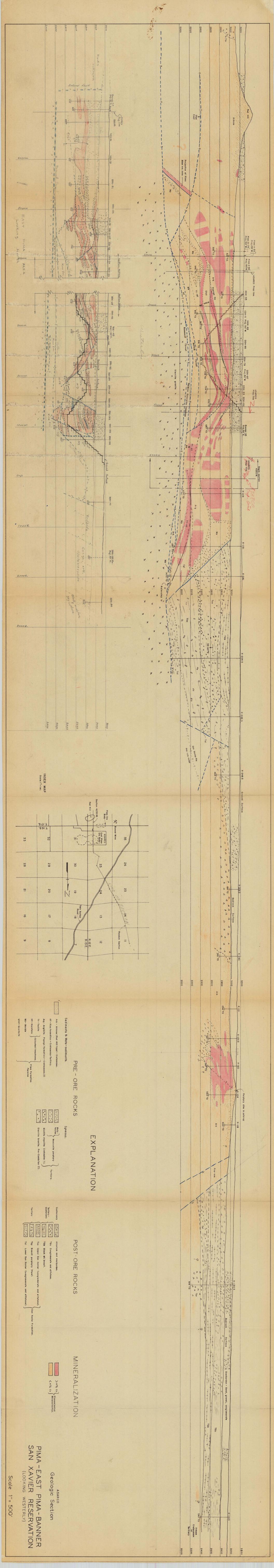


CONTACT INFORMATION
Mining Records Curator
Arizona Geological Survey
3550 N. Central Ave, 2nd floor
Phoenix, AZ, 85012
602-771-1601
http://www.azgs.az.gov
inquiries@azgs.az.gov

The following file is part of the John E. Kinnison mining collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.


CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

SUMMARY - DIAMOND DRILL HOLE NO. X-140 366.5N EE W Collar Elevation 34002

The second second					
From	To	Interval	Rec.%	Core	Geology
0.0	11.1	11.1			Rockbit through drill pad and loose surface debris. Bedrock at 3.5.
11.1	14.0	2.9	73	0.03	Rhyolite. Probably Biotite rhyolite. Feldspars strongly kaolinized. Contains
irregular vugs of p	Bx area y(?) with	s. Abunda h "live" I	nt thick imonite.	Soams of Zn Tr, 1	earthy red hematite. Also strong diss. Ag O.1 oz. Assays.
14.0	24.5	10.5	89	0.02	Rhyolite, similar to above. Strong argillic alt. Diss sulphide cavities
with live Rock is E	limonite x through	e. First hout, and	3' conta cemented	ins severa	al 3" zones of massive red hemstite. atite. Assays: Zn Tr, Ag O.l oz.
24.5	33-9	9.4	96	0.01	Conglomerate or Bx and Arkose. Run begins with 3" of fine breecia, hematite
into the frags of	conglome:	rate or br coarse ark	eccia, vi ose, set	hich is co in a mat	stratification dips 0-10°. This grades emposed of angular to well rounded rix of red hematite. The frags do not
tion or a hard. Th This unit	bearing e bottom is shat	is present 1.5' is a	. The f	regs show gr. arkose	leached sulphide(?) cavities. Rock of flooded with orange red hematite. Lly coarsely brecciated. Assays: Zn tr,
Ag 0.2 oz	•			•	
33-9	•	8.5	89	0.02	Arkose, similar to rock at end of pre- vious run. Flooded with orange-red
hematite,	shatter	ed and loc	ally Bx.	Assays:	Zn Tr, Ag 0.1 oz.
42.4	52.4	10.0	96		Arkose and conglomerate or breccia. Arkose, similar to above, extends to
From 45.9	-46.1' 1	s a brecci	ated, blo	eached phe	precciated. Stained with orange limonite. ase, of next unit. This is a black.
shattered a tight g	siltstor radation	ne, and ex al Ex,cont	tends to art, the	conglome:	ocally brecciated. This contacts, with rate or Breccia, which consists of a red sand or crushed matrix.
52.4	62.1	9-7	96	•	Conglomerate or Breceia, and Sandstone. The former, similar to last unit of
previous	run, exte	ends to a	sediment	ary appear	ring contact at 58.2°. Below is San Xavier
In. consi	sting of stion dir	alternati s about 2	ng 1/2-3° 20. cole	" beds of or brown-1	sandstone with a mud and clay binder.

74.9 12.8 85 - Sandstone, similar to above. Contains several beds up to 1/2', of brown clay-Bottom foot is gray-brown coarse sandstone. Dips vary from less than 10 to

stone.

SUMMARY - DDH No. X-140 - Continued

From	To	Interval	Core Rec.%	% Cu Core	Geology
74.9	86.0	11.1	7 4		Sandstone and conglowerate. The former begins with a gradational contact at
dips 0-1 angular,	5°. This weakly s of a yel	extends to	o about 7 , pebbles	8'. Here Matri	with scattered pebbles. Stratification is it contacts a red conglowerate with its red muddy sand. Bottom foot is ralization. These rocks probably San
86.0	96.h	10.4	81.		Conglomerate, similar to above. To
below is	red mudd	ly sand.			03.0. cus matrix is lairos erell sem
96.4	103.3	6.9	83		Conglomerate, red, similar to above.
103.3	113.4	10.1	fif	•	Conglomerate and Fault breccia. The conglomerate, similar to above, extends
is a loc of 112'2 breccia. gouge.	se fault red mud Below t Py is smo	breccia, c and oxidiz his depth ared throu	ontaining ed frags the breco gh the go	fragment from the lais entry	It arkose with weak limenite. Below this is of gray arkose with py. To a depth conglomerate are mixed with the fault tirely of arkose with py, in a chloritic lx. At one place there is a suggestion is apparent. Cu content nil.
metrix i	s in smal		ystals ar	d as lar	Breccia. Consists of gray arkose frags, in a gougy chloritic matrix. Py is i(?) through matrix. The pyrite of ger slightly broken grains. Sulphides
130.7	134.0	3-3	27		Red Brown Sandy Mud and Gray Pyritic
next roc					Arkose. Probably fault zone initiating
	, J				
134.0	144.5	10.5	73	ο.	Sandstone, brown fine to coarse-grained, silty. Dips of sorted stratified layers
vary fro		o, averagi	ng about	15°. Th	is unit probably correlates to San Mavier
144.5	153.1	8.6	73		Sandstone, similar to above. Down to
and cont	ains gyps	um veins.	A few gy	gsum veli	146.2' the core shows some faulting, as occur elsewhere. Dips are 20-30°.
153.1	164.3	11.2	85	tariti di dia dia dia dia dia dia dia dia dia	Sandstone, similar to above. Dips 20-250.
	170.1	- +	83		Sandstone, siltstone and fault. Sand- stone similar to above, dipping 17-30°,
					'. Below 167.7' are a few wavy shear sheared. Shear zone dips average about 30°.

SUMMARY - DDH No. X-140 - Continued

From	<u>To</u>	Interval	Core Rec.%	& Cu Core	Geology
170.1	179.4	9-3	83	•	Fault zone and granite. This run begins with a shear zone in red brown
sheared,	and lens	ses of red i	mudstone,	This m	acts a zone of mixed granitic material and zone extends to 172.2'. Shear planes ock is crushed Sierrita granite.
11/7 :.		14.7			Fault and Marble. The first 0.6' is sheared granite. Below 180.0' the rock
is coars	e-graine	l white mar	ble. No	minerali:	ation present.
194.1	205.4	11.3	82	•	Fault and granite. A fault zone begins the run and extends to 196.4'. This
siltstor to the t	e with clease of the	lear qtz gra ne fault zo	ins exter le. Faul	nds to 19 t planes	1" gouge zone, and then a gray, alt. 6.2'. 0.2' of sheared granite extends dip 10-17°. Crushed Sierrita granite toward end of the run. No mineraliza-
205.4	214.8	9.4	84		Sierrita granite. Coarse-grained granite. Chlorite alt. Some small
	of black i zation pa		robably a	fter bio	ite or some other mafic mineral. No
214.8	226.7	11.9	81.	•••	Sierrite granite, similar to above.
•					

ABSAY DAMA - DIAMOND DRILL HOLD NO. X-140

			% Re	covery	& Assay		
From	To	Interval	Cere	Sludge	Core	Sludge	
				1			
0.0	11.1	11.1	Ro	sklut	•	No Sludge	
11.1	14.0	2.9	•	-	0.03	♥	
14.0	24.5	10.5	88.6	•	0.02		
24.5	33-9	9.4	95.5	•	0.01		
33.9	42.4	8.5	89.6	,, , 	0.02	-	
42.4	52.4	10.0	95•5	•	•	***	
52.4	62.1	9.7	96.4	-	•	•	
62.1	74.9	12.8	8.48	•	•	.	
74.9	86.0	11.1	***	-	•	-	
86.0	96.4	10.4	• i	- -	••	₩	
96.4	103.3	6.9	•	•	. •	=	
103.3	113.4	10.1	•	• A 1 4 4 5	-		
113.4	130.7	17.3		•	- ,		
130.7	134.0	3.3	•	•	•	· •	
134.0	144.5	10.5	- :	· • • • • • • • • • • • • • • • • • • •	•	-	
144.5	153.1	8.6	• .	₩	•	•	
153.1	164.3	11.2	-	•	-		
164.3	170.1	5.8	-	• •	-	. •	
170-1	179.4	9•3	•	• :	•	-	
179.4	194.1	14.7	-	· • · .	-	• .	
194.1	205.4	11.3	•		•	**	
205.4	214.8	9.4	•	. •	•		
214.8	226.7	11.9	-	- *	-	•	

SUMMARY - DIAMOND DRILL HOLE NO. X-139 376.0N AA W Collar Elevation 32101

			4 1 - 4 - 4	d m				
From	To	<u>Interval</u>	Core Rec.%	% Cu Core		Geology	•	
0.0	95.02	95.0			Rockbit.	Alluvium of	granitic o	:•m•
95.0	115.0‡	20.0	48	N 809	Rockbit.	Caliche cong	lomerate.	
115.02	173.0	58.0				Conglomerate		
					rocks, fre	sh and weakly ricitic-kaoli	alt. Bio	rtite
173.0	177.0	4.0	98	•		ate, made of erage, with n		
red base aphaniti brown, a amounts	ilt; red s ic rocks. and gray a of alt po	iltstone(?) The larger rk; andesit rphyry or l); ark of f frags. te porphy notite r	ere: red ery bla ery; and a	ctite rhyo grain-size basalt wit ck with wh few piece	lite, fresh as s, elt. and f h fine feldspite small fels of basalt pineralization	nd weakly resh; dark ar needles d. pheno.; orphyry.	elt.; green ; red, minor
177.0	214.0	37.0	.	•		Conglomerate imilar to las		
214.0	217.0	3.0	93	•		ete, similar "mostly. Fe		
(andesid	tie) rocks		s. of bas	salt porpi	basalt, an	d other fine- is vaguely s	grained is	meous
217.0	268.0	51.0		•	Rockbit.			
268.0	270.0	2.0	90			ate and coars s contain roo		
					gs, and ov	erlies the gr No basalt por	enule-sand	lstone,
270.0	320.0	50.0			Rockbit.			•
320.0	322.5	2.5	100	•		<u>ate</u> . Alterna and pebble c		
and more of diop.	or less . Af (slig	horizontal ht amount :	Fragme resid. ce	ents are s lcite) wi	different similar to th chlorit	grain sizes i previous core ic alt. bands iny red speck	s fairly s s. One fi . One fra	sharp regnent
322.5	373.0	50.5	. 🕶	•	Rockbit.	Similar to a	bove desci	ribed core.

Core

From	To	Interval	Rec.#	Coze	<u>Geology</u>
373.0	377.0	4.0	100	•	Conglomerate, similar to above. Few frags. of basalt porph. No biotite rhy.
precedir	ag cores.	ple biotite Zones of e gr. presen	a aelddoo	e(?) and pebble	a type which occurs in small frags in es are thinner, and still more or less
377.0	418.0	141.0	•	•	Rockbit. Cuttings similar to above described core.
418.0	422.0	4.0	100		Conglomerate, similar to previous core run. Slightly more red fine-gr basalt.
Alt ark	and ignet	us rocks at	re presen	ŧ.	
422.0	472.0	50.0		•	Rockbit. Cuttings similar to above described core.
472.0	476.0	4.0	95 .	•	Conglomerate, similar to previous core. Few 2-3" layers of coarse sandstone,
and a fe	ew scatter	ed 6" cobb	les. Bas	alt porp	h present. Some alt biotite rhy.
476.0	526.0	50.0			Rockbit. Cuttings similar to above described core.
526.0	530.0	4.0			Conglomerate. Similar frag types as in preceding core run. Frags generally
larger .	about 1	". Baselt	porph, a	lt ark a	nd biotite rhy are present.
530.0	580.0	50.0	639	.	Rockbit. Cuttings similar to above described core.
580.0	58 4. 0	4.0	50.0	•	Conglomerate, similar to 472-476'. Alt frags present. No basalt porph.
584.0	634.0	50.0	•	€9	Rockbit. Cuttings similar to above described core.
634.0		6.0	90	45	Conglomerate, similar to preceding core. Basal porph more numerous. One boul-
		with alignment of the contract		gated am	ygdules, penetrated 6". Vague suggestion
640.0	690.0	50	49	•	Rockbit. Cuttings similar to above described core. The rock-type change
which o	ceurs in t	his interv	al is not	ebberen	t by the cuttings.
690.0	695 .0		96		Conglomerate, which is in texture simi- lar to previous cores. The matrix, how- more reddish color in preceding runs. Frags
of basa to Pina are num zone of	lt porph a fm. arkos erous. We stratifie	re numerouses. Fresh takly anygon	s. One o and weak uloidal b e dips 15	obble of ly alt b asalt w/ . Other	arkose with weak py(?) Lim. appears similar iotite rhy, and purple biotite andesite(?) needle-like phenocrysts are present. A 3" red and green fine-gr igneous rocks,
	•				

<u>Prom</u>	<u>To</u>	<u>Interval</u>	Core Rec. #	% Cu Core	Geology
695.0	743.8	48.8			Rockbit. Cuttings similar to above described core.
	749.2	5.4	e		Conglomerate, similar to above. Matrix is coarse sand and granules. Basalt
porph i	: small en	d large in	es. Alt	ark pre	sent. Many frage fairly well rounded.
	755.4	6.2	97	*	Conglomerate, similar to above. More consolidated, and is now a fairly hard
biotite	andesite.	Other fro	ags inclu	de red be	gduloidal basalt. Numerous frage of purple asalt, andesite porph, partly epidotized, s run begins NX wireline core).
755.4	765.4	10.0	*		Conglomerate, similar to above. Inter- bedded zones of stratified sand and gra-
					is with weak py alt. Silver Bell-type ant. Basalt porphyry frags common.
765.4	775.4	10.0	99	•	Conglomerate, similar to above. Granule zones dip 250.
775.4	785.4	10.0	100	•	Conglomerate, similar to above. More abundant basalt porph frags, some of
Which as Thin be	re a varie i of red-b	ty with ver rown silt o	ry many li lips 25°.	arge phe Granul	to in a red matrix with visible magnetite.
785.4	795.4	10.0	100		Conglomerate, similar to above. A 1° frag of red-speckled andesite is present.
795.4	805.4	10.0	100	40	Conglomerate, similar to above. Much of the run is granule-sized. Vague
stratif. porphyr	lcation sh itic andes	ows gentle ite. Cont	dips. A	6 804	s an 0.8' penetration of medium gray rellel. Probably this is a thin dike.
805.4	815.5	10.1	99		Conglomerate, similar to above. Strat- ification dips 150.
815.5	825.6	10.1	100	•	Conglomerate, similar to above. Two 6" boulders, one of amygduloidal basalt,
and one	of red-sp	eckled and	esite.		
825.6	835.6	10.0	96		Conglomerate, similar to above. Strati- fied sand zone dips 200.
835.6	845.6	10.0	100	•	Conglomerate, similar to above. Alt ark common, showing weak py Lim.
845.6	855.6	10.0	100	. 1.4 ••• •••	Conglowerate, similar to above. One frag of black is. A thin fault dips 450. 5"
boulder	of amygdu	loidal blad	ok basalt	• * *	

			Core	% Cu	
From	To	<u>Interval</u>	Rec. %	Core	Geology
855.6	865.6	10.0	100	•	Conglomerate, similar to above. Sand layers dip 20°. Numerous Trags of
basalt p	orph, Si	lver-Bell-t	ype fm.,	and alt	ark.
865.6	875.6	10.0	100	•	Conglomerate, similar to above. One pebble of Pal(?) ls.
875.6	885.7	10,1	100	•	Conglomerate, similar to above.
885.7	895.8	10.1	99	•	Conglomerate, similar to above. A few 6"-12" boulders in upper half of run.
one of t	hese bou	lders is an	anygduld	oidal bro	m baselt.
895.8	905.9	10.1	98	. •	Conglomerate, similar to above. Vague stratification of granule layers at 10-15°.
905.9	915.9	10.0	100	***	Conglomerate, similar to above. A 1.4' frag of basalt porph. Zone 0.3' brown
sendstor	e layer	near bottom	•		
915.9	926.0	10.1	99	•	Conglomerate, similar to above. Granule and sand zones prevalent. Stratification
dips 40°	•	•	•		
926.0	936.0	10.0	99	453	Conglomerate, similar to above. Boulder of basalt perph and of a biotite andesite.
936.0	946.0	10.0	3.00	•	Conglomerate, similar to above. Dips 300.
946.0	956.1	10.1	99	•	Conglomerate, similar to above. Considerable red brown sand.
956.1	966.1	10.0	100	. e ds	Conglomerate, similar to above. Half of run is granule-sized.
966.1	976.1	10.0	100	•	Conglomerate, similar to above. Red brown sandy and silty matrix more dominant than
in previ	lous Tuns	. Abundant	basalt 1	corph.	
976.1	986.2	10.1	98	•	Conglomerate, similar to above. Strati- fication dips 400. Red brown sandy matrix.
					e, gray-green andesite of "Silver Bell" ag amyg. red basalt.
986.2	996.2	10.0	99		Conglomerate, similar to above.
		9.4			Conglomerate, similar to above. Large frags anyg. red, and brown basalt, dips
45°. 2	steep (6	0-80°) calc	ite, vug	zy, fract	ures.

From	To	<u>Interval</u>	Core Rec.\$	% Cu Core	<u>Geology</u>
1005.6	1015.7	10.1	100		Conglomerate, similar to above, strati- fication 20-40
1015.7		10.1	100	•	Conglomerate, similar to above. Matrix distinctly more red brown. More frage
Silver B	ell type	andesite.	Large fi	ag drown	amyg. basalt.
1025.8	1035.9	10.1	100	•	Conglomerate, similar to above. Pebbles most common size of frag, sub-angular.
1035.9	1046.0	10.1	99		Conglomerate, similar to above. Dips 40°.
1046.0	1056.1	10.1	96		Conglomerate, similar to above.
1056.1	1066.2	10.1	95		Conglomerate, similar to above. Some red anyg. baselt.
1066.2	1076.0	9.8	100		Conglomerate, similar to above. 2 boulders (12",15") are of brown anyg basalt.
1076.0	1086.1	10.0	100		Conglomerate, similar to above. A thin zone of laminated mud dips 40°.
1086.1	1096.1	10.0	100	•	Conglomerate, similar to above.
1096.1	1106.2	10.1	97	•	Conglomerate, similar to above. 1' bed of red sandstone.
	1116.1		100		Conglomerate, similar to above. 12" boulder of brown slightly amyg. basalt. Upper
contact	of the bo	ulder is a	70° slip)• •	
1116.1	1126.1	10.0	98		Conglemerate, similar to above. One boul- der basalt. Calcite filled fissure para-
llels co	re dear e	nd of run.	• •		
1126.1	1136.1	10.0	99		Conglomerate, similar to above. Local freg
fication	, dipping	45-700.	Abundant	besalt po	
1136.1	1146,2	10.1	99		Conglowerate, similar to above. Suggestion of steep stratification.
i i i	1156.3		100	addal wa	Conglomerate, similar to above. Numerous thin mud zones or gouge slips cut core at
AGLTOR2	antites.	ane nontae	r. amagan	CTORT LEC	l basalt.
	1166.3		100	•	Conglomerate, similar to above. Most of run is granule-sized. Thin gouge or
mud zone	s prominen	t.			

			ring paramental param
	Core	% Cu	
	Interval Rec.	Core	Geology
1166.3 1176.4	10.1 99		Conglomerate, similar to above. Central 4' contains abundant cobbles of basalt por.
1176.4 1189.4	13.0 97	•	Conglomerate, similar to above. Small slips or mud zones. This run displays
ment is indicated 1	out the granules	appear to l	or granulation mones. No displace- nave been locally rotated in their muddy in the previous 3 runs.
1189.4 1196.6	7.2 93		Mudstone. Contact with everlying con- glomerate is at beginning of run. Con-
tion in conglomerat	te parallel to order(?) fragments	of red brown	then cutting out. Slight granula- istone is dark red, about 2 1/2 hardness, a basalt(?). Mudstone becomes soft in the
1196.6 1205.8	9.2 17	•	Mudstone and conglomerate(?) Mudstone, soft and sandy, similar to last foot of
preceding run, extended a conglomerate(?), pebbles of igneous(Only about 0.1	. of lover i	rizontal or low-angle contact occurs with mit is recovered. This consists of
	of andesite an	•*	Conglomerate, high core loss. Zone makes water. Recovered fragments are arkose. Two short cores of conglomer-
ate show a red mudd	ly metrix.		
1227.6 1237.7	10.1 67		Conglomerate. Pebbles and cobbles of Weakly alt. arkose and argillite, and
the same type of fa sulf(?) cavities, h	rags are in a re out no indication is not hard and	d sandy mati n of Cu. The compact like	matrix to 1131.2, and below this point rix. Some of the alt rocks show diss is run is much more indurated than the conglomerates above 1189.4. Strat-
1237.7 1247.8	10.1 69	•	Conglomerate, similar to red portion of previous run. Stratification may dip
as much as 100. Or	e boulder of Pi	ma fm type e	rgillite, but without trace of Cu.
1247.8 1256.7		*	Conglomerate, similar to above. Inter- bedded zones of cobbles and granules,
1/2-1' each bed. I bedding. Frags are Matrix is brown red	e alt ark, purpl	Thin layers e andesite,	sandstone. Gypsum forms seems along and arg and congl of Papago-Kino type.
1256.7 1264.2	7.5 80	•	Conglomerate, similar to above. Dips 12-180.

ASSAY DATA - DIAMOND DRILL HOLE X-139 Started: 6-9-59 Completed: 7-30-59

	% Recovery		covery	% Assay		
From	To	<u>Interval</u>	Core	Sludge	Core	Sludge
0.0	173.0	173.0	.			No Sludge
173.0	177.0	4.0	97-5	. , , :		
177.0	214.0	37.0				• • • •
214.0	217.0	3.0	93.4	•	•	•
217.0	268.0	51.0	•	•	•	
268.0	270.0	2.0	90.0	•	-	•
270.0	320.0	50.0	•		•	
320.0	322.5	2.5	100.0	· · · · · · · · · · · · · · · · · · ·	-	•
322.5	373.0	50.5	•	, 	•	-
373.0	377.0	4.0	105.0	•	•	
377.0	418.0	41.0	•		•	•
418.0	422.0	4.0	102.5	•	ing experience	•
422.0	472.0	50.0		•	•	oga e e e e e
472.0	476.0	4.0	95.0	•	• • • • • • • • • • • • • • • • • • • •	•
476.0	526.0	50.0	•	•		
526.0	530.0	4.0	55.0	**	-	, -
530.0	580.0	50.0	* ••	•	•	•
580.0	584.0	4.0	50.0	•	•	•
584.0	634.0	50.0	•	•	T 1	-
634.0	640.0	6.0	90.0	•	•	• •
640.0	690.0	50.0		-	•	•
690.0	695.0	5.0	96.0		•	•
695.0	743.8	48.8	0	•	•	•
743.8	749.2	5.4	103.8	•	•	•
749.2	755.4	6.2	96.9	•	-	-
755.4	765.4	10.0	98.0	•	•	•
765.4	775.4	10.0	99.0			•
775.4 785.4	785.4	10.0	101.0	•	•	•
795.4	795.4 805.4	10.0 10.0	100.0 100.0	•	•	
805.4	815.5	10.1		• • • • • • • • • • • • • • • • • • •	•	•
815.5	825.6	10.1	99.0 100.0	_		•
825.6	835.6	10.0	96.0		Ne Le Hill	
835.6	845.6	10.0	100.0		_	-
845.6	855.6	10.0	100.0			_
855.6	865.6	10.0	100.0		-	
865.6	875.6	10.0	100.0		_	
875.6	885.7	10.1	100.0			
885.7	895.8	10.1	99.0		. ₹	
895.8	905.9	10.1	98.0			_
905.9	915.9	10.0	100.0	•	•	
915.9	926.0	10.1	99.0	* 	-	•
926.0	936.0	10.0	99.0			
936.0	946.0	10.0	100.0			and the second second
946.0	956.1	10.1	99.0	· ·	•	-
956.1	966.1	10.0	100.0	•	• . ,	
4.1				4		

ASSAY DATA - DDH X-139 - Continued

			4	Recovery	% Assay
Pron	<u> 10</u>	Interval	Core	Sludge	Core Sludge
966.1 .	976.1	10.0	100.0		No Sludge
. 976.1	986.2	10.1	98.0		
986.2	996.2	10.0	99.0		
996.2	1005.6	9.4	96.9		
1005.6	1015.7	~ 10.1	100.0		
1015.7	1025.8	· 10.1	- 100.0		
1025.8	1035.9	· 10.1	100.0		
1035.9	1046.0	10.1	99.0		
1046.0	1056.1	10,1	96.0		
1056.1	1066.2	10:1	95.1		
1066.2	1076.0	9.8	102.0		
1076.0	1086.1	10.1	100.0		
1086.1	1096.1	10.0	100.0		
1096.1	1106.2	10.1	97.0		
1106.8	1116.1	9.9	100.0) () 등이는 아이지 () 등에 여름을 한다.
1116.1	1126,1	10.0	98.0		'맞선물'에 다른 가를 보고싶다.
1126.1	1136.1	20.0	99.0		
1136.1	1146.2	10.1	99.0		
11/16.2	1156.3	10.1	100.0		
1156.3	1166.3	10.0	100.0		하늘 이 사람이 되었다.
1166.3	1176.4	10.0	99.0		
1176.4	1189.4	13.0	97.1		
1189.4	1196.6	7.2	93.1		
1196.6	1205.8	9.2	17.4		요한 특성적 하는 사람들은 수만 있다.
1205.8	1227.6	21.8 20.3	8.3		이 불쾌한 제공학 회사를 받았다.
1227.6	1237.7 1247.8	10.1 10.1	67.2 69.3	•	흥미를 내용할 때문에 있다.
1237.7 1247.8	1256.7	8.9	66.4	•	
1256.7	1264.2	7.5	80.0		
1264.2	1266.7	2.5			
26V716	1500+ (5.7		•	

SUMMARY - DIAMOND DRILL HOLE NO. X-264 XX.25E 366.25N Collar Elevation 3205.9

From	Ţo	Interval	Core Rec.%	% Cu Core	Geology
0.0	208.0	208.0 I	rilled wit	h Rock I	Sit Overburden - Composed of alluvial sands and gravels.
208.0	214.7	6.7	17	. 11 11	Basalt - Bedrock contact established from driller's report and character
(less th	en 1 mm)	white plag		ldspar I	ry fine grained, and exhibits minute henocrysts. Fragments bear appre-
214.7	217.0	2.3	100	•	Basalt - Similar to above. Hematite red, very fine grained, with the white
elongate Last 2.5	d blebs of -3.0' of	r anygdule	s of white	calcite	e. Lower portion of run exhibits small, with a rough inclination of 30-50° digh percentage of magnetite throughout.
217.0	260.0	43.0 E	rilled v/r	ock bit	Basalt - Character samples indicate it to be similar to above.
260.0	262.0	2.0	80		Basalt - Similar to above but not exhibiting a visible felty texture.
			d and heal on or alte		n calcite on fractures. No blebs or
262.0	305.7	43.7 I	rilled w/r	ock bit	Basalt - Character samples indicate it to be similar to above.
305.7	307.7	2.0	90		Basalt - Similar to above. Generally more broken, but not exhibiting as much
healed b	recciatio	n. No mir	eralizatio	n or alt	
307.7	330.0	22.3 I	rilled v/r	ock bit	Basalt - Character samples indicate it to be similar to above.
330.0	334.2	4.2	98	•	Baselt - Similar to above. Basically dense, very fine-grained and hematite
	n of magn				leached. Traces of chlorite and some withed to brown. No mineralization or
334.2	342.2	8.0	95	-	Basalt - Similar to above. Color trends somewhat more toward purple when dry.
	cite and r alterat		lue-gray m	enganese	crides(?) on fractures. No minerali-

SUMMARY - DIAMOND DRILL HOLE NO. X-264 XX.25E 366.25N Collar Elevation 3205.9

	<u>Inte</u>		•	
	2.2 10			Basalt - similar to above. Mottled from purplish hematite red to rust brown
	tz. Some 1			emygdules. Few veinlets and scattered ciation in base of run. No mineraliza-
			en e	
	•	.2 100		Basalt - Similar to above. Some high angle veining of hematite and chabazite.
Some zones ex these veins.	inibit a he Lower end	ealed brecei l of run bro	ation or rep ken and disp	lacement brecciation by hematite along laying some gouge. No mineralization
or alteration	1.			
359.4 361	1.7 2	.3 13		Basalt and arkose - very poor recovery. Run consists of a few large fragments of
rock type. ((Fregnants	t and some (of arkose)	probably cave	neralization or alteration in either from boulder cored in overlying alluvius Basalt - similar to above. Displays
30241 300		•		some mottling throughout and localized
				or smygdules of what are probably
zones of heal zeolites. Re				or amygdules of what are probably
zeolites. No		zation or al	lteration.	Or amygdules of what are probably Basalt - similar to above in all re- spects. Somewhat more broken toward
zeolites. No	minerali 4.6 6	zation or al	lteration.	Basalt - similar to above in all re- spects. Somewhat more broken toward
zeolites. No 368.5 371 base of run. 374.6 381	winerali 4.6 6 No miner 4.8 10	zation or all 92 alization of 100	teration.	Basalt - similar to above in all re- spects. Somewhat more broken toward observed. Basalt - similar to above. Small flecks of chlorite, probable clivine, and hema-
zeolites. No 368.5 371 base of run. 374.6 381	wineralia 4.6 6 No minera 4.8 10 out. Scat	zation or all 92 alization of 100 tered veinle	teration. calteration calteration	Basalt - similar to above in all re- apects. Somewhat more broken toward observed. Basalt - similar to above. Small flecks of chlorite, probable clivine, and hema- ure deposits of calcite. Core still mag-
zeolites. Ro 368.5 371 base of run. 374.6 381 tite through netic. No mi	winerali 4.6 6 No mineral 4.8 10 out. Scat- ineralizat	zation or all 92 alization of 100 tered veinle ion or alter 94	teration r alteration - rts and fract ration observ -	Basalt - similar to above in all re- apects. Somewhat more broken toward observed. Basalt - similar to above. Small flecks of chlorite, probable olivine, and hema- ure deposits of calcite. Core still mag- ed. Basalt - similar to above. A few brown, more exidized zones crosscut the upper
zeolites. Ro 368.5 37 ¹ base of run. 374.6 38 ¹ tite througher netic. No minute of the second of the second run.	wineralist. 4.6 6 No mineralist. 4.8 10 out. Scatineralizat. 9.9 5 he run. Leferal zoni:	zation or all 92 alization of 100 tered veinle ion or alter 94 ower portion	teration. r alteration ets and fract ration observ c exhibits pa	Basalt - similar to above in all re- apects. Somewhat more broken toward observed. Basalt - similar to above. Small flecks of chlorite, probable clivine, and hema- ure deposits of calcite. Core still mag- ed. Basalt - similar to above. A few brown,

400.0 409.7 9.7 90 - Basalt - similar to above. Entire run exhibits generally strong, rehealed shearing along 50° planes. No mineralization observed or alteration observed.

	•					
	From	To	Interval	Core Rec.%	% Cu Core	Geology
40	409.7	416.2	6.5	100	#	Basalt - similar to above. Healed
200	zeolite observe		. Some mor	ttling to	rust bro	shearing common throughout. Fever wm. No mineralization or alteration
TE .	416.2	424.0	7.8	86	•	Basalt - similar to above. Strong evidence of shearing and healing asso-
1	ciated 1		gouge. Sor	ne interc	epts of s	small zeolite amygdules. No mineraliza-
	424.0	433.9	9.9	97	•	Basalt - similar to above. Amygdules are locally abundant, and a few clusters
14			vertical or observed.	rientatic	n. A fe	gougy slips are present. No alteration
4	433.9	1,143.9	10.0	95	•	Basalt - similar to above, to 443.6' and a fault contact with Conglemerate.
K	The basi	alt is a b	lack-byown	color	darker	than above and contains anygoules fille

The basalt is a black-brown color -- darker than above -- and contains anyguiles filled with green prehnite or Celadonite. At 443.6, an 1/8" calcite-filled slip dips 74°. Below, is a red brown conglomerate with a maroon mudstone matrix. The fragments are rounded to angular, granule to large pebble size, and consist mainly of basalt. A few small fragments of arkose are present. The conglomerate is firmly indurated. Within 1 1/2" from the fault plane, the basalt is brecciated. No alteration or mineralization observed.

A conglowerate and Post ore Fault Breccia.

A conglowerate identical to above continues to 444.4. At this point the conglowerate grades abruptly into a poorly consolidated conglowerate containing granules to large pebbles of a biotite bearing rhyolite, arkose, and fine-grained basalt. The matrix is red brown sandy siltstone. With a decrease in pebble size and abundance, the conglowerate grades into red brown mudstone at 445.9. This is very poorly consolidated. This unit extends to 447.4. A 0.1 cobble of arkose occurs at the bottom. Below this, a fault zone begins. The fault zone is composed of thin to thick sheared layers of red mudstone-gouge, and of brecciated and sheared arkose and sulphides. The shear layers of mineralized rock appear as grey lenses containing ground up sulphides. Crushed sulphide occurs throughout the gouge-mudstone also. Small to large fragments of altered and pyritized arkose are disposed throughout. Gouge and breccia of altered rock and sulphide make

arkose are disposed throughout. Gouge and breccia of altered rock and sulphide make up the bottom foot. Brecciated and crushed light gray argillite with diss. py underlie the fault, shear planes show variable dip, and range from 15-480.

452.1 461.7 9.0 86 0.22 Argillite. Banded and mottled brown and buff or tan. Weakly calcareous. The rock is cut by numerous criss-crossing, curved fractures, and chloritic alteration is extensive along these structures. The first foot of rock is shattered or brecciated. Core throughout rum is highly broken along the numerous fractures. Py is diss in fine grains, particularly near chloritic areas. Cpy is sparse. Cu content: sparse.

From	To	<u>Interval</u>	Core Rec.\$	% Cu Core		<u>Geology</u>	
461.7	471.1	9.4	98	0.19		similar to above. Calcareo on seams and in the rock.	us
Chloritie	alteret	ion praval	ent. Cu	content		Of peases end in one loca.	
471.1	484.3	13.2	97	0.27	Argillite,	similar to above to 372'	

where it grades into a light brown argillite with less chloritic alteration. These two types are similar in many respects.
Throughout this lower unit, are short intercepts of strong chloritic alt as above.
Both types are calcareous. Py is the dominant sulphide, occurring as fine grains and thin stringers. Cpy is minor. Cu content sparse.

484.3 493.4 9.1 92 0.22 Argillite. The first few inches of core are pieces of highly talcose, fractured argillite. This initiates a very dense, black-brown argillite. This unit is cut by many chlorite-serpentine slips, but the alteration does not extend away from the slip surface. The last foot is a lighter colored argillite.

193.4 504.7 11.3 99 0.29 Argillite. Three types are present in this run. (1) 493.4-498.02'. Light grey argillite, fractured and kaolinized. Some feldspar(?) present as fine grains, gradational into (2) 498-501.6'. Dark brown sandy argillite. Numerous my stringers. Rock is weakly calcareous. This unit grades into (3) at 501.6' with an abrupt color change. (3) is light grey, weakly to strongly calcareous. Fine my-cmy stringers with thin chloritic alteration halos cross the core in many directions. These veins are 1/8 to 1" apart. Cu content: sparse to weak.

504.7 516.4 11.7 98 0.20 Argillite. Similar to type (3) above, but with fewer veins of chlorite. At 512' the rock changes to black chloritized argillite, core in this unit is broken into little pieces. At 513' this unit grades into a light gray sandy argillite. Some clay alteration is present in the matrix. Py is diss. throughout run, more heavily in the black argillite, and also occurs in widely spaced 1/8" veins. Cu content sparse.

516.4 524.9 8.5 93 0.20 Argillite, similar to bottom unit of previous run. At 522.0' this grades into a mottled and banded buff, yellow, and brown, weakly calcareous argillite. Sulphides are diss in tiny grains. Mostly py. Cu content weak.

524.9 536.9 12.0 77 0.26 Argillite, similar to last unit of previous run. Suggestion of 45°± dip. At 528.9 is a chloritic shear zone 0.3(+)' thick and dips 10°. The rock below is heavily kaolinized for a distance of 1.0°. Crushed core and kaolinized material at 532.5' suggest another fault. Rock below the fault zone is light green argillite, somewhat similar to the rock above the fault, and is cut by numerous chlorite veinlets. Py is diss. Cu content - sparse or Weak.

536.9 547.3 10.4 55 0.24 Argillite, similar to above to 544. Below a gradational contact is a light gray fine-grained arkose. Calcite filled shears dip 15° at 544.0°. Cu content sparse or weak.

Summery - DDH No. X-264 - Continued

			- Clare	% Cu	
From	To	Interval	Rec.%	Core	Geology
547•3	557-5	10.2	94	0.21	Arkose, similar to above. Core badly broken. Cu content sparse.
557-5	568.4	10.9	83	0.24	Arkose, similar to above. Rock highly Tractured and altered to serpentine.
Core bro		lttle pieces	. Sligh	t increas	se in sulphides. Mostly py. Cu con-
broken.	This cr	shed unit	extends t	oritic zo o 574.3'	Arkose, similar to above, for 0.5'. Below this is a strongly fractured ones and gougy slips. Core very badly where a 50° gouge zone forms a contact
with Arg various Sulphide argillit	<u>gillite.</u> Shades of es are dis se, numero	This rock if gray-green ss weakly in	is weakly a. Some a the ark ins are p	calcared black eroose, and a	ous, and varies in color from tan to eas may represent the original color. a few 1/8" veins are present. In the as well as diss blebs. Sulphides mostly
578.1	591.6	13.5	96		Argillite, similar to lower portion of previous run, extends to 582's. Here
					very sandy argillite. In the latter Cu content sparse.
591.6	602.8	11.2	98	0.09	Sandy argillite, similar to lower portion of previous run. Cu content sparse
602.8	611.0	8.2	88	0.21	Sandy Argillite and Arkose. Similar to above. Occur in an alternating, gra-
erally a tures ar veinlets weak fel	iltered, s re 80-900 s, pseudo- ldspar de	sericitic, a and display granular to	and very y thin gy extures c mmon. V	highly by p, chlori rested by einlets o	light gray to dark greenish gray. Gen- roken and fractured. The slips and frac- ite, and black gouge. Bleaching along y sericite, traces of epidotization, and and diss of py and some cpy. Traces of
611.0	623.7	12.7	61	0.21	Sandy Argillite and Arkose. Similar to above. Still highly broken and
fracture	ed. Some	increase in	py. Tr	aces of	sphalerite. Cu content rare to sparse.
623.7		12.2			Sandy Argillite and Arkose. Similar to above. Exhibits greater crushing
dark sta	reaking w	ntage of dir hich dips 6 content spar)-70°. P	chlorit y and so	e or serpentine. One intercept displays me cpy in diss and veins. Traces of

645.9 10.0 93 0.21 Sandy Argillite and arkose. Similar to above. Below 641 core is much less
Same mineral assemblage and traces of moly. Cu content rare to sparse.

635.9

	. •			Core	6 Cu	
	From	To Dr			Jore	Geology
	645.9 6	57•9	12.0	97	0.15	Sandy Argillite and Arkose. Similar to above but much less broken. Around
	the run. ex	hibiting ng in abu	only pate ndance wi	hes of the	e dark e gouge of	arkosic phase and remains so throughout rgillite. Py disseminated throughout 60-70° slips and fractures. Traces
		66.8	8.9	planisia a		Sandy argillite, similar to above. Light grey phase and appears to be altered
	dip 65-800	(principa bends. D	1 dip 650) at 658.	j'. The	a(?) and post-ore thin black gouge gray arg is cut by many thin white are py with some opy. Traces MoS2.
-	666.8	79-3	12.5	68	0.18	Sandy argillite, similar to above, to 669 E. Here a black sandy arg with
	Below 6742	rock is s , as well	imilar to	that at 1	ringiget	p, but irregular chloritic fault planes. g of run. Py is moderately diss in s in lesser abundance. Cu content
	679.3 6	85.4	6.1	97	0.14	Sandy argillite, somewhat similar to above. Alteration has produced a white
•	colored roc tion whi cpy-sphaler	ch are gr	ay. Py a	nd cpy oc	cur in d	mining between crossing veins of altera- liss and veins. At 683' is a vein of rate.
•	685.4	95.4	10.0	97	0.26	Sandy argillite, similar to above, grading down into gray white fine-
	grained ark fairly stro cpy. Numer	ng, princ	ipally di	es but el	so as ve	Arkose is weakly calcareous. Sulphides inlets. Py is dominant with lesser resent.
		04.2		98		Arkose, similar to above, to 692.0' where it changes abruptly to dark gray argill-
	straight bu	t in plac d the end sandy ar ips are s	es contou of the r gillite. hown by s	red, silt(un the roo Pv and so	(?) band k gradu me cov	d of light colored parallel, generally is. This stratification(?) dips about ally changes to a light colored to are diss and in veins. Numerous black chloritic gg. with crushed sul-
	704.2 7	14.3	10.1	100	0.11	Very sandy argillite and fine-grained arkose. Light gray to brown. Py diss
	in fine gra	ins. A f	ew thin v	reins. Cy	y minor	Trace MoS2. Cu content weak.
	714.3 7	20.5	6.2	100	0.16	Sandy argillite, gradational with above, is light gray to buff. Sulphides
	the second secon		and the second second			그 수 있는 사람들은 사람들은 불자를 하는 것이 되었다. 그는 것은 사람들은 경우를 가는 것이 되었다.

similar to above. Cu content weak.

720.5 728.1 7.6 96 0.16 Argillite and sandy argillite. Gray, similar to above to 7225, brown to 7245, and gray with slight greenish cast to bottom of run. Py and cpy diss. Core is cut by many post-ore slips, irregular and curving. Clay-sericite is strong. Cu content sparse.

728.1 737.7 9.6 94 0.15 Argillite, similar to above. Large portions of core are brown-black, altered to a mottled tan with faint greenish cast. Weakly calcareous. Rock is soft and breaks backly fracture surfaces which show serpentine. Bedding lamination at 733' dips 60°. Py diss weakly and on a few veins. Cu content sparse.

737.7 747.4 9.7 95 0.19 Argillite, similar to above. Sulphides slightly heavier. Cpy more abundant.

747.4 760.6 13.2 96 0.18 Sandy argillite or fine-grained arkose. Grain size is transitional between these two types. Rock is gray with local areas which show a red tinge. Tiny flecks of chlorite are abundant, and epidote is rare. Occasional serpentine slip. Sulphides are diss throughout in tiny grains and seams. Py predominates; cpy also present. Cu content weak to moderate.

760.6 770.6 10.0 97 0.12 Sandy argillite. Gray, similar to above to 767.35, where a short zone of crushed rock and moderate kaol. initiate a brown sandy argillite. This unit becomes browngray near bottom of run. Py is the principal sulphide, diss in fine-grains and occurring in thin veins. Some veins of py-gypsum are present near top of run. Cpy minor. Cu content sparse.

770.6 778.1 7.5 96 0.19 Argillite. This unit begins at start of run. The texture is locally sandy, and the colors are mottled gray and buff, forming irregular contacts with black argillite. From 772.4-773.1, the rock shows very thin laminated bands of tan to buff colors -- probably bedding. These dip 47-50°. Py diss throughout, with some cpy. Thin veins of sulphide are numerous. Serpentine on slips. Cu content weak.

778.1 790.7 12.6 98 0.24 Argillite, similar to above in all respects. Epidote and chlorite occur in clusters. Cu content weak.

790.7 803.0 12.3 100 0.25 Argillite and sandy argillite, similar to above. Black colored phase absent. Cu content sparse.

803.0 813.2 10.3 88 0.18 Argillite and sandy argillite, similar to above. Gray color predominates, and shows abundant feldspathic spots (rextll?). Sulphides weaker than above. Cu content sparse.

813.2 824.5 11.3 91 0.13 Argillite and sandy argillite. Similar to above to 816.6' where it changes along a tight, irregular, and slightly gradational contact to brown sandy argillite criss-crossed by numerous veins of sulphide and surrounding halos of bleached rock. At 819.2' is a banded zone which may be bedding laminations dips 40°. At 822.2 this brown unit is in tight contact with gray green argillite similar to that at beginning of run. Py diss. Cu content sparse.

From	10	Interval.	Core Rec.%	% Cu Core		Geolog		
824.5	828.9	4.4	91	0.16		Fault Zone		
(nostly p	y) sugges ell devel	ts that th	is may be appear to	also a	out the go pre-minera	ouge. An a al structure ; from O to	oundance of Shear	f sulphide planes

828.9 839.4 10.5 97 0.14 Arkose(?). Brown colored siliceous rock with numerous small sub to anhedral feldspar grains. Color may be due to finely diss biotite. Qtz veins with py traverse rock, and are bordered by bleached areas. In the lewer part of this run are some short intercepts of gray argillite. Py is the dominant sulphide. McS2 occurs in traces throughout run. Cu content sparse. Special assay - Mo: 0.034%.

839.4 852.3 12.9 95 0.17 Arkose(?) and argillite. Arkose, similar to above, and also gray without biotite(?). These rocks are interbedded with brown and gray argillite. Bedding lamination in the argillite dips 25-35°. Veins of Py-MoS2-gyp. Diss py and Mo. Feldspathic gouge and hematite form the bottom 0.3'. Cu content sparse. Special Mo assay: 0.016%.

852.3 863.3 11.0 97 0.14 Fault zone, to 852.9', consisting of breccia fragments and thick bands of gypsum; dip 60°. Sulphides in this zone do not appear crushed, and are banded in thin seems along fault. Light gray arkosic argillite to 254.3', and a 40° thin slip. Below this is brown (diss biotite?) arkose(?) similar to that of previous run. Wide silicified zones border py veinlets. This unit extends to 859.1' and a 38° thin slip, with shattered zone 0.1' above slip. Below is a brown completely dense argillite. Hard, conchoidal fracture. Bedding laminations below slip are variable low-angle, truncated by slip. This unit grades abruptly into brown slightly sandy argillite at 860.1'. This grades at 862.8' into light brown argillite. At 860.6 is a ctzpy vein dipping 75°. Silicified zone 1" each side. Py dominant in all rock types. Cu content sparse.

863.3 871.6 8.3 94 0.12 Argillite and sandy argillite. Similar to types above. Considerable biotite(?) development. Siliceous veins of py. Cu content sparse.

871.6 881.0 8.8 99 0.07 Sandy argillite. Brown, with abundant finely diss biotite(?). Numerous serp. fractures. Py in vines and diss. tr. cpy. Gouge and slips at 878.0'. Cu content sparse.

881.0 883.6 2.6 100 0.54 Transition zone -- argillite and tactite. The argillite is light brown, soft, and contains white feldspathic(?) spots. This rock is intergrown with yellow green garnet and chlorite. Py is diss, and occurs in thick veins. Pre-and post-pyrite shears dip about 50°. Trace of specularite. Cu content weak.

883.6 894.2 9.0 86 0.17 Diopside hornfels and tactite. The horn-fels begins the run with a gradational

Summary - DDH No. K-264 - Continued

From To Interval Rec. 5 Core

Geology

contact from transition zone above, and extends to a sharp, flat contact at 86.0°. This rock is composed of soft gray granular diopside, and is traversed by py vains with borders of blue-black actinolite. The tactite is a very soft rock composed of 50% yellow garnet and 50% very soft diopside. A few hematite veinlets are present. From 889.7-890.5° is an intercept of diop. Hf. similar to first part of run; contacts tight, dip about 15-20°. Tactite contains weakly diss py. Cu content sparse.

894.2 904.9 10.7 92 0.21 Tactite, similar to that in previous run. Yellow brown garnet. Diopside content 20% to 50%. Py with some cpy occurs in a few spots as small pods. Core

ground up the O.A. Cu content weak.

904.9 911.5 6.6 93 0.06 Marble. Contact at beginning of run is broken. Chlorite and gouge fragments. Below this is 0.6 black moderately calcareous mudstone with py seams. This is in sharp contact with white fine-grained marble. Between 909.4 and 911.0 is an intercept of yellow gray mudstone. Core broken to little pieces. Marble is cut by hairline serpentine-py veins. Cu content sparse.

911.5 922.3 10.8 75 0.19 Tactite and Marble. The first is yellow and massive; begins run and extends to 912.4°. Below is a white marble, similar to above. Below 914.0° is 1 ft. of serpentine and py. Below this is white silicated limestone, or dolomite. Between 919-920° is gouge of white granular material, and micaceous plates. Normal white marble occurs below 921°. Cu content sparse.

922.3 927.0 5.7 91 0.95 Hornfels and Tactite. Diopside horn-fels initiates run. Black serpentine zone of gouge on contact. This continues to 923' where gyp vein forms contact with tactite. This unit contains yellow garnet and soft diopside. 0.3' shear zone at bottom of run dips 20°, and forms contact with next unit. Cu content sparse.

927.0 942.1 15.1 95 0.02 Limestone, gray, fine-grained. Calcite seems throughout. A lineation dipping 40° is persistent throughout run, formed by oriented calcite streaks. Some clots and small bits of calcite suggest parts of fessils, but none are preserved well enough for any identification. Py weak -- occasional grain and thin seem.

942.1 955.5 13.4 100 0.02 Gray limestone, similar to above, to 950.3', where a 40° slip forms contact with mottled limestone. The first unit shows pronounced planar structure dipping 50-60°; the calcite planes are locally ptygmatically folded. The movement of flowage suggested by these folds is up the dip of the planes. The mottled limestone is gray, slightly dolomitic, with large interlocking veins and blebs of calcite. Both units contain widely diss py. Cu content sparse.

955.5 962.4 6.9 100 0.01 Mottled limestone, gray and white, similar to above. Round white spots surround a tiny core of py(?). 61.7-62.1' is a low-angle Bx zone and soft black gouge. Scattered calcite casts of pelecypods(?). Cu content nil.

	From	To	Interval	Core Rec.%	% Cu Core	<u>Geology</u>
	962.4	972.7	10.3	81+	0.03	Marble, dolomitic; white, fine grained serpentine veinlets. 20° gouge at
	962.81.	Cu conte	mt nil.			serbenerna acrimens. So, Sonsa ar
	972.7	981.2	8.5	97		Marble, white, similar to above, to 976.1. Here a 450 serp. slip and
			es a mixed e stained.			ole and white coarse marble. Slightly
•	981.2	995.2	14.0	98		Marble, similar to last part of above run. White predominates, mixed with
	areas of phides n	gray max ot seen.	ble. Some At 992' is	calcite a knot	of gray of	gest poorly preserved fossils. Sul- hert. Cu content nil.
	995.2	1009.2	14.0	97	0.02	Cherty marble to 1803'. White to gray marble with small knots of gray black
	gray mar	ble with	20% of roo white blebs limonite.	and str	eaks. Sn	ntercept is 60% chert. Below 1003' is all whitespheres center about tiny cores
	1009.2	1015.9	6.7	100	0.02	Gray marble, similar to last part of above. Highly fossiliferous, with
	1/4-3/4" preserve	casts of d to iden	shells, ar	nd other se of py.	smaller f	Cossil fragments. None appear well enough
	1015.9	1026.0	10.1	100	0.02	Gray marble and white marble. The first similar to above, is highly fossili-
	ferous, white wa content	rble cent	g casts of er about p	shells a cores.	nd unider The last	tifled fragments. Small spheres of foot is made of white marble. Cu
	1026.0	1035.4	9.4	99	0.20	Marble, white, similar above, extends to 1028'. At this point the marble give
	to 1032.	l'. This	zone consi	sts of g	ouge and	e, which marks a <u>fault zone</u> extending bx, with a few short intercepts of
	intercep creem co	ts are no lored hor	t efferveso nfels (dio	ent, and	may be a last 1/2	atite, and chlorite. The white gouge round diopside. Below 1032.1' is dense 'is green tactite. No sulphides seen. Cu content nil.
	1035.4	1044.7	9-3	87	0.01	Tactite and hornfels. Tactite is the principal type, and contains shorter
	units.	A 0.4° fa	ult zone oc	curs bel	.ow 1042.3	diop(?) is mixed with the tactite ;, and consists of banded hematite and No sulphides seen. Cu content nil.

1044.7 1056.3 11.6 97 0.01 Tactite, hornfels and argillite. The tactite is yellow green and addite ((high(+) relief, 1.78 oil), and is interbedded below 1049.4 with coarse, fibrous

Wollastonite hornfels. Garnet layers and other color bands dip 40-500. Argillite

1044.7

1056.3

11.6

From To Interval Rec. 6 Core Geology

dark brown with faint red tinge, occurs between 1047.1' and 1049.4'. Upper cut 550 hem. slip. Lower cut 550 tight. No sulphides seen. Cu content nil.

1056.3 1066.5 10.2 37 0.02 <u>Tactite</u>, similar to above; garnet and wollastonite intergrown. Fault, 1" zone bx, gouge, hem., dips 35° at 1060°. Trace py alt to limonite. Cu content nil.

1066.5 1081.7 15.2 93 0.07 Tactite and argillite. Tactite is similar to above, extends to an obscure contact at 1074.3' with argillite. This is somewhat mottled, pale gray, greenish, and tan, may be slightly silicated. Vein, 1/4", of galena, calcite, minor cpy, occurs at 1073.0, dips 45°. At 1080 is a patch of limonite after py, and leached sulphide cavities. A few hem-filled slips dip 45° more or less. No sulphides except as noted. Cu content nil.

1081.7 1091.6 9.9 97 0.01 Argillite, similar to above, altered locally to tactite. Fault zone, 0.1' at 1082.7, dips 32°, consists of banded hem, gouge. In lower half of run tactite-argillite are in contact along steep faults. Cu content nil.

1091.6 1105.9 14.3 88 0.02 Tactite, yellow garnet, with some admixed soft material (diop?). Diss hematite. A few hard hornfelsic patches. Fault zone, 1093.1-1093.6', consists of hematite and white gouge, dips 15-40°. At end of run is hem gouge and ground up core. Cu content nil.

1105.9 1116.0 10.1 95 0.04 Tactite and shear zone. Tactite continues similar to above to 1109.2'.

At this point a calcite-chlorite vein dips 70°; the tactite above is weakly chloritized a distance of 0.7'. Below is a chloritized tactite with weakly diss py and cpy in fine grains. Streaks of feldspathic material are present. This unit may be gardetized argillite. At 1111.7' the shear zone of the basement fault is initiated by 2" of brown gouge which dips 18°. The shear zone contains small to large irregular frags of crushed arkose of gray and reddish colors. These frags are packed together with tight contacts outlined by thin chlorite seams. No direction of shearing is shown. No sulphides visible. Cu content nil.

1116.0 1133.8 17.8 100 0.02 Shear zone, similar to above. The rocks within it are dark red siltstone, med. gr. gray green arkose, brown arg. These occur in intercepts up to 3' long, and are separated by tight chloritic contacts, and locally by low angle shears with augen structure. A few areas contain diss ly. Cu content nil.

1133.8 1143.6 9.8 93 0.04 Shear zone. Consisting of brown arg. cut by numerous red siltstone, shear planes of irregular and various dips. This type continues to 1138.1'. Below is red siltstone cut by irregular serpentine slips, with tiny irregular calcite seams. High-angle gypsum veins present. Cu content nil.

Summery - DDE No. X-264 - Continued

d m

From	10	Interval	Rec. %	<u>Core</u>	Geology
1143.6	1153.4	9.8	92	0.01	Shear zone and granite. Shear zone consists of 2 units. The upper is
20-30°. seams. (hardnescolors, shades. show Br., 20° 1/8 zone, fr	One gyps This unit is 4). Th ranging f Has the and some - 1/4" gy rom 1150.5 a gray s yellow, c	um vein pro extends to e lamination rom dark pro appearance contain as psum vein p -1152.6°, hear forms	esent, so 1145.4° ons are h urple thr of a thi ugen stru parallel is a serp the cont	me slippa , and a h airline to ough light nly bedded cture. D laminar st entine sho act with	el system of calcite veins dipping se and Ex associated with the calcite a contact with a laminated mylonite o 1/8", and are marked by contrasting t purple, and also gray brown of various i siltstone or shale. A few laminations ips begin at 30° and slowly flatten to tructure. The last 2.1' of the shear car area with breccia fragments. At trushed granitic rock. Light gray, alteration is present in the granite.

1153.4 1163.2 9.8 100 0.02 Sierrita granite. Coarse grained qtz and feld., with bleached biotits, locally altered to chlorite. Crushing decreases toward end of run. No alt or mineralization seen. Cu content nil.

1163.2 1178.3 15.1 99 0.02 Sierrita granite, similar to above.

Some biotite black, while others are bleached or alt to chlorite, local shearing and augen structure developed. No alteration or mineralization seen. Cu content mil.

ASSAY DATA - DIAMOND DRILL HOLE X-264 Started: 4-11-59 Completed: 6-8-59

		:	g,	Recovery		% Assay
From	To	Interval	Core	Sludge	COF	
0.0	214.7	214.7	40		. •	No Sludge
214.7	217.0	2.3	-	garage and 😘 😘 😘		•
217.0	260.0	43.0		•	•	-
260.0	262.0	2.0		• • •	. •	
262.0	305.7	43.7	•	.		•
305.7	307.7	2.0		• *	•	•
307.7	330.0	22.3	•		•	
330.0	334.2	4.2	-	• :	•	₩
334.2	342.2	8.0	•	•	•	
342.2	352.2	10.0	-	•		•
352.2	359.4	7.2	-		•	₩
359.4	361.7	2.3	. 7	•	•	· · · · · · · · · · · · · · · · · · ·
361.7	368.5	6.8	•		400	ris de la companya de
368.5	374.6	6.1	•	•	•	«•
374.6	384.8	10.2	**	₹8	*	•
384.8	389.9	5.1	•	- A 👄 - 1		•
389.9	400.0	10.1	-	•	•	-
400.0	409.7	9.7			-	
409.7	416.2	6.5	06.4	-	•	-
416.2	424.0	7.8	86.3		7	•
154.0	433.9	9.9	97.1	ect	45	
433.9	443.9	10.0	95.3	628	Que 1	***
443.9	452.1	8.2	0- 4			6
452.1	461.7	9.6	85.9	•	0.2	
461.7	471.1	9.4	97.5	-	0.19	•
471.1	184.3	13.2	96.8		0.2	
484.3	493.4	9.1	92.4	•	0.2	
493.4	504.7	11.3	99.2	-	0.29	
504.7	516.4	11.7	97.9	•	0.20	
516.4	524.9	8.5	92.8	. · •	0.20	
524.9	536.9	12.0	77.1		0.2	
536.9	547.3	10.4	54.7	• • • • • • • • • • • • • • • • • • •	0.2	
547·3	557•5 568•4	10.2	93.5 82.9	•	0.2	
557.5		10.9			0.2	
568.4 578.1	578.1	9.7	93.3	•		
2(0.7	591.6 602.8	13.5 11.2	96.5	•	0.0	
591.6	611.0	8.2	97.6		0.2	
602.8 611.0	603 2 OTT*O	0.Z	87.7 60.7		0.2	
623.7	623.7 635.9	12.7 12.2	93.7		0.2	
635.9	645.9	10:0	92.9		0.2	
645.9	657.9	12.0	96.6	■	0.1	
657.9	666.8	8.9	98.0	· · · · · · · · · · · · · · · · · · ·	0.1	
666.8	679.3	12.5	68.0		0.1	
679.3	685.4	6.1	96.9	. •	0.1	
685.4	695.4	10.0	97.4	-	0.2	

ASSAY DATA - DDH X-264 - Continued

			% Re	covery	\$ A	ssay
From	To	<u>Interval</u>	Core	Sludge	Core	Sludge
695.4	704.2	8.8	97.8	•	0.20	No-Sludge
704.2	714.3	10.1	101.1	•	0.11	
714.3	720.5	6.2	101.8	. 🙀 🛂	0.16	· · · · · · ·
720.5	728.1	7.6	96.3	•	0.16	-
728.1	737-7	9.6	93.6		0.15	•
737.7	747.4	9.7	95-3		0.19	•
747.4	760.6	13.2	96.0		0.18	. •
760.6	770.6	10.0	97.2	-	0.12	•
770.6	778.1	7.5	96.0	•	0.19	•
778.1	790.7	12.6	97-5	-	0.24	. *
790.7	803.0	12.3	100.0	•	0.25	•
803.0	813.2	10.2	87.5		0.18	•
813.2	824.5	11.3	91.3	and the second second	0.13	•
824.5	828.9	4.4	90.7	•	0.16	•
828.9	839.4	10.5	96.5	•	0.14	•
839.4	852.3	12.9	95.2		0.17	.
852.3	863.3	11.0	97.0	ang kalumatan dan	0.14	•
863.3	871.6	8.3	94.3	· · · · · · · · · · · · · · · · · · · ·	0.12	•
871.6	881.0	9.4	99.3		0.07	•
881.0	883.6	2.6	103.2	•	0.54	•
883.6	894.2	10.6	86.4	-	0.17	•
894.2	904.9	10.7	92.3	garaja 🚗 jaran	0.21	
904.9	911.5	6.6	92.5		0.06	→
911.5	922.3	10.8	75.0	-	0.19	
922.3	927.0	4.7	90.5	•	0.95	
927.0	942.1	15.1	94.9	🛥	0.02	
942.1	955.5	13.4	99-7	•	0.02	-
955-5	962.4	6.9	102.0		0.01	•
962.4	972.7	10.3	83.8	+	0.03	en e
972.7	981.2	8.5	96.5	•	0.07	•
981.2	995.2	14.0	97.8	.	0.02	•
995.2	1009.2	14.0	97.1	-	0.02	•
1009.2	1015.9	6.7	100.4	-	0.02	•
1015.9	1026.0	10.1	103.2	•	0.02	•
1026.0	1035.4	9.4	99.2	•	0.20	•
1035.4	1044.7	9.3	86.5	•	0.01	•
1044.7	1056.3	11.6	96.8	. •	0.01	to 🕳 T
1056.3	1066.5	10.2	37.3	•	0.02	₩.
1066.5	1081.7	15.2	92.5	-	0.07	•
1081.7	1091.6	9.9	97.4	of the see	0.01	
1091.6	1105.9	14.3	68.0	• ,	0.02	•
1105.9	1116.0	10.1	95.2	•	0.04	•
1116.0	1133.8	17.8	100.0	•	0.02	
1133.8	1143.6	9.8	92.6	•	0.04	.••
1143.6	1153.4	9.8	91.6	• • •	0.01	
1153.4	1163.2	9.8	100.8		0.02	•
1163.2	1178.3	15.1	98.7	. •	0.02	: · · •

Hinrison

SUMMARY - DIAMOND DRILL HOLE NO. 234 2425N 6950W Collar Elevation 3323

From	To	Interval	Core Rec.%	% Cu Core	Geology
0.0	221.6	221.6	69	49 ·	Alluvium. Rockbit.
greined	qtz-feld	5.4 rextillized intergrowt tures. Cu	h. No bi	otite.	Metaporphyry. Bedrock just above begin- ning of run at about 220'. Rock is texture remains. Buff color, coarse- Oxidized, with weak yellow limonite.Mn
227.0	232.4 ent - spe		5 4	0.06	Metaporphyry, similar to above. Qtz veining prominent. Trace "live limonite".
232.4 Cu cont	242.6 ent - spa	4	6	0.07	Metsporphyry, similar to above, Several thin oxidized qtz veins with py-limonite.
stringe	oxid. mu		esociated	e.6 and 2 With th	Metaporphyry, similar to above: To 245.2, 0.4° core recovered, all sulphide. 49.3°. Py is diss and also in thin e py. Cpy present. Cc is weak to heavy,
•		5.5 tent - weak	87 to mode:	0.17 ate.	Metaporphyry, similar to above. Py, cpy, and Cc. A few sulphide stylolites are

ASSAY DATA - DIAMOND DETIL HOLE 234 Date Started: 8/1/59 Date Completed: 8/6/59

		ing the grade care and con-	% Rec	OVECY	% ABI	38.Y
Prop	To	Interval	Core	Sludge	Core	Sludge
0.0	221.6	221.6				
221.6	227.0	5.4	rys e e <u>e</u> e een eg		0.10	kine iku ik <mark>al</mark> i suk
232.4	242.6	10.2	•	- -	0.07	
242.6 249.7	255.2	7.1 5.5	•	•	0.22	-
221.6 232.4 242.6 249.7	227.0 212.6 219.7 255.2	•		ali da Araba da Arab Araba da Araba da	0.10 0.06 0.07 0.22 0.17	energe jegen e

SUMMARY - DIAMOND DRILL HOLE NO. 235 - 3750N 5000W Collar Elevation 3264.5-

From	To	Interval	Rec. %	% Cu Core		Geology
0.0	170.0	170.0	608	•	Rockbi	, Alluvium.

Bedrock not reached.

SUMMARY - DIAMOND DRILL HOLE NO. 236 4950N 5250W Coller Elevation 3255.5-

From	To	Interval	Core Rec.%	% Cu Core		Geology	
			•		•		
0.0	198.0	198.0	•	•	Rockbit.		
198.0	203.0	5.0	排	•	Caliche co	nglomerate.	Frags of alt.

SUMMARY - DIAMOND DRILL HOLE NO. 237 5850N 3550E Collar Elevation 3066*

	_		Core	% Cu	
From	To	Interval	Rec.%	Core	Geology
0.0	243.7	243.7	. A. 1, 		Rockbit. Bedrock at 2421.
243.7	245.0	1.3 (77	0.02	Arkose, gray coarse-grained. Weak limonite stain, after py(?). Cu - nil.
	252.9				Arkose, similar to above to 246.8'. Here it grades into a green fine-grained
striose	or acra es	stica seguin	ree vet	A shoreh	lim. stain. Cu content - nil.
***	262.4	· · · · · · · · · · · · · · · · · · ·		0.01	of preceding run. Feint red tinge to
ments.	A few res	semble fossi	ll forms.	Bedding	y be concretions or possibly shale frag- is 70°. Below 258' grades into olive nevalization present.
	276.3		92		Siltstone, clive green soft similar to that in preceding run. Massive except
for loc	al lamina	ted zones di	ipping 62	1-72°. Ur	mineralised.
276.3	287.8	11.5	99	0.03	Siltstone, sandy olive green. Calcar- eous. This grades into black calcareous
		.0'-285.3'. unit is mass			ne of color only. Laminated bedding dips
287.8	296.9	9-1	98	0.02	Siltstone, black, calcareous. Very fine irregular laminations dip 70°. Numer-
ous fre	igs. of bla	ack siltstor	te. Unmi	neralized	
296.9	306.3	9 . 4	98	0.01	Siltstone, similar to above, massive.
306.3	316.4	10.1	91	0.01	Siltstone, similar to above, alternating with limestone in 1/4" to 1" bands. The
	me is whit id vary fro		coarse c	alcite gi	rains, in a grey, silty matrix. Dips are
316.4	328.3	11.9	97	0.01	Siltstone and arkose. The siltstone is similar to above at beginning of run,
type construction to the construction of contract the contract to the contract	ntinues to larkose. green. Li ginal sulpi	o a 65 ⁰ sedi Stratificat Imonite spec	lmentary Lion dips ks and d seent. T	contact e 70°. So endrites he iron s	Itstone at about 317.5°. The clive green at 318° with a gray medium- to coarse- ome of the stratified lenses are colored are prevalent throughout, but no evidence staining probably derives from mafic con-
328.3	341.8	13.5	98	0.02	Sandy siltstone and arkose. The former is olive green, hard, locally calcareous.

(continued next page)

SUMMARY - D. D. HOLE 237 - CONTINUED

a. View of		· · · · · · · · · · · · · · · · · · ·	Coxe	\$ Cu	
From	To	Interval		Core	<u>Geology</u>
Faint landanteend of re	inations l fine-gra m.	dip 75°. ined gray	Limonite arkose, (sparse (lipping (on fractures. At 340.4 it grades into a 50°. A small cube of py is present near
341.8	351.3	9.5	97	0.03	Arkose and siltstone. The former is similar to above, finely laminated, dipping
locally	alcareous	, derk gre	ly to olim	re gray.	tary contact at 344.0° with siltstone, This unit is semi-massive, but a few 55-70°. Unmineralized.
351.3	361.2	9.9	97	0.01	Siltstone, exkose and siltstone. The run begins in hard sandy siltstone and
At 354.1	' a 60° se		contact :	initiates	- these rocks being similar to those above s black calcareous siltstone. Massive,
361.2	370.7	9.5	99	0.01	Siltstone, black to gray, similar to above. Calcareous. From 364:4-365.7
is gray (coarsely c eg. Local	rystalline laminatio	silty lines in the	imestone siltst	Upper contact dips 60°. Lower con- one dip 60°.
370.7	380.6	9.9	99	0.02	Siltatone, similar to above. Massive. Unmineralized.
380.6	390.2	9.6	97	0.01	Silistone, grey, calcareous and massive, similar to above. Below 388 becomes
sandy and	l has fain	t olive ti	nge.		
390.2	400.7	10.5	100	0.01	Arkose. Gray, fine-grained. Faint oliv
		ceding run is unalte		re. At	392' is e 3" zone with 1/8" my cubes;
400.7	420.7	10.0	99	TP	Arkose and siltstone. The arkose is similar to above, and extends to 201.4'.
					ack to grey calcareous, massive siltstone, to alteration or mineralization.
410.7	424.3	13.6	91,	0.02	Siltstone and arkose. The siltstone is similar to above. Between 421.3' and
dipping !	100, and w	hich give	a banded	appearer	with thin stringers of black siltstone nee. The arkose is calcareous, and is act dips 6501.
424.3	437-3	13.0	95	0.01	Siltstone and arkose. The siltstone is similar to above, but is closely
laminated	to thin-	bedded in	contrast	to the r	massive character above. Some of the

SUMMARY - D. D. HOLE 237 - CONTINUED

From To Interval Rec. 5 Core

Geology

beds are exceedingly sandy. The bottom contact is at \$28.4; the siltstone above for 1' being strongly broken, and cut by calcite veins at about \$27.5'. Below this broken zone is a grey white fine-to coarse-grained arkose. Dips of stratification are 60°. Some thin calcite seams are present, but the rock itself is non-calcareous. No alt. or mineralization.

437.3 450.0 12.7 92 0.04 Arkose, similar to above, but all fine-grained. Stratification dips

ASSAY DATA - DIAMOND DRILL HOLE NO. 237 Started: 8/11/59 Completed 8/24/59

i.e.	.	Line of the second		4.		
From	To	Interv		Recovery Bludg	e Coré	% Assay Sludge
	- A 4 1			MANS.		
236.	0 243	1.7		kbit		
243. 245.	7 245 0 252	1.0 1.3 1.9 7.9		.0 None	0.02 0.01	
252.	9 262	9.5	91.	.3 -	0.03	
262. 276.					0.01 0.03	
287.	8 296	.9 9.1	98.	1.	0.02	
296. 306.	9 306 3 31.6				0.01 0.03	
316. 328.	ų 32 6	3.3 11.9	96.	.8	0.01	
3/1.	8 351	3 9.5	97	1	0.03	
351.	3 361 2 370				0.01 0.01	
370.	7 380).6 9.9	98,	. <u>9</u>	0.02	
380. 390.	2 400 6 390).2 9.6).7 10.5			0.01 0.01	
400.	7 410	.7 10.0	99.	.0 -	Trac	X8
424.	7 424 3 437				0.02	
437.					0.0	

Bottom

SUMMARY - DIAMOND DRILL HOLE NO. 238 2400N 3500E Collar Elevation 3115 *

From	To	Interval	Core Rec. 9	% Cu Core	Geology
0.0	221.0	221.0	•	**	Rockbit. Bedrock at 2172.
221.0	224.3	3-3	30	0.02	Arkose, gray, fine-grained, calcareous. Fsuedomorphs of limonite after py diss.
Cu cont	ent - nil.	•			
224.3	236.5	12.2	81+	0.02	Arkose and siltstone. The arkose is similar to above, with a small quantity
dipping	850, init	ractures and tiates olive siltatone.	e gray ca	lcareous	. after py(?). A 1" zone of olive arkose, siltstone at 234.6'. Weak limonite on ent.
236.5	250.6	3 4. 7	81	0.01	Siltstone, similar to above. The last 21 is very talcose and soft, non-calca-
recus.	Core grou	mê up. Tr	sce of li	monite f	ilms. Intirely massive.
250.6	260.5	9.9	91	0.02	Siltstone and arkose. The siltstone is is similar to above. It contacts arkose
weekly	calcareous	. Massive	Just bel	ow the c	The arkose is fine-grained, olive-gray, ontact, it becomes well stratified about is as low as 58°.
260.5	275.0	14.5	97	0.02	Arkose and siltstone. The arkose is banded similar to above, dipping 70°.
This un zone di	it contact ps 70°.	ts gray cal	e Eucotas	iltstone	, massive, at 266'. A thin, laminated
275.0	286.7	11.7	96	0.01	Siltstone and arkose. Siltstone, simi- lar to above, contacts greenish fine-gr.
arkose fractur	at 276', a es with ve	and this parent al	sses back t are pre	into si esent.	ltstone at 284.0'. A few limonite coated
286.7	295.4	8.7	99	0.01	Siltstone, similar to above. Gray green, calcareous, and massive. Numerous
blebs o	f black s	iltatone.			
295.4	305.4	10.0	96	0.01	Siltstone, similar to above. A few lami- nations (bedding) dip 70°.
305.4	315.5	10.1	94	0.06	Siltstone and fault breccia. Siltstone, similar to above, extends to 306.8'.
angle.	Below th	is fault zo	ne the si	iltstone	tends to 309.0°. Contacts of by are high is cut by thin zones of by dipping 70-90°. the by zones.
315.5	325.6	10.1	93	0.01	Siltstone and breccia. Gray slightly calc. siltstone cut by irregular breccia-
gouge z	ones. Tr	ace of cpy	near midd	lle of ru	

SUMMARY - D. D. HOLE 238 - CONTINUED

From.	To	Interval.	Core Rec. %	% Gu Core	<u>Geology</u>
325.6	336.1	10.5	87	0.01	Arkose, graywacke, and bx. Gray fine grained arkose extends to 330.0°, and
of gtz a	und feld a	re set in a	slightl	y serp. n	a greenish gray, graywacke. Fine grains atrix. This extends to 333.8'. The rest
336.1	347.4	11.3	94	0.01	Arkose and siltstone. Arkose similar to that in previous run, interbedded with
green se	ndy silts	ione. Silt	stone pa	rtly shea	red. Run ends in arkose.
347.4	358.0	10.6	93	0.01	Arkose. Gray, medium grained, to 353.5'. Below is very fine-grained greenish, with
80° beda	ling strat	ification.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Alexander Services	
358.0	- 367.4	9.4	60	0.01	Arkose. Greenish, similar to last part of previous run, changes to gray fine-
					w 362 may contain interbedded black re recovered.
367.4	381.0	13.6	90	W11	Siltstone, gray black, calcareous. 80° stratification. Shearing along bedding
planes i	n upper p	art of run.	No win		
381.0	393.2	12.2	92	Tr.	Siltatone, similar to above, grades down into greenish sandy siltatone.
393.2	404.5	11.3	91	0.01	Siltstone, similar to above types. Frincipally massive, with only a few
steep la	minations		•		trancipolity uncorrect which every even
404.5	414.8	10.3	93	0.01	Siltstone, similar to above. Massive, with one laminated zone which dips 65°.
424.8	425.0	10.2	96	0.01	
grained	dips abour at 4212. alization	Brecciated	des acro bed of	ss a thin silt stone	lar to above, but is thin to medium- -bedded zone into arkose, gray and fine- cocurs at 423. Run bottoms in arkose.

Bottom

ASSAY DATA - D. D. HOLE NO. 238 Started 8/13, 8/25/59 Completed 8/14, 9/2/59

			% Reco	rerv	% A	ssey
From	To	Interval	Core	Sludge	Core	Sludge
0.0	221.0 224.3	221.0 3.3	Rockbit		0.02	
	Bott	<u>o m</u>			•	
224.3	236.5	12.2	84.5		0.02	
236.5	250.6	14.1	80.8	49	0.01	•
250.6	260.5	9.9	91.1.	-	0.02	
260.5	275.0	14.5	97.2	44	0.02	
275.0	286.7	11.7	96.0	49	0.01	
286.7	295.4	8.7	98.9	**	0.01	
295.4	305.4	10.0	96.1.	• • •	0.01	1 j. 1 a 🕳 1
305.4	31.5.5	10.1	94.5	ed .	0.06	•
315.5	325.6	10.1	92.8	•	0.01	. •
325.6	336.1	10.5	86.9	•	0.01	**
336.1	347.4	11.3	93.8	89	0.01	
347.4	358.0	10.6	92.7		0.01	80
358.0	367.4	9.4	60.0		0.01	eta.
367.4	381.1	13.6	90.3		mil	***
38i.o	393.2	12.2	92.3	439	Trace	467
393.2	404.5	11.3	97.0	#28	0.01	•
404.5	414.8	10.3	92.5	**	0.01	•
414.8	425.0	10.2	96.0	#	0.01	

Bottom

SUMMARY - DIAMOND DRILL HOLE NO. 239 5870N 5530E Collar Elevation 3029.5-

From	&	Interval	Core Rec.%	% Cu Core	Geology
0.0	278.2	278.2		-	Rockbit through alluvium. Bedrock estimated at 270 . Character
samples	indicate	bedrock to	be gray	siltston	
278.2	281.0	2.8	72	0.03	Siltstone. Gray, calcareous. Bed- ding laminations dip 68°. Yellow
transpor		nite is spo	tted thro	ough rock	and coats fractures. No minerali-
281.0	296.5	15.5	90	0.01	Siltatone, similar to above to a gradation, beginning about 283', into
siltston	e with a	31' to 50'.	at 2000 Lght graj	r 293' t	dation, beginning about 283°, into shows 85° laminated bedding, which he rock becomes a uniformly thin-laminated k gray to black beds. Calcareous. Trace
296.5	305.7	9.2	84	0.01	Siltstone. Gray, fractured, with yellow limonite, to 299.7'; shows dips 60-90°.
and gray	leyers.		of beds	varies f	iltstone-mudstone of alternating black rom paper-thin to 1/2". Calcareous.
305.7	315.7	10.0	96	0.01	Siltstone, laminated, similar to above. Dips 20 to 40°.
315.7	329.5		95		Siltstone, similar to above. From 321- 323 a crushed zonep shows vertical dips, laminations become thicker.
etzerusi			DOCCOR OI	. run the	
329.5	344.6	15.1	82	0.02	Siltstone, similar to above. Beds 1/8" to 3" thick. Dips 50°, locally steeper.
344.6	357.7	13.1	97	0.02	Siltstone and sandy siltstone. Similar to above to 348'. Below beds of gray
	ous sandy 1'. Dip		elternate	e with be	ds of laminated black siltstone. Beds
357.7 Dips 40°		13.8	94	0.02	Siltstone and sandy siltstone, similar to above, alternating 1/2-1' beds.
371.5	378.0	6.5	88	0.00	Call Therefore and souther at Therefore a There
J{4.9}	21010	V.)	•	V-1/5	Siltstone and sandy siltstone, alter- nating, similar to above.
	392.2	14.2	95	0.06	varve-like white limestone alternating
	ips 40-50				thin areas have a slightly wrinkled sur- terbeds of more thickly laminated siltston

SUMMARY - DIAMOND DRILL HOLE NO. 239 5870N 5530E Collar Elevation 3029.5-

From	20	<u>Interval</u>	Core Rec.%	% Cu Core	Geology
0.0	278.2	278.2	· •,		Rockbit through alluvium. Bedrock estimated at 270't. Character
samples	indicate	bedrock to	be gray	siltston	
278.2	281.0	2.8	72	0.03	Siltstone. Gray, calcareous. Bed- ding laminations dip 68°. Yellow
transpor zation s		ite is spo	tted thro	ugh rock	and coats fractures. No minerali-
281.0	296.5	15.5	90	0.01	Silitatione, similar to above to a gradation, beginning about 283', into
rlattens siltston	about 29 e with al	1' to 50".	- At abou ight gray	r 293' t	dation, beginning about 283', into shows 85° leminated bedding, which he rock becomes a uniformly thin-laminated k gray to black beds. Calcareous. Trace
296.5	305.7	9.2	84	0.01	Siltstone. Gray, fractured, with yellow limonite, to 299.7'; shows dips 60-90°.
and gray	layers.		of beds	varies f	iltstone-mudstone of alternating black rom paper-thin to 1/2". Calcareous.
305.7	315.7	10.0	96	0.01	Siltstone, laminated, similar to above. Dips 20 to 40°.
315.7	329.5		95 /	$V \vdash V$.	Siltstone, similar to above. From 321-323 a crushed zone, shows vertical dips,
ersemer	e orbs 40	o±. Near	CONTROL OF	run the	laminations become thicker.
329.5	3hh*9	15.1	82	0.02	Siltstone, similar to above. Beds 1/8" to 3" thick. Dips 50°, locally steeper.
344.6	357.7	13.1	91	0.02	Siltatone and sandy siltatone. Similar to above to 348'. Below beds of gray
	us sandy 1°. Dips		alternate	with be	ds of laminated black siltstone. Beds
357.7 Dips 40°		13.8	. 94	0.02	Siltstone and sandy siltstone, similar to above, alternating 1/2-1' beds.
371.5	378.0	6.5	88	0.02	Siltstone and sandy siltstone, alternating, similar to above.
378.0	392.2	14.2	95	0.06	Shaly limestone. Finely laminated varve-like white limestone alternating
with bla face. D Unminera	ips 40-50	eous silts D. Below	tone. Th 383' are	s few in	thin areas have a slightly wrinkled sur- terbeds of more thickly laminated siltston

SUMMARY - D. D. HOLE 239 - CONTINUED

			Core	% Cu	그는 그 등을 가장하는 것이 되었다.
From	<u>T0</u>	Interval	Rec.%	Core	Geology
392.2	405.5	13.3	100	0.04	The first unit similar to show or
end of	egins; cha run into g	nges to ma	ssive bla siltstone	ck silts Dips	nt thinly laminated black calcareous silt- tone at 400't, and grades in depth toward about 40°, although locally steeper dips
405.5	417.8	12.3	91	0.02	Arkose and siltstone, interbedded. The arkose initiates the run, and is gray.
weakly (calcareous ick. No m	, fine-gra: ineralizat:	ined. This in the contract of	e siltst teration	one is black, and calcareous. Beds are Dips 40°1.
417.8	424.8	7.0	99	0.02	Arkose and siltstone, interbedded, simi- lar to above.
424.8	433.2		97	•	Siltstone and shaly limestone. Black massive siltstone, with a thin interted
reous si	iltstone i	run and ex nterbedded ips 45-50°	with thi	n zones (Below, laminated black and gray calca- of varve-like shaly limestone, extends
433.2	Ш1.6	8.4	100	0.06	Siltstone and shaly limestone. Simi- lar to above. Shaly is in l' beds makes
up majo: structu	rity of ru re.	n. Dips 4:	50. Some	beds hi	ghly contorted possibly a sedimentary
4k1.6	₩ 9. 7	8.1	100	0.05	Siltstone and shaly ls. Similar to above. Siltstone predominates.
449.7			95	0.01	Arkose and siltstone. Gray fine-grained arkose initiates run and extends to
tends to	end of r	un. Some 1	hin zone	s of shal	black and gray laminated siltstone ex- ly ls are present. All the rocks are f black siltstone or mudstone.
458 . 8	470.0	11.2		0.03	of previous run. Thicker bedded toward
end of 1	run. Dips	ש סות • "ככ	nneraliz	ation or	alteration.

Bottom

ASSAY DATA - DIAMOND DRILL HOLE NO. 239 Started: 9/3/59 Completed: 9/16/59

From	<u> 10</u>	<u>Interval</u>	<u>% Re</u> Core	Sludge	Core	Assay Slu	
581.0 548.5 0.0	278.2 281.0 296.5	278.2 2.8 15.5	- - 89.9	None	0.03 0.01		16
296.5 305.7 315.7	305.7 315.7 329.5	9.2 10.0 13.8	83.9 96.4 95.0		0.01		
329.5 344.6 357.7	344.6 357.7 371.5	15.1 13.1 13.8			0.02	* ************************************	
371.5 378.0 392.2	378.0 392.2 405.5	6.5 :14.2 	. 87.6 95.0 304.7		0.02 0.06 — 0.04		
405.5 417.8 424.8	417.8 424.8 433.2	12.3 7.0 8.4	90.8 98.7 96.6		0.05 0.05 0.05		
433.2 441.6 149.7	441.6 449.7 458.8	8.4 8.1 9.1	101.2 99.7 95.2		0.06 0.05 0.01		
458.8	¥70.0	11,2	93.9		0.03		

Bottom

SUMMARY - DIAMOND DRILL HOLE NO. 240 2560N 5150E Collar Elevation 3079.5

		•	•		
From	To	Interval	Core Rec.%	% Cu Core	Geology
0.0	246.9	246.9	•	•	Rockbit; alluvium.
246.9	250.8	3.9	98	•	Caliche conglomerate.
250.8	253.7	2.9	100		Caliche conglomerate.
253.7	264.1	10.4	90	0.03	Siltatone and arkose. Bedrock contact is at beginning of run. Bedrock is a
to 259.2 calcared to a sha Stratifi	", et e us silts rp sedim cation di	sharp seding cone. This entary contains 40°. The	tentary of rock is act with his unit	contact wi moderatel fine-grai is calcas	laminations dip 40°. This type extends th bended light pink to grey, weakly by hard; 40° bedding. This unit extends ined yellow gray arkose, at 261.5't. reous, and contains fractures coated with es. No Cu mineralization present.
264.1	274.5	10.4	84	0.03	Arkose and siltstone. The former, simi- lar to above, extends to 268.4' where
calcared on fract	us; silt: ures in t ly pyrit:	stone is ver the arkose.	ry weakly. Most an	7 or non-c mears to	upper unit of previous run. Arkose is calcareous. Abundant yellow limonite appears to transported but part may derive from is brecciated and our core loss was con-
diss spe	rtical(?	the rock (i mixed v	ish color	Arkose. Gray, medium-grained, weakly calcareous. Abundant limonite in tiny. The lower half of the run is brecciated or siltstone or gouge. Weak kaolin alterpyrite. No copper mineralization is evi-
282.7	289.0	6.3	97	0.12	Conglomerate and arkose. Run begins with arkose, similar to above, and continues
erkose u tends to	l of 1/8 mtrix, y 287.3'2	- 1" pebble allow limon . and overl	s of ark ite stail ies medi	ose and sl os the ma: m-graine	h a 60° contact. The conglomerate is hale, moderate to well-rounded, set in an trix and pebbles. The conglomerate, exdarkose similar to that above the conlimente appears to be transported.
289.0	298.6	9.6	99	0.02	Arkose and siltstone. Arkose, similar to above, extends to a 450 contact, at
cations	with white dip 40° to the been	. Limonite	iltstone and man	interbed ganese ox	ded with fine-grained arkose. Stratifi- ides coat fractures. Some py may origi-
298.6	304.9	6.3	95	0.02	Siltstone. Light gray, stained yellow in places with limonite. Interbeds of
sandy si evident.	litatone Smell	are 1/2 to amount of p	1 1/2° t y may ha	bick. Di ve been p	ps are about 40°. No Cu mineralization

HOLE 840 - CONTINUED

To Interval Rec. Core Geology 304.9 314.3 9.4 92 0.02 Siltstone, laminated. First part of received or faulted zone at end of rum. 314.3 321.4 7.1 100 0.01 Siltstone, similar to above. To liminate to a literation or mineralization. 321.4 336.2 14.8 98 Tr Siltstone and arkose. The form tends to 326.7', to a 45° contact above arkose. The arkose is gray, fine-grained, with black leminations of siltspring 45-60°. This forms a 3' bed, and extends to black siltstone at 329.7 rocks calcareous. The upper siltstone unit is nearly massive, thereas the bot unit is laminated and contains thin interbeds of arkose. Broken core in a second or faulted zone at end of rum. 336.2 351.5 15.3 99 0.02 Siltstone. The first part of received is black laminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization. 351.5 365.6 14.1 100 0.02 Siltstone and arkose. Laminate	
down into laminated black and gray siltstone with a trace of yellow limonite. ho. h5°. Weakly calcareous. 314.3 321.4 7.1 100 0.01 Siltstone, similar to above. To of limonite-hematite. No alternor mineralization. 321.4 336.2 14.8 98 Tr Siltstone and arkose. The formation above arkose. The arkose is gray, fine-grained, with black leminations of siltsping 45-60°. This forms a 3' bed, and extends to black siltstone at 329.7 rocks calcareous. The upper siltstone unit is nearly massive, whereas the bot unit is laminated and contains thin interbeds of arkose. Broken core in a second or faulted zone at end of run. 336.2 351.5 15.3 99 0.02 Siltstone. The first part of regray, fine-grained silty arkose siltstone partings. Stratification dips 40-45°. This unit extends to 344.3° low is black leminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization.	
40-45°. Weakly calcareous. 314.3 321.4 7.1 100 0.01 Siltstone, similar to above. To fimonite-hematite. No alternor mineralization. 321.4 336.2 14.8 98 Tr Siltstone and arkose. The formation of sidents to 320.7°, to a 45° contact above arkose. The arkose is gray, fine-grained, with black leminations of sidents calcareous. The upper siltstone unit is nearly massive, whereas the both unit is laminated and contains thin interbeds of arkose. Broken core in a second or faulted zone at end of run. 336.2 351.5 15.3 99 0.02 Siltstone. The first part of regray, fine-grained silty arkose siltstone partings. Stratification dips 40-45°. This unit extends to 344.3° low is black leminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization.	ades
or mineralization. 321.4 336.2 14.8 98 Tr Siltstone and arkose. The form tends to 326.7, to a 45° centary tends to black eminations of siltering 45.60°. This forms a 3' bed, and extends to black siltstone at 329.7 rocks calcareous. The upper siltstone unit is nearly massive, whereas the both unit is laminated and contains thin interbeds of arkose. Broken core in a serized or faulted zone at end of run. 336.2 351.5 15.3 99 0.02 Siltstone. The first part of regray, fine-grained silty arkose siltstone partings. Stratification dips 40.45°. This unit extends to 344.3° low is black leminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization.	Dips
321.4 336.2 14.8 98 Tr Siltstone and arkose. The form tends to 326.7', to a 45° cents above arkose. The arkose is gray, fine-grained, with black leminations of sildipping 45-60°. This forms a 3' bed, and extends to black siltstone at 329.7 rocks calcareous. The upper siltstone unit is nearly massive, whereas the bot unit is laminated and contains thin interbeds of arkose. Broken core in a serized or faulted zone at end of run. 336.2 351.5 15.3 99 0.02 Siltstone. The first part of resultstone partings. Stratification dips 40-45°. This unit extends to 344.3' low is black leminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization.	race ation
above arkose. The arkose is gray, fine-grained, with black laminations of sidipping 45-60°. This forms a 3' bed, and extends to black siltstone at 329.7 rocks calcareous. The upper siltstone unit is nearly massive, whereas the bot unit is laminated and contains thin interbeds of arkose. Broken core in a seized or faulted zone at end of run. 336.2 351.5 15.3 99 0.02 Siltstone. The first part of regray, fine-grained silty arkose siltstone partings. Stratification dips 40-45°. This unit extends to 344.3° low is black laminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization.	ř
dipping 45-60°. This forms a 3' bed, and extends to black siltstone at 329.7 rocks calcareous. The upper siltstone unit is nearly massive, whereas the bot unit is laminated and contains thin interbeds of arkose. Broken core in a serized or faulted zone at end of run. 336.2 351.5 15.3 99 0.02 Siltstone. The first part of regray, fine-grained silty arkose siltstone partings. Stratification dips 40-45°. This unit extends to 344.3° low is black laminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization.	ct
gray, fine-grained silty arkose siltstone partings. Stratification dips 40-45°. This unit extends to 344.3° low is black laminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization.	tom
siltstone partings. Stratification dips 40-455. This unit extends to 344.3° low is black laminated siltstone with thin beds of varve-like silty limestone dips. No alteration or mineralization.	un is with black
on a color of the second of th	. Be-
siltstone, similar to above, ex	rtends
to 355.6'. Here the siltstone lies on an irregular channeled surface cut on coarse- to fine-grained arkose. Within the arkose are occasional 4" beds of siltstone, and black flakes of siltstone are aligned along the bedding of the Dips are about 40°. Syngenetic(?) py is essociated with the varve limestone.	black arkose.
of diss py in the arkose.	
365.6 375.6 30.0 100 0.01 Arkose and siltstone. An upper extending to 372.77, consists of	-tile 2
stone alternating with fine-grained arkose; beds 1/8" to 6" thick. The lower extending to 375.6', is a coarse-grained arkose similar bottom unit of previous	ns rua.
375.6 384.5 8.9 96 0.02 Arkose, similar to above, with bed of black laminated siltaton	e near
middle of run. The arkose is laminated, fine to coarse-grained, gray, with f ments of black siltstone. Trace of py.	Tag-
384.5 399.1 14.6 66 0.02 Arkose and siltstone. The arkosimilar to above. Zones of 1/4	i" gtz
and feld grains are common, and there are scattered pebbles. Last 3' of core lost, and was evidently a soft black siltatone.	· · · · · · · · · · · · · · · · · · ·
399.1 406.1 7.0 98 0.02 Siltstone, arkose and limestone thin interbeds. Dips about 400	e was

last foot is a black varve-like silty limestone.

i.

SUMMARY - D. D. HOLE 240 - CONTINUED

	From	To	Interval	Core Rec.%	% Cu Core		Geology	
i	406.1	416.0	9.9	96	0.02			The limes one lke, paper-thin
. {	stone iz	rterbeds s	eparate ti	e limest	iones. Ti	ous odor when is unit exten leminations.	crushed. Leads to about 1	nipated silt-
. 1	116.0	425.9	9.9	97	0.12	Siltstone, s		
	4" thick	to thinl	y-laminated	l. Dips	40°. No	and gray, ca mineralizatio	leareous. Va n evident.	aries from beds
	125.9	435.6		•			rock is stron	ngly crushed,
1	atch ada	ndent ble	ck serpenci	me or el	TCK Songe	e. In this zo	de redaing is	s convorted.
	435. 6	W17.7	12.1	99	0.03.	Arkose and s	<u>ilicatone. 11</u> rkose, vhich	
•	The rema arkose 1 grained	inder of s gray, f variety i	the run is ine- to cos s prominent	arkose, rse-grai : toward	with a fe ned, with the botto	occasional bre w thin black of fragments of	ecia fragment siltstone par black siltst grains of qt:	t of arkose. rtings. The tone. The coarse- z and feldspar.

447.7 454.0 6.3 90 0.02 Arkose and siltstone. The arkose is similar to above, and extends to 450.1'.

Dips vary from 10° to 45°, about 40° being average. Stratification is shown by

Here an interbedded zone of arkose and siltatone initiates the next unit. This begins at 451.1', and is black calcareous siltatone. The upper foot is crushed. A few 1" beds of very limy varve-like siltatone with weak carbonaceous odor are present. No mineralization or alteration is present.

Bottom

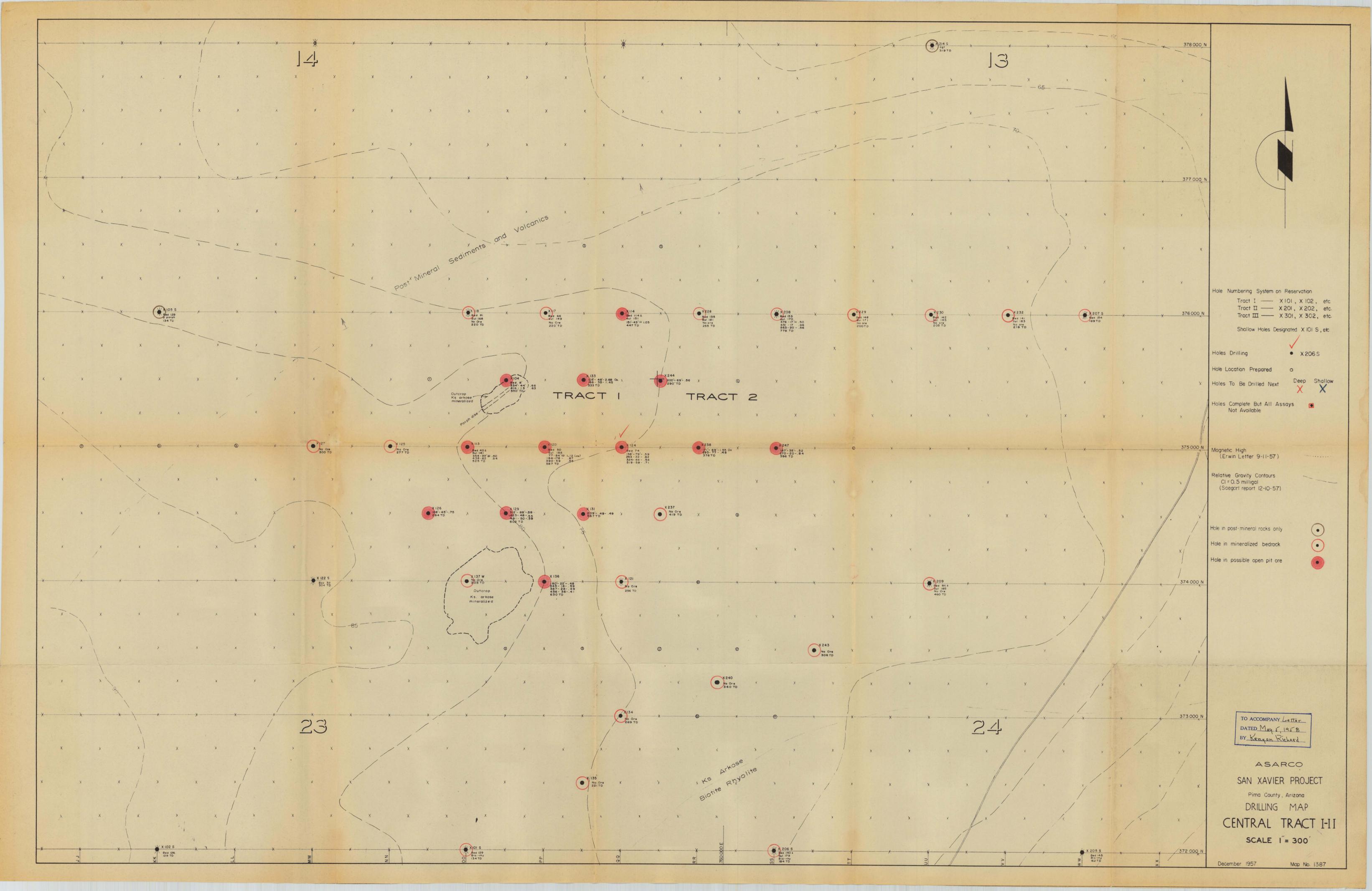
sorted grain sizes, in thin-laminated beds.

ASSAY DATA - DIAMOND DRILL HOLE NO. 240 Started: 9/17/59 Completed: 9/27/59

· · · · · · · · · · · · · · · · · · ·			% Reco	overy	% As	ssay'
From	To	Interval	Core	Sludge	Core	Sludge
0.0	223.5	223.5	Rockbit		•	
223.5	226.0	2.5	No Recor	rezy	*	
226.0	246.9	20.9	Rockbit			
246.9	250.8	3.9	97-5	**	•	
250.8	253.7	2.9	100.0	. •	•	
253.7	264-1	10.4	90.5		0.03	
264.1	274.5	10.4	84.0	•	0.03	
274.5	282.7	8.2	100.0	•	0.03	
282.7	289.0	6.3	97.0	-	0.12	
289.0	298.6	9.6	99.1	•	0.02	
298.6	304.9	6.3	94.8	•	0.02	
304.9	314.3	9.4	92.2		0.02	
314.3	321.4	7.1	102.1	**	0.01	
321.4	336.2	14.8	98.0	• .	Trace	•
336.2	351.5	15.3	98.5	•	0.02	
351.5	365.6	14.1	99.5	**	0.02	•
365.6	375.6	10.0	100.3	444	0.01	Ä
375.6	384.5	8.9	96.0	-	0.02	•
384.5	399.1	14.6	65.5		0.02	•
399.1	406.1	7.0	98.0	4	0.02	→
406.1	416.0	9.9	95.5	•	0.02	-
416.0	425.9	9.9	96.9	•	0.12	•
425.9	435.6	9.7	97.4		0.02	
435.6	447.7	12.1	98.6	-	0.03	
447.7	454.0	6.3	89.7	•	0.02	

Bottom

Tueson Citizen - May 14,68


Tt. Doyen 5.36 P.S. Potrographic Rock Name: (6) DDH E10. X /20 Date: 12/17/57 Other Location Former Clon: Sent for: Son Skaller Frank FULTIOSC: Determination of rack type, Compare to East Pino meta porphyry and to xize of Mogration Light grey attendance (2) partitions Date 12/57 A large (. 8 meh) zoned plaguelase (?) center of hand specimen Sign アア Microscopia by: i. 532.61

Ferregraphic Rock Name: T 120 Dent for: 7.20 Dent for: 7.5. Other Leeption Morney Con: San Xavier Trad ! Light grey ardurk(2). Dave 12/3/57 Mogration Contact between brown peoply less porphyritiem defermine tock types for feld's from in sediment. the mass (55 1nthe East Ama than and finer-grained near this contact distinctly arkose and a porphiritie the center of confact metaporphyy. Look SJ: JEK The andesite (?) is Furnosc: Study and compare CACACOCAN C tercept wards

.

San Kaver Ru. SE /4 Sec 26 TIBS RIZE - C.D.H. 250 TD Cospor log -Badwek (:) 160-170 Bow 2 - 210 3 W/NW /4 SE/4 Sec 26 165 125 3 United 54 dog hole 250 TD 0-100 frants fell or work -155 Gr. wash 5 red along 220 Roller Blue yn shoror cruck 200 Red clay & grenoch. BR possible 185' Pollin by good NE/4 SE/4 NE/4 Sec 24 1. 12E Allerin & 210 210, 130 Gusholoskore 230-300 A-Kore, w/ som py, mog

V. Groph: 1957 #1 5 hele 0-15- aller-0-150 aller -157 Shele (ling) dark gray-Permin ? afor-171 Same, merening march -185 Brown lung shall of mind -216 5 - 171-185 -212 from transition of Japas: -256 by Blu selicens by the Edward -284 Some 242-256 - A14 some 242.256, color facous lower #2 0-148 llm. -157 Recomposed feelook. Aspore or to 161 6mg green strainstrail 168 Gry frontured surgey colab versed, morgatite rele anderto. (Cord) -182 Brown volcome of colait stops, flowers.
-210 Some gog-green policies, much from, T.D. 210' worth lay 0-154 aller -182 Brown allerd volcanics -300 Gray block for alter leave

AMERICAN SMELTING AND REFINING COMPANY Tucson Arizona August 21, 1959

FILE MEMORANDUM

Zones of Mineralization on Proposed Mining Leases

Our Mineral Prospecting Permits on the Reservation state that applications for mining leases shall include ". . . such acreage as is reasonably proven productive, supported by factual information, . . ". The amount and type of "factual information" required would seem to be uncertain.

All exploration work was conducted by diamond drilling. As this work progressed, maps showing locations of drillholes together with detailed geologic and assay logs of the holes were sent periodically to Mr. R. S. Fulton, Regional Mining Supervisor, U. S. Geological Survey, who has the responsibility of checking on all exploration and mining done on the Reservation. Copies of all these data were sent also to Messrs. Gilmore and Haverland of the Bureau of Indian Affairs. These drillhole logs and maps themselves may satisfy the requirement for factual information. But if such proves not to be the case, the following interpretive information relative to potential ore reserves should suffice. It is presumed that, in any event, duplicates of the drillhole logs need not be included with lease applications.

Two mineralized areas about two miles apart have been found by the drilling. One is situated in the southern part of Tract II; the other is partly in Tract I and partly in Tract II, and involves the common corners of Sections 13, 14, 23 and 24 (T 16 S, R 12 E).

The southern zone consists of two potential ore bodies, both of which are extensions of the same ore zone that this Company is now developing into an open pit mine in the ground just south of the Reservation. One of these occurrences is shallow and amenable to open pit mining; the other is deep and probably accessible only to underground mining.

The shallow mineralization of the southern zone is estimated to consist of about 10 million tons of ore of the "indicated" classification with a copper content in excess of 0.4%. It is penetrated by vertical drillholes which are distributed over a triangular-shaped area 1100 feet north-south by 2000 feet east-west. Following are the ore intercepts in these drillholes:

Hole No.	Depth to Top of Ore	Vertical Thickness of Ore	Average % Cu	
x-202	2821	150'	.62	
X-211	203	126	1.21	
X-212	206	31	2.53	
X-213	224	86	1.55	
X-215	211	169	.74	
X-220	204	58	. 85	
X-224	268	61	.77	
X-242	205	37	1.60	
X-245	253	275	.85	
X-246	365	130	.88	
X-251	206	51	3.08	
X-253	219	46	1.41	
X-254	374	59	.74	
X-255	217	69	.88	
X-256	216	54	.88	
X-258	224	73	1.11	
X-260	233	33	.89	
X-262	267	89	.55	
X-263	204	32	1.38	

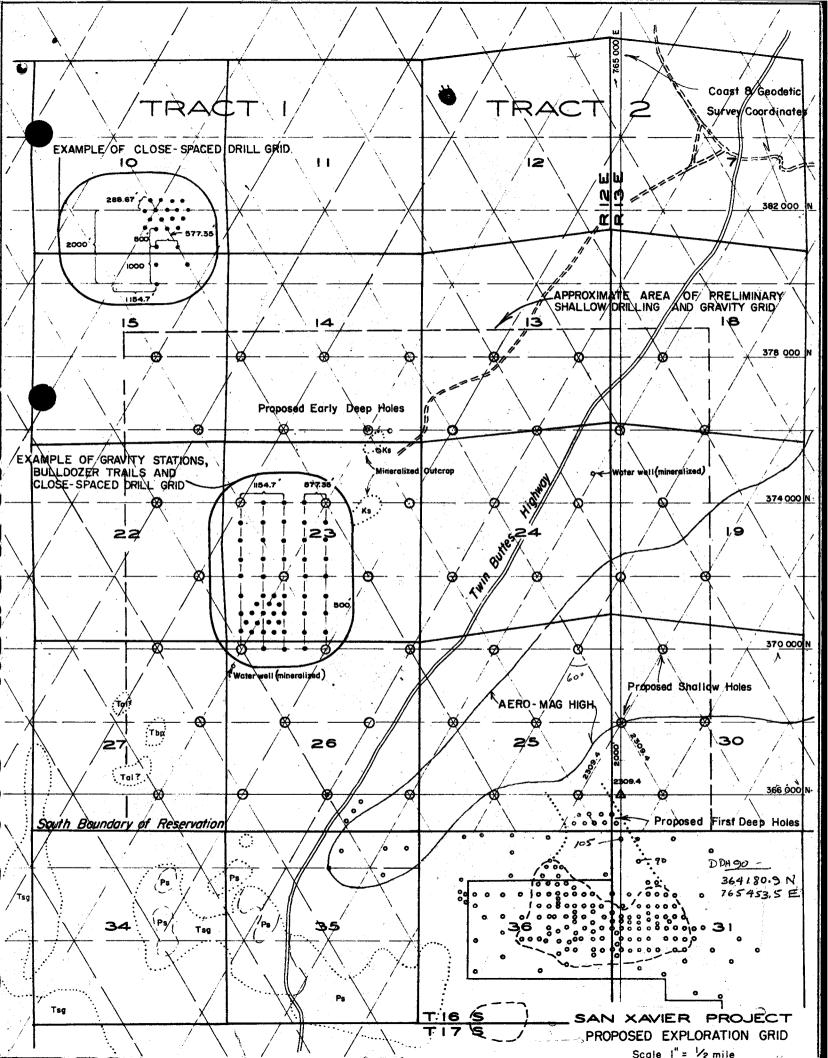
The deeper mineralization described above partly underlies the shallow ore body. It is estimated to consist of 50 to 75 million tons of ore, but this is classed only as "inferred" ore because it is penetrated by only five, wide-spaced drillholes, as follows:

Hole No.	Depth to Top of Ore	Vertical Thickness of Ore	Average % Cu	
X-213	365'	3981	.47	
	990	74	.83	
X-217	1172	159	.66	
X-224	561	116	.76	
X-231	772	277	.47	
	1093	144	.80	
	1258	79	1.48	
X-250	865	95	1.02	

The northern mineralized zone is estimated to contain 15 to 20 million tons of possibly eventual ore which could be reached by open ptt mining. It is penetrated by drillholes which are rather widespaced; therefore, this ore is classed as "indicated". This mineralization lies both in Tract I and Tract II:

TRACT I

Hole No.	Depth to Top of Ore	Vertical Thickness of Ore	Average % Cu	
X-104	334'	441	.66	
X-113	354	39	.40	
X-114	151	43	1.03	


TRACT I (Continued)

Hole No.	Depth to Top of Ore	Vertical Thickness of Ore	Average % Cu
X-120	77'	841	1.12
	184	178	.87
	390	59	.58
X-124	138	79	.59
	263	22	.82
	324	44	.54
X-126	168	45	.75
X-129	312	88	.58
	423	48	.55
x-131	491 209	50 49	.59
X-133	105	48	2.68
A-400	166	35	1.45
	And the state of the state of the state of		
TRACT II			
X-238	171	69	1.55
	293	77	.48
X-244	200	69	.56
X-247	187	35	.52
	270	20	.84

Original Signed By K. Richard

KENYON RICHARD

KR:S cc: ACHall

Lab - 5x-1.1 AMERICAN SMELTING AND REFINING COMPANY Tucson Arizona June 16, 1959 MEMORANDUM FOR K. E. RICHARD SAN XAVIER DRILLING Drill hole X-264 has been completed at 1178.3, after penetrating a clastic series, and lime-silicated series, marble and limestone, and the basement thrust and granite below. A summary log is attached. JOHN E. KINNISON Attachment JEK/ds

ASARCO

PRELIMINARY GEOLOGIC LOG

695.4

			STATE OF	
D. D.	Hole	No.	X-264	

Location	XX.25

-	404.440	
100	'S I w	
Maria	C. 200	

2

SAN XAVIER Depth of Hole 1178.3 (Cottom)

> 3205.9 Collar Elev.

FOOT APPROX. CORE DESCRIPTION RECOVERY % 563.b Argillite, arkose and sandy argillite. A thick sequence OF ROCKS which grade without hedding plane breaks Into one another. Alteration to chierite is comen along fractures. Colors are buff, gray, and mottled, with some black zones. A very occasional zone of this laminated rock suggests that the series dips 50 or 60°. No other bedding is present. Post ore faults at 825-829', and at 8521. Sulphides are mainly by. Cu content week to sparse: 881.6 Tactite and dispaids kornfeis. A transitional zone marks the contact between the supper clastics and this line silicate series. Suiphides ere mostly by, and generally weak. Cu content - week. 9 Marble, testite, and bornfels, interhedded. Shear zone et bottom dies 200. Cu centent- nil. Virtually no suighides. Gray Limestone and white merble, locally fossiliferous 927.0 (courty preserved emidentifiable), 995-1008 contains chert From To ., Assay Data % Cu (Core) From Assay Data % Cu (Core) Sect. 7 516.4 20 704.2 714.3 .11 516,4 214.3 .16 624.9 20 720.5 536.9 26 728.1 720.5 -16 **424.9** 53**6**.9 91.3 24 728_1 707.7 .15 \$47.3 21 732.7 747.4 .19 24 760.6 747.A . 18 <u>667.6</u> 4_832 24 .12 <u> 678.1</u> 760.6 770.E 778.1 578.1 601_6 15 **770.6** . 19 ing.8 778.1 æ 790.7 .24 602.8 611.0 21 804.0 190.7 803.0 611.0 623.7 21 813.2 .18 635.9 623.7 813.2 824.S 635.9 645.9 .21 _16 .15 .14 645.9 667.9 ADA a 830.L 666.B mal 862.3 679.3 . 18 842.3 .14 685.A 679.3 . 14 861.1 .12 685.4 695.4 _26 871.6 881.0 .07 704.2

(continued)

.20

ASARCO

SAN_I	KAVLER		4.4		4.9			
		3 + 1 y - 1 + 1		*		Depth of	Hole	
,			es es se s	•				7
		1 p 1				Collar Ele	v	······································
•	* * *	Alaman Control						
,	*	ą r				8 g - 65 - 1		
TOOT	APPROX. CO				DESCR	IPTION		
	ILEGOO VERICE		·	•		**		
		nodyl	es. Sul	phides s	nii. Fau	It zone ne	er botte	
	· · · · · · · · · · · · · · · · · · ·	lanin	ations i	ocally.			1	
			·		1911			
	<u> </u>		te, kom	fela, a	<u>id arqill</u>	ite, inter	edded.	Munero
-	· •		Kones.	Cu con	lant - n		<u>andri (1777) e</u> en	
							<u>. </u>	
2254		Sizar		arge ff	ignents 1	nd up to 3	inter	espes of
	93	SIIES	KONO, FE	a arkos	e, and gr	my to buff	ark an	arg.
			ry bound	CO DY C	MOTICS S	hears. Daf Cu content	mare n	
		SITESIM	2 113-7n	-1 MESE	THE REAL PROPERTY.	en emitent	* 1111.	
145.4		Shann.		-1-1-	. 1020.1		***	
1003-00	Ola		P(0)110	BARRER ER		y colored.	with the	
			Eu cont	n nearce		te, local	DE ROSE	net or
	<u> </u>							
	그 기계를 하는 그 그 무슨 점점							
					· · · · · · · · · · · · · · · · · · ·			
152.6		Stere	ita gran	lte. £	· · · · · · · · · · · · · · · · · · ·	ar shear z	me. N	o other
152.6		Slerr mlaer		lte. £	· · · · · · · · · · · · · · · · · · ·	er sheer a	me. A	o other
	9	Sleps Mines	ita gran	lte. £	· · · · · · · · · · · · · · · · · · ·	er sheer z	216. A	o other
178.3	SOSTOR	Slerr miner	ita gran	lte. £	· · · · · · · · · · · · · · · · · · ·	er shear z	me. N	o other
178-3	S7 Botton	m nes	ita gran	ike-6	rushed se			
178-3	Sotton.	Assay Data % Cu (Core)	ita gran alizatio	ike-6	· · · · · · · · · · · · · · · · · · ·	To	As	say Data
178-3	S7 Botton	miner	ita gran alizatio	ike-6	rushed se		As	
178.3	S7 Botton	miner	ita gran alizatio	ike-6	rushed se		As	say Data
178.3 From	Sotton To	Assay Data % Cu (Core)	ita gran alizatio		rushed se		As	say Data
178.3 From	Sotton To	Assay Data % Cu (Core)	ita gran alizatio		rushed se		As	say Data
178.3 From 33.6 94.2	67 Fot ton To 634.2 974.9	Assay Data % Cu (Core)	ita gran alizatio		rushed se		As	say Data
178.3 From 93.6 94.2 04.9	87 Botton To 894.2 904.9 911.5	Assay Data % Cu (Core)	ita gran		rushed se		As	say Data
178.3 From 93.6 94.2 04.9	Sotten To S34.2 934.3 911.5	Assay Data % Cu (Core)	ita gran		rushed se		As	say Data
178.3 From 93.6 94.2 04.9	Sotten To BS4.2 91/4.9 911.5 922.3	Assay Data % Cu (Core)	ita gran		From		As	say Data
178.3 From 93.6 94.2 04.9	67 Botton To 201.3 911.5 922.3 927.6 942.1	Assay Data % Cu (Core)	lea gran		From		As	say Data
178.3 From 93.6 94.2 04.9 11.5 22.3 27.0 42.1 55.5	97 Botton To \$34.2 934.9 911.5 922.3 922.3 922.3 942.1	Assay Data % Cu (Core)	ita gran		From		As	say Data
178.3 From 33.6 94.2 04.9 11.5 22.3 27.0 42.1	Sotten To S34.2 934.3 911.5 922.3 927.0 942.1	Assay Data % Cu (Core) 17 21 06 19 1-10	lea gran		From		As	say Data
178.3 From 93.6 94.2 04.9 11.5 22.3 27.0 42.1 55.5 62.4	Sotten To 894.2 914.9 911.5 922.3 927.0 942.1	Assay Data % Cu (Core)	lea gran		From		As	say Data
178.3 From 93.6 94.2 04.9 11.5 22.3 27.0 42.1 55.5 62.4 72.7	67 Bottom To 654.2 934.9 911.5 922.3 927.9 942.1 955.5 952.4 972.7	Assay Data % Cu (Core)	lea gran		From		As	say Data
178.3 From 33.6 94.2 04.9 11.5 22.3 27.0 42.1 55.5 62.4 72.7 81.2	\$54.2 934.9 931.5 922.3 927.0 942.1 955.5 952.4 972.7 931.2 995.2 1009.2	Assay Data % Cu (Core) 17 21 06 19 10 02 02 03	lea grand		From		As	say Data
178.3 From 33.6 94.2 94.2 94.9 11.5 22.3 27.0 42.1 55.5 62.4 72.7 81.2 95.2	97 Botton To 294.2 934.9 931.5 922.3 927.0 942.1 955.5 962.4 972.7 981.2 935.2 1009.2	Assay Data % Cu (Core) 21 21 26 19 10 02 02 01	lea grand		From		As	say Data
178.3 From 33.6 94.2 04.9 11.5 22.3 27.0 42.1 55.5 62.4 72.7 81.2	\$54.2 934.9 931.5 922.3 927.0 942.1 955.5 952.4 972.7 931.2 995.2 1009.2	Assay Data % Cu (Core) 17 21 06 19 10 02 02 03	lea grand		From		As	say Data
178.3 From 33.6 94.2 94.2 94.9 11.5 22.3 27.0 42.1 55.5 62.4 72.7 81.2 95.2	97 Botton To 294.2 934.9 931.5 922.3 927.0 942.1 955.5 962.4 972.7 981.2 935.2 1009.2	Assay Data % Cu (Core) 21 21 26 19 10 02 02 01	lea grand		From		As	say Data
178.3 From 33.6 94.2 04.9 11.5 22.3 27.0 42.1 55.5 62.4 72.7 81.2 95.2	97 Botton To 294.2 934.9 931.5 922.3 927.0 942.1 955.5 962.4 972.7 981.2 935.2 1009.2	Assay Data % Cu (Core) 21 21 26 19 10 02 02 01	lea grand		From		As	say Data
178.3 From 33.6 94.2 04.9 11.5 22.3 27.0 42.1 55.5 62.4 72.7 31.2 95.2	97 Botton To 294.2 934.9 931.5 922.3 927.0 942.1 955.5 962.4 972.7 981.2 935.2 1009.2	Assay Data % Cu (Core) 21 21 26 19 10 02 02 01	lea grand		From		As	say Data

D. D. Hole No. No. No. 100 - continued

AMERICAN SMELTING AND REFINING COMPANY Tucson

June 16, 1959

MEMORANDUM FOR K. E. RICHARD

SAN XAVIER RESERVATION Drilling, Weekly Report June 6-13, 1959

During the subject week the Boyles Bros. 22 Diamond Drill was moved to Tract 1; A-A, 376. Overburden was drilled to 110 feet when a chuck wrench fell in the hole. At the end of the week no progress had been made in recovering the wrench, and the hole was cored to a depth of 40 feet.

JOHN E. KINNISON -

JEK/ds

AMERICAN SMELITING AND REFINING COMPANY Tucson October 17, 1957

MEMORANDUM TO MR. R. J. LACY

PRELIGINARY INTERPRETATION Gravity Survey San Xavier Indian Reservation Pima County, Arizona

The attached map shows the extent of relative gravity reductions completed at this time. Please note the anomaly designation which is used for the Indian Reservation.

Generalized Interpretations

- 1) The regional gravity gradient observed on the East Pima property is also present within our San Mavier I. R. tracts.
- 2) The increase in regional gradient on the Indian ground should be attributed to overburden thinning to the west.
- 3) Anomaly X-1. X-1 is a relative gravity high, located west of the projection of the East Pima bottom thrust fault. The location is favorable i.e. likelihood of geologically favorable calcareous section. A bedrock hill, as the anomalous source, is unlikely since holes X-201 and X-202 intersected bedrock at 220 and 200 feet respectively. I interpret the source to be heavy silicates developed in calcareous rocks (source of anomalies 1, 2 and 4 East Pima). Hole X-211 (drilling) should define the anomalous source. If X-211 is an encouraging hole, I suggest another location at ZZ-366.0.
- 4) Anomaly X-2. This positive anomaly lies east of the projection of the East Pima bottom thrust fault. The source is probably a bedrock hill. One hole is recommended at D-366.0. If bedrock is less than 150 feet, the hole can be stopped. If depth to bedrock is in the order of 200 feet, the hole should be drilled to 400-500 feet.
- 5) Anomaly K-3. This is a large (areally) negative gravity feature. The boundaries of K-3 correspond closely to the boundaries of the magnetic high which John Erwin interprets as thick volcanics. If the regional gravity influence were removed, the anomaly would exhibit several residual gravity contours, the majority being concentrated along its margins. The source, therefore, should have steeply dipping boundaries. Assuming the source is basalt flow, the gravity results compliment the magnetic interpretation of thick volcanics. Specific gravity tests of the core are now being made to determine if a density contrast exists between the fine grained basalt and adjacent arkose.

- 6) Anomalies X-3a and X-3b. These gravity high ridges are interpreted as topographic hills on the basalt surface.
- 7) Anomaly X-4. X-4 is a collective designation of a group of gravity highs. Two maximums are labeled as X-ka and X-4b. A third maximum, which will be designated X-4c, exists within the uncontoured area at 00-374 (the topographic correction has not yet been made for the arkose hill at this location).

The anomalies X-4a and X-4c are associated with bedrock outcrops. A bedrock hill has been demonstrated at UU-374 (depth to bedrock, hole X-209, is 86 feet). This hill provides the source for anomaly X-4b. Gravity high X-4 may be entirely explained by a general thinning of over-burden. Using the bedrock depths determined by the shallow hole drilling, I plan to calculate the gravity anomaly (order of magnitude only) that should result from overburden thinning. If the calculated intensities are considerably less than those observed, the area will warrant additional deep drilling.

The possibility that these anomalies are not entirely due to bedrock relief is suggested by the bedrock depth in hole X-2065 - 153 feet. The hole is located on the axis of gravity ridge X-4b. This depth may be too great to satisfy the observed gravity anomaly.

A hole at UU-376.8 would allow us to make a better evaluation of anomaly X-4a. I recommend this location.

- 8) Anomaly X-5. This gravity high is due to a buried bedrock hill; hole X-1128 at MM-370.0 reached bedrock at 501 feet.
- 9) Gravity irregularities in the southwest portion of tract I are due to variations of gravel thickness in an area of near outcrop environment. No further interpretation can be made.
- 10) Gravity results in the area between DD and II and between 370N and 372N are questionable. Contours will be completed after check results are available.

Conclusions

The anomalys collectively called X-4 represent the only area, within the present coverage, where important concentrations of lime-silicates can exist at moderate depths. This statement excludes anomaly X-1 which would be an extension of the East Pimp environment.

It may be significant that the extent of hydrothermal alteration determined by the drilling program is almost entirely within the general area termed X-4.

W. E. SARGART

WES/ds

Enclosure: 1000 Scale relative gravity contour map of E. Pima and San Kavier properties

ce - w/encl LHHart, KERichard, BCNorrison, JLClark, RCribbs

AMERICAN SMELTING AND REFINING COMPANY Tugson January 7, 1958

MEMORANDUM TO MR. R. J. IACY

GRAVITY SURVEY San Xavier Indian Reservation Pima County, Arizona

The attached relative gravity contour map shows the completed results of the Indian Reservation survey. The field work was completed January 3 and the reduction and plotting on January 6.

Interpretation

Relative gravity contours north of 380W are interpreted as follows:

- 1) Most, if not all, of this area is underlain by post mineral rocks.
- 2) X-14 appears to be a fault contact anomaly. This gradient may be a reflection of the local northern limit of the fine grained basalt interpreted from aeromagnetics.
- X-15 is a suggestion of another structural contact. Possibly, this gradient marks the northern extent of one or more non-magnetic members of the post mineral section.
- 4) From 3) above it follows that the area bounded on the south by 384% and on the east by HH may have little or no capping of post mineral rocks.
- 5) An old churn drill hole located about 1800 feet north of 3860 on the extension of line CC was logged basalt porphyry. This information limits the potential shallow extent of pre-mineral rock units in the northwest portion of Tract I.
- 6) Local gravity highs X-11 and X-12 are not considered economically important because of probable post mineral rock cover.

The detail coverage (intermediate lines in anomalous areas) has pointed out a small gravity high which was previously overlooked. This anomaly is labeled X-4f on the relative gravity map. The response may be due to bedrock relief. However, since this falls in an area of particular interest, a lime-silicate source should be considered.

The new coverage in Tract III is also shown on the attached map. The work was intended as a supplement to our existing knowledge of the district regional gravity.

Recommendations

A shallow hole is recommended at EE, 385.2 to test the pre-mineral rock interpretation described under 4) above.

One hole is recommended at RR, 373-3 to test the anomaly treated in paragraph _____ above.

Comments

A shallow hole has been drilled to test gravity high X-2 (recommended in memos of 10-17-57 and 12-10-57). This hole (X-227, D-366.0) reached bedrock at 134 feet. The source, them, of X-2 has probably been explained by the anomalous bedrock depth.

Any further theoretical interpretations, including possible construction of a residual gravity map, will be deferred until after my return to Salt Lake City.

W. E. SARGART

WES/ds
Attachment - 1" = 1000' Relative
cc:-all w/map - Gravity Contour Map

Limert Kerichard Bemorrison Jielark Recribbs FemeDonald

AMERICAN SMELTING AND REFINING COMPANY Tucson September 24, 1997

Mr. L. H. Bart, Chief Geologist New York Office

DRILLING - SAN XAVIER PROJECT

Dear Sir:

Enclosed is a print of the 1000-scale drilling map on the Reservation. This map shows the results to date of the geophysical work and progress of drilling. This map will be brought up to date and reissued periodically as drilling and geophysical information of interest are developed.

Hole X2088 encountered bedrock with chrysocolla in strongly altered arkosic quartrite at a depth of 152 feet. Sulphides, including a fair amount of chalcocite, were penetrated at about 170 feet. Core recovery in bedrock has been poor, and we are now moving the pull-down rig off this location with the intention of eventually deepening the hole with a hydraulic rig.

Hole N2038 encountered strongly altered arkose, containing chalcocite-liminite, at a depth of 86 feet. NX casing is being set, and this hole will be drilled to depth with our regular coring procedure. The results of these two holes offer encouragement for the general area around the two outcrops in Tract 1. We expect to be clear on Tract 1 with the Bureau of Indian Affairs by September 25 and will move rigs into the area around the two outcrops promptly thereafter.

Holes X201 and X202 on the northwest extension of the East Pime ore some have been making slow progress due to broken, leached ground, but they both now are in arkose containing moderate disseminated chalcopy-rite.

Upon closer inspection, the cores in holes X2038, X2048, and X2058 represent a variety of volcanic rock types rather than the single unit basalt porphyry. This suggests a series of flows.

Those receiving copies of this amp please note the alphabetical designation for north-south coordinate lines, which appear on the south edge of the map. In referring to proposed drill holes this alphabetical designation will be used in conjunction with the east-west survey coordinate lines, the numbers for which appear along the east edge of the map. Thus, the location of the proposed shallow hole east of X2098 would be

* * 6.5

-2-

YY-374, and for the proposed location west of X202 would be YY.25-365.25. When a location is drilled, the hole will be given a number in sequence with holes drilled on that tract, as emplained in the note on the map.

Our information is that the union voted on September 15 to discontinue the strike. There has been no picket activity since them. Therefore, Joy will operate four deep-hole rigs on a two-shift basis beginning about September 30. Shortly thereafter they will bring in an additional rig. The two rigs drilling shallow holes will continue on a one-shift basis for the time being. Out of the total of seven rigs, one will remain in the East Pima area to drill several fringe and claim-validation locations.

Yours very truly,

Original Signed By K. Richard

KRIVYON RICHARD

RR/ds Attachment - Map No. 1385 cc: DJPope - w/Attachment RJLacy - w/Attachment WSaegart - w/Attachment

bc: JLClark - w/Attachment JKinnison- w/Attachment 480 + more cgl. epy on stop holding 45 cgl - 70-80°

cy/ to 200.0 =

200 - 261 Ark

261 -306Ar/C & srg 10-00' steelis 6285

306 - 354 Chl, distailed, AVIC EARS

pt 66/15 @ 80° 324

354-359 Chl, calc. Ark

357 - 369 Fact which some hom.

369-388 Ark chloritie, sp, gard in trois

felds just his clavel.

388 - 405 Tackete mostly, some askerica trol much obstartion and free large

405 - Chenter - mete, sacojoel.

702

114 - 427 Chl-Mag ank like 6 Pun Arrens

427 428. 9 Sheared? (constated u) 9th view or siliceon patolos) ork (co/2) here color prob K. C. By

99 u/ grand y frags.

429? - 429.7 Black and gray bane of 429.7 - 431? Some Cities to prob Ark.

grander arper of glat gray, some as f.

473 - 479 1' of come go whe is "munication age. brewen.

stoply gry chert life of your course portion just the Fir button of

cleded to 589. Aig-Fis-Ark

10/9/57

	The State of the State of			
	F''			
The second secon				
그렇다 그렇게 하게 하게 함께 들어				[2] - 2월 1일
	. 77			
	• 4			
	a come V v de		•	
그 불통하는 나를 하면 다음이				
				The Section of the Se
		y		
	Page State of	[출, 기학의 관취 교육학]		
	•			
이번 그렇게 하는 그리고?				
. (14일 : 14일 :	•			[3 이 최신 - 사이 경우 네트
ti i i i i i i i i i i i i i i i i i i			•	
존 경화 아침 나는 이렇게 함	• • • • •	• • •		
			•	
				The first of the V
				A second
4: 사람들이 걸리다				
				
그는 이렇게 되는 이번 모으는				
		No.		
				1 - 1
The state of the s			1-14-6-5-3	
				I de la
				보통됐게 참고하는데
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
그는 화장하는 사람이다.				
, 10일로 보고 교육 기획이다.	•			[하다 왕도 그램이 함께 되었다.
아니다 하는데 이렇게 살아서 없다.				
). 그리가 나왔다면 하는 사람이 하는				
	 			
6세 구락하다 다음 경기 되				
J. 44. 1845. 2014 11	2	[14] 이 사이 살이 하다		
		1. A. A. S.		2
			9.00	
	* 		A ST DESCRIPTION	
		e i la callàna de la fil		

事, 自己多类

13/2

高麗學 医尿管囊体 化物聚

in di

April 10, 1961

Mr. Fred Pashley U. S. Geological Survey Ground Water Branch Tucson, Arizona

Dear Sint

Attached please find geologic logs of the two holes you surveyed with electrical equipment, on the San Xavier Reservation, during March of this year.

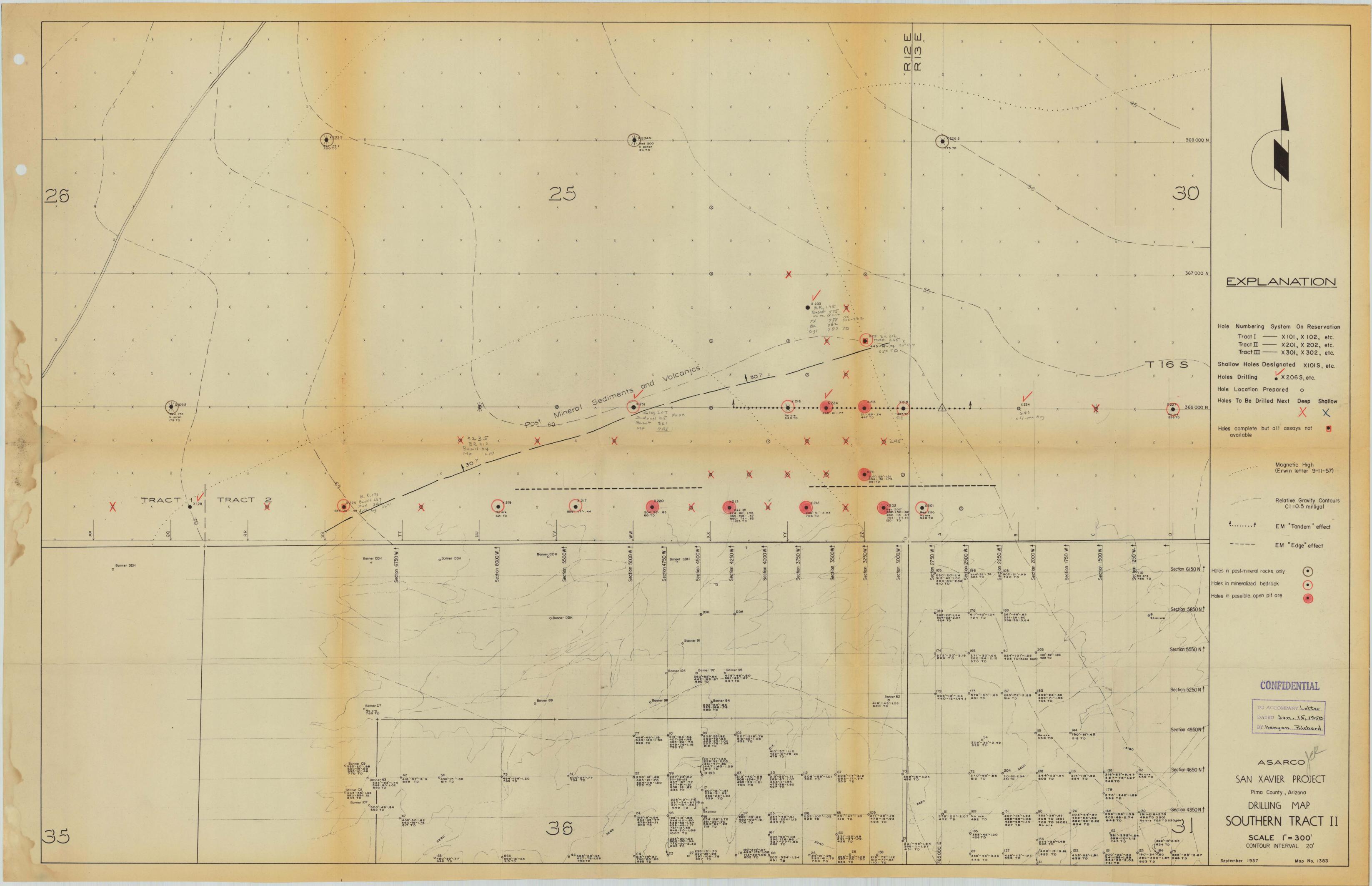
Yours very truly,

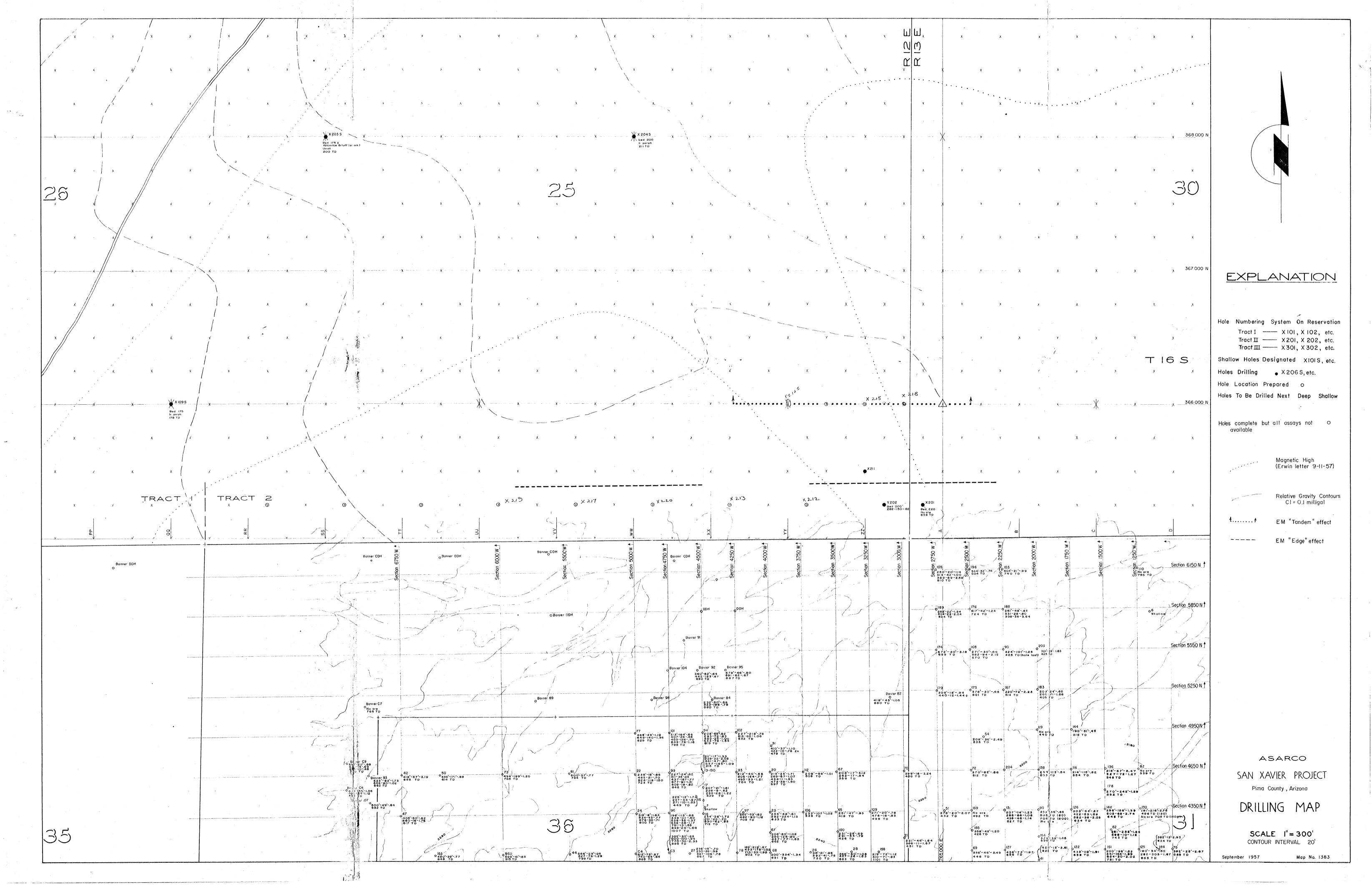
ORIGINAL SIGNED BY
JOHN E. KINNISON
JOHN E. KINNISON

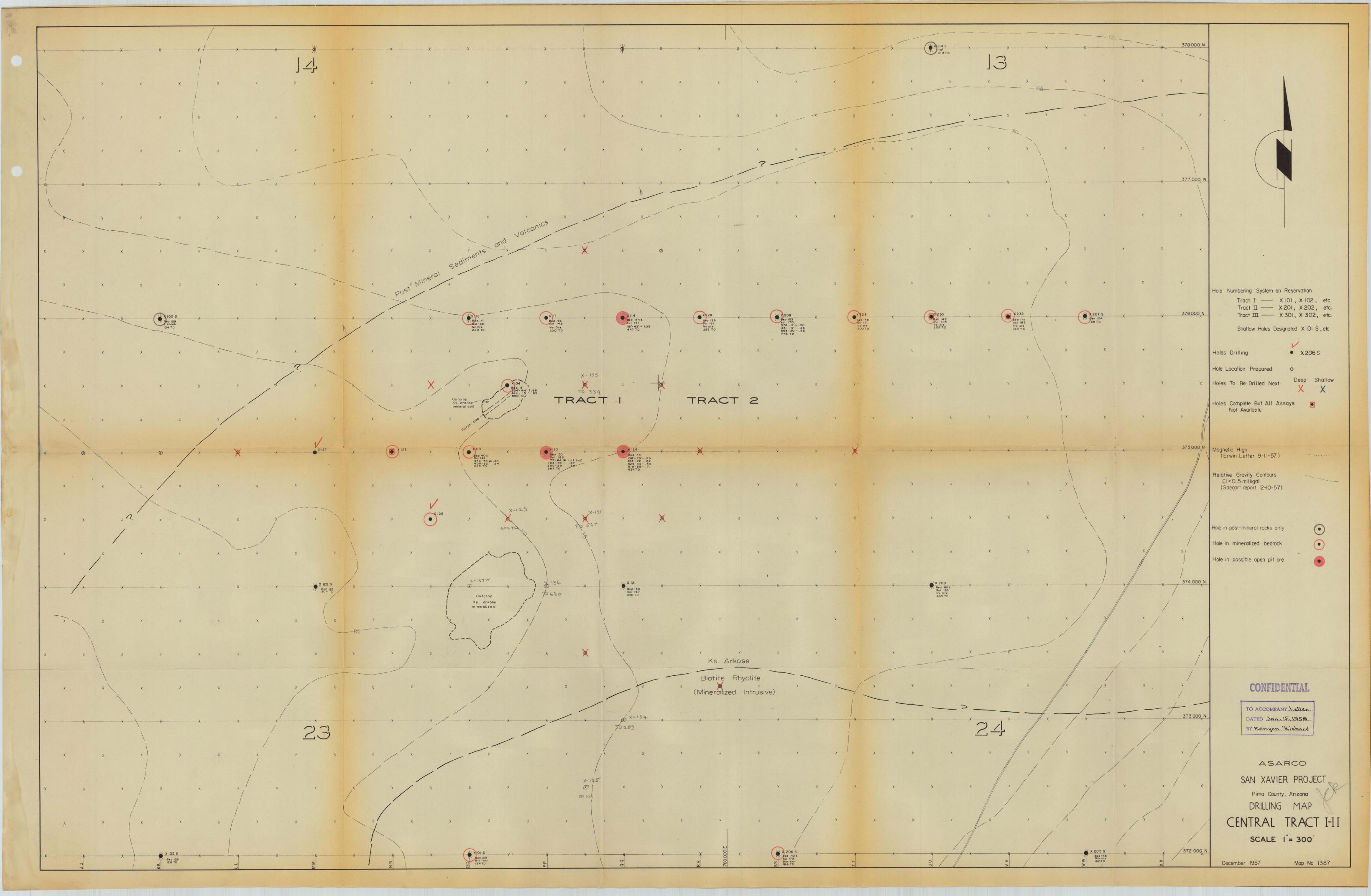
Attachments JEK/ds

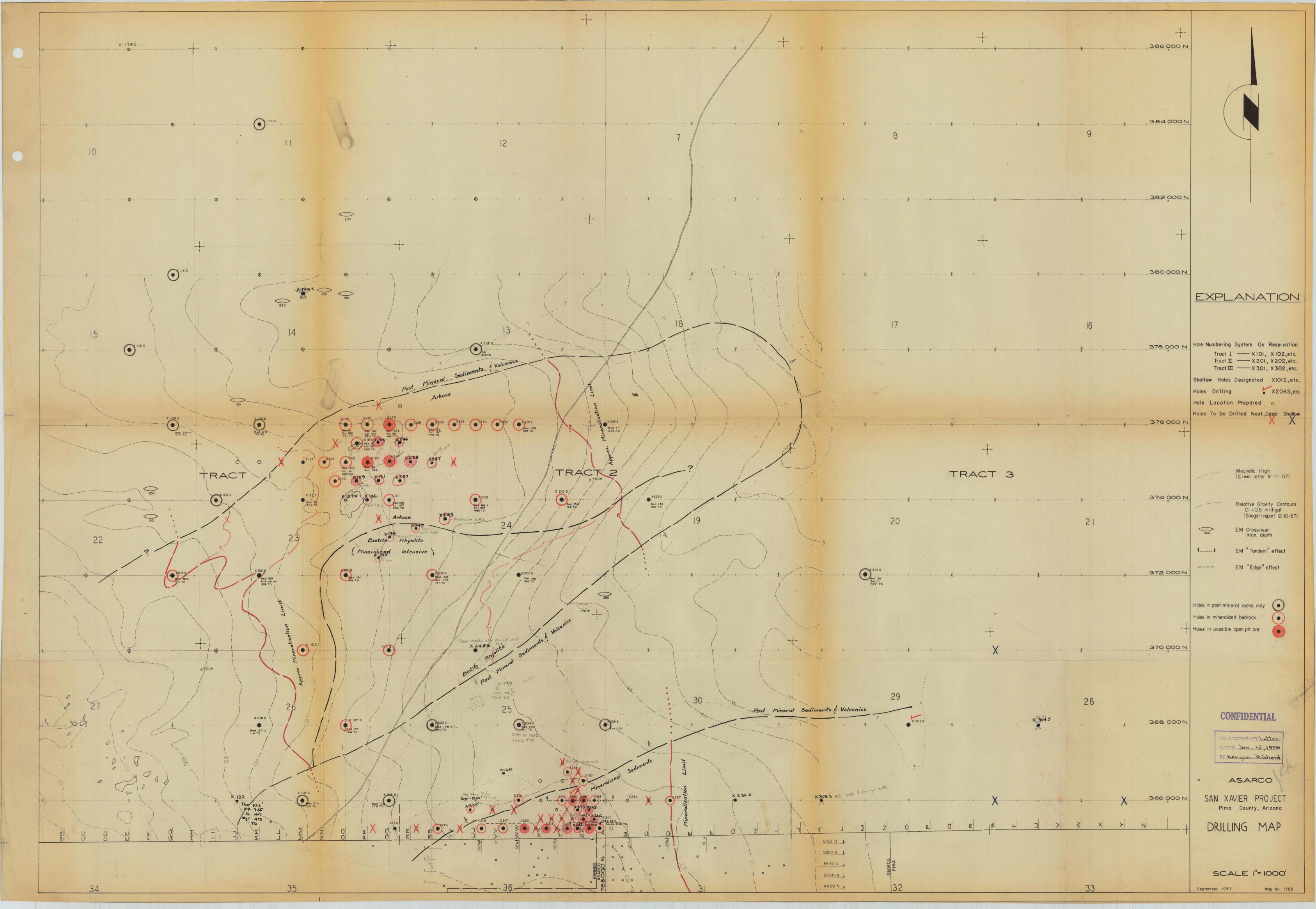
SAN XAVIER INDIAN RESERVATION ASARCO -- Partial Logs of 2 Drillholes

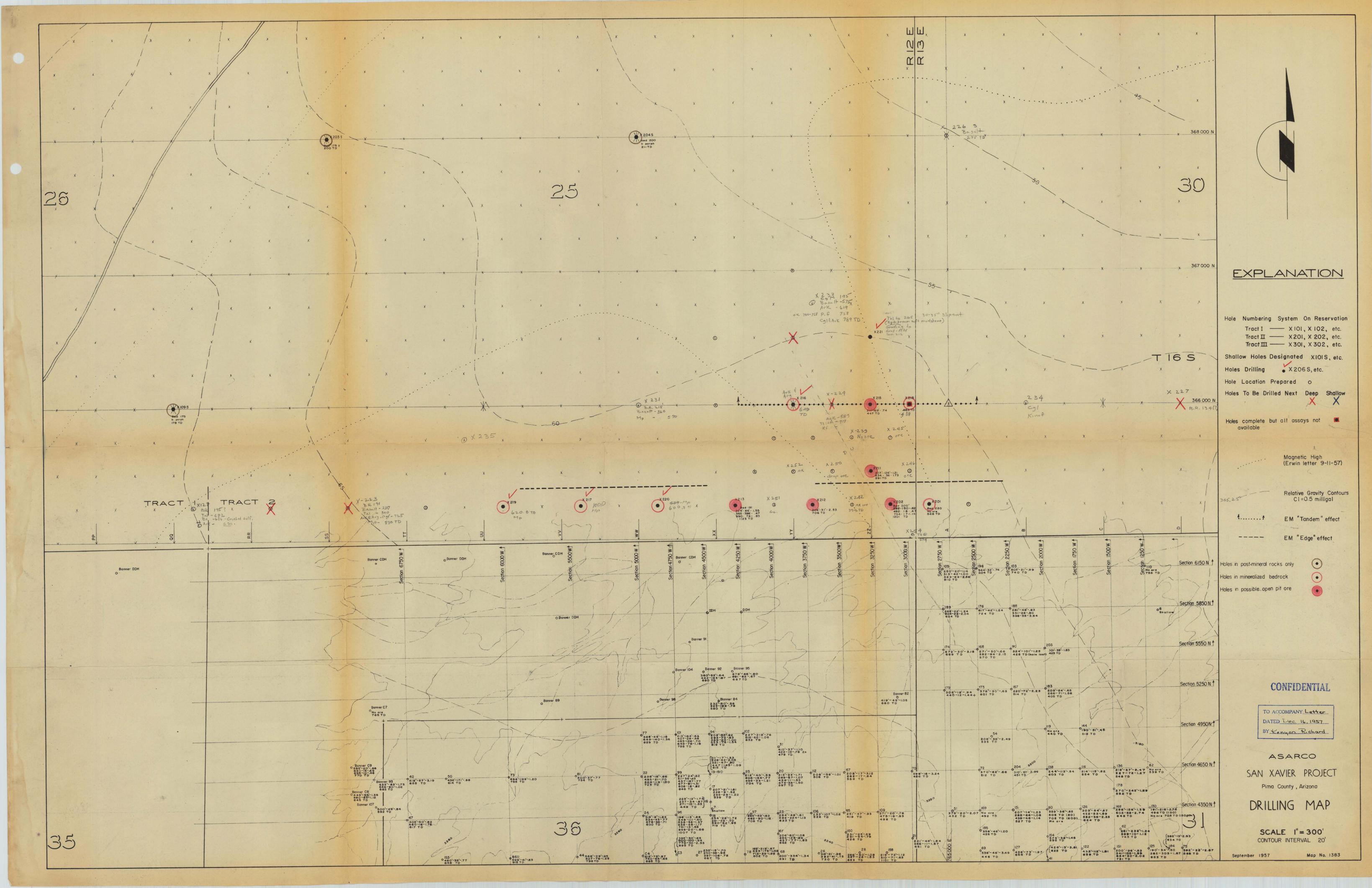
X 138


- Located on south line of Sec. 3, at approximately the SE corner, SW 1/4, SE 1/4, Sec. 3, T16S, R12E.
- 2. Elev. 2930' approx.
- 3. Drilled with 4 3/4" Rotary drill bit. Rock identification by cuttings and occasional 4 to 5 foot diamond bit core runs.
- 4. Geology -- No casing in hole.


0 - 169' Alluvium 169 - 617- 2' Basalt porphyry (Cooper's "turkey track" andesite) 617 - 706' "San Xavier conglomerate beds" 706 - Rhyolite


X 204


- Located about 500' east of the SW corner of the NE 1/4, Sec. 25, T16S, R12E.
- 2. Elev. approx. 3200'.
- Drilled to 1000' with 4 3/4" Rotary drill bit. Rock identification based on cuttings and 4 to 5' diamond core runs at about 100' intervals.
- 4. Geology


0 - 200' Alluvium - 40' of 4" pipe casing at top of hole.
200-423' approx. Basalt (Black Mountain type)
423 - 775' approx. "San Xavier conglomerate beds" (Upper beds).
Green colored to 512'*, red colored to 775'.
775 - 1207.5' Basalt porphyry (Cooper's "turkey track" andesite).
Below 1000' drilled with diamond core drill.
1207.5 - San Xavier conglomerate beds (lower beds).

