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MINERAL DEPOSITS

The entire Dragoon quadrangle has been included in the Cochise mining district,
a large unorganized district, which has never been consistently defined. Portions
of the area are commonly referred to by other names that have more definite geo~
graphic and geologic significance.

Copper and zinc deposits at Johnson, which by the end of 1955 had yielded nearly
1,000, 000 tons of ore with a value of about $20, 000, 000, are the most important
deposits commercially. These deposits are northeast of the quartz monzonite of
Texas Canyon and are of the pyrometasomatic type. Metallization was preceded
by thermal metamorphism which converted impure carbonate rocks to garnet, diop-
side, and other silicate minerals, with concomitant loss in volume. Sphalerite,
chalcopyrite, andlocally bornite have replaced favorable beds in the metamorphosed
sequence near fissures and other structures that provided channels for mineralizing
solutions. The ore bodies have the form of tabular masses and chimneys in the plane
of the beds. Large ore bodies, so far found, have all been within a thin stratigraphic
zone in the Abrigo formation.

Tungsten deposits, generally called the Dragoon tungsten deposits, have had a
moderate but unknown production. Most of the tungsten has come from veins and
lodes in the northeastern part of the quartz monzonite stock of Texas Canyon, and
from placers derived from these deposits. The veins trend northeast and consist
of huebnerite, scheelite, and traces of base-metal sulfides in a gangue of quartz,
muscovite, and fluorite. Rich ore pockets have been mined from shallow workings,
but the metallized veins have proved toc small and the tungsten content too erratic
for profitable deep mining. At the Tungsten King mine on the west side of the Little
Dragoon Mountains, about 12 tons of scheelite concentrates have been produced from
a contact vein between Precambrian (?) granite and Pinal schist.

Small lead-silver vein and replacement deposits occur in the northern part of
the Gunnison Hills. The largest and richest deposit is at the Texas Arizona mine,
from which recorded shipments between 1908 and 1928 total 718 tons of ore averaging
nearly 40 percent lead and 50 ounces of silver to the ton. These ores were oxidized
andoccurredas small replacement bodies along beds and fissures in the Escabrosa
limestone.

Marble, in the form of rough monumental stone, terrazzo, and roof chips, is

produced from deposits at the north end of the Dragoon Mountains. Operations to
date have been on a small scale.
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Saginaw Area-Kinnison-24

. STRUCTURE OF THE
SAGINAW AREA, TUCSON MOUNTAINS, ARIZONA

John E. Kinnison
INTRODUCTION

The Saginaw arealies immediately southof the Ajo Road at the extreme southern
tip of the Tucson Mountains, about 6 miles southwest of Tucson, Arizona (fig. 55).
Saginaw Hill (figs. 27, 28) is the site of a porphyry intrusive plug and a surrounding,
weakly mineralized area. The general geologic setting of the Tucson Mountains is

described elsewhere in this guidebook (Kinnison, 12).

Data presented in this paper were obtained during field mapping in the early
1950's and are discussed in more detail in a University of Arizona thesis (Kinnison,

1958).
LARAMIDE STRUCTURE

Folds and Associated Faults
General Statement

The dominant elements of Laramide structure are folds and associated thrust
and tear faults (fig. 27). These structures pre-date the Tucson surface (Kinnison,
12) and were presumably formed during late Cretaceous or early Tertiary time.
A complete understanding of these structures is obscured by the stratigraphic un-

certainties within the Cretaceous Amole group.

There are four orders of folds: the first order is established by interpretation
and three others are observable in the field. I interpret the first order structure
to be a synclinorium on which are superposed folds of the other orders. Folds of
the second order have wave lengths which range from 200 to over 1000 feet, and
their asymmetry is controlled by the inferred synclinorium. On the limbs of these
second order folds are smaller, third order, drag folds, not mapped precisely but
shown diagramatically on the cross-sections (fig. 28). The asymmetry of each
third order fold is controlled by a second order fold. Finally, fourth order drag
folds, generally only a few feet in amplitude, are superposed upon and owe their
asymmetry to third order folds. These relations should be considered in future
studies of this area because, for example, the direction of asymmetryAcannot
be inferred directly from the orientation of the third order folds.

Associated with the synclinorium are thrustandtear faults, whose presence has
been largely inferred from the surface outcrop pattern.

Synclinorium

The existence of a large synclinorium is inferred from the direction of asym-
metry and overturning of second order folds. Its axis is indefinitely located, but
probably lies between the Five and Burger faults (fig. 28). East of the Five fault

the second order folds are asymmetrically inclined and overturned to the east, while
west of the Five faultthey are overturned and asymmetrically inclined toward the west.

West of the Five fault all of the folds plunge southeast, whereas east of it the plunge
is northwest. The reason for this is not clear but it may be that the Five fault
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Saginaw Area-Kinnison-24

separated the active forces sufficiently to allow folds on either side of that fault to
form separate plunge patterns.

Under the above interpretation, the Permian Snyder Hill formation (Stoyanow,
1936) exposed south of Cat Mountain (fig. 27) is onthe east limb of the synclinorium
and at Snyder Hill is on the west limb. This interpretation is in disagreement with
that of Brown (1939), who considered these Permian outcrops to be klippen.

The steeper di;;\of the beds onthe west limb, comparedwith the gentler dipping/

and more open folds on the east limb, suggests that the synclinorium is asymmet-
rically inclined toward the northeast. ’ ’

Normal Faults

It is probable that at least some high-angle normal faults were formed shortly
after the Laramide folding, but I identified none in the field. The fault extending
northeast from Saginaw Hill is occupied by the Saginaw porphyry dike. Movement
has occurred along this fault because the beds on either side do not match, but the
magnitude is unknown. The displacementefthe TertiaryCat Mountain rhyolite along
this fault is slight, if any. This may be, then, a pre-Cat Mountain rhyolite fault
which was reactivated in late(?) Tertiary time with very slight displacement. Many
of the other faults which cut the Tertiary rocks may have originated during Laramide
time, but field mapping neither supports nor disproves this possibility.

TERTIARY STRUCTURE

High-Angle Faults

High-angle faults dominate the Tertiary structure, and, although it is generally
impossible to measure dips because few fault outcrops are present, most of them
probably are normal faults. Such fault surfaces as are exposed show gently dipping
slickensides, suggesting that horizontal movement may have been important. The
fault pattern is complex and it is not clear which faults formed first, or whether
movement was contemporaneous on all of them.

Some faulting took place during Cat Mountain rhyolite time, and some structural
deformationin the form of local tilting slightly preceded extrusion of the upper unit
of the Tertiary volcanic pile, the Shorts Ranch andesite. Most of the faulting is
probably post-Shorts Ranch andesite, but a minimum age cannot be established.
Faults displace the flat-lying basalts of Tertiary-Quaternary age at ''A" Mountain
(Brown, 1939), but enoughtime must have elapsed since the previous period of fault- g
ing to permit erosion to form the extensive pediment on the western side of the range
and remove much of the Tertiary strata. It is noteworthy in this connection that
nearly all the faults form obsequent fault line scarps with the downthrown sides
topographically high.

Tilted Blocks and Folds

The Tertiary rocks generally dip at gentle angles. The measurement of struc-
tural tilt in volcanic rocks is subject to error because part of the dip of the flow
structure might have been due to original dip of the flow. Ihave observed, however,
that the volcanic flow structure in the Tucson Mountains, as well as surrounding
ranges, commonly dips gently, 5 to 35 degrees, in a northeast to east direction.
This suggests to me that most of the dip is due to regional tilting. Also, the Ter-
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tiary sedimentary rocks, such as the Safford formation, show this same direction
of dip. In consideration of these facts, the flow structure in these areas may
be assumed to have been essentially horizontal when formed, and the present dip
may be considered tb be a measure of the amount of structural tilting.

In the complexly faulted area south of the Ajo Road the Tertiary rocks exhibit
folded structures and variable directions of dip, an apparently rare occurrence in
other parts of the Tucson Mountains and in surrounding ranges. For the most part,
however, these folds are postulated to be the result of fault drag. Some of the small
fault blocks show no relation to the adjacent folded structures, and exhibit indepen-
dent homoclinal dips.

Where the rocks are not affected by these small folds, the dominant direction
of dip is northeast to east.

Thrust Faults

Local thrusting may have occurred during the deposition of the Tucson Moun-
tain chaos (Kinnison, 12). A small outcrop of lake beds in the southern tip of the
range may be thrust over the Shorts Ranch andesite, a suggestion made by Brown
(1939), or they may be deposited on the andesite, as suggested by Kinnison (1958).
There are no other indications of Tertiary thrust faulting in the Saginaw area.

RELATION TO REGIONAL STRUCTURE

Laramaide

The Amole group is folded into a broad, open syncline in the central part of the
Tucson Mountains (Brown, 1939). The intricately folded synclinorium in the Saginaw
area may be a part of that structure, but a positive correlation cannot be made with
the data at hand.

Brown (1939) noted outcrops of Paleozoic limestone and Cretaceous or early
Tertiary volcanic rocks overlying deformed Cretaceous-Tertiary (?) sediments.
He believed that these rocks represented klippen from a large thrust sheet which was
nearly removed by erosion prior to extrusion of the Cat Mountain rhyolite. Addi-
tional work has shown that these conspicuous limestone and volcanic outcrops are
part of a tabular breccia (Kinnison, 1958; 12) which contains very large fragments
of all the Cretaceous-Tertiary (?) and older rocks. I suggest that this breccia is
talus andlandslide debris depositedonthe Tucson surface which bevels the pre-
Laramide rocks. If this interpretation is correct, then there is no direct evidence
of large scale overthrusting in the Tucson Mountains.

The tightly compressed folds and local thrusts in the Saginaw area indicate that
forces required for overthrusting were present during Laramide diastrophism.
Asnotedpreviously, the southwestlimb of the synclinorium exhibits generally steeper
and tighter folds, which suggests that the synclinorium is inclined asymmetrically
to the northeast. These features indicate that the Laramide forces produced a ten-
dency for regional overthrust movement toward the northeast. If a large overthrust
in the Tucson Mountains resulted from these forces, it was either eroded during the
formation of the Tucson surface or lies deeply buried below the rocks of the Creta-
ceous-Tertiary (?) Amole group.
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Tertia ry

The post-volcanic Tertiary structure is discussed at some length by Brown
(1939), and although I do not concur with all of the implications of his remarks, I
refer the reader to them for an excellent presentation of local and regional structure.

The principal elements of Tertiary structure are internal faults, inferred range-
boundary faults, and tilted blocks.

The internal faults which displace Tertiary rocks are not mapped precisely or
completely enough for detailed analysis, but the degree of accuracy is sufficient for
some generalized conclusions. Brown noted (1939) that east or northeast faults are
nearly always downthrown to the south. This is not true in detail in the Saginaw
area, where many reverse relationships occur, but the aggregate effect may still
be a downthrow on the south. Brown (1939) pointed out that this direction of throw
was in harmony with the structurally high Tortolita Mountain block to the north.

Reconnaissance observations, in the Roskruge Mountains to the west and the
Tortolita Mountains to the north, suggest that those ranges are tilted to the northeast
or east. The Tertiary volcanic rocks of the Santa Rita Mountains to the southeast
of the Tucson Mountains dip northeast (Schrader, 1915). Onphysiographic evidence,
Davis (1931) believed that the Santa Catalina Mountains also were tilted to the north-
east or east. It is probable, then, that the Tucson Mountains are a part of a wide-
spread pattern of northeasterly regional tilting. Between the Santa Catalina and
Roskruge Mountains, the regional tilt appears to have been broken into blocks which
are downthrown progressively to the west. The Tertiary folded structures of the
Saginaw area, however, are of local origin.

There is little evidence to indicate that the inferred marginal faults, which are
covered by alluvium, are single faults along the borders of the ranges, or are fault
zones made up of many faults distributed through the width of the intermontane valleys.
Of course, it is also possible that there are two separate systems of faults; those
to which the tilting was initially related, and the others, of a later age, which are
responsible for the present mountain-valley pattern. But certainly, faults of some
kind must be inferred to break the easterly regional tilt and form the mountain
ranges.
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EXPLANATION
7
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,\/ Vertical, Covered. St LTS
ol Obscure, or indefinite, p""" Flat contact on gentle slops showing formation above and below.
’ e‘\nd
FAULTS
: ”
\;/ﬁ' Closely located, showing relative vertical movement. /’ Obscure or indefinite.
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