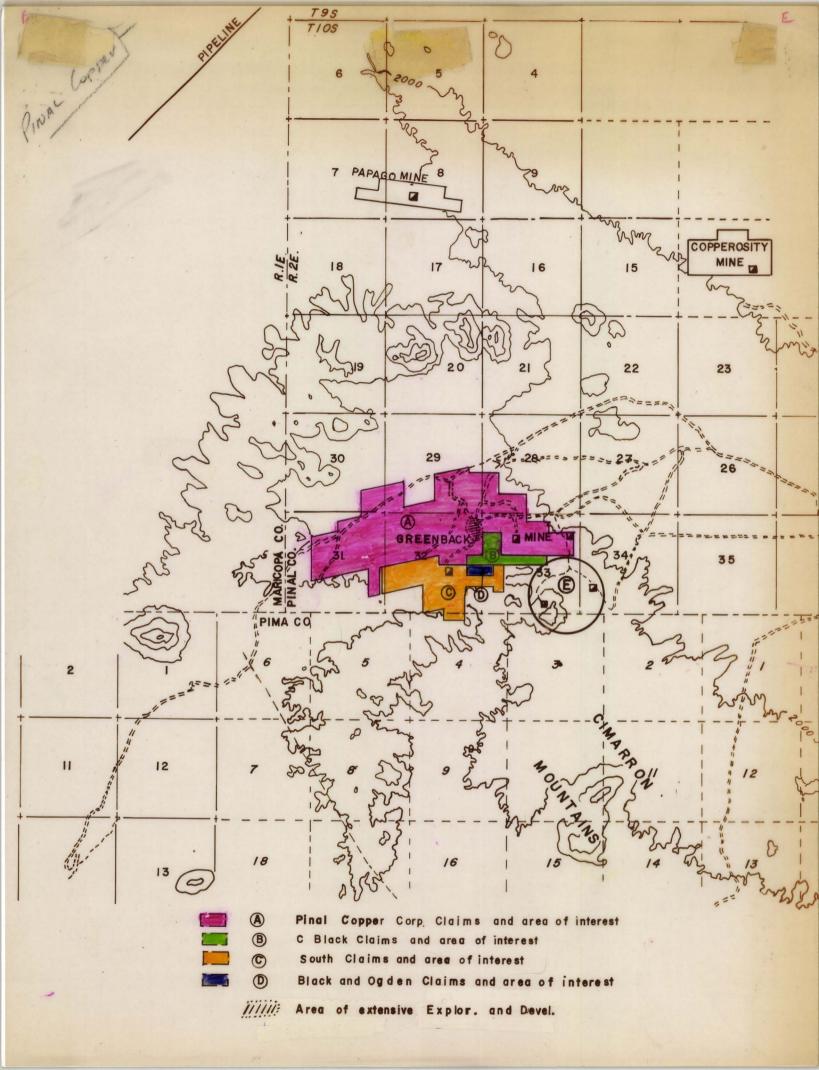


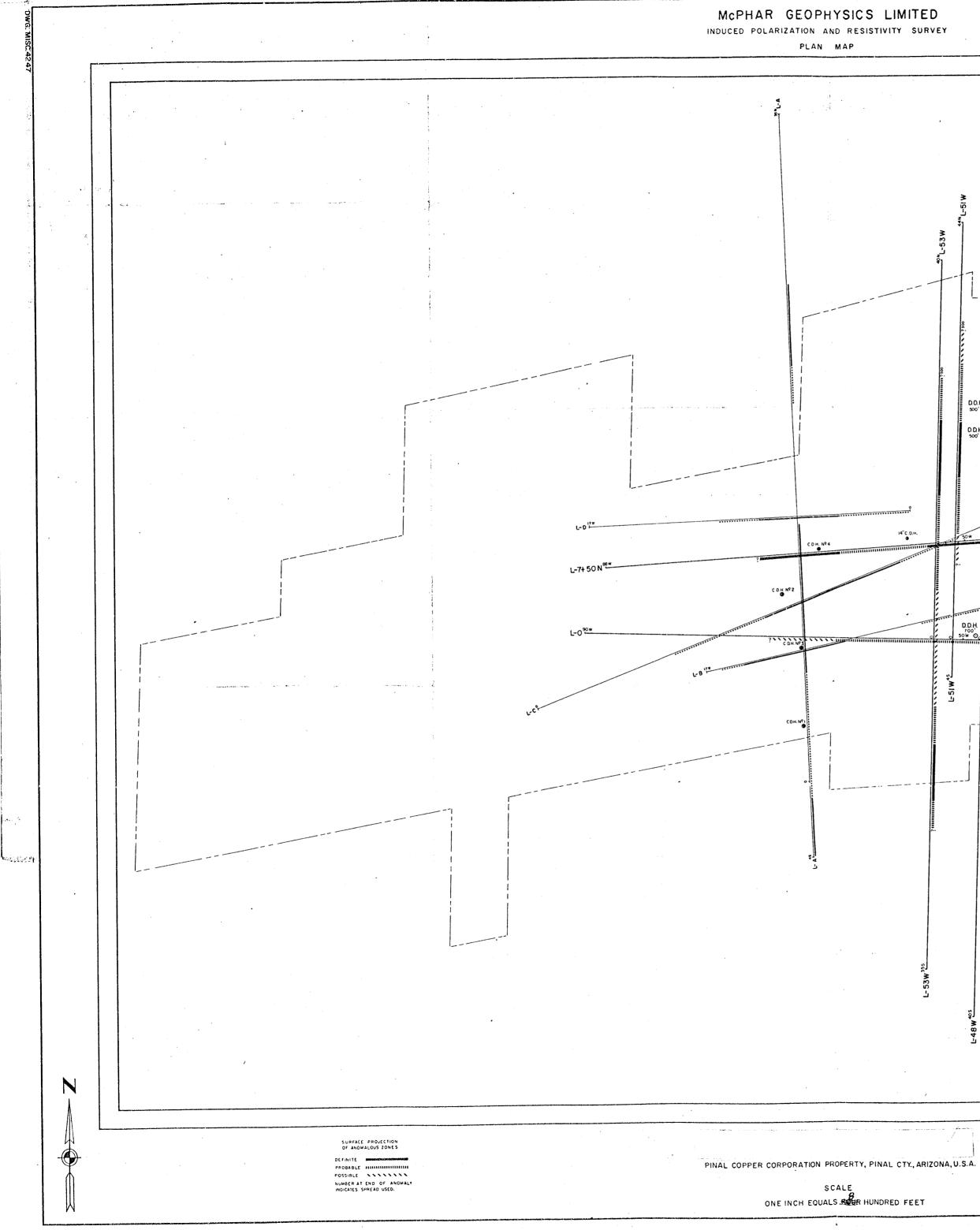
CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 3550 N. Central Ave, 2nd floor Phoenix, AZ, 85012 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the Grover Heinrichs Mining Collection

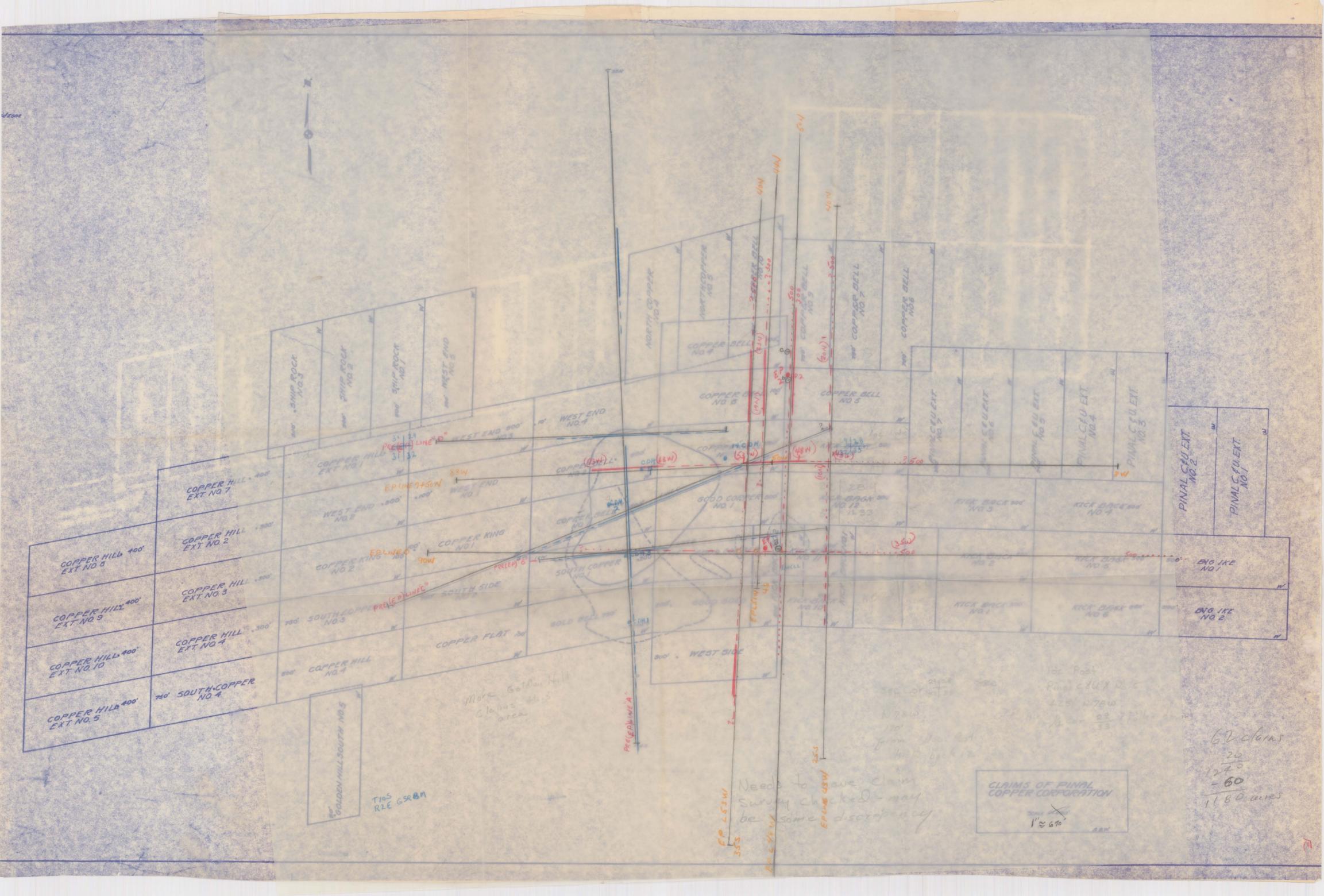
ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

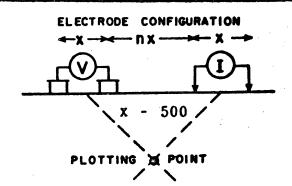

CONSTRAINTS STATEMENT

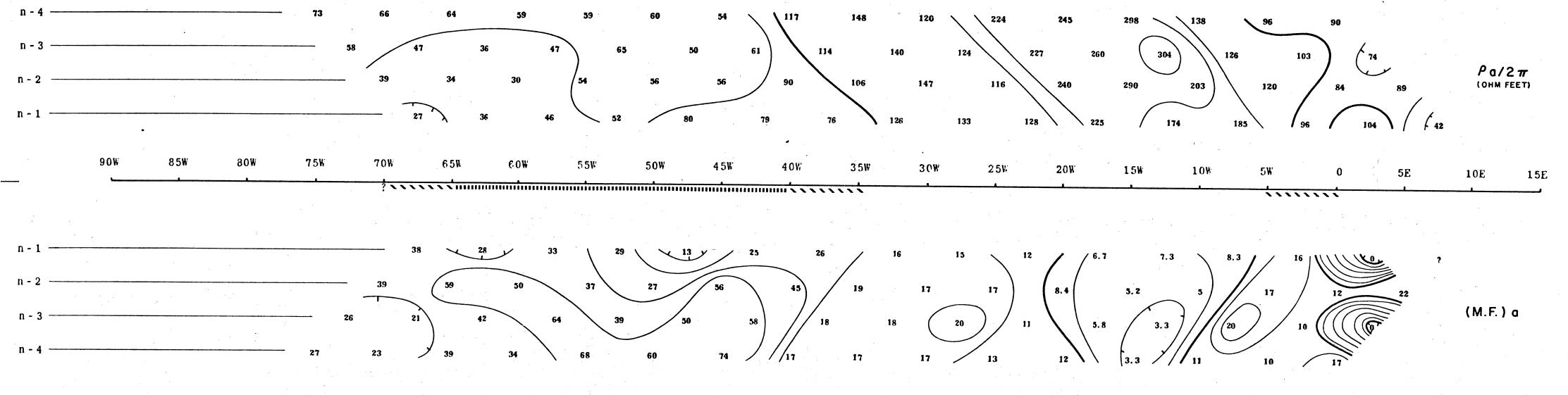

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

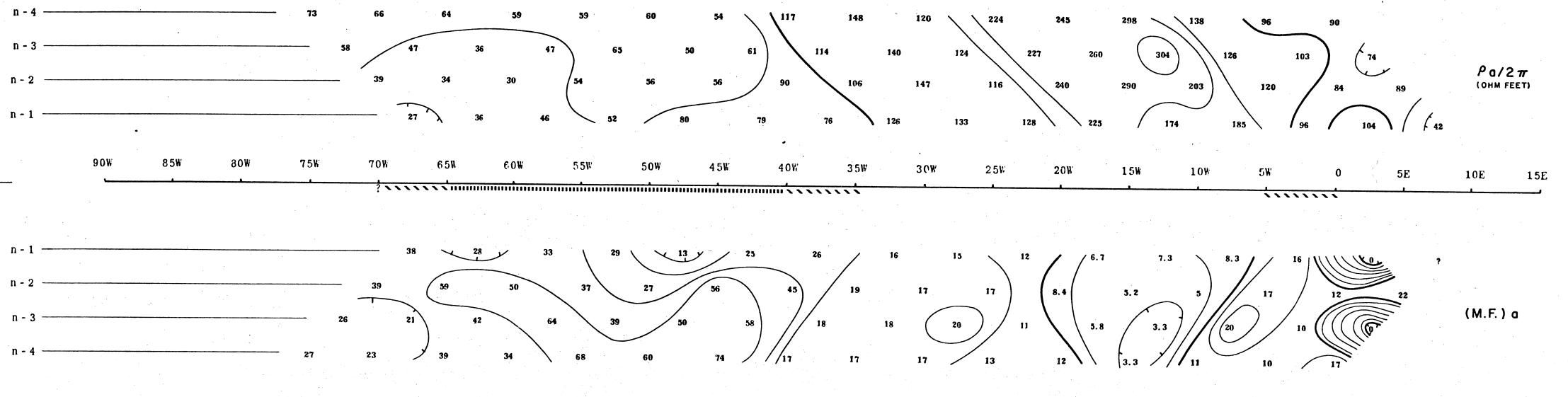
The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.


QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.






D.D.H. 500[°] O 0.D.H 500 O ---^{\$}"L-7+50N D.D.H. 50% O i - de mo BATE SERI 9 NOTE : LINES A.B.C. 80 ARE PREVIOUS LINES, D PROPOSED VERTICAL DRILL HOLES, ----- CLAIM BOUNDARY. EXISTING DRILL N DWG.MISC.4247

PINAL COPPER CORPORATION PROPERTY, PINAL CTY, ARIZONA, U.S.A.

Scale-One inch= 500 Feet

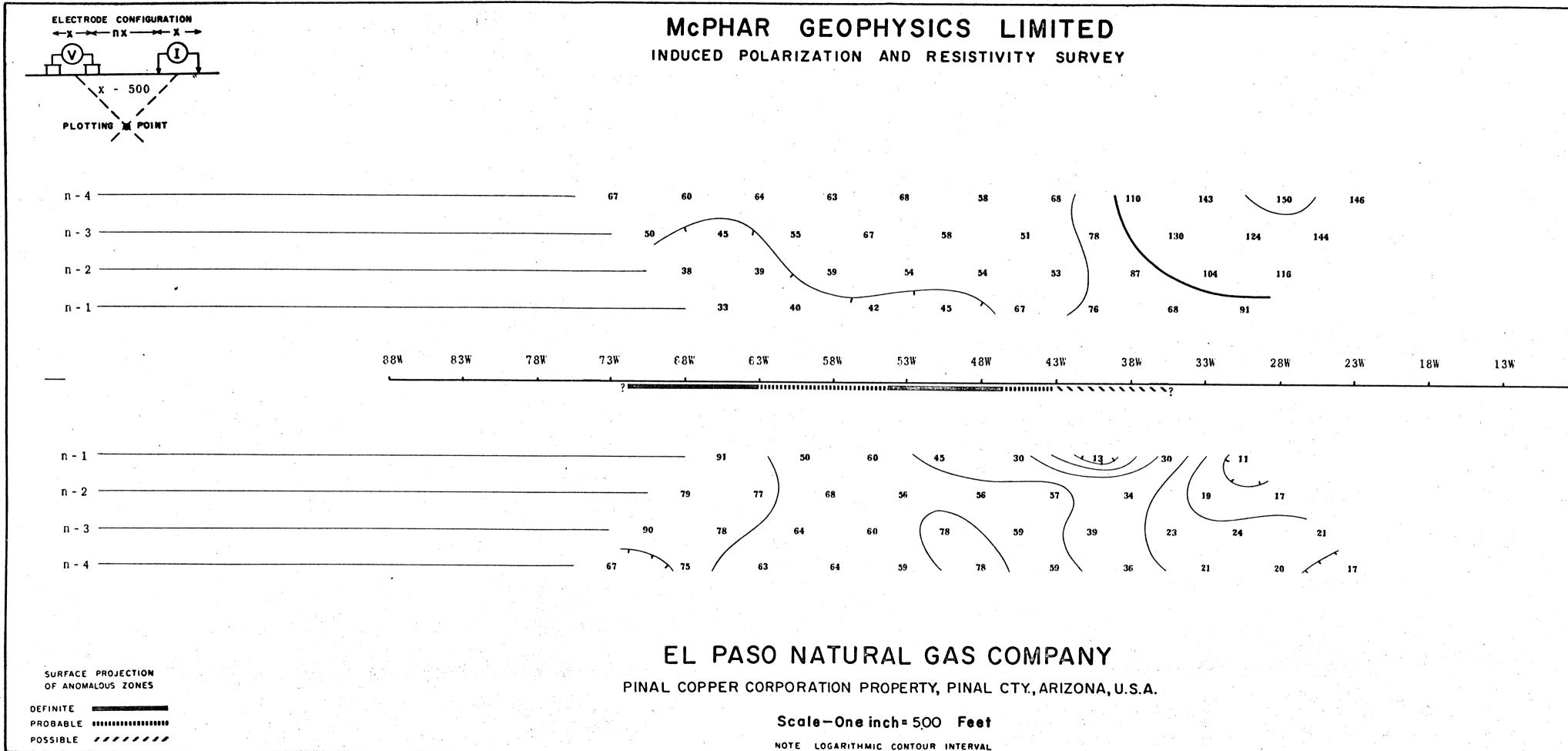
DEFINITE PROBABLE POSSIBLE ///////

SURFACE PROJECTION

OF ANOMALOUS ZONES

DWG. NO.-1.P.- 2533-7

McPHAR GEOPHYSICS LIMITED INDUCED POLARIZATION AND RESISTIVITY SURVEY

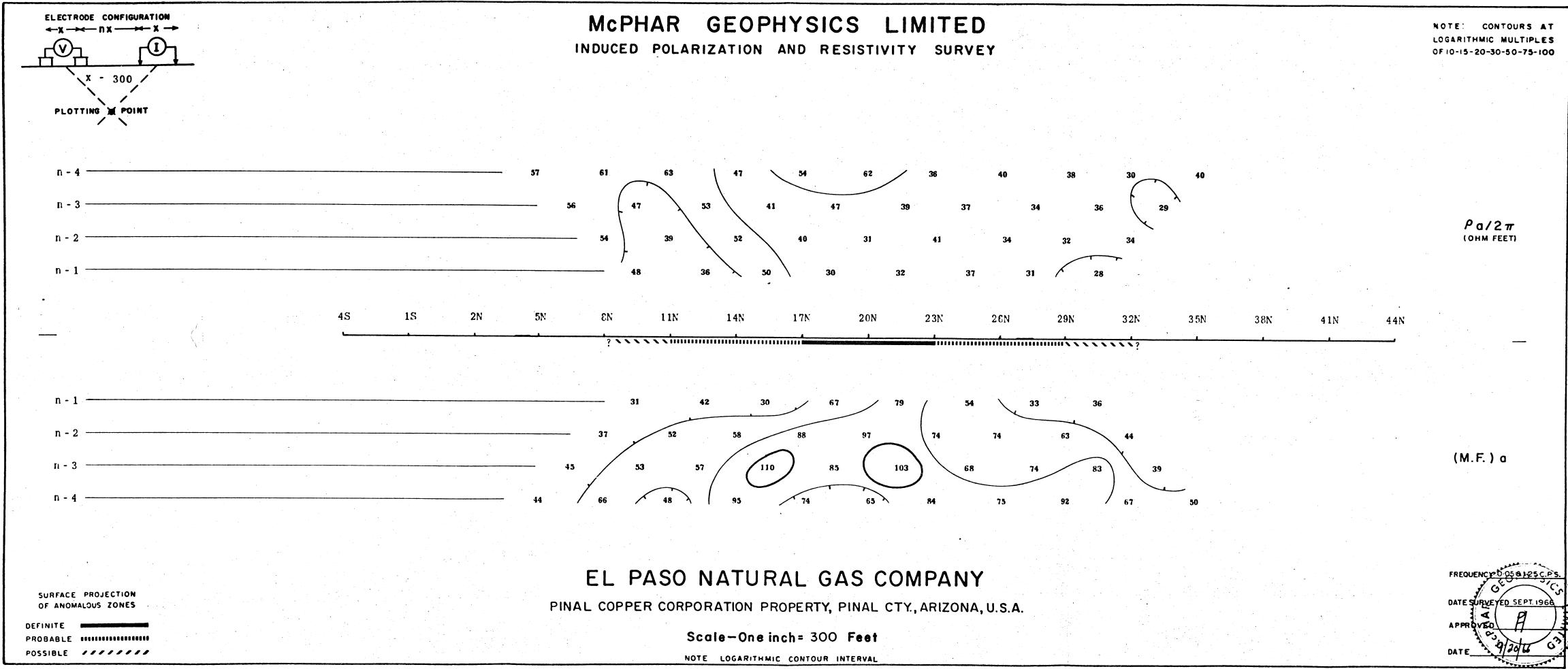

NOTE: CONTOURS AT LOGARITHMIC MULTIPLES OF 10-15-20-30-50-75-100

EL PASO NATURAL GAS COMPANY

NOTE LOGARITHMIC CONTOUR INTERVAL

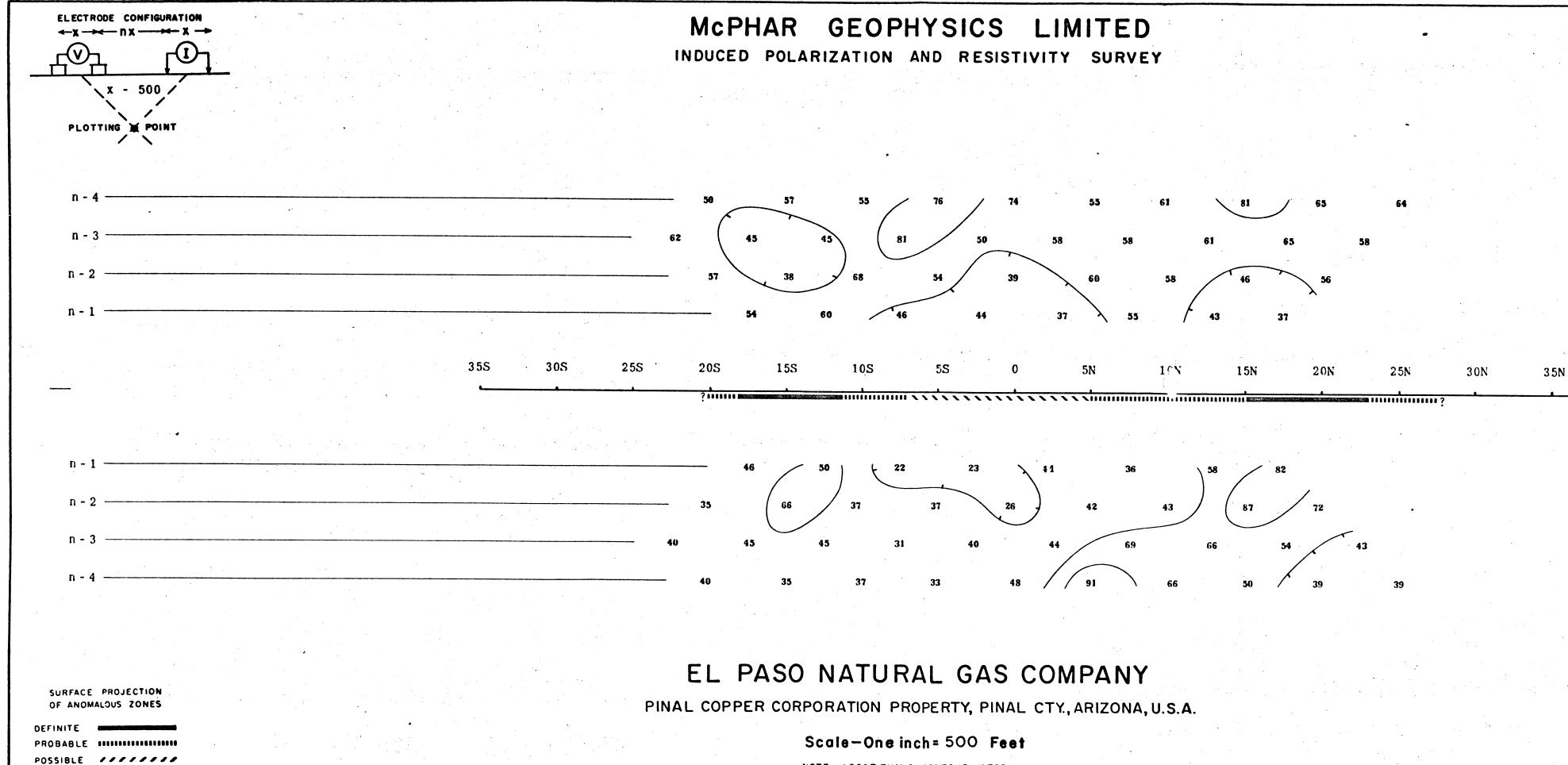
FREQUENCY 005 8 1.25 () DATE SURVEYED SEPT. 1966 D APPROYED DATE - 9 20

DWG. NO.-1.P.-2533-6


NOTE: CONTOURS AT LOGARITHMIC MULTIPLES OF 10-15-20-30-50-75-100

> Ρα/2π (OHM FEET)

(M.F.) a


FREQUENCY 0.05 8 1.25 C.R VE GEOPHYS, DATE SURVEYED SEPT. 1966 APPROVED DATE

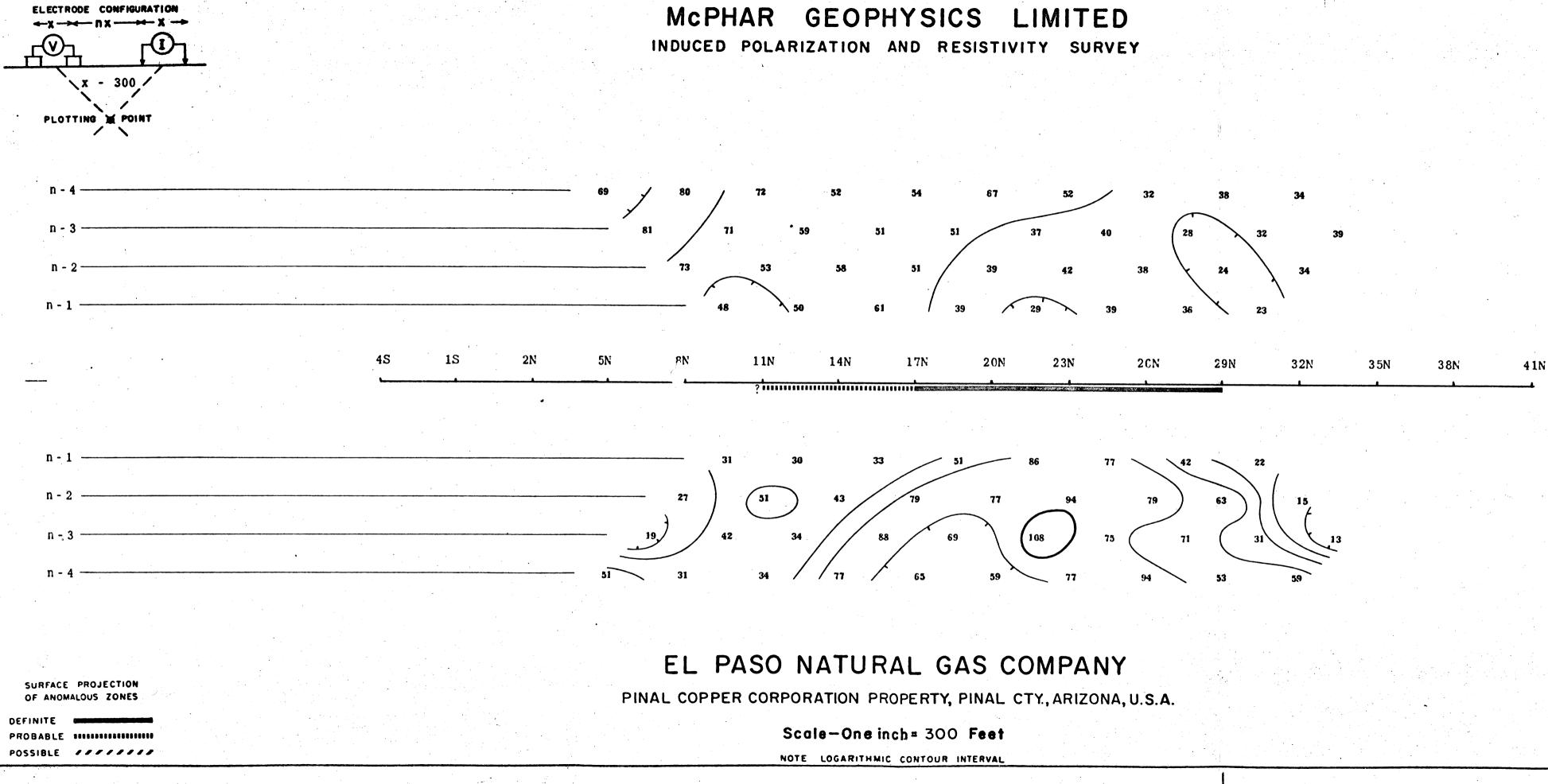
DWG. NO.-1.P-2533-4

DWG. NO.-1.P.-2533-5

NOTE: CONTOURS AT LOGARITHMIC MULTIPLES OF 10-15-20-30-50-75-100

Ρα/2π

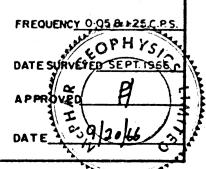
(OHM FEET)


(M.F.) a

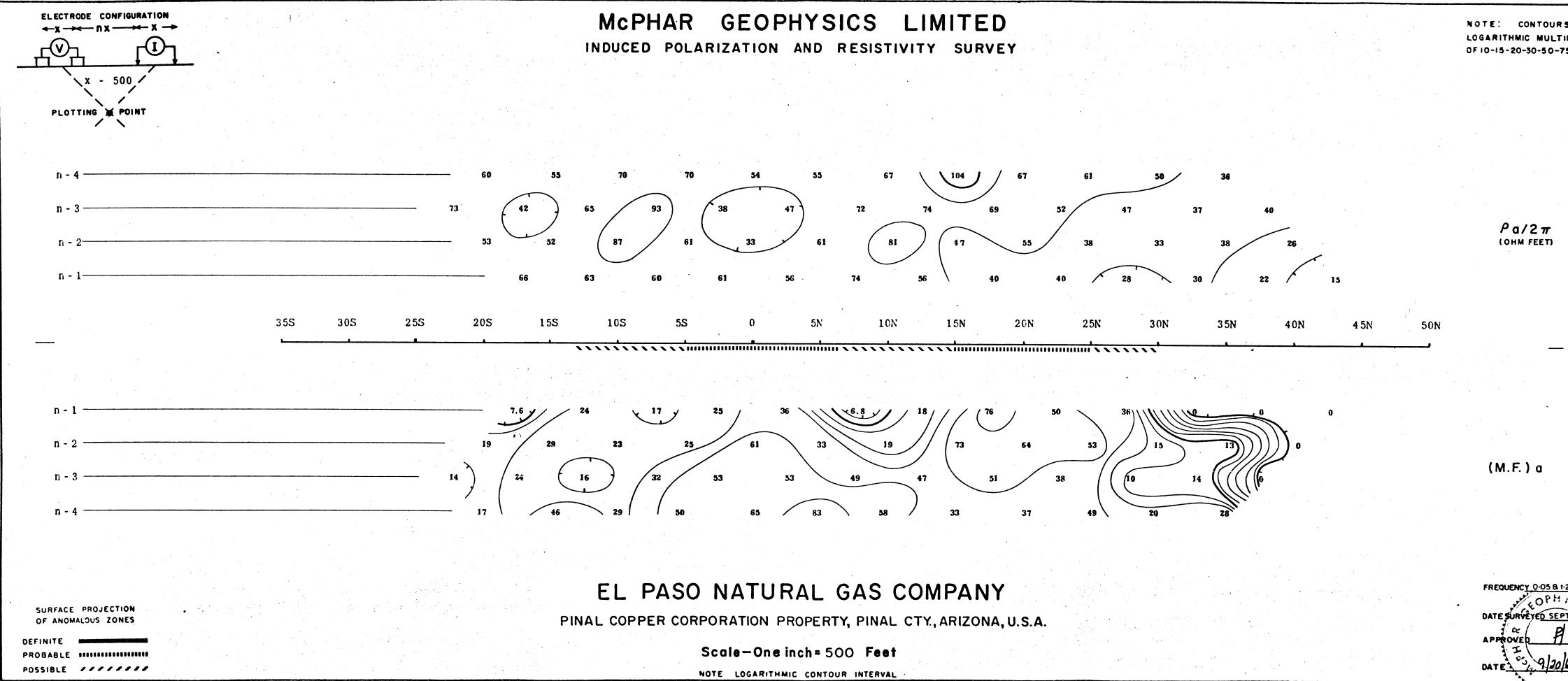
4 **O**N

NOTE LOGARITHMIC CONTOUR INTERVAL

FREQUENCY Q-0 DATE SURVEYED SEPT. 1966 APPROVED DATE___ 9120

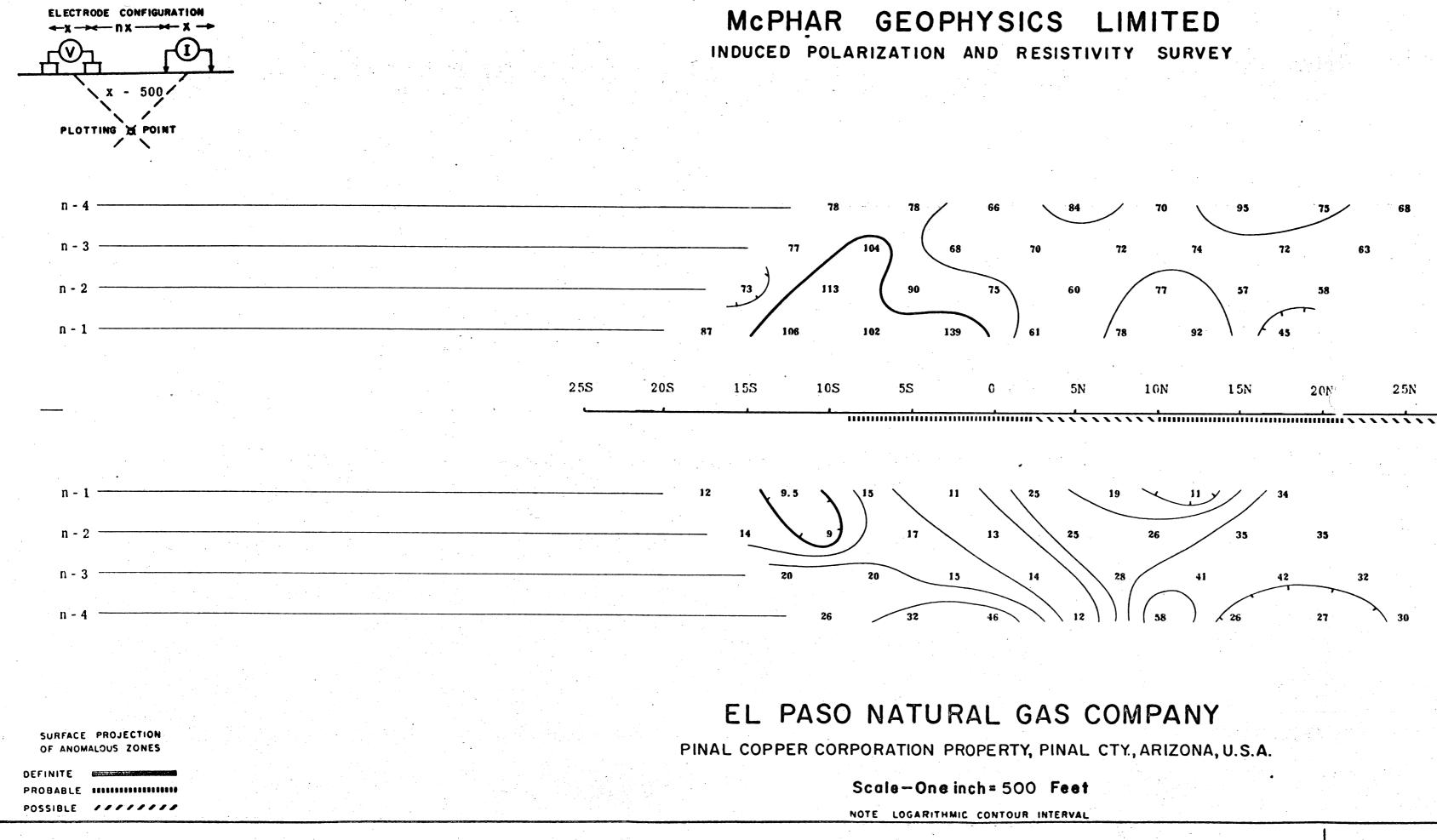


DWG. NO.-1.P.- 2533-3


NOTE: CONTOURS AT LOGARITHMIC MULTIPLES OF 10-15-20-30-50-75-100

> ρα/2π (OHM FEET)

(M.F.) a

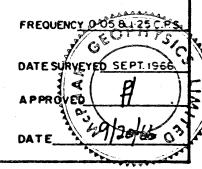


DWG. NO.-1.P.- 2533-2

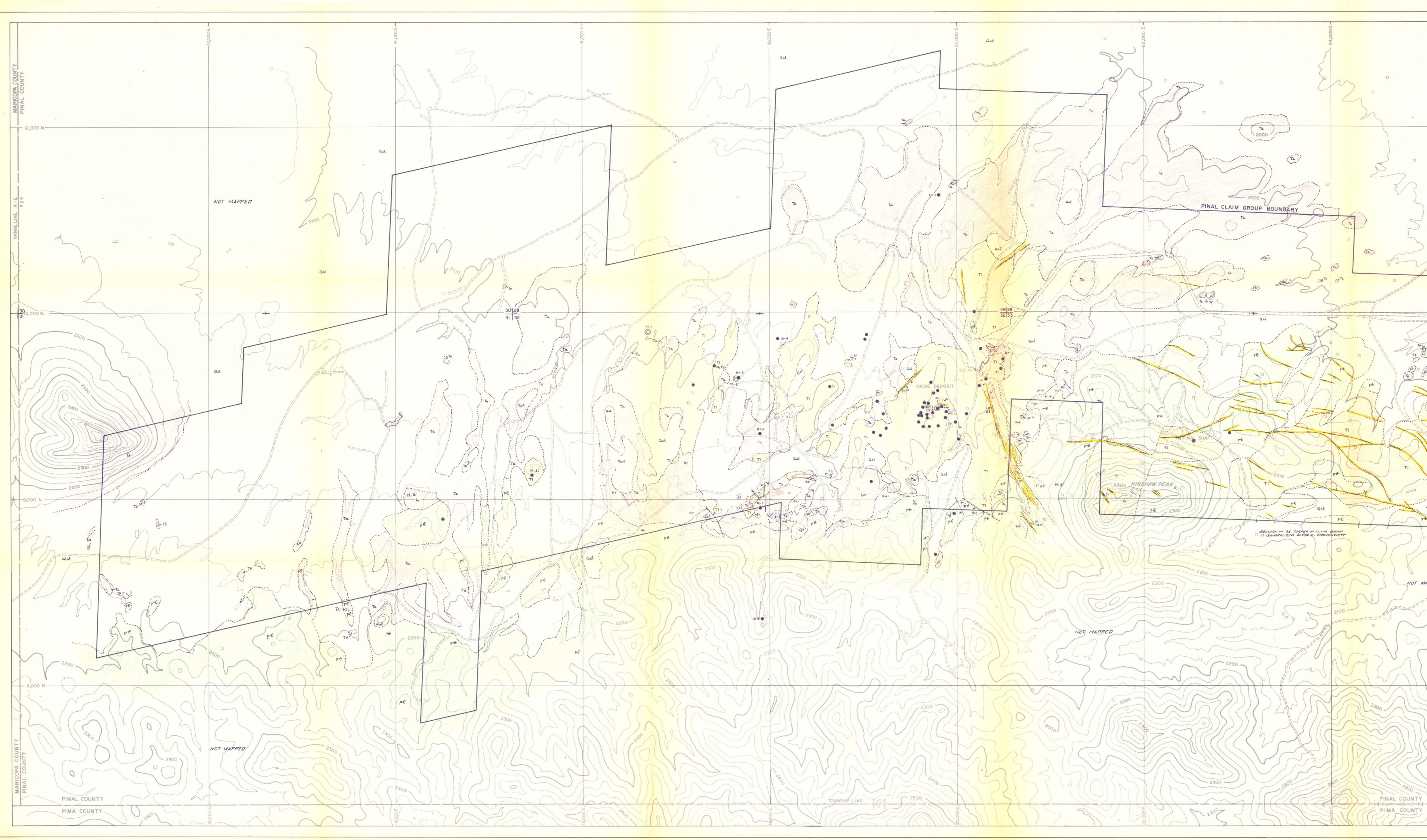
NOTE: CONTOURS AT LOGARITHMIC MULTIPLES OF 10-15-20-30-50-75-100

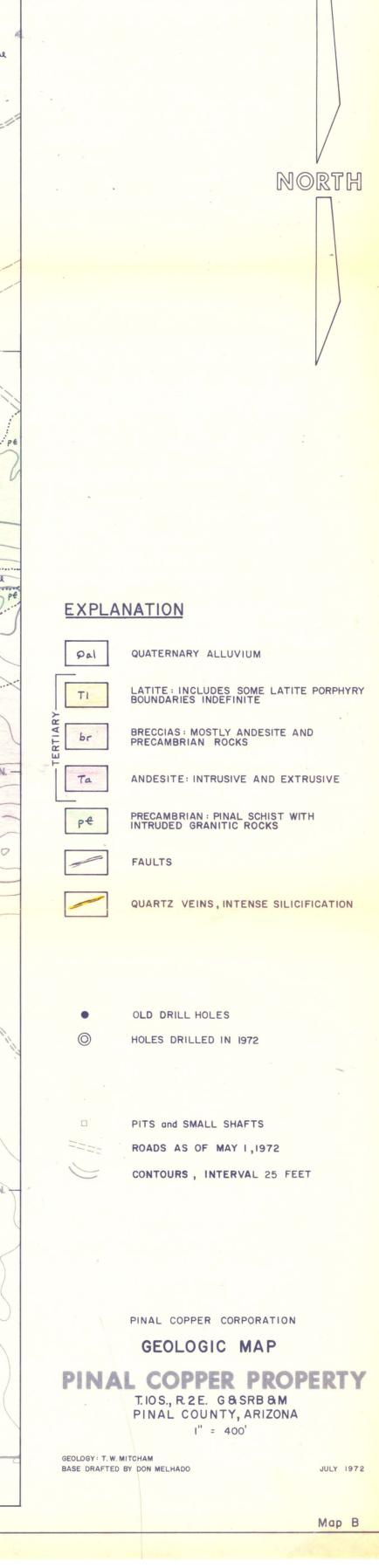
FREQUENCY 0:05 8 1-25 C.P.S COPHYS / DATE SURVEYED SEPT. 1966

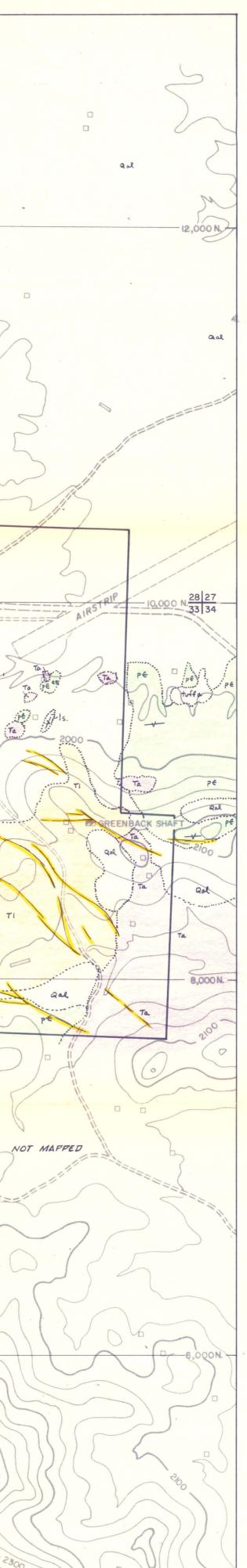
DWG. NO.-1.P.- 2533-1 Copy all Int.

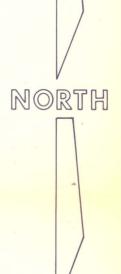

NOTE: CONTOURS AT LOGARITHMIC MULTIPLES OF 10-15-20-30-50-75-100

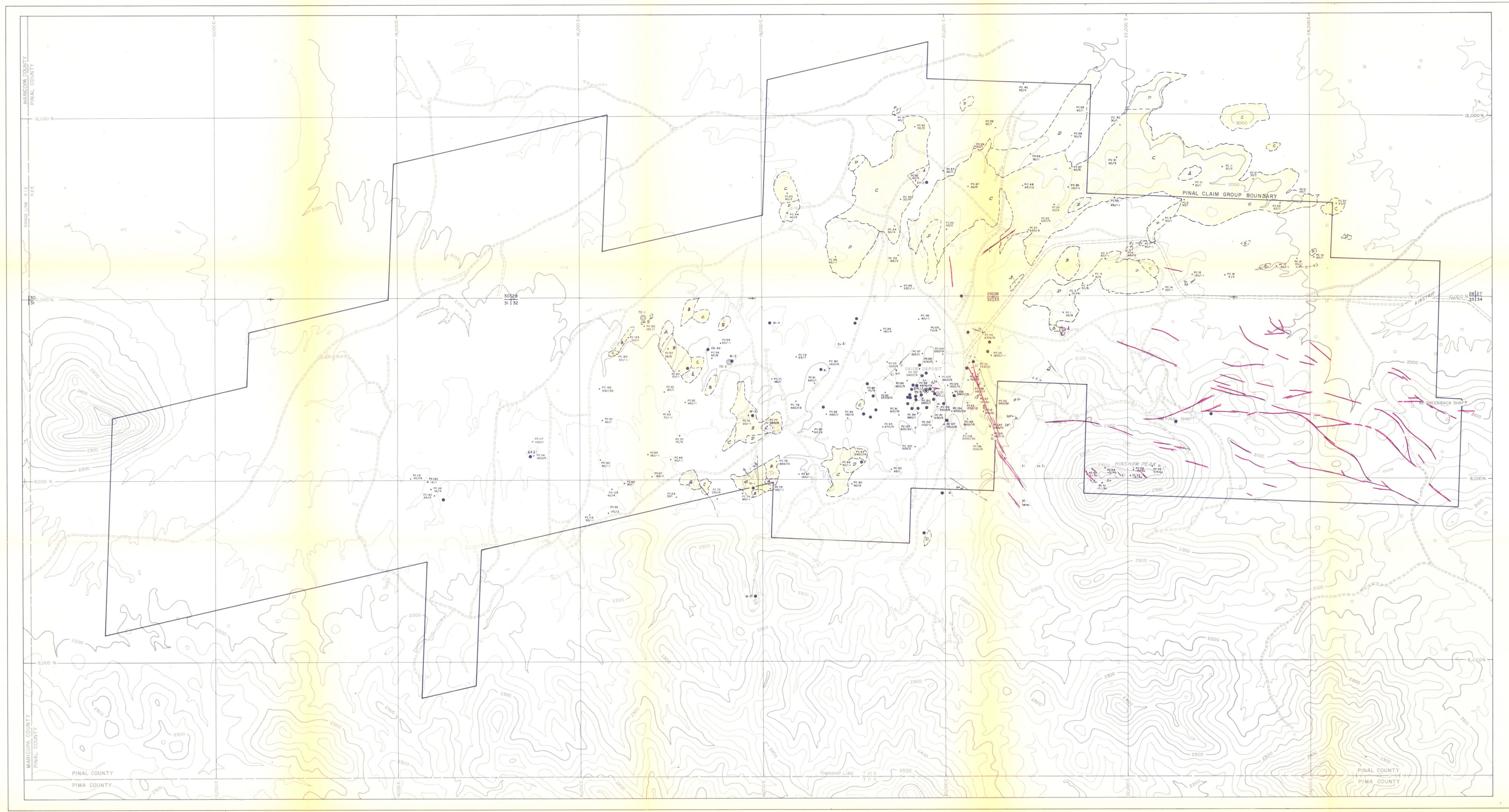
									•
0	-	5N	1 G N	15N	20N	25N	30N	35N	401
					(
			×						

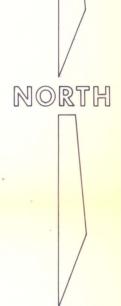

 $Pa/2\pi$



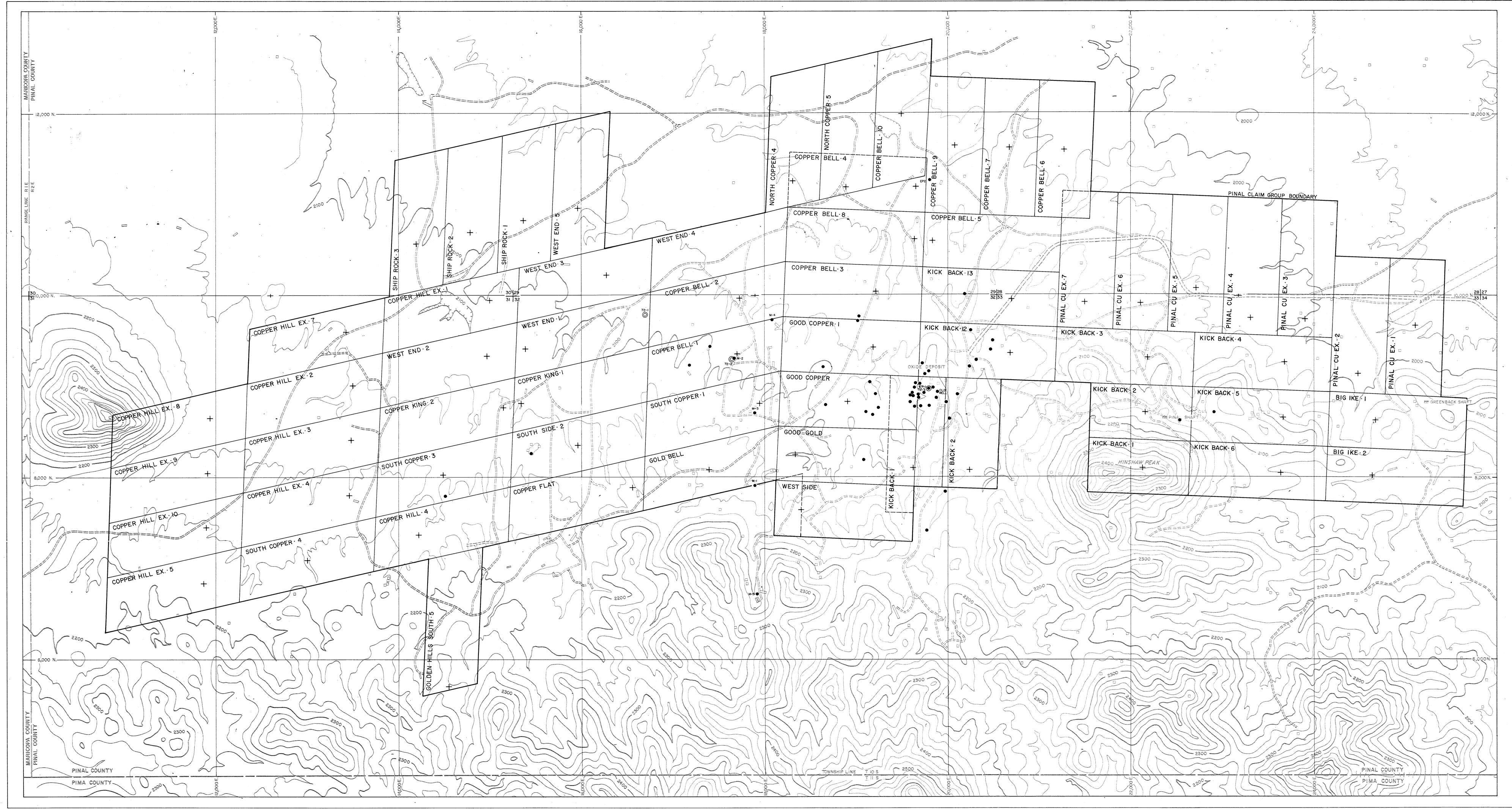

(M.F.) a







JULY 1972


Map B

EXPLANATION

D	PYRITE-SERICITE ALTERATION VOL. % PY * 0.5				
С	PYRITE-SERICITE ALTERATION VOL. % PY* 1.0				
В	PYRITE-SERICITE ALTERATION VOL. % PY * 2.0				
A	PYRITE-SERICITE ALTERATION VOL. % PY* 3.0				
/	QUARTZ VEINS, INTENSE SILICIFICATION				
٢	VISIBLE COPPER				
PC 100 1000/20	SURFACE ROCK SAMPLE NUMBER Cu/Mo CONTENTS IN PPM **				
	PYRITE CONTENT AT DEPTH, ESTIMATED FROM SURFACE LIMONITE OBSERVATIONS				
	* * Au (only) IN PPM FOR SAMPLES PC 50-56				
	OLD DRILL HOLES				
Ô	HOLES DRILLED IN 1972				
	PITS and SMALL SHAFTS ROADS AS OF, MAY 1,1972				
	CONTOURS, INTERVAL 25 FEET				
	DINAL CODER CORDORATION				
	PINAL COPPER CORPORATION				
ALTERATION & MINERALIZATION					
PINA	L COPPER PROPERTY				
	T.IOS., R.2E. G&SRB&M PINAL COUNTY, ARIZONA				
	I" = 400'				
GEOLOGY : T. W. MITCHAM BASE DRAFTED BY DON MELHADO JULY 1972					
	Map C				

NORTH

EXPLANATION

, è

•	OLD DRILL HOLES
0	HOLES DRILLED IN 1972
+	DISCOVERY MONUMENT
13	PITS and SMALL SHAFTS
and the second of	ROADS AS OF MAY 1,1972
	CONTOURS, INTERVAL 25 FEET

PINAL COPPER CORPORATION

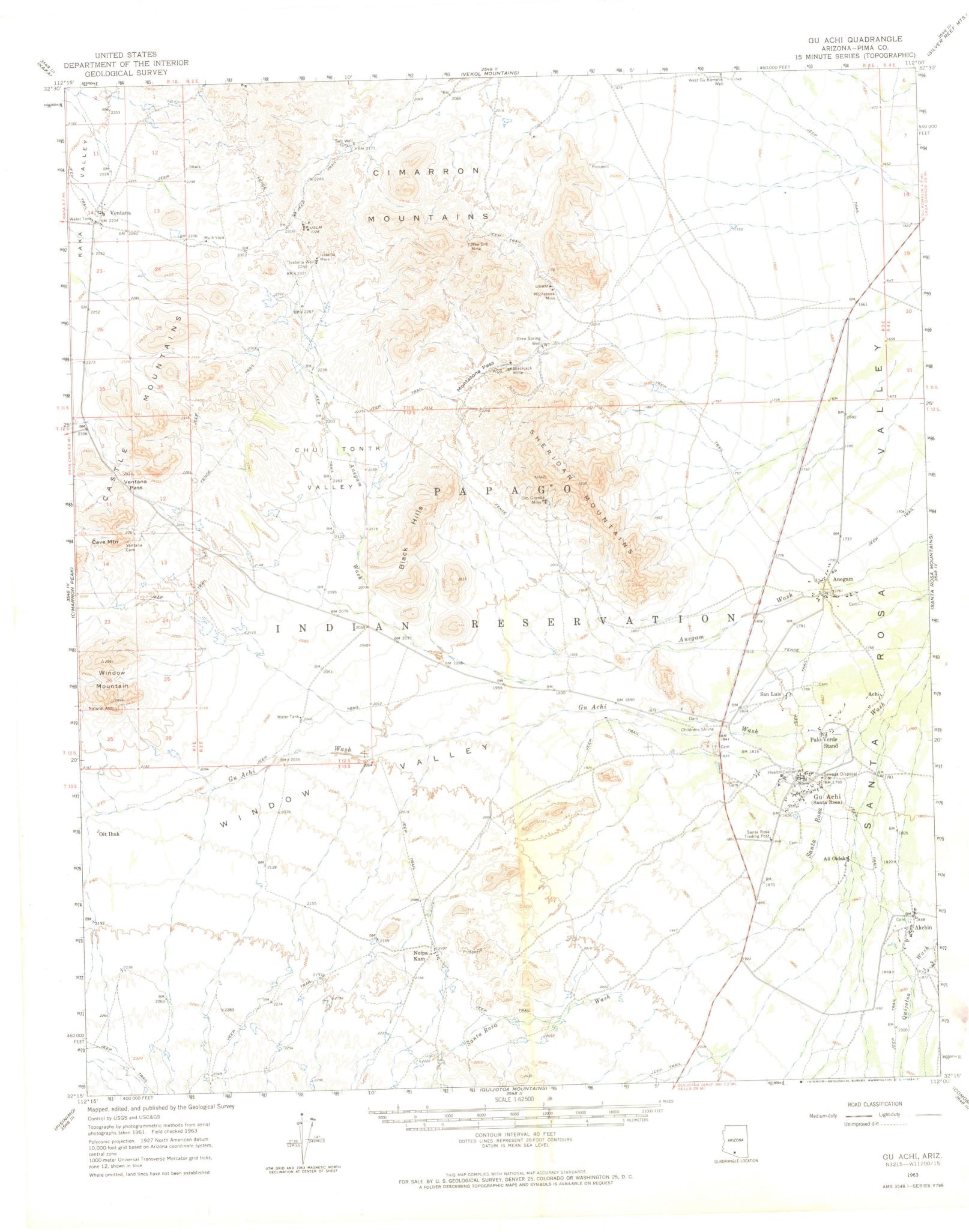
PINAL COPPER PROPERTY TIOS., R.2 E. G&SRB&M PINAL COUNTY, ARIZONA I" = 400'

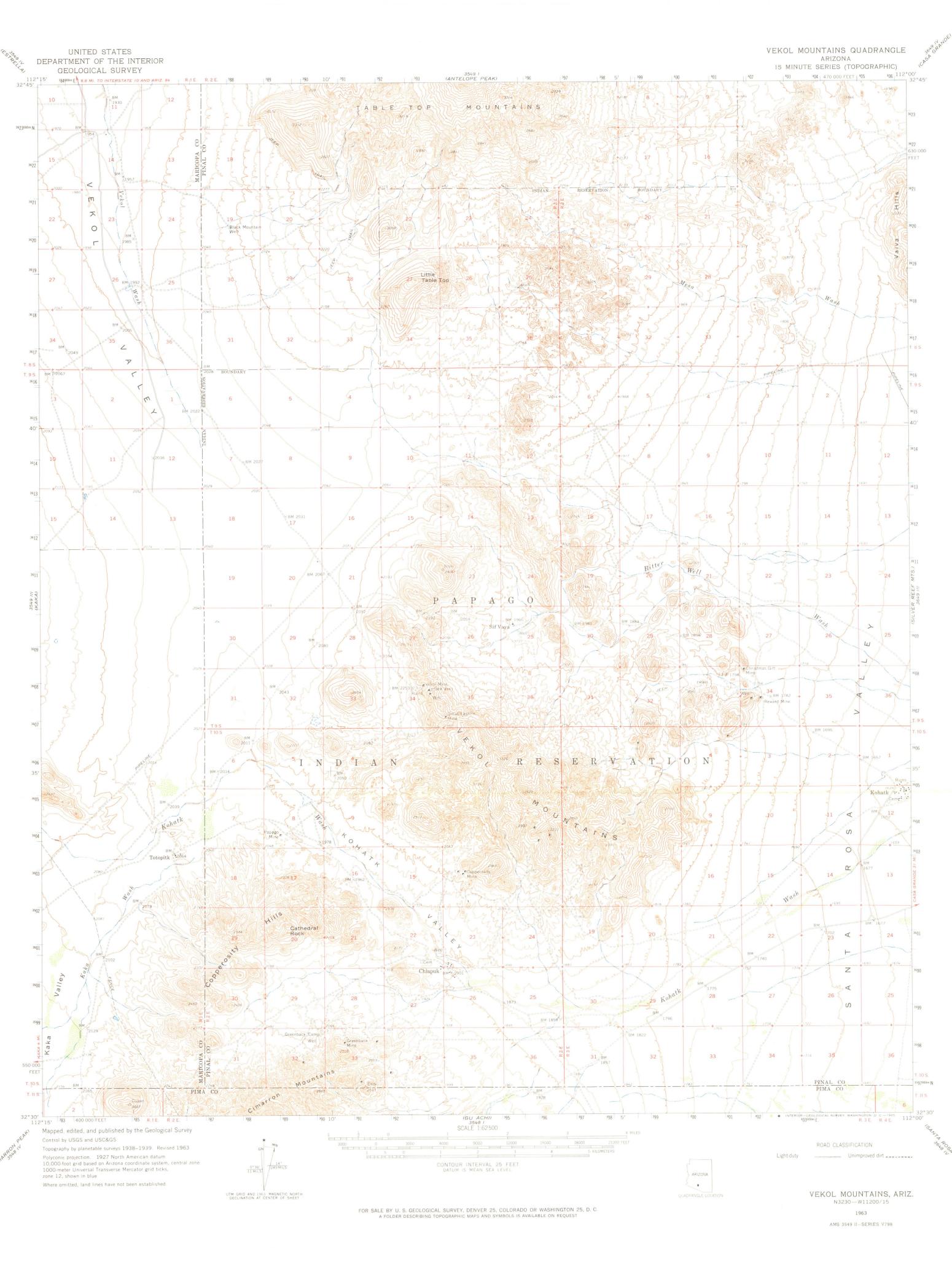
CLAIMS FROM A MAP Approved by G.Black(1970) Drafting by Don Melhado

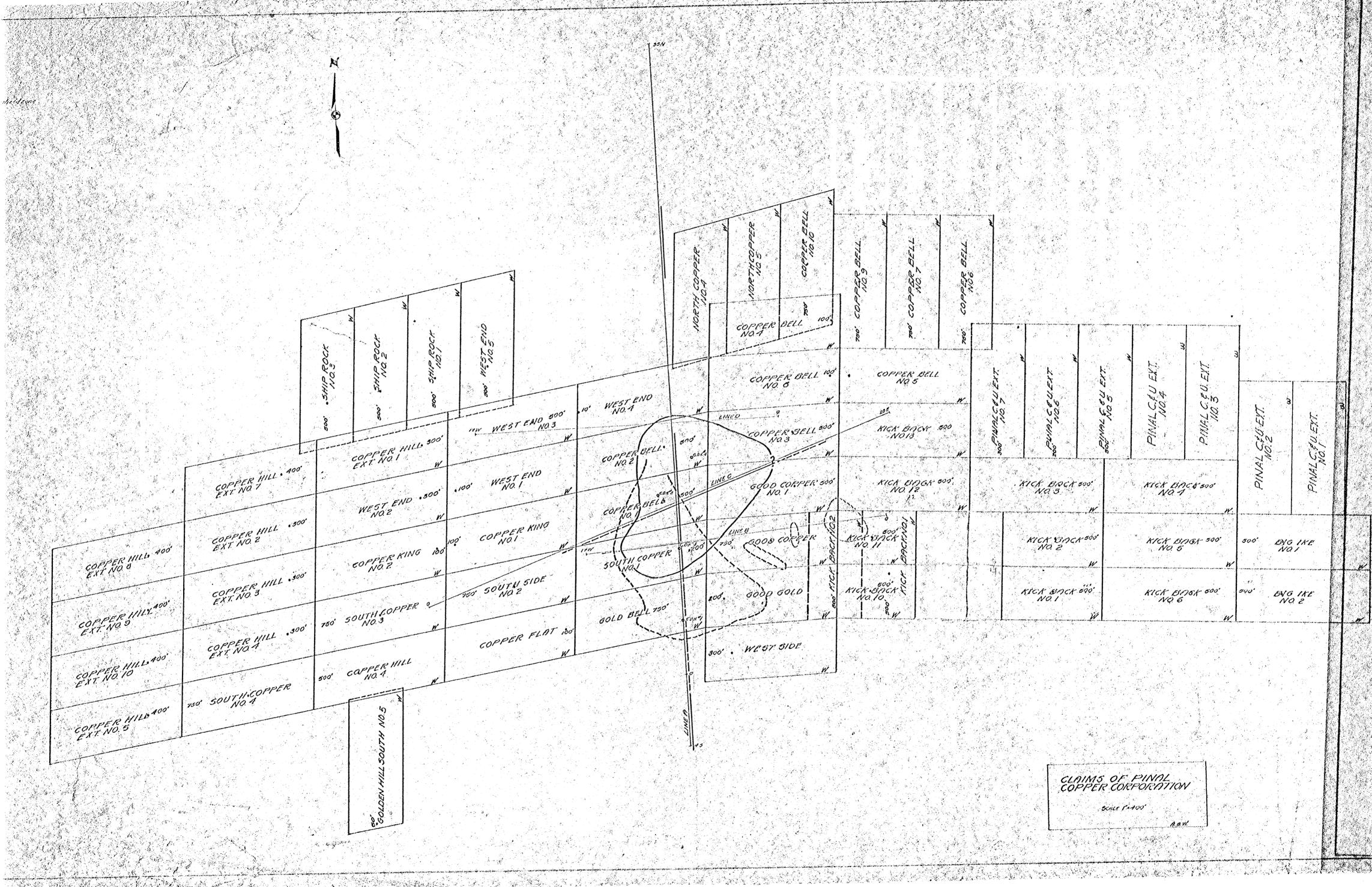
JULY 1972

Courses Li						PINAL	COUNTY
4 39.24 3 39	.98 2 39.98 1 39.	96 4 39.99 3 40.05	2 40.11 1	40.17 4 4	0.21 3 40.24	2 40.26 1 40.29	
5 39.26	⊥ ⊥						
6 39.26	6		5		4		
7 39.28							
1 39.29							
2 39.30							
3 39.32	7		8		Ś	9	
4 39.33							
1 39.37							
2 39.42							
3 39.48	18		17		I	6	
4 39.53	an a						
1 39.57							
2 39.60							
3 39.62	19		20			21	
●							
• 1 39.68			B				•
2 39.73							
3 39.77	30		29			28	
4 39.82							
1 39.86					· · · · · · · · · · · · · · · · · · ·		
2 39.90						77	
3 39.94	31		32			33	
4 39.98							

60 10 5 0 10 20 30 30 chains to the inch


Greenback T. 105, R.J.E. E. PARTIALLY SURVEYED TOWNSHIP 10 SOUTH RANGE 2 EAST OF THE GILA AND SALT RIVER MERIDIAN, ARIZONA Privac County


STATUS OF PUBLIC DOMAIN LAND AND MINERAL TITLES



and the

R. <u>2.E</u>....

4-27-71

logned to

Chuck

Sewell

May 21, 1970

Mr. Guy Anderson Attorney At Law Safford, Arizona 85546

Dear Guy:

It is my understanding that the property belonging to the Pinal Copper Company is in final stages of judication. I am sure you are aware of the interest of Essex in developing property of this type to achieve production at an early date. Consequently, I am writing to formally express our interest in seeking some basis of understanding with the Pinal Copper Company for prompt development of this property.

Our plan would be to achieve production from the oxide ores as repidly as sound engineering would permit. At this point, I am not in possession of all information regarding the property which would enable our developing a specific course of action. However, in general terms our program would include (1) preliminary studies of the property to define adequate ore reserves, mining plans and processing flow-sheets (2) engineering and construction of a Leach-Cementation operation to initiate production and (3) design and construction of a LIX-Electrowinning plant.

I anticipate the study would require three to six months to complete depending upon the data now available. A ten ton per day precipitation plant would be in operation within six months following the decision to proceed. A LIX-Electrowinning plant would not be completed for two years.

We would be interested in purchasing control of Pinal Copper on a stock exchange basis with Pinal Copper petaining an interest in the earnings. The values of the stock exchange and royalty terms are both negotiable. We would like to review available data for our preliminary evaluation of the property. Anticipating that the principals of The Pinal Copper Company may wish to consider this proposal further, I am forwarding some basic information regarding Essex. In summary, the advantages that Pinal Copper may realize from an association with Essex are as follows:

- 1. Prompt operation of the property to obtain earnings from the oxide ores while extending development to possible sulfide reserves.
- 2. Long term market security through association with a growing, major copper consumer.

I would appreciate meeting with you and principals of the company to explore further a basis for an agreement.

Best personal regards.

Very truly yours,

Howard Lanier Manager Copper Processing Operations

8 - - -

April 26, 1971

TO: H. Lanier

FROM: P. Eimon

SUBJECT: Pinal Copper

I talked to Charles Sewell and he agreed to gather this week all of the available data concerning the Pinal Copper property. He will present this data to me on Thursday or Friday.

Since some of this data will be of a confidential nature, he will present it in the form of notes and oral discussion from which I will produce an informal report on results of previous drilling and exploration work by other companies on the Pinal prospect.

P.I. Eimon

FILE MEMO

May 6, 1971

SUBJECT: EL PASO NATURAL GAS - PINAL COPPER

Following my contact to C.L. Perkins, V.P. of Exploration for El Paso Natural Gas, a meeting was held May 3rd with Don Thurman, Executive Assistant, and Dick McConn, Asst. V.P. Although the initial contact had been regarding the Pinal Copper, El Paso N.G. was interested in a broader relationship with Essex in exploration.

Thurman referred to a conversation with Bill Love, President of Hecla, indicating that Hecla was favorably impressed in our previous contacts and plans to maintain a relationship with Essex. (Hecla and El Paso are partners in the Lakeshore project).

In regards to Pinal, El Paso has an interest and would like to joint venture with Essex and possibly Kerr-McGee. El Paso drilled two holes in the Pinal claims in 1966 which were sufficiently interesting that they want to proceed if a reasonable agreement can be reached with Guy Anderson. A proposal for negotiations with Guy was outlined and I amito meet with him this week to determine his flexibility. I am also to meet with Garth Black (owner of the adjacent 25 claims to the south) to make a proposal for his property.

H.Lanier

Note: At our luncheon meeting Mr. McConn fainted twice and was taken to the Tucson Medical Center where he was placed under surveillance for a heart attack.

cc: P.W. O'Malley

April 20, 1971

FILE MEMO

PINAL COPPER - GARTH BLACK

Paul Eimon and I met with Garth Black and James H. Russell April 20, 1971 to review their holdings in the Pinal Copper area.

There has been some realignment in the relationship of Garth Black and other parties. Steve Black, Garth Black, and J.H. Russell (a real estate broker from Kansas City) are co-holders of a company called Russ-Lee Inc., an Arizona corporation. In addition to real estate held in Kansas City this corporation holds the mining property in the Papago Reservation shown in yellow, green and red on the mine map that they supplied. They also have organized Lee Explorations Inc. which holds approximately 5% of the Pinal Copper stock and an additional area of 25 claims coded in blue on the property map. These claims are adjacent to the Pinal Copper. This company also includes a Holiday Inn in Corpus Christi, Texas. Garth Black is president of both corporations and Steve Black is on the board.

Black was proposing that they gain control of 51% of Pinal Copper with the intent of delivering it plus their holdings to Essex. I advised them that we are currently negotiating with Guy Anderson who represents the owners and we prefer that he not initiate action with the stock holders until we have had a chance to assess our ability to reach an agreement with the owners. I am do meet with Black prior to my next meeting with Guy Anderson.

In a discussion regarding the property option arrangement I suggested a one year entrance-free option with a work commitment with a payment for the next year and a larger payment for the initiation of the third year. Although I recommended a buy-out, I did indicate a willingness to consider a retained interest if the property payments were less. Both Black and I are to consider proposals which we will discuss at our next meeting.

Black reported that Kerr-McGee had offered the Pinal owners a \$50,000 entrance and payments of 1/2 million dollars per year. He claims that he can substantiate this with documents. Kerr-McGee has done some work on the property and must know considerably more than we are aware of.

El Par, Zu 120 Pase natural no) old 5-11-71 dal Sac

May 11, 1971

Mr. Zeb Jones Kerr-McGee Corporation 1637 East 18th Street Tucson, Arizona

Dear Zeb:

C. Startant 4

This confirms our telephone conversation following my discussions with Messrs. Guy Anderson and Garth Black.

In a meeting with Mr. Anderson on May 6, 1971 I proposed that Kerr-McGee, El Paso Natural Gas and Essex enter into an option arrangement with the owners of Pinal Copper with a four year option period after which payment would be made for proven minable ore reserves. My negotiations with Mr. Anderson proceeded as I had outlined them to you. The attached purchase agreement outline summarizes the essential points of the proposal that was presented to Mr. Anderson.

Mr. Anderson's response was that he considered the proposal to be a fair one. He liked the concept of payment based upon proven tonnage and he was impressed with the concept of a retained interest based upon additional proven tonnage. Mr. Anderson agreed to submit the proposal to the owners of Pinal Copper with his favorable recommendation. I do not expect a reply from Mr. Anderson until the week of May 16.

The outline, of course, is very preliminary and contains only the concept of an agreement. If the reaction of the owners is favorable there will be many questions that must be considered by the parties entering into this purchase agreement. Also it would be necessary for Kerr-McGee, El Paso Natural Gas and Essex to develop an agreement regarding the joint venture. I

-1-

Mr. Zeb Jones Kerr-McGee Corporation Tucson, Arizona

May 11, 1971

-2-

recommend that as soon as we have had a reply from Mr. Anderson, a meeting should be scheduled between the parties to determine our future course of action.

Very truly yours,

ESSEX INTERNATIONAL, INC.

Howard Lanier, General Manager Copper Operations

HL:td attachment

a.a. tain

PURCHASE AGREEMENT PROPOSAL

PINAL COPPER CO.

OPTION PERIOD

Star	t of	1st	Year	-	No Payment
**	**	2 nd	99	-	\$ 65,000
19		3rd			100,000
99	**	4th	**	-	200,000

PURCHASE AGREEMENT SUMMARY

With election to purchase, the parties would pay \$1,000,000 for each 100 million tons of minable ore reserves. An announcement at the time of election would establish the reserve figures proven to date. Information confirming the ore reserve estimate would be provided the owners at the time of election. A minimum payment would be made if less than 50,000,000 tons of ore were proven. The schedule would be as follows:

Proven	Payment \$
0 to 50 Million	500,000
50-100 Million	750,000
100-200 "	1,000,000
Over 200 "	2,000,000
" 300 "	3,000,000
" 400 "	4,000,000
" 500 "	5,000,000
" 600,"	6,000,000
Etc.	Etc.

If at any time additional reserves are proven, additional payments would be made according to the above formula.

orandum from . . . 4/22/7) Howard Lanier PAUL ATTALYED IS A PROPOSOL FOR AN OPENING POSITION FOR NEGOTATIONS ON PINAL GRAGER. I BELIEVE ALL OF THESE NUMBERS COMD BE DOUGLED IN NEGONATIONS NOTE THAT I HAVE NOT INDICATED A. WORK COMMITMENT FOR PATTES 3 E, 4 OF TH OPTION, I would wike for you TO CONSIDER OR PROGRAM E COST FOR THE 3YR OPTION

May 10, 1971

Mr. Guy Anderson Safford, Arizona

Dear Guy,

At Howard Lanier's request I am forwarding two copies of a property map showing Pinal Copper Company holdings in the Greenback Mine area, Pinal County, Arizona.

I hope this information will be helpful to you.

Very truly yours,

E. Grover Heinrichs

EGH:td enclosures

cc: H. Lanier

February 5, 1973

Mr. Edward Hopkins, Jr., President Pinal Copper Corporation 401 E. Indian School Road Suite 107 Phoenix, Arizona 85012

Dear Mr. Hopkins:

This will acknowledge your letter of January 17, 1973 to Mr. Walter F. Probst. We have reviewed the reports submitted with that letter and would be interested in an option arrangement with Pinal Copper Corporation that would allow us sufficient time to do further exploration work before any value is placed on your property located on the Papago Reservation in Pinal County, Arizona.

If you have any further interest in discussing possible terms with us would you please contact me directly.

Very truly yours,

Paul I. Eimon Manager of Exploration ESSEX INTERNATIONAL, INC.

PIE:td

cc: Walter F. Probst

bcc: Howard Lanier

5964

April 21, 1970

Mr. Benton L. Blake 2200 N. Central Avenue Phoenix, Arizona 85004

Re: Pinal Copper Company

Dear Mr. Blake:

This will confirm our phone conversation today in which you advised me of the fact that you are legal counsel for Pinal Copper Co. and that a suit is currently pending in court, against the company. I further understand that the suit has progressed to the appeal stage and Monday, April 27, 1970 is the deadline for your adversaries to appeal.

Although, over the phone I did not disclose the firm GEOEX is working for, I see no objection to mentioning that it is Essex International Inc. I cannot commit them to any obligations in regard to a possible lease purchase arrangement, however, they have authorized me to gather all the factual technical information available on your property for evaluation purposes.

As I understand it at the moment, your Board of Directors has decided not to enter into any lease agreements with anyone until the property is unencumbered.

In any case, we would like to have any factual information, claim maps, geology, etc. you may care to pass over to us. This will enable my client to be prepared to make you an offer once the property is available.

I further understand that Guy Anderson of Safford has contracted to Pinal Copper Co. to find possible buyers for the deposit. He furnished us with your phone number and address and via a copy of this letter he will be aware of our conversation.

> Very truly yours, HEINRICHS GEOEXPLORATION CO.

EGH:jh cc: Guy Anderson E. Grover Heinrichs Vice President THOMAS W. MITCHAM 6644 N. Amahl Place Tucson, Arizona 85704

mining geologist

phone: (602) 297-4070

December 12, 1972

Mr. Edward Hopkins, Jr., President Pinal Copper Corporation 401 E. Indian School Road, Suite 107 Phoenix, Arizona 85012

> Final Report, 1972 Exploration Pinal Copper Property T10S, R2E, Pinal County, Arizona

Dear Mr. Hopkins:

I shall attempt here to summarize the 1972 exploration program conducted on subject property, starting in March 1972 and terminating with preparation of this report.

<u>Mapping</u>.--Systematic mapping on a part-time basis was conducted during the course of the program. This involved location of old drill holes, shafts, pits, and additional roads as well as geologic mapping and surface sampling. Contours were taken from a topographic map prepared previously by Landis Aerial Surveys.

Three maps (A,B,C) were prepared on a common base at a scale of 1" = 400'. The base includes coordination, topography, roads, shafts, pits, and drill holes. Copies of the three principal maps are enclosed, i.e., Map A (Claim Map), Map B (Geologic Map), and Map C (Alteration and Mineralization Map). In addition, a copy of Map D (Oxide Deposit) on a scale of 1" = 40' is attached.

Drilling.--Three vertical diamond drill holes were drilled on the property during the course of the 1972 program. Locations of these holes are shown on all three principal maps (A,B,C), and the logs (total 30 pages) are enclosed. The three holes are tabulated below.

Hole	Depth	Bottom size	Casing left in hole
72-1 72-2	300' 3500'	NQ BQ	Collar standpipe only 670' 3" pipe, 2500' BX casing
72-3	1372'	NQ	480' 3" pipe

All holes were left in good condition and with secure caps. All drilling was core drilling with the following exceptions: because Hole 72-3 was a reentry of old El Paso Hole #1, it was reamed to 532' before coring was started; because Hole 72-2, following an unsuccessful attempted reentry of old Miami hole #M-2, was a 22-ft. offset of this old hole, it was drilled by rotary rock bit to a depth of 670' before coring was started; 20' of Hole 72-1 was rotary rock bit drilling.

By classification, the project total (5172') consisted of 3950' of core drilling, 690' of rotary rock bit drilling, and 532' of old-hole reaming.

The drilling was done with one truck-mounted Longyear 44 drill by the Longyear Company, starting June 24, 1972, and terminating October 26, 1972. Drilling was well executed, and core recovery was excellent. The total of contract drilling charges was \$59,046.22, which includes all water and casing costs. Drill site preparation and engineering (e.g., logging and assaying) costs were additional.

Drilling water was pumped from an old Miami churn drill hole, M-3, where the water table is at a depth of 400'. The original depth of this hole was 700', but it was blocked at 465'.

Regardless of visual core observations, pilot samples were split at intervals, generally 5' runs at 25' intervals, and sampling was continuous where mineralization was encouraging. Cores and sample pulps and rejects are on file, presently in Tucson. Rotary cuttings from the first 670' of Hole 72-2 were not sampled because results of the old Miami hole, which it offsets by 22', were known.

<u>Geologic notes.</u>--The original objective was to make a deep test for mineralization somewhere on the property. The approach to its accomplishment involved (1) the assembly and coalition of old data, insofar as possible, (2) the acquisition of new data by mapping, and (3) site selections from correlations among the combined data.

Much of the old data is fragmental; logs and identifications for most of the old drill holes shown on maps A, B, C could not be obtained. Adequate logs were obtained for holes drilled by El Paso (2), Miami (5), and American Metal (4), but locations of the American Metal holes could not be identified.

The general geologic setting (Map B) is Precambian Pinal Schist (including tuffaceous quartzites) intruded by Precambrian dikes and irregular bodies of quartz monzonites (equigranular, aplitic, and pegmatitic) and minor diorite. These Precambrian rocks are intruded by dikes and large bodies of Tertiary (?) andesite and irregular bodies of breccia, composed of andesite and various Precambrian rocks (some of the andesite on the property may be extrusive). Finally, all of these rocks are intruded by dikes and irregular bodies of quartz latite. Paleozoic and Mesozoic rocks were not encountered and must be interpreted as missing in most (if not all) of the property.

All of the above described rocks are variously mineralized (MapC) over a large portion of the property. Mineralization consists of intensely silicified shear zones (with small gold shoots in the vicinities of the Pinal and Greenback shafts), large volumes of disseminated pyrite, and some areas of disseminated chalcopyrite and pyrite. The Oxide deposit (Map D) is a supergene enriched area which was subsequently oxidized. The best primary copper mineralization encountered was in Hole 72-2 where values generally exceed 0.15% Cu for runs of 150' and 208' (1770-1920' and 2400-2608' respectively). No particular preference of copper mineralization for rock type was noted, but a general spatial association of copper and quartz latite is indicated.

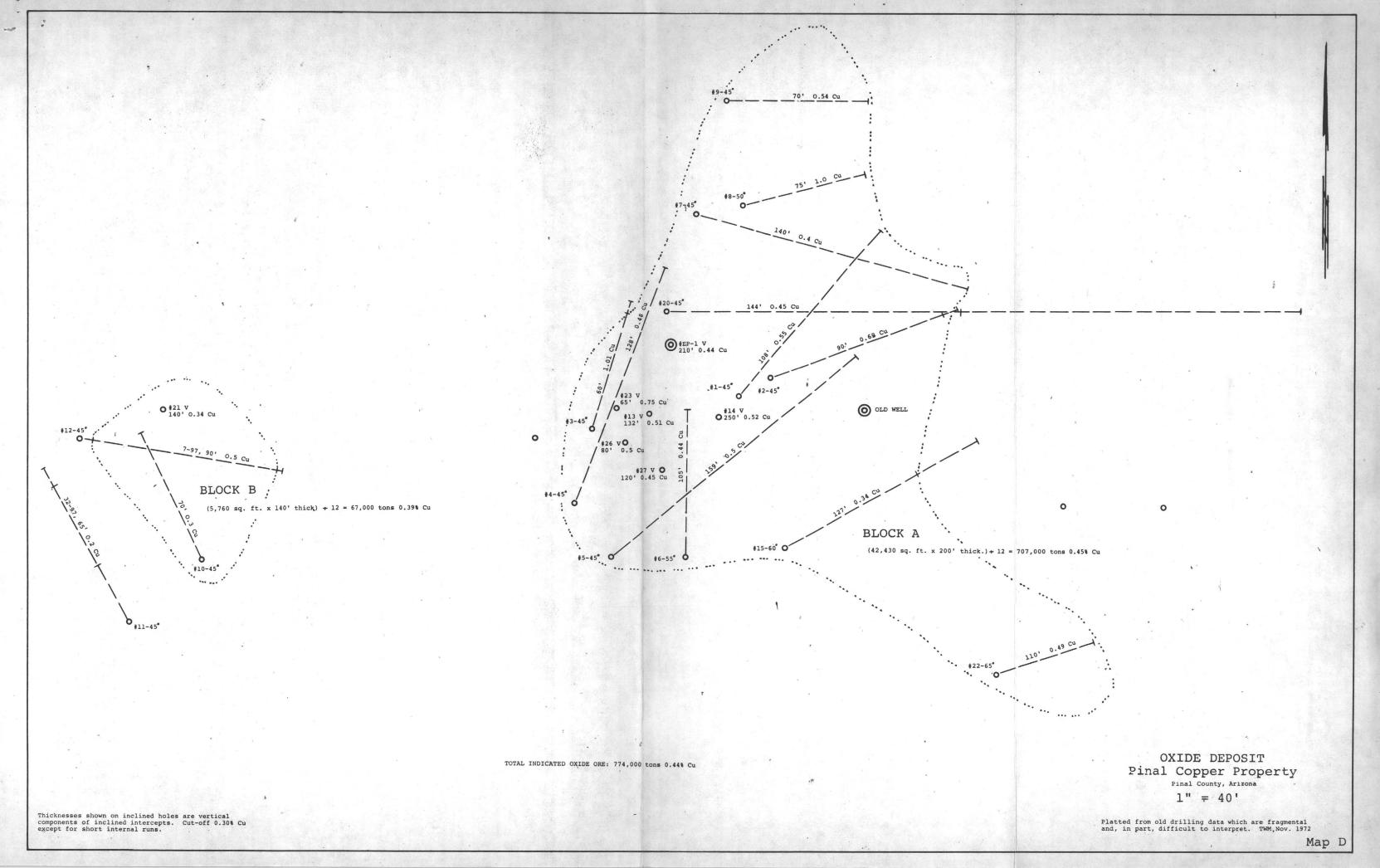
Propylitic alteration is widespread, but sericitic alteration and silicification are intense locally. Secondary biotite and anhydrite were observed in some of the cores. Flooding by primary hematite is common on contacts between Precambrian and Tertiary rocks. Magnetite in various quantities is common in Precambrian rocks, but it does not appear to be an alteration mineral.

Fairly complete oxidization extends to various depths, averaging about 190'. Specifically, the elevation range appears to be about 1820' to 2070'.

The present water table is about 400' below the surface, specifically ranging in elevation from about 1713' to 1720'.

Acknowledgements -- Under my supervision, a surface sampling was done by Douglas M. Martin, and core logging and sampling by Mr. Martin and Charles E. Cronenwett. Also, geologic mapping was facilitated by reference to some previous mapping by Mr. Cronenwett. Petrographic studies were made by James A. Fouts. Don Melhado did the basic drafting on the maps.

Surface samples were chemically analyzed by the Rocky Mountain Geochemical Corporation and drill core samples by Hawley & Hawley Assayers & Chemists, Inc.


As previously noted, drilling was done by the Longyear Company and topographic mapping by Landis Aerial Surveys.

Very truly yours,

Thomas W. Mitcham

TWM/Cm		
Enclosures:	Drill	hole logs (30 Pages)
	Map A	claims
	Мар В	geology
	Map C	mineralization
Attachment:	Map D	Oxide deposit

File Pinal Copper

PINAL COPPER CORPORATION

401 East Indian School Road, Suite 107 • Phoenix Arizona 85012 • (602) 279-6402

January 17, 1973

H. LANDIN.

JANE SILDIS

Mr. Walter F. Probst Essex International, Inc. 1601 Wall Street Fort Wayne, Indiana 46804

Dear Mr. Probst:

I am enclosing herewith data having reference to our mining property located on the Papago Reservation in Township 10 South, Range 2 East in Pinal County, Arizona. We own 64 claims by right of discovery, subject only to annual assessment work of \$100.00 per claim per year, and \$54.60 "grass fees" payable annually. In 1958 the Bureau of Land Management certified these claims as containing commercial grade copper. Good showings of gold and silver were also noted at that time.

In 1956 we employed Mr. Charles H. Dunning, a mining engineer to examine the property. A copy of his report is enclosed. Later, we also employed Mr. J. J. Beeson of Salt Lake City and a copy of his report is also enclosed.

At first we sought to bring this property into production by leasing it out. Two attempts to do this failed, and on the second lease it was necessary to resort to litigation in order to clear title. This was accomplished in 1971.

In March 1972 we engaged the services of Dr. Thomas W. Mitcham to carry on a new drilling program with the Longyear Company of Minneapolis. His report and other data is enclosed.

Our Board of Directors and principal stockholders are giving thought to a possible merger or sale of Pinal's assets to a publicly traded company, if an acceptable valuation can be arrived at. Stock of the acquiring corporation would ultimately be passed through to Pinal stockholders at an exchange ratio to be negotiated.

If you feel that your company would be interested in such a proposal, or if you have any suggestions along this line, please contact me at your earliest convenience. Thank you kindly.

Yours truly,

PINAL COPPER CORPORATION

By Edward Hopkins, Jr., President

OFFICE BIT W. MADISON ST. PHONE ALMINE 3-6272

CHARLES H. DUNNING MINING ENGINEER PHOENIX. ARIZONA

REGIDENCE 1638 W. EARLL DR. PHONE AMHERST 5-1132

January 9, 1956

Pinal Copper & Uranium Corporation 4318 North Central Avenue Phoenix, Arizona

Gentleran:

Pursuant to your request, I have made a new or additional examination of your group of copper claims on the Papago Indian Reservations, south of Casa Grande, Arizona.

A previous examination and report was made in May, 1955, but since that time there has been considerable additional exploration by drilling, and further data is available on which to base opinions.

Rather than refer to the old report it is thought that this report would be clearer if it included the pertinent matter covered before.

LOCATION AND CLAIMS

The group consists of 106 mining claims or about 2000 acros, and is situated 42 miles southwest of Casa Grands on the northern slope and outlying valley of the Cimarron Hills.

Probably 40 or 50 claims would be sufficient for your present purposes, but Congress recently passed a bill allotting mineral rights on the Papago Reservation to the tribe, and after it was passed mining locations may be more difficult and expensive to obtain. As all your locations were prior to this act you are in no way effected.

GEOLOGY - GENERAL

The torrain consists of a basement of Pinal Schist which has been invaded by magmas solidfying as various phases of granitic porphyry, quartz monzonite porphyry, and dioritic porphyry.

MINING ENGINEER

The geology at the site was quite thoroughly studied and reported upon in 1920 by Dr. G.M. Butler of tho University of Arizona. There has been no cause for any change in opinions since that time, and as this is an economic, rather than a technical report, may it suffice to say that I fully agree with Dr. Butler.

LOCALIZED GEOLOGY AND ECONOMIC IMPLICATIONS VARIOUS GEOLOGICAL STVUATIONS

Your group of claims cover several square miles, and while the basis geology outlined above applies to the general terrain there are on your group several separate geological situations, which should be treated, and also explored separately.

Unfortunately you do not have a general map of your group, with prominent markers on the ground. To get to some points on your group it is necessary to travel via roundabout roads, and then one only has a general idea of where he is. I have however, drawn a blocked out claim map and indicated thereon the approximate location of the situations to be discussed.

CENTRAL SITUATION

The central area may not prove in the long run to be "central" but is so designated at the present time. It was a natural starter for exploration because there were outcroppings of commercial ore, a water well that had drilled through ore, and an intriguing geological situation generally.

Most of your present 27 drill holes have been put down in this area.

From one open cut a test carload was shipped to smelter some years ago and assayed 2.89% copper. Copy of this smelter return is on file. Dr. Butler reports that the water well passed through 290 feet of low grade ore.

In this area the rock consists of the various phases of porphyry mentioned above and also contains some silicified zones of dykes which are sparsely mineralized. MINING ENGINEER

The general course of mineralization is from the southeast to the northwest. It is bounded on the east by a major fault, on the north by valley fill, on the west gravelly fill, and on the south it contacts the schist, which constitutes a situation in itsolf. The total area of this Central Situation is approximately 500,000 sq. ft.

In the softer portions of this area there is generally no copper showing in the outcrop, but one need dig a few inches before copper is encountered. Angle drilling has shown: good copper in the softer areas, special enrichment along the contacts with the harder zones, very low grade copper in the hard zones themselves.

These conditions lead one to believe that the entire area was originally one of moderate or low grade content, much like the hard zones. The softer zones have been amenable to leaching and such leached copper has precipitated and enriched such soft zones for some vertical distance immediately below the surface. The hard zones have been comparitively unleached but have acted as dams against percolating solutions causing extra enrichment along their walls.

It would therefore seem that you are already in as much of a secondarily enriched zone, with your drill holes as you can hope for. The present water level was not the controlling factor in this secondary enrichment, and it is doubtful if you will find further enrichment, or commercial ore, below that indicated by your present drilling, in this Central Area.

This does not preclude there being a good sized open pit mine of leachable ore in this area. You will have to contend with some low grade hard ribs which you may be able to dodge in mining, or execavate and waste like ordinary overburden. And you are especially fortunate in having practically no ordinary overburden to remove, thereas in most Arizona open pit mines the ratio of waste overburden that must be removed is about two tons waste to one ton ore.

SOUTHEAST SITUTATION

This area, prospected by Hole #22 seems to comprise the extension of a mineralized condition spurring off from the Central Area. A general sample of Hole #22

MINING ENGINEER

assayed 2.00% copper. Drilling proof that there was continuity between the Central Area and this situation would add large tonnage to "assured ore", and economic features to an open pit.

SOUTH SITUATION

In the general area designated as the "South Situation" geological conditions are quite different. Here the mineralization is in schist. Bands of the schist that are normal, and predominate, show intense leaching, with traces of copper remaining. Oxidized iron minerals are of the type that once contained copper. Silicious lenses that are normal to such a schist, are unleached but show copper approaching commercial grade.

Schists of this type, when invaded by copper bearing intrusions are often more receptive to replacement by copper than monzonitic type rocks, thus forming higher grade ores. This highly mineralized and leached schist area could easily form rich secondary, and commercial primary, ore zones. It has good possibilities of developing into the best producer of any area you have. It should be explored by preliminary drilling.

NEAR WEST SITUATION

Proceeding west from the Central Area the terrain is mostly covered with alluvium, except for some croppings in washes (such as situation 30 - q.v.). But at a distance of about 1/2 mile an area of highly kaolinized monzonite or rhyolite outcrops. There are a few ten foot prospect holes showing a little copper.

Kaolinization is an alteration of the constituents of rhyolitic type rocks caused by chemically charged solutions. Such conditions portend mineralization when they occur where economic minerals are indicated in the altering solutions. Such situations are also prone to subsequent leaching.

Such an area of kaolinization, with a bit of copper remaining, in a general area of copper mineralization, certainly justifys exploration by drilling. Here there could well be a secondary zone of the chalocoite type.

FAR WEST SITUATION

This area, from a mile to a mile and a half west of the Central Area again shows a highly mineralized condition. It cannot be defined, mapped, nor tied in geologically

MINING ENGINEER

Pinal Copper & Uranium Corporation Page 5.

until there is a survey with ground markers. To the south it seems to the into unmineralized achist; to the west it is covered with later volcanic flows. But generally speaking there is a lot of good looking country there that warrants exploration.

NORTHEAST SITUATION

Immediately northeast of your Central Area there seems to be a hand or zone of comparitively unmineralized rock. Further northeast drill holes #16 and 18 were put down and penetrated soft, leached, low copper bearing material. This area looks doubtful but justifies a bit of further exploration.

SITUATION "30"

For lack of a better name I have called this area "30" because assay samples taken there happened to be numbered 30, 31, and 32. Here we have a hard silicified zone cropping across a gulch. No copper was apparent but a peculiar shade of some of the red "iron" led mo to suspect red copper oxide. An average sample assayed ,90% copper. Sample #31 was taken of a different type of porphyritic material on the hangingwall side of the silicified zone. It was leached and showed no visible copper, but assayed .30%. Sample #32 was taken of the same hard silicified band as sample 30, where it outcrops through the gravel fill about 100 yards woutheast from #30. It assayed 1.20% copper.

This general area warrants exploratory drilling. Like the South Situation, the values in the hard rib, and slight remaining values in its soft neighbor indicates important secondary values at reasonable depth in the leachable material.

TONNAGE AND AVERAGES

Twenty seven diamond drill holes have been put down but they have not been systematically spaced (see map) nor have the cores or sludges been consistently assayed.

At the time of my examination in May 1955, I sampled the cores from holes 3, 5, 8, & 14. These were selected as being fairly representative of the general area covered by the then 15 holes. Assays were as follows:

Pinal Copper & Uranium Corporation Page 6.

MINING ENGINEER

Hole	#3	1.40%
Hole		3.30 3.40
Holo		
Hole		1.50

More recently I have sampled the cores from other holes . with results as follows:

#3 upper portion	3.00%
#14 middle portion	1.50
#20 from 25' to 45'	2.80
#22 general	2.00
#23 general	1.40
#26 general	1.60
#27 general	.50

This last lot of assays, represented by the attached fortificate, were selected for the following purposes:

(a) To check or train the eye in estimating other holes or cores.

(b) To supply a diversified set of standards so that quick colormatric assays can be made at the mine.

(c) To obtain definite and positive results in at least a few holes and in some unknown situations (the 30s).

The average of all of the above assays is about 2,00% copper. Judgement indicates that the average of all the holes, or of the area covered by the holes would be somewhat less probably 1.40% to 1.60%. And in considering this area or tonnage a further allowance must be made for the very low grade hard ribs mentioned above, although they may not have to be mined.

The general area covered by the holes, without including some outlying holes, is approximately 640,000 sq. ft. Deducting 20% for some islands that would be better left unmined we have about 500,000 sq. ft. At an average depth of 150 feet which is as much as can be assured at present, the tonnage is such a block would be about 4,000,000.

It must be born in mind that because of the irregularity of the holes the above tonnage cannot be stated as positive. However, such tonnage does seem well assured. It should also be born in mind that this comparatively small area is a small portion indeed, of the total probable commercial area or areas.

MINING ENGINEER

LEACHING TESTS

A copper leaching test made by the Arizona Bureau of Mines, April 12, 1955, shows the oxidized ore to be amenable to sulphuric acid leaching. Head sample was 2.01% copper, extraction 81.2%, and acis consumption 70.5 lbs per ton or ore. This ratio of 1.75 lbs of acid to 1.0 lb of copper is normal. Cost of acid in operating a plant on that grade of ore would be about 1.00 per ton. On lower grade ore it would be proportionally less.

JUSTIFICATION FOR LEACHING PLANT

With an assurance of several million tons of ore containing in the neighborhood of 30 lbs copper per ton, and showing good emenability to leaching, you are well justified in considering a moderate sized leaching plant of say 500 to 1000 tons per day.

Bat before such plant is installed or designed very thorough tests should be made on the various types of your ore, on a pilot plant basis.

COSTS AND GENERAL ECONOMICS

On a basis of 500 to 1000 tons of leaching ore per day from open pit I would estimate that your operating costs should not be greater than the following:

MINING:	Mining and dolivery to	plant, including	3	
Charles and the second s	necessary stripping of wasting of non-commerci	overburden, and	1.00	
Contraction of Contraction of Contraction (Contraction)	Acid and iron 1.50 Labor and other 1.50		3.00	
OVERHEAT	AND TAXES: (Not includin	1g	.50	
MARKETII	G: (Doducted from value	of copper)	5 4.50 per	ton

Assuming 30 lbs copper per ton and 80% extraction you would recover 24 lbs of copper per ton. The present market for copper is 43% but it would be a bit sanguine to project such price very far in the future. A price of 36% would seem a fair basis for estimates. If the market is 36% you will actually receive about 33% the difference covering freight, refining and sales costs (marketing).

24 1bs copper 0 33#		\$ 7.92	
Doducting operating Profit before income	cocts	4.50	
Profit before income	taros.		on

Pinal Copper & Uranium Corporation Page 8.

CAPITAL

To achieve this operating profit rather large capital expenditure will have to be made. They will be discussed further under "Recommendations", but generally speaking a well engineered plan for coordinate drilling of the Central Area, and exploratory and some coordinate drilling of the other areas will require...... 500,000.

Total.....\$ 1,000,000.

MAPS

Attached to this report is a map showing the block of claims with the above mentioned areas roughly outlined. Also a map, drawn in coordinates, of the area where most of the drilling has been done. Present drill holes are spotted on this map, and it is recommended that further drilling be done with vertical holes at these coordinates.

RECONDITIONS

All of the old drill cores or sludges should be assayed and mapped. Such map should show the respective elevation of the collars of th holes.

A survey should be made of the claims, crecting prominent claim corners, each with a tag showing what corner it is. Then a geological map should be propared using these corners as field markers.

Coordinato drilling should be carried on in the Central Area. This will result in your being able to segregate the ore and waste zones, estimate definite or positive tennages, average: values, and thickness of ore and overburden at all points. This is all essential information before planning your pit operation.

Exploratory drilling should be carried on in the other areas mentioned, to be followed by at least some coordinate drilling as soon as proliminary information is obtained.

An engineer or mettalurgist experienced in copper leaching should be employed at least part time, and a pilot plant can be built and put in operation as soon as practicle. All types of ore from all locations should be tested. CHARLES H. DUNNING Mining Engineor

Coordinate drilling and pilot plant tests could well reach conclusive results simulteneously, and you would then be ready to design and install a commercial plant.

Roads should be repaired to stand up under heavy traffic, and the waste material from pilot plant operation, or from overburden excavation, should be useful for that purpose.

Systematic sampling of drill cores and/or sludges should be carried on continuously and the results tabulated and mapped.

CONCLUSION

You have a large but not definitely measurable tonnage of commercial ore, and very large areas of probable ore.

If development and operation is carried on according to good engineering practice the project should be very successful.

Respectfully submitted,

Atuning

CHARLES H. DUNNING

ARIZONA TESTING LABORATORIES

A DIVISION OF CLAUDE E. MCLEAN & SON LABORATORIES, INC. PHONE AL 3-6272 817 WEST MADISON ST. P. O. BOX 1888 PHOENIX

For

Mr. Harold Ferrin Final Copper & Uranium Corp. 14318 North Central Fheenix, Arizona

Date

Received:

December 20, 1955

Sample of ore

Submitted by:

ASSAY CERTIFICATE

Silver figured at \$ 0.90 per ounce.

Gold figured at \$ 35.00 per ounce.

Cold 1		Go	4	Silv	er	Percen	tages
Lab. No.	Identification	Oz. per Ton	Value	Oz. per Ton	Value	(Cu)	
124113 124114 124115 124115 124118 124119 124119 124120 124121 124122 124123		AUDE E SILFAN				3.00 0.50 1.50 2.60 2.00 1.L0 1.60 0.50 0.90 0.30 1.20	

2 cc: (r. C. H. Dunning

Respectfully submitted,

ARIZONA TESTING LABORATORIES Cloude & Mc Lange

Charges: \$ 16.50 _____

Cloude F. McLean, Jr.

ARITH-ICHTHAW-HOTKINS PROPURTY

Up to this time we have completed the simpling of the diamond drill holes with the exception of some two or three. This has involved the splitting of the cores and also taking representative samples from the sludges which represent the drilling from the various diamond drill holes. To date they have completed 27 holes and the approximate location of these holes is shown or indicated on the map which has been compiled. This map has been taken from the records at the mine which constitutes a similiar map and some additional information that was furnished by Mr. Farrin. When I say the approximate location, these are made by Tape and Brunton surveys made by Mr. Farrin.

Several of these holes have been used by Mr. Dunning as a basis for a culculation of tomage which he considers to be reasonably assured at the mine. While the total number of samples and sludges that we have taken are quite complete, it is proposed at this time to check the holes that were used by Mr. Dunning in his report to see how the values compare. It is not anticipated that they will be close in all cases because Mr. Dunning took samples which he considered representative; that is, sections of core were selected from each core box of the holes indicated and these were sent to the sampler. Our sampling has differed from his in that the total remaining cores have been split lengthwise and it is these samples combined with the sludges from the holes used that we propose to base our results on. In the event that these samples approach the results shown by Kr. Dunning then it is recommended that all of the samples and sludges be run to show the complete picture insofar as it has gone to date.

We expect to have the holes used by Mr. Dunning and the cores from these ground and pulped and about every fifth sample a duplicate will be sent to a second ascayer to see how the results compare. To properly interpret the results to date it will be necessary to return to the mine for about three days and map the goology in the immediate vicinity of the diamond drill holes shown on themap. Then a proliminary report can be made giving recommendations as to further procedure. The geology is necessary because it has been recognized at the mine that some holes showing inferior grade were drilled in dyke material. The extent of the dyke material must be determined before we can make a proper evaluation of what the future must be and also what is actually shown in the present samples.

Two or three outside holes should be run at this time and I am referring particularly to holes ho. 16 and Ho.10. At present it is estimated that this will require the running of about 157 samples. These samples should first be run for copier, then if the copier locks promising comparative samples from the various holes will be as aved for gold and silver. Intemuen as the 157 samples must be run for cofe and sludge also, the actual number will be about twice this figure or about 314 samples.

1: 2.60

JJB: ja

Custom Assay Office

ASSAY CERTIFICATE

J. W. (Jack) Sharpe, E. M. Assayer

ertificate No.....

AMPLE NO.	OWNER'S MARK ON SAMPLE	GOLD		SILVER		PER CENT OF			TOTAL VALUE		
		OZ. TON	VAL. TON	OZ. TON	VAL. TON	Cu		1	PER TON		
· 1	J E 22155 V	0.03	3.15	0.81	0.75	_0.3_	Gu it	wisax	rige: 1	t.	
2	32100 1	0.01	0.25	0.27		0.4	L		1	1	
3	42155	0.01	0.35	0.09		0.1				1	
4	73106	Tr		0.14		0.7	-			1	
5	12256 🗸	0.01	0.35	0.26		0.4	/				
6	22256 V	C.03	1.05	0.38		0.5			5	Γ	
7	32256	0.04	1.43	0.02		0.8					
8	50255	0.03	1.05	0.41		0.4		1		Γ	
Gold at \$.	per ez Char	ges \$			lec f	11					

いしょう

Certificate No....

.Uranium Enterprises. of Anordea.....

.....

SAMPLE NO.	OWNER'S MARK ON SAMPLE	G	GOLD		LVER	PER CENT OF			TOTAL VALUE	
		OZ. TON	VAL. TON	OZ. TON	VAL. TON	Cu	J		PER TO	
9	J E 62256	0.01	C.35	0.30		0.8				
Ia			6.10	07		Tr	V			
11	82255	0.02	0.70	0.36		0.5	1			
12	92256	0.03	1.05	9.44		0.6	V			
		1			F.					

Gold at \$..... per oz. Charges \$..... alin

24 East McKinley Phosnix, Arizona

Ka Sharpe

Salt Lake City 1, Utah February 2, 1956

... Assayer

			A	SSAY PER	TON OF 2	DOO POUN	DS	· · · · ·	str.	·	
DESCRIPTION	ND.	BDLD DUNCES	SILVER DUNCES	WETLEAD	COPPER	ZING	INSOL	. %	· ·	2	×
# 1 - 50 - 70 2 - 50 - 60	2				0.42 0.11		17. 005 80 K	0.4 0.4 0.4		н с су. Т 1 је	amuniteruppunguterun
2, - 55 - 65 # 2- 80 - 90	1		a)	a.	0.92 0.55		ssinust 10 re	0.3			
8 - 80 - 90 16 - 20 - 30	V				0.45 0.30		N 197	2.2. 1.1.1.		- : .: 5	
20 - 85-95 26 - 75 - 80	i. V				0.43 0.45		1 11	c 5 c 1		1 2 4 5 - 1 1 2 4 5 -	
22 - 80 - 90 27 - 100-r10	V	-	2		0.45 0.55	2	s juo 1 - Int	र्थ ज संज संज		алан - 113	,
	.0.0	0	(Kell	Bae	· · ·			<u> </u>		12	

(Out Wickenburg Way.) J. W. (Jack) SHARPE; ASSAYER & CHEMIST

Description Received Date 2/1/36 Submitted by 2/7/35 ANALYSIS Iran ism Interprises of Alerica. Semp Estimated, Intensity Element 一元 Cu Lepth Hole No Derth Hole No. Cu 0.0 - 0-00" ----V.8 2 --- 0-10 --- 0.3 0-2018 ----0.6 2 --- 10-20 --1.5 30 B ---20-30 ---0.4 0.3 2 30-10 0.3 2 45 24N.11 -0.7 ---0.4 2 --- 10-50 01 0-70-0.42 C.5 Imiliated=70 FO >2 --- 50-50 -0.6 0.2 -0 . 4 2 --- 60-70 CI ---1.6 1 63 --- 80-90 1.1 15 2 --- 70-00 -0.7 1 14.01 c . 1 DE1 0.55-2 --- 80--90 --- 0.8 U.3 1 . 205 r 2, ---- 100-110 2 ---- 90-100 --0.4 1 0.4 PI 1.3 2 -- 100 - 110 -- 0.6 ----110-120 1 2.3 , oes 12 ---- 120-130 2 -- 110-100 -- 0.9 .005 1.36 1 1,2 ---- 1304140 C.5 2 -- 120-120 -- 0.5 .01 1.3 ---- 140-150 -0.5 2 -- 130-140Bt-0.5 .1 03 ----150-160 ----0.8. Their in all p2% cu .. 4:10 0. ----0-150 ----0.4 Que 110,55 Cu Hay Dreer

10- C- C+ 64 Pras. C.T. et

.14

41

56

....

. 45

43

Respectfully submitted,

All reports are submitted as the confidential property of clients. Authorization for publication of our reports, conclusions, or extracts from or reporting them by the second se reports, conclusions, or extracts from or regarding them is reserved pending our written approval as a mutual protection to clients, the public and ourselves.

(Out Wickenburg Way.) J. W. (Jock) SHARPE; ASSAYER & CHEMIST

Description

•

*

Received 2/1/56 Submitted by

Urantum Enterprisos of Amer ic allement

Date

2/7/56

ANALYSIS

Estimated Intensity

Hole No Derth SCu Hole No Derth SCu Hole No Depth SCu	
3	
3 10-200.3 4 20-300.4 5 30-40 -0.3	
3 20 - 30 0.7 4 30 - 40 0.5 5 40 - 50 - 0.3	
3 = -30 = 40 = -2.1 3 = -40 = 50 = -2.2 4 = -40 = 60 = -0.4 5 = -50 = 60 = 0.5 3 = -60 = 50 = -0.4 5 = -60 = -70 = -0.4	
- 3 50-60 1.5 4 80-100 GO.4 5 70-30 -0.7	
360-700.9 124 -100-120 -0.6 560-90 -0.9	
3 = -70 = 20 = -9.6 = 20 $4 = 120 = 140 = 0.3$ $5 = 90 = 100 = 0.4$	
3 - 90 - 95 - 1.4 $4 - 140 - 150 - 0.4$ $5 - 100 - 110 - 0.4$	anna ar
8-200-100.50 4 -150-160 -0.6 5 -110-120-0.4	.5
3 - 10 - 20 - 0.40 4 160 - 170 - 0.6 5 - 120 - 130 - 0.7	
3 20-30 0.70 4 -170180 0.4 5 -130-140-0.6	
cou? 3 30-35 2.2 and the solution of 5 - 140-150-0.4	a.
3 35-55 2.3 anth ar 48% 5 -150-160-0.5	
3 35-65 1.2 5 -160-1700.6	
370-800.80 5 -170-160-0.4	
. Cre : 29-220-27 2.1	
3 85-95 0.5	
surver 3 20-90 0.7 × 5 200-210 -0.9	
3 - 65 - 55 - 0.6	
5 -220-224-0.3	
Jo-30 114 5 -10-30 -0.5	
2-27-56" lovel philling cu 5 - 6-20 -0.4	
27-40 - 40" " 1101 1.1 1.1 / C5 - 3-40 -0.2	25 4
4.50 -100" 3 5-40-60 -0.3	de u
50-60 30- 10- 10-00-00 -0.4	
Lo-70 53"	
72-60 35" Respectfully submitted,	
ko-te 15"	
entr	,
further pl	

All reports are submitted as the confidential property of clients. Authorization for publication of our reports, conclusions, or extracts from or regarding them is reserved pending our written approval as a mutual protection to clients, the public and ourselves. $D^2 = -1.40\%$ 3 - 3.00% Upper perficin

. . . (Out Wickenburg Way.) J. W. (Jack) SHARPE; ASSAYER & CHEMIST

Description

12

the cod lay

...

Received 2/1/56 Submitted by

Uranium Enterpris.s of Date 2/7/56

۰

ANALYSIS

			4 4										
			r ica								ted Intens		
	Hole	e r	o Derth	Cu	Hole	No	Depti	n ACu	Hole	Mo No	Derth	<u>%Cu</u>	
	C	5	120-140	0.3				0.4			10-20		
	x	5	140-150	0.Ex	6	-B	10-20	0.4		7	20-30	-0.4	
	х	5	190-140	0.5	6	;	20-30	0.4		7	30-40	-0.5	
	C	5	140-147	0.4							40-50		
	x	5	160-170	1.3	-			0.4		-	59-60		
	CX	5	160-172	0.6	-			0.2			60-70		
			177-18		-			0.3			70-80		
	C	5	170-160	-0.5	-			0.3			80-90		
	C e		172-180					0.6	•		90-10		-
			1504165		-			0 -0.4				0-0.3/9	1
	x	5	180-190	-0.4	-	_		0 -0.3			110-12		
	46	5	142-160	-0.8				0 -0.2		•	120-13		
			147-150		-		-	0 -0.5			130-14		
	0		190-200	-0.8	~			0 -0.3			140-15		
			EEN120	0 0 F			30-60			-	160-17		
			165-18					0 -0.4		•	170-15		
			80-120								120-13		
	0		210-220		50	LTE .	- oruli	a. 449	U < 40.		190-20		
			220-22	-0.9		24	4	4 43					1 7
	У	D	200-210	-0.0		150	lo Lour.					madegu	1
\circ	the being	¢,	in au.			-	O COUR	uc,			dred ly		
	perg	7.	silly caus	. 68 % cc						an	the met,	4 0%	
	lun	ri.	10°10 recon	i'me un		4.	. ,	-4-	()				
•							(KiV.	6.	/			
3		1	E 160'				-1	L. KI.Y	JUN	776			
	5	~	- 160 - 77-	1			\bigcirc	1-2					
1			29º10200	001			Res	pectfully	ubmitte	d.,			
· /	16	17	1.30000						1	//			
(5		ALL MENT 24					. L	CULI	in	KE	40 Ku - 2	

All reports are submitted as the confidential property of clients. Authorization for publication of our reports, conclusions, or extracts from or regarding them is reserved pending our written approval as a mutual protection to clients, the public and ourselves.

D=5-3.3%

(Out Wickenburg Way.) J. W. (Jack) SHARPE; ASSAYER & CHEMIST

Description	
· , •	
Received	
2/1/56	
Submitted by Uranium Enterpi	
Uranium Enterpi	1968
of	
Amon ica	

0

20

Date 2/7/55

. . .

•

id mining

ANALYSIS

Amer 103		
xElement.x	Estimated Intensity	
Hole No Dorth %Cu H	Jole No Derth ? Cu Hole No Derth CCU	
80-100.2	9 - 0-200.4 1010-200.2	
7.8 10-200.4	9 20 30 0.4 10 20 - 30 0.1	• .
durine = 0-30 0.6	9 30 - 40 0.2 12 30 - 40 0.1	×
8 30-400,5	9 40 - 50 0.6 10 40 - 50 0.3	•
8 40-500.5	9 9 50-60 0.4 10 50-60 0.39 shu	AL OUT SE
8 50-600.6	9 60 - 70 0,2 10 60 - 70 0.6	adverse ?
8 69-70 0.5		cours.
8 03-07 8	9 60-900.2 10 60-90 0.2	*
(820-400.5 c	9 90 - 100 0.5 10 90 - 100 - 0.3	
Cures 8 60- 60 0. ?	2	
8 0-200.5	11 45-120. 12 10-20 0.3	
8 20 - 40 1.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
8 40-601.1		
H 50-1001.7	11	•
······································	7 11 80-900.2 12 30-80 0.5	0.501.000
	12 \$0-1000.1 1260-700.5	and a second of the
no Erstilles here which a like	11 110-120 0.2 12 70-50B0,8	
Doe mois no notes en este	11 100-110 0.2 12 90-100 -0.3	
and an of a light	# shige 12-200-110-0.4	
arche at. shire 41%ca	# 7 andhar. 52% 12 -110-120 -0.7	
care - 1.0°	12 -120-130 -0.3	
Account safe & ever a county?		
plusi eves & an parent	(#9? not new.)	
evres bear no relation	# 11 anite av. or an Allice	
the sails o'ling .	- Anno	
mean oling .		
-	Respectfully submitted,	

All reports are submitted as the confidential property of clients. Authorization' for publication of our reports, conclusions, or extracts from or regarding them; is reserved pending our written approval as a mutual protection to clients, the public and ourselves.

D#8 - 3.40%

(Out Wickenburg Way.)

J. W. (Jack) SHARPE; ASSAYER & CHEMIST

Description

:

Received 2/1/56 Submitted by Uranium Enterprises of America

Date 2/7/55

ANALYSIS

Element		Estimated Intensity
Hole No Derth 7 Cu	lote to Dath of Cu	Hole No Denth % Cu
$\begin{array}{c} 13 &2 - 200 &0.5 \\ 13 & -20 - 30 &0.4 \\ 13 & -30 - 40 & -0.4 \\ 13 & -30 - 40 & -0.4 \\ \hline \\ 5 - 40 & -0.5 \\ & 13 &30 - 60 &0.5 \\ \hline \\ - & - & - & 13 &50 - 70 &0.6 \\ \hline \\ 13 &70 - 80 &0.5 \\ \hline \\ 13 &20 - 90 &0.5 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C14 00-1001.1 C14 6C-700.8 C14100-110C.4 C14110-120C.6 C 210-2200.4
1390-100 -0.3 $13 100-110 -0.3$ $13 -110-120 -0.7$ $c13 -20-300.5$ $c13 -30-400.6$ $c13 -40-500.5$ $c13 -50-600.3$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	150 - 150.8 1515 - 310.4 1531 - 670.5 1587 - 0.3 1587 - 1470.3 artik Cur. o 2005. 32 % out.
$\begin{array}{c} c \times 2 \ell \times 2 \ell \\ c \ 12 \ -60 - 70 \0.3 \\ B \ 13 \ 70 - 80 \0.4 \\ c \ 13 \ -80 - 90 \0.4 \\ 13 \ -90 - 92 \0.6 \\ 13 \ -95 - 110 \0.8 \\ c \ 13 \ -95 - 110 \0.8 \\ c \ 13 \ -120 - 125 \ -1.0 \\ 13 \ -125 \ -155 \ -6.3 \\ 13 \ -125 - 130 \ -0.8 \\ 2 \ 13 \ -125 - 130 \ -0.8 \\ c \ 13 \ -120 - 132 \ -0.5 \\ 13 \ -120 - 132 \ -0.5 \\ 15 \end{array}$	14 -150-1701.2 14 -170-1800.6 14 -120-1900.6 14 -190-2000.6 14 -200-2100.5 14 -210-2200.5 14 -220-2300.5 14 -220-2300.5 14 -240-1300.5 14 -240-1300.5 14 -240-1300.5 14 -240-1300.5 14 -45-600.5 14 -45-600.5 14 -70-100.3	me shinges ruw. ere percented by driceine 173'- 193'

Respectfully submitted,

All reports are submitted as the confidential property of clients. Authorization for publication of our reports, conclusions, or extracts from or regarding them is reserved pending our written approval as a mutual protection to clients, the public and ourselves.

D=14-1.5% Middle port 14

(Out Wickenburg Way.) J. W. (Jack) SHARPE; ASSAYER & CHEMIST

Description

1

"

Received

2/1/56 Submitted by Uran ium Enterprises of America

Date

2/7/56

ANALYSIS

Element

Estimated Intensity

Hole No Derth CCu Hol	e No Depth Cu HQ1	e No Depth Cu
16 0-208 0.4 DEN	19 10-20 0.5	
16 20-300.2 -0.30	19	"20 0-5 0.5 t +s'
16 30-40 0.3	19	20 15 0.7 aur. Surrise
16 40-500.4 6	19 40-600:3	20 10-25 0.3 a. + cors
16 50-600.2	19	120 20-000.6
1660-700.1	19	(20)
Shafen av. , 246 6 cm	1970-800.2	20 4 J 35 9.6 Merry
The of the of the	1980-900.2	(20 35+50 1.91'c
17 0-100.3	19 90-1000.2	20 5 65 1.2
17 10-200.5	19 100-110 0.3	20 65-739.2
17	19 110-120 0.4	20 75-85 0.2
17	19 120-130 0.3	20 85-95 0.5 - 0.43 D
	19 130-140 0.4	20 35-105 -0.6
17	19 140-150.2	20 -105-115 -0.2
	19 150-150 0.5	20 -115-125 -0.1
17	19 160-170 0.2	20 -125-138 -0.1
1770-500.0	19 170-1800.2	20 -135-140 -0.8
17 60-900.5	Survey and a - al	
17	Sturie ar 0.3 clocu	20 -1 -165 -0 7 5
17 -100-1100.2		20 -105-175 -0.2
17 -110-1200.5	cires numbers = =0	20 -175-185 -0.2 ,2 -175-185 -0.3 ,
17 -120-130 0.4	200011	20 -485-195 -0.7
417 0-200.1		20 - 195 - 195 - 0.7
617 20-40 0.3		20 -205-215 -0.5
617 40-500.3		20 -275 205 -0.0
-17 60-200.3		20 -215-225 -0.T
-17 80-1100.2		20 225- 235 -0.4
		20 235-245 -0.4
stringer , 30'c (au),	-3.	20 -245-255 -0.2
		20 -255-065 -0.2
cous- 25 %	Respectfully submitted,	20 -265-275 -0.2
	/	1 and an in the set and all the

All reports are submitted as the confidential property of clients. Authorization for publication of our reports, conclusions, or extracts from or regarding them is reserved pending our written approval as a mutual protection to clients, the public and ourselves.

F20 (25-45) 2.5%

(Out Wickenburg Way.) J. W. (Jack) SHARPE; ASSAYER & CHEMIST

Description

:

Received 2/1/55 Submitted by Uran lum raterpr 1868 or Amer iou

Date 2/7/56

ANALYSIS

20101 -		•	
	Element	Estimated Intensity	,
Hole No	Depth Cu	Hole No Depth Cu Hole 19 Destho _ CU.3	
20 -	-275-265 -0.1	21 C+20 0.5 -23 10-16 0.6	24 "
	-200-295 -0.2	21 -80-50 U.bc -23 5-10 0.4-	120
20 -	-295-305 -0.4	21 -50-700.5 -2315-200.1	20 "
20 -	-303-315 -0.5		
	-315-325 -0.3	21 -90-113 -0.2 ? 110? -2320-250.1	21"
	-325-335 -0.1	21 -110-130-0.32325-30 -40.9	40"
	-335-345 -0.2		.4 ? 4
	-345-355 -0.2	21 100-195 -0.1 -2335-401.5	50 "
	-355-355 -0.2.	100 - 23 - 40-45 1/9 5	32"
20 -	-365-375 -0.2		
20 -	-375-355 -0.2		store for the state of the stat
20 -	-335-395 -0.3	22 C-10 C.7- : c 23 b4-60 0.7	60 "
20 -	-395-405 -0.2	22 -10-200.4 - !c 2320-500.6	
20 -	-405-415 -0.2	22 -30-300.2 7 4 2325-351.0 22 -30-400.3 6 2334-600.8	
20 -	-415-125 -0.3		
20 -	-425-435 -0.4		
20 -	-435-445 -0.2		
c 20 -	-4:0-445 -1.0	22 -50-50 U. 4 - T. N. av 31. 75'/ocm. 22 -50-90 C. J0, -N. av 31. 75'/ocm.	
		22 -60-90 C.J. O. N accurs de ore. 71%	
		2 2 110-120 C-3 tom	
		22 120-122 -0.2 Cathere:	
- 20 :	50-600.2	FERE	
(USA 11) C 20 -		1 22 - 90-980.4-	
2 20 -	-100-110 -0.2	0 22 - 60-700.3	
G 20 -	105-008 -0.7	0 2270-800.5	
miliona holo and	-193-205 -0.7	0 2250-900.6	
and the star	32 cu	51 22 -88-122 0.3-	
		e 22 -30-402.6	
		\$5C-60 Respectfully submitted,	e
		aleccould de long the sel	
	•	gurrent all the file ul	

All reports are submitted as the confidential property of clients. Authorization for publication of our reports, conclusions, or extracts from or regarding them is reserved pending our written approval as a mutual protection to clients, the public and ourselves. moral 1,40%

25-45 1) 22 central 20 2.8

, (Out Wickenburg Way.)

J. W. (Jock) SHARPE; ASSAYER & CHEMIST

Description

Received 2/1/56 Submitted by Urankum Fnterprises cr America

Date 2/7/55

ANALYSIS

Element		Estimated Intensity	
24 =5 - 15 = -0.2 $24 =15 - 25 = -1.6 - 22$ $24 =25 - 35 = -1.7 - 22$ $24 =33 - 50 = -0.4$ $24 =34 - 50 = -0.5$ $24 =0.34 = -2.1$ $31 = 0.34 = -2.1$ $21 =3.4 - 2.1$ $31 = 0.34 = -2.1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	le No Depth Cu 270.500.2 2750-900.5 2790-113 -1.0- 2720-300.1 2730-400.1 2750-600.6 2750-600.6 2750-900.3 2750-900.4 2790-1000.4 D) EN
2675-802 0.45 -122	6 58-70 1.2-	27 200-1109.5 - 0. 27 110-1200.7 31 av. 40 m	4.5

au. cone. 1.2%

Respectfully submitted, 121

All reports are submitted as the confidential property of clients. Authorization for publication of our reports, conclusions, or extracts from or regarding them is reserved/pending our written approval as a mutual protection to clients, the public and ourselves.

D#2/0--1.6%

Only one that checks

Final Copper Property

LOGS OF CORE HOLES DRILLED IN 1972

Hole No.	Depth	No. of log pages
72-1	300'	2
72-2	3500'	17
72-3	1372'	· · · · ·

Collar Coord. Coord. Loggeo	Collar Elev. Coord. (Survey)_ Coord. (Grid) Logged by_ <u>CC</u> ,		reduced	Sampled by_		CC	PIN/	SAMFLE AND ASSAY LOG PINAL COPPER CORPORATIO	AND AS	ASSAY LOG CORPORATION	NOI	Project Hole No Rotary Fr Core Fr	Page 72-1 20 10- 10- 10-	of 20 20 300	r
From	To	Dist.	Length Core	Wgt.	% Rec.	Sample Type	Assdy by	Sample No.	du Ppm	oMo prigg		Vol. Sult.	Ď	Description	
0	20														
20	25	S	4.2		84								Andes br.	ser, alt.	
25	30	5	4.5		90		НЗН	P-147	104	22			41		
30	40	01	9.6		96						-				
017	50	10	9.7		47								11		
50	55	5	4.6		92		ž	B+1+8	121	22					
55	60	S	3,0		60								11		
60	120	10	8.8		88								,	1	
70	75	S	4.2		778								13		
7.5	83	5	2.5		50		'n	P-149	37	2			et.		
80	90	10	8.0		80					-			n		
90	100	/0	10.0		100								2		
100	105	5	4.5		90		2	P-150	60	< 2 2 2			L,		
105	0//	5	4.6		92								ų	V. Fract.	Y.
011	120	10	10.0		100								t,		
120	12.5	b	3.7		74								1		
125	135	2	4,5		20		4	P-151	21	<2		12	2	127 base OX. Zone	
130	140	0/	9.2		52								69		
140	150	0/	8.0		80				-				14		
150	154	4	3.0		22		r	P-152	33	22		1-2-	4.4	v. bkn	
154	160	6	5.1									3-5	11		-
160	170	10	9.0		90										
170	175	10	4.0		80			×.					11		
175	180	۱'n	3.9		78			P. 153	25	<2					t.
180	190	2	8.0		80								2		
															/

-

NZ										7 x 3													
Pαge No 	Description	es.						×			- bx @ 257'								god conditions	4			senso de a sectiona a consecuencia de la consecuencia de la consecuencia de sectiona de la consecuencia de sec
Project Hole No. 72- Rotary Fr. 0 Core Fr. 20	!	a Andes				5		11	4		2 "	22	н 1	1 1	11	h			Capped in 9			 	
Project Hole No Rotary Fr Core Fr	Vol.	Z	t	2	:	2	-												Hole left cap	-			
LOG	20.						N			1									H. Han	2	2.1		
ND ASSAT	Cu Mo		34 <2				29 22			31 22				34 <2		2) 	49 <2		ad Pille C	-			
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATION	Sample No.		P-154				P-155			P-156				P-157	÷		P-158		hole: eta-				
S PINA Date	ie Assdy e by		オキオ				:			2				4			n		Casing in ho]			
by c.c.	% Sample Rec. Type	80	80	100	100	<i>tb</i>	96	97	98	100	86	100	100	100	100	100	90						
-Sampled by-	Wgt.		-	Ì	`					ž			1	-	`				ize NO				
c.c,	. Length Core	8	4	5	10	4.7	4.8	9.7	9.8	5	- 4.9	01	6	5	10	b	4		bottom s				
(vey)d	To Dist.	200 10	205 5	210 5	220 10	25 52	230 5	40 10	01 05	55	60 5	270 10	55 5	80 5	90 10	25 5	8 S	Bottom.	Note: bo	2			
Collar Elev Coord. (Sur Coord. (Gri Logged by	From	190 20	200 20	205 21	210 23	220 225	225 27	230 240		250 255	255 260	260 2.	270 275	275 22	280 290	290 295	2.95 300	ñ	N				

12-2 Page No. / r. 0 To 670	Description	(NOT SUCCESSEND), SITE WAS	Lecture To THE DEPTS OF	BELOW 260, 4600T 2 VOL. Jopy.			Andes. rd-bra mtx. cucles's	am. br. frans to 12" av. 1"	0	Andes. v. brkn. galt. sulf.		-										daab zami awaare chambardan marana meroon kanarana a na manara waanna manarana mana internation kanarana magan
Project Hale No Rotary Fr Core Fr	107. 2015.	1	RY.		1.2.1		1-2															
		1 Hol	11112	260	K 74																	
OGATION		Mesn	5 DK	£0 70	Rock	 																
SSAY L	ow	TTER	E WA	OXIDIZED	undd		15			38			4000	2								
AND AS	des Ppm	REE	W Hor	0	500		641			69			tract									
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATION	Sample No.	NIT TO	D A NE	(670)	E25 711021		P-159			p-160			timed	()			*					
S PINA Date	Assdy by	ATTA	41	HOLE	744 1		Hall			HZH			201									ng man-un angendern er medema.e
00	Sample Type	712110	7 23	215	O MO.											-			-			
1	% Rec.	Four	OFF-S	A tick	Coppes		00/		06	88					-							
Sampled by-	Wgt.																					
	Length Core	Rotury							18	4.4												
ey)	+	670	1				5		20	6									 -			
Collar Elev. Coord. (Survey)_ Coord. (Grid) Logged by	To	6070					675		695	700			1 A.		· -,,				- - -	ч. 1		
	From	0					640		549	695	•									2		

i. i.

ţ

			64						4 *		1.5									675.				Juarju			/
	2-7. Page No. <u>2</u> 2-7. To of <u>2/</u> 570 To <u>570</u>	Description	Andes, et mix wi Otz manz	2		· · · · · · · · · · · · · · · · · · ·			z-wone? by in I are w		In de grandron in he us	Lartic sulf an 1-2"	1	ι, . 	11		N.	11	Les I and SULA 2 and a	we contracted by		iter It approx	142 a A1	Nor Marry 132 Span	" and applie from		 1
	Project Hole No. <u>12-2</u> Rotary Fr. <u>610</u> Core Fr. <u>610</u>	Vol 5/	1 A.W	7					Ċ	1-2	2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		-					2 Mind	<			2	W.			2-1
	CORPORATION	ing a				<2.			22					10			12	-			2				42,		
(AND ASS	ppm C.v.				68		r K	41					76			116				46				S.		
an ^a	SAMPLE AND ASSAY LOG PINAL COFPER CORPORATI	Sample No.				P-161			P-162					P-163			P-14				P-165		-		P-166		
	PIN/	Assdy by				11:11	3							z			11				11				5		
	C	Sample Type	2						z					2			:				-				-		·
	Sampled by 200	% Rec.	1001	007	30	do.	20	99	8	001	8	5	90	3	20	íð,	26				100	5		100	100	00	100
	Sample	Wgt.																									
		Length Core	0	ç	<u>л</u> Ю	1.15	26	9.8	6	4	1		4.5	5	9.6	. 10	4.6	6.1	(3 0]		S	9.3	3.1.	, _ ^C	V2	\$	6
	() ()	Dist. 1	10	. <u>C</u>	1,7	Ъ	01	c.	-ja	4	Ē		20	- 46	9	٩	ĸ	7	· 6-	6	ru	0	4	6.	12	: 42	6
C	Collar Elev. Coord. (Survey)_ Coord. (Grid) Logged by	°F	710	720	725	130	004	750	755	753	017		775	0.81.	064-	795	Bro	807	516	\$ 25	830	840	844	950	855	860	869
		From	700	OIL	72.0	725	330	125	750	755	759		oll	SLL	780	064	7.95-	633	307	5 T	325	83%	840	344	850	855	840

	Č. :				2 -		•								
Coll Coor Coor	Collar Elev. Coord. (Survey) Coord. (Grid) Logged by	())()()()()()())()()()()()())()()())()()())()_()		- Sample	Sampled by <u>CC</u>	£	S PINA Date	SAMPLE AND ASSAY LOG PINAL COPPER CORPORATIOn Dete 7/72) ASSAY LOG CORPORATION	NOIT	LIKU	Project Hole No. 72- Rotary Fr Core Fr	: Page No. 3 	· · ·
From .	To	Dist.	Length Core	Wgt.	% Rec.	Sample Type	Assdy by	Sample No.	ppur	MAS			505 F	Description	
678	875	-	1.10								2	ъ.	1-2.	William Cold in a start from the	or - Hould Zone
875	880	¥٠,	4.4	¥.		2 60	el 14	P-167	121	5				" /4" Spar pheno	
380	830	5	5	,	CIC CIC					- 1 12					-
530	8	1	9.6		30									" · V brieg	
8	9.05	, Vu	5.4 7	÷		r.	IJ	P-168	319	12				when the man countries	"" (T
Sus	910	9	5		\mathcal{C}_{i}								-	by herth of swame " 1's!	
910	920	01	E.C		10						5.				
920	925	5	8 7 7		c)/c	7	2	×				2		· ·	216
SIG	930	40	4.8		960	2	Ξ	P-169	191	29	• •				- 44
930	940	0	9.7		16								•		
240	950	0	9.8		66					**2			Z		
956	955	\$63	a +		ζ,	¥	2	P-110	114	5				" are 1-3" claupper (-	11 - Comess
955	960	5	46		92							ч .		bor de fras	
0460	010	0	9.6		%										
016	375	V	\c.		(QC)	÷		P- 111	112	5				" and irres always - law	1011
•										-		2		ad in los Arno	
5115	980	١'n	2		8							1.	V	Meter sed It and free law with	This
5 3 8	990	01	£		100									als whe hads free one war	· baks
065	(00)	(O)	Ľb .		49								-2.		
103	1005	V				=	-	P- 112.	SA1	30					
505	1010	10	5		(0)									in it created to this	
1010	1020	0	5		47									" it brien	
070	10-25	ţŋ	40	195	40	1	Ξ	2-13	203	2				14. 14.	
1025	1030	5	×.		100										
1030	1040	0	94		94								5		/
	4	* e *													1 w

- 1, 1, - 1, 1,		ŕ			4 C	1002				,																11
Project Page No. <u>4</u> Hole No. <u>72-2</u> Page No. <u>4</u> Rotary Fr. <u>610</u> <u>10 670</u> Core Fr. <u>610</u> <u>10 3500</u>	Description	Web and beind to the		V lerten 5 fine beid	wi coc. Garm fros	Meta-rad Toplan and the web	when the man have	a	Mela cord? de ma malan that the	" when A and a little			Pran Nurs. M. Sons Hund.	Andres do at		•			Stor Va			" cos ats vero	" grad dror in phease size	" aconnon-porticita		
Project Hole No Core Fr.	205 F	17			7				Z			7				V			17		-			23		
			-																							
-06 ATION						1				-									1							
ASSAY LOG	mad .		40	•		17					5			0		- 		8			2			4. 1	20	
AND A	mad U		ME			396					411			544				377	·		134	• • •			51	
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATIO	Sample No.	2	P-174			P-175					9L1-4			P-n1		÷	-	P-178	ъ. С		P-179				P-180	
PINA Date	Assdy by		9,44			11					5			Ξ				. T			2				=	
6	Sample Type		344			11								Ξ			15	-			¥Ì				=	
d by	% Rec.	92	50			06		30			C .)/	96		8	$Q_{l_{o}}$	76		96	9 9 5	9%	001	CJ.A	70	35	92.	96
Sampled by	Wgt.																									
	Length Core	Ger.	t, V	0). V		45		7.5	8.7.	19,61	Q	5.8		10	4B	50	76	C V	54	9.6	4	451	16	9.5	1.lo	45
	Dist.	£	Ng.	L	6	2		i,	5	11	Į.	2	0	10	53	9	01	10	34	10	10		57	0	1	Va.
Collar Elev. Coord. (Survey) Coord. (Grid) Logged by7	To	1050	1050	1061	0101	2201		1080	6801	1100	11 05	1111	1120	1125	1130	140	1 55	10.55	160	olli	11.75°	1180	1.90	1205	12.05	1210
	н цолд	1040		1055	106:	oLol		1075	1080	6801	100	1105	1111	0/21	1125	1130	1140	1150		1160	1/10	1175	1180	0611		12.05

Coord. (Survey)	vey)					Ald	PINAL COPPE	ER COI	SAMPLE AND ASSAY LOG AL COPPER CORFORATION	Projec Hole N	Project Hole No. 32-2-	- Page No. 2
Coord. (Gric Logged by	d)		Sampled by_	d by	CES.	Date	1			Rotary Core F	Fr. D	To . 3500
10	Dist.	Length Core	Wgt.	% Rec.	Sample Type	Assdy by	Sample No.	the main	PPW MO	SULE	or Val.	Description
1220	172	1		11.					•	1-	- 105 2 22	and the state of the second
1725	40	1157		WG.	7 111		P-181	398	0		а. =	A aros extern of Loon.
1230	ŝ			12.63							:	me channels
1240	5	Ŀ		16							ur e	•
1240 1250	9	96		U's							Ξ	
1250 1255	Ś	4.0		96		:	P-182	431	27		2 2	· · · J ha south
1255 1260	20	K.								-	•	
1260 1270	<u>C</u>	9.6		qt.			P-236	28		-	5	
270 1275	5	48		đ	Ξ	11	P-183	909	6		Reda.	and to a an and the sta
12.75 12.80	k.	~		CL1			P-237	0011			dip	Num (2) mans of inthis sil
(290 1290	0	3 ()		GD,			P- 233	600				
1290 1300	10	0 0		00			P-239	900		-	=	
1300 1305	10	φĄ		66	r.	-	P-104	909	27	-		
1305 1310	Ϋ́ς	ς,		S. S			P-240	1200			- 11	
1310 1320	0	0		100			P-241	500		1-	-	
1320 1325	70	5		102	r.	=	P-242	600	•		. 1/2	Oty veins @ 30 L
1325 1330	6	49		96			7-185	1700	2		21	
1330 1340	01	9.5		95		•	P-243	1100			When to -	- dryde, faint bdg, where
1340 1350	9	9.2		26			P-244	1100			· · · ·	Ar capl
1350 1355	40	<u>A.</u> B		910	Ŧ	=	P-186	808	. 27		1	
1355 1360	5	4.8		96			P. 245	500		42		a da se da se de se
1363	6	0°		100			P-246	4.00		•	•	
1363 1370	7	L		001			P-247	1100			Wetar-	ab to what it are
1370 1375	2,	ч. Ч.С.		(5)	-	-	P.248	100			1.	
1375 1390	7			_			101	100	L		13	

. .

Ċ,

	Č .				·		• • •						C	
	Collar Elev. Coord. (Survey) Coord. (Grid) Logged by	vey)		. Sample	Sampled by DDD	Ì	PINA Date	SAMPLE AND ASSAY LOG PINAL COPPER CORPORATION Date 7/72	AND AS	SAY L(RPORA	DG	Project Hole No. <u>77</u> Rotary Fr. <u>6</u> Core Fr. <u>6</u>	<u>72-2</u> Page No. 6 . 22 of 21 . 20 To 670 To 3500	
From	To	Dist.	Length Core	Wgt.	% Rec.	Sample Type	Assdy by	Sample No.	we way	PPUM		0 2011年 11日日	Description	
13.80	1390	Ę,	1.1		цı			P-249	1300				Tatricic 22 dur via 14 cra	1
1390	1400	g	9.0		90			P. 250	0011			trano	Meter and in lands and v sil	1
1400	1405	10	48		96	CORF	414	P-188	1700	2		1++01	· · ·	
1405	14 10	5	ŝ¢,		3			P-251	900	2			free been or her all to do so	0
1410	1420	10	E		77			P-252	300					
1420	1425	5	17		ġή	N	=	P-189	1300	22		Scot	" sulfa on free	
1255	1430	ka	5					P-253	1700				11	
1430	1440	0	Q		0.4			P-254	1200		-		-	
1940	1450	0	56		9.2			P.255	1300			~ 1		
1450	K455	2				Ξ	11	0	1700	S		2	1,	
1455	1464	6	σ		1001				1400					
1464	1470	9	5.1					P-257	S				Trainie 12 room about and	
OFAL	1475	Nr.	1.0		d C	5	5	P-191	392	22		4	isolate it are used in with indi	ist bound
HIS	1480	40	V7		193								1 214 2	
1450	1490	Ç	£		.(00)								" al Augura	
(490	1500	91	9.5		91								14	
1500	1505	5	S		001	11	-	2-192	365	60		F 40 C		
1505	1510	6	L.A.		94								N	
1210	1520	01	0		001						-	Tr.	11	
1520	1525	5	5		001	r	11	P-193	948	6.2.				
1525 1	1530	. 5	5		100							ar - 2		
1530	1540	10.	ç		8									
540	15451	5	5		10			-				. whether	Birt water on we will	
	1550	4	4,3		96	=	2	P-194	630	2	-		asser in ole unite	
1550	1553	60	. rî		00	-		-	-	-				1
									-					/

			•		w.tx.	a.	000 N								×				1044								
	72-2 Page No. 7 of ZI To 670 To 3500	Description	Solverine and at		be the of webs and ? and are is	A may of a rate for	the star is we we will be a set of the	1		" it Amount in the more has				Meta-sed ali Van V me		. Alos me mine who who we	X		" i and and by fight of a	all In with all pred.			Taking? Ole ways as used .	" here by in I and when		-	
	Project Hole No. Z Rotary Fr.	00 512F	Les 1						-	107-11	-		40%		-	17			-			on free					
	NOL														2.4				<u>.</u> Чау	-							
	SAY LO RPORAT	mad	2		2				Ś		-	V		л. 		0		•	ଚ				27			5	
Ċ	ER CO	wala U	162.		384				741			292.				677			6			500	HED	10001		453	
	SAMPLE AND ASSAY LOG PINAL COPPER CORPORATION Date 7/72	Sample No.	P-195		P-196				1-197			P-148				P-199			P-200			P-258	P-201	P-268		P-202	
	PINA Date_	Assdy by	12 2 11		5		•		:			=		• •		1			z				×.			=	
	· &	Sample Type	- 1052		*				11			11				i.			5				2			÷	
	Sampled by	% Rec.		001	3	C C -	CCU	99	96	g	90	8	C C C	35	CES.	100	(1)	9 E	623	65	96	ସହ	00	100	9.9	001	50-
	Sample	Wgt.																									
		Length Core	3.0	6	6	4	0	20	48	ŝ	à Đ đ	5	5	96.	30	5	S	55	5	781	98	લઇ	14	Y	10 10 10	6	U)
	rey)	Dist.	4	51	\$	2	10	Ç	5	\$	0	5	5	0	. 0	¢.	\$ C	01	ý.	ý.	0	(1	. S)	Y	g	8-2	5 52
1	Collar Elev. Coord. (Survey) Coord. (Grid) Logged by	To	1557	02.51	1575	1580	1590	1600	1605	1610	1620	162.5	162.0	1600	1650	1655	Ileloc	1670	1675	1690	0691	100	2011	01/1	1720	ITZS	1730
	ိုပိပိပိ	From	1553	1557	olst	1575	1530	1590	1605	1605		1620	1625	1630	1000	1650	1655	16 60	11070	1675	11,80	1590	Tor!	2011	C1115	[126	1725 1730

7

İ.s. - 1

Ċ.

C

			•																								
	-72-21 Page No. 8 of 2/ To 670 To 8500	Description	Oberoons? Warner who wight			=		Meta-syd No- Ya Jam. horiz to 502	1/2" - WE Ad frace @ 71 / Manz 76-80	Andes, dr. orn blk model walted	" meta-sed fras berio @ 94.	" brits to Vo" unite	1811 Meta-sod uchis an Ende orc	Fras. anders part	partie - Ordes 95 1790	Metal- sed as 1911	Pourie andres as 1790	Meta- sed as 1911	Latite - pur H gra adx 1/ sor	and more water free a Ve			" and bigt incr tool atta.		" ufreta		" ofte in ontohe 5 25° hr In fres
	Project Hole No. <u>1</u> Rotary Fr. <u></u> Core Fr. <u></u>	% SINF		Tr ccp				2	Ľ		=	=	-		11	:	F	×	Ŧ	120	r	:	2	-	-	ц	•
		Aa	-		-								•							4.2							
	0G ATION	D.		• •																20.01		•					
C	ASSAY LOG CORPORATION	Ppur		• •		10			0		, 	2			හ					VS.	 -	0			0		
		60				242		1700	201-1	1000	1300	12.00	0011	1800	1300	900	1500	2300	0021	100	3100	2100	1900	2200	(400	1800	1500
	SAMPLE AND ASSAY LOG PINAL COPPER CORPORATI Date 71172	Sample No.				P. 203		P-300	P- 204	P-301	P-302	P-205	P-303	P-304	P. 206	P-305	P-306	P-307	P-308	P. P. N.	P-309	P-208	P-310	P-311	P.209	P-312	P-313
	PIN/	Assdy by				H-H-			=			=			:		8			1		5		5			
	Ŕ	Sample Type				2005			11			¥			=					=		ы		, H			
		% Rec.	c)A	16	90	36	8	100	8	98	8	96	001	801	2001	98	96	9%.	80	00	1001	001	201	ીઉ	031	Sis	96
	Sampled by_	Wgt.																									
		Length Core	9.6	1.0	9.0	4.9	4.0	05	5.0	6,0	0.0	4.6	10.01	10.01	0.0	4.9	4.0	4.10	6.5	05	ŝ	5	0	4.2	5	9.5	9.6
ili.	ey)	Dist.	0	0	g	1n	ব	463	S.	0	9	8	0	0	53	Ś	V	Ś	6.5	0.5	m	5	9	10	A.	0	10
1.1	Collar Elev. Coord. (Survey) Coord. (Grid) Logged by <u>CFO</u>	To	CIAN	051	Salt	This	OLL	511	11.60	0611	APCO I	1805	1915	1825	1830	1835	1840	IPAS-	1851.5	1852	1955.	1860	OFAI	18-15	1860	1890	1960
		From	OF LI	1740	1750	Cal11	7165	OLL	5117	0211	0611	800	1805	1815	1825	1630	1825	1640	1845	1851.5	1750	1955	1860	01.01	16:15	1680	1890

8

•

SAMPLE AND ASSLY LOG MARTER AND	1*		e. 1.81		•) - (47								w 1						a c		· .	1 K.		- ur 144 		an a	10 a tradition of	1	9
SAMPLE AND ASSAY LOG point (Survey) Sampled by Eminter Plumal. COPPER AND ASSAY LOG and (Survey) ord. (Survey) Sampled by Eminter Plumal. COPPER AND ASSAY LOG and (Survey) Ord. (Survey) Ord. (Survey) Sampled by Eminter Plumal. COPPER AND ASSAY LOG and (Survey) Ord. (Survey) Ord. (Survey) Sampled by Eminter Plumal. COPPER AND ASSAY LOG and (Survey) Inter Copy and the Survey Sampled by Eminter Plum Inter Copy and the Survey No Class provemble Assay Res. Type by No No Inter Copy and the Survey Sampled by Eminter Plan Prove UR Pay No		Page No.	•	Latite pour	2 4	" new brin fors wi assoc		" doer sulf kept clain fre	al " strbin a 31-	2			1000	" 2" dich.			" atzucivita @ 98. FWido		" V bkkin B-16	" lineotion in						•			
SAMPLE AND PINAL COPFER Sample by AC god (Strong) Sample by No. from S 4.8 god (Strong) God (Strong) god (Strong) Sample by No. from S 4.8 god (Strong) God (Strong) <		N				-		0				0						5.2	-			. 20	•						
Ider Elev. SamPLE Gd. (Survey) Sampled by Elev. Point Elev. Problem Problem Problem	C.	AND ASSA ER CORP				000	1200								984							40							
Ifar Elev. Ifar Elev. ord. (Suvey) ord. (Suvey) ord. (Suvey) Sampled by \underline{ASS} gged by \underline{ASS} Sampled by \underline{ASS} gged by \underline{ASS} Sampled by \underline{ASS} grow for (Suvey) Grow for (Suvey)		SAMPLE	Sample No.	D- 210	P-313	P-315	P-316	P-211				2-212			2-213			-214											
If ar Elev.ord. (Survey)ord. (Survey)ord. (Survey)ord. (Survey)ord. (Guid)ord. (Guid)gged by $\overline{\ensurvey}$ Sampled by $\underline{\ensurvey}$ grad. (Grid)Dist. Length Wgt. Rec.I ToDist. Length Wgt. Rec.I Row SA.R.I Row SI Row S<		PIN		オシオ																				•		4			
Iter Elev. ord. (Survey) ord. (Grid) gged by ZEC Sampled by IPAC Sampled by IPAC IPAC <th>A</th> <th>B</th> <th></th> <th>000E</th> <th></th> <th>:</th> <th></th>	A	B		000E														:											
If ar Elev. ord. (Survey) ord. (Grid) ord. (Grid) ord. (Grid) ord. (Grid) IPC IQ2				010	96	001	96	1001	90)	95	96	96	8	116	96	98	100	(8)	alo	98	28 16	33							
Ildr Elev. ord. (Survey) ord. (Survey) ord. (Survey) ord. (Grid) gged by EQ IQ20 5 IQ20 5 IQ2		Samp					0			-								2											
Ilar Elev. ord. (Surve ord. (Surve ord. (Surve ord. (Grid) 999ed by 1928 1928 1928 1928 1928 1928 1928 1928				4.8	4.6	0	1	5	0	9.5	40	4.6	0	41	4.8	9.6	0	5	4.7	9.9			2						•
Collar Ele Coord. (Su Coord. (Su Coord. (Su Coord. (Gr Logged by From To 1925 1925 1925 1920 1925 1920 1925 1920 1925 1920 1925 1920 1925 1920 1925 1920 1925 1920 1920 1920 1920 1920 1920 2002 2005 2005 2010 2010 2005 2010 2005 2005 2005 2005 2005 2005 2005 200	(.	v. rvey) id)	Dist.		5		_												5										
From 1926 1926 1926 1926 1926 1926 1926 1926		llar Ele- ord. (Su ord. (Gri gged by.				1920						i		5191	0961				2010	2020					•				
		ۮٞۘڽٛٞڽٛؽ	From	1900	19.05	AID	1	1925	1930	1940	19150	1955	1960	1970	1975	1980	1990	2000	2005	2010	2020	2025							

		1/2 N		bord, V.Sil				ints. often							rt fres						-						
Page No. <u>70</u> 0. To 0.021 0 To 3500	Description	atile. sear ar la acc de .	" brien chloridie why.	ad trade with which the			oce 1/4. 1/2 of veins	82-FZ Ubren loc			1/2" FM				EZ @ ad who aldn . Ver	sully an dice						should be			at on the 12 channe	an nga sangkang ang na kang pungangan ang kang pungan Kong na mungan sang pungan ng sang sang punga pungan san	
Project Hole No. 72- Rotary Fr. 0 Core Fr. 670			5	r :	÷	32	2	1,		7		2	5	2	2	5		Ε	1	<i></i>		:	5				
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATION	pqm Mo			30			5				S				ø			5			ß				eC		
AND AS	Cu.			673			425				2.61				121	1		508			060			700	1500	1600	
SAMPLE PINAL COPE	Sample No.			P-216	÷ ,		P.2.17				P-218				9-219			P-220-			P. 221		a.	P-317	D. 200	P-318	
	Assdy by			オナコ			ti I				2				=												
Se .	Sample Type			CORE			5				=				=												
Sampled by 2	% Rec.	80	ч <u>е</u> .	910	1111	1-6	96	A.	91,	98	8	00								93					ЧÐ		
Samp	Wgt.																										
	Length Core	9,8	9. ⁽	4.8	5.0	1.6	4.8	4.6,	9.6	5	5	J.	9.10	1.4	$\frac{d}{\infty}$	5	а. И	4.7	4.8	5.5	4	L.4	9.6	.2. N	4.9	15	
(ey)	Dist.	0	9	5	15	0	19	5	0	0	5	ja V	10	5	5	0	2	5	v.	0	5	6	9	0	V	S	
Collar Elev. Coord. (Survey) Coord. (Grid) Logged by	10	650%	2060	2055	0000	2070	2075	2080	0602	0010	2105	0110	2120	5120	2130	2140	0.510	2455	2160	2170	2175	2180	0010	61446	Sund	STOR	
	From	2030	2040	2050	2055	2060	01.02	2075	2080	2040	0012	2105	2110	0616	2125	Calc	2100	2150	2155	2150	0110	5610	0513	21.10	22.00	5000	

C

			*																	•				(***********	n men han Nebera N		N.S.
	8 	ь Я 19	j.×	ž		- ⁵ .																					
C	Project Project Project Project Project Project Project Prove Prov	Description	10-12 metarred for low		Lot dear from	-	AS- 60 Andes de am	4	Latiok whe shirls room birt	" winn for soors hord		" 10 ole soor dessu rims	" Ele FZ.	8		"dear ole score		2	" wan of solete		1 1	11	11			"con bras calle, biot-of a	
	Project Hole No Rotary Fr Core Fr				-		*						-														
	Z																										
	ORPORATION				CO			50	G	-	10									•							
(AND ASSAY LOG ER CORPORATI	Mad .	1300	0061	500 5	Q	QC					1 2) 			3. 2				V			0				2 2	
э. Ж		Ŭ			-	0011	1300	0011			Alor 1				11.				2.81			02			-	522	
	SAMPLE ANI PINAL COPPER Date 8/72	Sample No.	P-319	P-320	8-223	P-321	P-322	P-224	P-225		P-226	ĸ			0.227				P.22B	n v		P-229				P-230	
	PIN/	Assdy by			11-11			4	ç		:				1				:			1				1	
	a	Sample Type			2002			-	ţţ		11				11				:			56				1	
	Sampled by	% Rec.	955.	960	913	1.5	98	912	95	36	44	che	98	A.B.	96	96	98	97	99	36	61	97	47	97	(22)	001	160
	Sample	Wgt.																									
		Length Core	95	40	4.8	9.1	9.8	48	4.0	6.6	4.1	4.3	6,0	6.6	4.8	48	9.8	47	4.8	9.8	1.6	4.1	47	9.1	5		0
6	ey)	Dist.	<u>.</u>	2	50	01	0	10	b	0	Vr.	6	0	õ	ij	5	0	5	582	0	0	- 12	S	0	Š	2	0
	Collar Elev. Coord. (Survey)_ Coord. (Grid)_ Logged by	To	2720	2005	222.0	2240	2250	22555	2260	22.70	2775	2200	Cilor.C	52.00	23051	2310	2320	2225	0220	2340	2350	2355	2360	01.22	2375	23.625	2390
		From	2210	2220	2005	2220	2240	2250	2255	2260	22.70	2725	2250	22945	2300	2305	2310	2320	23755	2220	23,40	2350	2355	2360	2370	TLEC.	2350

	Project Page No. 12 Hole No. 72 × 2 of 21 Rotary Fr. To 670 To 3550 Core Fr. To 35500 10 10	Description	Lot es abu.	Andres? tolk-dle gren frie xlin			Lot, pts, 2/2-12'spar, bist, bres, spor	H.	Andes as 2400-05	Let es 2420-25		-	-	-	Granitaid, cree ser-ota 1/4"	ser aparts surved by arts	che pors whe arra.	1	11					
с.	20	Pum De Wo	(000)	1300 3	500	400	100	1000 15	100	1200	1600 275	400	100	900	2400 95	2 000	1900	1300	2300 40					n - manan na ang manan ng man
	SAMPLE ANI NAL COPPER Ite2/72.	Sample No.	P-329		P-330	P-331	P-332	P.232	P-333	P-334	P-233	P-335	P-336	P-337	P-234	P-338	P-339	P-340	P.235		-			-
	PIN/	Assdy by	HSH					11			=				11				=					
	Q	Sample Type	ore					z			11				11				Ŧ		-		,	
	Sampled by 20	% Rec.	98	98	SIB.	99	8	00	100	99	98	98	100	100	(00)	98	98	98	69					
	- Sample																			-				
		Length Core	000	49	48	9.9	5	5	0	50	4.8	4	0	63	6	4.6	8 7	4.5	4.7					
:	()- ()- ()-	Dist.	0	5	5	9	5	5	0	0	S	5	0	6	6	<i>6</i> °	h	Ś	Ś		2			
R.	Collar Elev. Coord. (Survey) Coord. (Grid) Logged by	°L	2400	2905	2410	2420	24.25	2430	24 40	05 772	5572	2460	2470	2475	2480	24.94	2490	2495	2500	 		 		
		From	2390	2002	2405	2410	2420	2425	2430	07440	2450	State	2460	2470	SLAZ	CGH2	24,05	2490						
	Υ.	ŀ	÷																~	 	 		 	Υ. Υ

Per Flev	SAMPLE AND ASSAY LOG PINAL COPPER CORPORATION	Project Re-entry Page No. 13 Hole No. 12-2 Rotary Fr. 670 To 2500
y) LOUE Sampled	Doug Date 9-27-72 Sample Assay Sample Dum Dum	Core rr Description
To Dist. Leng.	Hech P- 323 1300 30	dis tex propylitutes ais, n dis & al. frs. cpy-dis, n dis & allts
2515 5 5		
2520 5	" " " P- 324 1600 12	
2525 2		
2535 5		
2		18
0 2545 5		intrusion of
		SIL CAS PY, CPV
2548 2552 4 4		
	" " " <u>P-325 1300 55</u>	" " " Local Sheat 1/6 neb.
2552 2557 5 5	+	11 11 11
2565 8 8		" "Cut by g. Lat
2571 6		by al. Frs. &
2571 2575 4 4		1
	11 11 11 11 P- 326 1300 LU	" " " OTZ VALUS
2575 2580 5 5		
2580 2585 5 5		
2585 2590 5 5		11 11 11
2595 5 5	6	
	90% " " P-327 863 45	11 11 CD.

																•
້ ບໍ່ບໍ່ບໍ່.	Collar Elev. Coord. (Survey)_ Coord. (Grid)	vey)					IId (AMP	DPPER CO	ASSAY LOG CORPORATION	0G VTION	ዾ፞ጟ፟ፚ፝	Project Re Hole No Rotary Fr	-entry 72-2	ge No.	1 er.
501	3ge		45	- Sampled by-		SUV	- nate	4	~1			ן נ	Lore Fr.	610-10.	00 55 00	
From	° L	Dist.	Length Core	Wgt.	Rec.	Sample Type	Assdy by	Sample No.	ppm Cu	oM	3 	Rock	Type	,	Description	
2608	2615	2	2		100		<u>.</u>						11	12 23	' vmin.mag.	
2615	2620	5	5		11						÷	42	44	11	12	
2620		5	2		٤							2	**			
2625	2630	5	2			Core	H&H	P- 341	938	165		0.C ? 1 Q	suon.	119 %	ser., propylitic, Ch, py	
													PY -	5% . ,		
2630	2635	5	5		n							H.	12	33		
2635	2640	5	.5		u								#			
2640	2645	44	11		11				• 1			DE: FD	. monz	31	×in Otz, wlts	
2645	2650	:			E					<i>.</i>		5-) ₽=			
2650	2655	5	4		80	11	11	P- 342	626	35		J. Lat	tite (ch. some	Lic phases, py ^c l.5% shearing.sec bio3	
2655	2660	5	5		100							t:	22	1	0	
2660	2665	:	٤.		11							21	4. 6.	Less marfil	??some dfz +nfb;	5
													(py <8% di	°۵	
2665	2670	11	4	×	11							11	:	43 . 23		×
2670	2675	11	E		E							:		33 23		
2675	2681	5 6.	5 6.5		11	t	11	P-343	613	15		=	=	20 2	loc. shis at 850	
2681.	5 2683	3.5	3.5		11							Younger (er Q.	Secipio.	01	
														w/schist earing a	direction (or sh-	ťu
			-							8			2	minor ep., twinning o	some alt, and f feldspars	
2685	2690	2	5		11	44	11	P- 344	134	2		11	11	11 21		
2690	2697.	5 7.5	7.5		11	10						11	11	18 48	Thin Section	
2697.	\$2700	2.5	2.5		F							Porph.	cite	c?bio,	ch. sil. ser? Loc	
			-													
2700	2705	5	22		11		t	P- 34.5	1100	55		12		4- 6- 5-		
2705	2710	5	5		11								11	11 12	Gir vults,	
									-							-

. .

				ch. by	Troid			Reitoces	. 11 . ((s			- -	Pb?)						wilts	propylitic)				Lance to
ge No. <u>15</u> of <u>610</u> <u>5500</u>	Description			eou?				Propyliticsservices			in. hem & mac	data data data data data data data data			min Mag & F		z vnlts)	2		no cpy.	& calc & atz	sil, ch, (vnlts			sec mot silt, ch. py dis & al shrs th 5% calc wilts, ser, some alt o big
Project Re-entry Page No. Hole No. 72-2 of Rotary Fr. 70 To of Core Fr. 670 To		22 23	44	Fn grained porph. minor	disto 3%	11 . 11	11	sile die lee	" To	11 11	11 11 11 1 (Tr m ¹	44	31 45	13 13	• A) 44	22 22	" (atz	1 10	12 13	22	" Pb.	Pho Gres Wery	111	11 12	41	sec bio sil.
Project Hole No Rotary Fr Core Fr	Type	=	11			:		Monz	22	44	:	3.8		:	44	41	11	£	5	*	4-	Monz		2.2	41	at
ũ ĩ ử Ư	Rock		11	pt? 0		z	=	0.00			:	11	\$2	Ľ	23	52	11	:	22	25		pt Q.		:		Q. 1
CORPORATION	ppm Mo					30				-	25					100										
AND AS	ppm Cu					496					1100					789										
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATI Date 10-1-72	Sample No.					P- 346	-				P- 347		-			P- 375					P- 376					
PIN	Assdy by					11					H&H					11					36					
Doug	Sample Type	-				. 11					Core					13					:					
d by	% Rec.	:	:	٤		"	11	100	42	4.8	43	11	100	4	11	90	100	z	11	u	95	100		11	19	
Sampled by_	Wgt.																									
8	Length Core	11	1	=		11	11	2	44	t	11	46	5		E	4.5	5	5	52	22	4.7	5		4.5	:	
ey))DOUE	Dist.	۲	:	:		11	11	2	11	11	Ľ	45	5			:	22	11	1	u	11	11		٤	11	42
Collar Elev Coord. (Survey) Coord. (Grid) Logged by	10	2715	2720	2725		2730	2735	2740	2745	2750	2755	2760	2765	2770	2775	2780	2785	2790	2795	2800	2805	2810		2815	2820	2825
	From	2710	2715	2720		2725	2730	2735	2740	2745	2750	2755	2760	2765	2770	2775	2780	2785	2790	2795	2800	2805		2810	2815	2820

ب م م د به د

ogg	ed by	Coord. (Grid) Logged by0Ug	ъг	- Sample	Sampled by DOUG	Doug	PINA Date	_	2	HLUH	CORPORATION		Rotary Fr.	670 670	Rotary Fr To <u>670</u>	
From	10	Dist.	Length Core		% Rec.	Sample Type	Assdy by	Sample No.	udd	udd		Rock	Type		Description	
2825 2	2830	61	11		:		41	P- 377	240	105		11		11	Ser .	
	2835	82 A	:		:							4.5	:.		" T.S. 2831	r-i
2835 2	2840	ŧ	E		:							11	11	11	55	
2840 2	2843	e	e		۲.							11	44	59	" (brecciated	(
2843 2	2850	7	2	÷	100							38	11	">to]	oPorph ">py, some	Pb.
2850 2	2855	5	5		11	11	11	P- 378	663	37		11	11	11	41	-
2855 2	2860	8- 8-	6.		*				1.1			:	u	31	ġ.	
2860 2	2865	5	4.7		95							4H 	at ph	Sec of	10, A	<u>lgcal</u>
														C UTZ	VNLUS, SOME LELQ	45.
2865 2	2870	5	5		100							44	41	11	11	
2870 2	2875	11	5.		17			×				42	11	15	5	
2875 2	2880	11	11		46	Core	H‰H	P- 379	269	160		11	. 2.	7.9	- 11	
2880 2	2885	11	44	а.	11			÷				11	11	11	1	
2885 2	2890		t		u				•			11	11	'n		
	2895	41	44		11			E.				11	11	11	61	
2895 2	2900	33	22 .									11	11	11	55	
2900 2	2905	11	22		11	4	**	P- 380	37	2		Q. Ph	atite	Larce by 1%	Feld pheno & Hb	? ep,
2905 2	2910	#	11		t							\$\$	11	11	6-s 8-s	
2910 2	2915	25	11		11							42	22	11	4.	
2915 2	2920		11		n			1				11	11	11	4	
2920 2	2925	Ľ	11		11							11	:	11	36	
2925 2	2930	22	41		t		11	P-381	38	<22		44	11	13	11	
2930 2	2935	5	11							-		44	28	32	61	
2935 2	2940	63	11	÷	2. 0.			х. 				11	44	11	68	
0100	1							an investigation of the state o								

.

16

· · · · · · · · · · · · · · · · · · ·		-						H.			some Feld												5.00			
670 3500	Description					n die relation also Frankrikaanse op die gewone op water bestel die die die staat die die die die die die die d		shearing, some	and a state of the		, Suring,	2%											Some Feld & Did s& al Frs to 2. 5		some shearing	some Sil, duz. vnlts,
V Page No To To	Des	#	11	11	11	E	11	10°-	11	44	2 chilor	1	11	11	84	11	11	11	43	4 J.	44	45	r ch. S		2 0	5 S S S S
Project <u>Re-entry</u> Page No. Hole No. 72-2 of Rotary Fr. 670 To Core Fr. 70		44	15	44	6- 6-	11	11	E	11	:	Sec pio	vnlts.	11	п.	45	22	13	64	56	32	11	11	Sec bio	11	45	11
Project <u>R</u> Hole No Rotary Fr Core Fr			5	u	11 .	E	11	11	11	54 .	ant.		11	Lat nh	25	41	11	**	t 0	11	11	4.	Cs 7.	:	63	:
LIKO.		:	48	:	:	55	4.5	. 2	3.	41			8- 8-	Porn Porn	11	d i	u	*	11	41	4.5	65	Porpl	11	8 2	E
CORPORATION					-														- 1							
SSAY DRPOR	Mod		<2 <2				1	×2						10					37					10		
AND A ER CO	ppm Cu		105					34						179					124					2.96		
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATI Dete_10-7-77	Sample No.		P- 382					P- 383						P- 384					P- 385					P- 386		
PINA	Assdy by							11						H&H I					4.6							
Doug	Sample Type		11					11						Core										41		
Sampled by	% Rec.	44	11	11	11	11	11	:	100	11	95		32	90	90	100	100		90	100	11	44	95	100	3	
Sample	Wgt.			-																						
Doug	Length Core	11.	11	11	45	11	68	E		22	4.7		"	4.5	4.5	2	5	2	4.5	2	11	43	4.75	2	ŧ	22
(ey)	Dist.	43	#	6- 0	- 11	41	11	11		11	F		£		63	11	38	45	11	41 6	11	19	:		12	
Collar Elev Coord. (Survey)_ Coord. (Grid) Logged by	to	2950	2155	2960	2965	2970	2975	2980	2985	2990	2995		3000	3005	3010	3015	3020	3025	3030	3035	3040	3045	3050	3055	3060	3065
<u>َ</u> دُوْدُوْنَ	From	2945	2950	2955	2960	2965	2970	2975	2980	2985	2990		2995	3000	3005	3010	3015	3020	3025	3030	30315	3040	3045	3050		3060

		•							•											•	•					
12-2 Page No. 18 of 21 670 To 3500	Description	11 11 11 11 11 11 11 11 11 11 11 11 11	17 13	D.J.	tr de s		" " some qtz.vnlts.	11 11	rnlt w/ calc, Pb., Cpy.,	sec, ' blo, di, some relax o Clavs, py dis & al frs to	vnlts, qtz vnlts w/	55		19 12	11 11 · · ·	23 41	tt 11	11 11	11 11		ROC Un Freuting And Ph	" " Some preceition In Fring & Shring	11 11 11	12 12	44 44 44	11 11
Project Hole No Rotary Fr Core Fr		11	11 .	33	1:	11	=	43	16	atite:		43	13	11	12	:	11	11	11	22		11	23	11	26	23
Ϋ́ΞΫ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Ϋ́Υ		4.2	43	11	45	65		11	11	Por L	!	E	11	11	=	:		=	55	11		11	13	89	. 54	
NOIL		-																								
AY LO PORAT	nd o Mo	с. 1		~					2						2					23						52
ND ASS R COR	Dom 1			152					324						141					96						132
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATION Dote 10-19-72	Sample No.			P- 387					P- 388						P-389					P-390			-			P- 391
S PINA	Assdy by			:			×		51						Н‰Н					*						13
Doug	Sample Type			22					11						Core					11						
	% Rec.	44	11	11	11	11	11	17	41	100		tt	u	11	11	8. 2.	#		95	95		90	95	95	95	100
Sampled by_	Wgt.														8											
	Length Core	6.5	=	45	11	66	11		11	5		=	11	u	:	41	E	11	4.75	4.75		4.5	4.75	4.75	66.4	5
y) Doug	Dist. [4.5	0-	11	22	12	55	żó	41	2		:	1.1	:	u		11		11	16		45		11	11	46
Collar Elev Coord. (Survey) Coord. (Grid) Logged by	°Ľ	3070	3075	3080	3085	3090	3095	3100	3105	3110		3115	3120	3125	3130	3135	3140	3145	3150	3155		3160	3165	3170	3175	3180
Colla Coord Coord Logge	From	3065 3	3070 3	3075 3	3080 3		3090 3	3095 3	3100 3	3105 3		B110	3115 3		3125 3	3130	3135	3140	3145	3150		3155	3160	- managements	0	3175

18

Legged by. DOLE Sampled by. Dole Jate Data From Topole Jate Data Topole Jate Data Constant of the policy Con Constant of the policy <th>CORPORATION Project Page No. 19 CORPORATION Hole No. 72-2 of 2/</th>	CORPORATION Project Page No. 19 CORPORATION Hole No. 72-2 of 2/
	670
3190 n n n n n 3195 n n n n n 3195 n n n n n n 3200 n n n n n n n 3205 n n n n n n n n 3210 n n n n n n n n 3210 n n n n n n n n 3215 n n n n n n n 3225 u ju n n n n n 3235 u ju n n n n n 3235 u ju n n n n n 32350 u ju n n ju n n <th>Description</th>	Description
3195 n n n n n n n 3200 n n n n n n n 3205 n n n n n n 3210 n n n n n n 3210 n n n n n n 3210 n n n n n n 3225 n n n n n n 3225 n n n n n n 32250 n $4_{n}75$ 95 100 n n 32240 n $5_{n}0$ 100 n n n 32240 n $5_{n}5$ 100 n n n 32250 n $1_{n}7$ 100 $1_{n}7$ <t< td=""><td>21 21 21 21 21 21</td></t<>	21 21 21 21 21 21
3200 n n n n p-392 66 10 n 3205 n n n n p-392 66 10 n 3210 n n n p-392 66 10 n 3215 n n n n n n 3225 n n n n n n 3225 n n n n n n 3235 u 475 95 core H8H P-393 150 z n 3235 u 15 y n n y n 3235 u 50 100 n n n n n 32350 u 50 100 n n n n 32350 u 55 100 n n n n 32260	21 21 21 28 28
3205 n n n n n n n n 3210 n n n n n n n 3210 n n n n n n n 3215 n n n n n n n 3220 n n n n n n n n 3220 n 4.75 95 core H& n h n 3220 u 4.75 95 core H& n h n 3220 u 4.75 90 n n n n n 3220 u 5.0 100 n n n n n 32245 u 5.0 n n n n n n 32250 u 5 4.4.5 70 n	21 21 23 15 43
3210 "	n n n much alt of Feld
3215 u u u u u u u u u 3220 u u u u u u u u 3225 u u u u u u u u u 3230 u u u u u u u u u 3230 u f_{u} u u u u u u u 3240 u f_{u} u u u u u u u u 3240 u f_{u} u u u u u u u 3240 u v u u f_{u} u <t< td=""><td>TO nicu n n</td></t<>	TO nicu n n
3220 u u u u u u u u u 3225 u u u u u u u u 3235 u u u u u u u u 3235 u f_{\bullet} g_{\bullet} u u u u u 3235 u f_{\bullet} f_{\bullet} g_{\bullet} u u u u 3235 u f_{\bullet} f_{\bullet} f_{\bullet} f_{\bullet} u	
3225 n n n n p p_{hh} . 3230 u $4_{\bullet}75$ 95 Core RaH P - 393 150 2 n 3235 u $5_{\bullet}0$ 100 100 100 100 n 0.5 n 3246 v 5_{\bullet} y n 2.5 y n <td< td=""><td>12 13 14</td></td<>	12 13 14
3230 h , 75 95 Core H&H P-393 150 2 3235 u 5 .0 100 n n n n 3235 u 5 .0 100 n n n n 3235 u 5 .0 100 n n n n 3246 v n 90 n n n n 3250 n n 90 n n n n 3255 u 3.5 70 n n n 3255 u 3.5 70 n n n 3256 u n n n n n n 3275 u n n n n n n 3277 u n n n n n n <	Q. Latite Silic, Ch. Sec bio? Mary CTZ Ph. White write words & al Wilts
3230 n 4.75 95 Core H&H P-393 150 2 3235 n 5.0 100 n n 7 1 1 3240 n 5 n 100 n n 1 1 1 3240 n 5 1 90 n n 1 1 1 3245 5 45 90 n n 7 1 1 3255 n 35 70 n n 7 1 1 1 3255 n 35 70 n n 7 1 1 1 1 3255 n 35 100 n n 7 1 1 1 10 1 <t< td=""><td>to 4%, and vnlts, Some</td></t<>	to 4%, and vnlts, Some
3235 n 5.0 100 100 100 100 100 3240 r 5 u r r r 3245 5 u 5 v r r 3250 n 70 n n $7-39i$ 319 10 3255 n $3-5$ 70 n n $7-39i$ 319 10 3256 n n n n n r r r 3256 n n n n r r r 32570 n n n n r r r 32770 n n n n n r r r 3275 n n n n n r r 3275 n n n n n r r 32800 n n <td>22</td>	22
324,0 r 5 h5 90 r r r r 324,5 5 45 90 r r r r 3250 r r 90 r r r r 3255 r 3.5 70 r r r r 3255 r 3.5 70 r r r r 3255 r 3.5 100 r r r r r 3265 r r r r r r r r 3265 r r r r r r r r 3270 r r r r r r r r r 3275 r r r r r r r r r r r r r r r r	22 23
324,5 5 45 90 1 1 3250 n 7 90 1 1 1 3255 n 3.5 70 n n 10 10 3255 n 3.5 70 n n 7 10 10 3255 n 1 1 1 1 1 1 10 3265 n n n n 1 1 1 10 3265 n n n n 1 1 1 10 3265 n n n n 1 1 1 10 3270 n n n n 1 1 1 1 3275 n n n n 1 1 1 1 3285 n n n n 1 1 1 1 3285 n n n n 1 1 1 1 1	41 41
3250 n 70 n n 70 n n 70 10 3260 n 5 70 n n 70 10 10 3265 n n n n 100 100 10 10 3265 n n n n n 10 10 3265 n n n n n 10 10 3275 n n n n n 10 10 3275 n n n n n 10 10 10 3280 n n n n n 10 10 10 3285 n n n n n 10 10 10 10 10 3285 n n n n n 10 10 10 10 10 3285 n n n n 10 10 10 10 10 10 <td< td=""><td>" " 3242 Fault gouges" " " " " " " "</td></td<>	" " 3242 Fault gouges" " " " " " " "
3255 1 3.5 70 10 10 3260 1 5 100 10 10 3265 11 11 11 100 10 10 3265 11 11 11 11 10 10 10 3265 11 11 11 11 11 11 11 11 3275 11 11 11 11 11 11 11 11 3280 11 <	Jette ""
3260 1 5 100 100 100 3265 1 1 1 1 1 3270 11 11 11 1 1 1 3275 11 11 11 11 1 1 1 3275 11 11 11 11 1 1 1 1 3280 11 11 11 1 1 1 1 1 3285 11 11 11 1 <td>41</td>	41
3265 n n n n n n n 3270 n n n n n n n n 3275 n n n n n n n n 3280 n n n n n n n n 3285 n n n n n n n n 3285 n n n n n n n n 3290 n n n n n n n n 3295 n n n n n n n n 3295 n n n n n n n n n 3295 n n n n n n n n n n 3295 n n n n n n n n n n n n n	Q. Lat. Silic. Ser. C. sono Anh S. UZ Pounh volts, pv dis & al volts to 3%
3270 n n n n n n n 3275 n n n n n n n n n 3280 n n n n n n n n n 3280 n n n n n n n n 3285 n n n n n n n n 3285 n n n n n n n n n 3285 n	some faultin
3275 n n n n n n n 3280 n n n n n n n n n 3285 n n n n n n n n 3285 n n n n n n n n 3285 n n n n n n n n 3290 n n n n n n n n 3295 n n n n n n n n 3295 n n n n n n n n 3295 n n n n n n n n	22 23
3280 n n n n n n n P- 395 166 2 n n 3285 n n n n n n n -	" " >in Qtz vns.
3285 " " " " " " " " " " " " " " " " " " "	62 22 dd
3290 m m m m m m m m m m m m m m m m m m m	12 23 24 15 15 15 15 15 15 15 15 15 15 15 15 15
3295 n n Meta'	
	1 Dia some cale wilts Annyd - e py < 2% dis & al vnlt
	V. MINOV H. Shring, cpy? very dis.
3295 3300 " " " " " " " " " " " " " " " " "	2-

.

Page No. 20 of 21 To 670 To 7500	Description	-		by dis & al. Frs to 5%		3305 - 3310°	3315 -3322) by to 8% dis.)	IN			TS-3348		some brecciation	TS-3363	very shred, by 4%	11 .	QTZ"vmlfs Shearing vnlts		11	" some Barite?	6	44	41 43	to 4% minor alt to minor brecclation.		 pranitic rock/and districts? minor breeziation, py to by
72-2		22 45	12	some Feld by		same as	same as	11	11 11	11 11	12 15			1	ch. sec big. dis & along	50	" QTZ"	11 11	17 17	11 11	11 11	3 .	62	or dis to Clav. min		9d
Project Hole No. Rotary Fr.	Rock Type	11 11	63 33	Very Shrd	6. 6. 3.			11 11	11	12 18	11 11		12 12	12 53	OTZ4ite?		17 17	11 11	11 11	11 1	53 - 53	13 68	45 45	Apilitic	13	ancton green
SAMPLE AND ASSAY LOG AL COPPER CORPORATION 10-24-72	ppm ppm Cu Mo	114 2					59 5					57 2		8			97 8					144 2				
SAMPLE ANI PINAL COPPER 	Assay Sample by No.	" P- 396					n P- 397					Н&Н Р- 398					" P-399					" P- 400				
Doug	Sample A Type I	. 45					11					Core F					11					17				
Sampled by	. % Rec.	23		=	64	100	11	100	u	11	11	95	100	11	86	96	96	100	95	95	95	100	98	100	8 (-	4
	Length Wgt. Core	11	. 15	5	6.5	M	5	5 Z	5	12	11	4.75	5	4	5.1	4.6	4.07	5	4.75	11	11	25	6.4	3.5	4	9
ov	Dist.		11 0	11 5	2 7	5 3	0 5	5 5	0 5	5 11	11 0	38	0 11	4 4	0 6	5 5	0 5 0	5 5		5 11	C 11	5 11	.5 6.5	5 3.5	4 6	5 6
Collar Elev Coord. (Survey) Coord. (Grid) Logged by	From To	3300 330	331	3310 331	3315 3322	3322 3325	3325 333	3330 333	3335 3340	3340 3345	3345 3350	3350 3355	3355 3360	3360 3364	3364 3370	3370 337	3375 3380	3380 338	3385 3390	3390 339!	3395 3400	3400 3405	34.05 3471	3411-53415	3415 341	3419 342

. .

1/20

				Ci TO			23		o	Q)													1
<u>12-2</u> <u>12-2</u> <u>of</u> <u>21</u> <u>10</u> <u>5500</u>	Des			Fault zone W/much Gouge.,e			some ch, alt of feld to clays		cutring values	n /cut by	DV 5.5% dis. & vhits minor	ring, anhy	£2 42	n n py to 8%	" " shearing py to 3.5	22	201 201 201		zzon Hole left caused and in	and budition	A second s			
Project Hole No. 7 Rotary Fr. Core Fr.	Type	11	11	11	e 6-	11	tic)	11	11	11	te?		12	11	:	23	22		ina to	6				
ά Ϋ ἀ Ŭ	Rock	F		t.	23	2.	Granit	2	t:	63	Diori		=	11	:	46	62		100					
ASSAY LOG CORPORATION		2					2						2	10	5	5	2		(6710'. RX				7 a 4.993770	
ASSAY	nd of Mo							-											+	-				
AND ER C	Dun	L4					52						52	35	116	301	384		2014	1				
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATI Date 10-27-72	Sample No.	P- 401					P-402						P- 403	P- 404	P- 405	P- 406	P- 407		16: 3"					
PIN	Assdy by	::					H‰H						63										 	
Doug	Sample / Type	. 11					Core						11						Casing	Ĵ				
d by	Rec.	11	11	E	tt	100	100	11	11	11	. 11													
Sampled by_	Wgt.																		20 BC			 		
51	Length Core	-1	2	22	5	5	5	35	11	11	11								S.			 		
y)	Dist.	2	50	2	5	5	5	11	41	4	11		; 		t:	4.		. 141	bollow					
Collar Elev. Coord. (Survey)_ Coord. (Grid)_ Logged by	t ot	3439	3435	3440	3445	3450	3455	3460	3465	3470	3475		3480	3485	34,90	3495	3500	Bottom	Note:					
	Еoл	3425	3430	3435	3440	3445	3450	3455	3460	Carl Street and	3470		34.75	3480	3485	3490	3495							

.

Drilling started at bottom of old hole, EP-1

т. т. ум т.

* 1

ist meta-sed bd. // to hole. pd1y.part., H&G, cut by Q. pd1y.part., H&G, cut by Q. . ph.FeOx, C&H al fre CaCO3, vntts, min.Mag, dis. hist bd.//to hole, py. al.shr cut by Q.Lat.ph. cutting schist, alt. of Bio & feld. Ch. dtz. vnlts. Ser. py. dis. in frs. to 1.5% to hole w/gouge bd_at angle to hole, gtz. vnlts., w/dis.pv.to 2%. 018. 608 flt. w/goug vnltus. by Q. monz, Otz. vnlts. ED Ph.to Equig. Ch SIL by cut by Q.monz. bto.1% min; 5 5meta-sed, Ch.S. A.Al.bd, to 24. hole, CaCO3 vnlts 13772 Description bde --A-62 Page No. 0 To To 6-1 6. -0-01-0 -01-0 100 Presp p min.mag Rotary Fr. 532 Project Hole No. 72-3 tout py. ee--0---8------4 -0-Obz. Jatite schist 34 st s Rock Type --6-6---: e-tu? e---P* 0-Schi . ţ. N 61---Gam Q.mont -co H D°d S °Dd -6×+ --8---8---200 6m 9m ------¢--å PINAL COPPER CORPORATION SAMPLE AND ASSAY LOG Mo ppm 5 2 00 10 5 100 5 412 632 496 ppm 371 493 809 50 Date 9-8-72 259 Sample P-260 P-265 P-263 P-262 P-264 P-261 No. ц Г H&H Sample Assdy à -e-----------Core doug Type --0---10 -----62.5 TOOL 00T Rec. 100 100 100 JOO 80 8.... 0-0-06 62 58 52 Sampled by. 06 8---65 60 06 Wgt. 5 10 T Length Core 4.5 7.5 9.5 20 10 00 10 5 10 + 01 D T O 20 5 20 10,5 5 5 5 0 Coord. (Grid) Dist. 07 OT OT OT 10 07 201 207 OT 0T 5 + 5 5 5 5 Coord. (Survey). 0 689 J 20 37 Collar Elev.-070 650 675 619 625 630 665 580 600 605 655 240 550 505 515 590 20 P 19 555 679 From 630 640 650 665 675 600 615 655 540 522 515 580 590 609 629 565 532 50

ć

• •

		36	610		(e.j.	ro.			T		Ep.	1	Ι,	-	3	5	2.5%		py.	· .	-	•	-	3	T	Ī
		Zos Lato	e. 22	na tak ban tahun napitika adrapata ika bar uni kuna diber da	Pr	14-1 0	1.0				Q. MORIZ. E	QTE:HC	0+ L V V - + C	VILLA ANT	py.dis.	- SALANYer	t.0 h01e	A A A A A A A A A A A A A A A A A A A	and. w/r	Ch 20, Ser	py.	at., And		e, ch, hp,	arkosic	Q. Monz.
Page No. ~ of To To	Desc	ining. Q. Wonz	vnltg., py.dis	0.40 Ch.2	d, Ch si) py di	, shr., Cl		46	34	by .	Letting			Ch Ap	13 0/ 10	Chapy.	. Cu.	cut by	feld.	V.dis	. , sch, Q. Lat	11	W/ gouge,	13	108
5-27		Containin	gtz, vnlt	1 23 0 23	br. , flte	(meta-sed) py.dis.k al to 3%. Gardo vults. b	80°, Sil'.	15 13	meta-sed.	11 . 11	e 37 e 3	pt. 01 Monz	11 11	11 11	<u> </u>	Q.No	dtz.vnlts.Ch. By	• min.gr	13 23	100	nafi	797 pr. pr	11 11	tit. Ing.	some metarsed	(arkosic)
Project Hole No. Rotary Fr. Core Fr.	Type	cia	N	1	site 2			4- 0-	e	11		101	=	=	chist		e	2	12	Latite	st		4.			
L I & Ű	Rock	Brecc	Otz.	1	andes			11	Qtzit		11		- 61	:	DC SC		Qtzit		11	Otz.L	Schi		61	Q. Mohz		Qtzite
NOIT																										
ASSAY LOG CORPORATION	Mo. ppm			2					2				2	Ì			2						5			
ER CO	cu. ppm			674		i e		1	846				564				248				1		247	-		
NAL COPPER (110 - 9/9/72	Sample No.			P-266					P-267				P-270				P-271						P-272			
PIN/	Assdy by								12				=				11						4-			
	Sample Type			11					2								12						:			
d by	% Rec.	100	96	100	98			95	96	100	3.5		11	95	85		100		11	11			90	90		95
Sampled by	Wgt.			-																						
	Length Core	2.5	7.8	3	11.5			9.5	4.8	10	. 11		ŝ	9.5	9.5		5		46	to	11		4.05	100		9.5
ey)	Dist.	2.5	to	m	12			10	5	10	11		Ś	IO	10		5		2	10			2	6		10
Coord. (Survey)_ Coord. (Grid) Logged by	To	692	700	703	212			725	730	740	750		755	765	775		780		785	793	108		806	815		825
Logo Coor	From	689.5	692	700	703			512	725	730	740		750	755	765		275		780	785	793		\$01	806		81.5

		1	· .						•0	14 - 12 M				0	•	F]t	·	Cby	2			ê			F	
To of	Description	a-seds, highly defo	Wonz. diklets.	ss.,4%py, Un.,sec.			cut by Q. Monz.	, '0	.9tz 37.	+ +	. No	" 871breccia	" bd // hole.	"bd 85 to hol	£na ∯era , ∯er	n nimin. f	" cut"by Q.La	v.min.	62	ura. Gore		"Q.Monz. di	" MnOx	E.	934.fltinfa	****
72-3		Schistmeta-	cut by Q	Jtz. vnlts. bio.	12	11	11	-	ta-sed., Ch. Ro.,		11	62	8 9	11	8 4 6	5-	山 東一	bd 77hold	11	Ст (с. ж.	42	11	23	23	9	13
Hole No.	Type	te, S		chist	22	- 72	:	22	temet	22	:	11	22	17	1	8 6	**	5	41	43	E	11	6 (6 8		11
ĬŔŰ	Rock	Qtzi		pC S	11	£3	45	11	Qtz	66	å å	11		11	3.6	6 ¥	1.	42	11	\$14 \$-	\$5.	s.	€~ 6-	4 8		2.4
TION								-					1													
CORPORATION	Mo Mg	2	- 					5					2					2					2			
ER 00	Cu ppm	566						597.					445				~	TT7		4			497			
9-14-	Sample No.	P-273					5	P-274					P-275					P-276					P- 277			
PINA Date	Assdy by							\$1										11				ė	12			
	Sample Type	'n						:					11					4 0					25			
d by	% Rec.	06		100	11	:		95	21	00	:	12	23	100	a- 8-	46	11	2	12	95	6.5	00	11	45		
Sampled by	Wgt.														-							<u></u>				
	Length Core	14.5		5	16	5- 0-	E	22.4	:	5	E	11		5	5		11		t	4.74	6- 6-	5				11
(y)	Dist.	5		2	4	11	E	20	5-1	::		:	15	va	27	Ы 6				E		u	:	:		4
Coord. (Survey) Coord. (Grid) Logged by	To	830		35	140	45	50	55	60	65	70	75	80	85	00	95	900	05	10	15	20	25	30	35		C.7
Coord. (Surve Coord. (Grid Logged by	From	825		830	835	840	845	850	855	860	865	\$70	875	830	885	890	895	006	905	010	915	920	925	930		935

i de si

State.

E-

ŀ

З

					and p																					
Гаде No. 44 of 7 То 1572	Description	6. 6.	-11	6- C-	py.to 3% min.(68 35 33	8 6 0	Guer Gar Gar Gar	41 41 54	: Arkosico	chist, bd 80 to ho	and and a second and a second and a second and a second a		12		" no Cpy.	12	0	n cuy by	22 23		, CaCo, vn Its, by to 5%	upy ,	÷.	l-sed, cut b u frs to 2	
72=3		6	12	11		26	22	11	du. 6-	metarsed		12	8- 8-	11	t.	11	4.2	55			22	Chaife.	V. MLD	22	Brkesigtmete DV dis and s	1
Hole No. Z Rotary Fr.	Type	41	11	1			2	ŧ	5	11	त्त् <u>र</u>	36	e	11	11	15	:-	1.	12	41	¢- *-	. zu	1		te	
TRO	Rock	15	42	:			41		52	t		11	6 D	11	11		22	E	6 6-	54	a	Q. Mo			Qtzj	
CORPORATION	n Mo			00 2						2			-		-	2					22					
DPPER (ppm			A						64.6						286					79					
07	Sample No.			P-278					-	P-279			·			P-280					P-281					
PINAL Date 9-	Assdy by									2.5						8-					11					
	Sample Type			11						11						2										
ed by	Rec.	1 00	90	11		100	33	11		11		6- 6-	11	12		43	e - 5	11	11	9 0-	60	100		95	100	-
Sampled by	Wgt.																									
	Length Core	25	1.5			5	E	E	:	:			2.5	=	11	11	11	29	11	22	4.5	5		5.75	44	
vey)	Dist.	Ъ	11	u		11	11	1	1	E		**	:	:	11	11	11	11	11	11	13 1	11		9	4	
Coord. (Survey)_ Coord. (Grid) Logged by	10	1.5	50	55		60	65	70	75	80		85	60	95	000	05	0T	15	20			m		1.4	45	
ۮۜٞڽٛ؈ٛۯ	From	0.10	91.5	950		955	960	965	970	075		980	985	990	995	1000	1 005	1010	1015	1020	1025	1030		1035	1041	

\$

i se di

201

「「「「「

		-																							
5	5	Sil Cacozé to 3%. v. min. Anv	9	t.	41			"Q.Lat	bd. Of. o90° th	" hole	to 1.5%, br.,	7 5		Gouge, CaCO2	A. D. Monz.			me clays. " T.S 112L				11	incl.	о стауз	sec. blo?
2-3 Page No.	Description	meta-sed, Ch, Si Otz vnlts. pv to	مر المراجع الم المراجع المراجع ا	8 2 6 2	25	13	11	32	41	6.	r v. fnly dis t ting. inc.in.C		12	Flting.	ont. Otz		c. biosêr.py	======================================	€ 5		4.00	fre gre	t. C. meta-sed, incl.		Ser, Clays lis & al vn
Project Hole No. <u>72-3</u> Rotary Fr. <u>537</u> Core Fr. <u>537</u>	Type	1	12	6. 5.	17			35	41 -	£.5	" pyt	17		cciath		11	atite se	4.5		- 11	22	52	ccia. Lat.	5	LatiteDy d
	Rock	Arkosic Qtzite	:	8- 0	43		11	- 11	11	#	11	11	1	Bre		:	Q. L	15	41 .	6 2	5	. 6-	Bre		C,
ASSAY LOG CORPORATION	Mo Mo		2					5					5						2						2
	Dp.n		1100					555					202						245		<u></u>			133	124
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATI Date 9-15-72	Sample No.		P-282			-		P-283					P-284						P- 285						P-286
PINA Date_	Assdy by		11					11					11						::						6 0
	Sample Type		E					11					5						11						=
Sampled by	% Rec.	60	94	100	11		:	:	95	11	:	60	95	100		12	11	100	:	u	u	45	:		100
Samp	h Wgt.								5				-20												
	Length Core	4.5	4.7	20	11	11	:	=	4.074	11	#	4.5	4.74	4		2	4	5	2		11	7	m		2
v. rvey) id)	Dist.	5		22	:			11	=	83		56	5	4		5	7	5	5	:	11	7	m	- Miles Para Para	2
Collar Elev. Coord. (Survey)_ Coord. (Grid) Logged by	Ê	50	0		65	70	75	80	35	90	95	1100	05	0		16	20	25	30	35	40	1.7	50		55
ۮٞ۠۠ڽٛؽؽ	From	1045	1050	1055	0901	1065	1070	1075	1080	1085	1090	1095	1100	1105		1109	116	120	125	130	135	14.0	147		150

10															
	12 20	1.5 S		44	2	149	P-291		11	:		di	11	80	1275
1	Ст. Фт.	0- Ca		e 0-						41		a	4.	75	1270
	¢ 8	Sian Biri		13						4.5		6.	:	70	1265
	6- 6-	11		11						11			=	65	1260
	r	42	-	2						5		:	11	60	1255
	n Py 19c	ŝš		41								11	11	55	1250
	5	÷.		8- 8-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	97	P-290		13	r.		:	:	50	1245
	11.	1		:			-			11		E	11	1.5	121.0
	22	4-		5						11		=	:	40	1235
	0-											\$ 0	11	35	1230
	MTN Pb.	41		4	22	333	P- 289	11	:	5.		11	n	30	1225
		13		48						11	1	43	÷:	25	1220
	fan Bon Gan	12		:						11		0 0	5	20	1215
	" Qtz. vnlts			27						33		6.5	55	50	1210
	82	11		6. 6.		2				=		44	6	0	1205
×	" inc.CaCCS			:						11			11	05	1200
		4.5		5-	~	86	P- 283	11	12	11		48	¢ ₩-	1200	1195
192	" T. S. 11	4.1		66						11		:	Ľ	95	1190
×.	44			53				· · ·		11		11	11	90	1185
	1			=						11		ŧ	11	85	1180
lt	a	đượ Ba		£.	2	197	P-287	6 6	44	11		t	: =	80	1175
12	" incrinalt	12		23						11		44	:	75	1170
	¢	11								11		22	41	7.0	1165
	ðu.					-				11		11	11	65	1160
-	vacuaptrdiscand al.	Ser.	Latitechav.	Qtz.						100		2	2	60	1155
	tion		Type	Rock	oM	Du Dpm	Sample No.	Assdy by	Sample Type	Rec.	Wgt.	Length Core	Dist.	ŕ	From
e	1372	To	Rotary Fr. 532	ΩΩ			-91-6-	Date		ed by	- Sampled by			rd. (Grid ged by	Loo Co
e .	9	11	Project	ΔI	CORPORATION		SAMPLE AND ASSAY LOG PINAL COPPER CORPORATI	NIG					(ey)	Collar Elev.	မီပီပိ
د نام - ا															
				a.											
														- () - () - ()	1. 1. 1. 1. 1.

	F=	1					- M	010					~												1	
72-3 Page No. 7 of 7 532 To 1372	tion	Ch., Dep, clay py dis & al sec. blop, clay py dis to 1.5%	" MINOR fltinë		1	23	" Otz vnlt	40 24	4 g		15		heta-seg, Crz vnlts,Ch, Ser bd 80 to 90 py al bd&dic to	3	intruded by	" diklets of	$\pi \rightarrow v.$ alt Ch,		* minor H.	54		is sood and gives	0			
Project Hole No. 72-3 Rotary Fr. Core Fr. 532	Type	tite											te po	m_								22ed His		-		
L L L L	Rock	Q. LE.	6-1 6-2	. 13	5	11	48	11	s	61	45	42	Arkos. Otzit		45	11	11		6	ê		left ed 2				
NOL	-																					Hole				
ASSAY LOG CORPORATION	oM oM					5					~					~			5			480				
ND ASS	ppm ppm		•			136		A			110					153			291			t adi				NUMBER OWN
SAMPLE AND ASSAY LOG PINAL COPPER CORPORATION Date 9-16-72	Sample No.			-		P-292					P-293					P-294			P-295			36				1
PINA Date	Assdy by			-							4.								بلد د			in bole				******
	Sample / Type					11		5			=					1.						Pasing	2			
by	Rec.	100	95	100	43		33	43	95	95	100	63 63	93		00	11	11	41	=	61.7 Ø1.7			<u></u>			
Sampled by.	Wgt.																					ce NO				
	Length Core	5	4.76	5	:		55	17	4.75	(R	5	6	6.5		5		13	=	3	Ţ		2m 310				
(Å)	Dist. I	5	11	11	11		11	11	1 11	5	11	to	1		5	E	6- 6-	E	3	2.	E.	Fag				
Collar Elev. Coord. (Survey)_ Coord. (Grid) Logged by	To	85	90	95	300	05	0	15	20	25	30	38	45		50	55	60	65	68	372	Bottom	Note:				
Collo Coord Coord Logg	From	1280	1285	1290	1295 1	1300	1305	1310	1315	1320	1325	1330	1338		345	350	355	360	365			•				

7

4 _94 B-

ESSEX INTERNATIONAL, INC.

1704 WEST GRANT RD., TUCSON, ARIZONA 85705 PHONE (602) 624-7421

November 24, 1971

Mr. Harold Ferrin P.O. Box 102 Mesa, Arizona 85201

RE: Pinal Copper

Dear Harold,

Per our discussions of last week we propose the following outline as a possible basis of negotiation and for presentation by you to the Board of Directors of Pinal Copper.

Initial Option Period

	Work Committment	
Start of first year	\$ 50,000 would include geology,	
	geophysics, drilling, etc.	
Start of 2nd year	65,000 cash payment	
Start of 3rd year	100,000 " "	
Start of 4th year	200,000 " "	

Purchase Agreement

Upon election to purchase a payment of \$1,000,000 for each 100,000,000 tons of mineable ore reserves would be made to Pinal Copper Co. Information confirming the ore reserve estimate would be provided the owners at the time of election. A minimum payment would be made if less than 50,000,000 tons of ore were proven. The schedule would be as follows:

Tons of Ore	
Proven	Payment \$
0-50 million	500,000
50-100 million	750,000
100-200 "	1,000,000
Over 200 "	2,000,000
Over 300 M	3,000,000
etc.	etc.

Because our initial contact on this property was through Guy Anderson, I am, via a copy of this letter, keeping him in-

formed of our discussions with you.

November 24, 1971

Mr. Harold Ferrin Mesa, Arizona

Enclosed is an Essex International, Inc. annual report and some other information on Essex that your Board may find interesting.

-2-

Regarding stock options in lieu of cash payments, this would require a corporate policy decision which cannot be determined at this time.

Very truly yours,

E. Grover Heinrichs Assistant Mgr. Exploration

ESSEX INTERNATIONAL, INC.

EGH:td enclosures

W. S. S. Laga

cc: H. Lanier P.I. Eimon Guy Anderson

PURCHASE AGREEMENT PROPOSAL

PINAL COPPER CO.

OPTION PERIOD

Start	of	1st `	Year	-	No Payment
11	11	2nd	"	-	\$ 65,000
11	11	3rd	11	-	100,000
11	11	4th	11	-	200,000

PURCHASE AGREEMENT SUMMARY

With election to purchase, the parties would pay \$1,000,000 for each 100 million tons of minable ore reserves. An announcement at the time of election would establish the reserve figures proven to date. Information confirming the ore reserve estimate would be provided the owners at the time of election. A minimum payment would be made if less than 50,000,000 tons of ore were proven. The schedule would be as follows:

Tons of Or	re	
Proven		Payment \$
0 to 50 Milli	on	500,000
50-100 Milli	on	750,000
100-200 "		1,000,000
Over 200 "		2,000,000
" 300 "		3,000,000
" 400 "		4,000,000
" 500 "		5,000,000
" 600 "		6,000,000
Etc.		Etc.

If at any time additional reserves are proven, additional payments would be made according to the above formula.

PINAL COPPER - OPTION PROPOSAL OPTION PERIOD BLACK PROPERTY PINAL COPPER TOTAL PHASE PERIOD PROPERTY WORK PROPERTY WORK PROPERTY WORK 3 Mo - * - * --25 K 1 and and * - * --9 mo -100 K 2 #125K 3 IYR \$25K \$100 K 4 IYR \$50K \$150K \$200K ALTERNATE PROPOSALS FOR PURCHASE OR ROYALTY PLAN I BUY OUT PURCHASE AGREEMENT AFTER 3 YR OPPON PERIOD WITH BUY-OUT PRICE AS FOLLOWS ! #1,000,000 \$2,000,000 \$3,000,000 PLAN TI RENTAL & ROYALTY. RENTAL WHILE NOT IN OPERATION # 50K #100 #150 ROYALTY 5% NSR ON Cu, Au, Ag, Mo * DURING INITIAL PERIOD WORK COMMITMENT WOULD LOVER BOTH PROPERTES.

November 24, 1971

Mr. Harold Ferrin Mesa, Arizona

Enclosed is an Essex International, Inc. annual report and some other information on Essex that your Board may find interesting.

-2-

Regarding stock options in lieu of cash payments, this would require a corporate policy decision which cannot be determined at this time.

Very truly yours,

E. Grover Heinrichs

Assistant Mgr. Exploration

ESSEX INTERNATIONAL, INC.

EGH:td enclosures

cc: H. Lanier P.I. Eimon Guy Anderson

PINAL COPPER - OPTION PROPOSAL OPTION BLACK PROPERTY PINAL COPPER TOTAL PHASE PERIOD PROPERTY WORK PROPERTY WORK PROPERTY WORK - * - * ~ 25k 3 MO * - * 100K -9 Mo 2 1 YR 25K 100K 125K 3 IYR SOK ISOK ZOOK 4 PURCHASE AGREEMENT - ANNUAL PAYMENTS UNTIL PROPERTY DEVELOPED 47 YR, JOK 200 K 2505 5THYR TOBK 11 1, GTYR 100K 7th YR 101K 11 ROYALTY PAYMENTS 10% RETAINED INTEREST IN EARNINGS FROM PORTION OF TOTAL ORE MINED FROM RESPECTIVE PROPERTES. OR IF PROPERTY NOT DEVELOPED A MINIMUM ANNUAL PAYMENTS UNTIL OPERATIONS START-UP, 100,000 To BLACKS & 300,000 TO PINAL OPTION FOR BUY-OUT. AT END OF ATH OPTION PERIOD. # 1000,000 \$ 2000,000 AT TIME OF DEV. 1/2 MLLION FOR EACH 10,000 TPY PRODUCTION

ESTIMATION OF PINAL COPPER ROYMITES. Nor ASSUME ANNUAL PRODUCTION, LBS 50000,000 100,000,000 TOTAL VALUE \$ 25,000,000 50,000,000 EARNINGS \$ 10,000,000 20,000,000 10% OF EARNINGS \$ 1,000,000 2,000,000 5% on NSR 1,000,000 2,000,000 25% OF EARNINGS \$ 2,5 mija 5 magn.

ESSEX INTERNATIONAL, INC.

1704 WEST GRANT RD., TUCSON, ARIZONA 85705 PHONE (602) 624-7421

November 24, 1971

Mr. Harold Ferrin P.O. Box 102 Mesa, Arizona 85201

RE: Pinal Copper

Dear Harold,

Per our discussions of last week we propose the following outline as a possible basis of negotiation and for presentation by you to the Board of Directors of Pinal Copper.

Initial Option Period

	Work	Comr	nittment		
Start of first year	\$ 50,000	would	include	geology,	
		geop	physics, c	drilling,	etc.
Start of 2nd year	65,000	cash	payment		
Start of 3rd year	100,000	11	11		
Start of 4th year	200,000	11	11		

Purchase Agreement

Upon election to purchase a payment of \$1,000,000 for each 100,000,000 tons of mineable ore reserves would be made to Pinal Copper Co. Information confirming the ore reserve estimate would be provided the owners at the time of election. A minimum payment would be made if less than 50,000,000 tons of ore were proven. The schedule would be as follows:

Tons of Ore	
Proven	Payment \$
0-50 million	500,000
50-100 million	750,000
100-200 "	1,000,000
Over 200 "	2,000,000
Over 300 "	3,000,000
etc.	etc.

Because our initial contact on this property was through Guy Anderson, I am, via a copy of this letter, keeping him in-

formed of our discussions with you.

0.2 66/1889 0 132 569 Т 1100 52 30-29-66 MESA 45 14 42-4V.0.286 to/0CV FOR 530 40 69-31 6 8-6 6-6 4-4 1. 0 8-82-1 FIRST 200 20-3345544 - 13.90 3345544 - 13.90 AV. 0. 42 0/06J -10 62 3-6 5-1 0-4 35-3-4 3-3 2 1. 3 5 0-1. 1. 1. 1. 1. 3 - 33 3 28-27 3 26 13.90 31 82 2 8 35-21-28-23-24-29-30-2 4-29 14-10-17-1 2 11 1 4 1 5 1 1 5 1 1 8 -5-8 -8 5 4 8 - $\begin{array}{r}
 8 - \\
 1 2 - \\
 1 6 - \\
 9 - \\
 1 1 - 65 \\
 1 8 8 9 T_{66}
 \end{array}$ 8

History Prince Copper 4/27/71 (Pine/ Coppor Co.) Report on the Greenback Mining Company Oct 24, 1923 F.H. Royer I. (A) I mining claims + 2 thertoins in one group Gold (B) 52 clains taken up shound breenback & 2 1915 Outo berring gt & vein 5-12 wide atting anderite conderte VEINS schist - 3 veins striking nearly E-WEdip 250 South. Vens some dem, E degree minerolization' Known to 96 depth. Gold Velves @ 2002) 8.80 to 97.60/ton Stated Semples 194.40 -428, 1094-90 / ton. 2 2 other E-w vins with some AU Arport to Greenback Mining Company Los Angles California I April 3, 1926 by C.W. BOTSFORD A) Company has Tochins covering veins B Boology - Pinst Shist intrided by gtz monenite prophyty. (DSothing property purphyry covered by schist (100f) Schist continues several miles to south striking & N/70°E with dips to South. 2) Perphysy at by dikes & opepthyses of more acid" (granite spittes, pequalites & gtt. Vein dikes) tocks. (?) West 1/2 hightidge on the Silver Queen claims is hard dense porphyny (Neck of intrusive), Hosthack (schists) the intensely shuffied. Inthision dome shoped with uppersurface at hyveins which continue into schist. Estern pirt destrict cut by many smell dites; manyahil follow Vein fissures Erre younger them mineralizition. 3/2 + branching Verm Systems NTOE to NTON cdip 45-50° South - West part property, large rein strikes

FILE MEMO

April 19, 1971

KERR-MCGEE - PINAL COPPER

Ed Jones, Exploration Manager, Kerr-McGee, called April 19.

He advised that in conversation with Guy Anderson regarding Pinal Copper, Guy had informed him that we are also interested and Guy suggested that Jones speak to me. Kerr-McGee has done sufficient exploration work on the Pinal to indicate that they are interested in the property.

I suggested to Jones that Kerr-McGee, Essex, and possibly El Paso Natural Gas may make logical partners in joint exploration on the Pinal property. El Paso, Kerr-McGee and Essex are the three companies that are currently interested in the property; thus a joint approach could reduce competition and make a lower cost entry possible. Joint development also would reduce dollar risks involved in the exploration.

It is my intent on projects of this type to spread the risk of capital investment but retain control of all the copper produced plus the dollar return on our equity.

H.Lanier

cc: P.W. O'Malley J.R. O'Hare Kerr-McGee file

NOTE: MET WITH GARTH BLACK 4/20/7) REGARDING HIS PROPERTY ADJALENT TO THE PINAL. SEE LILE MEMO.

April 26, 1971

TO: H. Lanier

FROM: P. Eimon

SUBJECT: Pinal Copper

I talked to Charles Sewell and he agreed to gather this week,all of the available data concerning the Pinal Copper property. He will present this data to me on Thursday or Friday.

Since some of this data will be of a confidential nature, he will present it in the form of notes and oral discussion from which I will produce an informal report on results of previous drilling and exploration work by other companies on the Pinal prospect.

P.I. Eimon

PINAL BENTON BLAKE ATTNY FOR PINAL BOARD. TED HOPKINS. - PRESIDENT. MARVIN LARESON Jim Arens. (mor.). GEO. WILSON (LINCAGO ASTNI) CRONNEWIT (GEOLOGIST CASGEMOR). 1,4 MILLION SHARES eNTSTANDING. PAR VALVE SOC WILSON & HUPKING OWN OR CONTROL 2/3 ASTOCK 120 STOCK HUDSR. Est 30-40K SUBJES BY STEVENBLACK. Black has nantith mege Final offered to regoliate jointly. Guy Has contract to REPRESENT OWNERS.

FILE MEMO

April 20, 1971

PINAL COPPER - GARTH BLACK

Paul Eimon and I met with Garth Black and James H. Russell April 20, 1971 to review their holdings in the Pinal Copper area.

There has been some realignment in the relationship of Garth Black and other parties. Steve Black, Garth Black, and J.H. Russell (a real estate broker from Kansas City) are co-holders of a company called Russ-Lee Inc.) an Arizona corporation. In addition to real estate held in Kansas City this corporation holds the mining property in the Papago Reservation shown in yellow, green and red on the mine map that they supplied. They also have organized Lee Explorations Inc. which holds approximately 5% of the Pinal Copper stock and an additional area of 25 claims coded in blue on the property map. These claims are adjacent to the Pinal Copper. This company also includes a Holiday Inn in Corpus Christi, Texas. Garth Black is president of both corporations and Steve Black is on the board.

Black was proposing that they gain control of 51% of Pinal Copper with the intent of delivering it plus their holdings to Essex. I advised them that we are currently negotiating with Guy Anderson who represents the owners and we prefer that he not initiate action with the stock holders until we have had a chance to assess our ability to reach an agreement with the owners. I am to meet with Black prior to my next meeting with Guy Anderson.

In a discussion regarding the property option arrangement I suggested a one year entrance-free option with a work commitment with a payment for the next year and a larger payment for the initiation of the third year. Although I recommended a buy-out, I did indicate a willingness to consider a retained interest if the property payments were less. Both Black and I are to consider proposals which we will discuss at our next meeting.

Black reported that Kerr-McGee had offered the Pinal owners a \$50,000 entrance and payments of 1/2 million dollars per year. He claims that he can substantiate this with documents. Kerr-McGee has done some work on the property and must know considerably more than we are aware of.

FILE MEMO

April 19, 1971

EL PASO NATURAL GAS RE: PINAL COPPER

Called C.L. Perkins, Senior Vice President of El Paso Natural Gas, in regard to his interest in Pinal Copper.

Perkins advised me that they have had an interest and have held some position with P hal Copper, holding a small percentage of the Pinal Copper stock. He was not aware that the litigation on Pinal had been resolved but indicated that he would check with the geologist who had been handling the investigation. He stated that he would consider the possibility of a joint venture with Kerr-McGee and Essex. This of course would be predicated upon the staff's report of the position of Pinal as an exploration target. He is to call back once he had made a review.

H.Lanier

cc: P.W. O'Malley J.R. O'Hare

July 22, 1970

TO: H. Lanier

FROM: E.G. Heinrichs

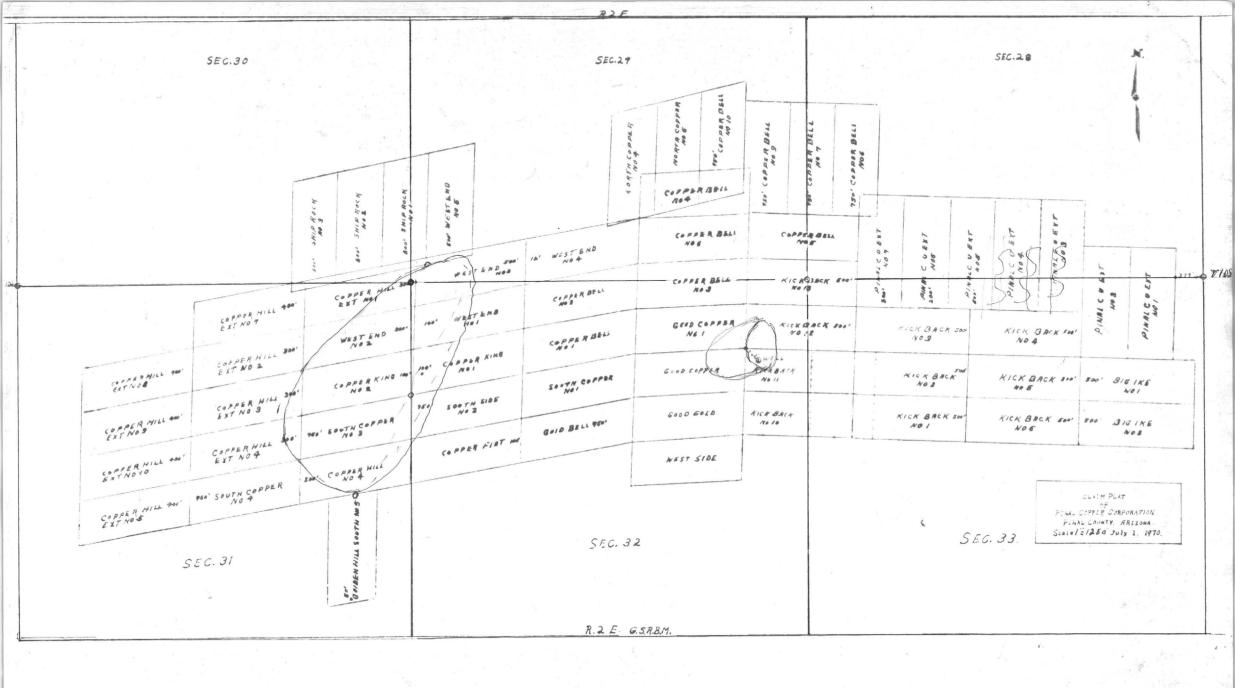
Copper Coin

Cinel by

E.G.H. phoned Guy Anderson July 13, 1970. Guy said the Copper Coin people backed out of a deal with him and so he is not interested in the Copper Coin anymore.

Greenback

The Greenback is still tied up in litigation. Guy Anderson suggested Essex paying off the third party. I countered to say that we do not at the moment have any idea of the value of the property. We are at the moment trying to develop some info.


We plan to send a man to the field for two or three days to develop a feel for the property, and also search the files and contact Harold Ferrin, former president of Pinal Copper Co., who reportedly has much data on the property.

I know Ferrin personally and, confidentially, I suspect that most of his information will not contribute much but we should make an effort to evaluate the data, nevertheless.

É. Grover Heinrichs

EGH:td

cc: D. Cooley C. K. Chase

en en

PINAL Copper

HEINRICHS GEGEXPLORATION COMPANY

ROAD, TUCSON, ARIZONA, 85703. P.O. BOX 5671. PHONE: (AREA CODE 602) 623-0578

July 30, 1970

Mr. Howard Lanier Manager, Copper Processing Operations Room 222, Sun Building 2030 E. Speedway Tucson, Arizona 85716

Dear Mr. Lanier:

Pursuant to your request I examined the group of claims variously known as Greenback, Pinal Copper and Pinal They are located in the Papago Reservation in Grande. sections 27, 28, 29, 30, 31, 32, 33 and 34, T. 10 S. R. 2 E.

I cannot recommend this property as an oxide copper property. Some oxide or silicate copper is present but not enough or over large enough area. There is some potential present for a sulfide deposit however. A half dozen I.P. lines should answer this question. There may also be some gold potential at the Greenback Mine itself but probably on a small scale.

The claims are well marked but only approximately as shown on the map provided. Other claims lie to the south of Here aconto a contra ' this group.

Respectfully, HEINRICHS GEOEXPLORATION COMPANY

Donald B Cooley

Donald B. Cooley Senior Geologist

DBC/re:

ENGINEERING CONSULTANTS AND CONTRACTORS. GEOPHYSICAL, GEOLOGICAL AND ECONOMIC APPRAISALS.

GREEN boek RE: Indian Ceases 5-7-70 Vernon Smith 299 6276 Prospecting Perif So.co
 Brospecting Perif So.co
 Meet with Borger & Snith Regotienting Non exclusive Prospecting Remit Set of 4 Send to U. Saith Tribal Couran Tou Sequedo Lucero Supt. Anecie 11820 11980 -2.12 388435 0

640 3000 3 2500 2500 Don' Honmere 385 4138 \$10% ft. 807 8575 200 Papago VerNow L. Smith 299 6276 home Eduard B. Berger Edward B Berger 623 6355 Transomerica Blg. Suite 500 Vernon B. Smith 299-6276

Greensback Pinal Copper Co. MARUÍN LARSEN Phx, Engineer 60 American Engineering 2799369 Benfor Blake Phx. Lower 2588483 Legal Cource 2200 N. CentRAL Ave Phx. 85004 Next Montelay will pure appeal

Memo

8-18-70

PINAL COPPER HAROLD Ferrin 1-985 1760 P.O.Box 102 Mesa AZ. 85201 Heard in Oct. Still in court CASE reopened

how thorn Black ro or aros R 50 emp Copper