

CONTACT INFORMATION
Mining Records Curator
Arizona Geological Survey 1520 West Adams St. Phoenix, AZ 85007

602-771-1601
http://www.azgs.az.gov
inquiries@azgs.az.gov

The following file is part of the

Arizona Department of Mines and Mineral Resources Mining Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.

MG WR 5/1/81: Mr. Javier Garay, Director of Purchasing, Material Control and Traffic, Anamax Mining Co., called to discuss Anamax's lease agreement with Arizona Portland Cement Co. The cement company mines limestone from Helmet Peak, a property in Pima County, owned by Anamax. Under the old agreement the cement company paid Anamax $25 \phi /$ ton of limestone. A new agreement is being negotiated.

Department of Mineral Resources STATE OF ARIZONA
 FIELD ENGINEERS REPORT

Mine	Date
District	Engineer
Subject:	

to the Billings was at that time estimated at 260, 000 tons with an average value under the old prices of about $\$ 10.00$.

It was the opinion of IEr. Libber substantiated further by John Carter Anderson, who also examined the property, that at this depth the copper replacements in the underlying limestone were beginning to come in and further development was recommended at greater depth to bring in these copper values which outcrop to the North and South in the well known Twin Buttes and Mineral Hill comps.

In conversation with a miner - a native of the district- whom we encountered during this examination, we were informed that he had been through all these workings during the period from 1928 to 1930 and that he had been employed at that time as a miner in the Billings shaft. He reported in the drift southwest of the shaft several feet of ore of milling grade interspersed with 6 inch stringers of high grade grey copper ore carrying good silver values.

At present all workings are inaccessible.

Date MAY 10, 1943
Engineer GEORGE BALLAM - B. W. BROWN 1
HELIET PEAK MINES

This property formerly operated and now owned by the Helmet Peak lining and Milling Co. is situated in the Olive Camp section of the Pima Mining District, Pima County, Arizona, and is about 21 miles Southwest of tucson and one mile west of the Twin Buttes highway. It is sub-leaser by James?. Anderson, 715 Valley National Bank Bldg., Tucson from the Kuenzel lining \& Smelting Co., holders of the lease. It is approximately 7 miles west of Suaharita, a station on the Southern Pacific railroad. Water for ordinary mining purposes is available in the district. The property consists of fifteen claims - seven patented and eight unpatented - lying in sections 10 and 11 , $T 17 \mathrm{~S}-\mathrm{R} 12 \mathrm{E}$; G \& $S R B \& M$.

The Olive Camplies between the limestone outcroppings of Mineral Hill and San Kavier to the North and Twin Buttes on the South within a comparatively small area of andesitic and rhyolitic flow, with sedimentaries immediately adjacent to the North and East and a late tertiary granite to the Nest. The mineralizing solutions have apparently had their origin in the underlying intrusive mass and have caused a partial replacement in overlying areas favorable for that action.

Prior to 1893 numerous leasof́s mined Lead-Silver ore in this area with values reported from 100 to 300 ozs . in silver and 20% in lead. Frequent streaks or grey copper ore are found in the lower horizons carrying higher values in silver than have been reported in the galena above. Following the panic and resultant silver depression of 1893 operations cane to a standstill in the 0live Camp, and with the exception of the Helmet Peak property little work has been done since. About 1928 the Helmet' Peak Co. resumed operations on the Prosperity Group. A vertical shaft known as the Camden $\# 1$ was then sunk to a depth of 600 ft . on the claim of the same name. About 300 ft . in a westerly direction an older shaft known as the Billings openedus to a depth of about 60 ft . With about 100 ft . of lateral development work. About 500 ft . to the west on the Rlsie clain of the group a vertical shaft known as $/ 2$ is reported to be about 500 ft . deep and on the same strike. In all, about 3500 ft of lateral development has been done in the two newer shafts. The latter workings are now under water which stands at a depth of 100 ft . or more. Timber down to the water level is in good condition but considerable caving is reported below the water level. The Billings shaft, which is untimbered, is dry, but the lateral drifts are reported badly caved.

According to a report made by J. M. Libbey, M.E., in 1928 following considerable sampling assays are reported as follows:

In the workings of the Billings shaft and sections of the 150 ft . level of the Camden shart ore estimated at 100,000 tons shows an average assay value of;

Gold . 01 oz. - Silver 1. 2 oz. - Copper . 25% - Lead 1. 9% - Zinc 3.8\%
The area opened up to the 400 ft . level in both shafts and the ore adjacent

UNIVERSITY OF ARIZONA

Tucson
College of Mines and Engineering

Department of Geology and Mineralogy

November 21, 1929.

Mr. J. A. Hamilton, Tucson, Arizona.

Dear Sir:
In accordance with your request, I here present an opinion on certain phases of the geology of the 'Olive Camp area of the Pima Mining District, Pima County, Arizona.

It is the intention to discuss here not the detailed geoloy of individual properties, but rather the large geological features of the district generally, which are of fundamental importance in the matter of ore occurrance.

The discussion and opinion are based on brief personal observations made in the field, aided by a study of reports prepared by mining engineers and geologists for mining companies, by reports and maps prepared in the course of advanced degree studies by graduate students in Geology at the University of Arizona, and by the literatute and government maps of the area and region.

The rocks of the immeadiate area comprise pre-Cambrian (?) granite, Mesozoic (Cretaceous) arkosic sedimentary beds, intrusives granitic rocks, and volcanic rocks which are chiefly andesite. The volcanics are either late Cretaceous or early Tertiary in age. Just outside of the area, particularly to the northward, occur thick formations of Paleozoic limestone and quartzite.

The major structure of the area cannot be definitely determined by the available surface and near-surface geology. It is clear, however, that a great amount of fracturing, accompanied no doubt by at least some faulting has occurfed throughout the area. It is possible that folding is the most extensive type of minor deformation within the area and the cause of fracturing and faulting.

Or it may be that the fractures were generated by stresses resulting from the uneven settling of a large crustal block following the transfer of a large volumn of volcanic material from deep seated to superficial positions. Or perhaps vertical upthrust of intruding magmas may have caused fracturing and faulting.

Mineralization apparently has been widespread. The rocks along fractures observed, whether on the surface or underground, have been more or less extensively altered. Ore deposition, in varying degree, seems to have occurred wherever a master fracture was available to act as a channelway for ore-bearing solutions. The ore deposits are, in the main, of the fissure filled type, localized along major fractures, at the intersection of fractures, and in brecciated zones.

It is faily certain that intrusive granitic rocks underlie at variable depth the entire district of which the Olive Camp area forms a part. These intrusive rocks were probably the source of all primary mineralization in the district. The ore deposits that have been developed in the past in the Olive Camp area have been chiefly small highgrade silver-lead bodies, formed mainly by fissure filling, but perhaps to some extent by wall-rock replacement, in the near-surface retaceous sedimentary and volcanic formations. In areas to the north and south important copper and zinc ore developments have been made and from which considerable tonnages of ore have been mined in the past. These deposits are principally replacement bodies in Paleozoic limestone. It appears, therefore, that replacement bodies in limestone form the important type of ore deposits for the district.

The question of major structure, and character and thickness of formations forming that structure, thus appear to be the essential questions relative to the probability of extensive ore occurrances at depth in Olive Camp area. If the ore-bearing limestone formations of the Mineral Hill-San Xavier area to the North and of the Twin Buttes area to the South are continuous or occur under Olive Camp area, then the probability of occurrance of important commercial ore deposits at depth in the latter area is greatly increased. The problem then would become one of probable depth to the favorable horizon and the determining of dominant or master fracture zones.

Mr. J. C. Anderson, in his report on the Swastka property. page 4 , sets forth certain evidence and a statement of belief that limestone does occur below the superficial formations of the area.

That there is more than a possibility that these Paleozoic limestone formations do exist below the surface formations in the olive Camp area is not an idle. statement nor one made for convenience. Even brief field study of the stratigraphy and structures in this area and that immediately to the north, in the San Kavier area, justify the statement that this stratigraphic condition might exist. But more convincing still are similar indications in the results of recent detailed geologic mapping in this area to the north.

The Olive Camp area appears to be a depressed geologic structure. Either down-warped (synclinal) or a down faulted area. The Paleozoic formations of 0 the San Xavier area distinctly dip to the south (20-25) apparently plunging under the Olive Camp area. The contact between Paleozoic Imestone and Cretaceous arkosic beds occurs along the southern border of the San Xavier area. The normal formational contact, produced by a break or time interval in the deposition of sediments which formed the beds; or it may be a fault contact, produced by a major rupture. If this contact is an unconformity, as the first case suggest, the limestones extend to the southward uninterruptediy below the olive Camp area. In the event that it is a fault.contact, the limestones with their overlying sedimentary beds and volcanic formations in the olive camp area have been faulted downward.

There is some basis, of course, for expecting that additional undetground development may disclose other small high-grade silver-bearing ore shoots, such as were formerly worked in the area, or perhaps larger veins and breccia bodies of ore of commercial grade and size. But it is more logical to expect that, if commercially important ore bodies are to be developed in the area, they will occur as metasomatic replacement and contact deposits in limestone.

The problem of developing possible largeore bodies in Olive Camp area thus resoves itself, in this opinion, to first ascertaining the presence or absence of underlying limestone beds. preferrably, such development should be carried on by drilling operations. And in so doing if the location of drill holes is carefully planned, it is probable that relatively near-surface vein or breccia type deposits of value may be encountered while the deeper prospecting is in progress. The depth at which the limestone, if present, may occur is highly problematical; if in a synclinal structure, it may be comparatively shallow, if block-faulted, it may lie deeper--2,000 feet or more

Yours very truly,
R. J. Leonard.

$$
\begin{aligned}
& \text { Olive Camp, Pima County, Arizona. } \\
& \text { - -oD-- }
\end{aligned}
$$

LOCATION and HOLDINGS:

The Swastika Group of 12 unpatented lode mining claims and fractions, including the Richmond, Emma E, Rich Hill, Alice, Glenn, West End, Beatrice, Horse Shoe, Republic, W.K., Flora, and Gem claims, is located at Olive Camp 21 miles southwest from Tucson at an elevation of about 3,500 feet, and is reached by wagon roads from Tucson and from Sahuarita Station on the Tuoson-Mogales Branch of the Southern Pacific, which is 8 miles east.

The five northern claims of the Group, the Rich Hill, Alice, W. K., Flora, and Gem claims are at present bonded to other parties who have sunk an old shaft on the Alice to a depth of 165 feet and are now developing on the 150 foot level.

Olive Camp lies in relatively flat country, showing but a few low hills, with marked structural breaks on all sides, and is that part of the Pima Mining District lying between the San-Xacier--Mineral Hill District on the north and Twin Buttes on the south. It is distinguished from those camps by the fact that it is almost wholly an area of igneous rocks while they are areas of sedimentary rocks intruded by igneous dikes and sills.

HISTORY:

A correct knowledge and interpretation of the history of Olive Camp is essential to any consideration of its future possibilities.

Like many another silver camp of the old days in Arizona, an authentic recorded history of the Camp is lacking and the total of its past production can be but approximated by a sifting out of the stories told by the old timers. Fortunately, in the case of Olive Camp, though its days of prosperity are now nearly 30 years back, there remain in Tucson a number of solid, trustworthy men, the foundations of whose fortunes were laid in Olive Camp, including Messes. Frank and Warren Allison, J. K. and Seward Brown and others, whose accounts may be accepted with confidence.

The Olive, the first mine located, now called the Olivette, was located in 1886 by Frank Allison, J.K.Brown, and another, and it is said that by 1887 there were 150 men leasing in the district and that shipments of ore were maintained continuously to the year 1893 when the falling price of lead and silver closed the mines which, with the exception of the Richmond, have never since been worked.

The Richmond and Emma E. claims of the Swastika Group are said to have produced about $\$ 100,000.00$ from shallow inclined shafts and small stopes. In 1913 the main working on the Richmond was gutted by leasers who took out a considerable but unknown quantity of ore and left the mine as a leaser always does, with very little in sight. No serious attempt at development has ever been made and the greatest vertical depth reached in taking out this ore was 100 feet.

Endining the Richmond to the East and on the same or a related vein system is the Annette and next to it the Olivette. Since starting this report, the writer has again talked with Mr. Seward Brown, the original owmer of the Annette. He says that he took out $\$ 65,000,00$ and left good ore in a winze at the bottom and in the end of a drift to the west. He also says that his brother, Mr. J. K. Brown, and Mr. Frank Allison and leasers shipped $\$ 750,000,00$ from the Olive and left ore in the bottom.

Still east of the Olivette on what is now known as the Wedge Group or Whitcomb Group, dump after dump shows the extent of the old work.

The Shumaker Group adjoining the Richmond on the south was another producer and a third of a mile southeast is the Prosperity Group with large dumps at several shafts, the deepest of whioh is said to be 310 feet on the incline. Other claims in the district also have records of production, but the prineipal work and the greater part of the production centers in those here named.

There is no known record of production from any of these mines that can be verified, which is not strange, owing to the manner in which the mines were worked with the number of leasers shipping irregularly as they got out a sufficient tonnage of high-grade ore. This ore is reported as running
from 100 ounces to 300 ounces silver per ton with upwards of 20% in lead. The higher silver values are said to have come, as is to be expected, with those ores carrying gray copper rather than with the heavy galena ores.

The various claims, such as the Richmond, Olive, Wedge, and Prosperity, are reported as having produced from $\$ 100,000,00$ to $\$ 750,000$ or more each. Allison Brothers, who besides their own production ran a store and shipped ore for many of the leasers, claim a record of over $\$ 1,000,000.00$ worth of ore shipped by them and estimate the production of the District at around \$3,000,000.00. As these statements are made by men of good standing, not now interested in the properties it is but fair to accord them consideration in estimating the past returns from the Camp. From all the evidence at hand and from the number and size of the old dumps, the writer feels safe in assuming that the production for the district was in excess of the lower figure and not likely over the latter. Worked even in the careless manner in which they were this certainly meant a good return for the amount of work done.

MINES in ADJOINING DISTRICTS:
Equally important is a knowledge of the mines in the San Xavier-Mineral Hill Distriot to the north and Twin Buttes to the south. These are contact and replacement bodies of base ores in limestone, but it is believed that the source of the mineralization in all three camps is related and that deeper development in olive Camp may lead to similar deposits which will be much larger and more permanent than the silver veins of the Camp.

Chief among these mines are the following:
The Mineral Hill Consolidated, where a body of copper ore is being developed in garnet along a sill contact of granite between limestone and quartzite, whioh is increasingly large on each deeper level with a body of mill ore from 100 to 200 feet wide on the 600 , the deepest developed level. From the Vulaan, $\$ 300,000,00$ worth of copper ore was taken through two old inclines which reached a vertical depth of about 300 feet. Increasing water which could not be handled through the old inclines, which are now caved, shut this property down. A vertical shaft is being sunk to reopen the mine. The San Xiyier, nearest of the developed mines to the Richmond has developed a big body of lead-zinc and copper ore to a depth of several hundred feet, provine it to be IncreastrgIVIarger in depth This property is owned by The Empire Zinc Co., a subsidiary of the New Jersey Zinc Co., and will undoubtedly be equipped with reduction works and development onntinued when the policies of that Company require further supplies of ore. Thesemay be considered as real mines with assured futures Other properties which have produced some ore, but which are not yet developed to the point of permanent mines, are the San Kavier Extension and the South San Xavier.

In Twin Buttes the Glance, Queen, Minnie, and Senator Morgan mines have in the past produced a total of
several millions of dollars worth of copper ores from grante-inestone contắ aeposits and presert development on the Queen and North Ster is blocking out large bodies of primary copper and copper-zinc ores which promise a still bigger future for the Camp.

GENERAL GEOLOGY OF THE OLIVE CAMP:

Unlike the San Xavier-Mineral Hill and Twin Buttes districts where large bodies of copper and zinc-leadcopper ores are found in limestone, the silver veins of Olive Camp are found in a rhyolite porphyry, which at many points resembles and has often been mistakenly called quartzite. The original extent, thickness, and age of this formation is unknow, but it is believed to be a part of one of the early Tertiary flows.

The extreme north line of the rhyolite follows a general $N .70$ E. break through the Gray Copper claim of the South San Xavier and the West Extension of San Xavier and San Xavier claims of the San Xavier property. This contact is one of shearing rather than of a single strong fault and the porphyry, if not forming the hanging wall on the vein of the San Xavier, is not far in the hanging wall. Where seen on the surface, where the road passes by the shaft on the San Xavier the contact has a steep dip to the south the same as the Paleozoic limestones. In the underground workings of the South San Xavier the contact where first cut, about 100 feet north of the shaft on the 150 foot level, is quite steep, but it is much flatter where it crosses the shaft between the 150 and 200 foot levels. It is believed that limestone will be found below the porphymy oyer the whole area of Olive Camp but at what depth is impossible to say as the thickness the porphyyis unknown. South of this contaot the Ifméstone is again Paulted to surface on the Ruby, Hoosier, and Vienna claims. Here again the lime has a south dip and is in contact with the porphyry which extends then unbroken, save by later igneous intrusions, for about three miles south, where limestone hills and granite flats again limit it. To the east is the uplifted limestone of Helmet Peak and the wash covered flats which extend down to the Santa Cruz River. On the west is a granite flat, the actual contact being covered by recent wash.

Throughout the rhyolite area, particularly in the - neighborhood of the veins, there has been a slight dissemination of pyrite, some of which was sufficiently cupriferous to stain the walls of old mine workings with copper salts. Pieces of the wall rock taken from any of the mines at depths below surface oxidation show a few tiny crystals of pyrite. It is the oxidation of this iron which has seamed and rusted the porphyry in surface exposures.

On the Rich Hill olaim of the Swastika Group a 165 foot shaft enters intrusive granite identical in character with that responsible for the mineralization in the San Xavier-Mineral Hill and Twin Buttes Districts. Where cut in the shaft this granite has an east-west strike and a very flat dip to the south, while the main veins of the Camp dip to the north. In the shaft the contact shows some alteration of the porphyry and a little sugar quartz but no mineralization. Lateral work from the station on the 150 foot level, following a streak of pyrite with a little chalcopyrite and galena having a strike of N. 70 E , and a dip to the north, is now showing veinlets and bunches of galean and copper-iron sulphides and zones of alteration in the porphyry, which seem to have taken a south d $\pm p$ at about the same angle as the granite. The work at this point is probably but a few feet distant from the granite cut in the shait.

Also intruding the rhyolite and best seen between the mines and the north line of the rhyolite are tongues of andesite porphyry and a similar but more coarsely orystalline rock which are younger than the intrusive granite. At surface no connection can be traced between these andesite dikes and the mineralization. However, the dump at the Alpha and one of the dumps at the Olivette, that of the shaft on the north-south vein which orosses the main east-west vein, show some of the andesite.

Deeper development in the district must prove the relation of these two intrusives to the mineralization, but the writer is very sure that one or both of them are responsible for the ore deposition. As the granite has been so clearly prov-
sen to be associated with the origin of the ore bodies in the adjacent limestone areas, it is to be expeoted that a similar relation exists here. The presence of gray copper in the ores from the Olivette and the Alpha where the andesite intrusions have been found, and the presence of galena only in the Freins on the Swastika Group, where granite has been found, may \}indicate that both of them were mineralizers.

The writer first became interested in the possibilities of Olive Camp when making a study of the geology of one of the mines in the San Xavier Mineral Hill District. Since then he has spent much time in a study of the Camp to determine, $\}$ if possible, what chances exist for finding larger bodies of ore a depth. This study has strengthened his belief that all of the veins of Olive Camp owe their origin to the intrusion of underlying formations by granitic or porphyritic rocks related to those which mineralized the limestones in the adjacent) districts. The siliceous porphyry being more uniform in structure, harder and less yeilding than the limestones, was cracked and fissured rather than penetrated by these intrusions and in these cracks and fissures was localized the travel of the mineralizing solutions which accompanied the intrusions, and so were formed the silver veins of the Camp.

Following the progression of mineralization which has been observed by the writer in his study of a large number of mines and mining districts in South-western Arizona, it is his belief that if these veins are followed on down below their present workings there will be a gradual change from the lead-silyer ores of the past to ores containing more and more zinc and finaliy to ooper If these veins continie ormown to an intrusive contact, asit is believed they will. they may be expected to change in strike and dip to conform with the strike and dip of the intrusive and will then continue on down as contact veins. If in depth, limestone is found under the porphyry, as is the firm belief of the writer that there will be at some depth, there are good reasons to expect that copper deposits will have been developed on the contact with the intrusive, similar to the big contact copper deposits on either side of the Camp. Herein lies, the writer believes, the real future of the district.

Unquestionably the porphyry is older than the uplift of the sediments, as it is intruded by the same granite which elsewhere in the district intruded and uplifted the limestone. While there is yet no definite evidence to prove it, it is thought to be a part of one of the early Tertiary fiows which covered the country. While the crystallization of the component minerals, especially the quartz, is better developed than in most of the rhyolite flows, it nowhere shows the coarsely crystalline texture to be expected in a mass of plutonic rock of this extent, and on the hilltops it shows the charaoteristio felsitic texture of a surface flow.

The general geological history of this part of Arizona can perhaps best be pictured by onceiving of a vast extent of sedimentary formations of Paleozoic age, in places wholly or in part eroded away, then covered by a succession of andesitic and rhyolitic flows in early Tertiary time, covering the country as an ioe sheet covers the worthern waters in winter. Into this cover of sediments and flows was intruded in Tertiary time a batholitic mass of granite which broke them up just as in the Spring break up, the thick sheet of ice is broken up and engulfed by the water. Thus you see great blocks of the older formations floating as in a sea of granite in all directions and dipping at all angles; sometimes near together, sometimes widely separated by broad stretches of granite; sometimes exposing one of the lower beds of the series on surface and sometimes all but submerged in the granite. Subsequent faulting and erosion has carved the oountry into high and low relief and filled many a broad valley with a great thickness of wash which still further obscures the correlation of the formations in one camp with those in another.

In the case of the sedimentary rocks, which on fossil and lithologioal evidence can be studied and named and an age relation carried through and rocks of the same age recognized in many widely separated exposures. Much valuable work has been done along this line by Dr. Ransome, of the U. S. Geological Survey, in his paper, "Some Paleozoic Sections in Arizona and their Correlation", and by others, but no attempt has ever been made to work out the much harder problem of a correlation of the igneous flow rooks which covered these sediments. The writer has not been able to find a single exposure of the rhyolite of Olive Camp where it is in other than fault contact with the limestones which bound it on three sides, but feels quite sure that it is a part of one of these Tertiary flows, probably a thick one, and that at some depth below the present surface will be found the same series of Paleozoic sediments which abut its margins.

It has been widely believed to be the rule that the big end of an ore deposit was up and that a vein of good width and value could normally be expected to decrease in size and value with depth. However, the writer's observations and studies in Southwestern Arizona are teaching him to look for exactly the opposite tonder certain geological conditions.

During the period of ore deposition which followed the intrusion of the granite batholith, extensive development of great fissure veins such as are found, in other mining districts seems to have been lacking. Instead, contact and replacement bodies were formed in the intruded rooks near the intrusive granitic rocks or their related porphyritic offshoots. Travel of mineralizing solutions which accompanfed these intrusions was confined to the contacts or to minor cracks and fissures and not to one or more main trunk channels such for instance as the big fault fissure gold veins in the flow rocks around Oatman.

Dikes and sills of porphyry reached far higher in the intruded rocks than the main contact and thus opened a way of escape for the solutions. Owing to the quick cooling of these dikes and sills, however, the upper, thinner portions were not open to the circulation of mineralizing solutions long enough for any large deposits to form on their contacts, nor was the force of the intrusion at its upper limit enough to open big fractures in the intruded rocks. Some solutions carrying the lower temperature minerals, might, however, reach this high before their passage was sealed off, and branching off through such minor fractures as were developed, form small lead-silver veins.

At greater depth and under slower cooling conditions, where the ohannels to the main magmatic mass below remained open a longer time, there was a long continued ore deposition, in favorable formations the solutions spreading farther and farther from the contact at greater depth.

The resultant ore deposit may never have reached to the present surface, or may be represented by surface outcrops almost insignificant in appearance and value. The outcrops of this type of deposit will vary in attractive appearance in proportion to the depth to which erosion has uncovered them. But at any point between the smallest stringer of ore and the main contact below, if the struotural conditions and enclosing wall rocks are favorable to the deposition of ores it is probable that the big end of the deposit is down. A good illustration of this type af deposit is found at the Mneral Hill Consolidated where an intrusive sill of granite between anartzite and lime has formed a contact deposit of oopper in the limestone which is much bigger and more continuour on each deeper Leral. On surface there are scattering outcrops of copper carbonates below which shoots of carbonate ore were worked out to the 300 foot level without finding any big or continuous shoot of ore. On the 500 foot level, large bodies of garnetchalcopyrite ore were found on top of the granite sill and on the 600 foot level, the garnet zone is still bigger. A cross-section of the ore deposit would show two inverted wedges. One of granite tapering out thinner and thinner as it approaches surface and a similar one of ore.

MINERALIZATION:

The ores of the District as so far developed are of two classes: those silver-lead ores carrying, their silver values in association with galena, and those in which the silver values are associated with gray copper. This second class of ore carries the higher silver values, shipments funning up to 300 ounces of silver per ton, being reported. The straight galena ores are not known to have carried higher than 100 ounces silver per ton. The galena ores may be expected to carry less silver in depth, while the silver value in the veins carrying gray copper may persist to somewhat greater depths. Zinc blende is beginning to show in the ore from the bottom of the Richmond, as is also a little chaloopyrite or cupriferous pyrite; and according to MR. Seward Brown, the bottom of the Annette and Olive reins was showing some zinc.

The zonal arrangement of the different metals
in veins has been noted by a number of students of ore deposits in different regions, and the observations of the writer are continually adding proof to the zonal theory of the deposition of metals in Southwestern Arizona. Of the commonly mined metals in Arizona the main contacts show, as a rule, clean copper-iron ores. At some distance above the contact the admixture with zinc begins, and still higher the ore will likely contain lead-iino-copper, then lead-zinc, and in the more superficial veins, lead-silver. The vertical extent of these zones is variable, and there is usually a considerable overlapping of one zone with the next higher, which has given rise to the complex ores which are characteristic of many districts in this region. Howr ever, with few exceptions, it is safe to prediot that the superficial lead-silver veins, from which the old timers took greater or less amounts of shipping ore, will have a limited vertical range, and that deeper development will find first zincy ores, ind finellycopposores these ores will be lower in grade than the surface ores, but the increase in size of the deposit may far more than offset the lowering in grade.

The mines that are paying the great dividends in these days are the mines with large bodies of low grade ores, and in the opinion of the writer, the possibilities of silver veins like those of Olive Camp should not be considered as dependent on the finding of more and larger bodies of the silver ores that the old timers took, but as to whether or not they are the leaders to a large deposit of base metal ores. It is of course possible for properly directed lateral work beyohd the limited old workings to find additional shoots of the same silver ores, and once a working shaft is connected with the bottom of the old workings on the Richmond, drifts should be rum as long as there is a vein to follow, even though the ore streak is very small, for the old timers found their ore by following the vein though it pinched down to but half an inch of ore.

VEIN SYSTEM:

The original vein of the Richmond has nearly an east-west strike and a dip of 35 to 50 degrees to the north, flattening somewhat in depth. This, or a parallel vein or veins continues east and west through the endlining olaims for a total distance of perhaps a mile, and several different ore shoots have been worked on the different claims. In the main incline of the Richmond it has well marked walls from 2 to 6 feet apart with a vein filling of crushed country rock through which run streaks and veinlets of galena ore. The widest of these streaks now to be seen in the mine, in an east drift on the 90 foot level, is but 4 inches wide but it
is reported, and is indicated by the old filled stopes, that these streaks would open out to as much as 3 feet in width. This seems to have been characteristic of the ore shoots in all of the old mines. A similar and probably related vein is opened on the Emma E. claim, endlining the Richmond on the west, by a number of small inclines, which from the dump, must have followed one of the se ore shoots.

In the main incline on the Richmond this eastwest vein is cut by branching fractures of varying strike and dip, some of which show some galena. It appears that there may be a series of small branching and intersecting fissures any of which may contain ore. On the bottom level, about 80 feet northwest of the shaft is a 50 foot winze. Above this is an old partly filled stope about 40 feet long and extending at least that far above the level. It is here that the leaser in 1913 is said to have taken out the ore he shipped. The vein in the stope was quite flat and where the winze was sunk, is crossed by another break dipping about 55° which is the one followed by the winze. The main vein dips off in the hanging wall of the winze. Small stringers of galena show in both veins, but at this point are not of workable size.

Early in this year, the winze was sunk to 50 feet below the level, and 38 feet below the level a flat slip with a slight dip to the southwest crossed the winze, cutting off the slips on which it was sunk. Below this, all four sides of the winze showed low grade ore. The writer saw this showing when the winze was about 18 inches below the slip, and at that time noted with great interest the change and the manner in which the descending slips seemed to cut off. Above the slip is the north dipping vein with a little quartz and galena, below it is largely quartz with some galena. The winze continued in this ore for about 13 feet, cutting off in the bottom on another flat slip. All sides of the winze were in ore and some very good pieces of galena were taken out, but with the lower slip, water came into the shaft, rising nearly to the upper slip. This shut down the work as there was no way to handle water.

The writer regrets very much that he did not have an opportunity to see the bottom of the winze before it was flooded and note exactly the change that came in below the ore for this is apparently a flat vein, probably conforming in strike and dip with an under lying porphyry intrusion. This would have done much to furnish the information which is essential to a proper location of any new work. While the ore is not of shipping grade, it is mill ore and apparently a much stronger vein than those originally worked. Its encounter greatly increased the writeris opinion of the future possibilities of the property and confirmed his belief that the property warrants the expenditure of the amount necessary to prove it.

It strengthens his theory as to the manner of formation of these veins, as does in a fuller measure, the finding of the intrusive granite in the bottom of the Rich Hill Bhaft.

About 230 feet northwest of this incline is a Vertical shaft 65 feet deep, $4^{\prime \prime} \times 6^{\prime \prime}$ in the clear and partly timbered, which was sunk as a prospect shaft by leasers. A little above the bottom, it cuts an east-west vein showing a little manganese stained quartiz with some lead-silver values. This is probably a parallel vein in the hanging wall of the one in the incline and like it, may open out to workable size and value at some points. It appears to be widening fast in the few feet in which it is exposed. None of the veins of Olive Camp have a strong outcrop, and while a number of ore shoots have been opened along a certain general strike, one cannot on surface follow on the vein from one to the other, but it is believed that at depth they will all be found to be in some manner connected.

On the Rich Hill claim several old cuts and shallow shafts open a well marked fault with a strike of about N. 70 E. and a dip to the north, showing some quartz and mineralization. The same break is opened again on the Alice claim to the east by a shaft originally 70 feet deep with small stope drifts at about 40 feet and at bottom. This work shows some quartz and a little mineralization but the vein is faulted just below 70 feet by a fault with a flat dip to the west. The present leasers have sunk this inclined shaft to 165 feet, cutting intrusive granite at 155 feet. In the shaft the upper contact of the granite has a flat dip to the south and a nearly east west strike. On the 150 foot level they have cross-out north and south in badly shattered rhyolite with tiny seams of pyrite and occasionally of galena through it. About 40 feet south of the shaft a drift turns N. 70 E. following a north dipping seam of pyrite beyond which small bunches and seams of pyrite and galena with a little chalcopyrite apparently dipping to the south are coming in. Some of these bunches of galena are very solid and heavy and of high grade. Zones of alteration in the rhyolite have a flat dip to the south about like that of the granite in the shaft and probably in sympathy with it. The granite contact cannot be far distant and it appears as though mineralization was turning south to follow the contact. A winze is being started at this point and its progress will be watched with great interest.

RECOMMENDATIONS FOR DEVELOPMENT:
It is out of the question to carry on new development through the old incline. It would entail an
added cost of mining that would soon exceed the cost of sinking a working shaft.

The 65 foot vertical shaft might be continued but it is 190 feet west of the bottom of the winze and for a connection, would take 100 feet of sinking and 190 feet of crossmcutting. It would probably encounter the vein before going that distance, but our present knowledge of the way the vein is going is so limited that it might easily miss it until driven to a connection. And it is very probably that it would then be found to be so located with respect to the ore that it would require excessively long cross-cuts on lower levels. If this shaft were deepened, it would have to be stripped and retimbered to make it $4^{8} \times{ }^{78}$ in the clear as with water to be handled, it is too small for the work to be done.

The few feet of sinking that was done in the winze last winter did more to prediot a future for the property than all the work ever done in Olive Camp, and a few more feet of work there may easily do as much good in guiding the real work of development.

When the further development of this property is undertaken, it will be necessary to make provision for the handiling of the water for it is certain that water must be handled in the sinking. The amount of water met in any of the old mines was small and can be easily handied in a \forall ertical shaft with modern equipment. The greatest flow known in the Camp is that met by Mr. Charles Taylor on the 200 foot level of the Bonanza, the claim just north of the Richmond. In his recent work on that claim, he has had to handle a flow of about 40 galons a minute from 200 feet. A small gas engine driven generator to furnish power for electric pumping will be the least expensive and most efficient provision for pumping water.

If, at that time, this equipment be utilized to get the water out of the winze to permit the doing of a little more work there with a windlass; or preferably by raising out to surface above the winze and then doing a little more work on the vein, the cost would be sared times over by determining the correct location of the new shaft. Not over 70 feet of raising will be necessary to connect this winze with the surface, and it could be done without any stops for hoisting by letting the muck fill up the winze and the old stope and drifts on the bottom level. Then the winze could be cleaned out rapidly, using the $8 \mathrm{H} . \mathrm{P}$. gasoline haist belonging to the property, the raise timbered up and used as a working shaft until enough was learned to show where the new shaft should be sunk.

As soon as a.little additional work in the bottom. of the winze has determined the question of the strike and dip
of the vein there discovered and whether or not the north dipping veins end on that vein or continue below it, a new shaft should be started to develop this ore showing at depth. At the present stage of development, a one and one-half-compartment shaft $4^{8} \times 7^{1}$ in the clear and timbered with $6^{\prime \prime} \times 6^{\prime \prime}$ timbers is amply large to test the ground with the least expense and it is big enough to handie any high-grade ore that may be found in extending the old workings. It should be planned, looated, and equipped to go at least 500 feet, with conneotions with the vein at 100 foot levels. On the correct location of the shaft will depend the distances to be crossmout on the several levels and a poorly located shaft may easily entail excessive expense in cross-cutting.

Coincidentially with the deeper development of the property as soon as conneotion is made with the bottom of the old workings, drifts should be started to find other shoots of high-grade ore which might easily pay very well for the work done.

CONCLUSIONS:

As with everything else which is under development in this region, the possibilities of the Swastika property cannot be judged nor measured by the size or value of the ore exposures left by old leasers who worked the mines for the high-grade silver ores. There is the possibility of finding other shoots of ore than those formerly worked, by well directed development, and in a property like the Swastika, where so small a proportion of the length of the veins have been prospected, and where the continuation of this vein system on adjoining properties yielded such large returns, the chances for finding profitable shoots of high-grade ore well warrant their development.

The real future of the property lies in finding in depth of larger and more permanent bodies of base ores. The writer has made a long study of the geologioal conditions governing the formation of such deposits in Southwestern Arizona and has tried in this report, to clearly set forth his reasons for believing that the lead-silver veins of this property may lead down to them. He believes therefore, that the development of this property is a good mining speculation with possibilities of profit more than warranting the risk of development.

Faithfolly submitted,

```
H. P. Mining sad Milling Company,
90 North Church Street,
Tucson, Arizona.
```


Gentlemen:

I am enclosing herewith a copy of Mine owners

Report on the | hElmet Peak Mine which you have filed in this |
| :--- |
| office. | .

I am also returning the copy of opinion sent for examination.

> Yours very truly,

J. S. Coupal.
 $D_{\text {rector }}$

Jscmare
encls.

MEMORANDTM

T0: George A. Bellam
FROM, J. S. Goupal

I have recolyed your manorandum on this subject and also your repart on the proparty.

If Mr. James P. Andecson, Tucson, contacts the prirate capital, I believe he should not hesitâte to put in an mpilication for an accessibility loan for $\$ 5000$.

The next time you see hiri tell him that gou have two good M.I.T. men who will be woriving for hime

Prosperity Group

- Helmet Peak Mines

From: George Balaam
To: Director, Dept. Mineral Resources
V
Jas. P. Anderson has purchased the Kuenzel lease on the Helmet Peak Mine and is preparing to finance opening up the old workings. At present he appears to have a chance to raise some private capital in Los Angeles, but in the event it does not materialize, he will apply for an RFC accessibility loan. The reason for this sequence of procedure is obvious.

Mr. Brown and I went out to the property. We took with us one Jesus---etc, a Mexican who had worked in the mine during its operation or development in 1928. He is an intelligent chap and a good miner. At present he is mine foreman for Kuenzel on the Olivet. Having been reared in the district, he was familiar with it. He informed us that the workings in the Camden No. 1 , and Billings are all under water, and that the ground is bad, in that the vein matter is wide and walls were not contacted. It would cost more than $\$ 5000$ to unwater and retimber. However, he was very enthusiastic about the Billings, the 60 foot shaft, which is dry but drifts caved to some extent. He said he saw gray copper ore with high silver values, as stringers in a vein of milling ore several feet in width. Despite the fact that this ore was well sampled in the adjacent and lower levels of the Camden and No. 2, showing over one-half million tons of $\$ 10$ ore at old prices, he claims that the easily-accesible and high-grade ore is in the Billings, and in the event that the leaser gets under operation, he has made arrangements with Jesus --etd., to take over the job.

Anderson is a good operator and has had a lot of experience in Mexico, Colorado, and other places. Graduate ME, M:I。 To '22.

UNIVERSITY OF ARIZONA

FUSION
COLLEGE OT MINES AND HNOTHEFRINO
DEPARTMENT OR GEOLOGY AMD MINERALOGY

November 21st, 1929

Mr. Albert L. FritubOIvil *ngineern Tucson, Arizona.

Dear sir
In ascordanoe ith your request, I have pres anted an opinion on certain phases of the geology of the 012ve Gap area of the Pima Mining District, Pima County, Arizona.

It 1\& the intention to dieause here not the etdie geology of individual properties, but rather, the larger geological features of the area and astrict cenorally, with are of fundamental I mortanoe in the matter of ore occurrence.

The discussion and opinion ore based on brief peranal observations mate. in the field, aided by study of reports prepared by mining engineers and geologists. for mining companies, by reports and maps prepared in the course of nevanaed degree stualea by graduate students in Geology at the University of Ard cons, and by the 11 tergture and government, taps of the area and region.

The rock of the Immediate area comprise Pre-Oambrian (7) granite, Mesotoio (Cretaceous) trios 10 sedimentary beds, Intrusive granite toke, and voloanig rook e which gre ohieth andesite. The valoanios are el the late Oretacouv or andy Tertiary in age. Just outside of the area, particularly 80 the northward, occur thick formation m of Paleosoloo inmentone and quartets.

The major structure of the area can not be definitely determined by available surface and near-gurface geology. It is clear, however, that a great amount of fracturing e aceompanied no doubt by at last some faulting has occurred throughout the area.

It ia poasible that folaing is the now t extensive type of milnor deformation within the area and the oause of fraot uring and faul ting. Or it may be that the eractures were fenerated by stresees resulting from the uneven gettilng of a large orustal bleck following the tranarer of a large volume of toloanio materidi from depth-aeated to superfiolal positions. Or perhaps vertioal upthrust of intrualng magms may have oased fracturing and faulting.

Mineral 1eation apparentzy has been widespread. The rock along fractures observad, whether on the surface or underground, have been more or lase extengively altered. ore deposition, in varying degrees, edems to havo ocourred wherever a master fracture way available to aot as a ohannel way for ore-bearing aolutiong. The ore deposite are, In the man, of the 11 edure-filied type, localized along majos fractures: at the intergeotion of fraotuwes, and in breockated zones.

It 1 fairly oertain that intrugive granitho mooks underile at varlable depth the entire alstrict of which 011 ve Gamp area torme a part. These intrusive rooke were probably the soure of all primary mineralization in the alstrict. The ore doposite that have been aeveloped in the past, in the 01Lve Gamp area have been ohiemy mall high-grade silver-lead bodtes, tommed malniy by thesure. filling, but perhaps to some extent by wall-rook roplacement, In the near-auriace Oretaceous sedimentary, fnd voldanio formations. In areas to the north and south Imporetant coppex and zine ore aevelopments have been wade and from ohl ch considerable tomnages of ore have been mined in the past. these deposits are prinolpally replacement bodies in paleozolo 11 meatone. It appears, therefore, that replade. ment bodies in ilmestone form the important type of ore dep-
onita for the distriot.

The questions of najor atruoture, and charaoter and thioknes of formationdforming that atructure, thus appear to be the essential questions relative to the probibility of extensive ore ocourenses at depth in the Olive Oamp area. If the ore-beaxing 11 mestone formations of the uneral HillSan Xavier area to the north and of the Twin Butted area to the south are continuous or ocour under olive Camp area, then theprobablis ty of occurrenoe of Important comperdal ore deposits at depth in the latter area is greatly inoreased. The problen woula then beoose one of probably depth to the favorable horizon and the deternining of cominant or mater fracture zones.

Hr. John Carter Andereon, in his report on the Swastika property, page 4, sets forth oextain evidence and a atatement of belice that limestone does oocur bolow the nuperHolal formations of the area. That there is more than a possibility that the Paleozole 2 limestone formationa do exist below the surface formations in the olive camp is not an iale staterent nor one made for convenience.

Even brier ifela atudy of the atratigraphy and atwuoturea in this area and that immoliately to the north, in the San Xavier arety justify the gtatement that this stratigraphic conaition might exist. Jut more convinoing still are al. iLar indiestions in the reaulta of recont detalled geologie mappinfe in this area to the inatedate nowth.

Whe 011ve Oanp area appearg to be a depresese geolog 16 , etrioture - olthex a down-warpad (Bynolinaz) or a town-Iautter ares. Tho Paleozoto 12 nestone formations of the sen zeyter araa aletinetiy alp to the touth ($80^{\circ}-25^{\circ}$), apparentiy plunging under the olive Onmp area. the oontact
 ocours alone the southern border of the Sen Xavier area. The originaor this ontact 1 s not olaariy Indioatodi 14 yay be normal romational conteot, produeed by breate or time Interval in the doposition of aediments which tormed the beds or $1 t$ may be a fault contaot, prodused by m major rupture. If this contadt is an unconformity, as the ilrst case sugsests, the 11 nestones extend to the southvara unintar. ruptedly below the olive Camp area. In the event that it is a fault oontaot, the limestonea with their overiying sediventary bede and voloanio formations, in the olive Gamp block have been fauted downard.

There 18 some basia, of course, or expeating that additionsi underground development may disciose other small hlegh-grade silver-lead ore shoote, sueh as were formeriy workea in the area, or perhape larger velin and breocla bodien of ore of comatrolai grade and size. But it is more logloal to expect that, if oommerchally 1 mportant ore deposits are to be developed in the area, they will ocour as metasomatio replacement and oontact doposite in ismeatone.

The problem of developlig poesible large ore bodies In the olive camp area thus resolves itaeli, in ins opinion, to firet ascertalning tha presence or absence of underiying 11 meatone beds. Preferably, suoh ofelopont chould be carried on by drilling oporations And $1 n$ eo dolng if the looation of arin holes ia oarefuliy plannea, $1 t$ Ls probably, that reativoly near-aurface vein or brecole type deposite of value ay be onoountered while the deeper prospoting is in progreas.

The depth at when the lumestone, $1 f$ preaent, may ocour 1 a highly problemationl; if in syaclinal fricture, it may 110 comparatively shallow, if block-faulted, it may 11 fe muoh deeper-
2,000 feet on more.

> Yourg very truly,
> (Slenature)
> Raymond J. Leonard.

STATEMENT OF LUKE CORD, RELATIVE TO THE OLIVETTE MINING CLAIM, PIMA MINING DISTRICT, PIMA COUNTY, ARIZONA.

I came into the section known as Olive Camp, Pima Mining District, in 1886 and am living in the community at this time

I had charge of the San Xavier Mines, now owned by the Empire Zinc Company, and situated in this District, for something over four years, and was in charge of the Paymaster Mine, also in this District, for three years.

At the time the Olivette closed down, in 1893, I was a part-owner of adjoining property known as the Matchless, now known es the Prosperity, which has produced several hundred thousand dollars of ore. The Matchless was worked to a depth of 312 feet and was in good ore when operations on it ceased.

I was on this adjoining property when the olivette closed down and I know that the shut-down was intended to be temporary. After a while parts of the mine caved In and it has not since been dewatered nor opened up in any way

I know that when the Olivette closed down they were in ore as good and the veins were as strong as at any time during the operation of the olivetti.

LUKE J. CORD

The Helmet Peak Mine

The Helmet Peak Mining Property consists of fifty-seven claims, (seven of which are patented) and is situated twenty one miles Southwest of Tucson, with a good road all the way, and 1 s seven miles due west of Sahaurita station on the Nogales R. R.

There is one six hundred foot shaft, and one four hundred foot shaft about four hunired feet apart, connected on the two hundred fifty and four hundred foot levels. Both are fully equipped with hoist, air compressors, blacksmitth shop, etc and also sevenair jack hammers and driliing steel. Just north of the shaft, running east and west thru the property, is a M_{0} ther vein of lead- sAlvergold ore, with several shafts, one of which is three hundred twelve feet deep. These were worked several years ago by hand, but owing to the low price of sliver, work was etopped, and they are now somewhat caved, and have considerable water in them. The claims were taken up by two miners, who shipped ore as they needed money. The first sixty feet was left on the dump, but below that the ore was sorted and shipped. The vein is thirty-six inches wide, nine inches or more of high grade ore. At the 200 foot level, the ore run 200 ozs. silver, one half oz. gold, and twenty to twamyzofidve per cent lead; at the three hundred feet, three hundred ozs. silver one oz. gold, and twenty to twenty-five per cent lead.

From the six hundred foot shaft, a drift was run on the three hundred fifty foot level to within one hundred forty feet of this vein, and the work waa ordered stopped by George Gray, who it appears, did not want to get into shipping ore. It is proposed to continue this drift the rest of the way to the veinf get out the ore, sort it, and ship the high grade, until we can pay dividends, and accumulate a sufficient surplus to put in a suitable mill, To continue the drift and take out at least two cars of shipping ore, it will costs twatity to twenty-filve thousand dollars, which is all the money needed to put the mine in operation and keep it going.

Attached is a copy of Joe Flannery's report, and we also have several engineers reports on the property.

Respectfully submitted

 Oatm, Whioh adjoin the outvetre. I took out of thile
 the 20 prlog of motale at that timot the mine eloted comm and has never luou been oponated. the hatt hamot been dowatered ince the the the mine waloe down. He oparation of the mine was entixely whout machiner.

At the thate the mine olowed oown, in 1898, operatione
 ourice ore in dritt to the wott.

Hy brothar, I. K. Brown, wae one of the Looatom and ownew of the adjoining olain, the ouswotte, and there wan enippac trea the olath, the olvvette, over $\$ 700,000,00$ of ove, ond good ore latt in tha bottom when opernthon wort dimoontinued.

1 nimot omer of nor Lntereated in any mining peoperty in the rimanining platriot.

gemand m. Brow

Mr. 䐦. J. B1 hop, Tuoson, Arizona.

Dear Mr. B1 shop:

Complying with your instructions I have made an examination of the Helmet Pear Copper Company mining property, and submit the following facts.

The property is located in Pima Mining district, Pima County, Arizona, twenty miles southwest from Tucson, on the 01. Tuosen-Xogales highway. on the north is the property of the Empire zinc Co. a developed mine. On the south is the property of Twin Buttes Mines, with a shipping record in excess of five million dollars and with immense tonnage of ore developed. Geology.

Geologic conditions indicate large deposits of high grade silver-Lead, Lino, and Copper which cover an area of ix or more miles, equal and possibly superior to any district in the southwest.

Owing to the 11 mit of time to my disposal I am giving you the results as complete as possible:

The geology of an area of several miles has been examined by a number of eminent geologists, their reports being reliable and thorough, may be obtained by applying the office of the Helmet Peak Copper Company. The company having spared no effort to obtain all possible data of the mineral content of the district.

The geology of the district is practically the same as many of the large copper mines of the United states, Mexico, and South America, consisting of areas of sedimentary deposits, Intruded by later granatola igneous rocky.

On the north we Ind the precambrian granite it
places showing through the soll. south of thi the paleozolo rooks appear as in small areas of quartalto and Martin limestone, and south and West Mesqzoio sediments as 1 ar as my examination extends. The intruaive granite is the principal mineralieer in the ore deposits of Arizona.

The presence of intrusive granito assoolated
with the eedimentary rock form an 1 doal condition for large deposit: of ore. Where these conditions exiet with a great number of mineralized voins enoountered over the surface, it ie almost a certainty of 1mmenge deposits of commercial ore, only requiring oapitol and intelligence in development work to looate them.

There 1s evidence of large deposits of commercial ore, on the oontact of the granite and paleozole rocka, by development 3 of the Mineral H111, Vuloan and other properties.

There has been several million dollars worth of ore shipped frow the dietrict.

The Helmet Peak Copper Oompany ${ }^{\circ}$ a property
consista of a group of sixty two olaime approximately 1240 aores. Mineralization.

There are two prineipal vein syatems traversing the property, one striking nortin 10 degrees ast, apping to the west, and the other running noxth 80 degrees eate dpping northwest.

That the sonal theory is correct in these veing 1s very evident, high grade silver, Lead, 2ine, and eopper ores are and will be encounterea as depth isgalned.

The veins are continuous in trend and have well defined waile and give ovidence of continued depth.

Development.
The development congists of affort to taxe out ore at a comparitively shallow depth, whioh proves without question the wide dietribution of valuable ore at the guriace of the property.

11 the surfsce explorat n tovelopment was zooomplished by the origlnal ownere, who ald the work without the ald of machinery or coientiflo premolples of mining.

The Helmet Peak Mining millins Oompany formerly ownIng a portion of the property now owned by the H_{e} mot poak copper company sunk two shafts in an Andesite intrusion, both ohafts are vertical, number 1 having a depth of 600 feet, number 2 a depth of fous hundrad feet and about 600 feet apart. A great part of the arifting has been driven in an Andesite Arecela, in contaot with the Andegite intrusion, and io not a mineralizing contact, the mineralization being the result of deposits from mineralized solutions from the H1esures, whioh 1e the proper place to look for thor, although I belle ve that profitable bodies of ore will be found in the vicinity of the B1111ngs ehaft a indicated by a shoot or pipe of copper (bornite) 10cated there, by following the Rhty.

I belleve that by continuing the drift of the 180 foot level the Billinge ore body will dovelop nioe body of high grade ore, and aleo oontinue the drist trom the 350 toot leval, collowind the ore to the prosperity vein.

There 1s an abundanoe of ovidence of valuable are bodies along tine vein running through the prosperity olaim, whoh can be developed economioally by drifting from number 1 haft at the 350 loot level, a continuation of thepresent arift will neoesaitate approximately 240 feet to out this vein, after this has been accomplished, arifting in both directions to open the ore body and provide stoping ground.

In the above mentionea eection there 1 a large tomnage of good milling ore, thet oan be easily developed.)

It ig a good polloy to locate ore bodies by
diamond drililig, whion 1 s far more conomionl than finking shafts,
by which to locate wodas of copper ore, as copper deposits in in tones. Ahmost all of the big mines of today were operated on a mall soale and developed in the axiy gtages without machinery or scientilic alreotion, extracting the high grade ore near the surface In a small way until the depth was too great, or the ore booame complex, or no metalurgioal process for profitable treatment at the time and other oauses which delayed avelopment 1 or many year: In ome casen.

Whe problem of the past do not exidt on thic property as metailurgioal difficultios have ben solved, the water, a valuable asset for nilling, being present for flotation purposeg\%

The geology indicates immense bodies of ore
as depth is attained.
All indicatione in 011ve camp as well a Pima mining dietriot point to one of the largest and moet profitable copper oamps in Apizona, and possibly in the United states, or Mexioo, with development and depth.

The Helmet Poak Copper Company are maklng great efforts to develop the property oorreetly.

Ur. Jame A Hamilton who is president of the company and a mining man of many yeare experience and thoroughly competent to develop and operate the property with great eoonome results, having the advantage of knowing that there is ore in the drifts at depth in the development of the former operatore, is advantageous to the present plan or development.

The plans as disougsed with the offleere of
the company for the future development are carefully laid, oonservative, and along approved enginearing plans.

Respectfully aubmitted,
Wh. Eright. E. M.

Page 4.

Replying to your inquiry regarding the Prosperity Mine: I have known this mine since its location sometime in the nineties. The main shaft is down some 320 feet and I do not recall the amount of drifitng that has been done. This shaft was started about 1898, and was worked by the owners, Mike and Luke Corda, until the drop in the price of eilver in 1903. puring trils time the Cordas became worth about fifty thousand dollars aplece irom the profits of the mine. They had no holst on the property, but after the shaft became too deepp for a windlass, they operated it with a whim draw by males.

The first 60 feet of the shaft was a chloride ore that was not shipped and 1s probably atill on the dumps. At 60 feet sulphides were encountered that assayed 30 ozs. silver and a few dollars gold. The ores became steadily richer as the shaft was sunk, and at the bottom of the shaft assayed 300 ozs. silver and 1 oz. gold. I took a sample on the 200 foot level that assayed 200 ozs. silver and about $\$ 12.00$ gold.

The shaft follows the vein down, and flattens aut In places, so that it is very crooked. The vein 1 s better than three feet in width, and the pay streak 8 to 10 inches or better. The balance of the vean was milling ore carrying some chlorides that was thrown on the dump.

Luke Corda died in 1922, and I was administrator of his estate. Among his effects were scrap books containing assays, bills of lading and smelter returns covering the entire operation of the prosperity. I kept these records for oome years, but, unfortunately, later I destroyed them。

Very truly yours,

Signed: Joseph Flannery.

\square

Leearin. Imin:
$8 / 1275$.
Mysm, Honard, tred me yaiwanted old inming data. Enclsedismyold file O Cander- Iit-fa-Jat-paltof the old Helme t Bak tioming li group. Paterted llainos. These are bemry minchased now by Anaconda under cantract: Ibeliere Gmaconda has seen all of the enelveddaita. lt is 0.K. inthme ifyapmit it all in thenaste basket. Dowith it as yaplease. Bestregards.

Tredw Trikett

ASSAYS AND ANALYSIS CERTIFICATES UN 250 FT. LEVEL. HELMET PEAK MINING AND MILING COMP\&NY.
Feet indicate distance to face of drift from shaft cross-cut.

Dec. 9th. \#5 East Drift	Gold.	Sllver.	Copper.	Lead.	Zinc.	Total Value.
26 ft .	. 01	. 7	. 05	2.5	1.4	\% 6.67
\% East Drift						
29 ft .	. 01	. 8	. 12	3.6	2.1	9.67
Dec. 15 th						
\#7 East Drift						
32 ft .	. 01	. 7	. 05	3.6	6.5	15.56
/78 East Drift						
36 rt .	. 01	. 8	. 02	1.2	6.2	11.28
179 East Drift						
40 ft .	. 02	1.2	. 02	2.4	7.1	13.27
Dec. 18 th .						
\#10 East Drift						
44 ft .	. 02	. 9	. 02	2.4	5.6	12.60
\$11 East Drift						
48 ft .	. 01	1.0	. 02	1.1	6.2	11.20
\#12 East Drift						
56 ft .	. 02	1.2	tr.	1.5	5.2	10.58
41 A .						
--	. 03	1.6	. 25	3.1	7.1	17.01
//13 East Drift						
60 ft .4 ft .ilde	. 01	. 9	. 05	2.6	$4 \cdot 5$	11.25
H14 East						
65 ft .4 ft .1	. 01	. 8	. 02	2.5	6.6	12.76
Dec. 28 th						
415 East						
71 ft .	.01	. 6	. 05	1.7	2.4	6.69
\%16 East						
$78 \mathrm{ft} .4 \frac{1}{2} \mathrm{ft}$. ${ }^{\prime \prime}$. 02	3.2	1.5	2.5	3.8	15.60
\#1 B.						
assorted ore.	. 03	16.1	3.5	9.5		33.70
Jan. 15 th						
"18						
C.C.H2 East	. 03	2.4	. 5	5.1	4.6	26.35
\#19						
160 ft . West	. 02	1.2	. 05	2.9	3.0	9.43
Jan 20						
\#19 West.						
165 to 190 ft .	. 02	2.2	. 05	1.5	3.1	8.03
\#20 Nest						
165 to 190 ft .	. 02	. 6	. 05	2.6	2.1	7.58
122 A . 190						
165 to 190 ft .	. 01	. 8	tr.	3.2	1.9	7.94
Jan 25						
\$21 East						
88 ft .	. 02	1.2	"	2.7	$4 \cdot 4$	10.87
H22 East						
94 ft .	. 02	1.4	"	3.8	4.2	11.56
\#23 west						
193 ft .	. 01	$4 \cdot 4$. 05	2.3		6.23
\#24 West						
197 ft .	. 01	4.1	. 15	3.8		8.60
\#25						
assorted ore.	. 02	26.4	9.9	3.2		46:25
Feb. lst.						
\#26	. 02	6.0	2.1	5.5	6.5	26.15
H27						
$\begin{aligned} & \text { Tit-for-Tat } \\ & \$ 28 \end{aligned}$. 03	26.2		30.6		62.27
Surface Outcropp	1 ng	34.1		50.2		95.70

Department of Mineral Resources STATE OF ARIZONA
 OWNERS MINE REPORT

Number Claims, Title, etc. 7 patented, 50 unpatented

Description: Topog. \& Geog.

Mine Workings: Amt. \& Condition

Geology \& Mineralization

Ore: Positive \& Probable, Ore Dumps, Tailings

Mine, Mill Equipment \& Flow Sheet

Road Conditions, Route Good
Water Supply
Brief History
Special Problems, Reports Filed
Remarks
If property for sale: Price, terms and address to negotiate. W. S. King, 90 N. Church St. Tucson, Ariz.
Signed W. S. King
Use additional sheets if necessary.
4. L. Pellegrin © San

ASSAYERS - A CHEMISTS
Tufting for Rete Metals amd
Minerals. Cyanide and other
Whfallurgical Labtaratory tests
P. O Box 810

Assay and Analysis Certificate
mr. Leelinet Pear Naming loo Sept 28 - 1025

Assay and Analysis Certificate
Ni. Helmet bal ming 0 .

Leearin. Imin:
Hysm, Honard, tild me yaiwantedold infoing data. Enclredtis myold file on Camden- Iit-fa-Jat-paliff the old Helmet Beak horing G.group. Pateried Clainos. These are being muchased now by Anaconda under contract. Pbeliere Graconda has seen all of the enelveddita. lt is 0.K. inthme ifyarput it all in thenaste basket. Dowith it as yaplease. Bestregards.
$\stackrel{\square}{C l}$

2HE DALOUS WAMCHLESS OR LROSLENLX LOLS OON PATENTED TOSPFRITY CLAIM. BY C. LORREM-MEE

0 perated in twe batdy Gay and clowed cown in 200 , when leod droppod

moperto melu on contract ion mou, ouO, pajade out us zoyaltien, -
 ตnirts per antu.
 gatentou elaims. Rrow north to Quth tho various zocal oame in this distriot are eaced: hinerel Hili; Gen Lavier; olivo Gang; what Jutes.

 before lous.

Whis is a copreasod area btwatherambeally compared to the oroag aronnc it. To the north, eest, anc souba the aroas are all in maozoic
 mountais range.

A11 tho whothang hroas havo beon roanctive. whe minos are oontiguows anc nomerows in each: In this aroa the formations on tho onvege are mesoade sedimonts, voicanios, and intragive porphyries. where are at Least lour types of ore aeposits: pissure veins; breccia zones; neto-

arobotion in the Gijve Game aroa in the pat has boon litioved to very hagh grade tiesure voins, hioh ia the wollost on all tho obove typos

 evidonee sho. the brevola zono tye of depogit may be mome generaiy prem vakent that rovionsly buposed.

Only the degt Row yema has modem oustom man ins boon avaluble in the aroa The matohlesg is apont 9 mikes mon the rable hicher' s selec-
 from the mabroa at Bahuariva, whoh fo 36 miles aouth of whon on the pavod Togeles tato Eighog.
 ginvermiear-zolu one. hagy ondy hat a gegront oz a Toin oponow not overf buo feet long ot which Lest then had was woriced and the degest of 6 ghafts being bou feet on a steep incline, - one sheft is co foot, another shat not ovor 60 teet, and another not over 50 Leet; so only a factibn 0. Lhe 500 Leet in depth of the 300 foet in length un the vein wos worbat

The vein was low grade on tho surtace, not over 20-30 ounces silver and low goid. st the 200 foot it was avoraging 200 ounces of silver and a holt ounce in solu. Tho ouv toot Iovol mowed 300 to 350 ounces silver and one ounce in eota on cros dowabing apout zbo lead. This orts vas,
 here wo voriat in or were on the wope ste to concerniag the oro lotit in the rine wen the nathet brose.

 or dower grade ore。

 rapioly exjoso twe veins. voners of these voing on adoining xomerties have hau a large production of ven high grae ore In placos smal truees ox menganese in some ow the velns moy accout wor the how gold and silver average vadue above the woter Ieved wioh atrnds at from 50 to dou quet depenuing on tho devation of tho aurarace.

Whe area has a gentre roming topographe The oregu dijw hogbacas
 while the ravioos aobween exwoe the romations in wace at not ovin 'a foct or wio.

The Edgho johor ronked onont tith lat year in lead-minc in the State rom the Gan haviez axea, ana have boint ay a owetompant, at Banurita capable of nonalng 600 tons per day or Lean-aine ores. Thoy
 abont a heif mide north of bise rogerty anc nave been geting very good restuts. they have drilea over dbuo feat in geoth. They bave ariluod through the megozito in ryoos no into bloomolo.

Wheso zomatione aro ding woth 20 to 25 begrees onder this - properta ane it romjns bo be gen hether they nove the big aine of the
 obsanre the lietrare.

I bave done some madhow geophricah work over the surgace and sind Pootwall and hanging wall sections over the wataniess vein that ghows
 fron Ao to low ft. of strong aulohiae mineralasation on other portions. although still in the volcanica ond mesuado souinents. T . heve been trying to get ome coep goojngival. wat wone to indionte noro jntensoly
 paleazoio.

Good results are ghown on these ores by coneentration in previously mado me chanical concentration tests and lato selootive flotation tasta, the sold and silver values $10110.1 n g$ the lowe nu copon concentrates and

 wistrict, for three Heawion

 was worsed to a wonth of als feet end ins in good ore pen pperations on it ceased.
/3i hus u - Goxam,

Doe Bannemy s lettor statog.

 and I do not recal. the gmont of axjuting that hes been lone dis

 the Coruts boane orth abont, itu thonsma wotuas apaoe Irom the protits of the ano. Ther bad no hoist on the popert, wat alter the
 by malde s.

 rated the highost rende in the areo. uba becured tom the se gources incioato that one bigh eroce atoge fove the bu it. Lovel was in the

 only a short ghet down, ana yot tho worging sols in tho feces in some insthacos. the ghat down extended hoveror, sox may yeats, - through the panto or 7906 and 3907 , and the ole tiotchlose finally pessed into the baind of a pronotion eorporetion and we never reopenod. ister the arash of 1929, this corporation wes dormont and atter orex 10 yeare of delinguef

With the wonestic prioe of gilver seb by noceral arg at 90.5 cento per onnco an maxot rices P or load athe conta er pond, wino 9 conts per
 TObract.
whose Lacture ofer gron inwucment for nev conestic mornotion of Bilvex on golc, with our miltary ane Tavel wemptronts demonaing 500

 in andergn routction ow wota.

 eforoude brocila ores, ana a wonamal oportunty to dovelon lerger base metal ore boutes oontaining good silver-guia values th the more troxable


```
0. - Wadz
Nining, metollurgions 3n%:000r
are Soozovict
```

OFEN TRENCH, CUT, OR PIT PRODUCTION- CAMDEN MINE -

AS PROPOSEO BY C.L.OREM- (m. ह.)

It is proposed to first scrape out a trench or open cut (open on one end) over the S. F. crosscut of the 52 ft . level of the Ellingss Shaft and the lest or the g . W. crosscut on the 150 ft . level of the 612 ft . Camden Shaft. This will require $15-50$ ft. of surface to be stripped off by bulldozer above the lowest point on the surface.

Then to ship this product direct to the smejters (seegost gheet on copper cut(2)), mining by small $3 / 8$ yd. shovel and trucks, 0 dragline scraper, widening the trench or open cut by benches as the ore uncovered werrented, - while diemond drilling between levels to prove continuity of ore bodies.

As a lead-zinc-copper cut estimate, block (l), was entered, - to wesh the material through heavy tromel screans, discharging on a short sorting belt where the larger boulders of lead-zinc-copper sulfides could be taken off for a very high grade mill product. An assay of this character of ore gave 13.2% lead, 19.8% zinc, 3.48% copper; $5.40 z s$. silver, and $0.03 \mathrm{ozs} . g o l d$.

The oxidized copper in this material could be washed out as the mine water is acid and most of the copper is in the sulfate form. In places this material shows $2-8 \%$ copper es a copper sulfate. This material could be precipitated on scrap iron as precticed by many mines in the handling of their mine waters. The reoovered product would assay 80% copper or better.

As a trench or pit was deepened these areas could be conneoted with the 150 ft . level of the Camden shaft (70 ft . below the 52 ft . level of the Billings shaft), by raises which could later be "belled out" and the broken ore in them maintained at any level desired by scraping into them by dragline scrapers or a bulldozer working on benches around them. Thus the open pits would beoome glory holes as far down as it proved practical to carry them before substituting underground methods.

As estimeted blocks of ore were mined out on the 150 and 250 ft . levels and the shrinkage stopes drewn off, additional stripping' of the pit could be done through raises into the shrinkage, cut and fill, or open stopes, materially cheapening the mining costs by eliminating considerable mine timbering.

The products below an inch or inch and a quarter in size could be passed over jig,-tables or sink-float units by way of preliminary treatment to cheaply step up the mill product to a very high grade bulk concentrate. The slimes could be passed over flotation cells, teking out the balance of the values.

By opening a trench for a preliminary oheck sampling of over a hundred feet wide of the breccia ores, - complete testing of these products could be cheaply made on a large scale mill test without much equipment, while drilling to prove the continut ty of these ores between levels. Sampling in the oxidized zone in the Billings shaft in rather poor brecoia type ores indicate that the silver values over the high grade poplide areas of the pit may pick up to 6 or ${ }^{\text {i }} 7$ per ton or better.

The advantages of this method would be: With the water being utilized in a preliminary washing operation, the mine would be quickly opened without a large dewatering cost. A 300 to 500 ton per day rate could be quickly reached with the products going direct to smelter or oustom plant or a much smaller final plant on the property would be required which however would be handling a very high grade product.

With the 335 ton per day plant estimated to handle the present ore estimates in four years, - a successful demonstration from pit operation that e 10 to 1 preliminary concentration was possible, large tonnages of very low grade breccia ore areas could be handled by cheap methods, making the product to the final plant or a custom plant of a much better grade, - resulting in better profits. A 10 to 1 preliminary concentration ratio in a pit or glory hole method would mean a million tons handled per year of very low grade
 present ore estimates. This would mean 3350 tons per day and very .ow costs could then be realized. The water could be pumped over and over through sumps and only discharged sufficiently to keep from building up too heavily in deleterious compounds.

Naturally a large amount of testing would be required and could only be had on a practical scale without undue costs by opening the initial trench..

Based on Eagle Pitchers present figures for Pb. Zn. Gu. Au. Ag. net at Mill (Seheurita Plant) on an 85\% recovery. November 10, 1947.
mount pale at the 8111

Assay Market

MU. Marketed Rete Paid by mill
assay Value 20.40 nt. Paid Sniper $\frac{9.00}{1.40}$
This Includes 5.00 Milling cos

3. 6.40

Total Patel For - $\$ 9.00$
Operating costs - mining \& Development
cost.

$$
\begin{gathered}
\text { Trucking to Mil } \\
\text { Mining (contract) } \\
\text { Total }-\frac{5.07}{5}-\$ 9.87
\end{gathered}
$$

 This ore hes most of the development work done at the Camden. Our credits for copper-gold-silverare 3.67 per ton.

Camden Costs: Blocks (1) (2) (3) (4) estimates - taking out sorting belt product and giving the balance a 10 to 1 preliminary treatment and milling the product on the property (estimated on the basis of the custom mill costs at Gaheurita)

300 POn DELIS

Preliminary Plant Treatment

THE HELMET PEAK MINING \& MILLING COMPANY

The property of the Helmet Peak Mining \& Milling Company is situated in the well known "Olive Camp" section of the pima Mining District, Pima County, Arizona.

Situated a distance of about 21 miles in a Southwesterly direction from Tucson, the property is easily accessible by good roads.

A well maintained highway, leading from Tucson to Sahmarita, Amadoville, Nogales and other points on the Nogales Branch of the Southern Pacific Lines, passes within a mile distance of the Helmet Peak Company's property.

A good road connects with the highway affording available shipping points along the line as may be required.

The Twin Buttes Camp, two or three miles to the Eastward, has railroad connection with the Nogales Line at Sahaurita, providing a convenient outlet for the surrounding country.

PROPERTY HOLDINGS

The property held by the Helmet Peak Company comprises a group of seventeen mining claims.

Seven of these claims are patented and the balance are being held under contiguous claim locations.

GENERAL STRUCTURE

The surface ground of the property lies mainly within the area of older Andesites, although in some parts, out-croppings of highly altered sedimentary rocks are in evidence.

Considerable folding and shearing action is observable and the older sedimentaries and basas aggregates show evidence of extensive intrusions by later igneous rooks.

The metal bearing areas are found in the brecciated sections of the Andesitic aggregates where cross faulting and shearing has accompanied the intrusion of Granitic andioritic Porphyries and the subsequent adjustment in place.

The mineralizing solutions have undoubtedly had their origin in the underlying intrusive mass and in their migrations therefrom have caused a partial replacement of the contiguous formation in such parts as were favorable for that action.

ORE OCCURENCE.

The mineralize area within which the most important development work has been done, lies within an extensive shear zone having a southwesterly Northeasterly trend through the Camden No. 2 and Elsie claims.

Secondary iissuring and cross-faulting accompanying the shearing and adjustment periods has resulted in extensive areas of brecciated rock mass which furnished favorable locations for replacement action and the deposition of ore bodies.

The boundaries of the shear zone, outlined by the surface and underground development, indicate a zone of mineralization approximately 200 feet in width, with a length traceable for several hundred feet on either side of the working shafts.

The ore measures outlined by the present stage of development lle within the shear zone, with considerable regularity and demonstrate that mineralizing solutions have traversed certain series of fissures closely related to the faulting and intrusive periods.

Replacement action in brecciated areas and favorable sections of the sheeted Andesite by solutions bearing Sliver, Copper, Lead and Zinc has formed the ore bodies now exposed in the mines.

Extended development work has emphasized the relation of the cross Practuring and sheeting of the rock mass to the nature of the ore deposits. .

Throughout the underground workings is shown the tendency for the better class of ore to be found in the sheeted blocks adjacent to certain well defined shear planes or fissures.

This condition is analagous to the oocurrence of replacement ore bodies in the bedding of sedimentary rocks.

CHARACTER OF ORE

The ores developed at this time are essentially complex in nature; but are not refractory in character.

Tests have shown that the ore would yield readily to modern metallurgiaal treatment.

The valuable minerals Galena, Chaloopyrite, Tetrahedrite and Sphalerite occur throughout the ore measuresin the form of disseminated minerals, nodules and segregated masses.

A strong tendency is shown for like minerals to group together, that 1s: - to segregate into nodules and lenses of separate minerals,

In some areas the Copper-silver minerals will predominate in value and in others the Lead-Silver or Zinc-Silver will predominate.

It is the accepted theory, that: in this section of Ar 1 zona the approaching the origin of mineralization and that the resultant primary

The more recent development of the lower levels of this mine substantiate this theory as the proportion of copper minerals in the unaltered primary ore is gradually increasing as the work approaches the underlying Granitic rocks to the Southward and below.

As this basaz structure is approached at depth the degree of mineralization and proportionate value of the minerals should be increased.

$$
-2-
$$

Neighboring mines of theTwinButtes area on the East and the Mineral Hill area on the North have at times produced large quantities of high grade copper ore.

Their relative position is closer to the basal granitic rocks than the workings of the Helmet Peak Company and it is therefore safe to predi $\&$ that the latter company will find improved mineralizing conditions at a lower geological horizon.

DEVELOPMENT

The principal development work has been done within the ore zone upon the Camden No. 2 Claim and the Elsie Claims.

Work has been done at other points; but that is not covered in detail at this time.

The Billing's Shaft, about fifty feet in depth has been previously worked on a moderate scale and the portion now accessible shows about one hundred feet of lateral development work.

The Zinc Shaft, about seventy feet in depth has been sunk near the westerly edge of the ore zone.

Shaft No. 1 on the Camden No. 2 Claim, is 600 feet in depth, well timbered the full length, equipped with station platforms, ladders and all accessories necessary for development work or mining.

Shaft No. 2 on the Elsie Claim about five hundred feet Southwesterly from Shaft No. 1 , is 400 feet in depth, well timbered all the way and faily equipped for work.

Tributary to Shafts No. 1 and No. 2 about 3500 feet of lateral has been done in the ore zone.

ORE MEASURES.
During the course of development a number of assay samples have been taken from time to time in order to determine the tenure of metal content and value of ores encountered.

Sections which showed distinct mineralization and appeared to be ore were mainly sampled.

Approximately fifty percent of the lateral development footage shows distinct mineralization and has been sampled as ore.

Owing to the fact that the various ore areas, outined on the levels have not been connected up directly with upraises or zinzes, the actual thickness of the ore areas which would govern the actual amount of ore contained in the blocks, is more or less problematical.

In the estimate of tonnages the apparent thickness of the mineralized sheeted rock mass as disclosed by the sample cuts is a factor that can be effectiqely used for the third dimension.

50: LEVEL - BILLINGS SHAFT \& 150' LEVEL

The available ore in the Blilings Shaft area and sections of the 150' level of Shaft No. 1 has been previously estimated at 100,000 tons.

An average of assays shown on this section, -

Gold	Silver	Copper	Lead	Zinc
.01 oz	I. oz	$.25 \%$	1.9%	3.8%

The gross value of the metallics contained is $\$ 8.90$ per ton 250: LEVEL SHAFT NO. I AND SHAFT NO. 2

The development work on the 2501 level has opened up an extensive mineralized area between Shaft No. 1 and Shaft No. 2.

The estimated amount of ore in this area as outlined by the openings and assay sampling is approximately 100,000 tons.

An average of the metallic content of the area as shown is:

Gold	Silver	Copper	Lead	Zinc
$.010 z$	I.5 oz	0.27%	I. 3%	3.0%

The value of the matallics by this average is $\$ 7.37$ per ton.

2501 LEVEL TO 3001 LEVEL

Later development work upon the 300 level and $400^{\prime \prime}$ level of Shaft No. 2 has opened up an interesting section.

The general formation exposed on these levels is more uniform in texture, shows less alteration by circulating ground waterd and the sheeting is more pronounced.

The minerals in the ore on these levels show more of a tendency to aegregate into bunches and bands of higher grade ore.

The block of ground lying between the 250' level and the 300' level, tributary to ghaft No. 2, indicates an available tonnage of approximately 15,000 tons.

The average of assays taken along the exposures of this blook shows a metallic content of:

Gold	Sileer	Copper	Lead	Zinc
.02 oz	1.3 oz	$.72 \%$	1.5%	3.5%

The gross value of these metallica is $\$ 9.78$ per ton.
3001 LEVEL TO 400' LEVEL SHAFT NO. 2
Between the 300' level and 400 level at Shaft No. 2 the present stage of development outlines a block of ore which would contain approximately 5,000 tons.

An averageof the assays taken on this block shows metallioss

Gold	Silver	Copper	Lead	Zine
.02 oz	.53 oz	$0.82 \% . L$	0.9%	6.4%

The gross value of the metallics in this average is \$12.53 4001 LEVEL SHAFN NO. 1 .

On the 400' level of Shaft No. i a partially developed ore body is outlined; which from the area and exposures sampled is estimated to contain approximately 5,000 tons. The average metallic content of the samples taken is:

Gold	Sliver	Copper	Lead	Zinc
.01 oz	.9 oz	$.64 \%$	0.8%	3.1%

The gross value of metallics contained is $\$ 7.67$ per ton.

SUMMARY OF ORE MEASURES

Assays

Location

Location	Gold oz.
50 \& 150:	.01
250 North	.01
$250: 1$ \& 2	.01
250 to 3001	.02
300^{\prime} to 400:	.02
400^{\prime} Shaft No. 2	.01
General Average	.01

Silver oz.
Copper \%
Lead \%

1.2	1.07	.7	1.9
1.2	.25	1.9	3.8
1.5	.27	1.3	3.0
1.3	.72	1.5	3.5
.5	.82	.9	6.4
.9	.63	.8	3.1
1.3	.50	1.2	3.3

Tonnage

Gross per Ton
7.60
8.90
8.
7.37
9. 78
12. 53
7. 67

Gross Value
$\begin{array}{r}760,000.00 \\ 311,500.00 \\ 737,000.00 \\ 146,700.00 \\ 62,500.00 \\ 38,350.00 \\ \hline 2,056,200.00\end{array}$

600' LEVEL SHAFYT NO. I

The section of the shaft between the 400 l leval and the 600' level beingtemporarily impassable, conditions there can not be definitely described at this time.

From reports of daily work it is evident that the rock structure on this level becomes more regular and conformable and the action of circum lating water not so evident.

Mneralization similar to the levels above was found in some sections and undoubtedly a continuance of development at this level would be of Vital importance and furnish valuable data regarding thepossible change in the mineralizing action at increased depth.

SELECTIVE MINING

Taken in the aggregate, the large tonnage represented in the ore measures is of a grade which anticipates the recovery of the metallic values by metallurgical treatment.

Tests have been made which show the ores to be ameneable to concentration and the product marketed at a margin of profit.

In the vein areas certain sections show sampling values sufficient to suggest the possibility of developing and mining these sections separately and incidentally blocking out the true ore measures.

Along this line of development an upraise could be driven from the 400^{\prime} level, west of Shaft No. 2, at the point from which samples No. 404 and 405 were cut, to followit the inclination of the sheeted ore deposit toward the 300^{1} level above.

In a similar manner an upraise could be run from the 3001 level to the 250: level above to good advantage.

Upraises following the apparent slope of the ore deposits, from one level to another, would add valuable data concerning the possible continuity of the ore bodies indicated at the various levels.

In the area tributary to the Billings gaft, good assay values are shown and it is reported that commercial ore was being uncovered in the lower workings at an earlier time.

It seems that certain sections could be mined selectively at a margin of profit, either through the shaft itself or by connecting up with the underground workings of shaft No. 1

A cross-cut tunnel driven from the 150^{\prime} level a distance of about 125 feet would cut the general formation beneath the Billings Shaft and prove up this area effectively.

GENERAL

It is the consensus of opinion, that: the future of this property in the light of a potential shipping mine depends on the degree of concentration of the ne tal content either through a construction of the boundaries or a more general segregation of the mass value at an increastd depth.

From the results obtained from the extensive development work that has been done upon the property to date, it is evident that the factor of increased depth of exploration is of primary importance.

It is assumed in reason that mineralization will become more intensified as the source thereof is approached and that fissures and sheeted rock masses will become more generally ore-bearing and show a relatively increased concentration of the contained minerals.

The origin of the mineralization undoubtedly lies within a zone between the ore areas now manifest and the granitic sill which underlies the series, and the mineralizing ilssures may be simply offshoots from much larger ore bodies below.

To effectively prove the truth or fallacy of the supposition a vertical section of the rock series to the Granite sill beneath should be obtained.

This could be arrived at most economically and effectively by drilling the ground.

The logical action would be to send down a drill hole, as a pilot, from some point of vantage and the subsequent development be regulated according to the results obtained from the drilling. Judging from the large area and tonnage of milling ore now exposed in the mines, it is a logical belief that the ores of more concentrated mineralization will surely be found at some point in the ore zone.

EQUIPMENT \& MACHINERY

The mines of the Helmet Peak Company are well equipped on the surface and underground to carry on mining and development operations.

Shaft No. I Surface equipment consists of a $25 \mathrm{~h} . \mathrm{p}$. Fairbanks Morse Gasoline Hoist, a 50 h . p. Commercial Gasoline Engine with duplex belt driven air compressor, blacksmith shop and necessary tools.

The machinery is well housed and an office building and small cook shack is provided.

Shaft No. 2, Surface equipment consists of a $25 \mathrm{~h} . \mathrm{p}$. Fairbanks Morse gasoline hoist and a Chicago Pneumatic hot head air compressor.

Both shafts have good headframes dumping chutes and surface equipment for handliag ore and waste and pumps are installed in Shaft No. I in favorable locations to handle all water encountered in both shafts.

An adequate equipment is maintained for drilling in either or both shafts or tributary lateral work.

All arrangements aremade so that dewelopment work or ore extraction could be carried on effectively and economically on a scale commensurate with the size of the plant and equipment.

Respectfully submitted,
(gigned) J. M. LIBBEY
Registered Mining Eng'r

Tucson, Arizona
December 5th, 1928.

Ol1ve 0 Arizona Oct. 9, 31

Pima County.

Mr. Wh. J. Bishop, Tucson, Arizona. Dear Mr. Bishop:

ARIZONA DEPT. OF MINES \& MINERAL RESOURCES
STATE OFFICE BUILDING
416 W. CONGRESS, ROOM 161 TUCSON, ARIZONA 85701

Complying with your instructions I have made an examination of the Helmet Peak Copper Company mining property, and submit the following facts.

Location.
The property is located in Pima Mining district. Pima County, Arizona, twenty miles southwest from Tucson, on the old Tucson-Nogales highway. On the north is the property of the Empire Zinc Co. a developed mine. On the south is the property of Twin Buttes Mines, with a shipping record in excess of five million dollars and with immense tonnage of ore developed. Geology.

Geologic conditions indicate large deposits of high grade Silver-Lead, Zinc, and Copper which cover an area of six or more miles, equal and possibly superior to any district in the southwest.

Owing to the limit of time to my disposal I am giving you the results as complete as possible:

The geology of an area of several miles has been examined by a number of eminent geologists, their reports being reliable and thorough, may be obtained by applying at the office of the Helmet Peak Copper Company. The company having apared no effort to obtain all possible data of the mineral content of the district.

The geology of the district is practically the same as many of the large copper mines of the United states, Mexico, and South America, consisting of areas of sedimentary deposits, intruded by later granatoid igneous rocks.

On the north we find the precambrian granite it
placee showing through the soil. south of thic ane paleozoic rocks appear as in small areas of quartifte and Martin limestone, and South and West Mesoxoic sediments as far as my examination extends. The intrusive granite is the principal mineralizer in the ore deposits of Arizona.

The presence of intrusive granite associated With the sedimentary rocks form an ideal condition for large deposits of ore. Where these conditions exist with a great number of mineralized veins encountered over the surface, it is almost a certainty of immens deposits of commercial ore, only requiring capitol and intelligence in development work to locate them.

There is evidence of large deposits of commercial ore, on the contact of the granite and paleozoic rocks, by development of the Mineral Hill, Vulcan and other properties.

There has been several million dollars worth of ore shipped from the district.

The Helmet Peak Copper Company's property
consists of a group of sixty two claims, approximately 1240 acres. Mineralization.

There are two principal vein systems traversing the property, one striking north 10 degrees east, dipping to the west, and the other running north 80 degrees east dipping northwest.

That the zonal theory is correct in these veins is very evident, high grade gilver, Lead, Zinc, and copper ores are and will be encountered as depth 1 sgained.

The veins are continuous in trend and have well defined walls and give evidence of continued depth.

Development.
The development consists of efforts to take out ore at a comparitively shallow depth, which proves without question the wide distribution of valuable ore at the surface of the property.

A1: - the surface exploration development was accomplished by the original owners, who did the work without the ald of machinery or scientific principles of mining.

The Helmet Peak Mining \& Milling Company formerly owning a portion of the property now owned by the Helmet Peak Copper Company sunk two shafts in an Andesite intrusion, both shafta are vertical, number 1 having a 两epth of 600 feet, number 2 a depth of four hundred feet and about 500 feet apart. A great part of the drifting has been driven in an Andesite Breccia, in contact with the Andesite intrusion, and is not a mineralizing contact, the mineralization being the result of deposits from mineralized solutions from the fissures, which is the proper place to look for them, although I believe that profitable bodies of ore will be found in the vicinity of the Billings shaft as indicated by a shoot or pipe of copper (bornite) located there, by following the plpe.

I believe that by continuing the drift of the 150 foot level the Billings ore body will develop a nice body of high grade ore, and also continue the drift from the 350 foot level, following the ore to the Prosperity vein.

There is an abundance of evidence of valuable ore bodies along the vein running through the prosperity claim, which can be developed economically by drifting from number 1 shaft at the 350 foot level, a continuation of thepresent drift will necessitate approximately 140 feet to cut this vein, after this has been accomplished, drifting in both directions to open the ore body and previde stoping ground.

In the above mentioned section there is a
large tonnage of good milling ore, that can be easily developed.
It is a good policy to locate ore bodies by
diamond drilling, whioh is far more economical than sinking shafts,
by which to locat wodies of copper ore，as cuper deposits ile，in zones． Ainmost all of the big mines of today were operated on a small scale and developed in the early stages without machinery or scientific direction，extracting the high grade ore near the surface In a small way until the depth was too great，or the ore became complex，or no metalurgical process for profitable treatment at the time and other causes which delayed development for many years in some cases．

The problems of the past do not exist on this property as metalurgical difficulties have been solved，the water a valuable asset for milling being present for flotation purposes．

The geology indicates immense bodies of ore as depth is attained．

All indications in Olive camp as well as
Pima mining district point to one of the largest and most profitable copper camps in Arizona，and possibly in the United States，or Mexico， with development and depth．

The Helmet Peak Copper Company are making great efforts to develop the property correctly．

Mr．James Ao Hamilton who is president of the company and a mining man of many years experience and thoroughly competent to develop and operate the property with great economic results，having the advantage of knowing that there is ore in the drifts at depth in the development of the former operators，is advantageous to the present plan of development． The plans as discussed with the officers of the company for the future development are carefully laid， conservative，and along approved engineering plans．

Respectiully submitted，

> 骩。Bright。 E. M。

Tucson
College of Mines and Thgineering
Department of Geology and Mineralogy

November 21, 1931

Mr. J. A. Hamilton
Tucson, Arizona
Dear Sir:
In accordance with your request, I here present an opinion on certain phases of the geology of the Olive Camp area of the Pima. Ming District, Pima County, Arizona.

It is the intention to discuss here not the detailed geology of individual properties, but rather the large geological features of the district generally, which are of fundamental impertrance in the matter of ore occurrence.

The discussion and opinion are based on brief personal observations made in the field, aided by a study of reports prepared by mining engineers and geologists for mining companies, by reports and maps prepared in the course of advanced degree studies by graduate : students in Geology at the University of Arizona, and by the literatire and government maps of the area and region.

The rocks of the immediate area comprise pre--Cambrian (8) granite, Nesozoic (Cretaceous) arkosic sedimentary beds, intrusives. granitic rocks, and volcanic rocks which are chiefly andesite. The volcanics are either late Cretaceous or early Tertiary in age. Just outside of the area, particularly to the northward, occur thick formations of Paleozoic limestone and quartzite.

The major structure of the area cannot be definitely determined by the available surface and near-surface geology. It is clear, howover, that a groat amount of fracturing, accompanied no doubt by at least some faulting has occurred throughout the area. It is possible that folding is the most extensive type of minor deformation within the area and the cause of fracturing and faulting. Or it may be that the
fractures were generated by stresses resulting from the uneven settling of a large crustal block following the transfer of a large volumn of volcanic material from deep seated to superficial positions. O perhaps vertical upthrust of intruding magmas may have caused fracturing and faulting.

Vineralization apparently has been widespread. The rocks along fractures observed, whether on the surface or underground, have been more or less extensively altered. Ore deposition, in varying degree, seems to have occurred wherever a master fracture was available to act as a channel-way for ore-bearing solutions. The ore deposits are, in the main, of the fissure filled type, localized along major fractures, at the intersection of fractures, and in brecciated zones.

It is fairly certain that intrusive granitic rocks underlie at variable depth the entire district of which the Olive Camp area forms a part. These intrusive rocks were probably the source of all primary mineralization in the district. The ore deposits that have been developed in the past in the Olive Camp area have been chiefly small hi gh-grade silver-lead bodies, formed mainly by fissure filling, but perhaps to some extent by well-rock replacement, in the near-surface Cretaceous sedimentary and volcanic formations. In areas to the North and South important copper and zinc ore developments have been made and from which considerable tomnages of ore have been mined in the past. These deposits are principally replacement bodies in Paleozoic limestone. It appears, therefore, that replacement bodies in limestone form the important type of ore deposits for the district.

The question of major structure, and character and thickness of formations forming that structure, thus appear to be the essential questions relative to the probability of extensive ore occurrances at depth in olive Camp area. If the ore-bearing limestone formations of the Mineral HillSan Xavier area to the North and of the Twin Buttes area to the South are continuous or occur under Olive Camp area, then the probability of occurrance of important commercial ore deposits at depth in the latter area is greatly increased. The problem then would become one of probable depth to the favorable herizon and the determining of dominent or master fracture zones.

Mr. J. C. Anderson, in his report on the Swastka property, page 4, sets forth certain evidence and a statement of belief that limestone does occur below the superficial formations of the area. That there is more than a possibility that these Paleozoic limestone formations do exist below the surface formations in the Olive Camp area is not an idle statement nor one made for convenience. IVen brief field study of the stratigraphy and structures in this area and that inmediately to the north, in the San Xavier area, justify the statementthat this stratigraphic condition might exist. But more convincing still are similar indications in the results of recent detailed geologic mapping in this area to the north.

The Olive Camp area appears to be a depressed geologic structure-either down-warped (synclinal) or a down faulted area. The Paleozoic formations of the San Xavier area distinctly dip to the south $\left(20^{\circ}-25^{\circ}\right)$ apparently plunging under the Olive Camp area. The contact between Paleozoic limestone and Cretactous arkosic beds occurs along the southern border of the San Xavier area. There normal formational contact produced by a break or time interval in the deposition of sediments which formed the beds; or it may be a fault contact, produced by a major rupture. If this contact is on unconformity as the first case suggests, the limestones extend to the southward uninterruptedly below the Olive Camp area. In the event that it is a fault contact, the limestones with their overlying sedimentary beds and volcanic formations, in the Olive Camp area have been faulted downward.

There is some basis, of course, for expecting that additional underground development may disclose other smell high-grade silver-bearing ore shoots, such as were formerly worked in the area, or perhaps larger veins and breccia bodies of ore of comercial grade and size. But it is more logical to extect that, if commercially important ore bodies are to be developed in the area, they will occur as metasomatic replacament and contact deposits in limestone.

The problem of developing possible large ore bodies in Olive Gamp area thus resolves itself, in this opinion, to first ascertaining the presence or absence of underlying limestone beds. Preferably, such development should be carried on by drilling operations. And in so doing if the location of drill holes is carefully planned, it is probable that relatively near-surface vein or breccia type deposits of value may be encountered while the deeper prospecting is in progress. The depth at which the limestone, if present, may occur is highly problematical; if in a synclinal structure, it may be carparatively shellow, if block-faulted, it may lie deeper- 2,000 feet or more.

Yours very truly,
R. J. Leonard.

Phma County, AFImom,

敞
C. S. Barle, - Kimimg ooodogith.

DPOTS
 On the propenty of the

LOCATETO:

Yhe property of the Helatet Pent Malag and MiliLag Opmpay
 northeanterly adge if the giextite Mowntafne, at on levition of bopt 3600 leet above tide and 21 mlee nouth and feet of thi oity of tuentm. The property oontere about the corner 10 8eotione $10,11,14$ and 15, in Townehip 17 Gcuth, Range 13 Taet. Loon 22 . thin portion of the

An oxocilent highway between tucton and the riainc onap of Tin Buttes, four miles to the month, passe the property, aile to the east of the mine, with wioh it in conneated by a good mine road.

Sahuarita, ight piles cant, etation on the Tucson-ligesias Branoh of the scuthern Paoilic. in the mippiag point.

HOLDTHGS:
The property compriee 12 unpatented lode olaine six omed by the oompany and if held urder bond and loane. Thope olaime onad by the oompany are collective known an the Harperminartine Group and are named: South Camden, South Camden loe 1 and 3. Refulia, Refulia Iow, 1 and 2. The claime under bond and leane oomprise the reery Oroup". and include the T1t-10r Tat, Contention, Pronparity, Canden, Camden Hon. 2 and 3. These twive claim ar contigigut and have an area of nearly 340 aores, extending camtward and weatward for male mathropquartoz and with amaximan with of almont half a mic.

The dominant reliel ieature in the opography of this general region ure north-south to northwectupoutheat tranding fant blook mountain ranges, wh broad, latervening. aluviai-floosed valloy ox plaing.

The Slexrita Mountaing forian of the ouveral relativelv mali mountaine, roughly allgnod, whoh seporste the Altar-Abra Valley, on the weot, from the ganta Crus Valley, on the eent. These monataine ILk the rangee parallelling the to the aentard and weetward, wist forined by oruatal fractuxing and uplitt in the late Tartiary and enriy. Plelstoopns titers.

Sino then, weathering and crosion have profoundiy modisied their fori and rellef. Thase by crosion. the original 81errita Mountaizs mas has been doeply di mecoted and ite lianks have retrintod

sloping rock floors a lowland, has beon developed sboint a more remant of the original monntalk mate. From the mumit of the plat oone, or mountain pediment, thut developed by roelos, the rommant etrand an a

 ribe bove the plain. For crample. on the weptorly elde, the ontral man in llanted by marrow belt of foothilla. At other polnte. at the onetern ide, other uninenoes rime from thit piain, moh at bhe Twin Battes, Einet Peak, San Kariar Ridge, Dumoorist Peak, and Mmorel gill. Peripheraliy, the rook plain paeee beneath alluvial iopeng detritu depolted by ophomoral etreamg formed by stormmekers rumang Irow the mountilne slopen to the Altar-abra and the sumte Crus Vallefe: Far out on then elluvial nlopes, the only visible indiogeted of the neture of the rook 2200 b bemeath. of for shat minter, thot the
 left by circum-eromion. But towarde the pomatan axie the detritue oover

 lying rook forumskone.

The profound urosion to thioh the giprrita Range hae bean cubjeoted han iald open to $1 t$ oore. sevealing ite innurnopt etmugture and conetituont formitions. Orent thioksencen of rook, onoe coperime the ontire uplift, have been moily removed from the opentral nef ant whenet

A reoomnaisanoe of the range how the reok texien is erder 01 age to be ai Lollows:

Repting on a bseoment of moh olenr PromCambrian griniteg

 referale in age to uppar Canclan, Devonian, ulatelenpplan, and Permo-

 fifty male to tho montheatmard, however, entapleh the og of the evios.

Mantling the eroded marinose of the older formatione ner rean arate of a thiok cerie of Turtiary ambenisea and rhyoilises - matmo

Diten and nill of relmed types found rasting the older underiying

 cranite

Arother cffect of the acannt of tha magan was to dymatim

 into vegments; often howing flow-itructure and marbletsation. The tersigenous rooks wes extenelpely manod and sheared, and in pleoeb converted into inctes and veam mohste. Oloenly following hing mome ing mineralising colutione manasing fron the underlying granitio may,
 ag Dietriot.
-
On the patern side of the range, in the Pink Maing DIEtrict, thomeh the rook formation are lomally oontorted and folded. Ft
 olearage, are practionily manting. The videmoen of igreout motemorphiem. on the othur hand, are ceen almost vrexymare. che atigation wat minm Is offeoted by euffusion of the rook by hot solutioum - perhepe gaeot and vapore - the volatile oonetituents of the gramitio maga making thelr
 ation into gremite.

Through the ation of thene acintlome. conaiderable port-
 and garnetized; portiona of olayey limestones heve been extemeively it-

 tained feldapara recrystilised into meloito, until it in often difflom ult to distinguiah thom in the lield from altored gutationorphyyy, or mahed and reconetruoted rhyolite; male antenelvely hornfeleifinely porcoleinized and eliloified; and laEg mate of the rook have beom oham
 ed the rooln. Dut moh alteration in by mo meane memivafeal an ents

 Loxind in sow of the limetrom ratem.

The efgniflomno to un of the oocurance of this Eranite batholith is the large maber of viuable doponite of oze found in the dierupted and intruded overiy inc oldar rock lormationg formed by ingeralizere ceaping into than, ox foroed into them, from the flus granitit

Thum whert the 11 lid sold mama 41 reotiy omme into omatact

 of garnet and aulphide ores belng cormet along tho contact th the ompente of the latter roalte.
 ogoomily more oongenial porticna of the rook and inso tho ehattered

 slemeres and long fait gontante.

In thin mannef the large conteot ose botien in the Peleonole Liseatonce at Mloaral gill and the Fuloan Mines two mlen nosth, and the
 tho north and onet of the Golmot Penk Mining and Mililns Company' propo

 eoust.

Th lare and valuable ore deponita of the Ban Xavier Msnet. mile north of the Company' property. In gray Ponneylvanian ilmantome. whermed by eolution asoending irom the mbjaonnt mema, folloutns the
 and intruded eilis of voloanio rook.

Agsing bere the colution asoended throngh fiamure injese colufble rool rooke, the mil oonkiand the colutiont and valuabie vala and shoots of ore were formed. Mayy velng of thi bype have been worited in the OLIVR ©amp Examples of mok Finn are tho olivetse Velng the
 the Company 'í holdinge; the Tit-for-Tat; Oqntention and Bromperity vina on their grounds the Freis valn and Alphe valn to the eduth; and the Paymater veins to tho outhwest. Other vilng. Qropping peve notyzt.

 oped.

- A Lourth and very important typ of oxe doposit is found in the dietrict. lt present it in represented by a single known oqouranoe, the with futur explorathon and deviopment in depth of oLiph chip it is comm ridently expectod to beoem the rource of lange moel prodnotion of baet orell *
- There mro bodie of disseminated oren ocouring in orumbed and brecolated sone in the lose permeable and replacoable rooke. of bhis Eype. is the or body now bains devolopad by the Holmot Poak Masing and Miling Company on their property. Henthenneralizeng oolutione, en ounding from the granit megra, have formed lage ore body in brecoiated andealit. e+e日**
 oopper-dron aulphidec, Fith depting though somal arrangemat of ore minerals is lound to tak place upward, where rosion hus not destroyed the upper portion of deposits. In this eaquanoe the relatively pare coppermiron ores give plaon upward to a mature of ooppor and sine. them

 periphorel zone *otet

As a xemit of the magmes of Bouthern Arimona in gencral being relatively oopphr-Lron rioh, and an these unerala oome down at relatio
vely hlah tempernture, and preaipitation and ondriohmoat aro hearlout
 ore bodide inoxpane in inse commard. The lend-siver end of hateriee umualy onrile the higher vinuen. but the oogper orem, ghouch lowev In

The ILempe reing of the OLTVI OAMP, cesentiaily Ieadeniver
 1803, rhonid be zegarded as upper, mitemutad ondo of ore bodien, gradid downard through sino-00pper oren to opppormiron oren ot moh greater
 onoountering the mid-sone of ooppermeino oren, whioh beaause of theis oomplexity, and no pragtion way of treatment et that bime, oculd not be

QEOLOCY OF OLTVE CAYP AMD
 CGPATMS日ROLNX

OLIVR OAKP ILes in the nosthaentern part of the padimantary

 by shallow, eantwardiy dralaing weter and mrioyon. patoheo of minure

On the north and northenet the wet is boandad by Inite, ni alone whioh rien eroded blooks of Paleosolo etrata, whose Flelble portlone are componea of great thickneenee of Pemneyltanian (Ocrbonisempun)
 ou of theat fanit-blocke, rimes sevoral mundred foet bove the general piain. while oroasing the area on the north, in oant-went ilne. ase gan Xavier Ride on the onit. and Marble Mountala on the witit.

 Coologioni Map of 0isve Camp).

The Menozoic ntrata Lorm belt meariy mil mide minde underile the northern end and the ometern elde of she Cemp. Southmard

Th etrata ftand noarly vertiosi and ageregate maxy mandnede of leet in thloknete. Thelr etinke and dip ia varigole. In tho mayko
 north; southwestmard it dopart idely from thie in place. Doninidme able portion of the rook are obethered, weethered and metmosphoned

Th rook varies from heary-bedded axkoale comglomerate and
 thinmbodded, fino-grainod; grey gandeton or quarteite, interbocidod nith
 Eritty 21mangon.

 breack may be etratifomin

 gatasl intwision of the manite Lato the older wote the differmpe
 seldepar panopombyintin mopont.

ORE DRPOBTTS OT OLTVE GUMP:

- Est in the

 negme to mort colvole postlen of the ilme.

Athough no ocouranoes of cither of thag typec of ore openits heve yet beon found in OLIV OAMP, its intermediat posttion and aloon-

 continutition ot the ore body.

 have rede up for thels lower tenor, had tho monthets it milly of thone

 Company' groperty.

 and wat developed for about five muadred feet mad on depth of perberg -two hunstred feet. rue Promperity wortiage lie three handred be lowe

 approximstely, and dipping morth at a 50° ancle, which izattone ooniderm ably with depth. The rein wa worked irom three inclined ahafte, to a depth on the inoline, of 310 reot. com good onipping ore le enta to meve been ieft in the botto of theow worilnge. peotecte

I have been unable so amoctaln wat the production of eltiox of these veing was. The dumpere Large and two prounction probably
 indicating bbout the same amount of developmont.

The Amaette vein, about 1700 feet northeact of the Pronperisy
 ond to have been produced and operated to the extent of $605,000,00$ in

Thee minea were morked between the yoar 1888 and 189s. exnm

Ratimatem by oldinern, of the total production of thep part-m
 \$8,000,000:00.
*eenmmorzed velas oocur, sud probsbly many wich are blimd eln m

 are 1ikely to 21 in the development pobsibilitioc of themeh bodish

 somatio replsoment ores of the aletriot, given the right ocmatiskme fin

 to replacomant oomether laverable offecting aondition murt bo afrosdnd.

 the elneralizing colutiona and the lormation of dizeendnated ores in bym
 ore body now beting dernlopas by the helmet Pent Co.

In many oates condition recogniseble by the geologimt. followed by systematio drilling, will almost oactasmy devalop other Elmilar or bodies in the Company' property

Then miniag has baen omrised, ssy, to the 400 leet ieval In the ine, it inght be advisabio to drift boneath the old Prosperity
 zons, botwen the andisite mad tha kesosolo medimantsuras, and openins up the base ore of the Prosperity rain at depth.

Znawlsdge grined in the continued Javeloprant of the Belset Poak ore boty ma be expected to iurnish information of anctoe in laokIng for oinilar or bodia isenhere on the property.

The curving contact bstween the andssite and Masosoio clastion 18 regardad se potential ore ground. tamsel whioh has been miarted in
 2 claiw, F. 30° g. from Helmet Pask ghat, tun leaohed and brecolited sone in this oontsot, offers posisibilitien weranting oontiming of work.
should expootstion be remlised, and ore fonsd nith depth here, it will probsbly load to development of thi oontsot bsoic around torerd the sime.

Fhere are other good murise indications of metslisation on this lara property, 10 ch hould be given more study. I prophesy that oventualiy a oarcini gealogioal etudt and mpping of the tituotume of sis these twelve claite will be msde, and a oartiul exploration with the trill Will be oarcied cut; for conditions inisoats that the chanoes for tety-
 property in an area mioh pant developmontis have proved highly inmernilsed.

ORERESERTR:

From the prount morkinge lir. Marper, gupt, entimate that there can be producea 105,000 tons of 1112 m ore, 1 ith a grese value ci $\$ 8.00$ pas ton. I hare oarerully gone over these cetinater wifh him. both unierground and on the map of norkiage, and heve sax chath meayb.

If the areas out in taxiag aseny Hos. 1809 and 12 to 14 . inclusive, and Ho. 30, repreneming the 5c. TO and 150 loot levis. art
 curvad mone of milling ore, 325 feet long, mpproximately 40 2eet mide and 100 foet deeg, $2 y 1 n g$ between the 50 and 100 levels. Bated upon the arerage value por foot of openinge araileble, this blook oontalaing 100,000 tons would have a groen Falue of 910.00 per ton. As otated, het

 opnent permite. Kr. Harperie entmatio therefore regarded as very onnestative.

There sre zones of mach migher grade ore than this avarages

0roses

 onough Tor midime.

The prosent afirt in ore siong the footwhit on the 150 poot

 the guriace.

 shaft.

 romite.

 oporating and opaning up and mowink the merth of the property.

 woet comosicul devalopment of the propexty.

and syetematio ansaying. All of the data thue soourad showid be plaond on an aasiay map for the future roferenoe, to further ingure the eopmondeal mizing of the ores an developmand at an add in the opening up of the better eeatione of the new ground.

Acourate matailurgian sost should be run on average perpenoxtative $20 t s$ of the ore, by a reilabic matailurgioul enginewr, to datermine the beut aethods of treatiant, before eeleoting equipment for the mill. ,

PRESERT ROMSPMEMT:

The preasmit mininc equizmant consinte of a 50 日.P. Comeroial
 Hointire Eragine; a etoper; two jaokhammere; two mounted rook drille; (all of Ingersoil-Rand muke), mad a Denver blook Dxill. The 250 foot: compertmont ind h hali, maln thaft is well timiered. A Ho. 8 worthing Elake Linomles type purp in installed in thie cheft at the 150 foot lovel. exd it is oquippod with air and water pipe linew. There are abent 500 foet of hadd track, one rine car, two ane trucke and three mine buokete.

The bolste and compressor are housed in a 23×31 foot building. There is alec a 1500 geilion mater tank. A Ford, one ten truck, owned

ADDITIOLKL EGUYPERET RECUIRED:

A larger toift will be required in dempening the main abaft to raterlevel and to hamio the ure and wate whon development itarte on the deeper ievel. Tha 6 हi.P. hoiet now it ute should be inetalled at the Billing Ehaft. Then af soon he a raise bai bean delvea connaotiac with this shaft it can be uned in raleing wate fron the 150 foot lavel.

As soon es drifting and orosemcutting on the new level hae bean atarted, a 50 ton pilot mill hould be orected. Miling of the are mised in thie development hould cover a considerable part of the experse of operations and izorceaingly so at to work of extenstion and the opening of new faces.

The ore reserve of 105,000 tons, eatimated from present development, sill aupily a mild of 50 tone oapacity, without allowing for loat
 the capsoity of tie aill oan be increamed oy adding a second 50 tan unt.

TATER AMD TIMBER:
Fron evidence derived from mining on adjoining propertiee, wat er gdequate for milliad amy be expeoted fros devilopment of the mine at a depth not to exoced 300 leet.

Tisber and fucl yill havo to bo hauled elther from Sehuarita stetion, 8 miles, or from fuceon, 31 miles.

CORCRUETOHS:

The present developmont work thowe property of great promite. funtifying ilberel financing for the parpoes of further development.
wile the protent morkinge hat shom the ore exposed to be a pertion, zerely the mpex, of laxge ore bodywideniag dommands the
 ore zone or an mowlug how lurge whe mime undariain hy are maf be.

Ampie ohaap labor, low hmiage ant ahipping conts, and are bodies parnitting of chesp etoping mothota im miniag ant other conditiom ma Pavorable as in othex camps in the country, all fake lor reanamable ining and mlling oowse.

Averuge martet pricas of mathl and the comparatively resmat improvementa cado in the alliliag of moh somplax orem. a good prosis ig amared from the large tomasge of sha prasent and better pradee of ore, mion iovelopuant my be oonildentiy expeatod to opan up stopth.

Tus larga number ant wide dighribution of trong ving mish Lave been indas mperfiaigily for their rioh leadmeilver ores in ohry CAMP. proves it bayond quastion to be in an exceptiomally rialiy nimay alized irex. Phat those veina in the majority of oasan lead dow to inush lasgar botion of oommarcial base ore has beon explained. The large bodies of contaot-metamorphio and metreomate replaopent oref of oopput and coppermino miphides, miad in contiguout asupe, point, with a high degree of probability, to othar ore bodiea of tbese motnis, of the
 poeftion of the Galuat Paak Mining and Milling Compayia property, Is this area, the excollent showing development of theif ore body hat 18 m ady made, and ofher strong aurfina indiestione, found on thelr large
 gratifying coonomio ragulte.
signed \qquad
Mandng Ceologitet.

Tucson. Axizons.
Augues 35th. 1926.

This report was loaned with the appreval of Mr. gerle and the gelmet Poak Mining and M1ILint Co. 2ewnither 1930.

Mr. H. S. Brown,
Lakeview, Iowa.
Dear Sir:
In accordance with your request, I herewith submit report on the properties of the Helmet Peak Copper Company, located in Olive Camp, Pima County, Arizona.

Introduction
A thorough study of the property has been made to determine the geologic and economic merit of the property and to outline a campaign of development.

The geology of the area has been most thoroughly studied by the best geologists obtainable and elaborate detailed reports are available on this very important phase of the subject. No effort has been spared by the Helmet Peak Copper Company to compile the most detailed data possible greatly facilitating my work which comprised a careful checking of the data which is found to be surprisingly accurate.

It is therefore only necessary that I deal to a great extent in generalities, authorative details being available for those who wish to study them.

Location

The property, composed of 60 mining claims, is located 20 miles southwest of Tucson in the Olive mining camp which is a part of the Pima Mining District, Pima County, Arizona. It is four miles from Twin Buttes, the nearest railroad point. The main Tucson-Twin Buttes hi-way traversing the property is well adapted to cheap truck or tractor haulage.

The San-Xavier-Mineral Hill district joins it on the north and west.

History

 the demonitization of silver caused the dily eighties to 1893, when many of the veins which were reaching the wantinuation of work on complex zinc-lead-copper-silver ores for which no suit ancreasingly process was then available.It is estimated that the totel production of the district is approximately $\$ 10,000,000.00$ which may be considered from superficial development. This compares very favorably with what may be considered the preliminary development of many of the larger mining camps of the United States.

Geology

The geology of the district is the same as many of the important mining districts of Arizona; consisting of a series of sediments, distorted, intruded and minerelized by late granatoid igneous rocks.

As we approach the area from Tucson the first formation encountered, scarcely showing through the alluvial, is the Pre-Cambrian granite. The Paleozoic sediments next appear represented by comparatively small areas of Bolsa Quartzite, Abrigo and Martin limestone followed by an area of Mesozoic sediments. Further to the southwest these sediments are covered by volcanics, principally andesite. This entire area is invaded by intrusive granite in the form of dikes and sills. Further to the south this granite assumes batholithic proportions and form the main range of the Sierrita Mountains.

The intrusive granite is conceded to be the mineralizer in the principal ore bodies of Arizona. The presence of this, associated with a depository of sedimentary rocks constitute the ideal geological conditions for the formation of large commercial deposits and when these formations are encountered with abundant surface expression of mineralized veins, it is almost a certainty that such deposits exist it only requiring sufficient development work to locate them.

The problem then resolves itself into a matter of a detailed geological study resulting in the most accurate deductions possible with the evidence at hand, assisted by properly directed and recorded development work.

That large deposits of commercial ore are formed on the contact between the intrusive granite and Paleozoic limestones have been proven by the development accomplished at the Mineral Hill, San Xavier, Vulcan and San Xavier Ratension properties to the north and west and in Twin Buttes to the southeast.

The Helmet Peak Copper Company property is covered by Menozoic sediments immediately adjoining the Peleozoic formations to the south and east. The depth to which the Peleozoic formations are covered is problematical and depends on the amount of unconformity, fault displacement, and the origional topography upon which the Mesozoic formations were deposited.

It has been the writers experience to observe the Paleozoic formation oxtending upwards in small areas thro the Mosozoic or overlying formation, appearing as tho it might be the top of a poak of the older formation which was later covered. When one observes the abruptness of the sides of Helmet Peak immediately adjoining the property it is easy to conceive of such a possibility.

Near Tombstone, Arizona an occurrance of this nature was noted. A very small area of Peleozoics was uncovered by erosion and a very valuable mine developed therein. No place throughout the extensive workings could evidence of faulting on a sufficiently large saale be observed to account for the thousands of feet of strategraphic displacements indicated by the place in the geological colum of the two formations.

The above facts are mentioned to bring out the thought that origional topography may have played an important part in the present geological relationship as well as expressive faulting which, in this opinion is not sufficiently marked by physical evidence of thousands of feet of movement.

The Mesozoic sediments consists of a serios of Arkosic sandstones and shales with occassional zones of thin bedded limestones. Areas of very hard dense silifious sandstones or ackenaxxumana quartzites appear. These are irequently difficult to distinguish in the field from the more acid phases of intrusives and are frequently confused with them. In places these masses contain finely diseeminated pyrites which when weathered, produce red or black hills.

Although no theoretical reas on can be given for this, these red and black hills in the Mesozoics have throughout the area been frequently observed to be closely associated with the Paleozoic limestones. If this is true in this area they will be encountered at no great distance below the surface.

Intrusive granite also occurs near one of these showings on the Wellington claim and a convergance and flattening of voins at this point indicate a possible centering of mineralizat won together with the strategraphic elevation of formations. The hill at this point is covered with iron and manganese stain. Believe a series of diamond drill holes in this area would give favorable results.

Vein System \% Minoralization.

There are two principal vein systems traversing the property one striking north ten degrees east and dipping to the west at an angle of about seventy degrees, and one striking north, wighty-three degrees east and dipping to the north. These veins start down at an angle of about sixty degrees and flatton to forty-five degrees as depth is gained.

That the zonal theory os deposition holds good in these veins is without question. Near the surface high grade silver ores are encountered which pass into lead-zinc and finally copper ores as depth is fained. These zones somewhat overlap forming complex ore that until recently were difficult to separate.

The veins are continuous in strike, have well formed walls and give evidence of continuation in depth.

Devolopment.

The development consists almost antirely of an effort to pick up ore bodies at comparatively shallow depth and has resulted in proving the fertility of the area at the surface.

The most extensive workings are those of the Helmet Peak Mining Company where two perpendicular shafts have been sunk 480 feet apart, one to a deoth of 400 feet and the other to a depth of 600 feet. They are in the andesite and much of the drifting accomplished is in an andesite breccia which is possibly closely related to the contact between thismformation and the Mesazoic sediments. This contact cannot be regarded as a conductor of mineralized solutions, but rather a depository for mineralization carried by the principal fissures therefore it would seem more appropriate to look for deposits of ore at points in line with the fertile vein.

Although due to obscure surface expressions, direct evidence of such an occurrance could not be obtained, believe that one such area is located near the Billings shaft. A brecciated ore body contaning some high-grade copper zinc ore is in evidence at this place. A drift has been run on the 150 foot level and has encountered this same zone with good ore showing. No drifting or cross cutting has been accomplished at this place.

Conclusions.

Each worth while mining camp passes through which milget be termed three stages of development. First: the prospect stage carried on for high grade streaks generally by the original locators Second: development on a slightly broader scele by inexperienced companies organized for that purpose who are successful as long as the grade of ore remins high and no real mining or metalurgical difficulties are encountered. Third: the profitable era develops when those experienced in the profession make the best use of geological and operating telent backed with sufficient funds to carry out a carofully planned campaign of development.

The first and second stages have been accamplished in Olive Camp. The water encountered by past operators, which is oomparitively small in quantity can now be made a material asset far metalurgical purposes with the present electrical equipped pumping machinery. The metalurgical question has been solved beyond the possibility of a doubt by selective flotation.

The geology is right, the mineralization points to probably large bodies of commercial ore with depth (copper) and the Helmet Peak Copper Company by the thorough manner in which they are undertaking the enterprise, have convinced me of their sincerity and ability to carry out an extensive campaign of development to thoroughly prove Olive camp with the possibility greatly in favor of a very profitable onterprise.

Reccomendations.
Although it may be possible to develop and extract some profitable ore bodies in the upper zones of mineralization the greater possibilities are in the development of the property with depth.

As a preliminary means of obtaining information in reference to ore occurrances and general geology recommend that diamond drilling be resorted to in the vicinity of the black hill on the Wellington claim previously described.

When this is accompolished and the data correlated the correct conclusions can be reached as to the kind of shaft to be sunk for the purpose of extracting the ore. First class equipment is now available to accomplish this work.

A little work should be accomplished in the Helmet Peak workings. The drift on the 150 foot lewel could be easily cleaned out and sufficient work accomplished to determine the extent of the Billings ore chute.

Reccomendations (Continued)
When the reke of this chute is determined it may be possible to locate it on the lower levels and thereby develop a profitable body or ore.

The north crosscut on the 350 foot levez should be extended to cut the vein system represented by the Prosperity workings.

Diamond drilling from the lower working of the Helmet Peak development would give an advantage of severil hundred feet from surface and give additional knowledge of the relationship of formations.

Very truly yours,

W.M. Snow

Mining Enginear.

Helmet Peak Mining \& MillIng Co.
Twoson, Arizona.
Gentlemen, -
Since your mine was sampled and reported upon, as of september lIst, 1927, considerable amount of extended develop a went work has been done upon the 250 Pt . Level.

Approximately 500 feet of additional drifting and cross m cutting has been done in the Westerly section of that level and an extensive area of mineralized ground has been encountered therein; which materially increases the available tonnage of commercial ore in the inc.

General conditions, in evidanoe, are favorable for the continuance of the metal values through the further extension of the lateral and vertical dimensions.

Assured Ore
The mineralize area in the westerly action of the 250 Ft. Level, as outlined by present development, and which can be classified as Commercial Ore, has a vein area of approximately 5,250 square feet.

The ore-bearing rooks, lying in a sheeted or bedded form, have been exposed, by the work, to a thickness of 60 feet; supplying the faitor of know vertical extent.

The resultant content of the block, indicated by these factors is seen to be approximately 26,000 tons.

The mineralisation, of commercial value, occurs in the form of Sulphides of Copper, Lead and Zinc, with additional valued in Silver, and Gad.

The character of the ore bearing material and the mineralienation is similar to the ore ares in the Northerly section of this level.

Samples were cut from the ore exposure within the weeterly block and assayed with the following results, Average of samples No. 25 to 31 Incl. Length of out-10 ft., Interval between cuts- 4 feet, from westerly end of block, Gold . 25 oz. Silver 2.10 oz. Copper. 5%, Lead 1.69%, zinc 3.83%.

At the present prion of metals, the Gross Value would be $\$ 9.55$ per ton.

Average of amples No. 32 to 37 Inol. Length of out 8 to 12 ft. Interval between cuts - fit. from Mortherly and of blook, Gold .15 oz. 8ilver 1.12 oz. Copper . 06%, Lead . 2%, Zine 3.05\$

At the present price of metale the Grose Value would be $\$ 5.01$ per ton.

The average value of the blook outlined would be 7.45 per ton Gross.

From the estimated tonnage of 26,000 a Grose Value of the Blook is ociloulated at approximately $194,700$.

To summarize the amount of available ore in the mine, assured at this time, we have $1 \pi,=$

The 250' Level North - 36,000 tons

- $\$ 8.53$ Eroes
$\$ 898.550$
The 250' Level West - 2e,000 tons - ${ }^{17} 7.45 \mathrm{gros}$:

The BIIIIngs shaft - 3,600 tons 9 $\$ 8.23$ gross

194,700 And a Grose Total of 28,450
521,700
The above estimates are based on the present low market prioe of metale.

As previousiy stated, - by inspeotion, the ores should yleld readily to treatment and adqquate laboratory teste would indioate the amount of margin of profit to be expected from mining and milling of the ore.

Possibleore
In the new area opened up by the later development work, the proportion of the commercial are beara a ratio of 30% to the whole area.

Agsuming that the ore zone extends to the surface, a supposition amply Justified by visible conditions, then it is assumed that the commercial ore ratio will maintain throughout the ore zone extended.

With these factors as a basis, the oalculated amount of comerolal ore to be antiolpated within. the extension of the Wefterly blook will be approximately 87,000 tons.

To sunmarize the Possible Cormeroial Ore in the mine, to date, from the 250^{\prime} Level to the surface, wo have in, ${ }^{\circ}$

The 250' Level North - 110,000 tone - 8.63 gross

The 250' Level West - 97,000 tons 722,660 - $\$ 7.45$ gross

> The Bililings ghaft - 3,500 tons - \$8.13 gross
and a Grose Total of
In round numbers the antiolpated grose value of oommeroial ore in the mine from the $250^{\prime} \mathrm{Ltvel}$ to the surface, as outilned by present development. may be set at between ($1,750,000$ and $2,000,000$.
axtenced development at greater depth will naturally increase the actual amount of avallable ore and will also greatly augment the theoretioal amount of possible ore to be anticipated.

In Genaral

The most Westerly section being developed at the tise of the sampling, showed a strong tendenoy for the minerals to segregate into bands, or veins, and the aamples taken from the or exposures howed an unusual degree of enriahment in spots.

It will not be gurprising to find the ore oocurring in veins and deposits of workable size and of a value sufflajent to permit of direct shipment to the melter.

It is a noticeablo fact that considerable leashing aom tion has taken place along the shoar planes and jointing of the rock and this action has undoubtedly impoverished the ore deposits on this horizon, to a comsiderable extent.

Development at greater depth will, no doubt, show that the ore zone will be more uniformy mineralised and that the ore ceposite will be more aependable in form and degre of mineralization.

The various areas opened up by the development work done upon the 250^{\prime} Level of the mine. indioate very piainiy that the ore deposits oocur within a well deilned mineralised zone, having a innear extent of over 1 ive hundred feet and which will extend downerd to a depth well worthy of oonsid. eration.

Conclusion

The resulta obtained from this later work have surely justifled the expenditure and also assure the ultimate suocess of more extended development at greater depth and lateral extension from all levols.

Bespeotiully submitted (sga) J M L1bby
Tuoson, Arizona Ootober 25th. 1927 Registered Profecional Ingineer 꽁․ 285

