

CONTACT INFORMATION
Mining Records Curator
Arizona Geological Survey 1520 West Adams St. Phoenix, AZ 85007

602-771-1601
http://www.azgs.az.gov
inquiries@azgs.az.gov

The following file is part of the

Arizona Department of Mines and Mineral Resources Mining Collection

ACCESS STATEMENT

These digitized collections are accessible for purposes of education and research. We have indicated what we know about copyright and rights of privacy, publicity, or trademark. Due to the nature of archival collections, we are not always able to identify this information. We are eager to hear from any rights owners, so that we may obtain accurate information. Upon request, we will remove material from public view while we address a rights issue.

CONSTRAINTS STATEMENT

The Arizona Geological Survey does not claim to control all rights for all materials in its collection. These rights include, but are not limited to: copyright, privacy rights, and cultural protection rights. The User hereby assumes all responsibility for obtaining any rights to use the material in excess of "fair use."

The Survey makes no intellectual property claims to the products created by individual authors in the manuscript collections, except when the author deeded those rights to the Survey or when those authors were employed by the State of Arizona and created intellectual products as a function of their official duties. The Survey does maintain property rights to the physical and digital representations of the works.

QUALITY STATEMENT

The Arizona Geological Survey is not responsible for the accuracy of the records, information, or opinions that may be contained in the files. The Survey collects, catalogs, and archives data on mineral properties regardless of its views of the veracity or accuracy of those data.
PRIMARY NAME: AYRA MINE
ALTERNATE NAMES:
MOHAVE COUNTY MILS NUMBER: 566A
LOCATION: TOWNSHIP 20 N RANGE 17 W SECTION 10 QUARTER NW
LATITUDE: N 35DEG O8MIN 11SEC LONGITUDE: W 114DEG O4MIN 22SECTOPO MAP NAME: KINGMAN - 7.5 MIN
CURRENT STATUS: EXP PROSPECT
COMMODITY:
GOLD LODE
BIBLIOGRAPHY:ADMMR AYRA MINE FILEADMMR MOHAVE CUSTOM MILL PROJECTADDITIONAL WORKINGS SEC. 9, T20N-R17W

THIS MAP COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS
FOR SALE BY U. S. GEOLOGICAL SURVEY, DENVER, COLORADO 80225, OR WASHINGTON, D. C. 20242 A FOLDER DESCRIBING TOPOGRAPHIC MAPS AND SYMBOLS IS AVAILABLE ON REQUEST

Mohave County MILS index \#566A
Mohave Custom Mill Project Card file
Kingman, AZ 7.5' Topo (included in file)

Age of Mineralization:

Production History	Geochemical Analyses
5 claims	

1) Malach (1977) p. 33.
ir. J. S. Coupal, Director,
Department of Wineral Resources,
Capitol Building,
Phoenix, Arizona.
Dear irr. Coupal:
Pursuant to your rgcent request, I herewith submit a brief outline of the dyra Mine:

The property that I have under lease and option to purchase consists of five claims located approximately five miles in an airline southwest of Kingman, Arizona. It is reached from Kingman four miles west over Highway 66, thence three miles south over fair county road. The Citizens Utilities Power line parallels the highway and a branch caid be extended to the property some three miles in a tangent. Supplies and materials can be obtained via the Santa $F e R R$. , Kingman, or direct from Los Angeles by truck lines over Highway 66. No camp would be necessary as workmen could reside in Kingman. Drilling to not over 200 feet anywhere along the contiguous flat will provide ater for a 500 ton or more operation. The Santa re has a well in this area from which they pull several hundred thousands of gallons of water daily.

The mineralized zone is comprised of a syenite-aplite vein paralleling or cutting at an acute angle a diabase dike. Surface detrital and overburden obscure the average width or extent of these intrusions. However, two shallow trenches across the formation expose 15-20 feet of width near the main shaft, of the syenite-aplite. Samples from these cuts ran $\$ 3.50$ to $\$ 10.50$ invgold. The walls and width of the dike are as yet undetermined. outcrops of both occur at intervals for several thousand feet along the strike. This formation is intruded into a general country rack of gneiss and schist, wi th granodiorite lacoliths, the probable source of the syenite-aplite vein, occuring nearby.

The present development consists of one $4^{\prime \prime} x 6^{\prime \prime}$ shaft, 50 feet deep, on an incline of 75 degrees, the apparent dip of the diabase dike. This shaft mas started near an intersection of the syenite-aplite and the dike, into which had fingered two small ($1^{\prime \prime}-2^{\prime \prime}$) stringers of the syenite-aplite. it the collar of the shaft these stringers carried about $\$ 10$ in gold. At 17 feet down there were two or three stringers running $\$ 35$ to $\$ 40$ in gold. A cut sample 30 inches wide including one stringer and enclosing dike ran 88.40 in gold. it 27 feet or depth the strineers carried 880 in gold. At the 50 foot level cut samples all around showed the stringers carrying $\$ 300$ to $\$ 500$ in zold. The gold is Iresh appearing, brizht yellow, sharp and undoubtedly is of primary origin.

Along the 50 foot horizon a small 4 foot drift was run, about 20 feet to the north and 10 feet to the south from the shaft. This drifting mas done mithin the diabase dike between two strike faults, carrying gouge and a hard casing. Fovever, the drifting and the rauits do not determine either wall of the dike, and it's width may be considerable. Within these strike faults are one to three stringers of the syenite-aplite which carry the values. These stringers run at a very slight angle to the strike of the dike and faults and are displaced by the latter. Picking into the walls determines that the stringers continue within a fev feet, angling slightly toward footwall and hanging wall of the dike. There may be many additional ore bearing stringers on both foot and hanging wall sides of these strike faults.

From the 30 foot point below the callar of the shaft a small triangular block of ore was slabbed down over and down to the north drift on the 50 Ioot level. ill the resultant muck from this underhand stoping, the lower 20 feet of the shaft, and the north drift was sorted and shipped to the Tom Reed lilil in Catman, irizona. The first shipment ran 66 . in gold per ton, it being estimated that about 50% was sorted to the dump. By careful bucket count and tonnage calculation the second shipment was sorted 5:l and ran l52. in gola per ton. On the third shipment only the larger, more eawily sorted chunks of waste were discurded, estimeted at 15-i2\% of all muck broken and hoisted. This shipment returned $\$ 47$. in gold per ton.

It resolves itself to this: below the 30 foot horizon, one stringer per four feet of dike, the maximum width mined, returns about $\$ 15$ rock as broken; two stringers per four feet, p30T35, and, occasionally, three stringers make a $\$ 40-\$ 45$ product. This development work was carried on thru a small, crooked shaft, windlass, hand drilling, and poor facilities for sorting. As a result, under these slow, primitive methods, the lessees could not make it pay. Trucking to the Tom Reed mill was 3.50 per ton; milling charge $\$ 3.60$; 92% recovery on small lots, and a $\% 10$ sampling charge.

The few places in which the walls had been picked into by hand indicate another foot of width at least on each side of the drift and shaft of dike material and contained ore-bearing stringers - a total of six feet. From the cuts on the surface it is probable that there will be this much additional width of commercial dike and stringers, and possibly even more.

It is recommended that a small gas driven sinking hoist be installed, headframe and dumpinf facilities improved, a t:ro drill portable compressor be obtained, and with two jackhammers, intensive development be initiated. The shaft should be extended to the 100 foot level, and at the same time several stub crosscuts should be driven into both walls at the 50 foot level. This
mould open up the dike, determine it's width at this point and also give an opportunity to sample up and establish the average grade of commercial ore across it's minable and total miath of 6 to lZ or more feet.

On the 100 foot level drifting should be carried along simultaneously in both directions, and again short cross-cuts put in here to expose the full formation. On a two shift basis, the shaft could be advanced to the 100 Ioot level in 30 days. This sinking would produce $6-8$ tons daily of 915 to ${ }^{3} 18$ rock. Shipping steadily to the Producers Custom Mill in Chloride, a ${ }^{\text {Whe }} .50$ trucking rate,

Sinking the shaft is estimated at 40 per foot, or approximately $\$ 2500$ to the 100 foot level with sump. However, this sinking would produce some:

150 tons of ore at $\$ 15$ per ton - - -
Costs: Mruckin玉 - $\quad 3.50$ per ton Milline tion - 0.75

Total $\quad 6.50$
Royalty: 10\% of
95\% of 筙15. - - 3 1.43
Total Cost - 7.93 x 150 tons
\$1189.50
Net cost of sinking to 100 level: $\$ 2500$. minus

Following this, 200 feet of drifting, 100 feet north and south, could be completed in 30 days. Drifting costs, including hoisting, general, superintendence, etc., would be about \$l6\%ft.
is each round (3 feet) will produce 10-12 tons of shipping ore, this would result in $20-$ tons daily.

20 tons x $\$ 15$ - - - - - \quad - 300.00
Realization Costs:
Trucking, mulling, mill absorption and royalty-
 Total Cost
$\$ 254.60$
ivet operating profit per day - - - 45.40

Folloming tris development progran, about three months incluaing 30 days for oraping up For stoping and mining, the operation can be stepped up to a 50 ton per ady basis, Fith realization as Iollors:

Gross value or ore Costs:

Total
Net 2rofit - 3.47 \#

50 tons per day $x 3.47$ - 373.50 per day or 5305 . per month.
Dapital Expenaitures:

llaneous smail to		300.
Two mine cars	-	150.
Bucket and cable	-	75.
Compressor rent montin is	-	$\begin{aligned} & 125 . \\ & 500 . \end{aligned}$
Foist rent 3 months - $\$ 25$	-	75.
Pick-up truck	-	825.
Eeadframe and bins	-	450.

Operating funds for 90 days 3550.00

Sinking				\$2250.00
Drifting	200×16		-	-3200.00
Prepping \& initiating mining				
\$3.50 x 50	tons			5000.00

10450.00

Total
\$14000.00
Returns from, and in circuit, during this program will net approximately $\$ 2500$. Irom the development ore shipped, and will orovide further funds for the purchase of stover drills and miscellaneous equipment that will be required for a steady mining operation.

It is anticipated that in viev of the potential widtis indicated by the prelininary mork, folioaing a 6 to li months operation accompaniee oy proper development, tre scale of operations can be increased to 150 tons a day. This mold justify the installation
of a mill and a resultant saving of approximately 33.50 a ton in trucking and lomer mill costs. Operating it's omn mill, the enterprise shoulú obtain a total or 9.50 per ton cost, including royalty, or get of 5.50 per ton. on 150 tons per day this yould anount to a net operating profit of f 85.00 per day or 924,750.0C pet month.

In conclusion: It is felt that an estimate or grade of ore is conservative, and that the mine run will more nearly approach 18 to wio in 8010 per ton, with the resultant mangin of safety and increased profit oi 9,000 to $\$ 10,000$ per month, and that the initial investment of approxinately $\$ 15,000$ is Iully justified.

This is just an informsl, descriptive report endeavoring to give you the pertinent information and data as soon as possible.

Rae I. Joindton.

RIJ/M

