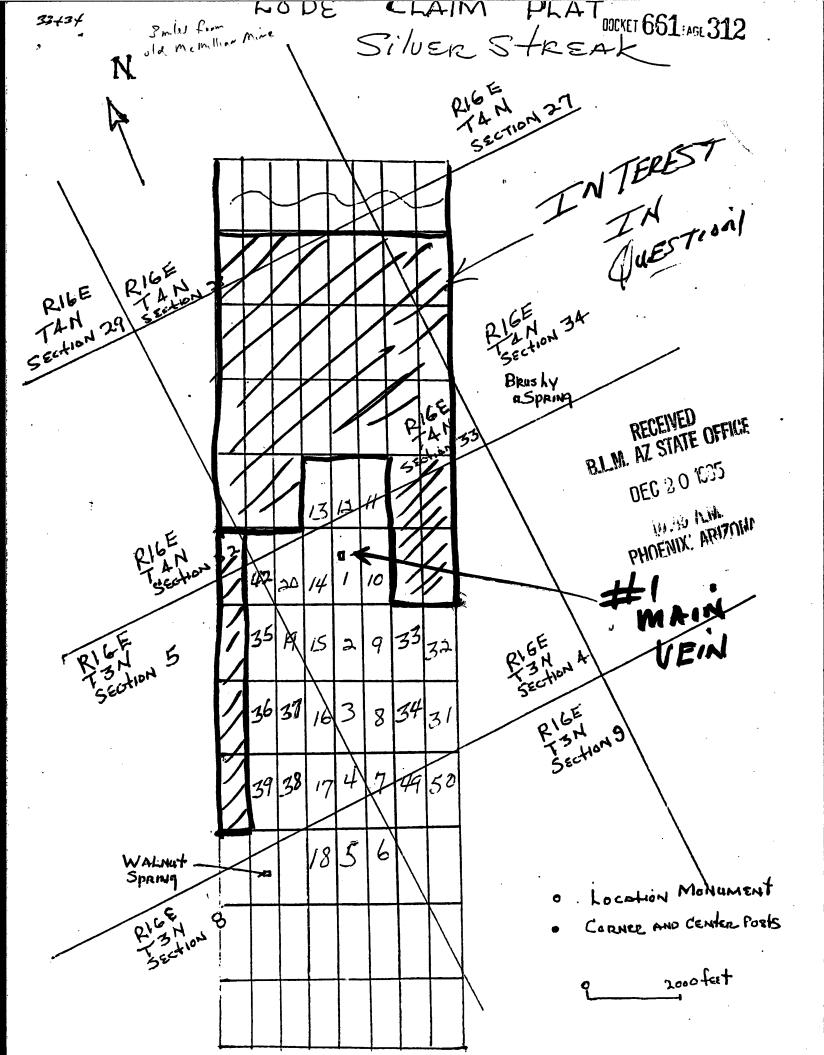


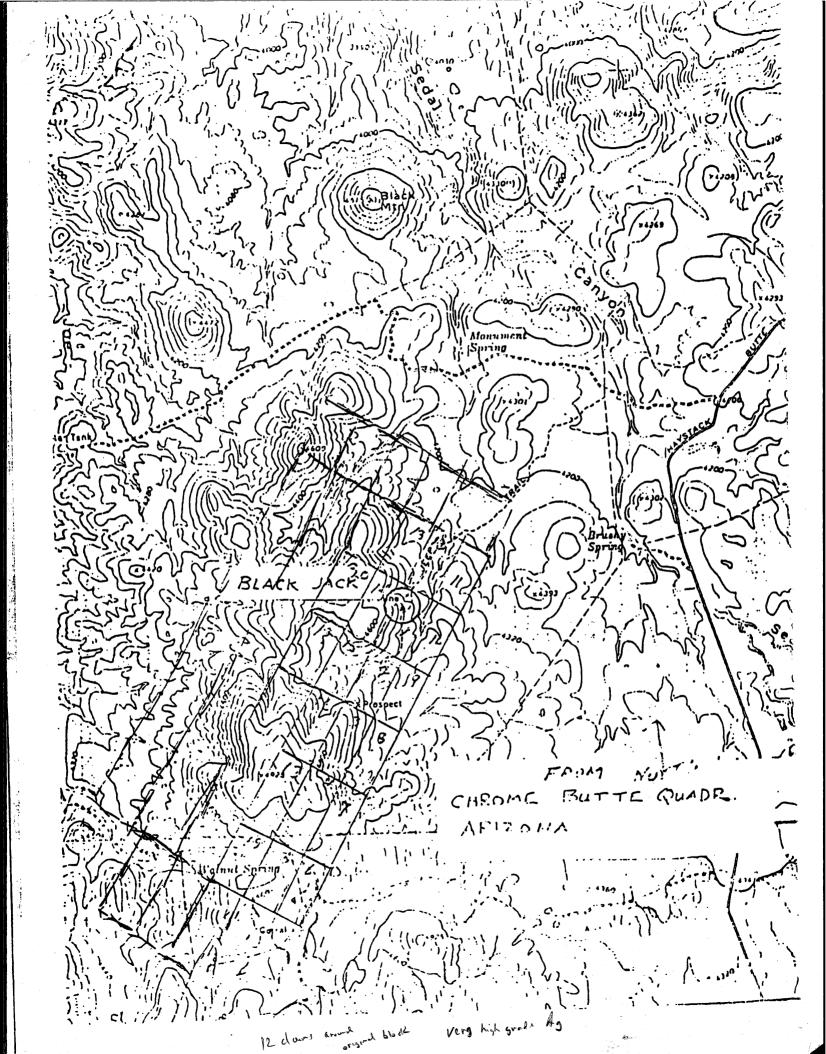
CONTACT INFORMATION
Mining Records Curator
Arizona Geological Survey
3550 N. Central Ave, 2nd floor
Phoenix, AZ, 85012
602-771-1601
http://www.azgs.az.gov
inquiries@azgs.az.gov

The following file is part of the Cambior Exploration USA Inc. records

#### **ACCESS STATEMENT**

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.


#### **CONSTRAINTS STATEMENT**


The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

#### QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.





|                                 | / Section         |                   | ** .                |
|---------------------------------|-------------------|-------------------|---------------------|
| <b>CMMBIO</b>                   | R usa, in         |                   | 39135               |
| ROCK: 🔀                         | Date:             | 30 93             |                     |
| SOIL:                           | State:            |                   |                     |
| SED.:                           | County:           |                   |                     |
|                                 | Project:          | Black Jack        | (R. Amala)          |
| DRILL HOLE NO.                  |                   |                   | то                  |
| Loc.: TN                        | ; R               | _E;               | _¼; S               |
| Quad:                           | Haystack          | W'Ru He           | _Scale              |
| <b>RX</b> :<br>נ <sub>ו</sub> ' | Dump/<br>Tailings | Outcrop/<br>Float | Fresh/<br>Weathered |
| Outcrop Location:               | UN EXPO.          | sed over por      | lel                 |
| 2.5 Et 2                        | # 1 2 He          |                   | NO                  |
| Sample Description              | n:                | Rock Type:        |                     |
| Rock Mod:                       |                   | Vineral:          |                     |
| Oxides:                         |                   | Alteration:       |                     |
| Structure:                      |                   | Spl. Width:       |                     |
| ate was of                      | fulle-pal         | eprak loca        | 112                 |
| •                               | + 2% + d.         |                   |                     |
| bornte + 0                      | ,                 |                   | •                   |
| Silver axia                     |                   |                   |                     |
| strong from                     | uc lim them       | \                 |                     |
| hostex a                        | level make        | r diabase         |                     |
| local well                      | devel gtz         | dust Br           | Ja 4                |
| who van                         |                   |                   |                     |
| •                               |                   |                   |                     |

#### CMMBIOR USA, INC. NO. 39136 Date: 3/30 **ROCK:** SOIL . State: SED.: County: \_\_ Project: Dlack Jack DRILL HOLE NO. \_\_\_\_\_FROM \_ R \_\_\_\_ Loc.: T Scale Onad: Dump/ Outcrop/ Fresh/ RX. Weathered **Tailings** 61 Outcrop Location: same rite as \$ 39138 Rock Type: Sample Description: \_\_\_\_\_ Mineral: Rock Mod: Alteration: Oxides: Structure: Spl. Width: 2.5 gtz UN 2.5 chloralt syrms frai I.n. han deabase from carb thm abundant goodsoud at 5 to 2' cross structures an = 30' spacing parter seeding rain per structure

| CMMBIO             | R USA, INC. NO. 39137                      |
|--------------------|--------------------------------------------|
| SOIL:              | State:                                     |
| SED.:              | County:                                    |
| 025                | Project: Alack Jack                        |
| DRILL HOLE NO.     | FROM TO                                    |
|                    | ; R <u>E</u> ;¼; S                         |
| Quad:S             | Scale                                      |
| RX:                | Dump/ Tailings Fleat Weathered  partal cut |
| Odiciop Location.  | NO                                         |
| Sample Description | Dools Times                                |
| Rock Mod:          | Mineral:                                   |
| Oxides:            | Alteration:                                |
| Structure:         | Spl. Width:                                |
| x structure        | east singest un out                        |
|                    | (151,25196ª) lutus                         |
|                    | j                                          |
| Diabase; sh        | some strong clay. 1 im - carb              |
| frac devel         | discout shattered gantly                   |
| L 1                | reg 1-8" gtz valts                         |
|                    | pe of oxio diabase                         |
| ,                  | atite from 11 sements                      |
|                    |                                            |

## CMMBIOR USA, INC. NO. 39138 **ROCK:** SOIL: State: \_ County: . SED: Project: Blacksoik \_\_FROM DRILL HOLE NO. \_ Loc.: T \_ Scale Quad: RX: Dump/ **Outcrop**/ Outcrop Location: upper workers, raved purded site Rock Type: Sample Description: \_\_\_\_\_ Rock Mod: Mineral: Alteration: Oxides: Spl. Width: Structure: VN zone linets + bleached someth alt strong free lin - hom No us sulfiles from MNOX & green oxile

|                 | /IBIO             | R usa,            |           | NO.         | 39139             |
|-----------------|-------------------|-------------------|-----------|-------------|-------------------|
| ROCK:           | X                 | Date:             | 3/30      |             |                   |
| SOIL:           |                   | State:            |           |             |                   |
| SED.:           |                   | County: _         | Gila      |             |                   |
|                 |                   | Project: _        | Blacks    | iock        |                   |
| DRILL H         | OLE NO.           |                   | FROM _    |             | то                |
| Loc.: T_        | N                 | ; R               | E;        |             | _¼; S             |
| Quad: _         | S                 |                   |           |             | _ Scale           |
| /o <sup>'</sup> | X:                | Dump/<br>Tailings |           | tcrop/      | Fresh/<br>Weather |
| , -             | Location:         | y 5-)+            | ucture    | Va          | M &               |
| •               |                   |                   |           |             | NO                |
| 0               | D = = ==!==#! = : |                   | Rock Ty   |             |                   |
| •               | Description       | n:                | Mineral:  |             |                   |
| Rock Mo         | ia:               |                   |           | <del></del> |                   |
| Oxides:         |                   |                   | Alteratio | n:          |                   |
| Structure       | <del>)</del> :    |                   | Spl. Wid  | th:         |                   |
| Dip             | base: L           | cell a side       | .zef / 🚜  |             |                   |
| •               |                   |                   | 7         | **          | lin-calco         |
| -7-             |                   |                   |           |             |                   |
|                 |                   |                   |           |             |                   |
|                 |                   | Strong            |           |             |                   |
|                 |                   |                   |           |             |                   |
|                 |                   |                   |           |             |                   |
|                 |                   |                   |           |             |                   |
|                 |                   |                   |           |             |                   |
|                 |                   |                   |           |             |                   |
|                 |                   |                   |           |             |                   |

# Samuel Holliday CONSULTING GEOLOGIST

2601 W. CURTIS ST. TUCSON, ARIZONA 85705

TELEPHONE 602-792-0652 RESIDENCE 602-888-2247

GEOLOGICAL REPORT
BLACK JACK CLAILS, GILA COUNTY, ARIZONA

Prepared for Thomas E. Hawes
By Samuel Holliday
August 20, 1979

This report covers work done by Dr. William D. Deaton of Montreal, Canada, and myself in the way of confirmation of the report of Dr. William C. Peters of Pincock, Allen and Holt, dated April 5, 1978. Dr. Beaton and I spent two days on the property, August 7 and 8, 1979

The work consisted of detailed sampling across a vein at four places (snown as localities A,B,C, and D on the map). The samples were submitted to Bondar-Clegg Ltd. of Ottowa, Canada, and the results of analysis are included in this report.

#### Property and Development:

As stated in Dr. Peters' report, the adit on Black Jack #1 claim, and the upper "powder magazine" adit had been discovered by recent bulldozing. The "powder magazine" adit is labeled location 6 on the enclosed map. The lower adit on claim #1 is labeled locality locality B. In addition, since Dr. Peters' visit, the vein system has been exposed in additional places by Mr. Hawes, one of these being locality D.

### Geology:

As described by Dr. Peters, there is a main system of silver bearing veins striking N. 45 E with a steep dip to the northwest. The vein system as a whole has a wiath of about thirty feet, and the individual veins have thicknesses of from one to five feet. An individual vein was sampled in each location, A,B,C, and D.

It will be seen that in addition to substantial silver values, the veins also contain significant amounts of copper. This suggests the possibility that at least some of the mineralization may originally have been in the form of tetrahedrite, with a considerable replacement of copper by silver.

## Sampling:

Bedrock samples were taken across a vein in a northwestsoutheast direction, the middle sample being of supposed vein material, the other two in each case being country rock within the mineralized xone. In each case a uniform sample was taken along a straight line.

A. Just north of center point of claim #3 (labeled "prospect" on the map. #1 is country rock ten feet away. #2 is to the southeast, #4 to the nothwest.

Thicknesses: #2 two feet, #3 10 inches, #4 two feet.

B. Upper"powder magazine" adit, 5 is to the southeast, 7 to the northwest.

Thicknesses: #5, 1.8 ft., #6, 1.2 ft., #7, 2.3 ft.

C. The mouth of the adit on the #1 claim. 8 is to the southeast, 10 to the northwest. #11 is a sample pried from the top of the adit and hand picked.

Thicknesses: #8, 1.3 ft., #9, 1.9 ft., #10, 3 ft.

D. Trench (see map), 1-S to the southeast, 2-S to the northwest. Thicknesses, all 2 ft.

Geochemistry (values in parts per million

| •                                                                                          | cu                                                                                  | р <b>b</b>                                                                   | zn                                                                             | ag                                                                                                                |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1-R<br>2-R<br>3-R<br>4-R<br>5-R<br>6-R<br>7-R<br>8-R<br>10-R<br>11-R<br>11-S<br>2-S<br>3-S | 38<br>61<br>4100<br>89<br>45<br>84<br>47<br>38<br>48<br>82<br>700<br>52<br>78<br>36 | 8<br>3<br>28<br>4<br>10<br>36<br>142<br>4<br>54<br>12<br>2<br>37<br>14<br>36 | 67<br>74<br>71<br>74<br>116<br>125<br>230<br>72<br>131<br>65<br>61<br>69<br>67 | 0.4<br>1.2<br>greater than 100<br>1.6<br>0.4<br>0.2<br>0.2<br>0.2<br>2.2<br>1.2<br>greater than 100<br>0.8<br>1.8 |

Silver in ounzes per ton Assays

3-R 12.9

11-R 14.4

**3-**S 5.58

### Remarks:

It is not the purpose of this report to suggest any values or feasibility for the property. However, I feel that the present work shows results consistent with the data discussed by Dr. Peters. I also feel that the statements made by Dr. Peters with regard to potential values are corroborated.

August 20, 1979

Samuel Holliday



BLOCKYOCK 5000P Gla C- Az 39135-39139

# CERTIFICATE OF ANALYSIS iPL 93F0701

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

cc:MMG geochem dwneru

| Cambior Exploration US<br>Out: Jun 10, 1993 Project: 304<br>In: Jun 07, 1993 Shipper: Michael<br>PO#: None Given Shipment: | •                | 1                  | Sampl<br>Raw Store | age:     | 0= Rock<br>         | 0= Soil<br>              | 0= Core<br><br> | 0=RC( | 1              | 54= Pulp<br> 2Mon/Dis<br> 2Mon/Dis | 0=0ther<br><br> | Mon=Month           | Dis=Discard Arc=Archive |
|----------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|--------------------|----------|---------------------|--------------------------|-----------------|-------|----------------|------------------------------------|-----------------|---------------------|-------------------------|
| Msg: ICP(AqR)30 Cu Assay                                                                                                   | 25 00.000        |                    |                    |          | ummary—             | ····                     |                 |       |                |                                    |                 |                     |                         |
| Msa:                                                                                                                       |                  | ## Code            |                    | tle l    |                     | Inits. Descrip           | tion            |       | Eleme          | ent                                | ##              |                     |                         |
| Document Distribution                                                                                                      | EN RT CC IN FX   | 01 721P            | hod<br>ICP         | Ag       | Low High<br>0.1 100 | ppm Ag ICP               |                 |       | Silve          | ٠ <u>٠</u>                         | 01              |                     |                         |
| 1 Cambior Exploration USA, Inc.<br>230 South Rock Blvd., Suite 23                                                          | 1 2 2 2 1        | 02 711P            | ICP                | Cu       | 1 20000             | ppm Cu ICP               |                 |       | Coppe          |                                    | 02              |                     | •'                      |
| Reno                                                                                                                       | DL 3D 5D BT BL   | 03 113P            |                    |          | 0.01 100.0          |                          | entional Ass    |       | Coppe          |                                    | 03              |                     |                         |
| NV 89502-2345                                                                                                              | 0 0 0 1 0        | 04 714P            |                    | Pb       | 2 20000             | ppm Pb ICP               |                 |       | Lead           |                                    | 04              |                     | •                       |
| USA                                                                                                                        |                  | 05 730P            | ICP                | Zn       | 1 20000             | ppm Zn ICP               | . #             | •     | Zinc           |                                    | 05              |                     |                         |
| ATT: Michael Gustin                                                                                                        | Ph: 702/856-5189 |                    |                    |          |                     |                          | •               |       | _              |                                    |                 |                     |                         |
|                                                                                                                            | Fx: 702/856-4549 | 06 703P            | ICP                | As       | 5 10000             | ppm As ICP               | 5 ppm           |       | Arser          |                                    | 06              |                     |                         |
|                                                                                                                            |                  | 07 702P            | ICP                | Sb       | 5 1000              | ppm Sb ICP               |                 |       | Antim          | •                                  | 07<br>08        |                     |                         |
|                                                                                                                            |                  | 08 732P<br>09 717P | ICP<br>ICP         | Hg<br>Mo | 3 10000<br>1 1000   | ppm Hg ICP<br>ppm Mo ICP |                 |       | Mercu<br>Molyd | •                                  | 09              |                     | •                       |
|                                                                                                                            |                  | 10 747P            |                    | T1       | 10 1000             | ppm T1 ICP               | 10 nom          |       | Thall          |                                    | 10              |                     |                         |
|                                                                                                                            |                  | 10 /4//            | 101                | • •      | 10 1000             | ppiii 11 10i             | то ррш          |       | 111011         | , ruiii                            | .0              |                     |                         |
|                                                                                                                            |                  | 11 705P            | ICP                | Вi       | 2 10000             | ppm Bi ICP               |                 |       | Bismu          | uth                                | 11              |                     |                         |
|                                                                                                                            |                  | 12 707P            | ICP                | Cd       | 0.1 10000           | ppm Cd ICP               |                 |       | Cadmi          | ium                                | 12              |                     |                         |
|                                                                                                                            |                  | 13 710P            | ICP                | Co       | 1 10000             | ppm Co ICP               |                 |       | Coba           |                                    | 13              |                     |                         |
|                                                                                                                            |                  | 14 718P            |                    | Ni       | 1 10000             | ppm Ni ICP               |                 |       | Nicke          |                                    | 14              |                     |                         |
|                                                                                                                            |                  | 15 704P            | ICP                | Ва       | 2 10000             | ppm Ba ICP               |                 |       | Bariu          | um                                 | 15              |                     |                         |
| ret.                                                                                                                       |                  | 16 727P            | ICP                | W        | 5 1000              | ppm W ICP                |                 |       | Tungs          | sten                               | 16              |                     | •                       |
|                                                                                                                            |                  | 17 709P            |                    | Cr       | 1 10000             | ppm Cr ICP               |                 |       | Chron          |                                    | 17              |                     |                         |
|                                                                                                                            |                  | 18 729P            |                    | V        | 2 10000             | ppm V ICP                |                 |       | Vanac          |                                    | 18              |                     |                         |
|                                                                                                                            |                  | 19 716P            | ICP                | Mn       | 1 10000             | ppm Mn ICP               |                 |       | Manga          |                                    | 19              |                     |                         |
|                                                                                                                            |                  | 20 713P            |                    | La       | 2 10000             | ppm La ICP               |                 |       | Lanti          | hanum                              | 20              |                     |                         |
|                                                                                                                            |                  |                    |                    | _        | 4 40000             | 0 700                    |                 |       |                |                                    | 01              |                     |                         |
|                                                                                                                            |                  | 21 723P            | ICP                | Sr       | 1 10000             | ppm Sr ICP               |                 |       | Stron          |                                    | 21<br>22        |                     |                         |
|                                                                                                                            |                  | 22 731P<br>23 736P | ICP<br>ICP         | Zr<br>Sc | 1 10000<br>1 10000  | ppm Zr ICP<br>ppm Sc ICP |                 |       | Scan           |                                    | 23              |                     |                         |
|                                                                                                                            |                  | 24 726P            | ICP                | Ti       | 0.01 1.00           | % Ti ICP                 |                 |       | Titar          |                                    | 24              |                     |                         |
|                                                                                                                            |                  | 25 701P            |                    | ΑÌ       | 0.01 5.00           | % A1 ICP                 |                 |       | Alum:          |                                    | 25              |                     |                         |
|                                                                                                                            |                  | 20 / 5 11          | 20.                |          |                     |                          |                 |       |                |                                    |                 |                     |                         |
|                                                                                                                            |                  | 26 708P            |                    |          | 0.01 10.00          | % Ca ICP                 |                 |       | Calc           |                                    | 26              |                     |                         |
|                                                                                                                            |                  | 27 712P            |                    |          | 0.01 5.00           | % Fe ICP                 |                 |       | Iron           |                                    | 27              |                     |                         |
|                                                                                                                            |                  | 28 715P            |                    | Mg       | 0.01 10.00          | % Mg ICP                 |                 |       | -              | esium                              | 28              |                     |                         |
|                                                                                                                            |                  | 29 720P            |                    | K        | 0.01 10.00          | % K ICP                  |                 |       |                | ssium                              | 29<br>30        |                     |                         |
|                                                                                                                            |                  | 30 722P            | ICP                | Na       | 0.01 5.00           | % Na ICP                 |                 |       | Sodi           | uin                                | 30              |                     |                         |
|                                                                                                                            |                  | 31 719F            | ICP                | Р        | 0.01 5.00           | % P ICP                  |                 |       | Phosi          | phorus                             | 31              |                     |                         |
|                                                                                                                            |                  | 31 /131            | 101                | •        | 0.01 0.00           | ,0 1 101                 |                 |       |                | prior ac                           | ٥.              |                     |                         |
|                                                                                                                            |                  |                    |                    |          |                     |                          |                 |       |                |                                    |                 |                     |                         |
|                                                                                                                            |                  |                    |                    |          |                     |                          |                 |       |                |                                    |                 |                     |                         |
|                                                                                                                            |                  |                    |                    |          |                     |                          |                 |       |                |                                    |                 |                     |                         |
|                                                                                                                            |                  |                    |                    |          |                     |                          |                 |       |                |                                    |                 |                     |                         |
|                                                                                                                            |                  |                    |                    |          |                     |                          |                 |       |                |                                    |                 |                     |                         |
|                                                                                                                            |                  |                    |                    |          |                     |                          |                 |       |                |                                    |                 |                     |                         |
|                                                                                                                            |                  |                    |                    |          |                     |                          |                 |       |                |                                    |                 | $\Lambda$ 1         |                         |
|                                                                                                                            |                  | 1                  |                    |          |                     |                          |                 |       |                |                                    |                 | <i>(</i> ) <i>(</i> |                         |

EN=Envelope # RT=Report Style CC=Copies IN=Invoices FX=Fax(1=Yes 0=No) DL=DownLoad 3D=3-1/2 Disk 5D=5-1/4 Disk BT=BBS Type BL=BBS(1=Yes 0=No)

Totals: 2=Copy 2=Invoice 0=3-1/2 Disk 0=5-1/4 Disk

Approv



2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

| Report: 93F0701 R                                                   | Cambior Explora                      | tion USA, I                      | nc.                        |                                                   | Project:                   | 304                           |                            |                            | <del></del>                | Pa                              | ige 1 d                     | of 2                               | Sect                       | tion 1                     | of 2                           |                            |
|---------------------------------------------------------------------|--------------------------------------|----------------------------------|----------------------------|---------------------------------------------------|----------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|-----------------------------|------------------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|
| Sample Name                                                         | Туре                                 | Ag<br>ppm                        | Cu<br>ppm                  | Cu P                                              |                            | As<br>ppm                     | Sb<br>ppm                  | Hg<br>ppm                  | Mo<br>ppm                  | T1<br>ppm                       | Bi<br>ppm                   | Cd<br>ppm                          | Со                         | Ni<br>ppm                  | Ba<br>ppm                      | W<br>ppm                   |
| 33255<br>33257<br>33260<br>33261                                    | Pulp<br>Pulp<br>Pulp<br>Pulp         | 0.6<br>1.6<br>0.9                | 3880 (<br>6.1% (<br>4663 ( | 0.26 1<br>0.37 2<br>6.35 17<br>0.46 34            | 212<br>4234<br>5 664       | <5<br><5<br>21                | <5<br><5<br><5             | <3<br><3<br>3<br>.<3       | 16<br>33<br>48<br>75       | <10<br><10<br><10<br><10        | <2<br><2<br><2<br><2        | 2.2<br>1.0<br>29.8<br>5.6          | 13<br>15<br>261<br>27      | 29<br>9<br>89<br>23        | 51<br>42<br>305<br>80          | <5<br><5<br><5<br><5       |
| 33262                                                               | Pulp                                 | 2.2                              | 3153 (                     | 0.29 15                                           | 148                        | <5                            | <5                         | <3                         | 39                         | <10                             | <2                          | 1.3                                | 22                         | 9                          | 103                            | <b>&lt;</b> 5              |
| 33263<br>33264<br>33265<br>33268<br>33272                           | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 1.2 1<br>0.2<br>0.5              | 0571 1<br>7955 (<br>2.4% 2 | 0.31 2<br>1.09 2<br>0.79<br>2.35 8<br>0.29 9      | 675<br>87<br>5 1654        | <5<br><5<br>10<br><5<br><5    | <5<br><5<br><5<br><5<br><5 | <3<br><3<br><3<br><3<br><3 | 22<br>28<br>50<br>7<br>64  | <10<br><10<br><10<br><10<br><10 | <2<br><2<br><2<br><2<br><2  | 1.4<br>2.6<br><0.1<br>3.9<br><0.1  | 20<br>28<br>9<br>58<br>5   | 11<br>36<br>20<br>34<br>5  | 134<br>99<br>149<br>152<br>63  | <5<br><5<br><5<br><5<br><5 |
| 33273<br>33274<br>33276<br>33277<br>33278                           | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 2.4<br>1.3<br>1.0                | 5754 (<br>2428 (<br>4186 ( | 0.28 6<br>0.53 5<br>0.23 5<br>0.40 6<br>0.29 6    | 5 141<br>2 108<br>5 114    | <5<br><5<br><5<br><5          | <5<br><5<br><5<br><5<br><5 | <3<br><3<br><3<br><3<br><3 | 57<br>55<br>60<br>66<br>43 | <10<br><10<br><10<br><10<br><10 | <2<br><2<br><2<br><2<br><2. | <0.1<br>1.8<br>1.1<br>0.6<br>0.3   | 2<br>30<br>11<br>6<br>12   | 5<br>11<br>8<br>9<br>8     | 27<br>127<br>76<br>50<br>31    | <5<br><5<br><5<br><5<br><5 |
| 33279<br>33283<br>33286<br>33287<br>33290                           | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 0.9<br>0.5<br>0.5                | 2241 (<br>9135 (<br>2.2% ( | 0.46<br>0.21 <<br>0.94 1<br>2.01 2<br>0.20 2      | 3 375<br>1 385             | <5<br><5<br>10<br>7<br><5     | <5<br><5<br><5<br><5<br><5 | <3<br><3<br><3<br><3<br><3 | 7<br>64<br>25<br>89<br>117 | <10<br><10<br><10<br><10<br><10 | <2<br><2<br><2<br><2<br><3  | <0.1<br><0.1<br>5.5<br>1.3<br>0.2  | 14<br>6<br>11<br>68<br>32  | 11<br>6<br>25<br>22<br>9   | 74<br>100<br>128<br>111<br>71  | <5<br><5<br><5<br><5<br><5 |
| 33291<br>33293<br>33294<br>3329 <u>5</u><br>39135                   | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 2.4<br>1.3<br>4.6                | 4793 (<br>7026 (<br>3301 ( | 0.43 1<br>0.45 2<br>0.71<br>0.43 37<br>0.21 1     | 4 127<br>5 243<br>5 283    | <5<br><5<br><5<br><5<br><5    | <5<br><5<br><5<br><5<br><5 | <3<br><3<br><3<br><3<br><3 | 25<br>13<br>27<br>53<br>3  | <10<br><10<br><10<br><10<br><10 | <2<br><2<br><2<br><2<br><2  | 0.3<br><0.1<br><0.1<br>0.1<br><0.1 | 22<br>20<br>11<br>12<br>12 | 9<br>10<br>11<br>7<br>32   | 80<br>54<br>100<br>51<br>2008  | <5<br><5<br><5<br><5<br><5 |
| 39136<br>39139<br>39141<br>39142<br>39143                           | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 0.1m<br>0.6<br>0.2<br>0.7<br>0.3 | 238 (<br>13% 1<br>4091 (   | 0.11 4<br>0.03 1<br>1.49 17<br>0.41 12<br>0.12 21 | 4 118<br>0 4379<br>3 11633 | <5<br><5<br>14<br>28<br><5    | <5<br><5<br><5<br><5<br><5 | <3<br><3<br><3<br>4<br><3  | 3<br>2<br>13<br>30<br>77   | <10<br><10<br>19<br>43<br><10   | <2<br><2<br><2<br><2<br><2  | <0.1<br><0.1<br>7.5<br>34.5<br>0.5 | 42<br>45<br>74<br>247<br>3 | 91<br>101<br>26<br>73<br>7 | 355<br>118<br>205<br>417<br>62 | <5<br><5<br>8<br><5<br><5  |
| 39145<br>39149<br>39152<br>39153<br>39155                           | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 0.5<br>0.6<br>0.4<br>0.7<br>0.4  | 4116<br>7546<br>1623       | 0.77 20<br>0.40 11<br>0.78<br>0.17 23<br>0.13 10  | 3 3913<br>3 94<br>0 260    | <5<br>7<br>12<br><5<br><5     | <5<br>5<br><5<br><5<br><5  | <3<br><3<br><3<br><3<br><3 | 27<br>15<br>47<br>60<br>6  | <10<br><10<br><10<br><10<br><10 | <2<br><2<br><2<br><2<br><2  | 3.4<br>5.6<br><0.1<br>0.2<br>0.7   | 56<br>32<br>8<br>2<br>1    | 22<br>33<br>18<br>6<br>3   | 66<br>70<br>144<br>62<br>92    | <5<br><5<br><5<br><5<br><5 |
| 39156<br>39157<br>39158<br>39160                                    | Pulp<br>Pulp<br>Pulp<br>Pulp         | 1.1<br>0.3<br>4.7<br>0.5         | 788<br>3.7%                | 0.13 12<br>0.08 20<br>3.58 31<br>0.36             | 0 558                      | <5<br><5<br><5<br><5          | <5<br><5<br><5<br><5       | <3<br><3<br><3<br><3       | 38<br>13<br>32<br>52       | <10<br><10<br><10<br><10        | <2<br><2<br><2<br><2        | 18.1<br>12.1<br>1.3<br>2.1         | 3<br>3<br>1<br>8           | 5<br>17<br>3<br>7          | 162<br>145<br>83<br>56         | <5<br><5<br><5<br><5       |
| Minimum Detection<br>Maximum Detection<br>Method<br>=No Test ReC=Re | Check ins=Insufi                     | ICP                              | 20000 10<br>ICP A          | 0.01<br>00.00 2000<br>Assay IO<br>st/1000 %=      |                            | 5<br>10000<br>ICP<br>ax=No Es | 5<br>1000<br>ICP<br>t      | 3<br>10000<br>ICP          | 1<br>1000<br>ICP           | 10<br>1000<br>ICP               | 2<br>10000<br>ICP           | 0.1<br>10000.0<br>ICP              | 1<br>10000<br>ICP          | 1<br>10000<br>ICP          | 10000<br>ICP                   | 5<br>1000<br>ICP           |



2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

| Report: 93F0701 R                                                    | Cambior Explo                      | ration (                     | USA, Inc                           | · <del>.</del>             |                             | Proj                         | ect: 30                     | )4                                      |                                      |                                      | Р                                    | age 1 c                              | <del>it 2</del>                      | Secti                                | ion 2 of 2                             | (00 1) 010 1000 |
|----------------------------------------------------------------------|------------------------------------|------------------------------|------------------------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|-----------------|
| Sample Name                                                          | Cr<br>ppm                          | V<br>ppm                     | Mn<br>ppm                          | La<br>ppm                  | Sr<br>ppm                   | Zr<br>ppm                    | Sc<br>ppm                   | Ti<br>%                                 | A1<br>%                              | Ca<br>%                              | Fe<br>%                              | Mg<br>%                              | K<br>%                               | Na<br>%                              | P<br>%                                 |                 |
| 33255<br>33257<br>33260<br>33261<br>33262                            | 69<br>68<br>90<br>63<br>65         | 27<br>16<br>57<br>15<br>18   | 629<br>732<br>1.2%<br>1574<br>2863 | 26<br>25<br>25<br>8<br>11  | 11<br>32<br>24<br>49<br>67  | 1<br><1<br>2<br><1<br><1     | 3<br>1<br>8<br>1<br>2       | 0.03<br>0.01<br>0.01<br><0.01<br>0.03   | 1.25<br>0.81<br>2.67<br>0.88<br>0.83 | 0.94<br>0.23<br>0.52<br>0.21<br>0.52 | 2.50<br>2.33<br>3.29<br>1.91<br>2.45 | 0.88<br>0.36<br>2.46<br>0.48<br>0.33 | 0.33<br>0.25<br>0.49<br>0.28<br>0.39 | 0.02<br>0.03<br>0.04<br>0.01<br>0.05 | 0.10<br>0.08<br>0.16<br>0.05<br>0.11   |                 |
| 33263<br>33264<br>33265<br>33268<br>33272                            | 62<br>73<br>18<br>30<br>78         | 20<br>27<br>18<br>11<br>7    | 1520<br>1668<br>148<br>2554<br>341 | 19<br>23<br>22<br>18<br>7  | 12<br>19<br>77<br>14<br>53  | <1<br>1<br>1<br>3            | 2<br>3<br>2<br>1            | 0.02<br>0.02<br>0.05<br>0.01<br><0.01   | 0.99<br>1.42<br>1.36<br>0.94<br>0.44 | 0.38<br>0.36<br>0.13<br>0.18<br>0.09 | 2.42<br>2.91<br>1.42<br>1.25<br>1.11 | 0.52<br>1.02<br>0.42<br>0.42<br>0.08 | 0.28<br>0.34<br>0.56<br>0.21<br>0.22 | 0.03<br>0.04<br>0.04<br>0.03<br>0.01 | 0.11<br>0.11<br>0.02<br>0.03<br>0.02   |                 |
| 33273<br>33274<br>33276<br>33277<br>33278                            | 68<br>67<br>67<br>80<br>116        | 4<br>16<br>13<br>9<br>4      | 187<br>2178<br>853<br>286<br>1011  | 4<br>16<br>10<br>6<br>2    | 15<br>36<br>41<br>24<br>8   | <1<br><1<br><1<br><1<br><1   | <1<br>2<br>1<br>1<br><1     | <0.01<br>0.02<br>0.01<br><0.01<br><0.01 | 0.40<br>0.85<br>0.74<br>0.55<br>0.23 | 0.07<br>0.29<br>0.35<br>0.11<br>0.03 | 0.78<br>2.59<br>2.07<br>1.29<br>0.54 | 0.05<br>0.20<br>0.23<br>0.17<br>0.10 | 0.16<br>0.41<br>0.29<br>0.25<br>0.10 | 0.02<br>0.04<br>0.03<br>0.02<br>0.01 | 0.02<br>0.10<br>0.08<br>0.03<br>0.01   |                 |
| 33279<br>33283<br>33286<br>33287<br>33290                            | 52<br>69<br>72<br>50<br>85         | 36<br>13<br>20<br>32<br>19   | 334<br>438<br>5326<br>5388<br>903  | 20<br>15<br>33<br>28<br>21 | 21<br>95<br>27<br>26<br>34  | 1<br><1<br><1<br><1          | 3<br>1<br>3<br>3<br>2       | 0.11<br>0.04<br>0.02<br>0.02<br>0.02    | 1.15<br>0.69<br>1.76<br>2.68<br>1.12 | 0.48<br>0.19<br>0.75<br>0.85<br>0.25 | 2.88<br>1.72<br>2.36<br>3.99<br>3.10 | 0.68<br>0.26<br>0.53<br>1.00<br>0.58 | 0.62<br>0.35<br>0.64<br>0.43<br>0.43 | 0.03<br>0.02<br>0.02<br>0.02<br>0.03 | 0.14<br>0.09<br>0.10<br>0.15<br>0.11   |                 |
| 33291<br>33293<br>33294<br>33295<br>39135                            | 110<br>67<br>130<br>93<br>143      | 19<br>17<br>43<br>16<br>25   | 1552<br>1282<br>511<br>950<br>120  | 22<br>44<br>24<br>25<br><2 | 17<br>11<br>36<br>9<br>67   | 1<br><1<br><1<br>1           | 2<br>2<br>4<br>2<br>5       | 0.03<br>0.02<br>0.14<br>0.03<br><0.01   | 0.99<br>1.20<br>1.29<br>1.03<br>0.42 | 0.31<br>0.33<br>0.35<br>0.33<br>0.25 | 2.77<br>2.88<br>3.56<br>2.27<br>3.38 | 0.49<br>0.61<br>0.66<br>0.40<br>0.11 | 0.45<br>0.30<br>0.70<br>0.39<br>0.16 | 0.04<br>0.03<br>0.05<br>0.03<br>0.01 | 0.12<br>0.12<br>0.14<br>0.11<br>0.03   |                 |
| 39136<br>39139<br>39141<br>39142<br>39143                            | 91<br>68<br>63<br>108<br>46        | 58<br>70<br>28<br><2<br>24   | 748<br>1444<br>8308<br>2.7%<br>302 | 4<br>7<br><2<br><2<br>12   | 28<br>45<br>11<br>23<br>85  | 2<br>2<br><1<br><1<br><1     | 10<br>9<br>2<br><1<br>1     | <0.01<br>0.01<br><0.01<br><0.01<br>0.01 | 2.39<br>2.60<br>0.26<br>0.04<br>0.54 | 1.45<br>3.04<br>0.17<br>0.04<br>0.85 | 7.6%<br>7.4%<br>0.38<br>0.40<br>2.26 | 1.05<br>1.31<br>0.09<br>0.19<br>0.08 | 0.32<br>0.28<br>0.02<br>0.06<br>0.26 | 0.03<br>0.08<br>0.02<br>0.02<br>0.03 | 0.09<br>0.13<br><0.01<br><0.01<br>0.05 |                 |
| 39145<br>39149<br>39152<br>39153<br>39155                            | 124<br>260<br>16<br>216<br>104     | 8<br>7<br>16<br>19<br>7      | 2665<br>5859<br>139<br>315<br>607  | 7<br>7<br>19<br>11<br>18   | 23<br>7<br>68<br>17<br>22   | <1<br><1<br>1<br><1          | 1<br>1<br>2<br><1<br>1      | <0.01<br>0.01<br>0.04<br><0.01<br><0.01 | 0.38<br>0.56<br>1.20<br>0.70<br>0.83 | 0.94<br>0.16<br>0.12<br>0.06<br>0.45 | 1.14<br>1.10<br>1.30<br>1.48<br>0.52 | 0.03<br>0.35<br>0.38<br>0.07<br>0.08 | 0.22<br>0.13<br>0.51<br>0.33<br>0.37 | 0.02<br>0.02<br>0.04<br>0.04<br>0.03 | 0.02<br>0.05<br>0.02<br>0.02<br>0.18   |                 |
| 39156<br>39157<br>39158<br>39160                                     | 155<br>63<br>111<br>160            | 9<br>9<br>8<br>4             | 4103<br>1043<br>78<br>590          | 18<br>13<br>17<br>5        | 60<br>34<br>84<br>12        | <1<br><1<br><1<br><1         | 1<br>1<br>1<br>1            | 0.01<br><0.01<br>0.01<br><0.01          | 0.44<br>1.30<br>0.75<br>0.55         | 8.08<br>2.62<br>0.26<br>0.97         | 1.33<br>0.90<br>0.91<br>0.65         | 0.11<br>0.50<br>0.09<br>0.18         | 0.21<br>0.23<br>0.25<br>0.26         | 0.03<br>0.03<br>0.07<br>0.02         | 0.03<br>0.07<br>0.06<br>0.03           |                 |
| Minimum Detection<br>Maximum Detection<br>Method<br>=No Test ReC=ReC | 1<br>10000<br>ICP<br>heck ins=Insu | 2<br>10000<br>ICP<br>fficien | 1<br>10000<br>ICP<br>at Sample     | 2<br>10000<br>ICP<br>m=Es  | 1<br>10000<br>ICP<br>t/1000 | 1<br>10000<br>ICP<br>%=Est 2 | 1<br>10000<br>ICP<br>% Max= | 0.01<br>1.00<br>ICP<br>No Est           | 0.01<br>5.00<br>ICP                  | 0.01<br>10.00<br>ICP                 | 0.01<br>5.00<br>ICP                  | 0.01<br>10.00<br>ICP                 | 0.01<br>10.00<br>ICP                 | 0.01<br>5.00<br>ICP                  | 0.01<br>5.00<br>ICP                    |                 |



2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

| Report: 93F0701 R                         | Cambior Explorat                     | ion USA,                        | Inc.                                  |                                      | Pı                          | roject:                          | 304                        |                            |                            |                            | Pa                              | ige 2 o                    | f 2                               | Sect                         | ion 1                      | of 2                          |                            |
|-------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|--------------------------------------|-----------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|----------------------------|-----------------------------------|------------------------------|----------------------------|-------------------------------|----------------------------|
| Sample Name                               | Туре                                 | Ag<br>ppm                       | Cu<br>ppm                             | Cu<br>%                              | Pb<br>ppm                   | Zn<br>ppm                        | As<br>ppm                  | Sb<br>ppm                  | Hg<br>ppm                  | Mo<br>ppm                  | TI                              | Bi<br>ppm                  | Cd<br>ppm                         | Co<br>ppm                    | Ni<br>ppm                  | Ba<br>ppm                     | W<br>ppm                   |
| 39162<br>39165<br>39172<br>39179<br>39180 | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 1.1<br>1.3<br>2.0<br>1.0<br>3.2 | 3143<br>8724<br>3.1%<br>8245<br>19592 | 0.30<br>0.92<br>2.85<br>0.81<br>1.85 | 76<br>55<br>547<br>27<br>13 | 467<br>3259<br>335<br>413<br>760 | 7<br>17<br><5<br><5<br><5  | <5<br><5<br><5<br><5<br><5 | <3<br><3<br><3<br><3       | 111<br>68<br>47<br>9<br>23 | <10<br><10<br><10<br><10<br><10 | <2<br><2<br><2<br><2<br><2 | 5.2<br>12.1<br>2.0<br>6.4<br>10.2 | 106<br>328<br>49<br>16<br>15 | 11<br>90<br>21<br>12<br>15 | 93<br>265<br>223<br>106<br>93 | <5<br><5<br><5<br><5<br><5 |
| 39183<br>39186<br>39188<br>39190<br>39191 | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 0.6<br>1.1<br>1.6<br>0.8<br>1.5 | 3568<br>4437<br>13610<br>3775<br>2795 | 0.34<br>0.41<br>1.33<br>0.37<br>0.26 | 14<br>97<br>309<br>61<br>52 | 248<br>698<br>558<br>119<br>244  | <5<br><5<br><5<br><5       | <5<br><5<br><5<br><5<br><5 | <3<br><3<br><3<br><3<br><3 | 8<br>25<br>33<br>32<br>13  | <10<br><10<br><10<br><10<br><10 | <2<br><2<br><2<br><2<br><2 | 1.6<br>1.6<br>4.7<br>1.7<br>3.2   | 12<br>20<br>19<br>8<br>8     | 10<br>27<br>20<br>10<br>9  | 88<br>141<br>51<br>78<br>79   | <5<br><5<br><5<br><5<br><5 |
| 39192<br>39193<br>39194<br>39199<br>39200 | Pulp<br>Pulp<br>Pulp<br>Pulp<br>Pulp | 0.2<br>0.9<br>0.8<br>1.0<br>0.8 | 7788<br>3821<br>3551<br>4537<br>3645  | 0.80<br>0.38<br>0.34<br>0.43<br>0.35 | 6<br>12<br>6<br>32<br>8     | 86<br>172<br>234<br>159<br>141   | 11<br><5<br><5<br><5<br><5 | <5<br><5<br><5<br><5       | <3<br><3<br><3<br><3<br><3 | 49<br>37<br>38<br>14<br>11 | <10<br><10<br><10<br><10<br><10 | <2<br><2<br><2<br><2<br><2 | <0.1<br>2.2<br>2.2<br>2.2<br>1.0  | 9<br>15<br>17<br>12<br>12    | 19<br>7<br>13<br>12<br>9   | 139<br>60<br>75<br>81<br>62   | <5<br><5<br><5<br><5<br><5 |

0.1 Minimum Detection 0.1 0.01 2 5 5 10 1000 10000 10000.0 10000 10000 10000 1000 Maximum Detection Method ICP ICP Assay ICP ICP ICP --=No Test ReC=ReCheck ins=Insufficient Sample m=Est/1000 %=Est % Max=No Est ICP ICP ICP ICP ICP ICP ICP ICP ICP



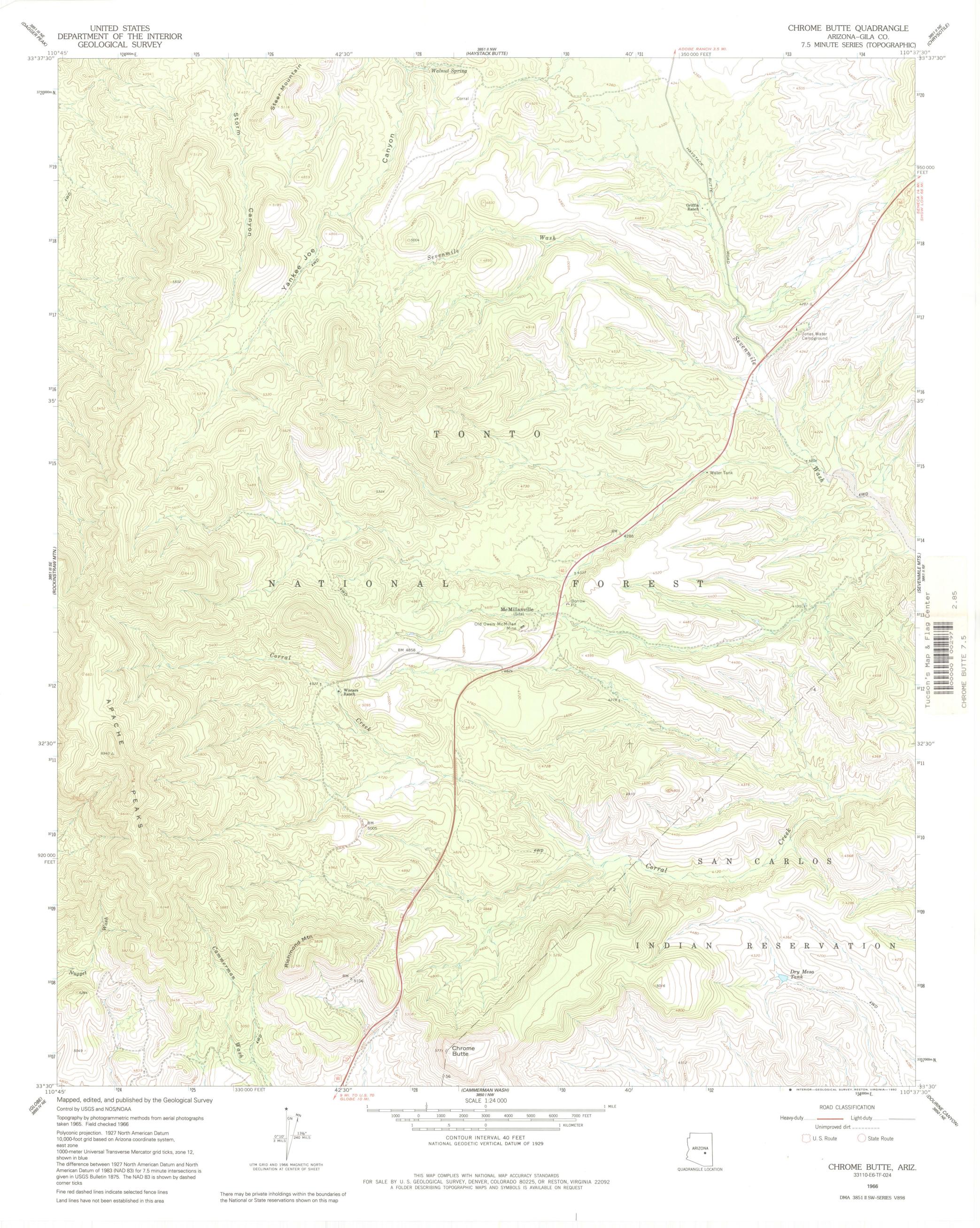
2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

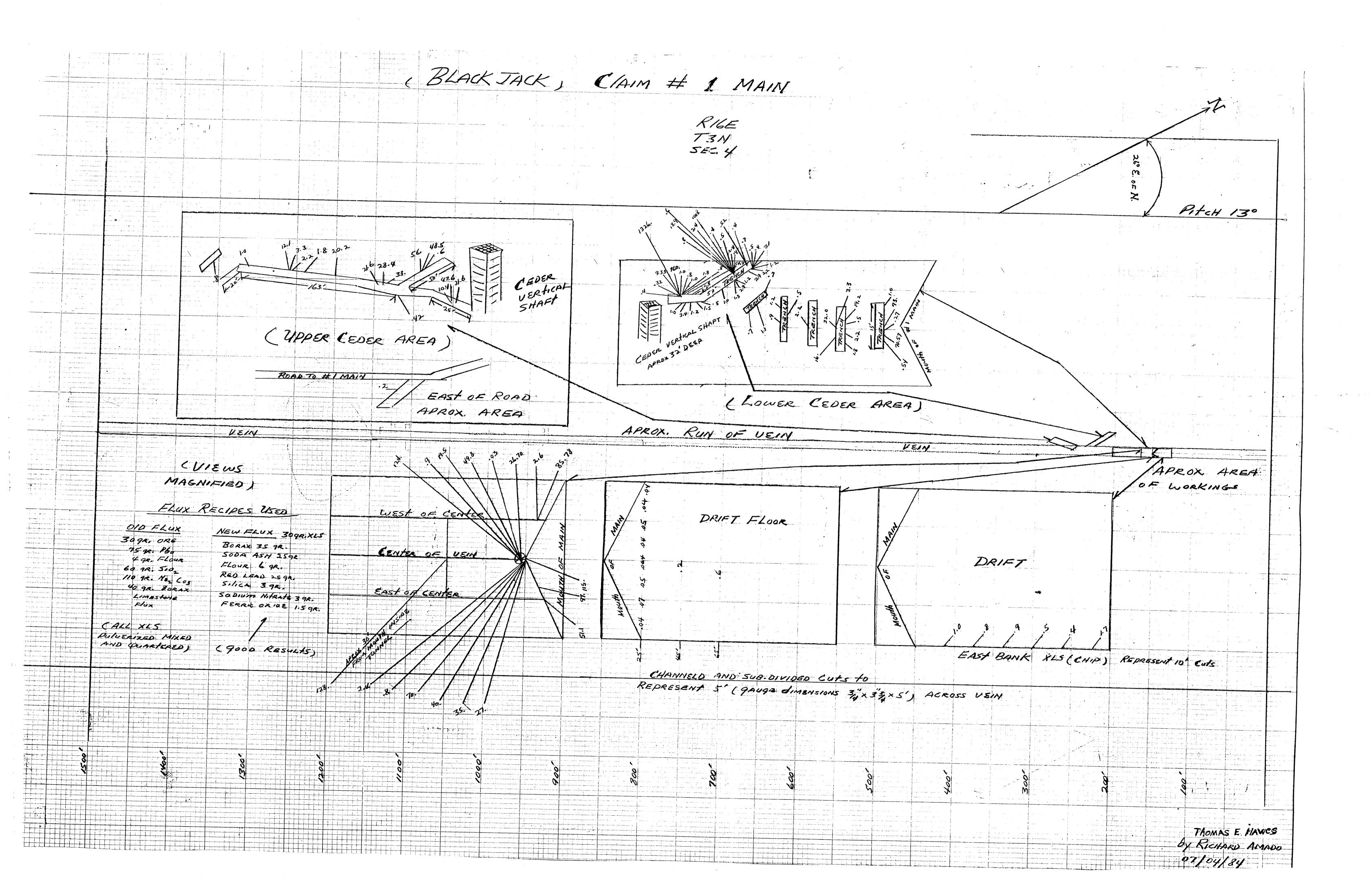
| Report: 93F0701 R | Cambior Explo | ration   | USA, Inc  | •         |           | Proj      | ect: 30   | )4      |         |         | Р       | age 2 c | f 2    | Secti   | on 2 of | 2 |
|-------------------|---------------|----------|-----------|-----------|-----------|-----------|-----------|---------|---------|---------|---------|---------|--------|---------|---------|---|
| Sample Name       | Cr<br>ppm     | V<br>ppm | Mn<br>ppm | La<br>ppm | Sr<br>ppm | Zr<br>ppm | Sc<br>ppm | Ti<br>% | A1<br>% | Ca<br>% | Fe<br>% | Mg<br>% | K<br>% | Na<br>% | P<br>%  |   |
| 39162             | 126           | 7        | 5085      | 14        | 65        | <1        | 1         | 0.02    | 0.64    | 0.06    | 1.64    | 0.04    | 0.20   | 0.03    | 0.01    |   |
| 39165             | 94            | 32       | 1.3%      | 10        | 41        | 1         | 4         | 0.03    | 0.97    | 3.71    | 2.10    | 0.51    | 0.32   | 0.04    | 0.10    |   |
| 39172             | 170           | 18       | 3090      | 12        | 25        | <1        | 2         | <0.01   | 0.68    | 0.27    | 1.98    | 0.06    | 0.33   | 0.01    | 0.02    |   |
| 39179             | 122           | 30       | 1095      | 26        | 16        | <1        | 3         | 0.04    | 1.41    | 0.46    | 2.97    | 0.70    | 0.51   | 0.05    | 0.15    |   |
| 39180             | 188           | 25       | 1952      | 27        | 15        | <1        | 3         | 0.03    | 1.18    | 0.43    | 2.73    | 0.58    | 0.37   | 0.05    | 0.11    |   |
| 39183             | 144           | 31       | 957       | 23        | 21        | <1        | 3         | 0.03    | 1.44    | 0.45    | 2.69    | 0.72    | 0.34   | 0.04    | 0.12    |   |
| 39186             | 172           | 12       | 1043      | 14        | 30        | <1        | 1         | <0.01   | 0.89    | 0.15    | 1.46    | 0.53    | 0.27   | 0.01    | 0.05    |   |
| 39188             | 141           | 32       | 868       | 14        | 8         | 1         | 2         | <0.01   | 1.04    | 0.22    | 1.52    | 0.52    | 0.32   | 0.03    | 0.06    |   |
| 39190             | 129           | 15       | 588       | 19        | 35        | 1         | 1         | 0.01    | 0.63    | 0.15    | 1.86    | 0.17    | 0.34   | 0.02    | 0.06    |   |
| 39191             | 150           | 18       | 893       | 16        | 11        | <1        | 2         | 0.01    | 1.02    | 0.29    | 2.51    | 0.45    | 0.30   | 0.02    | 0.09    |   |
| 39192             | 18            | 17       | 137       | 21        | 73        | 1         | 2         | 0.04    | 1.29    | 0.13    | 1.38    | 0.41    | 0.55   | 0.03    | 0.02    |   |
| 39193             | 130           | 16       | 996       | 21        | 24        | <1        | 2         | 0.02    | 0.71    | 0.14    | 1.97    | 0.28    | 0.32   | 0.04    | 0.05    |   |
| 39194             | 158           | 29       | 1023      | 16        | 21        | <1        | 3         | 0.03    | 0.97    | 0.21    | 2.99    | 0.41    | 0.49   | 0.04    | 0.09    |   |
| 39199             | 165           | 27       | 954       | 23        | 11        | <1        | 2         | 0.03    | 1.00    | 0.33    | 2.86    | 0.48    | 0.48   | 0.04    | 0.10    |   |
| 39200             | 141           | 30       | 618       | 27        | 11        | <1        | 3         | 0.05    | 1.04    | 0.27    | 2.75    | 0.56    | 0.59   | 0.04    | 0.10    |   |

| Minimum Detection   | 1        | 2       | 1        | 2      | 1      | 1     | 1       | 0.01  | 0.01 | 0.01  | 0.01 | 0.01  | 0.01  | 0.01 | 0.01 |
|---------------------|----------|---------|----------|--------|--------|-------|---------|-------|------|-------|------|-------|-------|------|------|
| Maximum Detection   | 10000    | 10000   | 10000    | 10000  | 10000  | 10000 | 10000   | 1.00  | 5.00 | 10.00 | 5.00 | 10.00 | 10.00 | 5.00 | 5.00 |
| Method              | ICP      | ICP     | ICP      | ICP    | ICP    | ICP   | ICP     | ICP   | ICP  | ICP   | ICP  | ICP   | ICP   | ICP  | ICP  |
| No Test ReC-ReCheck | ins=Insu | fficier | fome2 to | o m=Fe | +/1000 | Z-Fet | 7 May-N | o Fet |      |       |      |       |       |      |      |

CMMBIOR USA, INC. NO. 39135 5/30/93 ROCK: 区 Date: \_ SOIL: SED.: County: \_ Black Jack Project: FROM DRILL HOLE NO. Quad: Outcrop/ Float Fresh/ Weathered RX: UN EXPOSED OVER PORTEL **Outcrop Location:** # 1 5 th Rock Type: Sample Description: Mineral: **Rock Mod:** Oxides: Alteration: Spl. Width: Structure: thin VAIN

| CM/NIBIUK USA, INC. NO. 3913        | 6                                     |
|-------------------------------------|---------------------------------------|
| ROCK: Date: 3/30                    |                                       |
| SOIL: State:                        |                                       |
| SED.: County:                       |                                       |
| Project: Dlack Jack                 |                                       |
| DRILL HOLE NO FROM TO               | ·                                     |
| Loc.: TN; RE;¼; S_                  | · · · · · · · · · · · · · · · · · · · |
| Quad:Scale                          |                                       |
| RX: Dump/ Quitcrop/ Fre.            |                                       |
| Outcrop Location:                   |                                       |
| - some lite of & 36132 NO           |                                       |
| Sample Description: Rock Type:      |                                       |
| Rock Mod: Mineral:                  |                                       |
| Oxides: Alteration:                 |                                       |
| Structure: Spl. Width:              |                                       |
| 2.5 gtz UN 2.5 chloralt strong from | i.                                    |
| In-low deboer                       |                                       |
| from carb thm abundant              |                                       |
|                                     |                                       |
| good and of 5 to 2' cross           |                                       |
| - House on = 30' spacing motor mode | <b></b>                               |
| main was offered are                |                                       |
|                                     |                                       |
|                                     |                                       |
|                                     |                                       |


| CMMBIOR USA, INC. NO. 39137         |
|-------------------------------------|
| ROCK: X Date: 3 30                  |
| SOIL: State:                        |
| SED.: County:                       |
| Project: _ Alack Jook               |
| DRILL HOLE NOFROMTO                 |
| Loc.: TN; RE;¼; S                   |
| Quad:Scale                          |
| RX: Dump/ Outcrop/ Fresh/ Weathered |
| Outcrop Location: partal cut        |
| Sample Description: Rock Type:      |
| Rock Mod: Mineral:                  |
| Oxides: Alteration:                 |
| Structure: Spl. Width:              |
| And My toogie tees mutantex         |
| 30' from portal (239135131)         |
|                                     |
| Diobase; shoul stom clay lim - co.b |
| frac deval discout shottoned partly |
| bleaded ivrey 1-8" gtz valts        |
| 1-2' envelope of outo diabase       |
| strong burtite from & semente       |
|                                     |


. 1

| CM/MBIOR USA, INC. NO. 39138            |
|-----------------------------------------|
| ROCK: Date: 3/3.                        |
| SOIL: State:                            |
| SED.: County:                           |
| Project: Blackspik                      |
| DRILL HOLE NO FROM TO                   |
| Loc.: TN; RE;¼; S                       |
| Quad:Scale                              |
| RX: Dump/ Outcrop/ Fresh/               |
| Tailings Float Weathered                |
| Outcrop Location: - Lace (#2 LN)        |
| water woo knys, carch pundal s.to NO.   |
| Sample Description: Rock Type:          |
| Rock Mod: Mineral:                      |
| Oxides: Alteration:                     |
| Structure: Spl. Width:                  |
| I'ver some lingte + bleasted someth alt |
| duboth with strong from the home        |
| strong bouling text                     |
| v. ns sulfiles                          |
| local strong from Mass & green oxide    |
| after argundate??                       |
|                                         |
|                                         |
|                                         |
|                                         |

| CM/MBIOR USA, INC. NO. 39139  ROCK: X Date: 3/33   |
|----------------------------------------------------|
| SOIL: State: 12                                    |
| SED.: County:                                      |
| Project: Plack, ink                                |
| DRILL HOLE NOFROMTO                                |
| Loc.: TN; RE;¼; S                                  |
| Quad:Scale                                         |
| RX: Dump/ Outcrop/ Fresh/ Tailings Float Weathered |
| Outcrop Location: X 5 Jrusture V2 4 2              |
| Sample Description: Rock Type:                     |
| Rock Mod: Mineral:                                 |
| Oxides: Alteration:                                |
| Structure: Spl. Width:                             |
| Dibbase; nell oshizel / de                         |
| strong free limber menerous 18" line coloite-      |
| gtz valts, strong frag Maox                        |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |
|                                                    |

(\_)



