

CONTACT INFORMATION Mining Records Curator Arizona Geological Survey 3550 N. Central Ave, 2nd floor Phoenix, AZ, 85012 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the Grover Heinrichs Mining Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

UPDATING THE GEOLOGY AND STRUCTURAL ORE CONTROLS

AT SILVER BELL, ARIZONA

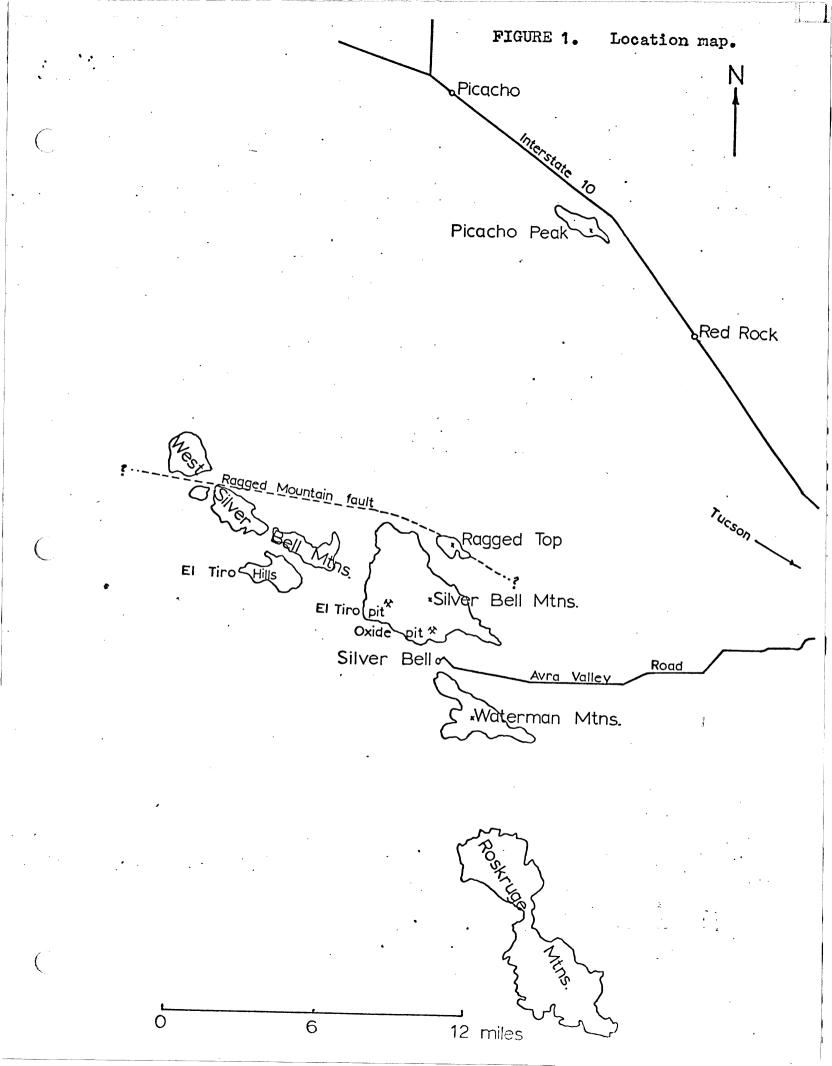
by Barry N. Watson ASARCO Geologist

A talk to be presented to the Mining Geology Division of the Arizona Section of A.I.M.E. on May 20, 1968.

One of the more complete stratigraphic sections in southern Arizona can be pieced together in the Silver Bell area. Much of the geology has been worked out by ASARCO geologists, while a few important areas have been mapped by students as thesis problems. Other portions of the Silver Bell area have yet to be mapped in any kind of detail, and some of this yet-uncharted geology could well be critical to a better understanding of the complex Mesozoic and Cenozoic stratigraphy.

It is my strong belief that a knowledge of certain of the stratigraphic units in the Silver Bell area--their lithologic characters and structural settings--would be of considerable help to field geologists dealing with similar phenomena elsewhere in southern Arizona. Parts of the Silver Bell stratigraphic section are accessible only by washes or somewhat obscure truck trails, and other portions of the section are on, or readily reachable only by passage through, private property owned by ASARCO.

In the following, I will attempt to briefly describe the geologic history of the Silver Bell area, with particular emphasis on the Mesozoic Era. My knowledge of the area has been greatly enhanced through field excursions and conversations with Harold Courtright, Kenyon Richard, Jim Briscoe, Craig Clarke, Chuck Haynes, Nick Nuttycombe, Joy Merz, Fred Graybeal and Dr. Willard Lacy. I must take, however, the responsibility for the interpretations drawn herein.


Figure 1 is a location map showing the principal topographic features mentioned below. Figure 2 is my diagrammatic representation of the Silver Bell stratigraphic column.

PRECAMBRIAN

A Kana

Pinal Schist

The only outcrop of the basement Pinal Schist known to the author in the Silver Bell vicinity straddles the El Paso Natural Gas pipeline road about two miles east of Ragged Top. Relationships with other rock units are obscured by cover, except on the south where the schist is bounded by a mid-Tertiary dike filling the major WNW-trending Ragged Mountain fault.

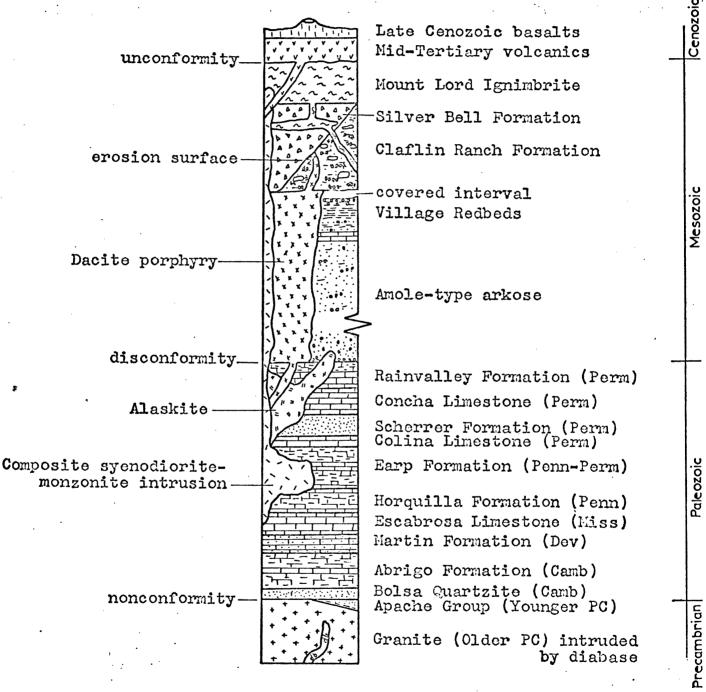


FIGURE 2. Diagrammatic geologic column of the Silver Bell area. Maximum known thicknesses for Paleozoic and Mesozoic rocks are shown. Scale of column: 1"=2000'.

Precambrian

Many fragments (ranging up to boulder size) of Pinallike schist are seen in Cretaceous sediments just south of Ragged Top, indicating the presence of a considerable area of that schist at the surface in the near vicinity during the Laramide igneous activity.

Granite

A coarse-grained granite is found extensively to the north of the Ragged Mountain fault. Large and numerous quartz grains--frequently.25 inch in diameter--are set among pinkish crystals of feldspar and clumps and books of biotite. In many places orthoclase porphyroblasts up to an inch in length are common. This granite megascopically resembles the Precambrian Oracle granite seen near the town of Oracle.

Paleozoic sediments in the Waterman Mountains southeast of Silver Bell are also underlain by porphyroblastic granite.

Apache Group

Younger Precambrian Apache Group metasediments lie on granite just northeast of Ragged Top. Locally more than 200 feet thick, these south-dipping beds are sharply cut off to the south by the Ragged Top intrusive which wells up along the Ragged Mountain fault. The Apache Group stratigraphy here is not well worked out, but it appears as if a few tens of feet of probable Pioneer Formation (mixed sandy and shaly beds) are overlain by 2-3 feet of Barnes Conglomerate, which is in turn overlain by thin-to moderately thick-bedded quartzites of the Dripping Springs Quartzite.

Apache Group metasediments are missing in the Waterman Mountains where McClymonds (1957) notes Cambrian Bolsa Quartzite to conformably overlie basement granite.

Diabase

Well-altered diabase of possible Precambrian age irregularly intrudes the granite on the northern slopes of Ragged Top. As it is found only within granite, it's relative age cannot be stated with certainty. The principal period of Precambrian diabase intrusion in southern and central Arizona is post-Apache Group.

PALEOZOIC ERA

The Paleozoic stratigraphy of the Waterman Mountains has been deciphered by McClymonds (1957) and Ruff (1951) who mapped a well-faulted pile of limestones, quartzites, siltstones, and shales amounting to a thickness of 4,400+ feet. In the Silver Bell Mountains, Paleozoic stratigraphy was unravelled by Kingsbury, Entwistle and Schmitt in 1941 in a private report to the American Smelting and Refining Co. Merz (1967) undertook the difficult study of the altered and mineralized Paleozoic sediments on Union Ridge east of ASARCO's El Tiro pit. The alteration and mineralization of these Union Ridge sediments will be described in the next paper this morning. The Paleozoic section in the Silver Bell Mountains is well faulted, locally intensely altered, and generally inundated by various Laramide intrusive units. Although each of the Paleozoic periods represented in the Waterman Mountains also show in the Silver Bell range, the section in the latter is obviously incomplete. A brief tabulation of units with thickness estimates is presented below:

In the El Tiro Hills section of the West Silver Bell Mountains, Clarke (1965) mapped 1,200+ feet of uppermost Permian sediments. Approximately 300 feet of quartzites and dolomitic limestones belonging to the Scherrer Formation are overlain by 420 feet of Concha Formation Limestone and 4550 feet of Rainvalley Formation limestone and argillite. These Permian rocks protrude from alluvial cover and are overlain by Mesozoic sediments.

MESOZOIC ERA

Amole-type arkose

A clearly exposed contact between Mesozoic and Paleozoic sediments is found in the El Tiro Hills where Clarke (1965) has mapped an estimated 5,000+ feet of probable Cretaceous Amole-type sediments overlying Permian Rainvalley rocks. The basal Amoletype units, lying on a disconformity, is a massive arkosic conglomerate containing rounded quartzite cobbles up to several inches in diameter. This unit of the Cretaceous (?) is several feet thick; the remainder is generally more thinly bedded.

Hayes and Drewes (1968) consider the Amole Arkose of the Tucson Mountains to be more or less a time-equivalent of the lower Middle Cretaceous Bisbee Group sediments. If the Amoletype materials in the El Tiro Hills can be considered correlative with the Amole Arkose, then Clarke's basal quartzite pebble conglomerate qualifies as a far-western equivalent of the basal Bisbee Glance Conglomerate. The presence of Cretaceous (?) beds lying disconformably on the uppermost Permian Rainvalley certainly suggests that the Silver Bell area did not experience, at least locally, the degree of structural unrest manifested farther to the east.

Another interpretation suggested by the near-conformable nature of the Paleozoic-Mesozoic contact related to recent U.S. Geological Survey recognition of Triassic sediments in southern Arizona. Possibly the hiatus between Permian and Mesozoic deposition is not as great as might be thought, and the lowermost Amole-type sediments are of Triassic age? A few tuffaceous beds are scattered through the Amoletype arkoses, indicating periodic volcanic activity in the general region. Red-colored shales and conglomerates are found here and there through the sequence and are most prevalent in the upper portions. A 20-30-foot thick sandy limestone occurs near the top of the exposed older Cretaceous beds.

The Amole-type sediments are overlain in angular unconformity by interbedded tuffs and coarse clastic sediments of the Claflin Ranch-type. A similar mid-to late Cretaceous unconformity has been noted elsewhere across southeastern Arizona. It is felt that this unconformity reflects initial upheaval related to Laramide deformation.

Amole-type arkoses, conglomerates and sandstones also crop out in the valley between the Waterman and Silver Bell Mountains. Immediately overlying the arkoses near the southeast corner of the older Silver Bell tailings dam is a limestone unit probably exceeding 200 feet in thickness. Donald Bryant of the University of Arizona was able to identify recrystalized pelecypods here as of definite Cretaceous age. Outside of the Bisbee Group Mural Limestone, this localized unit is probably the thickest Cretaceous limestone known in southcentral Arizona.

Village Redbeds and red conglomerates

A sequence of red-colored clastics is found overlying the limestone unit and Amole-type arkoses south of the Silver Bell tailings dams. These clastics, which also underlie Silver Bell village, are locally several hundreds of feet thick, but faulting and alluvial cover prevent thickness determinations. The author originally considered this unit to be an equivalent of the Recreation Redbeds of the Tucson Mountains. However, detailed mapping plus radiometric age-dating have recently proven the Recreation Redbeds to be of pre-Amole age, and evidence is now overwhelming that red coloration represents restricted environmental conditions that could, and do, appear at various times throughout the Mesozoic. Consequently, I am here designating the Cretaceous redbeds and red conglomerates near the Silver Bell townsite the "Village Redbeds".

In places redbeds and light-colored Amole-type arkoses are found interbedded, suggesting a somewhat gradual transition from the Amole to the Village environment. Several hundred feet of red silts, sands and arkoses occur in the lower portions of the Village Redbeds and are seen to grade upward to red conglomerates. At first these conglomerates contain only sedimentary detritus. Higher in the sequence igneous materials begin to appear, however, and in the uppermost known portions the red conglomerate consists almost entirely of purple andesitic fragments set in a detrital matrix. Deformation of an ancient Silver Bell landscape and a gradual increase in volcanic activity is readily evidenced in the continuing deposition of the redbeds and red conglomerates. Thus the transition from normal Cretaceous subaerial sedimentation to coarse and rapid Laramide accumulation is not always marked by an obvious stratigraphic break. The Village red conglomerates are cut off by a major WNW-trending fault in the tailing pond area, and their relation to overlying units is not presently known.

Claflin Ranch Formation

The Claflin Ranch Formation is something of a catch-all term, and the rocks it represents are not limited to any one specific time of deposition. The formation represents a type of sedimentation associated with a terrane undergoing volcanic upheaval and rapid erosional deformation. Thus, in the Silver Bell Mountains where Richard and Courtright first used the name (1960), the conglomerates, mudflows, landslide blocks, aeolian tuffs, water-lain tuffs and pyroclastic layers included within the Claflin Ranch Formation have ambiguous relationships with associated volcanic units. They are pre-dacite and post-dacite, pre-Silver Bell andesite and post-Silver Bell andesite. In the West Silver Bell Mountains Claflin-like conglomerates are interbedded with pyroclastics and overlie earlier Cretaceous sediments by angular unconformity.

The thickest continuous Claflin Ranch sequence in the Silver Bell Mountains--approximately 1800 feet--occurs southwest of Ragged Top. This accumulation is, at least in good part, pre-dacite porphyry (the earliest of the Laramide volcanic and sub-volcanic rocks in the Silver Bell range). Coarse, greenish clastic materials megascopically identical with parts of the Claflin Ranch Formation are found as a matrix of the Tucson Mountain Chaos in the Tucson Mountains. Claflin Ranchtype rocks also are seen in roadcuts north of Sonoita along Arizona State Highway 83.

It seems reasonable to expect that the Claflin Ranchtype of surface accumulation of detrital and volcanic debris might be found throughout southern Arizona wherever Laramide volcanic piles exist. Such depositional sequences--seemingly thickest in earlier Laramide time--would run the gamut from fairly thin-bedded sands to chaotic masses of landslide-block accumulations.

Alaskite

Richard and Courtright (1966), in accounting for the WNW-striking zone of alteration at Silver Bell, conclude that "indirect evidence suggests a fault representing a line of profound structural weakness existed in this position prior to the advent of Laramide intrusive activity." This line is referred to as the "major structure." They go on to note that this major structure "was largely obliterated by the Laramide intrusive bodies, but it effected a degree of control on their emplacement, as evidenced by their shapes and positions."

The first indication of activity along the Silver Bell fault zone came in early Laramide time with the intrusion of a coarsely granitoid alaskite along the southwest side of the major structure. This alaskite, which contains a very low ferromagnesian mineral content, intrudes Paleozoic sediments and Cretaceous Amole-type arkoses in the El Tiro area. Aplite dikes are found through the alaskite, and, locally, fine-grained border phases of alaskite are found in contact with other rock units.

The alaskite is one of the principal hosts for the later porphyry copper mineralization. This coarse-grained felsic rock locally shows high chalcopyrite-to-pyrite ratios.

Dacite porphyry

The dacite porphyry is a sub-volcanic rock characterized by numerous rounded or triangular quartz "eyes" set in a very fine-grained matrix. Orthoclase and sanidine phenocrysts, vague but consistent flow structure, and up to 20% of xenoliths are also commonly seen. Chemically, the dacite porphyry is more accurately a quartz latite porphyry.

The dacite occurs extensively northeast of the major structure in the form of sills and dikes within Paleozoic and Mesozoic sediments. The largest body of the porphyry-a sill + 3,400 feet thick--occupies the stratigraphic interval in the Silver Bell range proper where Amole-type arkose should occur. This sill is floored by Paleozoic sediments and roofed by an 1800-foot sequence of Claflin Ranch materials. The dacite-Claflin Ranch contact is gradational over several feet, but dikes of dacite porphyry are found locally in the overlying Claflin Ranch beds.

An explosive history for the dacite porphyry is strongly suggested by the numerous xenoliths, the large fragments of quartz, and the shards of former glass in the matrix. The nature of the rock is believed to reflect an emplacement by fluidization in the following manner:

The gas-and fragment-charged dacite porphyry magma (actually quartz latite in composition, suggesting greater viscosity and more explosive potential) rose along the Silver Bell fault zone into Paleozoic strata. The higher the porphyry magma ascended, the more the confining pressure decreased, causing exsolution of gases and thus lending an explosive and dilative nature to the intrusive material.

Its extension to the southwest blocked by the large body of alaskite, the dacite porphyry welled up, sending small dikes and sills northeastward into the Paleozoic beds. Damp Amole-type Cretaceous (?) sediments were reached and more gas evolved. The magmatic material, expanding constantly, spread laterally to the northeast in the weak Cretaceous (?) sediments. Dilation occurred, as did the incorporation of fragments broken by churning gas action. The dacite porphyry probably surfaced in one or more places, venting gases as it did. Gas also escaped laterally through the just-formed sill and vertically into overlying Claflin Ranch sediments. The heat and vapor action altered the immediately overlying quartzo-felspathic clastic sediments, giving rise to the gradational contact seen today.

The dacite porphyry was a poor host rock for porphyry copper mineralization because of its flinty, "tight" nature.

Silver Bell Formation

The Silver Bell Formation (Richard and Courtright, 1960) consists of laharic, autobrecciated, and intrusive andesitic to dacitic breccias, andesitic to dacitic flows, and andesitic intrusions. These materials overlie Claflin Ranch sediments and dacite porphyry in the Silver Bell Mountains. The rugged nature of the basal Silver Bell contact and the fact that it locally lies on unroofed dacite porphyry points to a period of rapid uplift and erosion following intrusion of the dacite porphyry sills.

Purplish Silver Bell-type breccias are seen to be interlayered in places with overlying Mount Lord Ignimbrite. Such a transition from andesitic activity to more felsic and explosive volcanism is seen throughout the world and is commonplace in the Laramide rocks of southern Arizona and southwestern New Mexico.

It is believed that the Silver Bell Formation is roughly correlative with the Demetrie Formation of the Sierrita Mountains, the Picacho Peak volcanics (Briscoe, 1967), the Owl Head volcanics, and that portion of the Cloudburst Formation north and east of the San Manuel mine.

Mount Lord Ignimbrite

A welded ignimbrite lithologically similar to, and stratigraphically a time-equivalent of, the Cat Mountain Rhyolite of the Tucson Mountains overlies the Silver Bell Formation in the Silver Bell Mountains. This quartz latitic ignimbrite is up to 800 feet thick, including an 80-foot thick cap of lithic vitric tuff. As Silver Bell Peak was formerly known to residents of the area as "Mount Lord" and since the peak is composed of the pyroclastic unit, the name "Mount Lord Ignimbrite" has been given to this Cat Mountain-type unit.

Intrusive ignimbrites--genetically related to the Mount Lord Ignimbrite, and megascopically and petrographically identical with it--occur as dikes and sills in the underlying Silver Bell Formation and dacite porphyry. These feeder materials once en route to the surface spread along bedding and formational contacts, apparently when vents became choked. The Cat Mountain Rhyolite of the Tucson Mountains evinces an average age of 68 million years (Damon, 1968), and it is felt that the Mount Lord Ignimbrite is of similar age.

Syenodiorite porphyry

The syenodiorite porphyry is an early and somewhat extensive pyroxene-bearing phase of the composite intrusive thought to be related to the copper mineralization at Silver Bell. Later phases of this composite intrusive are monzonitic and quartz monzonitic. The syenodiorite porphyry is found principally in the southeastern portion of the Silver Bell Mountains. It occurs as massive bodies in Oxide pit (where it was previously called both "andesite" and "dacite") and east of Oxide pit along the major structure, and is found as east-trending dikes north of Oxide pit in the mountain range.

The syenodiorite porphyry is the best host rock in Oxide pit. It shows the highest primary copper sulfide content of any of the igenous rocks at Silver Bell and has allowed precipitation of a substantial chalcocite blanket.

Only occasional dikes of syenodiorite porphyry are seen in El Tiro pit.

Monzonite porphyry

The later monzonitic and quartz monzonitic phases of the composite intrusion are found as massive bodies scattered along the major structure. They occur also as generally east-trending dikes in the mountain range to the northeast of the major structure.

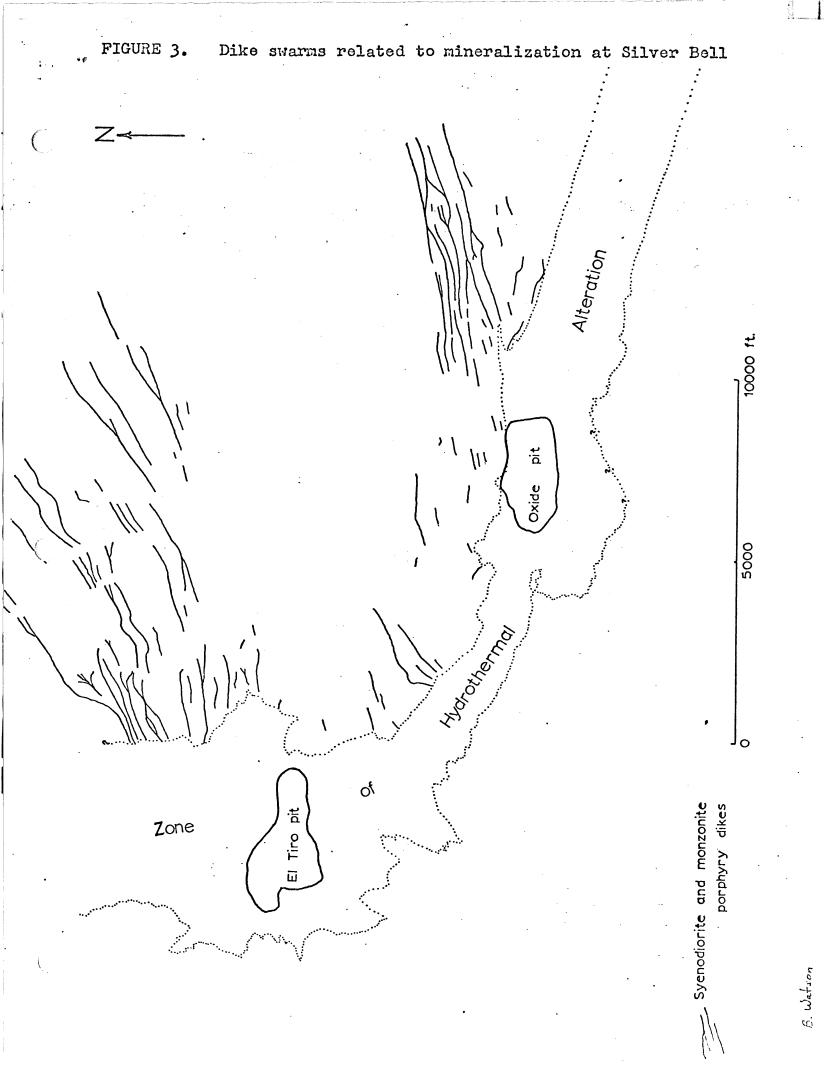
The principal porphyry copper mineralization followed emplacement of the monzonite porphyry, and a zone of alteration was superimposed on the major structure. K-Ar age-dating (Mauger, Damon and Giletti, 1965) has shown that the solidification of the monzonite porphyry and the subsequent hydrothermal alteration occurred at approximately 65 million years and within a short enough time span so that, considering the limits of error of the age-dates, the two events are radiometrically indistinguishable. I do not mean to imply here that the Silver Bell deposits are to any great extent syngenetic as has been suggested recently (Mauger, 1966). It may be that a small amount of chalcopyrite became trapped as discrete grains in the monzonite magma at the time of solidification. The great preponderance of copper mineralization, however, was emplaced in the various host rocks through veins, veinlets, and hairline fractures with values diffusing into wallrocks, possibly with the aid of a certain amount of igneous rock recrystallization.

It is interesting to note that both the Oxide and El Tiro orebodies occur at structural intersections (see Figure 3). Oxide pit is located at the junction of the WNW-trending major structure with an ENE-trending swarm of syenodiorite and monzonite porphyry dikes. Similarly, El Tiro pit exists at the junction of the major structure with a northeast-trending swarm of monzonite porphyry dikes.

CENOZOIC ERA

It is preferred here to set the Mesozoic-Cenozoic time boundary at 63 million years as defined by Folinsbee, Baadsgaard, and Lipson (1961). This allows the Silver Bell mineralization to fall at the end of the Cretaceous Period.

Regional northeasterly tilting of 200-300 occurred sometime between the emplacement of the composite Laramide intrusion and the mid-Tertiary volcanism. It probably was a result of late Laramide upheaval. This tilting, shown by the present orientation of Laramide depositional units, appears to have taken place by rotation of WNW-elongate, fault-bounded blocks in the Silver Bell area.


The mineralized rocks at Silver Bell were exposed to weathering and probably supergene enrichment in early Tertiary time. This is strongly suggested 3 miles east of Oxide pit where pieces of leached capping were found in a conglomerate immediately underlying an andesite flow dated at 28 million years (Damon and Mauger, 1966). A mid-Tertiary period of rhyolitic to andesitic volcanism evinced widely over southern Arizona probably covered and thus preserved the Silver Bell mineralization. This mineralization has been exhumed in more recent times and is presently undergoing destruction through weathering processes.

North-northwest-trending quartz latite porphyry and andesite porphyry dikes of the mid-Tertiary volcanic epoch cut all earlier rock units in the Silver Bell Mountains. The quartz latite dikes have a strangely discontinuous line of outcrop which is caused not by faulting, as has been previously suggested by Schmitt (1941), but by intrusion into a very broken and faulted terrane. A few of the andesite porphyry dikes are conspicuous in El Tiro pit where they are locally collectors of green copper oxide.

The Ragged Top Latite Porphyry dated at 25[±]1.0 million years (Mauger, Damon and Giletti, 1965) intruded the prominent Ragged Mountain fault which had dropped Laramide rocks on the south some 5,000-7,000 feet against Precambrian granite. Andesitic and rhyolitic flows of probably similar age are seen several miles west of Ragged Top in the northeastern part of the West Silver Bell Mountains.

A late and minor lead-silver-copper mineralization is found in the Silver Bell range. North-trending epithermal veins carrying galena, native silver and cerargyrite with a barite-quartz-calcite-fluorite gangue were mined in the early days. Copper stain is seen on the old dumps. This later period of mineralization has been superimposed very locally on the porphyry copper deposits to the south. On the other hand, a mid-Tertiary quartz latite porphyry dike cuts one of the epithermal veins, thus establishing a general minimum date to this mineralization.

Quaternary-Tertiary basalt cones and flows are found north of the Ragged Mountain fault.

SOURCES USED

- Briscoe, J.A., 1967, General geology of the Picacho Peak area, Pinal County, Arizona: Unpublished Master's thesis, Univ. Ariz.
- Clarke, C.W., 1965, The geology of the El Tiro Hills, West Silver Bell Mountains, Pima County, Arizona: Unpublished Master's thesis, Univ. Arizona.
- Damon, P.E., and Mauger, R.L., 1966, Epeirogeny-orogeny viewed from the Basin and Range Province: Soc. Mining Engineers Trans., v. 235, p. 99-112.
- Damon, P.E., 1968, Application of the potassium-argon method to the dating of igneous and metamorphic rock within the Basin Ranges of the Southwest: Ariz. Geol. Soc. Southern Arizona Guidebook III, p. 7-21.
- Folinsbee, R.E., Baadsgaard, H., and Lipson, J., 1961, Potassiumargon dates of Upper Cretaceous ash falls, Alberta, Canada: Annals of the New York Acad. Sci., v. 91, art. 2, p. 352-359.
- Hayes, P.T., and Drewes, H., 1968, Mesozoic sedimentary and volcanic rocks of southeastern Arizona: Ariz. Geol. Soc. Southern Arizona Guidebook III, p. 49-58.
- Kingsbury, H.M., Entwistle, L.P., and Schmitt, H., 1941, Geology and ore deposits of Silverbell, Arizona: private report.
- Mauger, R.L., 1966, A petrographic and geochemical study of Silver Bell and Pima mining districts, Pima County, Arizona: Unpublished Ph.D. dissertation, Univ. Arizona.
- Mauger, R.L., Damon, P.E., and Giletti, B.J., 1965, Isotopic dating of Arizona ore deposits: Soc. Mining Engineers Trans., v. 232, p. 81-87.
- McClymonds, N.E., 1957, The stratigraphy and structure of the Waterman Mountains, Pima County, Arizona: Unpublished Master's thesis, Univ. Arizona.
- Merz, J.J., 1967, The geology of the Union Hill area, Silver Bell district, Pima County, Arizona: Unpublished Master's thesis, Univ. Arizona.
- Richard K., and Courtright, J.H., 1960, Some Cretaceous-Tertiary relationships in southern Arizona and New Mexico: Ariz. Geol. Soc. Digest, v. III.

1966, Structure and mineralization at Silver Bell, Arizona: Geology of the Porph. Copper Deposits, SW No. America, Univ. Ariz. Press, p. 157-164. Ruff, A.W., 1951, The geology and ore deposits of the Indiana mine area, Pima County, Arizona: Unpublished Master's thesis, Univ Arizona.

Watson, B.N., 1964, Structure and petrology of the eastern portion of the Silver Bell Mountains, Pima County, Arizona: Unpublished Ph.D. dissertation, Univ. Arizona.

1965, Geology of the area east of Oxide pit, Silver Bell, Arizona: private report.

1968, Intrusive volcanic phenomena in southern and central Arizona: Ariz. Geol. Soc. Southern Arizona Guidebook III, p. 147-154.