

#### **CONTACT INFORMATION**

Mining Records Curator Arizona Geological Survey 1520 West Adams St. Phoenix, AZ 85007 602-771-1601 http://www.azgs.az.gov inquiries@azgs.az.gov

The following file is part of the

Arizona Department of Mines and Mineral Resources Mining Collection

#### **ACCESS STATEMENT**

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

#### **CONSTRAINTS STATEMENT**

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

### **QUALITY STATEMENT**

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

# GEOLOGY OF THE SQUAW PEAK PORPHYRY COPPER-MOLYBDENUM DEPOSIT, YAVAPAI COUNTY, ARIZONA

by

Robert Ralph Roe

A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE

In the Graduate College

THE UNIVERSITY OF ARIZONA

See University of Arizona Department of Geosciences for Theses

# Squaw Creek Copper, Yavapai Co.

Exploration data from Phillips Petroleum during 1968 - 1972

Metallurgical progress report and results

and

**Geochemical Survey report** 

GEOCHEMICAL SAMPLING PROGRAM

SQUAW PEAK, ARIZONA

(1064-ID)

March 10, 1969

9.y

D. J. Kubish

A geochemical soil sampling program was undertaken during January and February, 1969 covering part of our acreage on the Squaw Peak project in Central Arizona. M. R. Sauvola and D. J. Kubish conducted the survey. A total of 719 samples were taken on 707 locations. The area sampled covers approximately 5200 feet in a north-south direction by 3600 feet in an east-west direction. Note the Base Map for Geochemical Sampling.

# Field Procedure:

The method of sampling consisted of taking two to three soil samples near each location at a depth of one to three inches. Each sample location was spotted on an aerial photograph, as well as flagged and numbered in the field. The sample locations are approximately 100 feet apart on each line. The lines are parallel, east-west trending and about 300 feet apart except for lines 16 and 17 which are about 200 feet apart.

#### Analyses Methods:

The samples were analyzed in Reno, Nevada by Rocky Mountain Geochemical Corporation for trace elements of copper, zinc and molybdenum. Copper and zinc analyses were determined by atomic absorption. That of molybdenum was determined colorimetrically.

A mercury analysis was run on the first shipment of 105 samples. These covered lines 16, 17 and part of 18. The results from these analyses showed no significant trend and no further samples were tested for mercury. Note the Mercury Geochemical Contour Map.

The copper analyses in parts per million (ppm) ranged from 15 to 3700. Contour intervals a 1000 ppm beginning with 1000 opm. Additional

250 ppm and 500 ppm contours are used to further define anomalous conditions. Hote the Copper Geochemical Contour Map.

The results from the zinc analyses ranged from 40 ppm to 770 ppm. Contours are based on 100 ppm intervals starting with 100 ppm. Note the Zinc Geochemical Contour Map.

The molybdenum analyses ranged from less than one (-1) ppm to 155 ppm. Contour intervals are 20 ppm beginning with 20 ppm. A 10 ppm contour is also used to define minor anomalies particularly those adjacent and updip from the Verde Fault. Note the molybdenum Geochemical Contour Map.

# Analyses Results:

The contoured results of the copper, zinc and molybdenum analyses show an anomalous high trend striking approximately  $\mathbb{R}/40^{\circ}$  J. The trend indicates three areas of interest.

- (1) Wear the intersection of the M 40° I trend and the Verde Fault a copper, zinc and molybdenum high occurs. This is within the eastern nine to ten sample locations of lines 8, 9 and 10. The copper high, thus far defined, peaks at 1000 ppm. However, the possibility of significant copper content in this area, resulting from the Verde Fault intersecting the trend, is worthy of further sampling and possible core exploration. Further sampling in this area would more fully define the anomalous character and set its limits west of the fault.
- (2) The copper high as defined by the 3000 ppm contour in the area of DDH /1 and DDH /6 covers an area of approximately 1150 feet in a north-south direction by 1000 feet in an east-west direction. Overlapping of the 3000 ppm copper contour and the 20 ppm contour of molybdenum restricts this as an area

of prime interest. DDH #1 was collared in the south-central part of this anomaly. DDH Mos. 3, 4 and 5 were collared to the west of this area and contained no significant thickness of copper enrichment. DDH #6 was located with the aid of the above geochemical control and is located near the center of the 3000 ppm copper anomaly. DDH #1 carried 0.488% copper to a depth of 250 feet. DDH #6 through the first hundred feet of core showed an enriched chalcopyrite and molybdenite content along fractures and to a lesser degree disseminated within the host rock. This enrichment is similar to that found in DDH #1. Fo deeper core was observed in DDH #6 and assay results are pending. If DDH #6 contains a favorable copper content over a significant interval, the above anomalous high area may be used as a guide for future drilling.

(3) The 1000 ppm copper contour north from the anomalous area surrounding DDH #6 continues in an approximate F 40° W trend. Molybdenum highs are within this extension at the western edge of sampling locations of lines 22 and 24 as well as locations 8 and 9 of line 25. Further sampling to the west and north of the 1000 ppm copper limits should determine the quality and extent of this anomaly.

#### Conclusions and Recommendations:

The results of the Squaw Peak geochemical program have been very encouraging. An anomalous copper - molybdenum high around DDH #1 and #6 has been defined and may provide a restricted area for future drilling.

Two areas, one each at the extremities of the #40° ! trend, indicate prospective areas for further geochemical sampling.

An addition-1 twenty soil samples are recommended in the area of the intersection of the Morde Fault and the Mo $N^{\rm O}$  I trend. Destruct extension of

lines 22 through 25 is recommended as well as two additional lines to the north from line 25. About 160 sample locations in this area are suggested. Future geochemical lines should be separated by not more than 200 feet.



INTER-OFFICE CORRESPONDENCE / SUBJECT: Squaw Peak Project No. MD 1064

OCT 14 1971

To: Mr. Robert Forest From: H. A. Franco

# PROGRESS REPORT No. 3

The following report covers detailed test work conducted on sample No. 1 and additional test work conducted on sample No. 4 of the Squaw Peak ore.

# SUMMARY

The results of the test work herein reported indicate the following:

- a. The flotation procedure used to float ore No. 4 is equally effective in floating ore No. 1.
- b. Both ore samples were too low in tungsten content to consider them a by-product source ore for Scheelite.
- c. It is possible to upgrade ore No. 4 to approximately 0.4 percent Cu and 0.03 percent MoS2 by differential grinding; This means rejecting 25 percent of the tonnage with a grade of 0.15% Cu and 0.02 MoS2. This approach might be worth investigating.
- d. Flotation appears to be the best way to treat the ores and we can expect 80 to 85 percent Cu and MoS2 recovery by using this method of treatment.

# DISCUSSION

1. Chemical analyses of sample No. 1 was as follows:

|      | Percent | PPM | Expected |
|------|---------|-----|----------|
| Cu   | 0.24    |     | 0.28     |
| MoS2 | 0.028   |     | 0.014    |
| W    |         | 5   |          |

The MoS2 content was much higher than expected based on the calculated composite core samples. This resulted in low MoS2 recovery for the flotation tests which were conducted before the analysis was made, and no enough reagent was used to float the MoS2 in the ore.

- 2. The following flotation tests were conducted on ores Nos. 1 and 4:
  - a. Test No. 13FT8: Test No. 13FT8 was conducted in order to investigate the amenability of ore No. 1 to the flotation procedure used for test No. 6FT5 on ore No. 4. Results were as follows:

|                        | •                                                                                                | Wt.       | (                                                     | Cu            | MoS2                             |                          |
|------------------------|--------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|---------------|----------------------------------|--------------------------|
| Product                | Description                                                                                      | <u></u> % | %                                                     | Distr.        | % Dis                            | tr.                      |
| 1<br>2,<br>3<br>4<br>5 | Heads, Chem<br>Heads, Calc.<br>Cln. 2 Conc<br>Cln. 2 Tail<br>Cln. 1 Tail<br>Scav Conc<br>Ro Tail | _         | 0.24<br>0.26<br>25,50<br>2.75<br>0.24<br>0.31<br>0.04 | 12.98<br>5.34 | 0.332 16<br>0.049 11<br>0.070 11 | .00<br>.83<br>.94<br>.69 |
| 1,2,3                  | Ro Conc                                                                                          | 7.74      |                                                       | 81.38         |                                  | .46                      |

as far as Cu grade and recovery are concerned. The MoS2 recovery was low but this is due in all probability to low collector level, even though it could also be incomplete liberation.

Test No. 14FT9: In an attempt to improve sulphide mineral recovery, a test was conducted using Z-6 ( Potassium Amyl Xanthate) as collector. The Z-6 by itself did not appear to give a satisfactory froth using Dowfroth 250 as frother. To improve the float Z-200 was added to the pulp to make it a ratio of two Z-6 to one Z-200. Results were as follows:

|              |                                                        | Wt.                    | C                             | u                               | Mo                               | S2                       |
|--------------|--------------------------------------------------------|------------------------|-------------------------------|---------------------------------|----------------------------------|--------------------------|
| Product      | Description                                            | <u>z</u>               | 46                            | Distr.                          | 易                                | Distr.                   |
| 1 2          | Heads, Chem<br>Heads, Calc<br>Cln 2 Conc<br>Cln 2 Tail | 100.00<br>0.78<br>0.33 | 0.24<br>0.26<br>21.00<br>5.90 | 100.00<br>62.84<br><b>7.</b> 28 | 0.028<br>0.023<br>1.068<br>0.759 | 100.00<br>35.78<br>10.78 |
| 3<br>4.<br>5 | Cln l Tail<br>Scav Conc<br>Ro Tail                     | 2.21<br>5.23<br>91.45  |                               | 6.50<br>9.20<br>14.18           | 0.113<br>0.085<br>0.006          | 10.78<br>18.96<br>23.70  |
| 1,2,3        | Ro Conc.                                               | 3.32                   | 6.02                          | 76.62                           | 0.401                            | 57.34                    |

Examination of the products revealed that the cleaner 2 concentrate was clean but high in pyrite.

Test No. 16FT11: Test No. 16FT11 was also conducted on ore No. 1. For the test the level of reagent was kept the same, but the ratio of Z-6 to Z-200 was one to one, in an attempt to increase Cu selectivity. Also the level of Dowfroth 250 was kept the same. Results were as follows:

|       | Heads, Chem |        | 0.24  |        | 0.028 | ,      |
|-------|-------------|--------|-------|--------|-------|--------|
|       | Heads, Calc | 100.00 | 0.26  | 100.00 | 0.027 | 100.00 |
| 1     | Cln 2 Conc  | 0.75   | 21.50 | 62.16  | 1.184 | 33.46  |
| 2     | Cln 2 Tail  | 0.38   | 5.25  | 7.72   | 0.734 | 10.53  |
| 3     | Cln l Tail  | 3.31   | 0.41  | 5.41   | 0.070 | 8.65   |
| . 4   | Scav Conc   | 2.74   | 0.67  | 6.95   | 0.190 | 19.55  |
| 5 .   | Ro Tail     | 92.82  | 0.05  | 17.76  | 0.008 | 27.81  |
| 1,2,3 | Ro Conc     | 4.42   | 4.39  | 75.29  | 0.315 | 52.64  |

Results were comparable with those of test No. 16FT11, and not as satisfactory as those of test No. 13FT8.

Test No. 15FT10: Test No. 15FT10 was conducted on ore No. 4 and using the same reagent combination as used for test No. 16FT11. Result were as follows:

| 2<br>3<br>4 | Heads, Chem<br>Heads, Calc<br>Cln 2 Conc<br>Cln 2 Tail<br>Cln 1 Tail<br>Scav Conc | 100.00<br>1.19<br>0.69<br>3.28<br>1.62 | 0.36<br>18.50<br>4.55<br>0.47<br>0.84 | 8.52<br>4.12<br>3.85 | 0.021<br>1.043<br>0.337<br>0.035<br>0.125 | 100.00<br>59.62<br>11.06<br>0.96<br>10.57 |
|-------------|-----------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|----------------------|-------------------------------------------|-------------------------------------------|
| 5 ·         | Ro Tail                                                                           | 93.22                                  | 0.09                                  | 23.08                | 0.004                                     | 17.79                                     |
| 1,2,3       | Ro Conc                                                                           | 5.16                                   | 5.16                                  | 73.08                | 0.289                                     | 71.64                                     |

Even though the cleaner two concentrate was not as clean as for test No. 16FT11, its pyrite content was much higher than for test No. 6FT5.

These results indicate that according to the control of the second along with z-6 as collector, even in combination with z-200. Also, the Dowfroth 250 quantity required with the z-6/z-200 combination is higher than the quantity required with Z-200 alone.

In conclusion, it appears that the best combination tried to process the Squaw Peak ore is the use of lime as pyrite depressant, and Z-200 as the copper-molybdenum collector for the bulk float; Diesel fuel can be used to improve MoS2 recovery in the scavenger float and in both floats Dowfroth 250 is an effective frother. H2SO4 can be used as pH modifier in the scavenger float.

Detailed laboratory sheets for tests Nos. 6FT5 and 15FT10 Squaw Peak ore No. 4; and tests Nos. 13FT8, 14FT9, and 16FT11 Squaw Peak ore No. 1; are attached to this report.

A grinding-classification test was conducted on a sample of Squaw Peak Ore No. 4.

For this test the following points were taken into account:

- a. The copper is present as chalcopyrite, Hardness  $3\frac{1}{2}-4$ .
- b. The chalcopyrite shows completely liberated particles
- starting at 48 mesh, and it is a brittle mineral.

  c. Pyrite is present in small amounts. Even though the pyrite is also brittle, it has a hardness of  $6-6\frac{1}{2}$ .
- d. The main impurities are: quartzite, hardness 7; the feldspars, hardness  $6-\hat{6}\frac{1}{2}$ ; and the micas. The micas are soft but usually braken in plates, with one dimension several times the other from a sectional point of view.

Assuming that the chalcopyrite will be reduced in size faster than any other component of the same size fraction, a sample of minus 10 mesh ore was ground to nominal 48 mesh in one pass. The results were as follows:

|                                                    |                                                             | Cumul                                                       | ative % R                                                          | etained                                                     | ·                                                                  |
|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|
| Mesh                                               | Wt.                                                         |                                                             | Cu                                                                 |                                                             |                                                                    |
| Tyler                                              | %                                                           | %                                                           | Distr.                                                             | %                                                           | Distr.                                                             |
| +48<br>+65<br>+100<br>+150<br>+200<br>+270<br>+325 | 0.38<br>2.66<br>10.46<br>24.95<br>39.37<br>50.29<br>54.60   | 0.092<br>0.086<br>0.111<br>0.151<br>0.187<br>0.218<br>0.234 | 0.096<br>0.627<br>3.188<br>10.323<br>20.186<br>30.046<br>34.952    | 0.018<br>0.025<br>0.020<br>0.020<br>0.016<br>0.021<br>0.022 | 0.276<br>2.679<br>8.365<br>20.110<br>33.550<br>43.728<br>47.918    |
| -325<br>Heads                                      | 45.40<br>100.00                                             | 0.523<br>0.366                                              | 65.002<br>100.000                                                  | 0.028<br>0.025                                              | 100.000                                                            |
| _                                                  |                                                             | Cumul                                                       | ative % P                                                          | assing                                                      |                                                                    |
| -48<br>-65<br>-100<br>-150<br>-200<br>-270<br>-325 | 99.62<br>97.34<br>89.54<br>75.05<br>60.63<br>49.71<br>45.40 | 0.367<br>0.373<br>0.395<br>0.437<br>0.481<br>0.514<br>0.523 | 99.904<br>99.373<br>96.812<br>89.677<br>79.814<br>69.954<br>65.002 | 0.025<br>0.025<br>0.025<br>0.026<br>0.027<br>0.028<br>0.028 | 99.724<br>97.321<br>91.632<br>79.890<br>66.450<br>56.272<br>52.082 |

what the vost voir we is that by differential grinding, we can upgrade the ore from 0.36% Cu to as much as 0.52% Cu, in a product containing 65% of the Cu in the mined ore and 45% of the weight.

One advantage of this system is that we can pick the economical grade of ore to be processed, and store the discard until such a time it becomes economical.

Going back to page 3, a hypothetical case would be as follows:

- a. Grinding of the run-of-mine ore to nominal 48 mesh, in open circuit.
- b. Classification of the ground ore on 150 mesh.
- c. Storage of the plus 150 mesh in a site adjacent to the plant from which it can be pumped back to the plant. Oxidation of the sulphides should not be much of a problem because:

I. At that mesh size there are mostly middlings, and only

part of the sulphide surface will be exposed.

II. Regrinding of the ore will remove any oxide coating that might form on the surface of the exposed sulphides.

- d. For our hypothetical case the material balance would be:
  - I. Ore reserves: 30,000,000 tons. 0.36% Cu, 0.025 MoS2.

- II. Mining rate: 5,000TPD, 300 days/year, 20 years.

  III. Plus 150 mesh to storage: 1,250TPD of 0.15% Cu and 0.020% MoS2.

  This represents 10% of the Cu and 20% of the MoS2 in the runof mine ore.
  - IV. Minus 150 to the flotation plant: 3,750TPD of 0.437% Cu and 0.026% MoS2. This represents 90% of the Cu, 80% of the MoS2 and 75% of the tonnage of the run-of-mine ore.
  - V. I think that under this circumstances we can expect 85 to 90 percent Cu and MoS2 recovery, and that the milling cost will be reasonable enough to make it attractive at the present prices.
  - VI. The system will require much more metallurgical study and very detailed mine planning. However, I feel that we have the tools to do both.

Graph No. 1 illustrates the cumulative % passing figures.

Jasa )

PHILLIPS PETROLEUM COMPANY Minerals Division

H.A. Franco, P.E.

Metallurgist

Harmu)

Avon Refinery June 5, 1969



S

INTER-OFFICE CORRESPONDENCE / SUBJECT:

SQUAW PEAK PROJECT
METALLURGICAL PROGRESS REPORT
MONTH OF MAY 1969

#### R. T. Forest:

No further tests were run. The results of test 6-3 were recalculated on the basis of rerun assays from Union Assay Office. The calculation sheet is attached. The differences are quite pronounced. Mr. Wanlass, of the Union Assay Office, was at a loss to explain the original error and very apologetic and appreciative of the opportunity to rerun the samples. In a case like this, the error shows up reasonably quickly in the metallurgical balance. However, the incident does emphasize that all methods of analysis are subject to error and that a relatively large number of cases or samples is probably one of the best protections against wrong information.

The results still leave a lot to be desired in terms of recovery on cleaning, but unless you advise otherwise, I won't do any more on this until we get the better grade feed which you said we should expect. The rougher recovery at 70% on copper is certainly poor but considering the tailing of less than .1%, I don't think we can expect substantial improvement, especially as about 20% of that is in oxide form.

I am attaching with the original a copy of the revised assay certificate.

HSF:md

H. S. Fowler

Attachments

To Forest: Revised Assay Certificate

Test Report on 6-3

cc: D. C. Arnold

C. N. Holmes

S. R. Havenstrite

K. J. Green

Attachment

Test Report on 6-3

| · · PI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ırrıl]      | S PE             | rkolei  | ŭΜ co.       | - A         | IALL MOV | 3.          | Capació |          | againer/      | FLOT    | ATIO                                            | N TES        | r REPO      | RT'          | · ·         |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|---------|--------------|-------------|----------|-------------|---------|----------|---------------|---------|-------------------------------------------------|--------------|-------------|--------------|-------------|------|
| bjective Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pent        | 6-3              | but     | princ        | 160         | MOC      | وساف        | ine F   | <u> </u> | 2             | -3 -C   | 0 m 11                                          | - Z-11       | Test        | No. A        | von         |      |
| A) Reon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -ind (      | <u>ع ـــ ه</u> 2 | 3 c/170 | n Zw         | -/ce        |          | <del></del> |         |          |               |         |                                                 |              | Date        |              | 1pr         | 15 6 |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |         |              |             |          |             |         |          |               |         |                                                 |              | Opera       | tor          |             | HSF. |
| ample Squaw Pen<br>H20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>L</u> 1  | ZKg.             |         |              |             |          |             |         |          |               |         |                                                 |              |             |              |             |      |
| れて                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (           |                  |         |              |             |          | TES         | r co    | DIT:     |               |         |                                                 |              |             |              |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GI          | KI               | F       | F2           | F3          |          | G 2         | F4      | FS       | $\frac{1}{2}$ | 6       |                                                 |              |             |              |             |      |
| PERATION FLOT RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 1800             | 1800    |              | Senv        |          | JAR         | 13 00   | CL       |               | 3 00    |                                                 |              |             |              |             |      |
| 'ime - Min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60          | 5                | /       | 8            | 5           |          | 15          | _6_     | 3        | =             | 3       |                                                 |              | ·           |              |             |      |
| Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67          | 33.4             | 10.4    |              |             |          |             |         | 0.85     | 77            |         | <del></del>                                     |              |             | [.           |             |      |
| ) <u>H</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .,,         |                  | 10.4    | 9.9          | 9.3         |          |             | 7-11-9  | 38.8-    | 0.5           | 10.1    |                                                 |              |             |              |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amb         |                  | 6.      | 62           | 88F         |          |             |         | FE       |               |         |                                                 |              |             |              |             |      |
| estination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                  | G2      | 67           |             |          |             | 1-5     |          | 2   5         | 1247    |                                                 |              |             |              |             |      |
| leagents, Lb./Ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  | ·       |              |             |          |             |         |          |               |         |                                                 |              |             |              |             |      |
| LIME HYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0         |                  |         | ·            |             |          |             | 0.4     | 0.       | 3 6           | .25     |                                                 |              |             |              |             |      |
| 50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 1.0              |         |              |             |          | ·           | 0.1     |          |               |         | ·                                               |              |             |              |             |      |
| Dowfrati 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | •003             |         | . 5//:       |             |          |             |         |          | -             |         | <del></del>                                     |              |             |              |             |      |
| Z-200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | .028             |         | 1.014        | •007        |          |             | 0.02    | 8        | -             |         |                                                 |              |             |              |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> |                  |         | <del> </del> |             |          |             |         |          | _             |         |                                                 |              |             |              |             |      |
| ellerranne, adeisa, elejerranne, andre elejerranne, andre elejerranne, andre elejerranne e |             |                  |         | <b> </b>     |             |          |             |         |          |               |         |                                                 | l            |             |              |             |      |
| METHODOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                  |         | ļ            |             |          |             |         |          |               |         |                                                 |              |             |              |             |      |
| <u>IVIE</u> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  |         | l            |             |          |             |         |          |               |         |                                                 |              |             |              |             |      |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Anal             | vsis    | NION         | Ratio       |          | 1%          | Wt.     | ) (Ana   | alve          | is)     |                                                 | (            | Dist        | ribut        | ion         |      |
| EST PRODUCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % Wt.       | Cu               | Mol     | ZERUN        | Cu/Me       |          |             |         | Mo       |               |         |                                                 |              | Cu          | Mo           | OxCu        |      |
| - Cu & 3 Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.54        | 23.45            | 1.98    | 9x Cu.       | 12          |          |             | .7      | 1.07     |               |         |                                                 |              | 45.0        | 38,4         | 70 of       |      |
| Cu & 3 Toil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.79        | 7.26             | 0.50    |              | 15          |          |             | 3.1.    | 0.14     |               |         |                                                 |              | 7.4         | 5,0          | Head        | 8    |
| _ Cu C Z Tail_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.02        | 2:78             | 0-21    |              | 13          | -        |             | 2.78    | 0.21     |               |         |                                                 |              | 9.8         | 7.5          |             |      |
| Cu & 1 Tail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 0.91             |         |              | 20          |          |             | 2.43    | 12       |               |         | _                                               |              | 8.6         | I            | 4           |      |
| CALC Provoter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 4.46             |         |              |             |          |             |         | 1.54     | <u></u>       |         |                                                 |              | 70.8        | 55.2         |             |      |
| Cu Scer Con[F3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.60        | 0.40             | .018    |              | _22         |          |             | 0.64    | .03      |               |         |                                                 | <b>*</b> *** | 2.3         | ا <u>د</u> ا |             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92.00       | 0.081            | .013    | .018         |             |          |             | 7.60    | , , , ,  |               |         |                                                 |              | 2/6         |              |             | -    |
| CALC HEAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | 0.2.92           |         |              | 10          |          |             | 8.2:    | 2.79     | 1.7           | <u></u> |                                                 | •            |             | .43.8        |             |      |
| -3=C.47Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 17.4             |         |              |             |          |             | 4.80    | 1.21     |               |         |                                                 |              |             | 10 0.1       |             |      |
| -+ 3+ C = Cu (1   Cor,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 9.60             |         |              |             |          |             | 7.58    | 1.42     |               | _       |                                                 |              | 4           | 43.4         |             |      |
| HSSQ 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | .283             | .024    |              | 12          |          | l           | 1       |          |               | -       | - -                                             |              |             | 50.9         |             |      |
| lemarks: Fl Migl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er do       | with             | ess fri | ther         | COUP "      | r flots  | Fuct        | , F     | Z PO     | ssit          | lu hi   | <u>i (, , , , , , , , , , , , , , , , , , ,</u> | Mo /         | Curati      | 0 His        | F 1         | Τ    |
| B(=67) Val.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | رو ۾ ل،     | VP a             | Linete  | of for       | - dilut     | ion Sm   | Bar         |         | 7        |               |         | 7                                               |              | · -         | = 1.181      | 3! <u>L</u> |      |
| 702 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  | V       |              | <del></del> |          |             |         |          | <del></del>   | ·       |                                                 |              | <del></del> |              |             |      |

Let!

469

| 7       |     | Plants! |           | Vegenzar | * sar | Topassa .   | , NO   | . 34DR |    | ) ETZ(       |   |      | H PAI | PER | <i>(</i> . |         |       | Уэтан | εψ | GENE ( | DIETZ<br>IN U. | DEN C | :o,    | , received,       |        | · Indiana |   | Nagger! |          | To the same of the | The Case |
|---------|-----|---------|-----------|----------|-------|-------------|--------|--------|----|--------------|---|------|-------|-----|------------|---------|-------|-------|----|--------|----------------|-------|--------|-------------------|--------|-----------|---|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ,       |     |         | $(\cdot)$ | unulo    | five- | (<br>; Dis. | tribut | רנסו   |    |              |   | On . | •     |     | ١.         |         |       |       |    |        | %              | Cu    |        |                   |        |           | ' | % h     | 105      | <u>,</u> (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| !       | 00  | 3       | (         | )        |       | 70          |        |        | 80 | <del>.</del> | , | 50   |       |     |            | <u></u> | ***** |       |    | ****** | e<br>w         |       | ,<br>, | و<br>با<br>باللله | )<br>1 |           |   | 200     | דו דועים | 0<br>W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200      |
| •       | 00  |         |           |          |       |             |        |        |    |              |   |      |       |     |            | S       |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ;       |     |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| •       | 20  |         |           |          |       |             |        |        |    |              |   |      | *     |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         |     |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| •<br>:  | 80  |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Ĉ.      |     |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| nulativ | 7,  |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ~ We.   | 0   |         |           |          |       |             | 36     | V)     |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 148     |     |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 16/2    | 60  |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| oussin. |     |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 9       | 0.5 |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         | 2007  |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         |     |         |           |          |       | 0.1         |        |        |    |              |   |      |       |     |            |         | 加和    | )<br> |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -       |     |         |           |          | 33    |             |        |        |    |              |   |      |       |     |            |         | 3 %   | 2//2  |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | 0   |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| =       |     |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         | ₩×    |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|         | દુ  |         |           |          |       |             |        |        |    |              |   |      |       |     |            |         |       |       |    |        |                |       |        |                   |        |           |   |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

METALLURGICAL LABORATORY Date: 4-27-Test No. 6FT5 Sheet No 1 PHILLIPS PETROLEUM COMPANY MINERALS DIVISION Project: MD 1064: Squaw Peak, Arizona Objective: Determine optimum bulk Mo-Cu recovery by Hotation Grind: B"x 8" & Ball mill Media; Balls Flot Mach .: Demer D-1 . Imp. Diam : 2 1/2 - in Wt. 2000 5 /1600 cc Sample: Squaw Peak No. 4 Operation C2 CL 1 CL 2 C1 FI 5F Variable BM 5 3 3 Time, Min. 45 33.5 % Solids 55.6 RPM 65 2100 2100 2/00 2100 1300 1300 PH 10.9 10.0 10.0 10.0 10.0 10.0 10.8 Destination F1. . C1 SF Reagents: 16. per ton of Test Keed 3 Lime 0.2 0.5 Z-200 0.049 0.025 DF -250 0.012 0.006 0.006 0.006 Diesel Fuel 0.03 Weight Cu Mo52 % Unit Dist Product Grams % % Unite Dist Heads Chein. 0.31 0.021 Hends Cale. 100.00 0.37 37.42 100.00 0 024 2.361 100.00 C12 Conc 0.77 28.00 21.56 57.61 1.348 1.038 4396 C12 Tail 0.36 10.00 3.60 9.62 0.881 0.317 13.43 C/ 1 Tail 4.30 0.69 2.97 7.94 0.060 0.258 40.93 Scar. Conc. 1.60 0.56 2.99 7.99 0.104 0.478 20.25 Tail 8997 0.07 6.30 16.84 0.00 3 0.270 11.43 Conc. 5.43 5.18 23.13 75.17 0.297 1.613 69.32. Remarks

| Test No. 15 FT. Project: MD | 106             | 4: 5     | 5 gunn       | Pen         | K.                                      | D) P1    | HILLI<br>na | A LLUR<br>PS PET<br>MINER              | ROLE                                             | UM<br>VISIOI  | COWI                                             | PANY          |              |                                                   |              |                | SE,         | 1)   |
|-----------------------------|-----------------|----------|--------------|-------------|-----------------------------------------|----------|-------------|----------------------------------------|--------------------------------------------------|---------------|--------------------------------------------------|---------------|--------------|---------------------------------------------------|--------------|----------------|-------------|------|
| Objective: Dete             | enine .         | optimu.  | " Bulk       | Cer-N       | 10 10                                   | cover    | y 67        | Fielos                                 | inc C                                            | rind:         | 8"x                                              | 8"4           | S B.         | mill                                              | . /          | Media :        | Balls       | 2    |
| Sample: 57 11A              | w Pe            | at it    | 4            |             | W                                       | t: 20    | 00 2        | 11600                                  | ce F                                             | lot M         | lach . ;                                         | Drine         | · D-         | 1 :                                               | Imp.         | Diam. !        | 2 1/2-      | in . |
|                             |                 |          |              |             |                                         | · · ·    |             |                                        | 00                                               | erat          | on                                               |               |              |                                                   |              | - <sub>1</sub> |             |      |
| Variable                    |                 | BM       | C1           | F           | - /                                     | C.       | S           | 5F                                     | CL                                               | . /           | < L                                              | . 2           |              |                                                   |              |                |             |      |
| Time, Min.                  |                 | 15       | 5            | ] 5         | 3 .                                     | 3        |             | 11/2                                   | 11                                               | /2            | 11                                               | 2             | ,            |                                                   |              |                |             |      |
| % Solids                    | 5               | 5.6%     | 33.5         | 2           |                                         |          |             |                                        |                                                  |               |                                                  |               | •            |                                                   |              |                |             |      |
| RPM                         | . ,             | 45       | 2100         | 21          | ٥٥                                      | 210      | 00          | 2100                                   | 130                                              | ું હ          | 120                                              | O             |              |                                                   | •            |                |             |      |
| РН                          |                 | 0.8      | 10.5         | 10          | .5                                      | 10       | . 3         | 9.2                                    | 10.                                              | 9             | 8.                                               | 7             |              |                                                   |              |                |             |      |
|                             |                 |          |              |             |                                         | ļ        |             |                                        | 16/3                                             | <u> </u>      |                                                  | $\rightarrow$ | ·            | _                                                 |              | <u> -</u>      |             |      |
| Destination C               | 7               | C 1      | FI           | 127         | <u></u>                                 | 5        |             | $\frac{c}{7}$                          | CY3                                              | 7 1           |                                                  | F             | ·            |                                                   |              | ,              |             |      |
|                             | 13,             |          | <del>,</del> | <del></del> |                                         | <b>Y</b> | Re          | agent                                  |                                                  |               | per                                              | ton           | OF           | 7est                                              | reed         | <del></del>    | <del></del> |      |
| Linie                       |                 | 3        | fec          |             |                                         | <u> </u> |             |                                        | 0.16.                                            | 5             |                                                  |               |              |                                                   |              | -              |             |      |
| Z-6                         |                 |          | 0.04         | 1           | <del></del>                             | ļ        |             |                                        | <del> </del>                                     |               |                                                  |               |              |                                                   | •            | _              |             |      |
| Z-200<br>DF-250             |                 |          | 1d 0.05      |             |                                         | 1 wd     |             | 0,022                                  | Iwa/                                             | 2 - 2 /       |                                                  |               |              |                                                   |              |                |             |      |
| Diesel Fue                  | <del>,  -</del> |          | 0.027        | -           | ·                                       | 200.     | 050         | 0,022                                  | <del>                                     </del> | 7.006         |                                                  |               |              | _                                                 |              | -              |             |      |
| 1-12500                     |                 |          | ·            | 1.          | • • • • • • • • • • • • • • • • • • • • |          | 333         | 0.800                                  | ,                                                |               |                                                  |               |              | _                                                 |              |                |             |      |
|                             |                 |          |              |             |                                         |          |             |                                        |                                                  |               |                                                  |               |              |                                                   |              |                |             |      |
|                             |                 |          |              |             |                                         |          |             |                                        |                                                  |               |                                                  |               |              |                                                   |              |                |             |      |
| 2                           |                 | sht      | ·            | Cu          |                                         |          | M05         | 1                                      | · · · · · · · · · · · · · · · · · · ·            |               |                                                  |               | ·            | <del>,                                     </del> |              | <del></del>    | <del></del> |      |
| Product                     | Grams           | 5 .%     | 7            | nits D      |                                         | %        | Units       | Dist                                   |                                                  |               |                                                  | <u> </u>      | <del> </del> | <del> </del>                                      | <del> </del> | -}             |             |      |
| Heads Chem.<br>Heads Calc   | 199 R           | 3 100 00 | 0.31         | 31.41       |                                         | 0.021    | 0.0200      | 100.00                                 |                                                  |               |                                                  |               | 1            |                                                   | <del> </del> |                | +           |      |
| 4 <111. Z Core              |                 |          |              |             |                                         |          |             |                                        |                                                  |               |                                                  | 1             | † <u> </u>   | <del> </del>                                      | †            |                | +           |      |
| 5 Cln Z Tail                | 13.8            | 0.69     | 4.55 0       |             |                                         |          |             |                                        |                                                  |               |                                                  | !             |              |                                                   |              | `              |             |      |
| Ch I Toil                   | 45.5            |          | 0.47         |             |                                         |          |             |                                        |                                                  |               |                                                  |               |              |                                                   |              | _              |             |      |
| E Ro. Tail                  | 1867            | 8 92 22  | 0.84 0       | 0.014       | 3.85                                    | 0.125    | 0.002       | 10.57                                  |                                                  | <del></del> : | <del>                                     </del> | <u> </u>      | <del> </del> | <del> </del>                                      |              |                |             |      |
| ,,,,,,,,                    | 100 5 11        | 13.66    | 0.0 1 0      | 100416      | <u>00.c</u>                             | U4       | 0.003       | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                                  |               | -                                                | <del> </del>  | +            | +                                                 | <del> </del> |                | +           |      |
| Ro. Conc.                   |                 | 5.16     | 5.16         | .2667       | 13.08                                   | 0.7.89   | 0.014       | 71.64                                  |                                                  |               |                                                  |               |              |                                                   |              |                |             |      |
|                             |                 |          |              |             |                                         |          |             |                                        |                                                  |               | ·                                                | <u> </u>      |              |                                                   | ļ            |                |             |      |
|                             |                 | 1        | ics rega     |             |                                         | d        |             | ing p                                  | nw h                                             | *****         | 10- 0                                            | <u></u>       | <u> </u>     | <u> </u>                                          | <u> </u>     | <u> </u>       |             | =    |

PHILLIPS PETROLEUM COMPANY Test No. 13 FT 8 Sheet No 1 Project. Squaw Peak, Arizona MD-1064 MINERALS DIVISION Objective: Determine Optimum Cu-Mo-W resvenies by flot. Gund: 8"x8" Ball Mill Media: Balls: 3 Squar Peak No. 1 Wt. 2000 & /1600 cc Flot Mach.: Derver D-1 Imp. Diam.: 21/2-in, Sample: Operation 5F CL2 C11 Variable BM C1 FI CZ 11/2 11/2 45 5 Time Min % Solids 55.6% 33.5% RPM 65 2100 2100 2100 2100 1400 1300 5.7 PH 10.Z 11.2 10.8 10.2 10.2 10.2 FI CLI Destination C1 SF Reggents: 16. per ton of Flotation Food 3 Lime 0.5 Z-200 0.049 a 025. 1 Wd DF - 250 0.012 0.006 100.015 Diesel Firel Weisht M052 Cu. % Unite Dist. % Unite Dist. Product Grams % Heads, Chem. 0.24 0.028 Hends. Calc. 2.003.2 100.00 0.26 0.762 100.00 0.025 0.0248 100.00 4 cln. 2 Conc 0.65 25.50 0.166 63.36 1.06 8 0.0069 27.83 25.1 15 cin 2 Tail 1.25 2.75 0.034 12.98 0.332 0.0042 16.94 16 Clu 1 Tail 116.9 5.84 0.24 0.014 5.34 0.049 0.0029 11.69 17 Scar, Conc 83.9 4.19 0.31 0.013 4.960.070 0.0029 11.69 1764.3| 88.07| 0.04|0.035|13.<u>36|0.009|0.0079|31.85</u> Tail Ro Conc. 7.74 2.76 0.214 81.38 0.181 0.014056.46 CLI 30 sec. and before find : CII high to inspire Cu solectivity: CIZ Low ph Remarks We Selectively - Cln. 2 Cone, with impenhing will need regard and cleaner prior to Ca-M

| Test No. 14FT<br>Project. MD |          |             |             |                       | 🔊 рні     | ILLIPS           | PETE    | LICAL OLEUM<br>LIS DIVISION | COM           | /c<br>PAN | ·ス゚,<br>Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Dat          | e:          | Str 1    |
|------------------------------|----------|-------------|-------------|-----------------------|-----------|------------------|---------|-----------------------------|---------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-------------|----------|
| Objective: De                | temin    | ic optim    | nurra bulk  | Cu- Mo                | eway      | ly Fi            | otation | Gund                        | · 8"×         | 8"9       | B. Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·// ·    | Media        | : 8411      | 's ·     |
|                              |          | Peak M      |             | W                     |           |                  |         |                             |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | p. Diam.     | : 2'        | 12-11.   |
|                              |          |             |             | <b></b>               |           |                  |         | Opera                       | ton           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| Variable                     |          | ВМ          | C1          | FI                    | <2        | _   5            | F 2)    | CLI                         | CL            | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| Time, Min                    |          | 45          | 8"          | 4                     | 3         | 2                | - /     | 1 1/2                       | 1 1/          | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| % Solids                     | · .      | 55.6%       | 33.5%       |                       |           |                  |         |                             |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             | :        |
| RPM                          |          | 65          | 2100        | 2100                  | 2100      | o   Z            | 100.    | 1300                        | 130           | 00        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |              |             |          |
| ρH                           |          | 10.5        | 10.2        | 10.2                  | 9.9       | 9.9              | -7.8    | 10.6                        | 8.            | 3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              | • •         |          |
|                              |          |             | <u> </u>    |                       |           |                  | ·       |                             | ,             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| Destination (                | 7        | C.1         | FI          | 641 62                |           | <u> </u>         |         | CLZ                         | ا             | F         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u> |              |             |          |
|                              |          |             | <del></del> | ,                     |           | Reas             | gent:   | s: 1b.                      | per           | ton       | OF Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | st Fee   | <u>d</u>     |             |          |
| Linie                        |          | 13          | Bee         |                       |           |                  |         | 0.5                         | ļ             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ļ        |              |             |          |
| · Z-6                        |          |             | 0.060       | ļ                     | 14,24     |                  |         | 140                         |               |           | 17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.17.00<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17.10<br>17. | 1784     | <u> </u>     |             |          |
| DF-250                       |          |             | 0.028       |                       | 0.0       | 06               | •       | 0.006                       | ·             |           | S. Santa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | ·            |             | :        |
| Diesel Firel<br>Z-Z00        |          |             | 14 0.025    |                       | 100.0     | 15               |         |                             |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| 146504                       |          |             | 0.025       |                       | 0.0.      | 5.0              | 1.000   |                             | <del> </del>  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74.0     |              |             |          |
| 17230 4                      |          | <del></del> |             | <u> </u>              |           | <del>-   -</del> | 7,000   | <del></del>                 | <u> </u>      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 4.00         |             | <u> </u> |
|                              |          |             |             |                       |           |                  |         |                             |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
|                              | I we     | eisht       |             | u.                    | M         | 052              |         |                             |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (6)      |              |             |          |
| Product                      | Gran     | ns .%       | % Un        | ils Dist.             | % 1       | Inits 1          | ist.    |                             | <u> </u>      | <u> </u>  | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·        |              |             |          |
| Heads Chem.                  | ļ        |             | 0.24        |                       | 0.02.8    |                  |         |                             | -             | ļ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| Hendi Cale                   | 2003     | 3.6 100.00  | 0.26 0.7    | 61 100.00             | 0.023 0.  | 0232 10          | 0.00    |                             | ļ             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             | -        |
| 9 C/n 2 Conc.                |          |             |             | 64 67.84              |           |                  |         |                             | <del> </del>  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| 50 Cln. 2 Tail               | 11       | 7 2 27      | 3.90 0.     | 019 7.28              | 0.759 0.  | 0025 10          | 7.78    |                             |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              | <del></del> |          |
| 52 Scar. Corc.               |          |             |             | 017 6.50              |           |                  |         |                             | <del> </del>  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| 53 Ro. Tail.                 |          |             |             | 024 9.20<br>037 14.18 |           |                  |         |                             | -             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             | -        |
|                              |          |             |             |                       |           |                  |         |                             |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| Ro. Conc.                    |          | 3.32        | 6.02 0.     | 200 76.62             | 0.4010    | .0133 5          | 7.34    |                             |               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             |          |
| •                            | -        |             |             |                       |           |                  |         |                             | <del>- </del> |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |             | -        |
|                              | <u> </u> |             | <u></u>     |                       |           |                  |         |                             | <u> </u>      | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-2-0    | <del>!</del> | <u> </u>    |          |
| Remarks 1) Firsted 4 min     | Cond.    | 6 mm.       | <u> </u>    | 1,091 1,041           | Mers + ly | 20.              | 7 10 10 | ا ن د د <u>ـــــ</u>        | - G /m.       | /         | ا الم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 7.8    | 5.4          | 73.1        | 11-2 11  |

11: E-c. ?

Contract to the second second

Date: SEr 161 METALLURGICAL CHBOKHIORY Test No. 16FT 11 Sheet No 1 PHILLIPS PETROLEUM COMPANY MINERALS DIVISION Project: MD1064; Squaw Peak, Alizona Objective: Beleinine optimum Bulk Cu-Mo recovery by flotation | Gund: 8"x8" Bull mill Media: Bulls Wt: 20009/1600ca Flot Mach: Denver D-1 . Imp. Diam: 2 1/2-in Sample: Squar Perk No. 1 Operation SF CLI CZ(1) FI Variable. BM 01 CL Z 45 5 Time Min. 3 % Solids 55.6 % 33.5% RPM 65 2100 2100 2100 PH 8.6 10.8 10.4 11.0 F1 (4) 62 Destination C1 SF Reagents: 1b. per ton of Test Feed Lime 0.5 3 < 6.030 2-6 1d 0.025 Z - 200 1d 0.022 1W7 006 10.022 DF-250 4.5% Hz504 1d c.015 Diesel Firal Weight MOSZ % Unile Dist % 14.71 Dist. . Product Grams % Hends Chein. 0.028 0.24 Hends, Calc. 2,003.1/100.00 0.26 0.259 100.00 0.027 2.0366 100.00 59 Cln. 2 Cme 15.1 0.75 21.50 0.161 62.16 1.184 0.0089 33.46 60 C/4 2 Tail 7.6 0.38 5.25 0.020 7.72 0.734 0.0028 10.53 66.3 3.31 0.41 0.014 5.41 0.070 0.0023 8.65 1 C/n / Tail 54.9 2.74 0.67 0.018 6.95 0.190 0.0052 19.55 2 Scav. Cnc. 13 Rs Tail 1859, 2 92,82 0.05 0.046 17,76 0.008 0.074 27.81 4.44 4.39 10.195 75.29 0.315 0.014 52.64 Ro Conc. Regists added after lowering pH. ; 2) atta S. F. added 10 Line + 2d pine oil : 10.5 mH 1. Pemarks



INTER-OFFICE CORRESPONDENCE / SUBJECT: Squaw Peak Project No. MD 1064 - 9

To: Mr. Robert Forest From: H. A. Franco

#### PROGRESS REPORT No. 3

The following report covers detailed test work conducted on sample No. 1 and additional test work conducted on sample No. 4 of the Squaw Peak ore. SUMMARY

The results of the test work herein reported indicate the following:

- a. The flotation procedure used to float ore No. 4 is equally effective in floating ore No. 1.
- b. Both ore samples were too low in tungsten content to consider them a by-product source ore for Scheelite.
- c. It is possible to upgrade ore No. 4 to approximately 0.4 percent Cu and 0.03 percent MoS2 by differential granding; This means rejecting 25 percent of the tonnage with a grade of 0.15% Cu and 0.02 MoS2. This approach might be worth investigating.
- d. Flotation appears to be the best way to treat the ores and we can expect 80 to 85 percent Cu and MoS2 recovery by using this method of treatment.

# DISCUSSION

1. Chemical analyses of sample No. 1 was as follows:

| F .  | Percent | PPM | Expected |
|------|---------|-----|----------|
| Cu   | 0.24    | •   | 0.28     |
| MoS2 | 0.028   | •   | 0.014    |
| W    |         | 5   |          |

The MoS2 content was much higher than expected based on the calculated composite core samples. This resulted in low MoS2 recovery for the flotation tests which were conducted before the analysis was made, and no enough reagent was used to float the MoS2 in the ore.

- 2. The following flotation tests were conducted on ores Nos. 1 and 4:
  - a. Test No. 13FT8: Test No. 13FT8 was conducted in order to investigate the amenability of ore No. 1 to the flotation procedure used for test No. 6FT5 on ore No. 4. Results were as follows:

|            |                             | Wt.    |              | Cu     | MoS2                  |
|------------|-----------------------------|--------|--------------|--------|-----------------------|
| Product    | Description                 | %      | %            | Distr. | % Distr.              |
|            | Heads, Chem<br>Heads, Calc. | 100.00 | 0.24<br>0.26 | 100.00 | 0.028<br>0.025 100.00 |
| 1          | Cln. 2 Conc                 |        | 25,50        | 63.36  | 1.068 27.83           |
| <b>2</b> ' | Cln. 2 Tail                 | 1.25   | 2.75         | 12.98  | 0.332 16.94           |
| 3          | Cln. 1 Tail                 | 5.84   | 0.24         | 5.34   | 0.049 11.69           |
| 4          | Scav Conc                   | 4.19   | 0.31         | 4.96   | 0.070 11.69           |
| 5          | Ro Tail                     | 88.07  | 0.04         | 13.36  | 0.009 31.85           |
| 1,2,3      | Ro Conc                     | 7.74   | 2.76         | 81.38  | 0.181 56.46           |

as far as Cu grade and recovery are concerned. The MoS2 recovery was low but this is due in all probability to low collector level, even though it could also be incomplete liberation.

Test No. 14FT9: In an attempt to improve sulphide mineral recovery, a test was conducted using Z-6 ( Potassium Amyl Xanthate) as collector. The Z-6 by itself did not appear to give a satisfactory froth using Dowfroth 250 as frother. To improve the float Z-200 was added to the pulp to make it a ratio of two Z-6 to one Z-200. Results were as follows:

|         |                            | Wt.          | Cu           |        | MoS2  |        |
|---------|----------------------------|--------------|--------------|--------|-------|--------|
| Product | Description                | <del>%</del> | <b>76</b>    | Distr. | %     | Distr. |
|         | Heads, Chem<br>Heads, Calc | 100.00       | 0.24<br>0.26 | 100.00 | 0.028 | 100.00 |
| 1       | Cln 2 Conc                 | 0.78         | 21.00        | 62.84  | 1.068 | 35.78  |
| 2       | Cln 2 Tail                 | 0.33         | 5.90         | 7.28   | 0.759 | 10.78  |
| 3       | Cln 1 Tail                 | 2.21         | 0.75         | 6.50   | 0.113 | 10.78  |
| 4.      | Scav Conc                  | 5.23         | 0.47         | 9.20   | 0.085 | 18.96  |
| 5       | Ro Tail                    | 91.45        | 0.04         | 14.18  | 0.006 | 23.70  |
| 1,2,3   | Ro Conc.                   | 3.32         | 6.02         | 76.62  | 0.401 | 57.34  |

Examination of the products revealed that the cleaner 2 concentrate was clean but high in pyrite.

Test No. 16FT11: Test No. 16FT11 was also conducted on ore No. 1. For the test the level of reagent was kept the same, but the ratio of Z-6 to Z-200 was one to one, in an attempt to increase Cu selectivity. Also the level of Dowfroth 250 was kept the same. Results were as follows

|       | Heads. Chem |        | 0.24  |        | 0.028 |        |
|-------|-------------|--------|-------|--------|-------|--------|
|       | Heads, Calc | 100.00 | 0.26  | 100.00 | 0.027 | 100.00 |
| 1     | Cln 2 Conc  | 0.75   | 21.50 | 62.16  | 1.184 | 33.46  |
| 2     | Cln 2 Tail  | 0.38   | 5.25  | 7.72   | 0.734 | 10.53  |
| 3     | Cln l Tail  | 3.31   | 0.41  | 5.41   | 0.070 | 8.65   |
| 4     | Scav Conc   | 2.74   | 0.67  | 6.95   | 0.190 | 19.55  |
| 5     | Ro Tail     | 92.82  | 0.05  | 17.76  | 0.008 | 27.81  |
| 1,2,3 | Ro Conc     | 4.42   | 4.39  | 75.29  | 0.315 | 52.64  |

Results were comparable with those of test No. 16FT11, and not as satisfactory as those of test No. 13FT8.

Test No. 15FT10: Test No. 15FT10 was conducted on ore No. 4 and using the same reagent combination as used for test No. 16FT11. Result were as follows:

|       | Heads, Chem |              | 0.31  |       | 0.021 |        |
|-------|-------------|--------------|-------|-------|-------|--------|
|       | Heads, Calc | 100.00       |       |       |       | 100.00 |
| 1     | Cln 2 Conc  | 1.19         | 18.50 | 60.44 | 1.043 | 59.62  |
| 2     | Cln 2 Tail  | 0.69         | 4.55  | 8.52  | 0.337 | 11.06  |
| 3     | Cln 1 Tail  | <b>3.</b> 28 | 0.47  | 4.12  | 0.035 | 0.96   |
|       | Scav Conc   | 1.62         | 0.84  | 3.85  | 0.125 | 10.57  |
| 5     | Ro Tail     | 93.22        | 0.09  | 23.08 | 0.004 | 17.79  |
| 1,2,3 | Ro Conc     | 5.16         | 5.16  | 73.08 | 0.289 | 71.64  |

Even though the cleaner two concentrate was not as clean as for test No. 16FT11, its pyrite content was much higher than for test No. 6FT5.

These results indicate that addressons by rive depressants should be used along with Z-6 as collector, even in combination with Z-200. Also, the Dowfroth 250 quantity required with the Z-6/Z-200 combination is higher than the quantity required with Z-200 alone.

In conclusion, it appears that the best combination tried to process the Squaw Peak ore is the use of lime as pyrite depressant, and Z-200 as the copper-molybdenum collector for the bulk float; Diesel fuel can be used to improve MoS2 recovery in the scavenger float and in both floats Dowfroth 250 is an effective frother. H2SO4 can be used as pH modifier in the scavenger float.

Detailed laboratory sheets for tests Nos. 6FT5 and 15FT10 Squaw Peak ore No. 4; and tests Nos. 13FT8, 14FT9, and 16FT11 Squaw Peak ore No. 1; are attached to this report.

3. A grinding-classification test was conducted on a sample of Squaw Peak Ore No. 4.

For this test the following points were taken into account:

- a. The copper is present as chalcopyrite, Hardness  $3\frac{1}{2}-4$ .
- b. The chalcopyrite shows completely liberated particles starting at 48 mesh, and it is a brittle mineral.
- c. Pyrite is present in small amounts. Even though the pyrite is also brittle, it has a hardness of 6-67.
- d. The main impurities are: quartzite, hardness 7; the feldspars, hardness  $6-6\frac{1}{2}$ ; and the micas. The micas are soft but usually brakes in plates, with one dimension several times the other from a sectional point of view.

Assuming that the chalcopyrite will be reduced in size faster than any other component of the same size fraction, a sample of minus 10 mesh ore was ground to nominal 48 mesh in one pass. The results were as follows:

|                                                    |                                                             | Cumulative % Retained                                       |                                                                    |                                                             |                                                                    |  |  |
|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| Mesh                                               | Wt.                                                         | Cu                                                          |                                                                    | Mo                                                          | S2                                                                 |  |  |
| Tyler                                              | <u></u>                                                     | %                                                           | Distr.                                                             | <del>g</del>                                                | Distr.                                                             |  |  |
| +48<br>+65<br>+100<br>+150<br>+200<br>+270<br>+325 | 0.38<br>2.66<br>10.46<br>24.95<br>39.37<br>50.29<br>54.60   | 0.092<br>0.086<br>0.111<br>0.151<br>0.187<br>0.218<br>0.234 | 0.096<br>0.627<br>3.188<br>10.323<br>20.186<br>30.046<br>34.952    | 0.018<br>0.025<br>0.020<br>0.020<br>0.016<br>0.021<br>0.022 | 0.276<br>2.679<br>8.365<br>20.110<br>33.550<br>43.728<br>47.918    |  |  |
| -325<br>Heads                                      | 45.40<br>100.00                                             | 0.523<br>0.366                                              | 65.002<br>100.000                                                  | 0.028<br>0.025                                              | 52.082<br>100.000                                                  |  |  |
|                                                    |                                                             | Cumulative % Passing                                        |                                                                    |                                                             |                                                                    |  |  |
| -48<br>-65<br>-100<br>-150<br>-200<br>-270<br>-325 | 99.62<br>97.34<br>89.54<br>75.05<br>60.63<br>49.71<br>45.40 | 0.367<br>0.373<br>0.395<br>0.437<br>0.481<br>0.514<br>0.523 | 99.904<br>99.373<br>96.812<br>89.677<br>79.814<br>69.954<br>65.002 | 0.025<br>0.025<br>0.025<br>0.026<br>0.027<br>0.028<br>0.028 | 99.724<br>97.321<br>91.632<br>79.890<br>66.450<br>56.272<br>52.082 |  |  |



What the test tell us is that by differential grinding, we can upgrade the ore from 0.36% Cu to as much as 0.52% Cu, in a product containing 65% of the Cu in the mined ore and 45% of the weight.

One advantage of this system is that we can pick the economical grade of ore to be processed, and store the discard until such a time it becomes economical.

Going back to page 3, a hypothetical case would be as follows:

- a. Grinding of the run-of-mine ore to nominal 48 mesh, in open circuit.
- b. Classification of the ground ore on 150 mesh.
- c. Storage of the plus 150 mesh in a site adjacent to the plant from which it can be pumped back to the plant. Oxidation of the sulphides should not be much of a problem because:

I. At that mesh size there are mostly middlings, and only

part of the sulphide surface will be exposed.

- II. Regrinding of the ore will remove any oxide coating that might form on the surface of the exposed sulphides.
- d. For our hypothetical case the material balance would be:
  - I. Ore reserves: 30,000,000 tons. 0.36% Cu, 0.025 MoS2.

- II. Mining rate: 5,000TPD, 300 days/year, 20 years.
  III. Plus 150 mesh to storage: 1,250TPD of 0.15% Cu and 0.020% MoS2. This represents 10% of the Cu and 20% of the MoS2 in the runof mine ore.
  - IV. Minus 150 to the flotation plant: 3,750TPD of 0.437% Cu and 0.026% MoS2. This represents 90% of the Cu, 80% of the MoS2 and 75% of the tonnage of the run-of-mine ore.
    - V. I think that under this circumstances we can expect 85 to 90 percent Cu and MoS2 recovery, and that the milling cost will be reasonable enough to make it attractive at the present prices.

VI. The system will require much more metallurgical study and very detailed mine planning. However, I feel that we have the tools to do both.

Graph No. 1 illustrates the cumulative % passing figures.

PHILLIPS PETROLEUM COMPANY Minerals Division

Harm)

H.A. Franco, P.E. Metallurgist