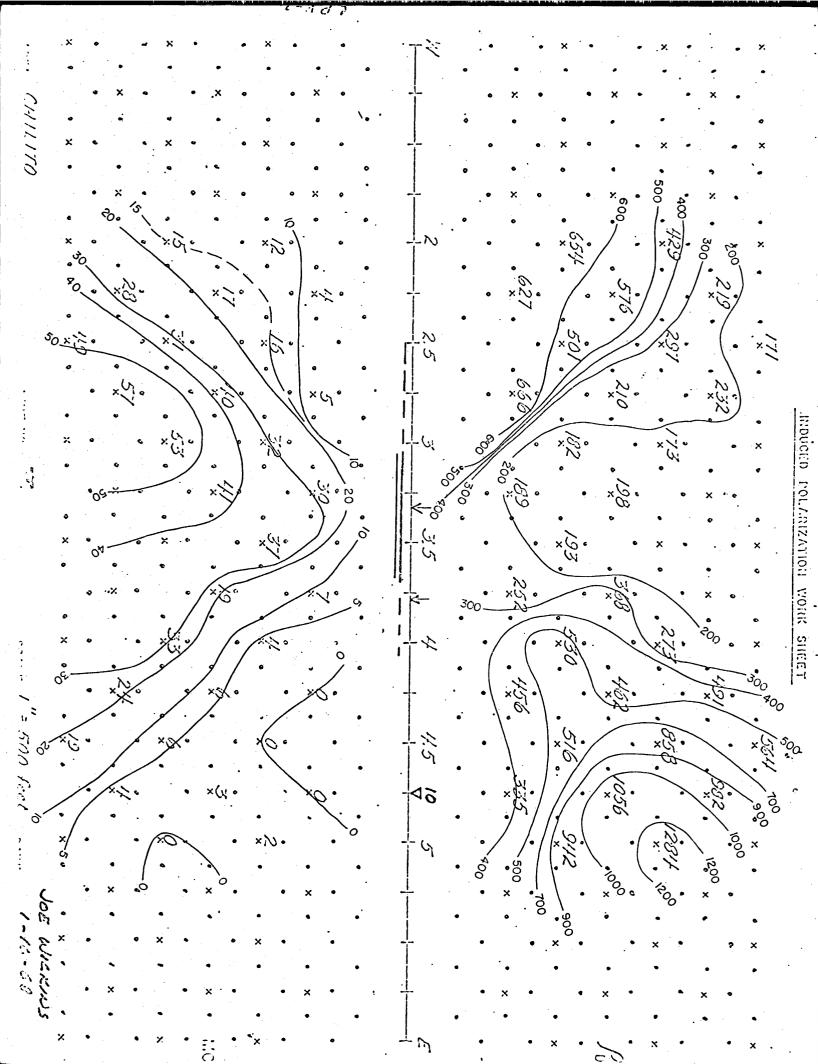
.49329

.49322

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. Canada V7P 2R5 Phone: (604) 985-0681 Telex: 04-352667

~


4.,


ŧ

٠.

WESTMONT MINING INC. ATTN: H. DUMMETT #12-2341 SOUTH ERIEBUS TUCSON, AZ. 85713

t

WEST EAS § 300 300 x125/300 500 × 37 100 × 32 · ×71 ×59) \ (x554 x351 x \$91 x13X x83 \$55 ×25) 1/1(×111/ (xITSO ×230//×580 × ×30/ <u>ి:</u> 1:85 ×22 × 3×51 ×140 25% έN× 228 ×652 ×593 ×24 · x49/ ્રેટ્કેટ્રે 100 x96 633 × 73×75 "ZZI 2234 2560 × 10 ×27/ - 1000 × ×55, 1984 ×. \x112 ×93 x1269 ×15 x 46 ×73 ×27 × × - 1000 × × . 10 ୃତ 1.2 .G · 1.5 .9 ..3 .3 1.2 1.3 .6 WESt EAS 10 ×11 ×17 ×14 ×8 ×2 ×2 ×4 × жО x ×!S ×16 ×22 ×19 ્રંગ ×3 ×2 ×Z ×24 ×21 13×19 11 2 211 ×4 ×2 ×7 ztz ::34 x25 \ x17 19,20 .26 ::3 x 5 25 × *.**?**5 1.32 ×34) N x24 x17 ×2. 10. ×32 :25 81% x × × X x x × × X × × × × MCF × × × × × . × x × × X × × × × × X × × × × ' × × × x × × <u>с</u> х х × × . * × · × · x * × x CHILITO STATE ARIZON A LINE NO XXX DATA DY HR.F. DATE 4-22-44 -, DIPOLE - DIPOLE ARRAY, P. ALLO 1.2 000, 000-9 300 J. WILKINS 2123 . . . 1-16-68

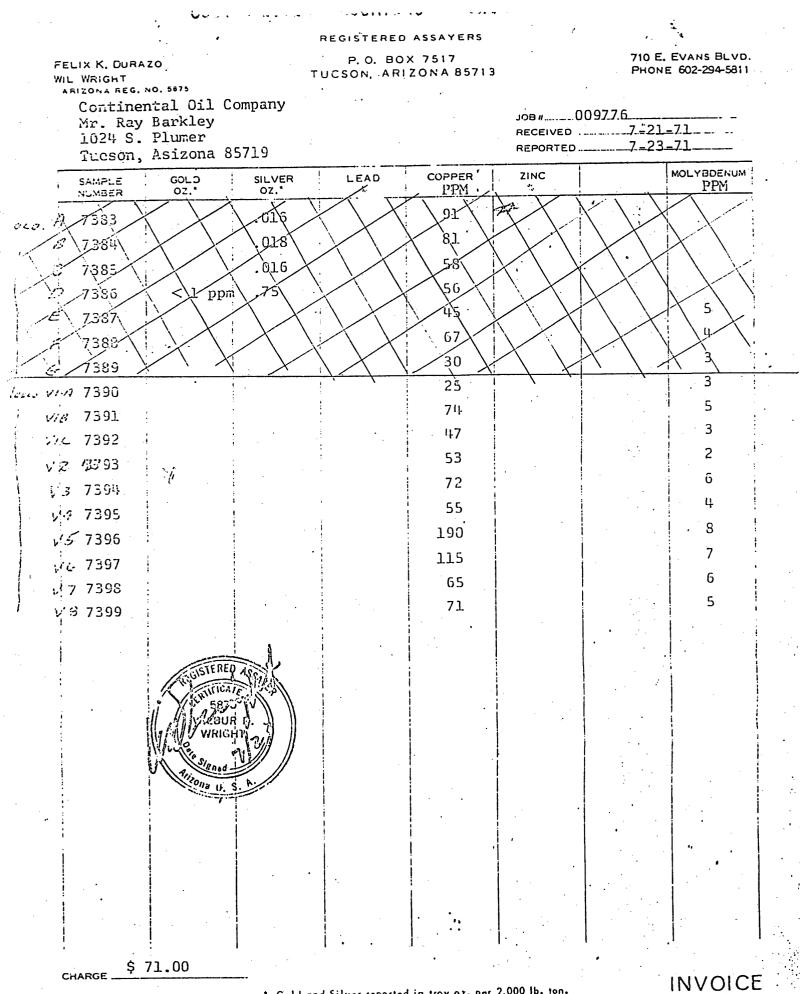
3 ××× V Ë 0 n V 4 2 4-SOUTHWEST NORTHEA 300 . 500 500 ×3.2 50G ×245 ×SI × · · × × ×54 ×(2 <u>, i</u> ×971 ×282 × \cap ×(7) ×430 F109 ×39 ×332 ×378 × × × 6 ×(16) ×(4-15 400 × ×414 × × \mathcal{D} (29)×461 × 1 2 × × × × ... × 30 400 300 20 З 5 2 4 ÷ OUTHWEST NORTHE 605 ×24 × X × ×С ,16 16 ×15 ×Д × × 23 × 20 ×12 ×15 PFE × 2 $\tilde{\mathbf{x}}$ ×2 O× * × 2 уĸ × × × 2 × × × 2 :: × × 2.1CF × × X × X × ŵ * × × × × WILKINSS S × × × × ÷ × × × × -16-ITO 01 Ô N A 21.2 0.1 01201

SOUTHWESTERN ASSAYERS & CHEMISTS, Inc.

REGISTERED ASSAYERS

P. O. BOX 7517 TUCSON, ARIZONA 85713

710 E. EVANS BLVD. PHONE 602-294-5811


:

. .

FELIX X. DURAZO WIL WRIGHT ARIZONA REG. NO. 5875

CHARGE ____

Arizona 85/15		Mr. Ray 1024 S.			•	•	JOB " 0(RECEIVED REPORTE	7-21-7	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · ·	SANFLE (GOLD	SILVER	LEAD	COPPER PPM	i ZINC		MOLYBDENUM
1000 11028 67 5 1000 1000 5 1000 1000 5 1000 1000 5 1000 1000 5 1000 1000 5 1000 1000 5 1000 1000 5 1000 1000 5 1000 1000 5 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10000 1000 1000		/11327							i
100, 11329 68 6 $7-42, 11010$ 104 5 $7-42, 11331$ 78 3 $9-50, 11332$ 186 4 $4-50, 11332$ 186 4 $4-50, 11332$ 186 4 $4-50, 11332$ 190 4 $4-50, 11332$ 137 6 $4-50, 11332$ 125 7 $4-50, 11333$ 125 7 $4-50, 11333$ 125 7 $4-50, 11333$ 125 7 $4-50, 11333$ 125 7 $4-50, 11333$ 125 7 $4-50, 11333$ 125 7 $4-50, 11333$ 125 7 $4-50, 11333$ 137 5 $4-50, 11640$ 32 4 $4-50, 11643$ 27 4 $4-50, 11643$ 47 5 $9-32, 11643$ 27 4 $4-32, 11643$ 27 4 $9-32, 11643$ 38 3 $9-32, 11643$ 38 3 $9-32, 1$						1			
7-42 11000 104 5 7-50 11031 78 3 9-50 11032 186 4 7-50 11033 90 4 7-50 11033 90 4 7-50 11033 90 4 7-70 11033 125 7 7-70 11035 178 4 7-70 11035 72 5 7-70 11035 72 5 7-70 11035 72 5 7-70 11035 72 5 7-70 11035 74 5 7-70 11035 74 5 7-70 11005 32 4 7-70 11000 39 5 7-70 11005 23 4 7-70 11005 23 4 7-70 11005 23 4 7-71 1005 71 5 7-72 11047 71 5 7-72 11047 71 5 7-72 11047 71 5 7-72 11047 71 5 7-72 11047 71 5 7-72 11047 </td <td>-</td> <td>1. The second /td> <td></td> <td> </td> <td>•</td> <td>4</td> <td></td> <td></td> <td>:</td>	-	1. The second		 	•	4			:
4 > 11331 78 3 $4 > 20 > 211332$ 186 4 $4 > 211332$ 186 4 $4 > 211332$ 137 6 $4 > 211332$ 125 7 $4 > 211332$ 125 7 $4 > 211332$ 125 7 $4 > 211332$ 125 7 $4 > 211332$ 125 7 $4 > 211332$ 125 7 $4 > 211333$ 45 7 $4 > 211333$ 45 7 $4 > 211333$ 45 7 $4 > 211340$ 32 4 $4 > 211340$ 36 5 $4 > 211643$ 27 4 $4 > 211643$ 47 5 $4 > 211643$ 27 4 $4 > 27$ 4 36 $4 > 27$ 4 38 $4 > 27$ 4 7 $4 > 27$ 4 7 $4 > 27$ 4 7 $4 > 27$ 7 4	•				•	· ·			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			· · • • • • • • • • • • • • • • • • • •			1 .			1
322 42333 337 6 125 7 72 74 5333 74 56 74 56 74 39 72 44 72 44 72 1643 71647 71 727 44 728 11649 7421643 77 742 11643 77 78 77 77			:		:	1			3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•						4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 1 1 1		•	i .	• • • • • • • • • • • • • • • • • • • •
4^{-1} 11637 72 5 4^{-1} 11633 74 5 4^{-1} 11639 74 5 4^{-1} 11639 32 4 4^{-1} 11649 32 4 5^{-1} 11642 39 5 5^{-1} 11643 27 4 4^{-1} 11643 27 4 4^{-1} 11643 27 4 4^{-1} 11643 27 4 4^{-1} 11643 27 4 4^{-1} 11643 27 4 4^{-1} 11643 27 4 4^{-1} 11643 47 5 4^{-1} 11643 47 5 4^{-1} 11643 47 5 4^{-1} 11643 27 4 4^{-1} 11643 36 3 4^{-1} 11643 38 3 3 4^{-1} 11653 28 7 4			<i>"</i>					•	•
$/-\tau_c$ 11533 7 $/-\tau_c$ 11839 74 5 $/-\tau_c$ 11839 74 5 $/-\tau_c$ 11839 32 4 $/-\tau_c$ 11840 32 4 $/-\tau_c$ 11840 56 5 $/-\tau_c$ 11842 39 5 $/-\tau_c$ 11642 39 5 $/-\tau_c$ 11643 27 4 $/-\tau_c$ 11643 43 5 $/-\tau_c$ 11643 47 5 $/-\tau_c$ 11643 47 5 $/-\tau_c$ 11643 47 5 $/-\tau_c$ 11643 27 4 $/-\tau_c$ 11643 27 4 $/-\tau_c$ 11643 38 3 $/-\tau_c$ 11653 7 7 $/-\tau_c$ 11653 28 7 $/-\tau_c$ 11654 35 3 $/-\tau_c$ 11655 50 4									
$\gamma + \gamma_1 = 11859$ 74 5 $\lambda + \gamma_1 = 11840$ 32 4 $\lambda + \gamma_1 = 11841$ 56 5 $(-1, 2) = 11642$ 39 5 $(-1, 2) = 11643$ 27 4 $(-2, 2) = 11643$ 43 5 $(-2, 2) = 11643$ 47 5 $(-2, 2) = 11643$ 27 4 $(-2, 2) = 11643$ 27 4 $(-2, 2) = 11643$ 27 4 $(-2, 2) = 11643$ 27 4 $(-2, 2) = 11643$ 27 4 $(-2, 2) = 11643$ 27 4 $(-2, 2) = 11643$ 27 4 $(-2, 2) = 11643$ 36 3 $(-2, 2) = 11643$ 38 27 $(-2, 2) = 11643$ 38 3 $(-2, 2) = 11654$ 38 3 $(-2, 2) = 11654$ 35 7 $(-3, 2) = 11655$ 50 4						•	•		5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									· · · · · · · · · · · · · · · · · · ·
J-AR11642 39 5 M-JO11643 27 4 M-JO11645 43 5 M-JO11645 23 4 M-JO11647 71 5 M-JO11648 27 4 M-JO1164 36 3 M-JO1164 38 3 M-JO11650 38 7 M-JO11651 28 7 M-JO11653 35 3 M-JO11654 35 3		· ·				1 			•
>->> 11643 27 4 >->> 11643 43 5 >->> 11645 23 4 >->> 11645 23 4 >->> 11645 23 4 >->> 11645 23 4 >->> 11645 23 4 >->> 11645 23 4 >->> 11647 71 5 >->>> 11647 71 5 >->>> 11648 27 4 >->>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>									· · · · · · ·
7-2-41.644 43 5 $7-15.51645$ 23 4 $7-26-1647$ 47 5 $7-27-11647$ 71 5 $7-26-11647$ 71 5 $7-26-11647$ 27 4 $7-26-11649$ 36 3 $7-26-11649$ 36 3 $7-26-11650$ 38 3 $7-37-1152$ 78 7 $7-35-11653$ 28 7 $7-35-11654$ 35 35 $7-35-11654$ 50 4							•	•	
$\gamma_{-1} \leq 11645$ 23 4 $\Lambda_{22} \leq 11645$ 47 5 $\gamma_{-2} \gamma \geq 11647$ 71 5 $\gamma_{-2} \gamma \geq 11647$ 27 4 $\gamma_{-2} \gamma \geq 11647$ 27 4 $\gamma_{-2} \gamma \geq 11649$ 36 3 $\gamma_{-2} \gamma \geq 11649$ 36 3 $\gamma_{-2} \gamma \geq 11650$ 78 7 $\gamma_{-3} \gamma \geq 11653$ 28 7 $\gamma_{-3} \gamma \geq 11654$ 35 3 $\gamma_{-3} \gamma \geq 11655$ 50 4									
47 5 $7-27$ 110-7 71 5 $7-27$ 110-7 71 5 $7-27$ 110-7 27 4 $7-26$ 11609 36 3 $7-26$ 11609 36 3 $7-26$ 11000 38 3 $7-26$ 11001 98 7 $7-37$ 11052 78 7 $7-37$ 11053 28 7 $7-37$ 11653 35 3 $7-37$ 11653 50 4						· ·			•
$y-2\gamma$ 11047 71 5 $y-2\gamma$ 11047 27 4 $y-2\gamma$ 11049 36 3 $y-2\gamma$ 11050 78 7 $y-3/$ 11052 78 7 $y-3/$ 11653 28 7 $y-3/$ 11654 35 3 $y-3/$ 11655 50 4					i i		•		4
V-2/-2 11548 27 4 $V-2/2$ 11649 36 3 $V-2/2$ 11650 38 3 $V-2/2$ 11650 38 3 $V-3/2$ 11052 78 7 $V-3/2$ 11653 28 7 $V-3/2$ 11653 35 3 $V-3/2$ 11655 4			•				•		5
$y-2\xi$ 11649 36 3 $y-24$ 11650 38 3 $y-3t$ 11054 9 9 $y-3t$ 11552 78 7 $y-3t$ 11653 28 7 $y-3t$ 11654 35 3 $y-3t$ 11655 50 4									•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							•		
V-13 11054 91 91 91 V-3/ 11052 78 7 V-32 11053 28 7 V-35 11054 35 3 V-38 11055 50 4									:
9-3/ 11052 78 7 9-32 11653 28 7 9-35 11654 35 3 9-35 11655 50 4					·		•		
11653 28 7 1-5511654 35 3 1/-3611655 50 4				а					
7-25 ⁻ 11654 7-36 11655 50 4	•	· · · · · ·		•				•	-,
y-38 11655 4				•		1			
				•		.			
49 6		· · · · · · · · · · · · · · · · · · ·							
	! ز- ۱	11050				. 49			6

* Gold and Silver reported in troy oz. per 2,000 lb. ton.

04-+3 7-42 0 1-31 0 1- 51 01.1 *V-37* 0 V.36 9/ 1-30 1-20 1-1-8 1.27. 4 V. -7 0.2 1-3A 91-12 V-4 215 Y-13A Velasco Prospect By. H.G. ÿ.16 7-20-71 Scale 1= 1000' 1-118 W. Explanation Terlisry Rhyo-docita Ditos ŀ 1.10 Paleozoic Limestades (Undivided) Precambrian Quartzites (Undivided) Diabase TP ANOMALY

SCUTHWESTERN ASSAYERS & CHEMISTS, Inc.

REGISTERED ASSAYERS

FELIX K. DURAZO N.L. WRIGHT AAIZONA REG. NO. 5675 P. O. BOX 7517 TUCSON, ARIZONA 65713

710 E. EVANS BLVD. PHONE 602-294-5811

Continental Oil Company

Page 2

JOB# 009778 Continued

	• • • • •			RECEIVED REPORTED		
SANGALE GOLD Number Oz.*	SILVER OZ.*	LEAD	COPPER PPM	ZINC		MOLYBDENUM
			35			 Lj.
Niless Nil	.74	1.56		1.03	•	18
j		1	ւլեր	:		5
V		1 1 1 1	87	, j		8
ALL PROPERTY AND			60			6
			84	τ		20
				i		•

Charge to Tucson Office.

CARGE \$ 152.00

INVOICE

DIABASE (406)

₩. RITE 4®

sample # Au (ppm) Ag(ppm) ŧ 0 10 0.45 0.65 0.10 0.03 0.41 0.69 0.07 0.14 14.06 89.83 0.21 0.02 17.21 BASALT (Kw) ND ND ND 1.17 0.29 0.14 ND 0.03 ND 0.10 ND 0.03 1.34 0.03 72.69 0.24 5.62 0.07 2.5 210.24 0.48 0.21 5.83 BRECCIA 乡 0.21 0.41 0.03 8.57 O WILSON JONES COMPANY G7504 GREEN MADE IN U.S.A

$\begin{array}{llllllllllllllllllllllllllllllllllll$	GOSSAN	. · · ·	2 ⁻	3	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	sample #	Au (ppm)	Ag (ppm)		• • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49.388	0.34			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49398				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49399				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49400				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.55			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49432	3.15			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47433 49 11211		21.74		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r 1 tot 11 au 2 s				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49436				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49465				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49505 (ss)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49506 (Dm)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49507 (Dm)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
49545 (Me) 11.04 62.06 49546 (Me) 1.68 71.45 49548 0.85 4.18 49557 (Me) 0.027 13.44 49560 0.027 13.54 49562 1.37 13.54 49568 49571 1.377	49511 (Dm)				
49546 (Me) 1.68 71.45 49548 0.85 4.18 49557 (Me) 6 49560 0.27 13.44 49562 1.37 13.54 49570 49571 1	· · · ·				
49548 49557 (Me) 49560 49562 49562 49562 49570 49571		148			•
49557 (Me) 49560 49562 49562 49562 49568 49570 49571	49548				
49560 49562 49562 49568 49570 49571	49557 (Me)				
49562 49568 49570 49571			13.44		
49568 49570 49571					
49571	49568				
	1 10 10				
	and a second				

વે.

SKARN	•				• ••				
Sample #		Au (ppm)		Ang (ppn			1		
49368		JD	4	,87	2 - 11 				
49396		,27		7.41					
49397		0.14		0.08					
49403		0.62		37.14					
49429		7.38		3.09		. 1			
49439	1	3.15	.,	7.07	·			<u></u>	
49531 (Yme)		ND		0.07					
49542 (Ea)		2.13		7.13					
49544 (Me)		0.02		0.27% ND		• •			
49552 (Pn) 49565		0.02 ND		0.07	•••			· •	
49567		NG							
49573 (Pn)									1
49574 (Pn)									
49576 (Ea)									
49577 (Ea)					4				
49582 (Dm)									n a l
49584 (Dm)			н. 14						1. S. 1.
49588 (Ea)									
49589	•								
49590									
49591 49592					1.00				
49593			· · · ·		1.00				
49594									•
49595									
49596									
49597					н. 191				
49598									
49599			an she						
49600									4 4 1
49601									
49602	н 1								
			м						
					11. 1				
	•								
	and the second sec								

COLUMN WRITE

QUARTZITE (Ea)	1	2	з		4
+ SS + SILTST (Yds) sample #	Au (ppm)	Ag(ppm)			
4 9354	0.01	0.31			1
49358 49363	0.07	3.19 5.52			3
49364	0.05	25.06	-		4
49365	0.58	36.75			6
49366 49369	0.55	7.27 9.53			7
49372	0.14	8.54			8
49374	0.10	2.98			10
49376 49377	12.82 3.22	48.81 107.76			11
49379	0.5/	10.90			13
49380 49381	ND	4,32	· ·		14
49384	0.55 0.69	27.43			15
49385	0.89	52.46	· · · · · · · · · · · · · · · · · · ·		17
49 386 49 389	0.82	16.80 25.71			18
49391	0.82	1.37			19 20
49512 (415)	0.01	(5.63			21
49513 (Yds) 49516 (Yds)	0.01 NA	191,90 2.81			22
49517	0.02	1169.36			24
49519 49534 (Ydbash)	0.02	0,89			, 25
77594 (346454)		0,86			26
					28
					29
					30
(11-0- /					32
CHERT/JASPER					33
49561 49564 49578	1.03	NA		•	34
4956¢ 49.578	ND I	MD			36
0/0 דד					37
					38
	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	→ ··· · · · · · ·	40
VILSON JONES COMPANY G7504 GREEN					DEINUSA

4.

campor assays by rock type

LIMESTONE (Dpm)

жя: 15 🖲

NACIOS

١,

	Sample #	Au (ppm)	Ag(ppm)	
	49348 49349	0.07	1.27	
	49350 49351	0.27 0.07	ND 0.58	4
• • • •	49352 49355	0.82	2.37 0.93	6
	49367 49370	0.10 0.24	4.39 22.42	
	49371 49373	0,23 1.71	18.34 34.63	10
	49375 49378	0.14	3.50 2.57	12
	49382 49383	0.96 0.07	3.02 8.78	14
	49579 49580			16
	49581 49583			18
				20
				22
				24 25 26
- - - -	STREAM SEDIMENT			27 28
	49393 49394	0.07	4.46 ND	29
	49395	0.07	ND	31
	MISCELLANEOUS			33 34 35
•••	494 2 6 (black cc) 49445 (sh)	0.14	12.69	
	49462 (cong - 761) 49463 (Mnox)	ND ND ND	ND 0.31 0.65	38 39 40

MADE IN U.S.A

O WILSON JONES COMPANY G7504 GREEN

LIMESTONE

WRITE ®

COLUMN

	sample #	Au (ppm)	Ag(ppm)	
	44			
	49404 (Ym)	0.07	11.66	
	49407	0.14	9.39	
	49409 (Me)	0.24	25.37	
	49411 (Me)	0.07	6.51	
	(19413 (1Ph)	0.03	2.06	
	49414 (Pn)	0.65	38.74	
	49425	0.03	2.74	
	49428 (Me)	NA	0.68	
	49431 (Me)	0.07	1,37	
	49437 (Me)	0.27	3.84	
	49440 (Me)	0.06	3.77	
	49446	0.03	0.89	
	49448	0.03	13.58	
	49449	0.05	138.45	
	49450	0.01	ND	
	49464	ND	ND	
	49514 (Yme)	ND	ND	
	49515 (Yme)	ND	ND	
	49518	ND		
1	49533 (Yme)	ND	3.53 0.58	
	49547 (Me)	0.03		
1	49549 (Me)	0.03	NA ND	
	49550 (IPn)			
	49558 MD	0.03	ND	
•	49563 (bxxa)	ND	0.80	
ł	49566	NB	0,82	
1	49569			
	49572 (PA)			
1	49519			
	49580 (Dm)			
	49581			
• •	49583 (Dm)			
-				

з

DOLOMITE		2	3. 	4
sample #	Aru (ppm)	Ag(ppm)		· · · · ·
49356	0.03	AUN		
49357	0.03	ND		
49361 49362	ND	0.89		
	0.03	ND		
QUARTZ VEIN				
49392	0.69	58.28		
49402	0.51	167.66	**	
49406	0.89	98.22		
49410 49419 (Ydb)	2.50	229.72		
49420 (446)	0.24 0.14	9.26 14.06		
49422	0.14	38.6/		
49424 49427	1.30	281.49		
4 945 2	0.14 0.03	25.10 22.08		
49453	ND	ND		
49455 49456	1.13	6.57		
49457	28.97 5.82	2.33 1.89		
49458	3.46	2.57		
49459 49460	2.30	93.70		
49461	0.48	0.65 21.81		
49476	3.98	8.74		
494 77	55.17	43.51		
49478 49479 (bas)	0.62	311,35 15.80		
49482 (bas)	0.58	360.24		
49484 (vol) 49485 (vol)	1.10 3.50	83.31		

MADE IN USA

	1991182		2	3	4
	sample #	Au (ppm)	Ag (ppm)		
-	49489 (Kwc)	0.27			
	49490 (Kwc)	1.54	5.06 61,58		
	49491 (por)	4.87	32.54		
	49492 (Kwe)	2.61	88.29		
· · ·	49493	14,26	92.81		
	49498 (por)	0.02	101.35		
	49500	1.10	78.27		
	49501	1,47	245.52		
	49502	0.86	3.33		
	49503	1,33	453.36		
	49504	0,72	838.22		
			0.00.		
	alle and the second				
	PORPHyry				
	49438	49.58	5.69		
	49447	0.07	19.71		
•	49472	ND	0.14		
, i	49473	0.24	10.11		
	49474	0.48	81.15		
;	49475	4.42	36.03		
	49481	0.31	52.49		
	49483	1.10	165.26		
	49487	0.03	1,10		
	49496	0.01	0.86		
	49499	0.01	1.58		
	49520	ND a	2.16		
	49521	NO	1.03		
	49522	0.01	1.99		
Ì	49523	0.73	/366.13		
	49524	ND	8.54		
	49527	0.77	29.21		
;	495 43	0.04	ND		
	49551	0.02	ND		
1					

MADE IN U.S.A.

.